Loading...
Note: File does not exist in v3.1.
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Bit operations for the Hexagon architecture
4 *
5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6 */
7
8#ifndef _ASM_BITOPS_H
9#define _ASM_BITOPS_H
10
11#include <linux/compiler.h>
12#include <asm/byteorder.h>
13#include <asm/atomic.h>
14#include <asm/barrier.h>
15
16#ifdef __KERNEL__
17
18/*
19 * The offset calculations for these are based on BITS_PER_LONG == 32
20 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
21 * mask by 0x0000001F)
22 *
23 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
24 */
25
26/**
27 * test_and_clear_bit - clear a bit and return its old value
28 * @nr: bit number to clear
29 * @addr: pointer to memory
30 */
31static inline int test_and_clear_bit(int nr, volatile void *addr)
32{
33 int oldval;
34
35 __asm__ __volatile__ (
36 " {R10 = %1; R11 = asr(%2,#5); }\n"
37 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
38 "1: R12 = memw_locked(R10);\n"
39 " { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
40 " memw_locked(R10,P1) = R12;\n"
41 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
42 : "=&r" (oldval)
43 : "r" (addr), "r" (nr)
44 : "r10", "r11", "r12", "p0", "p1", "memory"
45 );
46
47 return oldval;
48}
49
50/**
51 * test_and_set_bit - set a bit and return its old value
52 * @nr: bit number to set
53 * @addr: pointer to memory
54 */
55static inline int test_and_set_bit(int nr, volatile void *addr)
56{
57 int oldval;
58
59 __asm__ __volatile__ (
60 " {R10 = %1; R11 = asr(%2,#5); }\n"
61 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
62 "1: R12 = memw_locked(R10);\n"
63 " { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
64 " memw_locked(R10,P1) = R12;\n"
65 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
66 : "=&r" (oldval)
67 : "r" (addr), "r" (nr)
68 : "r10", "r11", "r12", "p0", "p1", "memory"
69 );
70
71
72 return oldval;
73
74}
75
76/**
77 * test_and_change_bit - toggle a bit and return its old value
78 * @nr: bit number to set
79 * @addr: pointer to memory
80 */
81static inline int test_and_change_bit(int nr, volatile void *addr)
82{
83 int oldval;
84
85 __asm__ __volatile__ (
86 " {R10 = %1; R11 = asr(%2,#5); }\n"
87 " {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
88 "1: R12 = memw_locked(R10);\n"
89 " { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
90 " memw_locked(R10,P1) = R12;\n"
91 " {if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
92 : "=&r" (oldval)
93 : "r" (addr), "r" (nr)
94 : "r10", "r11", "r12", "p0", "p1", "memory"
95 );
96
97 return oldval;
98
99}
100
101/*
102 * Atomic, but doesn't care about the return value.
103 * Rewrite later to save a cycle or two.
104 */
105
106static inline void clear_bit(int nr, volatile void *addr)
107{
108 test_and_clear_bit(nr, addr);
109}
110
111static inline void set_bit(int nr, volatile void *addr)
112{
113 test_and_set_bit(nr, addr);
114}
115
116static inline void change_bit(int nr, volatile void *addr)
117{
118 test_and_change_bit(nr, addr);
119}
120
121
122/*
123 * These are allowed to be non-atomic. In fact the generic flavors are
124 * in non-atomic.h. Would it be better to use intrinsics for this?
125 *
126 * OK, writes in our architecture do not invalidate LL/SC, so this has to
127 * be atomic, particularly for things like slab_lock and slab_unlock.
128 *
129 */
130static inline void __clear_bit(int nr, volatile unsigned long *addr)
131{
132 test_and_clear_bit(nr, addr);
133}
134
135static inline void __set_bit(int nr, volatile unsigned long *addr)
136{
137 test_and_set_bit(nr, addr);
138}
139
140static inline void __change_bit(int nr, volatile unsigned long *addr)
141{
142 test_and_change_bit(nr, addr);
143}
144
145/* Apparently, at least some of these are allowed to be non-atomic */
146static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
147{
148 return test_and_clear_bit(nr, addr);
149}
150
151static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
152{
153 return test_and_set_bit(nr, addr);
154}
155
156static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
157{
158 return test_and_change_bit(nr, addr);
159}
160
161static inline int __test_bit(int nr, const volatile unsigned long *addr)
162{
163 int retval;
164
165 asm volatile(
166 "{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
167 : "=&r" (retval)
168 : "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
169 : "p0"
170 );
171
172 return retval;
173}
174
175#define test_bit(nr, addr) __test_bit(nr, addr)
176
177/*
178 * ffz - find first zero in word.
179 * @word: The word to search
180 *
181 * Undefined if no zero exists, so code should check against ~0UL first.
182 */
183static inline long ffz(int x)
184{
185 int r;
186
187 asm("%0 = ct1(%1);\n"
188 : "=&r" (r)
189 : "r" (x));
190 return r;
191}
192
193/*
194 * fls - find last (most-significant) bit set
195 * @x: the word to search
196 *
197 * This is defined the same way as ffs.
198 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
199 */
200static inline int fls(unsigned int x)
201{
202 int r;
203
204 asm("{ %0 = cl0(%1);}\n"
205 "%0 = sub(#32,%0);\n"
206 : "=&r" (r)
207 : "r" (x)
208 : "p0");
209
210 return r;
211}
212
213/*
214 * ffs - find first bit set
215 * @x: the word to search
216 *
217 * This is defined the same way as
218 * the libc and compiler builtin ffs routines, therefore
219 * differs in spirit from the above ffz (man ffs).
220 */
221static inline int ffs(int x)
222{
223 int r;
224
225 asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
226 "{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
227 : "=&r" (r)
228 : "r" (x)
229 : "p0");
230
231 return r;
232}
233
234/*
235 * __ffs - find first bit in word.
236 * @word: The word to search
237 *
238 * Undefined if no bit exists, so code should check against 0 first.
239 *
240 * bits_per_long assumed to be 32
241 * numbering starts at 0 I think (instead of 1 like ffs)
242 */
243static inline unsigned long __ffs(unsigned long word)
244{
245 int num;
246
247 asm("%0 = ct0(%1);\n"
248 : "=&r" (num)
249 : "r" (word));
250
251 return num;
252}
253
254/*
255 * __fls - find last (most-significant) set bit in a long word
256 * @word: the word to search
257 *
258 * Undefined if no set bit exists, so code should check against 0 first.
259 * bits_per_long assumed to be 32
260 */
261static inline unsigned long __fls(unsigned long word)
262{
263 int num;
264
265 asm("%0 = cl0(%1);\n"
266 "%0 = sub(#31,%0);\n"
267 : "=&r" (num)
268 : "r" (word));
269
270 return num;
271}
272
273#include <asm-generic/bitops/lock.h>
274#include <asm-generic/bitops/find.h>
275
276#include <asm-generic/bitops/fls64.h>
277#include <asm-generic/bitops/sched.h>
278#include <asm-generic/bitops/hweight.h>
279
280#include <asm-generic/bitops/le.h>
281#include <asm-generic/bitops/ext2-atomic.h>
282
283#endif /* __KERNEL__ */
284#endif