Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
 
  41#include "flow_netlink.h"
  42
  43struct ovs_len_tbl {
  44	int len;
  45	const struct ovs_len_tbl *next;
  46};
  47
  48#define OVS_ATTR_NESTED -1
  49#define OVS_ATTR_VARIABLE -2
 
  50
  51static bool actions_may_change_flow(const struct nlattr *actions)
  52{
  53	struct nlattr *nla;
  54	int rem;
  55
  56	nla_for_each_nested(nla, actions, rem) {
  57		u16 action = nla_type(nla);
  58
  59		switch (action) {
  60		case OVS_ACTION_ATTR_OUTPUT:
  61		case OVS_ACTION_ATTR_RECIRC:
  62		case OVS_ACTION_ATTR_TRUNC:
  63		case OVS_ACTION_ATTR_USERSPACE:
 
  64			break;
  65
  66		case OVS_ACTION_ATTR_CT:
  67		case OVS_ACTION_ATTR_CT_CLEAR:
  68		case OVS_ACTION_ATTR_HASH:
  69		case OVS_ACTION_ATTR_POP_ETH:
  70		case OVS_ACTION_ATTR_POP_MPLS:
  71		case OVS_ACTION_ATTR_POP_NSH:
  72		case OVS_ACTION_ATTR_POP_VLAN:
  73		case OVS_ACTION_ATTR_PUSH_ETH:
  74		case OVS_ACTION_ATTR_PUSH_MPLS:
  75		case OVS_ACTION_ATTR_PUSH_NSH:
  76		case OVS_ACTION_ATTR_PUSH_VLAN:
  77		case OVS_ACTION_ATTR_SAMPLE:
  78		case OVS_ACTION_ATTR_SET:
  79		case OVS_ACTION_ATTR_SET_MASKED:
  80		case OVS_ACTION_ATTR_METER:
  81		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  82		case OVS_ACTION_ATTR_ADD_MPLS:
  83		case OVS_ACTION_ATTR_DEC_TTL:
  84		default:
  85			return true;
  86		}
  87	}
  88	return false;
  89}
  90
  91static void update_range(struct sw_flow_match *match,
  92			 size_t offset, size_t size, bool is_mask)
  93{
  94	struct sw_flow_key_range *range;
  95	size_t start = rounddown(offset, sizeof(long));
  96	size_t end = roundup(offset + size, sizeof(long));
  97
  98	if (!is_mask)
  99		range = &match->range;
 100	else
 101		range = &match->mask->range;
 102
 103	if (range->start == range->end) {
 104		range->start = start;
 105		range->end = end;
 106		return;
 107	}
 108
 109	if (range->start > start)
 110		range->start = start;
 111
 112	if (range->end < end)
 113		range->end = end;
 114}
 115
 116#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 117	do { \
 118		update_range(match, offsetof(struct sw_flow_key, field),    \
 119			     sizeof((match)->key->field), is_mask);	    \
 120		if (is_mask)						    \
 121			(match)->mask->key.field = value;		    \
 122		else							    \
 123			(match)->key->field = value;		            \
 124	} while (0)
 125
 126#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 127	do {								    \
 128		update_range(match, offset, len, is_mask);		    \
 129		if (is_mask)						    \
 130			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 131			       len);					   \
 132		else							    \
 133			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 134	} while (0)
 135
 136#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 137	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 138				  value_p, len, is_mask)
 139
 140#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 141	do {								    \
 142		update_range(match, offsetof(struct sw_flow_key, field),    \
 143			     sizeof((match)->key->field), is_mask);	    \
 144		if (is_mask)						    \
 145			memset((u8 *)&(match)->mask->key.field, value,      \
 146			       sizeof((match)->mask->key.field));	    \
 147		else							    \
 148			memset((u8 *)&(match)->key->field, value,           \
 149			       sizeof((match)->key->field));                \
 150	} while (0)
 151
 152static bool match_validate(const struct sw_flow_match *match,
 153			   u64 key_attrs, u64 mask_attrs, bool log)
 154{
 155	u64 key_expected = 0;
 156	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 157
 158	/* The following mask attributes allowed only if they
 159	 * pass the validation tests. */
 160	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 161			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 162			| (1 << OVS_KEY_ATTR_IPV6)
 163			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 164			| (1 << OVS_KEY_ATTR_TCP)
 165			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 166			| (1 << OVS_KEY_ATTR_UDP)
 167			| (1 << OVS_KEY_ATTR_SCTP)
 168			| (1 << OVS_KEY_ATTR_ICMP)
 169			| (1 << OVS_KEY_ATTR_ICMPV6)
 170			| (1 << OVS_KEY_ATTR_ARP)
 171			| (1 << OVS_KEY_ATTR_ND)
 172			| (1 << OVS_KEY_ATTR_MPLS)
 173			| (1 << OVS_KEY_ATTR_NSH));
 174
 175	/* Always allowed mask fields. */
 176	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 177		       | (1 << OVS_KEY_ATTR_IN_PORT)
 178		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 179
 180	/* Check key attributes. */
 181	if (match->key->eth.type == htons(ETH_P_ARP)
 182			|| match->key->eth.type == htons(ETH_P_RARP)) {
 183		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 184		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 185			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 186	}
 187
 188	if (eth_p_mpls(match->key->eth.type)) {
 189		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 190		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 191			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 192	}
 193
 194	if (match->key->eth.type == htons(ETH_P_IP)) {
 195		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 196		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 197			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 198			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 199		}
 200
 201		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 202			if (match->key->ip.proto == IPPROTO_UDP) {
 203				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 204				if (match->mask && (match->mask->key.ip.proto == 0xff))
 205					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 206			}
 207
 208			if (match->key->ip.proto == IPPROTO_SCTP) {
 209				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 210				if (match->mask && (match->mask->key.ip.proto == 0xff))
 211					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 212			}
 213
 214			if (match->key->ip.proto == IPPROTO_TCP) {
 215				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 217				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 218					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 220				}
 221			}
 222
 223			if (match->key->ip.proto == IPPROTO_ICMP) {
 224				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 225				if (match->mask && (match->mask->key.ip.proto == 0xff))
 226					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 227			}
 228		}
 229	}
 230
 231	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 232		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 233		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 234			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 235			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 236		}
 237
 238		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 239			if (match->key->ip.proto == IPPROTO_UDP) {
 240				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 241				if (match->mask && (match->mask->key.ip.proto == 0xff))
 242					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 243			}
 244
 245			if (match->key->ip.proto == IPPROTO_SCTP) {
 246				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 247				if (match->mask && (match->mask->key.ip.proto == 0xff))
 248					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 249			}
 250
 251			if (match->key->ip.proto == IPPROTO_TCP) {
 252				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 253				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 254				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 255					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 256					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 257				}
 258			}
 259
 260			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 261				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 262				if (match->mask && (match->mask->key.ip.proto == 0xff))
 263					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 264
 265				if (match->key->tp.src ==
 266						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 267				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 268					key_expected |= 1 << OVS_KEY_ATTR_ND;
 269					/* Original direction conntrack tuple
 270					 * uses the same space as the ND fields
 271					 * in the key, so both are not allowed
 272					 * at the same time.
 273					 */
 274					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 275					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 276						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 277				}
 278			}
 279		}
 280	}
 281
 282	if (match->key->eth.type == htons(ETH_P_NSH)) {
 283		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 284		if (match->mask &&
 285		    match->mask->key.eth.type == htons(0xffff)) {
 286			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 287		}
 288	}
 289
 290	if ((key_attrs & key_expected) != key_expected) {
 291		/* Key attributes check failed. */
 292		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 293			  (unsigned long long)key_attrs,
 294			  (unsigned long long)key_expected);
 295		return false;
 296	}
 297
 298	if ((mask_attrs & mask_allowed) != mask_attrs) {
 299		/* Mask attributes check failed. */
 300		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 301			  (unsigned long long)mask_attrs,
 302			  (unsigned long long)mask_allowed);
 303		return false;
 304	}
 305
 306	return true;
 307}
 308
 309size_t ovs_tun_key_attr_size(void)
 310{
 311	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 312	 * updating this function.
 313	 */
 314	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 315		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 316		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 317		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 318		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 319		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 320		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 321		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 322		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 323		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 324		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 325		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 326		 */
 327		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 328		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 329}
 330
 331static size_t ovs_nsh_key_attr_size(void)
 332{
 333	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 334	 * updating this function.
 335	 */
 336	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 337		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 338		 * mutually exclusive, so the bigger one can cover
 339		 * the small one.
 340		 */
 341		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 342}
 343
 344size_t ovs_key_attr_size(void)
 345{
 346	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 347	 * updating this function.
 348	 */
 349	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
 350
 351	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 352		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 353		  + ovs_tun_key_attr_size()
 354		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 355		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 356		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 357		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 359		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 360		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 361		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 362		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 364		  + ovs_nsh_key_attr_size()
 365		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 366		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 368		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 370		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 371		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 372		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 
 373}
 374
 375static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 376	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 377};
 378
 379static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 380	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 381	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 382	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 383	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 384	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 385	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 386	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 387	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 388	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 389	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 390	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 391	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 392						.next = ovs_vxlan_ext_key_lens },
 393	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 394	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 395	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 396	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 397};
 398
 399static const struct ovs_len_tbl
 400ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 401	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 402	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 403	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 404};
 405
 406/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 407static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 408	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 409	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 410	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 411	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 412	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 413	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 414	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 415	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 416	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 417	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 418	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 419	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 420	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 421	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 422	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 423	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 424	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 425	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 426	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 427	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 428				     .next = ovs_tunnel_key_lens, },
 429	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 430	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 431	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 432	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 433	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 434	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 435		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 436	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 437		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 438	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 439				     .next = ovs_nsh_key_attr_lens, },
 
 
 440};
 441
 442static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 443{
 444	return expected_len == attr_len ||
 445	       expected_len == OVS_ATTR_NESTED ||
 446	       expected_len == OVS_ATTR_VARIABLE;
 447}
 448
 449static bool is_all_zero(const u8 *fp, size_t size)
 450{
 451	int i;
 452
 453	if (!fp)
 454		return false;
 455
 456	for (i = 0; i < size; i++)
 457		if (fp[i])
 458			return false;
 459
 460	return true;
 461}
 462
 463static int __parse_flow_nlattrs(const struct nlattr *attr,
 464				const struct nlattr *a[],
 465				u64 *attrsp, bool log, bool nz)
 466{
 467	const struct nlattr *nla;
 468	u64 attrs;
 469	int rem;
 470
 471	attrs = *attrsp;
 472	nla_for_each_nested(nla, attr, rem) {
 473		u16 type = nla_type(nla);
 474		int expected_len;
 475
 476		if (type > OVS_KEY_ATTR_MAX) {
 477			OVS_NLERR(log, "Key type %d is out of range max %d",
 478				  type, OVS_KEY_ATTR_MAX);
 479			return -EINVAL;
 480		}
 481
 482		if (attrs & (1 << type)) {
 
 
 
 
 
 
 
 483			OVS_NLERR(log, "Duplicate key (type %d).", type);
 484			return -EINVAL;
 485		}
 486
 487		expected_len = ovs_key_lens[type].len;
 488		if (!check_attr_len(nla_len(nla), expected_len)) {
 489			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 490				  type, nla_len(nla), expected_len);
 491			return -EINVAL;
 492		}
 493
 494		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 495			attrs |= 1 << type;
 496			a[type] = nla;
 497		}
 498	}
 499	if (rem) {
 500		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 501		return -EINVAL;
 502	}
 503
 504	*attrsp = attrs;
 505	return 0;
 506}
 507
 508static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 509				   const struct nlattr *a[], u64 *attrsp,
 510				   bool log)
 511{
 512	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 513}
 514
 515int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 516		       u64 *attrsp, bool log)
 517{
 518	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 519}
 520
 521static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 522				     struct sw_flow_match *match, bool is_mask,
 523				     bool log)
 524{
 525	unsigned long opt_key_offset;
 526
 527	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 528		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 529			  nla_len(a), sizeof(match->key->tun_opts));
 530		return -EINVAL;
 531	}
 532
 533	if (nla_len(a) % 4 != 0) {
 534		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 535			  nla_len(a));
 536		return -EINVAL;
 537	}
 538
 539	/* We need to record the length of the options passed
 540	 * down, otherwise packets with the same format but
 541	 * additional options will be silently matched.
 542	 */
 543	if (!is_mask) {
 544		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 545				false);
 546	} else {
 547		/* This is somewhat unusual because it looks at
 548		 * both the key and mask while parsing the
 549		 * attributes (and by extension assumes the key
 550		 * is parsed first). Normally, we would verify
 551		 * that each is the correct length and that the
 552		 * attributes line up in the validate function.
 553		 * However, that is difficult because this is
 554		 * variable length and we won't have the
 555		 * information later.
 556		 */
 557		if (match->key->tun_opts_len != nla_len(a)) {
 558			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 559				  match->key->tun_opts_len, nla_len(a));
 560			return -EINVAL;
 561		}
 562
 563		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 564	}
 565
 566	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 567	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 568				  nla_len(a), is_mask);
 569	return 0;
 570}
 571
 572static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 573				     struct sw_flow_match *match, bool is_mask,
 574				     bool log)
 575{
 576	struct nlattr *a;
 577	int rem;
 578	unsigned long opt_key_offset;
 579	struct vxlan_metadata opts;
 580
 581	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 582
 583	memset(&opts, 0, sizeof(opts));
 584	nla_for_each_nested(a, attr, rem) {
 585		int type = nla_type(a);
 586
 587		if (type > OVS_VXLAN_EXT_MAX) {
 588			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 589				  type, OVS_VXLAN_EXT_MAX);
 590			return -EINVAL;
 591		}
 592
 593		if (!check_attr_len(nla_len(a),
 594				    ovs_vxlan_ext_key_lens[type].len)) {
 595			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 596				  type, nla_len(a),
 597				  ovs_vxlan_ext_key_lens[type].len);
 598			return -EINVAL;
 599		}
 600
 601		switch (type) {
 602		case OVS_VXLAN_EXT_GBP:
 603			opts.gbp = nla_get_u32(a);
 604			break;
 605		default:
 606			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 607				  type);
 608			return -EINVAL;
 609		}
 610	}
 611	if (rem) {
 612		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 613			  rem);
 614		return -EINVAL;
 615	}
 616
 617	if (!is_mask)
 618		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 619	else
 620		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 621
 622	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 623	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 624				  is_mask);
 625	return 0;
 626}
 627
 628static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 629				      struct sw_flow_match *match, bool is_mask,
 630				      bool log)
 631{
 632	unsigned long opt_key_offset;
 633
 634	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 635		     sizeof(match->key->tun_opts));
 636
 637	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 638		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 639			  nla_len(a), sizeof(match->key->tun_opts));
 640		return -EINVAL;
 641	}
 642
 643	if (!is_mask)
 644		SW_FLOW_KEY_PUT(match, tun_opts_len,
 645				sizeof(struct erspan_metadata), false);
 646	else
 647		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 648
 649	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 650	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 651				  nla_len(a), is_mask);
 652	return 0;
 653}
 654
 655static int ip_tun_from_nlattr(const struct nlattr *attr,
 656			      struct sw_flow_match *match, bool is_mask,
 657			      bool log)
 658{
 659	bool ttl = false, ipv4 = false, ipv6 = false;
 660	bool info_bridge_mode = false;
 661	__be16 tun_flags = 0;
 662	int opts_type = 0;
 663	struct nlattr *a;
 664	int rem;
 665
 666	nla_for_each_nested(a, attr, rem) {
 667		int type = nla_type(a);
 668		int err;
 669
 670		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 671			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 672				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 673			return -EINVAL;
 674		}
 675
 676		if (!check_attr_len(nla_len(a),
 677				    ovs_tunnel_key_lens[type].len)) {
 678			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 679				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 680			return -EINVAL;
 681		}
 682
 683		switch (type) {
 684		case OVS_TUNNEL_KEY_ATTR_ID:
 685			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 686					nla_get_be64(a), is_mask);
 687			tun_flags |= TUNNEL_KEY;
 688			break;
 689		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 690			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 691					nla_get_in_addr(a), is_mask);
 692			ipv4 = true;
 693			break;
 694		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 695			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 696					nla_get_in_addr(a), is_mask);
 697			ipv4 = true;
 698			break;
 699		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 700			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 701					nla_get_in6_addr(a), is_mask);
 702			ipv6 = true;
 703			break;
 704		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 705			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 706					nla_get_in6_addr(a), is_mask);
 707			ipv6 = true;
 708			break;
 709		case OVS_TUNNEL_KEY_ATTR_TOS:
 710			SW_FLOW_KEY_PUT(match, tun_key.tos,
 711					nla_get_u8(a), is_mask);
 712			break;
 713		case OVS_TUNNEL_KEY_ATTR_TTL:
 714			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 715					nla_get_u8(a), is_mask);
 716			ttl = true;
 717			break;
 718		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 719			tun_flags |= TUNNEL_DONT_FRAGMENT;
 720			break;
 721		case OVS_TUNNEL_KEY_ATTR_CSUM:
 722			tun_flags |= TUNNEL_CSUM;
 723			break;
 724		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 725			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 726					nla_get_be16(a), is_mask);
 727			break;
 728		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 729			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 730					nla_get_be16(a), is_mask);
 731			break;
 732		case OVS_TUNNEL_KEY_ATTR_OAM:
 733			tun_flags |= TUNNEL_OAM;
 734			break;
 735		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 736			if (opts_type) {
 737				OVS_NLERR(log, "Multiple metadata blocks provided");
 738				return -EINVAL;
 739			}
 740
 741			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 742			if (err)
 743				return err;
 744
 745			tun_flags |= TUNNEL_GENEVE_OPT;
 746			opts_type = type;
 747			break;
 748		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 749			if (opts_type) {
 750				OVS_NLERR(log, "Multiple metadata blocks provided");
 751				return -EINVAL;
 752			}
 753
 754			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 755			if (err)
 756				return err;
 757
 758			tun_flags |= TUNNEL_VXLAN_OPT;
 759			opts_type = type;
 760			break;
 761		case OVS_TUNNEL_KEY_ATTR_PAD:
 762			break;
 763		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 764			if (opts_type) {
 765				OVS_NLERR(log, "Multiple metadata blocks provided");
 766				return -EINVAL;
 767			}
 768
 769			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 770							 log);
 771			if (err)
 772				return err;
 773
 774			tun_flags |= TUNNEL_ERSPAN_OPT;
 775			opts_type = type;
 776			break;
 777		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 778			info_bridge_mode = true;
 779			ipv4 = true;
 780			break;
 781		default:
 782			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 783				  type);
 784			return -EINVAL;
 785		}
 786	}
 787
 788	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 789	if (is_mask)
 790		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 791	else
 792		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 793				false);
 794
 795	if (rem > 0) {
 796		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 797			  rem);
 798		return -EINVAL;
 799	}
 800
 801	if (ipv4 && ipv6) {
 802		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 803		return -EINVAL;
 804	}
 805
 806	if (!is_mask) {
 807		if (!ipv4 && !ipv6) {
 808			OVS_NLERR(log, "IP tunnel dst address not specified");
 809			return -EINVAL;
 810		}
 811		if (ipv4) {
 812			if (info_bridge_mode) {
 813				if (match->key->tun_key.u.ipv4.src ||
 814				    match->key->tun_key.u.ipv4.dst ||
 815				    match->key->tun_key.tp_src ||
 816				    match->key->tun_key.tp_dst ||
 817				    match->key->tun_key.ttl ||
 818				    match->key->tun_key.tos ||
 819				    tun_flags & ~TUNNEL_KEY) {
 820					OVS_NLERR(log, "IPv4 tun info is not correct");
 821					return -EINVAL;
 822				}
 823			} else if (!match->key->tun_key.u.ipv4.dst) {
 824				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 825				return -EINVAL;
 826			}
 827		}
 828		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 829			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 830			return -EINVAL;
 831		}
 832
 833		if (!ttl && !info_bridge_mode) {
 834			OVS_NLERR(log, "IP tunnel TTL not specified.");
 835			return -EINVAL;
 836		}
 837	}
 838
 839	return opts_type;
 840}
 841
 842static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 843			       const void *tun_opts, int swkey_tun_opts_len)
 844{
 845	const struct vxlan_metadata *opts = tun_opts;
 846	struct nlattr *nla;
 847
 848	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 849	if (!nla)
 850		return -EMSGSIZE;
 851
 852	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 853		return -EMSGSIZE;
 854
 855	nla_nest_end(skb, nla);
 856	return 0;
 857}
 858
 859static int __ip_tun_to_nlattr(struct sk_buff *skb,
 860			      const struct ip_tunnel_key *output,
 861			      const void *tun_opts, int swkey_tun_opts_len,
 862			      unsigned short tun_proto, u8 mode)
 863{
 864	if (output->tun_flags & TUNNEL_KEY &&
 865	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 866			 OVS_TUNNEL_KEY_ATTR_PAD))
 867		return -EMSGSIZE;
 868
 869	if (mode & IP_TUNNEL_INFO_BRIDGE)
 870		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 871		       ? -EMSGSIZE : 0;
 872
 873	switch (tun_proto) {
 874	case AF_INET:
 875		if (output->u.ipv4.src &&
 876		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 877				    output->u.ipv4.src))
 878			return -EMSGSIZE;
 879		if (output->u.ipv4.dst &&
 880		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 881				    output->u.ipv4.dst))
 882			return -EMSGSIZE;
 883		break;
 884	case AF_INET6:
 885		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 886		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 887				     &output->u.ipv6.src))
 888			return -EMSGSIZE;
 889		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 890		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 891				     &output->u.ipv6.dst))
 892			return -EMSGSIZE;
 893		break;
 894	}
 895	if (output->tos &&
 896	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 897		return -EMSGSIZE;
 898	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 899		return -EMSGSIZE;
 900	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 901	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 902		return -EMSGSIZE;
 903	if ((output->tun_flags & TUNNEL_CSUM) &&
 904	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 905		return -EMSGSIZE;
 906	if (output->tp_src &&
 907	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 908		return -EMSGSIZE;
 909	if (output->tp_dst &&
 910	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 911		return -EMSGSIZE;
 912	if ((output->tun_flags & TUNNEL_OAM) &&
 913	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 914		return -EMSGSIZE;
 915	if (swkey_tun_opts_len) {
 916		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 917		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 918			    swkey_tun_opts_len, tun_opts))
 919			return -EMSGSIZE;
 920		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 921			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 922			return -EMSGSIZE;
 923		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 924			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 925				 swkey_tun_opts_len, tun_opts))
 926			return -EMSGSIZE;
 927	}
 928
 929	return 0;
 930}
 931
 932static int ip_tun_to_nlattr(struct sk_buff *skb,
 933			    const struct ip_tunnel_key *output,
 934			    const void *tun_opts, int swkey_tun_opts_len,
 935			    unsigned short tun_proto, u8 mode)
 936{
 937	struct nlattr *nla;
 938	int err;
 939
 940	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 941	if (!nla)
 942		return -EMSGSIZE;
 943
 944	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 945				 tun_proto, mode);
 946	if (err)
 947		return err;
 948
 949	nla_nest_end(skb, nla);
 950	return 0;
 951}
 952
 953int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 954			    struct ip_tunnel_info *tun_info)
 955{
 956	return __ip_tun_to_nlattr(skb, &tun_info->key,
 957				  ip_tunnel_info_opts(tun_info),
 958				  tun_info->options_len,
 959				  ip_tunnel_info_af(tun_info), tun_info->mode);
 960}
 961
 962static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 963				    const struct nlattr *a[],
 964				    bool is_mask, bool inner)
 965{
 966	__be16 tci = 0;
 967	__be16 tpid = 0;
 968
 969	if (a[OVS_KEY_ATTR_VLAN])
 970		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 971
 972	if (a[OVS_KEY_ATTR_ETHERTYPE])
 973		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 974
 975	if (likely(!inner)) {
 976		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 977		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 978	} else {
 979		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 980		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 981	}
 982	return 0;
 983}
 984
 985static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 986				      u64 key_attrs, bool inner,
 987				      const struct nlattr **a, bool log)
 988{
 989	__be16 tci = 0;
 990
 991	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 992	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 993	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 994		/* Not a VLAN. */
 995		return 0;
 996	}
 997
 998	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 999	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1000		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1001		return -EINVAL;
1002	}
1003
1004	if (a[OVS_KEY_ATTR_VLAN])
1005		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1006
1007	if (!(tci & htons(VLAN_CFI_MASK))) {
1008		if (tci) {
1009			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1010				  (inner) ? "C-VLAN" : "VLAN");
1011			return -EINVAL;
1012		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1013			/* Corner case for truncated VLAN header. */
1014			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1015				  (inner) ? "C-VLAN" : "VLAN");
1016			return -EINVAL;
1017		}
1018	}
1019
1020	return 1;
1021}
1022
1023static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1024					   u64 key_attrs, bool inner,
1025					   const struct nlattr **a, bool log)
1026{
1027	__be16 tci = 0;
1028	__be16 tpid = 0;
1029	bool encap_valid = !!(match->key->eth.vlan.tci &
1030			      htons(VLAN_CFI_MASK));
1031	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1032				htons(VLAN_CFI_MASK));
1033
1034	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1035		/* Not a VLAN. */
1036		return 0;
1037	}
1038
1039	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1040		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1041			  (inner) ? "C-VLAN" : "VLAN");
1042		return -EINVAL;
1043	}
1044
1045	if (a[OVS_KEY_ATTR_VLAN])
1046		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1047
1048	if (a[OVS_KEY_ATTR_ETHERTYPE])
1049		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1050
1051	if (tpid != htons(0xffff)) {
1052		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1053			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1054		return -EINVAL;
1055	}
1056	if (!(tci & htons(VLAN_CFI_MASK))) {
1057		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1058			  (inner) ? "C-VLAN" : "VLAN");
1059		return -EINVAL;
1060	}
1061
1062	return 1;
1063}
1064
1065static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1066				     u64 *key_attrs, bool inner,
1067				     const struct nlattr **a, bool is_mask,
1068				     bool log)
1069{
1070	int err;
1071	const struct nlattr *encap;
1072
1073	if (!is_mask)
1074		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1075						 a, log);
1076	else
1077		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1078						      a, log);
1079	if (err <= 0)
1080		return err;
1081
1082	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1083	if (err)
1084		return err;
1085
1086	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1087	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1088	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1089
1090	encap = a[OVS_KEY_ATTR_ENCAP];
1091
1092	if (!is_mask)
1093		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1094	else
1095		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1096
1097	return err;
1098}
1099
1100static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1101				   u64 *key_attrs, const struct nlattr **a,
1102				   bool is_mask, bool log)
1103{
1104	int err;
1105	bool encap_valid = false;
1106
1107	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1108					is_mask, log);
1109	if (err)
1110		return err;
1111
1112	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1113	if (encap_valid) {
1114		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1115						is_mask, log);
1116		if (err)
1117			return err;
1118	}
1119
1120	return 0;
1121}
1122
1123static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1124				       u64 *attrs, const struct nlattr **a,
1125				       bool is_mask, bool log)
1126{
1127	__be16 eth_type;
1128
1129	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1130	if (is_mask) {
1131		/* Always exact match EtherType. */
1132		eth_type = htons(0xffff);
1133	} else if (!eth_proto_is_802_3(eth_type)) {
1134		OVS_NLERR(log, "EtherType %x is less than min %x",
1135				ntohs(eth_type), ETH_P_802_3_MIN);
1136		return -EINVAL;
1137	}
1138
1139	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1140	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1141	return 0;
1142}
1143
1144static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1145				 u64 *attrs, const struct nlattr **a,
1146				 bool is_mask, bool log)
1147{
1148	u8 mac_proto = MAC_PROTO_ETHERNET;
1149
1150	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1151		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1152
1153		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1154		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1155	}
1156
1157	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1158		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1159
1160		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1161		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1162	}
1163
1164	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1165		SW_FLOW_KEY_PUT(match, phy.priority,
1166			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1167		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1168	}
1169
1170	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1171		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1172
1173		if (is_mask) {
1174			in_port = 0xffffffff; /* Always exact match in_port. */
1175		} else if (in_port >= DP_MAX_PORTS) {
1176			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1177				  in_port, DP_MAX_PORTS);
1178			return -EINVAL;
1179		}
1180
1181		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1182		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1183	} else if (!is_mask) {
1184		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1185	}
1186
1187	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1188		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1189
1190		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1191		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1192	}
1193	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1194		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1195				       is_mask, log) < 0)
1196			return -EINVAL;
1197		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1198	}
1199
1200	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1201	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1202		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1203
1204		if (ct_state & ~CT_SUPPORTED_MASK) {
1205			OVS_NLERR(log, "ct_state flags %08x unsupported",
1206				  ct_state);
1207			return -EINVAL;
1208		}
1209
1210		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1211		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1212	}
1213	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1214	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1215		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1216
1217		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1218		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1219	}
1220	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1221	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1222		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1223
1224		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1225		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1226	}
1227	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1228	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1229		const struct ovs_key_ct_labels *cl;
1230
1231		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1232		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1233				   sizeof(*cl), is_mask);
1234		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1235	}
1236	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1237		const struct ovs_key_ct_tuple_ipv4 *ct;
1238
1239		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1240
1241		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1242		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1243		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1244		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1245		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1246		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1247	}
1248	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1249		const struct ovs_key_ct_tuple_ipv6 *ct;
1250
1251		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1252
1253		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1254				   sizeof(match->key->ipv6.ct_orig.src),
1255				   is_mask);
1256		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1257				   sizeof(match->key->ipv6.ct_orig.dst),
1258				   is_mask);
1259		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1260		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1261		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1262		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1263	}
1264
1265	/* For layer 3 packets the Ethernet type is provided
1266	 * and treated as metadata but no MAC addresses are provided.
1267	 */
1268	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1269	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1270		mac_proto = MAC_PROTO_NONE;
1271
1272	/* Always exact match mac_proto */
1273	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1274
1275	if (mac_proto == MAC_PROTO_NONE)
1276		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1277						   log);
1278
1279	return 0;
1280}
1281
1282int nsh_hdr_from_nlattr(const struct nlattr *attr,
1283			struct nshhdr *nh, size_t size)
1284{
1285	struct nlattr *a;
1286	int rem;
1287	u8 flags = 0;
1288	u8 ttl = 0;
1289	int mdlen = 0;
1290
1291	/* validate_nsh has check this, so we needn't do duplicate check here
1292	 */
1293	if (size < NSH_BASE_HDR_LEN)
1294		return -ENOBUFS;
1295
1296	nla_for_each_nested(a, attr, rem) {
1297		int type = nla_type(a);
1298
1299		switch (type) {
1300		case OVS_NSH_KEY_ATTR_BASE: {
1301			const struct ovs_nsh_key_base *base = nla_data(a);
1302
1303			flags = base->flags;
1304			ttl = base->ttl;
1305			nh->np = base->np;
1306			nh->mdtype = base->mdtype;
1307			nh->path_hdr = base->path_hdr;
1308			break;
1309		}
1310		case OVS_NSH_KEY_ATTR_MD1:
1311			mdlen = nla_len(a);
1312			if (mdlen > size - NSH_BASE_HDR_LEN)
1313				return -ENOBUFS;
1314			memcpy(&nh->md1, nla_data(a), mdlen);
1315			break;
1316
1317		case OVS_NSH_KEY_ATTR_MD2:
1318			mdlen = nla_len(a);
1319			if (mdlen > size - NSH_BASE_HDR_LEN)
1320				return -ENOBUFS;
1321			memcpy(&nh->md2, nla_data(a), mdlen);
1322			break;
1323
1324		default:
1325			return -EINVAL;
1326		}
1327	}
1328
1329	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1330	nh->ver_flags_ttl_len = 0;
1331	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1332
1333	return 0;
1334}
1335
1336int nsh_key_from_nlattr(const struct nlattr *attr,
1337			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1338{
1339	struct nlattr *a;
1340	int rem;
1341
1342	/* validate_nsh has check this, so we needn't do duplicate check here
1343	 */
1344	nla_for_each_nested(a, attr, rem) {
1345		int type = nla_type(a);
1346
1347		switch (type) {
1348		case OVS_NSH_KEY_ATTR_BASE: {
1349			const struct ovs_nsh_key_base *base = nla_data(a);
1350			const struct ovs_nsh_key_base *base_mask = base + 1;
1351
1352			nsh->base = *base;
1353			nsh_mask->base = *base_mask;
1354			break;
1355		}
1356		case OVS_NSH_KEY_ATTR_MD1: {
1357			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1358			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1359
1360			memcpy(nsh->context, md1->context, sizeof(*md1));
1361			memcpy(nsh_mask->context, md1_mask->context,
1362			       sizeof(*md1_mask));
1363			break;
1364		}
1365		case OVS_NSH_KEY_ATTR_MD2:
1366			/* Not supported yet */
1367			return -ENOTSUPP;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	return 0;
1374}
1375
1376static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1377				   struct sw_flow_match *match, bool is_mask,
1378				   bool is_push_nsh, bool log)
1379{
1380	struct nlattr *a;
1381	int rem;
1382	bool has_base = false;
1383	bool has_md1 = false;
1384	bool has_md2 = false;
1385	u8 mdtype = 0;
1386	int mdlen = 0;
1387
1388	if (WARN_ON(is_push_nsh && is_mask))
1389		return -EINVAL;
1390
1391	nla_for_each_nested(a, attr, rem) {
1392		int type = nla_type(a);
1393		int i;
1394
1395		if (type > OVS_NSH_KEY_ATTR_MAX) {
1396			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1397				  type, OVS_NSH_KEY_ATTR_MAX);
1398			return -EINVAL;
1399		}
1400
1401		if (!check_attr_len(nla_len(a),
1402				    ovs_nsh_key_attr_lens[type].len)) {
1403			OVS_NLERR(
1404			    log,
1405			    "nsh attr %d has unexpected len %d expected %d",
1406			    type,
1407			    nla_len(a),
1408			    ovs_nsh_key_attr_lens[type].len
1409			);
1410			return -EINVAL;
1411		}
1412
1413		switch (type) {
1414		case OVS_NSH_KEY_ATTR_BASE: {
1415			const struct ovs_nsh_key_base *base = nla_data(a);
1416
1417			has_base = true;
1418			mdtype = base->mdtype;
1419			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1420					base->flags, is_mask);
1421			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1422					base->ttl, is_mask);
1423			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1424					base->mdtype, is_mask);
1425			SW_FLOW_KEY_PUT(match, nsh.base.np,
1426					base->np, is_mask);
1427			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1428					base->path_hdr, is_mask);
1429			break;
1430		}
1431		case OVS_NSH_KEY_ATTR_MD1: {
1432			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1433
1434			has_md1 = true;
1435			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1436				SW_FLOW_KEY_PUT(match, nsh.context[i],
1437						md1->context[i], is_mask);
1438			break;
1439		}
1440		case OVS_NSH_KEY_ATTR_MD2:
1441			if (!is_push_nsh) /* Not supported MD type 2 yet */
1442				return -ENOTSUPP;
1443
1444			has_md2 = true;
1445			mdlen = nla_len(a);
1446			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1447				OVS_NLERR(
1448				    log,
1449				    "Invalid MD length %d for MD type %d",
1450				    mdlen,
1451				    mdtype
1452				);
1453				return -EINVAL;
1454			}
1455			break;
1456		default:
1457			OVS_NLERR(log, "Unknown nsh attribute %d",
1458				  type);
1459			return -EINVAL;
1460		}
1461	}
1462
1463	if (rem > 0) {
1464		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1465		return -EINVAL;
1466	}
1467
1468	if (has_md1 && has_md2) {
1469		OVS_NLERR(
1470		    1,
1471		    "invalid nsh attribute: md1 and md2 are exclusive."
1472		);
1473		return -EINVAL;
1474	}
1475
1476	if (!is_mask) {
1477		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1478		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1479			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1480				  mdtype);
1481			return -EINVAL;
1482		}
1483
1484		if (is_push_nsh &&
1485		    (!has_base || (!has_md1 && !has_md2))) {
1486			OVS_NLERR(
1487			    1,
1488			    "push_nsh: missing base or metadata attributes"
1489			);
1490			return -EINVAL;
1491		}
1492	}
1493
1494	return 0;
1495}
1496
1497static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1498				u64 attrs, const struct nlattr **a,
1499				bool is_mask, bool log)
1500{
1501	int err;
1502
1503	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1504	if (err)
1505		return err;
1506
1507	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1508		const struct ovs_key_ethernet *eth_key;
1509
1510		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1511		SW_FLOW_KEY_MEMCPY(match, eth.src,
1512				eth_key->eth_src, ETH_ALEN, is_mask);
1513		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1514				eth_key->eth_dst, ETH_ALEN, is_mask);
1515		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1516
1517		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1518			/* VLAN attribute is always parsed before getting here since it
1519			 * may occur multiple times.
1520			 */
1521			OVS_NLERR(log, "VLAN attribute unexpected.");
1522			return -EINVAL;
1523		}
1524
1525		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1526			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1527							  log);
1528			if (err)
1529				return err;
1530		} else if (!is_mask) {
1531			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1532		}
1533	} else if (!match->key->eth.type) {
1534		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1535		return -EINVAL;
1536	}
1537
1538	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1539		const struct ovs_key_ipv4 *ipv4_key;
1540
1541		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1542		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1543			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1544				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1545			return -EINVAL;
1546		}
1547		SW_FLOW_KEY_PUT(match, ip.proto,
1548				ipv4_key->ipv4_proto, is_mask);
1549		SW_FLOW_KEY_PUT(match, ip.tos,
1550				ipv4_key->ipv4_tos, is_mask);
1551		SW_FLOW_KEY_PUT(match, ip.ttl,
1552				ipv4_key->ipv4_ttl, is_mask);
1553		SW_FLOW_KEY_PUT(match, ip.frag,
1554				ipv4_key->ipv4_frag, is_mask);
1555		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1556				ipv4_key->ipv4_src, is_mask);
1557		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1558				ipv4_key->ipv4_dst, is_mask);
1559		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1560	}
1561
1562	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1563		const struct ovs_key_ipv6 *ipv6_key;
1564
1565		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1566		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1567			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1568				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1569			return -EINVAL;
1570		}
1571
1572		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1573			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1574				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1575			return -EINVAL;
1576		}
1577
1578		SW_FLOW_KEY_PUT(match, ipv6.label,
1579				ipv6_key->ipv6_label, is_mask);
1580		SW_FLOW_KEY_PUT(match, ip.proto,
1581				ipv6_key->ipv6_proto, is_mask);
1582		SW_FLOW_KEY_PUT(match, ip.tos,
1583				ipv6_key->ipv6_tclass, is_mask);
1584		SW_FLOW_KEY_PUT(match, ip.ttl,
1585				ipv6_key->ipv6_hlimit, is_mask);
1586		SW_FLOW_KEY_PUT(match, ip.frag,
1587				ipv6_key->ipv6_frag, is_mask);
1588		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1589				ipv6_key->ipv6_src,
1590				sizeof(match->key->ipv6.addr.src),
1591				is_mask);
1592		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1593				ipv6_key->ipv6_dst,
1594				sizeof(match->key->ipv6.addr.dst),
1595				is_mask);
1596
1597		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1598	}
1599
 
 
 
 
 
 
 
 
 
 
 
1600	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1601		const struct ovs_key_arp *arp_key;
1602
1603		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1604		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1605			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1606				  arp_key->arp_op);
1607			return -EINVAL;
1608		}
1609
1610		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1611				arp_key->arp_sip, is_mask);
1612		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1613			arp_key->arp_tip, is_mask);
1614		SW_FLOW_KEY_PUT(match, ip.proto,
1615				ntohs(arp_key->arp_op), is_mask);
1616		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1617				arp_key->arp_sha, ETH_ALEN, is_mask);
1618		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1619				arp_key->arp_tha, ETH_ALEN, is_mask);
1620
1621		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1622	}
1623
1624	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1625		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1626					    is_mask, false, log) < 0)
1627			return -EINVAL;
1628		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1629	}
1630
1631	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1632		const struct ovs_key_mpls *mpls_key;
1633		u32 hdr_len;
1634		u32 label_count, label_count_mask, i;
1635
1636		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1637		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1638		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1639
1640		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1641		    hdr_len % sizeof(struct ovs_key_mpls))
1642			return -EINVAL;
1643
1644		label_count_mask =  GENMASK(label_count - 1, 0);
1645
1646		for (i = 0 ; i < label_count; i++)
1647			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1648					mpls_key[i].mpls_lse, is_mask);
1649
1650		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1651				label_count_mask, is_mask);
1652
1653		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1654	 }
1655
1656	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1657		const struct ovs_key_tcp *tcp_key;
1658
1659		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1660		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1661		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1662		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1663	}
1664
1665	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1666		SW_FLOW_KEY_PUT(match, tp.flags,
1667				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1668				is_mask);
1669		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1670	}
1671
1672	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1673		const struct ovs_key_udp *udp_key;
1674
1675		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1676		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1677		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1678		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1679	}
1680
1681	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1682		const struct ovs_key_sctp *sctp_key;
1683
1684		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1685		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1686		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1687		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1688	}
1689
1690	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1691		const struct ovs_key_icmp *icmp_key;
1692
1693		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1694		SW_FLOW_KEY_PUT(match, tp.src,
1695				htons(icmp_key->icmp_type), is_mask);
1696		SW_FLOW_KEY_PUT(match, tp.dst,
1697				htons(icmp_key->icmp_code), is_mask);
1698		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1699	}
1700
1701	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1702		const struct ovs_key_icmpv6 *icmpv6_key;
1703
1704		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1705		SW_FLOW_KEY_PUT(match, tp.src,
1706				htons(icmpv6_key->icmpv6_type), is_mask);
1707		SW_FLOW_KEY_PUT(match, tp.dst,
1708				htons(icmpv6_key->icmpv6_code), is_mask);
1709		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1710	}
1711
1712	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1713		const struct ovs_key_nd *nd_key;
1714
1715		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1716		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1717			nd_key->nd_target,
1718			sizeof(match->key->ipv6.nd.target),
1719			is_mask);
1720		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1721			nd_key->nd_sll, ETH_ALEN, is_mask);
1722		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1723				nd_key->nd_tll, ETH_ALEN, is_mask);
1724		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1725	}
1726
1727	if (attrs != 0) {
1728		OVS_NLERR(log, "Unknown key attributes %llx",
1729			  (unsigned long long)attrs);
1730		return -EINVAL;
1731	}
1732
1733	return 0;
1734}
1735
1736static void nlattr_set(struct nlattr *attr, u8 val,
1737		       const struct ovs_len_tbl *tbl)
1738{
1739	struct nlattr *nla;
1740	int rem;
1741
1742	/* The nlattr stream should already have been validated */
1743	nla_for_each_nested(nla, attr, rem) {
1744		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1745			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1746		else
1747			memset(nla_data(nla), val, nla_len(nla));
1748
1749		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1750			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1751	}
1752}
1753
1754static void mask_set_nlattr(struct nlattr *attr, u8 val)
1755{
1756	nlattr_set(attr, val, ovs_key_lens);
1757}
1758
1759/**
1760 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1761 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1762 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1763 * does not include any don't care bit.
1764 * @net: Used to determine per-namespace field support.
1765 * @match: receives the extracted flow match information.
1766 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1767 * sequence. The fields should of the packet that triggered the creation
1768 * of this flow.
1769 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1770 * Netlink attribute specifies the mask field of the wildcarded flow.
1771 * @log: Boolean to allow kernel error logging.  Normally true, but when
1772 * probing for feature compatibility this should be passed in as false to
1773 * suppress unnecessary error logging.
1774 */
1775int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1776		      const struct nlattr *nla_key,
1777		      const struct nlattr *nla_mask,
1778		      bool log)
1779{
1780	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1781	struct nlattr *newmask = NULL;
1782	u64 key_attrs = 0;
1783	u64 mask_attrs = 0;
1784	int err;
1785
1786	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1787	if (err)
1788		return err;
1789
1790	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1791	if (err)
1792		return err;
1793
1794	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1795	if (err)
1796		return err;
1797
1798	if (match->mask) {
1799		if (!nla_mask) {
1800			/* Create an exact match mask. We need to set to 0xff
1801			 * all the 'match->mask' fields that have been touched
1802			 * in 'match->key'. We cannot simply memset
1803			 * 'match->mask', because padding bytes and fields not
1804			 * specified in 'match->key' should be left to 0.
1805			 * Instead, we use a stream of netlink attributes,
1806			 * copied from 'key' and set to 0xff.
1807			 * ovs_key_from_nlattrs() will take care of filling
1808			 * 'match->mask' appropriately.
1809			 */
1810			newmask = kmemdup(nla_key,
1811					  nla_total_size(nla_len(nla_key)),
1812					  GFP_KERNEL);
1813			if (!newmask)
1814				return -ENOMEM;
1815
1816			mask_set_nlattr(newmask, 0xff);
1817
1818			/* The userspace does not send tunnel attributes that
1819			 * are 0, but we should not wildcard them nonetheless.
1820			 */
1821			if (match->key->tun_proto)
1822				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1823							 0xff, true);
1824
1825			nla_mask = newmask;
1826		}
1827
1828		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1829		if (err)
1830			goto free_newmask;
1831
1832		/* Always match on tci. */
1833		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1834		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1835
1836		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1837		if (err)
1838			goto free_newmask;
1839
1840		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1841					   log);
1842		if (err)
1843			goto free_newmask;
1844	}
1845
1846	if (!match_validate(match, key_attrs, mask_attrs, log))
1847		err = -EINVAL;
1848
1849free_newmask:
1850	kfree(newmask);
1851	return err;
1852}
1853
1854static size_t get_ufid_len(const struct nlattr *attr, bool log)
1855{
1856	size_t len;
1857
1858	if (!attr)
1859		return 0;
1860
1861	len = nla_len(attr);
1862	if (len < 1 || len > MAX_UFID_LENGTH) {
1863		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1864			  nla_len(attr), MAX_UFID_LENGTH);
1865		return 0;
1866	}
1867
1868	return len;
1869}
1870
1871/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1872 * or false otherwise.
1873 */
1874bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1875		      bool log)
1876{
1877	sfid->ufid_len = get_ufid_len(attr, log);
1878	if (sfid->ufid_len)
1879		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1880
1881	return sfid->ufid_len;
1882}
1883
1884int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1885			   const struct sw_flow_key *key, bool log)
1886{
1887	struct sw_flow_key *new_key;
1888
1889	if (ovs_nla_get_ufid(sfid, ufid, log))
1890		return 0;
1891
1892	/* If UFID was not provided, use unmasked key. */
1893	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1894	if (!new_key)
1895		return -ENOMEM;
1896	memcpy(new_key, key, sizeof(*key));
1897	sfid->unmasked_key = new_key;
1898
1899	return 0;
1900}
1901
1902u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1903{
1904	return attr ? nla_get_u32(attr) : 0;
1905}
1906
1907/**
1908 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1909 * @net: Network namespace.
1910 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1911 * metadata.
1912 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1913 * attributes.
1914 * @attrs: Bit mask for the netlink attributes included in @a.
1915 * @log: Boolean to allow kernel error logging.  Normally true, but when
1916 * probing for feature compatibility this should be passed in as false to
1917 * suppress unnecessary error logging.
1918 *
1919 * This parses a series of Netlink attributes that form a flow key, which must
1920 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1921 * get the metadata, that is, the parts of the flow key that cannot be
1922 * extracted from the packet itself.
1923 *
1924 * This must be called before the packet key fields are filled in 'key'.
1925 */
1926
1927int ovs_nla_get_flow_metadata(struct net *net,
1928			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1929			      u64 attrs, struct sw_flow_key *key, bool log)
1930{
1931	struct sw_flow_match match;
1932
1933	memset(&match, 0, sizeof(match));
1934	match.key = key;
1935
1936	key->ct_state = 0;
1937	key->ct_zone = 0;
1938	key->ct_orig_proto = 0;
1939	memset(&key->ct, 0, sizeof(key->ct));
1940	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1941	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1942
1943	key->phy.in_port = DP_MAX_PORTS;
1944
1945	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1946}
1947
1948static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1949			    bool is_mask)
1950{
1951	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1952
1953	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1954	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1955		return -EMSGSIZE;
1956	return 0;
1957}
1958
1959static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1960			     struct sk_buff *skb)
1961{
1962	struct nlattr *start;
1963
1964	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1965	if (!start)
1966		return -EMSGSIZE;
1967
1968	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1969		goto nla_put_failure;
1970
1971	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1972		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1973			    sizeof(nsh->context), nsh->context))
1974			goto nla_put_failure;
1975	}
1976
1977	/* Don't support MD type 2 yet */
1978
1979	nla_nest_end(skb, start);
1980
1981	return 0;
1982
1983nla_put_failure:
1984	return -EMSGSIZE;
1985}
1986
1987static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1988			     const struct sw_flow_key *output, bool is_mask,
1989			     struct sk_buff *skb)
1990{
1991	struct ovs_key_ethernet *eth_key;
1992	struct nlattr *nla;
1993	struct nlattr *encap = NULL;
1994	struct nlattr *in_encap = NULL;
1995
1996	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1997		goto nla_put_failure;
1998
1999	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2000		goto nla_put_failure;
2001
2002	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2003		goto nla_put_failure;
2004
2005	if ((swkey->tun_proto || is_mask)) {
2006		const void *opts = NULL;
2007
2008		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2009			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2010
2011		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2012				     swkey->tun_opts_len, swkey->tun_proto, 0))
2013			goto nla_put_failure;
2014	}
2015
2016	if (swkey->phy.in_port == DP_MAX_PORTS) {
2017		if (is_mask && (output->phy.in_port == 0xffff))
2018			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2019				goto nla_put_failure;
2020	} else {
2021		u16 upper_u16;
2022		upper_u16 = !is_mask ? 0 : 0xffff;
2023
2024		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2025				(upper_u16 << 16) | output->phy.in_port))
2026			goto nla_put_failure;
2027	}
2028
2029	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2030		goto nla_put_failure;
2031
2032	if (ovs_ct_put_key(swkey, output, skb))
2033		goto nla_put_failure;
2034
2035	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2036		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2037		if (!nla)
2038			goto nla_put_failure;
2039
2040		eth_key = nla_data(nla);
2041		ether_addr_copy(eth_key->eth_src, output->eth.src);
2042		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2043
2044		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2045			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2046				goto nla_put_failure;
2047			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2048			if (!swkey->eth.vlan.tci)
2049				goto unencap;
2050
2051			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2052				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2053					goto nla_put_failure;
2054				in_encap = nla_nest_start_noflag(skb,
2055								 OVS_KEY_ATTR_ENCAP);
2056				if (!swkey->eth.cvlan.tci)
2057					goto unencap;
2058			}
2059		}
2060
2061		if (swkey->eth.type == htons(ETH_P_802_2)) {
2062			/*
2063			* Ethertype 802.2 is represented in the netlink with omitted
2064			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2065			* 0xffff in the mask attribute.  Ethertype can also
2066			* be wildcarded.
2067			*/
2068			if (is_mask && output->eth.type)
2069				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2070							output->eth.type))
2071					goto nla_put_failure;
2072			goto unencap;
2073		}
2074	}
2075
2076	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2077		goto nla_put_failure;
2078
2079	if (eth_type_vlan(swkey->eth.type)) {
2080		/* There are 3 VLAN tags, we don't know anything about the rest
2081		 * of the packet, so truncate here.
2082		 */
2083		WARN_ON_ONCE(!(encap && in_encap));
2084		goto unencap;
2085	}
2086
2087	if (swkey->eth.type == htons(ETH_P_IP)) {
2088		struct ovs_key_ipv4 *ipv4_key;
2089
2090		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2091		if (!nla)
2092			goto nla_put_failure;
2093		ipv4_key = nla_data(nla);
2094		ipv4_key->ipv4_src = output->ipv4.addr.src;
2095		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2096		ipv4_key->ipv4_proto = output->ip.proto;
2097		ipv4_key->ipv4_tos = output->ip.tos;
2098		ipv4_key->ipv4_ttl = output->ip.ttl;
2099		ipv4_key->ipv4_frag = output->ip.frag;
2100	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2101		struct ovs_key_ipv6 *ipv6_key;
 
2102
2103		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2104		if (!nla)
2105			goto nla_put_failure;
2106		ipv6_key = nla_data(nla);
2107		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2108				sizeof(ipv6_key->ipv6_src));
2109		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2110				sizeof(ipv6_key->ipv6_dst));
2111		ipv6_key->ipv6_label = output->ipv6.label;
2112		ipv6_key->ipv6_proto = output->ip.proto;
2113		ipv6_key->ipv6_tclass = output->ip.tos;
2114		ipv6_key->ipv6_hlimit = output->ip.ttl;
2115		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
 
 
 
 
2116	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2117		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2118			goto nla_put_failure;
2119	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2120		   swkey->eth.type == htons(ETH_P_RARP)) {
2121		struct ovs_key_arp *arp_key;
2122
2123		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2124		if (!nla)
2125			goto nla_put_failure;
2126		arp_key = nla_data(nla);
2127		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2128		arp_key->arp_sip = output->ipv4.addr.src;
2129		arp_key->arp_tip = output->ipv4.addr.dst;
2130		arp_key->arp_op = htons(output->ip.proto);
2131		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2132		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2133	} else if (eth_p_mpls(swkey->eth.type)) {
2134		u8 i, num_labels;
2135		struct ovs_key_mpls *mpls_key;
2136
2137		num_labels = hweight_long(output->mpls.num_labels_mask);
2138		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2139				  num_labels * sizeof(*mpls_key));
2140		if (!nla)
2141			goto nla_put_failure;
2142
2143		mpls_key = nla_data(nla);
2144		for (i = 0; i < num_labels; i++)
2145			mpls_key[i].mpls_lse = output->mpls.lse[i];
2146	}
2147
2148	if ((swkey->eth.type == htons(ETH_P_IP) ||
2149	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2150	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2151
2152		if (swkey->ip.proto == IPPROTO_TCP) {
2153			struct ovs_key_tcp *tcp_key;
2154
2155			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2156			if (!nla)
2157				goto nla_put_failure;
2158			tcp_key = nla_data(nla);
2159			tcp_key->tcp_src = output->tp.src;
2160			tcp_key->tcp_dst = output->tp.dst;
2161			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2162					 output->tp.flags))
2163				goto nla_put_failure;
2164		} else if (swkey->ip.proto == IPPROTO_UDP) {
2165			struct ovs_key_udp *udp_key;
2166
2167			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2168			if (!nla)
2169				goto nla_put_failure;
2170			udp_key = nla_data(nla);
2171			udp_key->udp_src = output->tp.src;
2172			udp_key->udp_dst = output->tp.dst;
2173		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2174			struct ovs_key_sctp *sctp_key;
2175
2176			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2177			if (!nla)
2178				goto nla_put_failure;
2179			sctp_key = nla_data(nla);
2180			sctp_key->sctp_src = output->tp.src;
2181			sctp_key->sctp_dst = output->tp.dst;
2182		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2183			   swkey->ip.proto == IPPROTO_ICMP) {
2184			struct ovs_key_icmp *icmp_key;
2185
2186			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2187			if (!nla)
2188				goto nla_put_failure;
2189			icmp_key = nla_data(nla);
2190			icmp_key->icmp_type = ntohs(output->tp.src);
2191			icmp_key->icmp_code = ntohs(output->tp.dst);
2192		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2193			   swkey->ip.proto == IPPROTO_ICMPV6) {
2194			struct ovs_key_icmpv6 *icmpv6_key;
2195
2196			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2197						sizeof(*icmpv6_key));
2198			if (!nla)
2199				goto nla_put_failure;
2200			icmpv6_key = nla_data(nla);
2201			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2202			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2203
2204			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2205			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2206				struct ovs_key_nd *nd_key;
2207
2208				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2209				if (!nla)
2210					goto nla_put_failure;
2211				nd_key = nla_data(nla);
2212				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2213							sizeof(nd_key->nd_target));
2214				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2215				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2216			}
2217		}
2218	}
2219
2220unencap:
2221	if (in_encap)
2222		nla_nest_end(skb, in_encap);
2223	if (encap)
2224		nla_nest_end(skb, encap);
2225
2226	return 0;
2227
2228nla_put_failure:
2229	return -EMSGSIZE;
2230}
2231
2232int ovs_nla_put_key(const struct sw_flow_key *swkey,
2233		    const struct sw_flow_key *output, int attr, bool is_mask,
2234		    struct sk_buff *skb)
2235{
2236	int err;
2237	struct nlattr *nla;
2238
2239	nla = nla_nest_start_noflag(skb, attr);
2240	if (!nla)
2241		return -EMSGSIZE;
2242	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2243	if (err)
2244		return err;
2245	nla_nest_end(skb, nla);
2246
2247	return 0;
2248}
2249
2250/* Called with ovs_mutex or RCU read lock. */
2251int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2252{
2253	if (ovs_identifier_is_ufid(&flow->id))
2254		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2255			       flow->id.ufid);
2256
2257	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2258			       OVS_FLOW_ATTR_KEY, false, skb);
2259}
2260
2261/* Called with ovs_mutex or RCU read lock. */
2262int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2263{
2264	return ovs_nla_put_key(&flow->key, &flow->key,
2265				OVS_FLOW_ATTR_KEY, false, skb);
2266}
2267
2268/* Called with ovs_mutex or RCU read lock. */
2269int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2270{
2271	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2272				OVS_FLOW_ATTR_MASK, true, skb);
2273}
2274
2275#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2276
2277static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2278{
2279	struct sw_flow_actions *sfa;
2280
2281	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2282
2283	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2284	if (!sfa)
2285		return ERR_PTR(-ENOMEM);
2286
2287	sfa->actions_len = 0;
2288	return sfa;
2289}
2290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291static void ovs_nla_free_set_action(const struct nlattr *a)
2292{
2293	const struct nlattr *ovs_key = nla_data(a);
2294	struct ovs_tunnel_info *ovs_tun;
2295
2296	switch (nla_type(ovs_key)) {
2297	case OVS_KEY_ATTR_TUNNEL_INFO:
2298		ovs_tun = nla_data(ovs_key);
2299		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2300		break;
2301	}
2302}
2303
2304void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2305{
2306	const struct nlattr *a;
2307	int rem;
2308
2309	if (!sf_acts)
 
 
 
 
 
2310		return;
2311
2312	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2313		switch (nla_type(a)) {
2314		case OVS_ACTION_ATTR_SET:
2315			ovs_nla_free_set_action(a);
 
 
 
 
2316			break;
 
2317		case OVS_ACTION_ATTR_CT:
2318			ovs_ct_free_action(a);
2319			break;
 
 
 
 
 
 
 
 
 
 
 
 
2320		}
2321	}
 
2322
 
 
 
 
 
 
2323	kfree(sf_acts);
2324}
2325
2326static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2327{
2328	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2329}
2330
2331/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2332 * The caller must hold rcu_read_lock for this to be sensible. */
2333void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2334{
2335	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2336}
2337
2338static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2339				       int attr_len, bool log)
2340{
2341
2342	struct sw_flow_actions *acts;
2343	int new_acts_size;
2344	size_t req_size = NLA_ALIGN(attr_len);
2345	int next_offset = offsetof(struct sw_flow_actions, actions) +
2346					(*sfa)->actions_len;
2347
2348	if (req_size <= (ksize(*sfa) - next_offset))
2349		goto out;
2350
2351	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2352
2353	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2354		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2355			OVS_NLERR(log, "Flow action size exceeds max %u",
2356				  MAX_ACTIONS_BUFSIZE);
2357			return ERR_PTR(-EMSGSIZE);
2358		}
2359		new_acts_size = MAX_ACTIONS_BUFSIZE;
2360	}
2361
2362	acts = nla_alloc_flow_actions(new_acts_size);
2363	if (IS_ERR(acts))
2364		return (void *)acts;
2365
2366	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2367	acts->actions_len = (*sfa)->actions_len;
2368	acts->orig_len = (*sfa)->orig_len;
2369	kfree(*sfa);
2370	*sfa = acts;
2371
2372out:
2373	(*sfa)->actions_len += req_size;
2374	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2375}
2376
2377static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2378				   int attrtype, void *data, int len, bool log)
2379{
2380	struct nlattr *a;
2381
2382	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2383	if (IS_ERR(a))
2384		return a;
2385
2386	a->nla_type = attrtype;
2387	a->nla_len = nla_attr_size(len);
2388
2389	if (data)
2390		memcpy(nla_data(a), data, len);
2391	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2392
2393	return a;
2394}
2395
2396int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2397		       int len, bool log)
2398{
2399	struct nlattr *a;
2400
2401	a = __add_action(sfa, attrtype, data, len, log);
2402
2403	return PTR_ERR_OR_ZERO(a);
2404}
2405
2406static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2407					  int attrtype, bool log)
2408{
2409	int used = (*sfa)->actions_len;
2410	int err;
2411
2412	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2413	if (err)
2414		return err;
2415
2416	return used;
2417}
2418
2419static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2420					 int st_offset)
2421{
2422	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2423							       st_offset);
2424
2425	a->nla_len = sfa->actions_len - st_offset;
2426}
2427
2428static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2429				  const struct sw_flow_key *key,
2430				  struct sw_flow_actions **sfa,
2431				  __be16 eth_type, __be16 vlan_tci,
2432				  u32 mpls_label_count, bool log);
 
2433
2434static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2435				    const struct sw_flow_key *key,
2436				    struct sw_flow_actions **sfa,
2437				    __be16 eth_type, __be16 vlan_tci,
2438				    u32 mpls_label_count, bool log, bool last)
 
2439{
2440	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2441	const struct nlattr *probability, *actions;
2442	const struct nlattr *a;
2443	int rem, start, err;
2444	struct sample_arg arg;
2445
2446	memset(attrs, 0, sizeof(attrs));
2447	nla_for_each_nested(a, attr, rem) {
2448		int type = nla_type(a);
2449		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2450			return -EINVAL;
2451		attrs[type] = a;
2452	}
2453	if (rem)
2454		return -EINVAL;
2455
2456	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2457	if (!probability || nla_len(probability) != sizeof(u32))
2458		return -EINVAL;
2459
2460	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2461	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2462		return -EINVAL;
2463
2464	/* validation done, copy sample action. */
2465	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2466	if (start < 0)
2467		return start;
2468
2469	/* When both skb and flow may be changed, put the sample
2470	 * into a deferred fifo. On the other hand, if only skb
2471	 * may be modified, the actions can be executed in place.
2472	 *
2473	 * Do this analysis at the flow installation time.
2474	 * Set 'clone_action->exec' to true if the actions can be
2475	 * executed without being deferred.
2476	 *
2477	 * If the sample is the last action, it can always be excuted
2478	 * rather than deferred.
2479	 */
2480	arg.exec = last || !actions_may_change_flow(actions);
2481	arg.probability = nla_get_u32(probability);
2482
2483	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2484				 log);
2485	if (err)
2486		return err;
2487
2488	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2489				     eth_type, vlan_tci, mpls_label_count, log);
 
2490
2491	if (err)
2492		return err;
2493
2494	add_nested_action_end(*sfa, start);
2495
2496	return 0;
2497}
2498
2499static int validate_and_copy_dec_ttl(struct net *net,
2500				     const struct nlattr *attr,
2501				     const struct sw_flow_key *key,
2502				     struct sw_flow_actions **sfa,
2503				     __be16 eth_type, __be16 vlan_tci,
2504				     u32 mpls_label_count, bool log)
 
2505{
2506	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2507	int start, action_start, err, rem;
2508	const struct nlattr *a, *actions;
2509
2510	memset(attrs, 0, sizeof(attrs));
2511	nla_for_each_nested(a, attr, rem) {
2512		int type = nla_type(a);
2513
2514		/* Ignore unknown attributes to be future proof. */
2515		if (type > OVS_DEC_TTL_ATTR_MAX)
2516			continue;
2517
2518		if (!type || attrs[type]) {
2519			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2520				  type);
2521			return -EINVAL;
2522		}
2523
2524		attrs[type] = a;
2525	}
2526
2527	if (rem) {
2528		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2529		return -EINVAL;
2530	}
2531
2532	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2533	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2534		OVS_NLERR(log, "Missing valid actions attribute.");
2535		return -EINVAL;
2536	}
2537
2538	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2539	if (start < 0)
2540		return start;
2541
2542	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2543	if (action_start < 0)
2544		return action_start;
2545
2546	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2547				     vlan_tci, mpls_label_count, log);
 
2548	if (err)
2549		return err;
2550
2551	add_nested_action_end(*sfa, action_start);
2552	add_nested_action_end(*sfa, start);
2553	return 0;
2554}
2555
2556static int validate_and_copy_clone(struct net *net,
2557				   const struct nlattr *attr,
2558				   const struct sw_flow_key *key,
2559				   struct sw_flow_actions **sfa,
2560				   __be16 eth_type, __be16 vlan_tci,
2561				   u32 mpls_label_count, bool log, bool last)
 
2562{
2563	int start, err;
2564	u32 exec;
2565
2566	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2567		return -EINVAL;
2568
2569	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2570	if (start < 0)
2571		return start;
2572
2573	exec = last || !actions_may_change_flow(attr);
2574
2575	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2576				 sizeof(exec), log);
2577	if (err)
2578		return err;
2579
2580	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2581				     eth_type, vlan_tci, mpls_label_count, log);
 
2582	if (err)
2583		return err;
2584
2585	add_nested_action_end(*sfa, start);
2586
2587	return 0;
2588}
2589
2590void ovs_match_init(struct sw_flow_match *match,
2591		    struct sw_flow_key *key,
2592		    bool reset_key,
2593		    struct sw_flow_mask *mask)
2594{
2595	memset(match, 0, sizeof(*match));
2596	match->key = key;
2597	match->mask = mask;
2598
2599	if (reset_key)
2600		memset(key, 0, sizeof(*key));
2601
2602	if (mask) {
2603		memset(&mask->key, 0, sizeof(mask->key));
2604		mask->range.start = mask->range.end = 0;
2605	}
2606}
2607
2608static int validate_geneve_opts(struct sw_flow_key *key)
2609{
2610	struct geneve_opt *option;
2611	int opts_len = key->tun_opts_len;
2612	bool crit_opt = false;
2613
2614	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2615	while (opts_len > 0) {
2616		int len;
2617
2618		if (opts_len < sizeof(*option))
2619			return -EINVAL;
2620
2621		len = sizeof(*option) + option->length * 4;
2622		if (len > opts_len)
2623			return -EINVAL;
2624
2625		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2626
2627		option = (struct geneve_opt *)((u8 *)option + len);
2628		opts_len -= len;
2629	}
2630
2631	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2632
2633	return 0;
2634}
2635
2636static int validate_and_copy_set_tun(const struct nlattr *attr,
2637				     struct sw_flow_actions **sfa, bool log)
2638{
2639	struct sw_flow_match match;
2640	struct sw_flow_key key;
2641	struct metadata_dst *tun_dst;
2642	struct ip_tunnel_info *tun_info;
2643	struct ovs_tunnel_info *ovs_tun;
2644	struct nlattr *a;
2645	int err = 0, start, opts_type;
2646	__be16 dst_opt_type;
2647
2648	dst_opt_type = 0;
2649	ovs_match_init(&match, &key, true, NULL);
2650	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2651	if (opts_type < 0)
2652		return opts_type;
2653
2654	if (key.tun_opts_len) {
2655		switch (opts_type) {
2656		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2657			err = validate_geneve_opts(&key);
2658			if (err < 0)
2659				return err;
2660			dst_opt_type = TUNNEL_GENEVE_OPT;
2661			break;
2662		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2663			dst_opt_type = TUNNEL_VXLAN_OPT;
2664			break;
2665		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2666			dst_opt_type = TUNNEL_ERSPAN_OPT;
2667			break;
2668		}
2669	}
2670
2671	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2672	if (start < 0)
2673		return start;
2674
2675	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2676				     GFP_KERNEL);
2677
2678	if (!tun_dst)
2679		return -ENOMEM;
2680
2681	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2682	if (err) {
2683		dst_release((struct dst_entry *)tun_dst);
2684		return err;
2685	}
2686
2687	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2688			 sizeof(*ovs_tun), log);
2689	if (IS_ERR(a)) {
2690		dst_release((struct dst_entry *)tun_dst);
2691		return PTR_ERR(a);
2692	}
2693
2694	ovs_tun = nla_data(a);
2695	ovs_tun->tun_dst = tun_dst;
2696
2697	tun_info = &tun_dst->u.tun_info;
2698	tun_info->mode = IP_TUNNEL_INFO_TX;
2699	if (key.tun_proto == AF_INET6)
2700		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2701	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2702		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2703	tun_info->key = key.tun_key;
2704
2705	/* We need to store the options in the action itself since
2706	 * everything else will go away after flow setup. We can append
2707	 * it to tun_info and then point there.
2708	 */
2709	ip_tunnel_info_opts_set(tun_info,
2710				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2711				key.tun_opts_len, dst_opt_type);
2712	add_nested_action_end(*sfa, start);
2713
2714	return err;
2715}
2716
2717static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2718			 bool is_push_nsh, bool log)
2719{
2720	struct sw_flow_match match;
2721	struct sw_flow_key key;
2722	int ret = 0;
2723
2724	ovs_match_init(&match, &key, true, NULL);
2725	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2726				      is_push_nsh, log);
2727	return !ret;
2728}
2729
2730/* Return false if there are any non-masked bits set.
2731 * Mask follows data immediately, before any netlink padding.
2732 */
2733static bool validate_masked(u8 *data, int len)
2734{
2735	u8 *mask = data + len;
2736
2737	while (len--)
2738		if (*data++ & ~*mask++)
2739			return false;
2740
2741	return true;
2742}
2743
2744static int validate_set(const struct nlattr *a,
2745			const struct sw_flow_key *flow_key,
2746			struct sw_flow_actions **sfa, bool *skip_copy,
2747			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2748{
2749	const struct nlattr *ovs_key = nla_data(a);
2750	int key_type = nla_type(ovs_key);
2751	size_t key_len;
2752
2753	/* There can be only one key in a action */
2754	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2755		return -EINVAL;
2756
2757	key_len = nla_len(ovs_key);
2758	if (masked)
2759		key_len /= 2;
2760
2761	if (key_type > OVS_KEY_ATTR_MAX ||
2762	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2763		return -EINVAL;
2764
2765	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2766		return -EINVAL;
2767
2768	switch (key_type) {
2769	case OVS_KEY_ATTR_PRIORITY:
2770	case OVS_KEY_ATTR_SKB_MARK:
2771	case OVS_KEY_ATTR_CT_MARK:
2772	case OVS_KEY_ATTR_CT_LABELS:
2773		break;
2774
2775	case OVS_KEY_ATTR_ETHERNET:
2776		if (mac_proto != MAC_PROTO_ETHERNET)
2777			return -EINVAL;
2778		break;
2779
2780	case OVS_KEY_ATTR_TUNNEL: {
2781		int err;
2782
2783		if (masked)
2784			return -EINVAL; /* Masked tunnel set not supported. */
2785
2786		*skip_copy = true;
2787		err = validate_and_copy_set_tun(a, sfa, log);
2788		if (err)
2789			return err;
2790		break;
2791	}
2792	case OVS_KEY_ATTR_IPV4: {
2793		const struct ovs_key_ipv4 *ipv4_key;
2794
2795		if (eth_type != htons(ETH_P_IP))
2796			return -EINVAL;
2797
2798		ipv4_key = nla_data(ovs_key);
2799
2800		if (masked) {
2801			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2802
2803			/* Non-writeable fields. */
2804			if (mask->ipv4_proto || mask->ipv4_frag)
2805				return -EINVAL;
2806		} else {
2807			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2808				return -EINVAL;
2809
2810			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2811				return -EINVAL;
2812		}
2813		break;
2814	}
2815	case OVS_KEY_ATTR_IPV6: {
2816		const struct ovs_key_ipv6 *ipv6_key;
2817
2818		if (eth_type != htons(ETH_P_IPV6))
2819			return -EINVAL;
2820
2821		ipv6_key = nla_data(ovs_key);
2822
2823		if (masked) {
2824			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2825
2826			/* Non-writeable fields. */
2827			if (mask->ipv6_proto || mask->ipv6_frag)
2828				return -EINVAL;
2829
2830			/* Invalid bits in the flow label mask? */
2831			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2832				return -EINVAL;
2833		} else {
2834			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2835				return -EINVAL;
2836
2837			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2838				return -EINVAL;
2839		}
2840		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2841			return -EINVAL;
2842
2843		break;
2844	}
2845	case OVS_KEY_ATTR_TCP:
2846		if ((eth_type != htons(ETH_P_IP) &&
2847		     eth_type != htons(ETH_P_IPV6)) ||
2848		    flow_key->ip.proto != IPPROTO_TCP)
2849			return -EINVAL;
2850
2851		break;
2852
2853	case OVS_KEY_ATTR_UDP:
2854		if ((eth_type != htons(ETH_P_IP) &&
2855		     eth_type != htons(ETH_P_IPV6)) ||
2856		    flow_key->ip.proto != IPPROTO_UDP)
2857			return -EINVAL;
2858
2859		break;
2860
2861	case OVS_KEY_ATTR_MPLS:
2862		if (!eth_p_mpls(eth_type))
2863			return -EINVAL;
2864		break;
2865
2866	case OVS_KEY_ATTR_SCTP:
2867		if ((eth_type != htons(ETH_P_IP) &&
2868		     eth_type != htons(ETH_P_IPV6)) ||
2869		    flow_key->ip.proto != IPPROTO_SCTP)
2870			return -EINVAL;
2871
2872		break;
2873
2874	case OVS_KEY_ATTR_NSH:
2875		if (eth_type != htons(ETH_P_NSH))
2876			return -EINVAL;
2877		if (!validate_nsh(nla_data(a), masked, false, log))
2878			return -EINVAL;
2879		break;
2880
2881	default:
2882		return -EINVAL;
2883	}
2884
2885	/* Convert non-masked non-tunnel set actions to masked set actions. */
2886	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2887		int start, len = key_len * 2;
2888		struct nlattr *at;
2889
2890		*skip_copy = true;
2891
2892		start = add_nested_action_start(sfa,
2893						OVS_ACTION_ATTR_SET_TO_MASKED,
2894						log);
2895		if (start < 0)
2896			return start;
2897
2898		at = __add_action(sfa, key_type, NULL, len, log);
2899		if (IS_ERR(at))
2900			return PTR_ERR(at);
2901
2902		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2903		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2904		/* Clear non-writeable bits from otherwise writeable fields. */
2905		if (key_type == OVS_KEY_ATTR_IPV6) {
2906			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2907
2908			mask->ipv6_label &= htonl(0x000FFFFF);
2909		}
2910		add_nested_action_end(*sfa, start);
2911	}
2912
2913	return 0;
2914}
2915
2916static int validate_userspace(const struct nlattr *attr)
2917{
2918	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2919		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2920		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2921		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2922	};
2923	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2924	int error;
2925
2926	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2927					    userspace_policy, NULL);
2928	if (error)
2929		return error;
2930
2931	if (!a[OVS_USERSPACE_ATTR_PID] ||
2932	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2933		return -EINVAL;
2934
2935	return 0;
2936}
2937
2938static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2939	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2940	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2941	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2942};
2943
2944static int validate_and_copy_check_pkt_len(struct net *net,
2945					   const struct nlattr *attr,
2946					   const struct sw_flow_key *key,
2947					   struct sw_flow_actions **sfa,
2948					   __be16 eth_type, __be16 vlan_tci,
2949					   u32 mpls_label_count,
2950					   bool log, bool last)
2951{
2952	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2953	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2954	struct check_pkt_len_arg arg;
2955	int nested_acts_start;
2956	int start, err;
2957
2958	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2959					  nla_data(attr), nla_len(attr),
2960					  cpl_policy, NULL);
2961	if (err)
2962		return err;
2963
2964	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2965	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2966		return -EINVAL;
2967
2968	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2969	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2970
2971	/* Both the nested action should be present. */
2972	if (!acts_if_greater || !acts_if_lesser_eq)
2973		return -EINVAL;
2974
2975	/* validation done, copy the nested actions. */
2976	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2977					log);
2978	if (start < 0)
2979		return start;
2980
2981	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2982	arg.exec_for_lesser_equal =
2983		last || !actions_may_change_flow(acts_if_lesser_eq);
2984	arg.exec_for_greater =
2985		last || !actions_may_change_flow(acts_if_greater);
2986
2987	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2988				 sizeof(arg), log);
2989	if (err)
2990		return err;
2991
2992	nested_acts_start = add_nested_action_start(sfa,
2993		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2994	if (nested_acts_start < 0)
2995		return nested_acts_start;
2996
2997	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2998				     eth_type, vlan_tci, mpls_label_count, log);
 
2999
3000	if (err)
3001		return err;
3002
3003	add_nested_action_end(*sfa, nested_acts_start);
3004
3005	nested_acts_start = add_nested_action_start(sfa,
3006		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3007	if (nested_acts_start < 0)
3008		return nested_acts_start;
3009
3010	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3011				     eth_type, vlan_tci, mpls_label_count, log);
 
3012
3013	if (err)
3014		return err;
3015
3016	add_nested_action_end(*sfa, nested_acts_start);
3017	add_nested_action_end(*sfa, start);
3018	return 0;
3019}
3020
3021static int copy_action(const struct nlattr *from,
3022		       struct sw_flow_actions **sfa, bool log)
3023{
3024	int totlen = NLA_ALIGN(from->nla_len);
3025	struct nlattr *to;
3026
3027	to = reserve_sfa_size(sfa, from->nla_len, log);
3028	if (IS_ERR(to))
3029		return PTR_ERR(to);
3030
3031	memcpy(to, from, totlen);
3032	return 0;
3033}
3034
3035static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3036				  const struct sw_flow_key *key,
3037				  struct sw_flow_actions **sfa,
3038				  __be16 eth_type, __be16 vlan_tci,
3039				  u32 mpls_label_count, bool log)
 
3040{
3041	u8 mac_proto = ovs_key_mac_proto(key);
3042	const struct nlattr *a;
3043	int rem, err;
3044
 
 
 
3045	nla_for_each_nested(a, attr, rem) {
3046		/* Expected argument lengths, (u32)-1 for variable length. */
3047		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3048			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3049			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3050			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3051			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3052			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3053			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3054			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3055			[OVS_ACTION_ATTR_SET] = (u32)-1,
3056			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3057			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3058			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3059			[OVS_ACTION_ATTR_CT] = (u32)-1,
3060			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3061			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3062			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3063			[OVS_ACTION_ATTR_POP_ETH] = 0,
3064			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3065			[OVS_ACTION_ATTR_POP_NSH] = 0,
3066			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3067			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3068			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3069			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3070			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
 
3071		};
3072		const struct ovs_action_push_vlan *vlan;
3073		int type = nla_type(a);
3074		bool skip_copy;
3075
3076		if (type > OVS_ACTION_ATTR_MAX ||
3077		    (action_lens[type] != nla_len(a) &&
3078		     action_lens[type] != (u32)-1))
3079			return -EINVAL;
3080
3081		skip_copy = false;
3082		switch (type) {
3083		case OVS_ACTION_ATTR_UNSPEC:
3084			return -EINVAL;
3085
3086		case OVS_ACTION_ATTR_USERSPACE:
3087			err = validate_userspace(a);
3088			if (err)
3089				return err;
3090			break;
3091
3092		case OVS_ACTION_ATTR_OUTPUT:
3093			if (nla_get_u32(a) >= DP_MAX_PORTS)
3094				return -EINVAL;
3095			break;
3096
3097		case OVS_ACTION_ATTR_TRUNC: {
3098			const struct ovs_action_trunc *trunc = nla_data(a);
3099
3100			if (trunc->max_len < ETH_HLEN)
3101				return -EINVAL;
3102			break;
3103		}
3104
3105		case OVS_ACTION_ATTR_HASH: {
3106			const struct ovs_action_hash *act_hash = nla_data(a);
3107
3108			switch (act_hash->hash_alg) {
3109			case OVS_HASH_ALG_L4:
 
 
3110				break;
3111			default:
3112				return  -EINVAL;
3113			}
3114
3115			break;
3116		}
3117
3118		case OVS_ACTION_ATTR_POP_VLAN:
3119			if (mac_proto != MAC_PROTO_ETHERNET)
3120				return -EINVAL;
3121			vlan_tci = htons(0);
3122			break;
3123
3124		case OVS_ACTION_ATTR_PUSH_VLAN:
3125			if (mac_proto != MAC_PROTO_ETHERNET)
3126				return -EINVAL;
3127			vlan = nla_data(a);
3128			if (!eth_type_vlan(vlan->vlan_tpid))
3129				return -EINVAL;
3130			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3131				return -EINVAL;
3132			vlan_tci = vlan->vlan_tci;
3133			break;
3134
3135		case OVS_ACTION_ATTR_RECIRC:
3136			break;
3137
3138		case OVS_ACTION_ATTR_ADD_MPLS: {
3139			const struct ovs_action_add_mpls *mpls = nla_data(a);
3140
3141			if (!eth_p_mpls(mpls->mpls_ethertype))
3142				return -EINVAL;
3143
3144			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3145				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3146				    (eth_type != htons(ETH_P_IP) &&
3147				     eth_type != htons(ETH_P_IPV6) &&
3148				     eth_type != htons(ETH_P_ARP) &&
3149				     eth_type != htons(ETH_P_RARP) &&
3150				     !eth_p_mpls(eth_type)))
3151					return -EINVAL;
3152				mpls_label_count++;
3153			} else {
3154				if (mac_proto == MAC_PROTO_ETHERNET) {
3155					mpls_label_count = 1;
3156					mac_proto = MAC_PROTO_NONE;
3157				} else {
3158					mpls_label_count++;
3159				}
3160			}
3161			eth_type = mpls->mpls_ethertype;
3162			break;
3163		}
3164
3165		case OVS_ACTION_ATTR_PUSH_MPLS: {
3166			const struct ovs_action_push_mpls *mpls = nla_data(a);
3167
3168			if (!eth_p_mpls(mpls->mpls_ethertype))
3169				return -EINVAL;
3170			/* Prohibit push MPLS other than to a white list
3171			 * for packets that have a known tag order.
3172			 */
3173			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3174			    (eth_type != htons(ETH_P_IP) &&
3175			     eth_type != htons(ETH_P_IPV6) &&
3176			     eth_type != htons(ETH_P_ARP) &&
3177			     eth_type != htons(ETH_P_RARP) &&
3178			     !eth_p_mpls(eth_type)))
3179				return -EINVAL;
3180			eth_type = mpls->mpls_ethertype;
3181			mpls_label_count++;
3182			break;
3183		}
3184
3185		case OVS_ACTION_ATTR_POP_MPLS: {
3186			__be16  proto;
3187			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3188			    !eth_p_mpls(eth_type))
3189				return -EINVAL;
3190
3191			/* Disallow subsequent L2.5+ set actions and mpls_pop
3192			 * actions once the last MPLS label in the packet is
3193			 * is popped as there is no check here to ensure that
3194			 * the new eth type is valid and thus set actions could
3195			 * write off the end of the packet or otherwise corrupt
3196			 * it.
3197			 *
3198			 * Support for these actions is planned using packet
3199			 * recirculation.
3200			 */
3201			proto = nla_get_be16(a);
3202
3203			if (proto == htons(ETH_P_TEB) &&
3204			    mac_proto != MAC_PROTO_NONE)
3205				return -EINVAL;
3206
3207			mpls_label_count--;
3208
3209			if (!eth_p_mpls(proto) || !mpls_label_count)
3210				eth_type = htons(0);
3211			else
3212				eth_type =  proto;
3213
3214			break;
3215		}
3216
3217		case OVS_ACTION_ATTR_SET:
3218			err = validate_set(a, key, sfa,
3219					   &skip_copy, mac_proto, eth_type,
3220					   false, log);
3221			if (err)
3222				return err;
3223			break;
3224
3225		case OVS_ACTION_ATTR_SET_MASKED:
3226			err = validate_set(a, key, sfa,
3227					   &skip_copy, mac_proto, eth_type,
3228					   true, log);
3229			if (err)
3230				return err;
3231			break;
3232
3233		case OVS_ACTION_ATTR_SAMPLE: {
3234			bool last = nla_is_last(a, rem);
3235
3236			err = validate_and_copy_sample(net, a, key, sfa,
3237						       eth_type, vlan_tci,
3238						       mpls_label_count,
3239						       log, last);
3240			if (err)
3241				return err;
3242			skip_copy = true;
3243			break;
3244		}
3245
3246		case OVS_ACTION_ATTR_CT:
3247			err = ovs_ct_copy_action(net, a, key, sfa, log);
3248			if (err)
3249				return err;
3250			skip_copy = true;
3251			break;
3252
3253		case OVS_ACTION_ATTR_CT_CLEAR:
3254			break;
3255
3256		case OVS_ACTION_ATTR_PUSH_ETH:
3257			/* Disallow pushing an Ethernet header if one
3258			 * is already present */
3259			if (mac_proto != MAC_PROTO_NONE)
3260				return -EINVAL;
3261			mac_proto = MAC_PROTO_ETHERNET;
3262			break;
3263
3264		case OVS_ACTION_ATTR_POP_ETH:
3265			if (mac_proto != MAC_PROTO_ETHERNET)
3266				return -EINVAL;
3267			if (vlan_tci & htons(VLAN_CFI_MASK))
3268				return -EINVAL;
3269			mac_proto = MAC_PROTO_NONE;
3270			break;
3271
3272		case OVS_ACTION_ATTR_PUSH_NSH:
3273			if (mac_proto != MAC_PROTO_ETHERNET) {
3274				u8 next_proto;
3275
3276				next_proto = tun_p_from_eth_p(eth_type);
3277				if (!next_proto)
3278					return -EINVAL;
3279			}
3280			mac_proto = MAC_PROTO_NONE;
3281			if (!validate_nsh(nla_data(a), false, true, true))
3282				return -EINVAL;
3283			break;
3284
3285		case OVS_ACTION_ATTR_POP_NSH: {
3286			__be16 inner_proto;
3287
3288			if (eth_type != htons(ETH_P_NSH))
3289				return -EINVAL;
3290			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3291			if (!inner_proto)
3292				return -EINVAL;
3293			if (key->nsh.base.np == TUN_P_ETHERNET)
3294				mac_proto = MAC_PROTO_ETHERNET;
3295			else
3296				mac_proto = MAC_PROTO_NONE;
3297			break;
3298		}
3299
3300		case OVS_ACTION_ATTR_METER:
3301			/* Non-existent meters are simply ignored.  */
3302			break;
3303
3304		case OVS_ACTION_ATTR_CLONE: {
3305			bool last = nla_is_last(a, rem);
3306
3307			err = validate_and_copy_clone(net, a, key, sfa,
3308						      eth_type, vlan_tci,
3309						      mpls_label_count,
3310						      log, last);
3311			if (err)
3312				return err;
3313			skip_copy = true;
3314			break;
3315		}
3316
3317		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3318			bool last = nla_is_last(a, rem);
3319
3320			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3321							      eth_type,
3322							      vlan_tci,
3323							      mpls_label_count,
3324							      log, last);
 
3325			if (err)
3326				return err;
3327			skip_copy = true;
3328			break;
3329		}
3330
3331		case OVS_ACTION_ATTR_DEC_TTL:
3332			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3333							eth_type, vlan_tci,
3334							mpls_label_count, log);
 
3335			if (err)
3336				return err;
3337			skip_copy = true;
3338			break;
3339
 
 
 
 
 
3340		default:
3341			OVS_NLERR(log, "Unknown Action type %d", type);
3342			return -EINVAL;
3343		}
3344		if (!skip_copy) {
3345			err = copy_action(a, sfa, log);
3346			if (err)
3347				return err;
3348		}
3349	}
3350
3351	if (rem > 0)
3352		return -EINVAL;
3353
3354	return 0;
3355}
3356
3357/* 'key' must be the masked key. */
3358int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3359			 const struct sw_flow_key *key,
3360			 struct sw_flow_actions **sfa, bool log)
3361{
3362	int err;
3363	u32 mpls_label_count = 0;
3364
3365	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3366	if (IS_ERR(*sfa))
3367		return PTR_ERR(*sfa);
3368
3369	if (eth_p_mpls(key->eth.type))
3370		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3371
3372	(*sfa)->orig_len = nla_len(attr);
3373	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3374				     key->eth.vlan.tci, mpls_label_count, log);
 
3375	if (err)
3376		ovs_nla_free_flow_actions(*sfa);
3377
3378	return err;
3379}
3380
3381static int sample_action_to_attr(const struct nlattr *attr,
3382				 struct sk_buff *skb)
3383{
3384	struct nlattr *start, *ac_start = NULL, *sample_arg;
3385	int err = 0, rem = nla_len(attr);
3386	const struct sample_arg *arg;
3387	struct nlattr *actions;
3388
3389	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3390	if (!start)
3391		return -EMSGSIZE;
3392
3393	sample_arg = nla_data(attr);
3394	arg = nla_data(sample_arg);
3395	actions = nla_next(sample_arg, &rem);
3396
3397	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3398		err = -EMSGSIZE;
3399		goto out;
3400	}
3401
3402	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3403	if (!ac_start) {
3404		err = -EMSGSIZE;
3405		goto out;
3406	}
3407
3408	err = ovs_nla_put_actions(actions, rem, skb);
3409
3410out:
3411	if (err) {
3412		nla_nest_cancel(skb, ac_start);
3413		nla_nest_cancel(skb, start);
3414	} else {
3415		nla_nest_end(skb, ac_start);
3416		nla_nest_end(skb, start);
3417	}
3418
3419	return err;
3420}
3421
3422static int clone_action_to_attr(const struct nlattr *attr,
3423				struct sk_buff *skb)
3424{
3425	struct nlattr *start;
3426	int err = 0, rem = nla_len(attr);
3427
3428	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3429	if (!start)
3430		return -EMSGSIZE;
3431
3432	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
 
 
3433
3434	if (err)
3435		nla_nest_cancel(skb, start);
3436	else
3437		nla_nest_end(skb, start);
3438
3439	return err;
3440}
3441
3442static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3443					struct sk_buff *skb)
3444{
3445	struct nlattr *start, *ac_start = NULL;
3446	const struct check_pkt_len_arg *arg;
3447	const struct nlattr *a, *cpl_arg;
3448	int err = 0, rem = nla_len(attr);
3449
3450	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3451	if (!start)
3452		return -EMSGSIZE;
3453
3454	/* The first nested attribute in 'attr' is always
3455	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3456	 */
3457	cpl_arg = nla_data(attr);
3458	arg = nla_data(cpl_arg);
3459
3460	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3461		err = -EMSGSIZE;
3462		goto out;
3463	}
3464
3465	/* Second nested attribute in 'attr' is always
3466	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3467	 */
3468	a = nla_next(cpl_arg, &rem);
3469	ac_start =  nla_nest_start_noflag(skb,
3470					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3471	if (!ac_start) {
3472		err = -EMSGSIZE;
3473		goto out;
3474	}
3475
3476	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3477	if (err) {
3478		nla_nest_cancel(skb, ac_start);
3479		goto out;
3480	} else {
3481		nla_nest_end(skb, ac_start);
3482	}
3483
3484	/* Third nested attribute in 'attr' is always
3485	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3486	 */
3487	a = nla_next(a, &rem);
3488	ac_start =  nla_nest_start_noflag(skb,
3489					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3490	if (!ac_start) {
3491		err = -EMSGSIZE;
3492		goto out;
3493	}
3494
3495	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3496	if (err) {
3497		nla_nest_cancel(skb, ac_start);
3498		goto out;
3499	} else {
3500		nla_nest_end(skb, ac_start);
3501	}
3502
3503	nla_nest_end(skb, start);
3504	return 0;
3505
3506out:
3507	nla_nest_cancel(skb, start);
3508	return err;
3509}
3510
3511static int dec_ttl_action_to_attr(const struct nlattr *attr,
3512				  struct sk_buff *skb)
3513{
3514	struct nlattr *start, *action_start;
3515	const struct nlattr *a;
3516	int err = 0, rem;
3517
3518	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3519	if (!start)
3520		return -EMSGSIZE;
3521
3522	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3523		switch (nla_type(a)) {
3524		case OVS_DEC_TTL_ATTR_ACTION:
3525
3526			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3527			if (!action_start) {
3528				err = -EMSGSIZE;
3529				goto out;
3530			}
3531
3532			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3533			if (err)
3534				goto out;
3535
3536			nla_nest_end(skb, action_start);
3537			break;
3538
3539		default:
3540			/* Ignore all other option to be future compatible */
3541			break;
3542		}
3543	}
3544
3545	nla_nest_end(skb, start);
3546	return 0;
3547
3548out:
3549	nla_nest_cancel(skb, start);
3550	return err;
3551}
3552
3553static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3554{
3555	const struct nlattr *ovs_key = nla_data(a);
3556	int key_type = nla_type(ovs_key);
3557	struct nlattr *start;
3558	int err;
3559
3560	switch (key_type) {
3561	case OVS_KEY_ATTR_TUNNEL_INFO: {
3562		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3563		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3564
3565		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3566		if (!start)
3567			return -EMSGSIZE;
3568
3569		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3570					ip_tunnel_info_opts(tun_info),
3571					tun_info->options_len,
3572					ip_tunnel_info_af(tun_info), tun_info->mode);
3573		if (err)
3574			return err;
3575		nla_nest_end(skb, start);
3576		break;
3577	}
3578	default:
3579		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3580			return -EMSGSIZE;
3581		break;
3582	}
3583
3584	return 0;
3585}
3586
3587static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3588						struct sk_buff *skb)
3589{
3590	const struct nlattr *ovs_key = nla_data(a);
3591	struct nlattr *nla;
3592	size_t key_len = nla_len(ovs_key) / 2;
3593
3594	/* Revert the conversion we did from a non-masked set action to
3595	 * masked set action.
3596	 */
3597	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3598	if (!nla)
3599		return -EMSGSIZE;
3600
3601	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3602		return -EMSGSIZE;
3603
3604	nla_nest_end(skb, nla);
3605	return 0;
3606}
3607
3608int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3609{
3610	const struct nlattr *a;
3611	int rem, err;
3612
3613	nla_for_each_attr(a, attr, len, rem) {
3614		int type = nla_type(a);
3615
3616		switch (type) {
3617		case OVS_ACTION_ATTR_SET:
3618			err = set_action_to_attr(a, skb);
3619			if (err)
3620				return err;
3621			break;
3622
3623		case OVS_ACTION_ATTR_SET_TO_MASKED:
3624			err = masked_set_action_to_set_action_attr(a, skb);
3625			if (err)
3626				return err;
3627			break;
3628
3629		case OVS_ACTION_ATTR_SAMPLE:
3630			err = sample_action_to_attr(a, skb);
3631			if (err)
3632				return err;
3633			break;
3634
3635		case OVS_ACTION_ATTR_CT:
3636			err = ovs_ct_action_to_attr(nla_data(a), skb);
3637			if (err)
3638				return err;
3639			break;
3640
3641		case OVS_ACTION_ATTR_CLONE:
3642			err = clone_action_to_attr(a, skb);
3643			if (err)
3644				return err;
3645			break;
3646
3647		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3648			err = check_pkt_len_action_to_attr(a, skb);
3649			if (err)
3650				return err;
3651			break;
3652
3653		case OVS_ACTION_ATTR_DEC_TTL:
3654			err = dec_ttl_action_to_attr(a, skb);
3655			if (err)
3656				return err;
3657			break;
3658
3659		default:
3660			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3661				return -EMSGSIZE;
3662			break;
3663		}
3664	}
3665
3666	return 0;
3667}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "drop.h"
  42#include "flow_netlink.h"
  43
  44struct ovs_len_tbl {
  45	int len;
  46	const struct ovs_len_tbl *next;
  47};
  48
  49#define OVS_ATTR_NESTED -1
  50#define OVS_ATTR_VARIABLE -2
  51#define OVS_COPY_ACTIONS_MAX_DEPTH 16
  52
  53static bool actions_may_change_flow(const struct nlattr *actions)
  54{
  55	struct nlattr *nla;
  56	int rem;
  57
  58	nla_for_each_nested(nla, actions, rem) {
  59		u16 action = nla_type(nla);
  60
  61		switch (action) {
  62		case OVS_ACTION_ATTR_OUTPUT:
  63		case OVS_ACTION_ATTR_RECIRC:
  64		case OVS_ACTION_ATTR_TRUNC:
  65		case OVS_ACTION_ATTR_USERSPACE:
  66		case OVS_ACTION_ATTR_DROP:
  67			break;
  68
  69		case OVS_ACTION_ATTR_CT:
  70		case OVS_ACTION_ATTR_CT_CLEAR:
  71		case OVS_ACTION_ATTR_HASH:
  72		case OVS_ACTION_ATTR_POP_ETH:
  73		case OVS_ACTION_ATTR_POP_MPLS:
  74		case OVS_ACTION_ATTR_POP_NSH:
  75		case OVS_ACTION_ATTR_POP_VLAN:
  76		case OVS_ACTION_ATTR_PUSH_ETH:
  77		case OVS_ACTION_ATTR_PUSH_MPLS:
  78		case OVS_ACTION_ATTR_PUSH_NSH:
  79		case OVS_ACTION_ATTR_PUSH_VLAN:
  80		case OVS_ACTION_ATTR_SAMPLE:
  81		case OVS_ACTION_ATTR_SET:
  82		case OVS_ACTION_ATTR_SET_MASKED:
  83		case OVS_ACTION_ATTR_METER:
  84		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  85		case OVS_ACTION_ATTR_ADD_MPLS:
  86		case OVS_ACTION_ATTR_DEC_TTL:
  87		default:
  88			return true;
  89		}
  90	}
  91	return false;
  92}
  93
  94static void update_range(struct sw_flow_match *match,
  95			 size_t offset, size_t size, bool is_mask)
  96{
  97	struct sw_flow_key_range *range;
  98	size_t start = rounddown(offset, sizeof(long));
  99	size_t end = roundup(offset + size, sizeof(long));
 100
 101	if (!is_mask)
 102		range = &match->range;
 103	else
 104		range = &match->mask->range;
 105
 106	if (range->start == range->end) {
 107		range->start = start;
 108		range->end = end;
 109		return;
 110	}
 111
 112	if (range->start > start)
 113		range->start = start;
 114
 115	if (range->end < end)
 116		range->end = end;
 117}
 118
 119#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 120	do { \
 121		update_range(match, offsetof(struct sw_flow_key, field),    \
 122			     sizeof((match)->key->field), is_mask);	    \
 123		if (is_mask)						    \
 124			(match)->mask->key.field = value;		    \
 125		else							    \
 126			(match)->key->field = value;		            \
 127	} while (0)
 128
 129#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 130	do {								    \
 131		update_range(match, offset, len, is_mask);		    \
 132		if (is_mask)						    \
 133			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 134			       len);					   \
 135		else							    \
 136			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 137	} while (0)
 138
 139#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 140	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 141				  value_p, len, is_mask)
 142
 143#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 144	do {								    \
 145		update_range(match, offsetof(struct sw_flow_key, field),    \
 146			     sizeof((match)->key->field), is_mask);	    \
 147		if (is_mask)						    \
 148			memset((u8 *)&(match)->mask->key.field, value,      \
 149			       sizeof((match)->mask->key.field));	    \
 150		else							    \
 151			memset((u8 *)&(match)->key->field, value,           \
 152			       sizeof((match)->key->field));                \
 153	} while (0)
 154
 155static bool match_validate(const struct sw_flow_match *match,
 156			   u64 key_attrs, u64 mask_attrs, bool log)
 157{
 158	u64 key_expected = 0;
 159	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 160
 161	/* The following mask attributes allowed only if they
 162	 * pass the validation tests. */
 163	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 164			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 165			| (1 << OVS_KEY_ATTR_IPV6)
 166			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 167			| (1 << OVS_KEY_ATTR_TCP)
 168			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 169			| (1 << OVS_KEY_ATTR_UDP)
 170			| (1 << OVS_KEY_ATTR_SCTP)
 171			| (1 << OVS_KEY_ATTR_ICMP)
 172			| (1 << OVS_KEY_ATTR_ICMPV6)
 173			| (1 << OVS_KEY_ATTR_ARP)
 174			| (1 << OVS_KEY_ATTR_ND)
 175			| (1 << OVS_KEY_ATTR_MPLS)
 176			| (1 << OVS_KEY_ATTR_NSH));
 177
 178	/* Always allowed mask fields. */
 179	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 180		       | (1 << OVS_KEY_ATTR_IN_PORT)
 181		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 182
 183	/* Check key attributes. */
 184	if (match->key->eth.type == htons(ETH_P_ARP)
 185			|| match->key->eth.type == htons(ETH_P_RARP)) {
 186		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 187		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 188			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 189	}
 190
 191	if (eth_p_mpls(match->key->eth.type)) {
 192		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 193		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 194			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 195	}
 196
 197	if (match->key->eth.type == htons(ETH_P_IP)) {
 198		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 199		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 200			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 201			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 202		}
 203
 204		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 205			if (match->key->ip.proto == IPPROTO_UDP) {
 206				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 207				if (match->mask && (match->mask->key.ip.proto == 0xff))
 208					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 209			}
 210
 211			if (match->key->ip.proto == IPPROTO_SCTP) {
 212				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 213				if (match->mask && (match->mask->key.ip.proto == 0xff))
 214					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 215			}
 216
 217			if (match->key->ip.proto == IPPROTO_TCP) {
 218				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 219				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 220				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 221					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 222					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 223				}
 224			}
 225
 226			if (match->key->ip.proto == IPPROTO_ICMP) {
 227				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 228				if (match->mask && (match->mask->key.ip.proto == 0xff))
 229					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 230			}
 231		}
 232	}
 233
 234	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 235		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 236		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 237			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 238			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 239		}
 240
 241		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 242			if (match->key->ip.proto == IPPROTO_UDP) {
 243				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 244				if (match->mask && (match->mask->key.ip.proto == 0xff))
 245					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 246			}
 247
 248			if (match->key->ip.proto == IPPROTO_SCTP) {
 249				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 250				if (match->mask && (match->mask->key.ip.proto == 0xff))
 251					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 252			}
 253
 254			if (match->key->ip.proto == IPPROTO_TCP) {
 255				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 256				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 257				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 258					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 259					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 260				}
 261			}
 262
 263			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 264				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 265				if (match->mask && (match->mask->key.ip.proto == 0xff))
 266					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 267
 268				if (match->key->tp.src ==
 269						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 270				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 271					key_expected |= 1 << OVS_KEY_ATTR_ND;
 272					/* Original direction conntrack tuple
 273					 * uses the same space as the ND fields
 274					 * in the key, so both are not allowed
 275					 * at the same time.
 276					 */
 277					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 278					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 279						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 280				}
 281			}
 282		}
 283	}
 284
 285	if (match->key->eth.type == htons(ETH_P_NSH)) {
 286		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 287		if (match->mask &&
 288		    match->mask->key.eth.type == htons(0xffff)) {
 289			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 290		}
 291	}
 292
 293	if ((key_attrs & key_expected) != key_expected) {
 294		/* Key attributes check failed. */
 295		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 296			  (unsigned long long)key_attrs,
 297			  (unsigned long long)key_expected);
 298		return false;
 299	}
 300
 301	if ((mask_attrs & mask_allowed) != mask_attrs) {
 302		/* Mask attributes check failed. */
 303		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 304			  (unsigned long long)mask_attrs,
 305			  (unsigned long long)mask_allowed);
 306		return false;
 307	}
 308
 309	return true;
 310}
 311
 312size_t ovs_tun_key_attr_size(void)
 313{
 314	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 315	 * updating this function.
 316	 */
 317	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 318		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 319		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 320		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 321		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 322		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 323		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 324		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 325		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 326		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 327		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 328		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 329		 */
 330		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 331		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 332}
 333
 334static size_t ovs_nsh_key_attr_size(void)
 335{
 336	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 337	 * updating this function.
 338	 */
 339	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 340		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 341		 * mutually exclusive, so the bigger one can cover
 342		 * the small one.
 343		 */
 344		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 345}
 346
 347size_t ovs_key_attr_size(void)
 348{
 349	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 350	 * updating this function.
 351	 */
 352	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
 353
 354	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 355		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 356		  + ovs_tun_key_attr_size()
 357		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 359		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 360		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 361		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 362		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 363		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 364		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 365		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 366		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 367		  + ovs_nsh_key_attr_size()
 368		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 370		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 371		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 372		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 373		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 374		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 375		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
 376		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
 377}
 378
 379static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 380	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 381};
 382
 383static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 384	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 385	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 386	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 387	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 388	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 389	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 390	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 391	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 392	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 393	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 394	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 395	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 396						.next = ovs_vxlan_ext_key_lens },
 397	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 398	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 399	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 400	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 401};
 402
 403static const struct ovs_len_tbl
 404ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 405	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 406	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 407	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 408};
 409
 410/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 411static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 412	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 413	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 414	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 415	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 416	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 417	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 418	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 419	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 420	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 421	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 422	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 423	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 424	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 425	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 426	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 427	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 428	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 429	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 430	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 431	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 432				     .next = ovs_tunnel_key_lens, },
 433	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 434	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 435	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 436	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 437	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 438	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 439		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 440	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 441		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 442	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 443				     .next = ovs_nsh_key_attr_lens, },
 444	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
 445		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
 446};
 447
 448static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 449{
 450	return expected_len == attr_len ||
 451	       expected_len == OVS_ATTR_NESTED ||
 452	       expected_len == OVS_ATTR_VARIABLE;
 453}
 454
 455static bool is_all_zero(const u8 *fp, size_t size)
 456{
 457	int i;
 458
 459	if (!fp)
 460		return false;
 461
 462	for (i = 0; i < size; i++)
 463		if (fp[i])
 464			return false;
 465
 466	return true;
 467}
 468
 469static int __parse_flow_nlattrs(const struct nlattr *attr,
 470				const struct nlattr *a[],
 471				u64 *attrsp, bool log, bool nz)
 472{
 473	const struct nlattr *nla;
 474	u64 attrs;
 475	int rem;
 476
 477	attrs = *attrsp;
 478	nla_for_each_nested(nla, attr, rem) {
 479		u16 type = nla_type(nla);
 480		int expected_len;
 481
 482		if (type > OVS_KEY_ATTR_MAX) {
 483			OVS_NLERR(log, "Key type %d is out of range max %d",
 484				  type, OVS_KEY_ATTR_MAX);
 485			return -EINVAL;
 486		}
 487
 488		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
 489		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
 490		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
 491			OVS_NLERR(log, "Key type %d is not supported", type);
 492			return -EINVAL;
 493		}
 494
 495		if (attrs & (1ULL << type)) {
 496			OVS_NLERR(log, "Duplicate key (type %d).", type);
 497			return -EINVAL;
 498		}
 499
 500		expected_len = ovs_key_lens[type].len;
 501		if (!check_attr_len(nla_len(nla), expected_len)) {
 502			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 503				  type, nla_len(nla), expected_len);
 504			return -EINVAL;
 505		}
 506
 507		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 508			attrs |= 1ULL << type;
 509			a[type] = nla;
 510		}
 511	}
 512	if (rem) {
 513		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 514		return -EINVAL;
 515	}
 516
 517	*attrsp = attrs;
 518	return 0;
 519}
 520
 521static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 522				   const struct nlattr *a[], u64 *attrsp,
 523				   bool log)
 524{
 525	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 526}
 527
 528int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 529		       u64 *attrsp, bool log)
 530{
 531	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 532}
 533
 534static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 535				     struct sw_flow_match *match, bool is_mask,
 536				     bool log)
 537{
 538	unsigned long opt_key_offset;
 539
 540	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 541		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 542			  nla_len(a), sizeof(match->key->tun_opts));
 543		return -EINVAL;
 544	}
 545
 546	if (nla_len(a) % 4 != 0) {
 547		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 548			  nla_len(a));
 549		return -EINVAL;
 550	}
 551
 552	/* We need to record the length of the options passed
 553	 * down, otherwise packets with the same format but
 554	 * additional options will be silently matched.
 555	 */
 556	if (!is_mask) {
 557		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 558				false);
 559	} else {
 560		/* This is somewhat unusual because it looks at
 561		 * both the key and mask while parsing the
 562		 * attributes (and by extension assumes the key
 563		 * is parsed first). Normally, we would verify
 564		 * that each is the correct length and that the
 565		 * attributes line up in the validate function.
 566		 * However, that is difficult because this is
 567		 * variable length and we won't have the
 568		 * information later.
 569		 */
 570		if (match->key->tun_opts_len != nla_len(a)) {
 571			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 572				  match->key->tun_opts_len, nla_len(a));
 573			return -EINVAL;
 574		}
 575
 576		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 577	}
 578
 579	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 580	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 581				  nla_len(a), is_mask);
 582	return 0;
 583}
 584
 585static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 586				     struct sw_flow_match *match, bool is_mask,
 587				     bool log)
 588{
 589	struct nlattr *a;
 590	int rem;
 591	unsigned long opt_key_offset;
 592	struct vxlan_metadata opts;
 593
 594	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 595
 596	memset(&opts, 0, sizeof(opts));
 597	nla_for_each_nested(a, attr, rem) {
 598		int type = nla_type(a);
 599
 600		if (type > OVS_VXLAN_EXT_MAX) {
 601			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 602				  type, OVS_VXLAN_EXT_MAX);
 603			return -EINVAL;
 604		}
 605
 606		if (!check_attr_len(nla_len(a),
 607				    ovs_vxlan_ext_key_lens[type].len)) {
 608			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 609				  type, nla_len(a),
 610				  ovs_vxlan_ext_key_lens[type].len);
 611			return -EINVAL;
 612		}
 613
 614		switch (type) {
 615		case OVS_VXLAN_EXT_GBP:
 616			opts.gbp = nla_get_u32(a);
 617			break;
 618		default:
 619			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 620				  type);
 621			return -EINVAL;
 622		}
 623	}
 624	if (rem) {
 625		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 626			  rem);
 627		return -EINVAL;
 628	}
 629
 630	if (!is_mask)
 631		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 632	else
 633		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 634
 635	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 636	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 637				  is_mask);
 638	return 0;
 639}
 640
 641static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 642				      struct sw_flow_match *match, bool is_mask,
 643				      bool log)
 644{
 645	unsigned long opt_key_offset;
 646
 647	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 648		     sizeof(match->key->tun_opts));
 649
 650	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 651		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 652			  nla_len(a), sizeof(match->key->tun_opts));
 653		return -EINVAL;
 654	}
 655
 656	if (!is_mask)
 657		SW_FLOW_KEY_PUT(match, tun_opts_len,
 658				sizeof(struct erspan_metadata), false);
 659	else
 660		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 661
 662	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 663	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 664				  nla_len(a), is_mask);
 665	return 0;
 666}
 667
 668static int ip_tun_from_nlattr(const struct nlattr *attr,
 669			      struct sw_flow_match *match, bool is_mask,
 670			      bool log)
 671{
 672	bool ttl = false, ipv4 = false, ipv6 = false;
 673	bool info_bridge_mode = false;
 674	__be16 tun_flags = 0;
 675	int opts_type = 0;
 676	struct nlattr *a;
 677	int rem;
 678
 679	nla_for_each_nested(a, attr, rem) {
 680		int type = nla_type(a);
 681		int err;
 682
 683		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 684			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 685				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 686			return -EINVAL;
 687		}
 688
 689		if (!check_attr_len(nla_len(a),
 690				    ovs_tunnel_key_lens[type].len)) {
 691			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 692				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 693			return -EINVAL;
 694		}
 695
 696		switch (type) {
 697		case OVS_TUNNEL_KEY_ATTR_ID:
 698			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 699					nla_get_be64(a), is_mask);
 700			tun_flags |= TUNNEL_KEY;
 701			break;
 702		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 703			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 704					nla_get_in_addr(a), is_mask);
 705			ipv4 = true;
 706			break;
 707		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 708			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 709					nla_get_in_addr(a), is_mask);
 710			ipv4 = true;
 711			break;
 712		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 713			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 714					nla_get_in6_addr(a), is_mask);
 715			ipv6 = true;
 716			break;
 717		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 718			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 719					nla_get_in6_addr(a), is_mask);
 720			ipv6 = true;
 721			break;
 722		case OVS_TUNNEL_KEY_ATTR_TOS:
 723			SW_FLOW_KEY_PUT(match, tun_key.tos,
 724					nla_get_u8(a), is_mask);
 725			break;
 726		case OVS_TUNNEL_KEY_ATTR_TTL:
 727			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 728					nla_get_u8(a), is_mask);
 729			ttl = true;
 730			break;
 731		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 732			tun_flags |= TUNNEL_DONT_FRAGMENT;
 733			break;
 734		case OVS_TUNNEL_KEY_ATTR_CSUM:
 735			tun_flags |= TUNNEL_CSUM;
 736			break;
 737		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 738			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 739					nla_get_be16(a), is_mask);
 740			break;
 741		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 742			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 743					nla_get_be16(a), is_mask);
 744			break;
 745		case OVS_TUNNEL_KEY_ATTR_OAM:
 746			tun_flags |= TUNNEL_OAM;
 747			break;
 748		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 749			if (opts_type) {
 750				OVS_NLERR(log, "Multiple metadata blocks provided");
 751				return -EINVAL;
 752			}
 753
 754			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 755			if (err)
 756				return err;
 757
 758			tun_flags |= TUNNEL_GENEVE_OPT;
 759			opts_type = type;
 760			break;
 761		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 762			if (opts_type) {
 763				OVS_NLERR(log, "Multiple metadata blocks provided");
 764				return -EINVAL;
 765			}
 766
 767			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 768			if (err)
 769				return err;
 770
 771			tun_flags |= TUNNEL_VXLAN_OPT;
 772			opts_type = type;
 773			break;
 774		case OVS_TUNNEL_KEY_ATTR_PAD:
 775			break;
 776		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 777			if (opts_type) {
 778				OVS_NLERR(log, "Multiple metadata blocks provided");
 779				return -EINVAL;
 780			}
 781
 782			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 783							 log);
 784			if (err)
 785				return err;
 786
 787			tun_flags |= TUNNEL_ERSPAN_OPT;
 788			opts_type = type;
 789			break;
 790		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 791			info_bridge_mode = true;
 792			ipv4 = true;
 793			break;
 794		default:
 795			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 796				  type);
 797			return -EINVAL;
 798		}
 799	}
 800
 801	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 802	if (is_mask)
 803		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 804	else
 805		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 806				false);
 807
 808	if (rem > 0) {
 809		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 810			  rem);
 811		return -EINVAL;
 812	}
 813
 814	if (ipv4 && ipv6) {
 815		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 816		return -EINVAL;
 817	}
 818
 819	if (!is_mask) {
 820		if (!ipv4 && !ipv6) {
 821			OVS_NLERR(log, "IP tunnel dst address not specified");
 822			return -EINVAL;
 823		}
 824		if (ipv4) {
 825			if (info_bridge_mode) {
 826				if (match->key->tun_key.u.ipv4.src ||
 827				    match->key->tun_key.u.ipv4.dst ||
 828				    match->key->tun_key.tp_src ||
 829				    match->key->tun_key.tp_dst ||
 830				    match->key->tun_key.ttl ||
 831				    match->key->tun_key.tos ||
 832				    tun_flags & ~TUNNEL_KEY) {
 833					OVS_NLERR(log, "IPv4 tun info is not correct");
 834					return -EINVAL;
 835				}
 836			} else if (!match->key->tun_key.u.ipv4.dst) {
 837				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 838				return -EINVAL;
 839			}
 840		}
 841		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 842			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 843			return -EINVAL;
 844		}
 845
 846		if (!ttl && !info_bridge_mode) {
 847			OVS_NLERR(log, "IP tunnel TTL not specified.");
 848			return -EINVAL;
 849		}
 850	}
 851
 852	return opts_type;
 853}
 854
 855static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 856			       const void *tun_opts, int swkey_tun_opts_len)
 857{
 858	const struct vxlan_metadata *opts = tun_opts;
 859	struct nlattr *nla;
 860
 861	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 862	if (!nla)
 863		return -EMSGSIZE;
 864
 865	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 866		return -EMSGSIZE;
 867
 868	nla_nest_end(skb, nla);
 869	return 0;
 870}
 871
 872static int __ip_tun_to_nlattr(struct sk_buff *skb,
 873			      const struct ip_tunnel_key *output,
 874			      const void *tun_opts, int swkey_tun_opts_len,
 875			      unsigned short tun_proto, u8 mode)
 876{
 877	if (output->tun_flags & TUNNEL_KEY &&
 878	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 879			 OVS_TUNNEL_KEY_ATTR_PAD))
 880		return -EMSGSIZE;
 881
 882	if (mode & IP_TUNNEL_INFO_BRIDGE)
 883		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 884		       ? -EMSGSIZE : 0;
 885
 886	switch (tun_proto) {
 887	case AF_INET:
 888		if (output->u.ipv4.src &&
 889		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 890				    output->u.ipv4.src))
 891			return -EMSGSIZE;
 892		if (output->u.ipv4.dst &&
 893		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 894				    output->u.ipv4.dst))
 895			return -EMSGSIZE;
 896		break;
 897	case AF_INET6:
 898		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 899		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 900				     &output->u.ipv6.src))
 901			return -EMSGSIZE;
 902		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 903		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 904				     &output->u.ipv6.dst))
 905			return -EMSGSIZE;
 906		break;
 907	}
 908	if (output->tos &&
 909	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 910		return -EMSGSIZE;
 911	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 912		return -EMSGSIZE;
 913	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 914	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 915		return -EMSGSIZE;
 916	if ((output->tun_flags & TUNNEL_CSUM) &&
 917	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 918		return -EMSGSIZE;
 919	if (output->tp_src &&
 920	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 921		return -EMSGSIZE;
 922	if (output->tp_dst &&
 923	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 924		return -EMSGSIZE;
 925	if ((output->tun_flags & TUNNEL_OAM) &&
 926	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 927		return -EMSGSIZE;
 928	if (swkey_tun_opts_len) {
 929		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 930		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 931			    swkey_tun_opts_len, tun_opts))
 932			return -EMSGSIZE;
 933		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 934			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 935			return -EMSGSIZE;
 936		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 937			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 938				 swkey_tun_opts_len, tun_opts))
 939			return -EMSGSIZE;
 940	}
 941
 942	return 0;
 943}
 944
 945static int ip_tun_to_nlattr(struct sk_buff *skb,
 946			    const struct ip_tunnel_key *output,
 947			    const void *tun_opts, int swkey_tun_opts_len,
 948			    unsigned short tun_proto, u8 mode)
 949{
 950	struct nlattr *nla;
 951	int err;
 952
 953	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 954	if (!nla)
 955		return -EMSGSIZE;
 956
 957	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 958				 tun_proto, mode);
 959	if (err)
 960		return err;
 961
 962	nla_nest_end(skb, nla);
 963	return 0;
 964}
 965
 966int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 967			    struct ip_tunnel_info *tun_info)
 968{
 969	return __ip_tun_to_nlattr(skb, &tun_info->key,
 970				  ip_tunnel_info_opts(tun_info),
 971				  tun_info->options_len,
 972				  ip_tunnel_info_af(tun_info), tun_info->mode);
 973}
 974
 975static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 976				    const struct nlattr *a[],
 977				    bool is_mask, bool inner)
 978{
 979	__be16 tci = 0;
 980	__be16 tpid = 0;
 981
 982	if (a[OVS_KEY_ATTR_VLAN])
 983		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 984
 985	if (a[OVS_KEY_ATTR_ETHERTYPE])
 986		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 987
 988	if (likely(!inner)) {
 989		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 990		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 991	} else {
 992		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 993		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 994	}
 995	return 0;
 996}
 997
 998static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 999				      u64 key_attrs, bool inner,
1000				      const struct nlattr **a, bool log)
1001{
1002	__be16 tci = 0;
1003
1004	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1005	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1006	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1007		/* Not a VLAN. */
1008		return 0;
1009	}
1010
1011	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1012	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1013		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1014		return -EINVAL;
1015	}
1016
1017	if (a[OVS_KEY_ATTR_VLAN])
1018		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1019
1020	if (!(tci & htons(VLAN_CFI_MASK))) {
1021		if (tci) {
1022			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1023				  (inner) ? "C-VLAN" : "VLAN");
1024			return -EINVAL;
1025		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1026			/* Corner case for truncated VLAN header. */
1027			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1028				  (inner) ? "C-VLAN" : "VLAN");
1029			return -EINVAL;
1030		}
1031	}
1032
1033	return 1;
1034}
1035
1036static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1037					   u64 key_attrs, bool inner,
1038					   const struct nlattr **a, bool log)
1039{
1040	__be16 tci = 0;
1041	__be16 tpid = 0;
1042	bool encap_valid = !!(match->key->eth.vlan.tci &
1043			      htons(VLAN_CFI_MASK));
1044	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1045				htons(VLAN_CFI_MASK));
1046
1047	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1048		/* Not a VLAN. */
1049		return 0;
1050	}
1051
1052	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1053		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1054			  (inner) ? "C-VLAN" : "VLAN");
1055		return -EINVAL;
1056	}
1057
1058	if (a[OVS_KEY_ATTR_VLAN])
1059		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1060
1061	if (a[OVS_KEY_ATTR_ETHERTYPE])
1062		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1063
1064	if (tpid != htons(0xffff)) {
1065		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1066			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1067		return -EINVAL;
1068	}
1069	if (!(tci & htons(VLAN_CFI_MASK))) {
1070		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1071			  (inner) ? "C-VLAN" : "VLAN");
1072		return -EINVAL;
1073	}
1074
1075	return 1;
1076}
1077
1078static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1079				     u64 *key_attrs, bool inner,
1080				     const struct nlattr **a, bool is_mask,
1081				     bool log)
1082{
1083	int err;
1084	const struct nlattr *encap;
1085
1086	if (!is_mask)
1087		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1088						 a, log);
1089	else
1090		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1091						      a, log);
1092	if (err <= 0)
1093		return err;
1094
1095	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1096	if (err)
1097		return err;
1098
1099	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1100	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1101	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1102
1103	encap = a[OVS_KEY_ATTR_ENCAP];
1104
1105	if (!is_mask)
1106		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1107	else
1108		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1109
1110	return err;
1111}
1112
1113static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1114				   u64 *key_attrs, const struct nlattr **a,
1115				   bool is_mask, bool log)
1116{
1117	int err;
1118	bool encap_valid = false;
1119
1120	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1121					is_mask, log);
1122	if (err)
1123		return err;
1124
1125	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1126	if (encap_valid) {
1127		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1128						is_mask, log);
1129		if (err)
1130			return err;
1131	}
1132
1133	return 0;
1134}
1135
1136static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1137				       u64 *attrs, const struct nlattr **a,
1138				       bool is_mask, bool log)
1139{
1140	__be16 eth_type;
1141
1142	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1143	if (is_mask) {
1144		/* Always exact match EtherType. */
1145		eth_type = htons(0xffff);
1146	} else if (!eth_proto_is_802_3(eth_type)) {
1147		OVS_NLERR(log, "EtherType %x is less than min %x",
1148				ntohs(eth_type), ETH_P_802_3_MIN);
1149		return -EINVAL;
1150	}
1151
1152	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1153	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1154	return 0;
1155}
1156
1157static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1158				 u64 *attrs, const struct nlattr **a,
1159				 bool is_mask, bool log)
1160{
1161	u8 mac_proto = MAC_PROTO_ETHERNET;
1162
1163	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1164		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1165
1166		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1167		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1168	}
1169
1170	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1171		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1172
1173		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1174		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1175	}
1176
1177	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1178		SW_FLOW_KEY_PUT(match, phy.priority,
1179			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1180		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1181	}
1182
1183	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1184		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1185
1186		if (is_mask) {
1187			in_port = 0xffffffff; /* Always exact match in_port. */
1188		} else if (in_port >= DP_MAX_PORTS) {
1189			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1190				  in_port, DP_MAX_PORTS);
1191			return -EINVAL;
1192		}
1193
1194		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1195		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1196	} else if (!is_mask) {
1197		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1198	}
1199
1200	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1201		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1202
1203		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1204		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1205	}
1206	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1207		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1208				       is_mask, log) < 0)
1209			return -EINVAL;
1210		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1211	}
1212
1213	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1214	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1215		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1216
1217		if (ct_state & ~CT_SUPPORTED_MASK) {
1218			OVS_NLERR(log, "ct_state flags %08x unsupported",
1219				  ct_state);
1220			return -EINVAL;
1221		}
1222
1223		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1224		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1225	}
1226	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1227	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1228		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1229
1230		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1231		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1232	}
1233	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1234	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1235		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1236
1237		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1238		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1239	}
1240	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1241	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1242		const struct ovs_key_ct_labels *cl;
1243
1244		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1245		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1246				   sizeof(*cl), is_mask);
1247		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1248	}
1249	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1250		const struct ovs_key_ct_tuple_ipv4 *ct;
1251
1252		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1253
1254		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1255		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1256		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1257		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1258		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1259		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1260	}
1261	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1262		const struct ovs_key_ct_tuple_ipv6 *ct;
1263
1264		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1265
1266		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1267				   sizeof(match->key->ipv6.ct_orig.src),
1268				   is_mask);
1269		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1270				   sizeof(match->key->ipv6.ct_orig.dst),
1271				   is_mask);
1272		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1273		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1274		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1275		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1276	}
1277
1278	/* For layer 3 packets the Ethernet type is provided
1279	 * and treated as metadata but no MAC addresses are provided.
1280	 */
1281	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1282	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1283		mac_proto = MAC_PROTO_NONE;
1284
1285	/* Always exact match mac_proto */
1286	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1287
1288	if (mac_proto == MAC_PROTO_NONE)
1289		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1290						   log);
1291
1292	return 0;
1293}
1294
1295int nsh_hdr_from_nlattr(const struct nlattr *attr,
1296			struct nshhdr *nh, size_t size)
1297{
1298	struct nlattr *a;
1299	int rem;
1300	u8 flags = 0;
1301	u8 ttl = 0;
1302	int mdlen = 0;
1303
1304	/* validate_nsh has check this, so we needn't do duplicate check here
1305	 */
1306	if (size < NSH_BASE_HDR_LEN)
1307		return -ENOBUFS;
1308
1309	nla_for_each_nested(a, attr, rem) {
1310		int type = nla_type(a);
1311
1312		switch (type) {
1313		case OVS_NSH_KEY_ATTR_BASE: {
1314			const struct ovs_nsh_key_base *base = nla_data(a);
1315
1316			flags = base->flags;
1317			ttl = base->ttl;
1318			nh->np = base->np;
1319			nh->mdtype = base->mdtype;
1320			nh->path_hdr = base->path_hdr;
1321			break;
1322		}
1323		case OVS_NSH_KEY_ATTR_MD1:
1324			mdlen = nla_len(a);
1325			if (mdlen > size - NSH_BASE_HDR_LEN)
1326				return -ENOBUFS;
1327			memcpy(&nh->md1, nla_data(a), mdlen);
1328			break;
1329
1330		case OVS_NSH_KEY_ATTR_MD2:
1331			mdlen = nla_len(a);
1332			if (mdlen > size - NSH_BASE_HDR_LEN)
1333				return -ENOBUFS;
1334			memcpy(&nh->md2, nla_data(a), mdlen);
1335			break;
1336
1337		default:
1338			return -EINVAL;
1339		}
1340	}
1341
1342	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1343	nh->ver_flags_ttl_len = 0;
1344	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1345
1346	return 0;
1347}
1348
1349int nsh_key_from_nlattr(const struct nlattr *attr,
1350			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1351{
1352	struct nlattr *a;
1353	int rem;
1354
1355	/* validate_nsh has check this, so we needn't do duplicate check here
1356	 */
1357	nla_for_each_nested(a, attr, rem) {
1358		int type = nla_type(a);
1359
1360		switch (type) {
1361		case OVS_NSH_KEY_ATTR_BASE: {
1362			const struct ovs_nsh_key_base *base = nla_data(a);
1363			const struct ovs_nsh_key_base *base_mask = base + 1;
1364
1365			nsh->base = *base;
1366			nsh_mask->base = *base_mask;
1367			break;
1368		}
1369		case OVS_NSH_KEY_ATTR_MD1: {
1370			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1371			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1372
1373			memcpy(nsh->context, md1->context, sizeof(*md1));
1374			memcpy(nsh_mask->context, md1_mask->context,
1375			       sizeof(*md1_mask));
1376			break;
1377		}
1378		case OVS_NSH_KEY_ATTR_MD2:
1379			/* Not supported yet */
1380			return -ENOTSUPP;
1381		default:
1382			return -EINVAL;
1383		}
1384	}
1385
1386	return 0;
1387}
1388
1389static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1390				   struct sw_flow_match *match, bool is_mask,
1391				   bool is_push_nsh, bool log)
1392{
1393	struct nlattr *a;
1394	int rem;
1395	bool has_base = false;
1396	bool has_md1 = false;
1397	bool has_md2 = false;
1398	u8 mdtype = 0;
1399	int mdlen = 0;
1400
1401	if (WARN_ON(is_push_nsh && is_mask))
1402		return -EINVAL;
1403
1404	nla_for_each_nested(a, attr, rem) {
1405		int type = nla_type(a);
1406		int i;
1407
1408		if (type > OVS_NSH_KEY_ATTR_MAX) {
1409			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1410				  type, OVS_NSH_KEY_ATTR_MAX);
1411			return -EINVAL;
1412		}
1413
1414		if (!check_attr_len(nla_len(a),
1415				    ovs_nsh_key_attr_lens[type].len)) {
1416			OVS_NLERR(
1417			    log,
1418			    "nsh attr %d has unexpected len %d expected %d",
1419			    type,
1420			    nla_len(a),
1421			    ovs_nsh_key_attr_lens[type].len
1422			);
1423			return -EINVAL;
1424		}
1425
1426		switch (type) {
1427		case OVS_NSH_KEY_ATTR_BASE: {
1428			const struct ovs_nsh_key_base *base = nla_data(a);
1429
1430			has_base = true;
1431			mdtype = base->mdtype;
1432			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1433					base->flags, is_mask);
1434			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1435					base->ttl, is_mask);
1436			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1437					base->mdtype, is_mask);
1438			SW_FLOW_KEY_PUT(match, nsh.base.np,
1439					base->np, is_mask);
1440			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1441					base->path_hdr, is_mask);
1442			break;
1443		}
1444		case OVS_NSH_KEY_ATTR_MD1: {
1445			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1446
1447			has_md1 = true;
1448			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1449				SW_FLOW_KEY_PUT(match, nsh.context[i],
1450						md1->context[i], is_mask);
1451			break;
1452		}
1453		case OVS_NSH_KEY_ATTR_MD2:
1454			if (!is_push_nsh) /* Not supported MD type 2 yet */
1455				return -ENOTSUPP;
1456
1457			has_md2 = true;
1458			mdlen = nla_len(a);
1459			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1460				OVS_NLERR(
1461				    log,
1462				    "Invalid MD length %d for MD type %d",
1463				    mdlen,
1464				    mdtype
1465				);
1466				return -EINVAL;
1467			}
1468			break;
1469		default:
1470			OVS_NLERR(log, "Unknown nsh attribute %d",
1471				  type);
1472			return -EINVAL;
1473		}
1474	}
1475
1476	if (rem > 0) {
1477		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1478		return -EINVAL;
1479	}
1480
1481	if (has_md1 && has_md2) {
1482		OVS_NLERR(
1483		    1,
1484		    "invalid nsh attribute: md1 and md2 are exclusive."
1485		);
1486		return -EINVAL;
1487	}
1488
1489	if (!is_mask) {
1490		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1491		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1492			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1493				  mdtype);
1494			return -EINVAL;
1495		}
1496
1497		if (is_push_nsh &&
1498		    (!has_base || (!has_md1 && !has_md2))) {
1499			OVS_NLERR(
1500			    1,
1501			    "push_nsh: missing base or metadata attributes"
1502			);
1503			return -EINVAL;
1504		}
1505	}
1506
1507	return 0;
1508}
1509
1510static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1511				u64 attrs, const struct nlattr **a,
1512				bool is_mask, bool log)
1513{
1514	int err;
1515
1516	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1517	if (err)
1518		return err;
1519
1520	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1521		const struct ovs_key_ethernet *eth_key;
1522
1523		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1524		SW_FLOW_KEY_MEMCPY(match, eth.src,
1525				eth_key->eth_src, ETH_ALEN, is_mask);
1526		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1527				eth_key->eth_dst, ETH_ALEN, is_mask);
1528		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1529
1530		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1531			/* VLAN attribute is always parsed before getting here since it
1532			 * may occur multiple times.
1533			 */
1534			OVS_NLERR(log, "VLAN attribute unexpected.");
1535			return -EINVAL;
1536		}
1537
1538		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1539			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1540							  log);
1541			if (err)
1542				return err;
1543		} else if (!is_mask) {
1544			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1545		}
1546	} else if (!match->key->eth.type) {
1547		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1548		return -EINVAL;
1549	}
1550
1551	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1552		const struct ovs_key_ipv4 *ipv4_key;
1553
1554		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1555		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1556			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1557				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1558			return -EINVAL;
1559		}
1560		SW_FLOW_KEY_PUT(match, ip.proto,
1561				ipv4_key->ipv4_proto, is_mask);
1562		SW_FLOW_KEY_PUT(match, ip.tos,
1563				ipv4_key->ipv4_tos, is_mask);
1564		SW_FLOW_KEY_PUT(match, ip.ttl,
1565				ipv4_key->ipv4_ttl, is_mask);
1566		SW_FLOW_KEY_PUT(match, ip.frag,
1567				ipv4_key->ipv4_frag, is_mask);
1568		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1569				ipv4_key->ipv4_src, is_mask);
1570		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1571				ipv4_key->ipv4_dst, is_mask);
1572		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1573	}
1574
1575	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1576		const struct ovs_key_ipv6 *ipv6_key;
1577
1578		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1579		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1580			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1581				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1582			return -EINVAL;
1583		}
1584
1585		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1586			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1587				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1588			return -EINVAL;
1589		}
1590
1591		SW_FLOW_KEY_PUT(match, ipv6.label,
1592				ipv6_key->ipv6_label, is_mask);
1593		SW_FLOW_KEY_PUT(match, ip.proto,
1594				ipv6_key->ipv6_proto, is_mask);
1595		SW_FLOW_KEY_PUT(match, ip.tos,
1596				ipv6_key->ipv6_tclass, is_mask);
1597		SW_FLOW_KEY_PUT(match, ip.ttl,
1598				ipv6_key->ipv6_hlimit, is_mask);
1599		SW_FLOW_KEY_PUT(match, ip.frag,
1600				ipv6_key->ipv6_frag, is_mask);
1601		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1602				ipv6_key->ipv6_src,
1603				sizeof(match->key->ipv6.addr.src),
1604				is_mask);
1605		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1606				ipv6_key->ipv6_dst,
1607				sizeof(match->key->ipv6.addr.dst),
1608				is_mask);
1609
1610		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1611	}
1612
1613	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1614		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1615
1616		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1617
1618		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1619				ipv6_exthdrs_key->hdrs, is_mask);
1620
1621		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1622	}
1623
1624	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1625		const struct ovs_key_arp *arp_key;
1626
1627		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1628		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1629			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1630				  arp_key->arp_op);
1631			return -EINVAL;
1632		}
1633
1634		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1635				arp_key->arp_sip, is_mask);
1636		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1637			arp_key->arp_tip, is_mask);
1638		SW_FLOW_KEY_PUT(match, ip.proto,
1639				ntohs(arp_key->arp_op), is_mask);
1640		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1641				arp_key->arp_sha, ETH_ALEN, is_mask);
1642		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1643				arp_key->arp_tha, ETH_ALEN, is_mask);
1644
1645		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1646	}
1647
1648	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1649		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1650					    is_mask, false, log) < 0)
1651			return -EINVAL;
1652		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1653	}
1654
1655	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1656		const struct ovs_key_mpls *mpls_key;
1657		u32 hdr_len;
1658		u32 label_count, label_count_mask, i;
1659
1660		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1661		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1662		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1663
1664		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1665		    hdr_len % sizeof(struct ovs_key_mpls))
1666			return -EINVAL;
1667
1668		label_count_mask =  GENMASK(label_count - 1, 0);
1669
1670		for (i = 0 ; i < label_count; i++)
1671			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1672					mpls_key[i].mpls_lse, is_mask);
1673
1674		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1675				label_count_mask, is_mask);
1676
1677		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1678	 }
1679
1680	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1681		const struct ovs_key_tcp *tcp_key;
1682
1683		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1684		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1685		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1686		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1687	}
1688
1689	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1690		SW_FLOW_KEY_PUT(match, tp.flags,
1691				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1692				is_mask);
1693		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1694	}
1695
1696	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1697		const struct ovs_key_udp *udp_key;
1698
1699		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1700		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1701		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1702		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1703	}
1704
1705	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1706		const struct ovs_key_sctp *sctp_key;
1707
1708		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1709		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1710		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1711		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1712	}
1713
1714	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1715		const struct ovs_key_icmp *icmp_key;
1716
1717		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1718		SW_FLOW_KEY_PUT(match, tp.src,
1719				htons(icmp_key->icmp_type), is_mask);
1720		SW_FLOW_KEY_PUT(match, tp.dst,
1721				htons(icmp_key->icmp_code), is_mask);
1722		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1723	}
1724
1725	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1726		const struct ovs_key_icmpv6 *icmpv6_key;
1727
1728		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1729		SW_FLOW_KEY_PUT(match, tp.src,
1730				htons(icmpv6_key->icmpv6_type), is_mask);
1731		SW_FLOW_KEY_PUT(match, tp.dst,
1732				htons(icmpv6_key->icmpv6_code), is_mask);
1733		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1734	}
1735
1736	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1737		const struct ovs_key_nd *nd_key;
1738
1739		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1740		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1741			nd_key->nd_target,
1742			sizeof(match->key->ipv6.nd.target),
1743			is_mask);
1744		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1745			nd_key->nd_sll, ETH_ALEN, is_mask);
1746		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1747				nd_key->nd_tll, ETH_ALEN, is_mask);
1748		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1749	}
1750
1751	if (attrs != 0) {
1752		OVS_NLERR(log, "Unknown key attributes %llx",
1753			  (unsigned long long)attrs);
1754		return -EINVAL;
1755	}
1756
1757	return 0;
1758}
1759
1760static void nlattr_set(struct nlattr *attr, u8 val,
1761		       const struct ovs_len_tbl *tbl)
1762{
1763	struct nlattr *nla;
1764	int rem;
1765
1766	/* The nlattr stream should already have been validated */
1767	nla_for_each_nested(nla, attr, rem) {
1768		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1769			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1770		else
1771			memset(nla_data(nla), val, nla_len(nla));
1772
1773		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1774			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1775	}
1776}
1777
1778static void mask_set_nlattr(struct nlattr *attr, u8 val)
1779{
1780	nlattr_set(attr, val, ovs_key_lens);
1781}
1782
1783/**
1784 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1785 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1786 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1787 * does not include any don't care bit.
1788 * @net: Used to determine per-namespace field support.
1789 * @match: receives the extracted flow match information.
1790 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1791 * sequence. The fields should of the packet that triggered the creation
1792 * of this flow.
1793 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1794 * Netlink attribute specifies the mask field of the wildcarded flow.
1795 * @log: Boolean to allow kernel error logging.  Normally true, but when
1796 * probing for feature compatibility this should be passed in as false to
1797 * suppress unnecessary error logging.
1798 */
1799int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1800		      const struct nlattr *nla_key,
1801		      const struct nlattr *nla_mask,
1802		      bool log)
1803{
1804	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1805	struct nlattr *newmask = NULL;
1806	u64 key_attrs = 0;
1807	u64 mask_attrs = 0;
1808	int err;
1809
1810	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1811	if (err)
1812		return err;
1813
1814	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1815	if (err)
1816		return err;
1817
1818	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1819	if (err)
1820		return err;
1821
1822	if (match->mask) {
1823		if (!nla_mask) {
1824			/* Create an exact match mask. We need to set to 0xff
1825			 * all the 'match->mask' fields that have been touched
1826			 * in 'match->key'. We cannot simply memset
1827			 * 'match->mask', because padding bytes and fields not
1828			 * specified in 'match->key' should be left to 0.
1829			 * Instead, we use a stream of netlink attributes,
1830			 * copied from 'key' and set to 0xff.
1831			 * ovs_key_from_nlattrs() will take care of filling
1832			 * 'match->mask' appropriately.
1833			 */
1834			newmask = kmemdup(nla_key,
1835					  nla_total_size(nla_len(nla_key)),
1836					  GFP_KERNEL);
1837			if (!newmask)
1838				return -ENOMEM;
1839
1840			mask_set_nlattr(newmask, 0xff);
1841
1842			/* The userspace does not send tunnel attributes that
1843			 * are 0, but we should not wildcard them nonetheless.
1844			 */
1845			if (match->key->tun_proto)
1846				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1847							 0xff, true);
1848
1849			nla_mask = newmask;
1850		}
1851
1852		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1853		if (err)
1854			goto free_newmask;
1855
1856		/* Always match on tci. */
1857		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1858		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1859
1860		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1861		if (err)
1862			goto free_newmask;
1863
1864		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1865					   log);
1866		if (err)
1867			goto free_newmask;
1868	}
1869
1870	if (!match_validate(match, key_attrs, mask_attrs, log))
1871		err = -EINVAL;
1872
1873free_newmask:
1874	kfree(newmask);
1875	return err;
1876}
1877
1878static size_t get_ufid_len(const struct nlattr *attr, bool log)
1879{
1880	size_t len;
1881
1882	if (!attr)
1883		return 0;
1884
1885	len = nla_len(attr);
1886	if (len < 1 || len > MAX_UFID_LENGTH) {
1887		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1888			  nla_len(attr), MAX_UFID_LENGTH);
1889		return 0;
1890	}
1891
1892	return len;
1893}
1894
1895/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1896 * or false otherwise.
1897 */
1898bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1899		      bool log)
1900{
1901	sfid->ufid_len = get_ufid_len(attr, log);
1902	if (sfid->ufid_len)
1903		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1904
1905	return sfid->ufid_len;
1906}
1907
1908int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1909			   const struct sw_flow_key *key, bool log)
1910{
1911	struct sw_flow_key *new_key;
1912
1913	if (ovs_nla_get_ufid(sfid, ufid, log))
1914		return 0;
1915
1916	/* If UFID was not provided, use unmasked key. */
1917	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1918	if (!new_key)
1919		return -ENOMEM;
1920	memcpy(new_key, key, sizeof(*key));
1921	sfid->unmasked_key = new_key;
1922
1923	return 0;
1924}
1925
1926u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1927{
1928	return attr ? nla_get_u32(attr) : 0;
1929}
1930
1931/**
1932 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1933 * @net: Network namespace.
1934 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1935 * metadata.
1936 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1937 * attributes.
1938 * @attrs: Bit mask for the netlink attributes included in @a.
1939 * @log: Boolean to allow kernel error logging.  Normally true, but when
1940 * probing for feature compatibility this should be passed in as false to
1941 * suppress unnecessary error logging.
1942 *
1943 * This parses a series of Netlink attributes that form a flow key, which must
1944 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1945 * get the metadata, that is, the parts of the flow key that cannot be
1946 * extracted from the packet itself.
1947 *
1948 * This must be called before the packet key fields are filled in 'key'.
1949 */
1950
1951int ovs_nla_get_flow_metadata(struct net *net,
1952			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1953			      u64 attrs, struct sw_flow_key *key, bool log)
1954{
1955	struct sw_flow_match match;
1956
1957	memset(&match, 0, sizeof(match));
1958	match.key = key;
1959
1960	key->ct_state = 0;
1961	key->ct_zone = 0;
1962	key->ct_orig_proto = 0;
1963	memset(&key->ct, 0, sizeof(key->ct));
1964	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1965	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1966
1967	key->phy.in_port = DP_MAX_PORTS;
1968
1969	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1970}
1971
1972static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1973			    bool is_mask)
1974{
1975	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1976
1977	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1978	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1979		return -EMSGSIZE;
1980	return 0;
1981}
1982
1983static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1984			     struct sk_buff *skb)
1985{
1986	struct nlattr *start;
1987
1988	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1989	if (!start)
1990		return -EMSGSIZE;
1991
1992	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1993		goto nla_put_failure;
1994
1995	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1996		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1997			    sizeof(nsh->context), nsh->context))
1998			goto nla_put_failure;
1999	}
2000
2001	/* Don't support MD type 2 yet */
2002
2003	nla_nest_end(skb, start);
2004
2005	return 0;
2006
2007nla_put_failure:
2008	return -EMSGSIZE;
2009}
2010
2011static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2012			     const struct sw_flow_key *output, bool is_mask,
2013			     struct sk_buff *skb)
2014{
2015	struct ovs_key_ethernet *eth_key;
2016	struct nlattr *nla;
2017	struct nlattr *encap = NULL;
2018	struct nlattr *in_encap = NULL;
2019
2020	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2021		goto nla_put_failure;
2022
2023	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2024		goto nla_put_failure;
2025
2026	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2027		goto nla_put_failure;
2028
2029	if ((swkey->tun_proto || is_mask)) {
2030		const void *opts = NULL;
2031
2032		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2033			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2034
2035		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2036				     swkey->tun_opts_len, swkey->tun_proto, 0))
2037			goto nla_put_failure;
2038	}
2039
2040	if (swkey->phy.in_port == DP_MAX_PORTS) {
2041		if (is_mask && (output->phy.in_port == 0xffff))
2042			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2043				goto nla_put_failure;
2044	} else {
2045		u16 upper_u16;
2046		upper_u16 = !is_mask ? 0 : 0xffff;
2047
2048		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2049				(upper_u16 << 16) | output->phy.in_port))
2050			goto nla_put_failure;
2051	}
2052
2053	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2054		goto nla_put_failure;
2055
2056	if (ovs_ct_put_key(swkey, output, skb))
2057		goto nla_put_failure;
2058
2059	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2060		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2061		if (!nla)
2062			goto nla_put_failure;
2063
2064		eth_key = nla_data(nla);
2065		ether_addr_copy(eth_key->eth_src, output->eth.src);
2066		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2067
2068		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2069			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2070				goto nla_put_failure;
2071			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2072			if (!swkey->eth.vlan.tci)
2073				goto unencap;
2074
2075			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2076				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2077					goto nla_put_failure;
2078				in_encap = nla_nest_start_noflag(skb,
2079								 OVS_KEY_ATTR_ENCAP);
2080				if (!swkey->eth.cvlan.tci)
2081					goto unencap;
2082			}
2083		}
2084
2085		if (swkey->eth.type == htons(ETH_P_802_2)) {
2086			/*
2087			* Ethertype 802.2 is represented in the netlink with omitted
2088			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2089			* 0xffff in the mask attribute.  Ethertype can also
2090			* be wildcarded.
2091			*/
2092			if (is_mask && output->eth.type)
2093				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2094							output->eth.type))
2095					goto nla_put_failure;
2096			goto unencap;
2097		}
2098	}
2099
2100	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2101		goto nla_put_failure;
2102
2103	if (eth_type_vlan(swkey->eth.type)) {
2104		/* There are 3 VLAN tags, we don't know anything about the rest
2105		 * of the packet, so truncate here.
2106		 */
2107		WARN_ON_ONCE(!(encap && in_encap));
2108		goto unencap;
2109	}
2110
2111	if (swkey->eth.type == htons(ETH_P_IP)) {
2112		struct ovs_key_ipv4 *ipv4_key;
2113
2114		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2115		if (!nla)
2116			goto nla_put_failure;
2117		ipv4_key = nla_data(nla);
2118		ipv4_key->ipv4_src = output->ipv4.addr.src;
2119		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2120		ipv4_key->ipv4_proto = output->ip.proto;
2121		ipv4_key->ipv4_tos = output->ip.tos;
2122		ipv4_key->ipv4_ttl = output->ip.ttl;
2123		ipv4_key->ipv4_frag = output->ip.frag;
2124	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2125		struct ovs_key_ipv6 *ipv6_key;
2126		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2127
2128		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2129		if (!nla)
2130			goto nla_put_failure;
2131		ipv6_key = nla_data(nla);
2132		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2133				sizeof(ipv6_key->ipv6_src));
2134		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2135				sizeof(ipv6_key->ipv6_dst));
2136		ipv6_key->ipv6_label = output->ipv6.label;
2137		ipv6_key->ipv6_proto = output->ip.proto;
2138		ipv6_key->ipv6_tclass = output->ip.tos;
2139		ipv6_key->ipv6_hlimit = output->ip.ttl;
2140		ipv6_key->ipv6_frag = output->ip.frag;
2141
2142		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2143				  sizeof(*ipv6_exthdrs_key));
2144		if (!nla)
2145			goto nla_put_failure;
2146		ipv6_exthdrs_key = nla_data(nla);
2147		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2148	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2149		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2150			goto nla_put_failure;
2151	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2152		   swkey->eth.type == htons(ETH_P_RARP)) {
2153		struct ovs_key_arp *arp_key;
2154
2155		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2156		if (!nla)
2157			goto nla_put_failure;
2158		arp_key = nla_data(nla);
2159		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2160		arp_key->arp_sip = output->ipv4.addr.src;
2161		arp_key->arp_tip = output->ipv4.addr.dst;
2162		arp_key->arp_op = htons(output->ip.proto);
2163		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2164		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2165	} else if (eth_p_mpls(swkey->eth.type)) {
2166		u8 i, num_labels;
2167		struct ovs_key_mpls *mpls_key;
2168
2169		num_labels = hweight_long(output->mpls.num_labels_mask);
2170		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2171				  num_labels * sizeof(*mpls_key));
2172		if (!nla)
2173			goto nla_put_failure;
2174
2175		mpls_key = nla_data(nla);
2176		for (i = 0; i < num_labels; i++)
2177			mpls_key[i].mpls_lse = output->mpls.lse[i];
2178	}
2179
2180	if ((swkey->eth.type == htons(ETH_P_IP) ||
2181	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2182	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2183
2184		if (swkey->ip.proto == IPPROTO_TCP) {
2185			struct ovs_key_tcp *tcp_key;
2186
2187			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2188			if (!nla)
2189				goto nla_put_failure;
2190			tcp_key = nla_data(nla);
2191			tcp_key->tcp_src = output->tp.src;
2192			tcp_key->tcp_dst = output->tp.dst;
2193			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2194					 output->tp.flags))
2195				goto nla_put_failure;
2196		} else if (swkey->ip.proto == IPPROTO_UDP) {
2197			struct ovs_key_udp *udp_key;
2198
2199			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2200			if (!nla)
2201				goto nla_put_failure;
2202			udp_key = nla_data(nla);
2203			udp_key->udp_src = output->tp.src;
2204			udp_key->udp_dst = output->tp.dst;
2205		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2206			struct ovs_key_sctp *sctp_key;
2207
2208			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2209			if (!nla)
2210				goto nla_put_failure;
2211			sctp_key = nla_data(nla);
2212			sctp_key->sctp_src = output->tp.src;
2213			sctp_key->sctp_dst = output->tp.dst;
2214		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2215			   swkey->ip.proto == IPPROTO_ICMP) {
2216			struct ovs_key_icmp *icmp_key;
2217
2218			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2219			if (!nla)
2220				goto nla_put_failure;
2221			icmp_key = nla_data(nla);
2222			icmp_key->icmp_type = ntohs(output->tp.src);
2223			icmp_key->icmp_code = ntohs(output->tp.dst);
2224		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2225			   swkey->ip.proto == IPPROTO_ICMPV6) {
2226			struct ovs_key_icmpv6 *icmpv6_key;
2227
2228			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2229						sizeof(*icmpv6_key));
2230			if (!nla)
2231				goto nla_put_failure;
2232			icmpv6_key = nla_data(nla);
2233			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2234			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2235
2236			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2237			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2238				struct ovs_key_nd *nd_key;
2239
2240				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2241				if (!nla)
2242					goto nla_put_failure;
2243				nd_key = nla_data(nla);
2244				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2245							sizeof(nd_key->nd_target));
2246				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2247				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2248			}
2249		}
2250	}
2251
2252unencap:
2253	if (in_encap)
2254		nla_nest_end(skb, in_encap);
2255	if (encap)
2256		nla_nest_end(skb, encap);
2257
2258	return 0;
2259
2260nla_put_failure:
2261	return -EMSGSIZE;
2262}
2263
2264int ovs_nla_put_key(const struct sw_flow_key *swkey,
2265		    const struct sw_flow_key *output, int attr, bool is_mask,
2266		    struct sk_buff *skb)
2267{
2268	int err;
2269	struct nlattr *nla;
2270
2271	nla = nla_nest_start_noflag(skb, attr);
2272	if (!nla)
2273		return -EMSGSIZE;
2274	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2275	if (err)
2276		return err;
2277	nla_nest_end(skb, nla);
2278
2279	return 0;
2280}
2281
2282/* Called with ovs_mutex or RCU read lock. */
2283int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2284{
2285	if (ovs_identifier_is_ufid(&flow->id))
2286		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2287			       flow->id.ufid);
2288
2289	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2290			       OVS_FLOW_ATTR_KEY, false, skb);
2291}
2292
2293/* Called with ovs_mutex or RCU read lock. */
2294int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2295{
2296	return ovs_nla_put_key(&flow->key, &flow->key,
2297				OVS_FLOW_ATTR_KEY, false, skb);
2298}
2299
2300/* Called with ovs_mutex or RCU read lock. */
2301int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2302{
2303	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2304				OVS_FLOW_ATTR_MASK, true, skb);
2305}
2306
2307#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2308
2309static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2310{
2311	struct sw_flow_actions *sfa;
2312
2313	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2314
2315	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2316	if (!sfa)
2317		return ERR_PTR(-ENOMEM);
2318
2319	sfa->actions_len = 0;
2320	return sfa;
2321}
2322
2323static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2324
2325static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2326{
2327	const struct nlattr *a;
2328	int rem;
2329
2330	nla_for_each_nested(a, action, rem) {
2331		switch (nla_type(a)) {
2332		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2333		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2334			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2335			break;
2336		}
2337	}
2338}
2339
2340static void ovs_nla_free_clone_action(const struct nlattr *action)
2341{
2342	const struct nlattr *a = nla_data(action);
2343	int rem = nla_len(action);
2344
2345	switch (nla_type(a)) {
2346	case OVS_CLONE_ATTR_EXEC:
2347		/* The real list of actions follows this attribute. */
2348		a = nla_next(a, &rem);
2349		ovs_nla_free_nested_actions(a, rem);
2350		break;
2351	}
2352}
2353
2354static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2355{
2356	const struct nlattr *a = nla_data(action);
2357
2358	switch (nla_type(a)) {
2359	case OVS_DEC_TTL_ATTR_ACTION:
2360		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2361		break;
2362	}
2363}
2364
2365static void ovs_nla_free_sample_action(const struct nlattr *action)
2366{
2367	const struct nlattr *a = nla_data(action);
2368	int rem = nla_len(action);
2369
2370	switch (nla_type(a)) {
2371	case OVS_SAMPLE_ATTR_ARG:
2372		/* The real list of actions follows this attribute. */
2373		a = nla_next(a, &rem);
2374		ovs_nla_free_nested_actions(a, rem);
2375		break;
2376	}
2377}
2378
2379static void ovs_nla_free_set_action(const struct nlattr *a)
2380{
2381	const struct nlattr *ovs_key = nla_data(a);
2382	struct ovs_tunnel_info *ovs_tun;
2383
2384	switch (nla_type(ovs_key)) {
2385	case OVS_KEY_ATTR_TUNNEL_INFO:
2386		ovs_tun = nla_data(ovs_key);
2387		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2388		break;
2389	}
2390}
2391
2392static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2393{
2394	const struct nlattr *a;
2395	int rem;
2396
2397	/* Whenever new actions are added, the need to update this
2398	 * function should be considered.
2399	 */
2400	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 24);
2401
2402	if (!actions)
2403		return;
2404
2405	nla_for_each_attr(a, actions, len, rem) {
2406		switch (nla_type(a)) {
2407		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2408			ovs_nla_free_check_pkt_len_action(a);
2409			break;
2410
2411		case OVS_ACTION_ATTR_CLONE:
2412			ovs_nla_free_clone_action(a);
2413			break;
2414
2415		case OVS_ACTION_ATTR_CT:
2416			ovs_ct_free_action(a);
2417			break;
2418
2419		case OVS_ACTION_ATTR_DEC_TTL:
2420			ovs_nla_free_dec_ttl_action(a);
2421			break;
2422
2423		case OVS_ACTION_ATTR_SAMPLE:
2424			ovs_nla_free_sample_action(a);
2425			break;
2426
2427		case OVS_ACTION_ATTR_SET:
2428			ovs_nla_free_set_action(a);
2429			break;
2430		}
2431	}
2432}
2433
2434void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2435{
2436	if (!sf_acts)
2437		return;
2438
2439	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2440	kfree(sf_acts);
2441}
2442
2443static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2444{
2445	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2446}
2447
2448/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2449 * The caller must hold rcu_read_lock for this to be sensible. */
2450void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2451{
2452	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2453}
2454
2455static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2456				       int attr_len, bool log)
2457{
2458
2459	struct sw_flow_actions *acts;
2460	int new_acts_size;
2461	size_t req_size = NLA_ALIGN(attr_len);
2462	int next_offset = offsetof(struct sw_flow_actions, actions) +
2463					(*sfa)->actions_len;
2464
2465	if (req_size <= (ksize(*sfa) - next_offset))
2466		goto out;
2467
2468	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2469
2470	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2471		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2472			OVS_NLERR(log, "Flow action size exceeds max %u",
2473				  MAX_ACTIONS_BUFSIZE);
2474			return ERR_PTR(-EMSGSIZE);
2475		}
2476		new_acts_size = MAX_ACTIONS_BUFSIZE;
2477	}
2478
2479	acts = nla_alloc_flow_actions(new_acts_size);
2480	if (IS_ERR(acts))
2481		return (void *)acts;
2482
2483	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2484	acts->actions_len = (*sfa)->actions_len;
2485	acts->orig_len = (*sfa)->orig_len;
2486	kfree(*sfa);
2487	*sfa = acts;
2488
2489out:
2490	(*sfa)->actions_len += req_size;
2491	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2492}
2493
2494static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2495				   int attrtype, void *data, int len, bool log)
2496{
2497	struct nlattr *a;
2498
2499	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2500	if (IS_ERR(a))
2501		return a;
2502
2503	a->nla_type = attrtype;
2504	a->nla_len = nla_attr_size(len);
2505
2506	if (data)
2507		memcpy(nla_data(a), data, len);
2508	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2509
2510	return a;
2511}
2512
2513int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2514		       int len, bool log)
2515{
2516	struct nlattr *a;
2517
2518	a = __add_action(sfa, attrtype, data, len, log);
2519
2520	return PTR_ERR_OR_ZERO(a);
2521}
2522
2523static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2524					  int attrtype, bool log)
2525{
2526	int used = (*sfa)->actions_len;
2527	int err;
2528
2529	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2530	if (err)
2531		return err;
2532
2533	return used;
2534}
2535
2536static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2537					 int st_offset)
2538{
2539	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2540							       st_offset);
2541
2542	a->nla_len = sfa->actions_len - st_offset;
2543}
2544
2545static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2546				  const struct sw_flow_key *key,
2547				  struct sw_flow_actions **sfa,
2548				  __be16 eth_type, __be16 vlan_tci,
2549				  u32 mpls_label_count, bool log,
2550				  u32 depth);
2551
2552static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2553				    const struct sw_flow_key *key,
2554				    struct sw_flow_actions **sfa,
2555				    __be16 eth_type, __be16 vlan_tci,
2556				    u32 mpls_label_count, bool log, bool last,
2557				    u32 depth)
2558{
2559	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2560	const struct nlattr *probability, *actions;
2561	const struct nlattr *a;
2562	int rem, start, err;
2563	struct sample_arg arg;
2564
2565	memset(attrs, 0, sizeof(attrs));
2566	nla_for_each_nested(a, attr, rem) {
2567		int type = nla_type(a);
2568		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2569			return -EINVAL;
2570		attrs[type] = a;
2571	}
2572	if (rem)
2573		return -EINVAL;
2574
2575	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2576	if (!probability || nla_len(probability) != sizeof(u32))
2577		return -EINVAL;
2578
2579	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2580	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2581		return -EINVAL;
2582
2583	/* validation done, copy sample action. */
2584	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2585	if (start < 0)
2586		return start;
2587
2588	/* When both skb and flow may be changed, put the sample
2589	 * into a deferred fifo. On the other hand, if only skb
2590	 * may be modified, the actions can be executed in place.
2591	 *
2592	 * Do this analysis at the flow installation time.
2593	 * Set 'clone_action->exec' to true if the actions can be
2594	 * executed without being deferred.
2595	 *
2596	 * If the sample is the last action, it can always be excuted
2597	 * rather than deferred.
2598	 */
2599	arg.exec = last || !actions_may_change_flow(actions);
2600	arg.probability = nla_get_u32(probability);
2601
2602	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2603				 log);
2604	if (err)
2605		return err;
2606
2607	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2608				     eth_type, vlan_tci, mpls_label_count, log,
2609				     depth + 1);
2610
2611	if (err)
2612		return err;
2613
2614	add_nested_action_end(*sfa, start);
2615
2616	return 0;
2617}
2618
2619static int validate_and_copy_dec_ttl(struct net *net,
2620				     const struct nlattr *attr,
2621				     const struct sw_flow_key *key,
2622				     struct sw_flow_actions **sfa,
2623				     __be16 eth_type, __be16 vlan_tci,
2624				     u32 mpls_label_count, bool log,
2625				     u32 depth)
2626{
2627	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2628	int start, action_start, err, rem;
2629	const struct nlattr *a, *actions;
2630
2631	memset(attrs, 0, sizeof(attrs));
2632	nla_for_each_nested(a, attr, rem) {
2633		int type = nla_type(a);
2634
2635		/* Ignore unknown attributes to be future proof. */
2636		if (type > OVS_DEC_TTL_ATTR_MAX)
2637			continue;
2638
2639		if (!type || attrs[type]) {
2640			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2641				  type);
2642			return -EINVAL;
2643		}
2644
2645		attrs[type] = a;
2646	}
2647
2648	if (rem) {
2649		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2650		return -EINVAL;
2651	}
2652
2653	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2654	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2655		OVS_NLERR(log, "Missing valid actions attribute.");
2656		return -EINVAL;
2657	}
2658
2659	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2660	if (start < 0)
2661		return start;
2662
2663	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2664	if (action_start < 0)
2665		return action_start;
2666
2667	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2668				     vlan_tci, mpls_label_count, log,
2669				     depth + 1);
2670	if (err)
2671		return err;
2672
2673	add_nested_action_end(*sfa, action_start);
2674	add_nested_action_end(*sfa, start);
2675	return 0;
2676}
2677
2678static int validate_and_copy_clone(struct net *net,
2679				   const struct nlattr *attr,
2680				   const struct sw_flow_key *key,
2681				   struct sw_flow_actions **sfa,
2682				   __be16 eth_type, __be16 vlan_tci,
2683				   u32 mpls_label_count, bool log, bool last,
2684				   u32 depth)
2685{
2686	int start, err;
2687	u32 exec;
2688
2689	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2690		return -EINVAL;
2691
2692	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2693	if (start < 0)
2694		return start;
2695
2696	exec = last || !actions_may_change_flow(attr);
2697
2698	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2699				 sizeof(exec), log);
2700	if (err)
2701		return err;
2702
2703	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2704				     eth_type, vlan_tci, mpls_label_count, log,
2705				     depth + 1);
2706	if (err)
2707		return err;
2708
2709	add_nested_action_end(*sfa, start);
2710
2711	return 0;
2712}
2713
2714void ovs_match_init(struct sw_flow_match *match,
2715		    struct sw_flow_key *key,
2716		    bool reset_key,
2717		    struct sw_flow_mask *mask)
2718{
2719	memset(match, 0, sizeof(*match));
2720	match->key = key;
2721	match->mask = mask;
2722
2723	if (reset_key)
2724		memset(key, 0, sizeof(*key));
2725
2726	if (mask) {
2727		memset(&mask->key, 0, sizeof(mask->key));
2728		mask->range.start = mask->range.end = 0;
2729	}
2730}
2731
2732static int validate_geneve_opts(struct sw_flow_key *key)
2733{
2734	struct geneve_opt *option;
2735	int opts_len = key->tun_opts_len;
2736	bool crit_opt = false;
2737
2738	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2739	while (opts_len > 0) {
2740		int len;
2741
2742		if (opts_len < sizeof(*option))
2743			return -EINVAL;
2744
2745		len = sizeof(*option) + option->length * 4;
2746		if (len > opts_len)
2747			return -EINVAL;
2748
2749		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2750
2751		option = (struct geneve_opt *)((u8 *)option + len);
2752		opts_len -= len;
2753	}
2754
2755	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2756
2757	return 0;
2758}
2759
2760static int validate_and_copy_set_tun(const struct nlattr *attr,
2761				     struct sw_flow_actions **sfa, bool log)
2762{
2763	struct sw_flow_match match;
2764	struct sw_flow_key key;
2765	struct metadata_dst *tun_dst;
2766	struct ip_tunnel_info *tun_info;
2767	struct ovs_tunnel_info *ovs_tun;
2768	struct nlattr *a;
2769	int err = 0, start, opts_type;
2770	__be16 dst_opt_type;
2771
2772	dst_opt_type = 0;
2773	ovs_match_init(&match, &key, true, NULL);
2774	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2775	if (opts_type < 0)
2776		return opts_type;
2777
2778	if (key.tun_opts_len) {
2779		switch (opts_type) {
2780		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2781			err = validate_geneve_opts(&key);
2782			if (err < 0)
2783				return err;
2784			dst_opt_type = TUNNEL_GENEVE_OPT;
2785			break;
2786		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2787			dst_opt_type = TUNNEL_VXLAN_OPT;
2788			break;
2789		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2790			dst_opt_type = TUNNEL_ERSPAN_OPT;
2791			break;
2792		}
2793	}
2794
2795	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2796	if (start < 0)
2797		return start;
2798
2799	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2800				     GFP_KERNEL);
2801
2802	if (!tun_dst)
2803		return -ENOMEM;
2804
2805	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2806	if (err) {
2807		dst_release((struct dst_entry *)tun_dst);
2808		return err;
2809	}
2810
2811	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2812			 sizeof(*ovs_tun), log);
2813	if (IS_ERR(a)) {
2814		dst_release((struct dst_entry *)tun_dst);
2815		return PTR_ERR(a);
2816	}
2817
2818	ovs_tun = nla_data(a);
2819	ovs_tun->tun_dst = tun_dst;
2820
2821	tun_info = &tun_dst->u.tun_info;
2822	tun_info->mode = IP_TUNNEL_INFO_TX;
2823	if (key.tun_proto == AF_INET6)
2824		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2825	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2826		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2827	tun_info->key = key.tun_key;
2828
2829	/* We need to store the options in the action itself since
2830	 * everything else will go away after flow setup. We can append
2831	 * it to tun_info and then point there.
2832	 */
2833	ip_tunnel_info_opts_set(tun_info,
2834				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2835				key.tun_opts_len, dst_opt_type);
2836	add_nested_action_end(*sfa, start);
2837
2838	return err;
2839}
2840
2841static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2842			 bool is_push_nsh, bool log)
2843{
2844	struct sw_flow_match match;
2845	struct sw_flow_key key;
2846	int ret = 0;
2847
2848	ovs_match_init(&match, &key, true, NULL);
2849	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2850				      is_push_nsh, log);
2851	return !ret;
2852}
2853
2854/* Return false if there are any non-masked bits set.
2855 * Mask follows data immediately, before any netlink padding.
2856 */
2857static bool validate_masked(u8 *data, int len)
2858{
2859	u8 *mask = data + len;
2860
2861	while (len--)
2862		if (*data++ & ~*mask++)
2863			return false;
2864
2865	return true;
2866}
2867
2868static int validate_set(const struct nlattr *a,
2869			const struct sw_flow_key *flow_key,
2870			struct sw_flow_actions **sfa, bool *skip_copy,
2871			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2872{
2873	const struct nlattr *ovs_key = nla_data(a);
2874	int key_type = nla_type(ovs_key);
2875	size_t key_len;
2876
2877	/* There can be only one key in a action */
2878	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2879		return -EINVAL;
2880
2881	key_len = nla_len(ovs_key);
2882	if (masked)
2883		key_len /= 2;
2884
2885	if (key_type > OVS_KEY_ATTR_MAX ||
2886	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2887		return -EINVAL;
2888
2889	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2890		return -EINVAL;
2891
2892	switch (key_type) {
2893	case OVS_KEY_ATTR_PRIORITY:
2894	case OVS_KEY_ATTR_SKB_MARK:
2895	case OVS_KEY_ATTR_CT_MARK:
2896	case OVS_KEY_ATTR_CT_LABELS:
2897		break;
2898
2899	case OVS_KEY_ATTR_ETHERNET:
2900		if (mac_proto != MAC_PROTO_ETHERNET)
2901			return -EINVAL;
2902		break;
2903
2904	case OVS_KEY_ATTR_TUNNEL: {
2905		int err;
2906
2907		if (masked)
2908			return -EINVAL; /* Masked tunnel set not supported. */
2909
2910		*skip_copy = true;
2911		err = validate_and_copy_set_tun(a, sfa, log);
2912		if (err)
2913			return err;
2914		break;
2915	}
2916	case OVS_KEY_ATTR_IPV4: {
2917		const struct ovs_key_ipv4 *ipv4_key;
2918
2919		if (eth_type != htons(ETH_P_IP))
2920			return -EINVAL;
2921
2922		ipv4_key = nla_data(ovs_key);
2923
2924		if (masked) {
2925			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2926
2927			/* Non-writeable fields. */
2928			if (mask->ipv4_proto || mask->ipv4_frag)
2929				return -EINVAL;
2930		} else {
2931			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2932				return -EINVAL;
2933
2934			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2935				return -EINVAL;
2936		}
2937		break;
2938	}
2939	case OVS_KEY_ATTR_IPV6: {
2940		const struct ovs_key_ipv6 *ipv6_key;
2941
2942		if (eth_type != htons(ETH_P_IPV6))
2943			return -EINVAL;
2944
2945		ipv6_key = nla_data(ovs_key);
2946
2947		if (masked) {
2948			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2949
2950			/* Non-writeable fields. */
2951			if (mask->ipv6_proto || mask->ipv6_frag)
2952				return -EINVAL;
2953
2954			/* Invalid bits in the flow label mask? */
2955			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2956				return -EINVAL;
2957		} else {
2958			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2959				return -EINVAL;
2960
2961			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2962				return -EINVAL;
2963		}
2964		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2965			return -EINVAL;
2966
2967		break;
2968	}
2969	case OVS_KEY_ATTR_TCP:
2970		if ((eth_type != htons(ETH_P_IP) &&
2971		     eth_type != htons(ETH_P_IPV6)) ||
2972		    flow_key->ip.proto != IPPROTO_TCP)
2973			return -EINVAL;
2974
2975		break;
2976
2977	case OVS_KEY_ATTR_UDP:
2978		if ((eth_type != htons(ETH_P_IP) &&
2979		     eth_type != htons(ETH_P_IPV6)) ||
2980		    flow_key->ip.proto != IPPROTO_UDP)
2981			return -EINVAL;
2982
2983		break;
2984
2985	case OVS_KEY_ATTR_MPLS:
2986		if (!eth_p_mpls(eth_type))
2987			return -EINVAL;
2988		break;
2989
2990	case OVS_KEY_ATTR_SCTP:
2991		if ((eth_type != htons(ETH_P_IP) &&
2992		     eth_type != htons(ETH_P_IPV6)) ||
2993		    flow_key->ip.proto != IPPROTO_SCTP)
2994			return -EINVAL;
2995
2996		break;
2997
2998	case OVS_KEY_ATTR_NSH:
2999		if (eth_type != htons(ETH_P_NSH))
3000			return -EINVAL;
3001		if (!validate_nsh(nla_data(a), masked, false, log))
3002			return -EINVAL;
3003		break;
3004
3005	default:
3006		return -EINVAL;
3007	}
3008
3009	/* Convert non-masked non-tunnel set actions to masked set actions. */
3010	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3011		int start, len = key_len * 2;
3012		struct nlattr *at;
3013
3014		*skip_copy = true;
3015
3016		start = add_nested_action_start(sfa,
3017						OVS_ACTION_ATTR_SET_TO_MASKED,
3018						log);
3019		if (start < 0)
3020			return start;
3021
3022		at = __add_action(sfa, key_type, NULL, len, log);
3023		if (IS_ERR(at))
3024			return PTR_ERR(at);
3025
3026		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3027		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3028		/* Clear non-writeable bits from otherwise writeable fields. */
3029		if (key_type == OVS_KEY_ATTR_IPV6) {
3030			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3031
3032			mask->ipv6_label &= htonl(0x000FFFFF);
3033		}
3034		add_nested_action_end(*sfa, start);
3035	}
3036
3037	return 0;
3038}
3039
3040static int validate_userspace(const struct nlattr *attr)
3041{
3042	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3043		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3044		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3045		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3046	};
3047	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3048	int error;
3049
3050	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3051					    userspace_policy, NULL);
3052	if (error)
3053		return error;
3054
3055	if (!a[OVS_USERSPACE_ATTR_PID] ||
3056	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3057		return -EINVAL;
3058
3059	return 0;
3060}
3061
3062static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3063	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3064	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3065	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3066};
3067
3068static int validate_and_copy_check_pkt_len(struct net *net,
3069					   const struct nlattr *attr,
3070					   const struct sw_flow_key *key,
3071					   struct sw_flow_actions **sfa,
3072					   __be16 eth_type, __be16 vlan_tci,
3073					   u32 mpls_label_count,
3074					   bool log, bool last, u32 depth)
3075{
3076	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3077	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3078	struct check_pkt_len_arg arg;
3079	int nested_acts_start;
3080	int start, err;
3081
3082	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3083					  nla_data(attr), nla_len(attr),
3084					  cpl_policy, NULL);
3085	if (err)
3086		return err;
3087
3088	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3089	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3090		return -EINVAL;
3091
3092	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3093	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3094
3095	/* Both the nested action should be present. */
3096	if (!acts_if_greater || !acts_if_lesser_eq)
3097		return -EINVAL;
3098
3099	/* validation done, copy the nested actions. */
3100	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3101					log);
3102	if (start < 0)
3103		return start;
3104
3105	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3106	arg.exec_for_lesser_equal =
3107		last || !actions_may_change_flow(acts_if_lesser_eq);
3108	arg.exec_for_greater =
3109		last || !actions_may_change_flow(acts_if_greater);
3110
3111	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3112				 sizeof(arg), log);
3113	if (err)
3114		return err;
3115
3116	nested_acts_start = add_nested_action_start(sfa,
3117		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3118	if (nested_acts_start < 0)
3119		return nested_acts_start;
3120
3121	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3122				     eth_type, vlan_tci, mpls_label_count, log,
3123				     depth + 1);
3124
3125	if (err)
3126		return err;
3127
3128	add_nested_action_end(*sfa, nested_acts_start);
3129
3130	nested_acts_start = add_nested_action_start(sfa,
3131		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3132	if (nested_acts_start < 0)
3133		return nested_acts_start;
3134
3135	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3136				     eth_type, vlan_tci, mpls_label_count, log,
3137				     depth + 1);
3138
3139	if (err)
3140		return err;
3141
3142	add_nested_action_end(*sfa, nested_acts_start);
3143	add_nested_action_end(*sfa, start);
3144	return 0;
3145}
3146
3147static int copy_action(const struct nlattr *from,
3148		       struct sw_flow_actions **sfa, bool log)
3149{
3150	int totlen = NLA_ALIGN(from->nla_len);
3151	struct nlattr *to;
3152
3153	to = reserve_sfa_size(sfa, from->nla_len, log);
3154	if (IS_ERR(to))
3155		return PTR_ERR(to);
3156
3157	memcpy(to, from, totlen);
3158	return 0;
3159}
3160
3161static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3162				  const struct sw_flow_key *key,
3163				  struct sw_flow_actions **sfa,
3164				  __be16 eth_type, __be16 vlan_tci,
3165				  u32 mpls_label_count, bool log,
3166				  u32 depth)
3167{
3168	u8 mac_proto = ovs_key_mac_proto(key);
3169	const struct nlattr *a;
3170	int rem, err;
3171
3172	if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3173		return -EOVERFLOW;
3174
3175	nla_for_each_nested(a, attr, rem) {
3176		/* Expected argument lengths, (u32)-1 for variable length. */
3177		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3178			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3179			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3180			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3181			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3182			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3183			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3184			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3185			[OVS_ACTION_ATTR_SET] = (u32)-1,
3186			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3187			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3188			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3189			[OVS_ACTION_ATTR_CT] = (u32)-1,
3190			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3191			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3192			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3193			[OVS_ACTION_ATTR_POP_ETH] = 0,
3194			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3195			[OVS_ACTION_ATTR_POP_NSH] = 0,
3196			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3197			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3198			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3199			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3200			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3201			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3202		};
3203		const struct ovs_action_push_vlan *vlan;
3204		int type = nla_type(a);
3205		bool skip_copy;
3206
3207		if (type > OVS_ACTION_ATTR_MAX ||
3208		    (action_lens[type] != nla_len(a) &&
3209		     action_lens[type] != (u32)-1))
3210			return -EINVAL;
3211
3212		skip_copy = false;
3213		switch (type) {
3214		case OVS_ACTION_ATTR_UNSPEC:
3215			return -EINVAL;
3216
3217		case OVS_ACTION_ATTR_USERSPACE:
3218			err = validate_userspace(a);
3219			if (err)
3220				return err;
3221			break;
3222
3223		case OVS_ACTION_ATTR_OUTPUT:
3224			if (nla_get_u32(a) >= DP_MAX_PORTS)
3225				return -EINVAL;
3226			break;
3227
3228		case OVS_ACTION_ATTR_TRUNC: {
3229			const struct ovs_action_trunc *trunc = nla_data(a);
3230
3231			if (trunc->max_len < ETH_HLEN)
3232				return -EINVAL;
3233			break;
3234		}
3235
3236		case OVS_ACTION_ATTR_HASH: {
3237			const struct ovs_action_hash *act_hash = nla_data(a);
3238
3239			switch (act_hash->hash_alg) {
3240			case OVS_HASH_ALG_L4:
3241				fallthrough;
3242			case OVS_HASH_ALG_SYM_L4:
3243				break;
3244			default:
3245				return  -EINVAL;
3246			}
3247
3248			break;
3249		}
3250
3251		case OVS_ACTION_ATTR_POP_VLAN:
3252			if (mac_proto != MAC_PROTO_ETHERNET)
3253				return -EINVAL;
3254			vlan_tci = htons(0);
3255			break;
3256
3257		case OVS_ACTION_ATTR_PUSH_VLAN:
3258			if (mac_proto != MAC_PROTO_ETHERNET)
3259				return -EINVAL;
3260			vlan = nla_data(a);
3261			if (!eth_type_vlan(vlan->vlan_tpid))
3262				return -EINVAL;
3263			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3264				return -EINVAL;
3265			vlan_tci = vlan->vlan_tci;
3266			break;
3267
3268		case OVS_ACTION_ATTR_RECIRC:
3269			break;
3270
3271		case OVS_ACTION_ATTR_ADD_MPLS: {
3272			const struct ovs_action_add_mpls *mpls = nla_data(a);
3273
3274			if (!eth_p_mpls(mpls->mpls_ethertype))
3275				return -EINVAL;
3276
3277			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3278				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3279				    (eth_type != htons(ETH_P_IP) &&
3280				     eth_type != htons(ETH_P_IPV6) &&
3281				     eth_type != htons(ETH_P_ARP) &&
3282				     eth_type != htons(ETH_P_RARP) &&
3283				     !eth_p_mpls(eth_type)))
3284					return -EINVAL;
3285				mpls_label_count++;
3286			} else {
3287				if (mac_proto == MAC_PROTO_ETHERNET) {
3288					mpls_label_count = 1;
3289					mac_proto = MAC_PROTO_NONE;
3290				} else {
3291					mpls_label_count++;
3292				}
3293			}
3294			eth_type = mpls->mpls_ethertype;
3295			break;
3296		}
3297
3298		case OVS_ACTION_ATTR_PUSH_MPLS: {
3299			const struct ovs_action_push_mpls *mpls = nla_data(a);
3300
3301			if (!eth_p_mpls(mpls->mpls_ethertype))
3302				return -EINVAL;
3303			/* Prohibit push MPLS other than to a white list
3304			 * for packets that have a known tag order.
3305			 */
3306			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3307			    (eth_type != htons(ETH_P_IP) &&
3308			     eth_type != htons(ETH_P_IPV6) &&
3309			     eth_type != htons(ETH_P_ARP) &&
3310			     eth_type != htons(ETH_P_RARP) &&
3311			     !eth_p_mpls(eth_type)))
3312				return -EINVAL;
3313			eth_type = mpls->mpls_ethertype;
3314			mpls_label_count++;
3315			break;
3316		}
3317
3318		case OVS_ACTION_ATTR_POP_MPLS: {
3319			__be16  proto;
3320			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3321			    !eth_p_mpls(eth_type))
3322				return -EINVAL;
3323
3324			/* Disallow subsequent L2.5+ set actions and mpls_pop
3325			 * actions once the last MPLS label in the packet is
3326			 * popped as there is no check here to ensure that
3327			 * the new eth type is valid and thus set actions could
3328			 * write off the end of the packet or otherwise corrupt
3329			 * it.
3330			 *
3331			 * Support for these actions is planned using packet
3332			 * recirculation.
3333			 */
3334			proto = nla_get_be16(a);
3335
3336			if (proto == htons(ETH_P_TEB) &&
3337			    mac_proto != MAC_PROTO_NONE)
3338				return -EINVAL;
3339
3340			mpls_label_count--;
3341
3342			if (!eth_p_mpls(proto) || !mpls_label_count)
3343				eth_type = htons(0);
3344			else
3345				eth_type =  proto;
3346
3347			break;
3348		}
3349
3350		case OVS_ACTION_ATTR_SET:
3351			err = validate_set(a, key, sfa,
3352					   &skip_copy, mac_proto, eth_type,
3353					   false, log);
3354			if (err)
3355				return err;
3356			break;
3357
3358		case OVS_ACTION_ATTR_SET_MASKED:
3359			err = validate_set(a, key, sfa,
3360					   &skip_copy, mac_proto, eth_type,
3361					   true, log);
3362			if (err)
3363				return err;
3364			break;
3365
3366		case OVS_ACTION_ATTR_SAMPLE: {
3367			bool last = nla_is_last(a, rem);
3368
3369			err = validate_and_copy_sample(net, a, key, sfa,
3370						       eth_type, vlan_tci,
3371						       mpls_label_count,
3372						       log, last, depth);
3373			if (err)
3374				return err;
3375			skip_copy = true;
3376			break;
3377		}
3378
3379		case OVS_ACTION_ATTR_CT:
3380			err = ovs_ct_copy_action(net, a, key, sfa, log);
3381			if (err)
3382				return err;
3383			skip_copy = true;
3384			break;
3385
3386		case OVS_ACTION_ATTR_CT_CLEAR:
3387			break;
3388
3389		case OVS_ACTION_ATTR_PUSH_ETH:
3390			/* Disallow pushing an Ethernet header if one
3391			 * is already present */
3392			if (mac_proto != MAC_PROTO_NONE)
3393				return -EINVAL;
3394			mac_proto = MAC_PROTO_ETHERNET;
3395			break;
3396
3397		case OVS_ACTION_ATTR_POP_ETH:
3398			if (mac_proto != MAC_PROTO_ETHERNET)
3399				return -EINVAL;
3400			if (vlan_tci & htons(VLAN_CFI_MASK))
3401				return -EINVAL;
3402			mac_proto = MAC_PROTO_NONE;
3403			break;
3404
3405		case OVS_ACTION_ATTR_PUSH_NSH:
3406			if (mac_proto != MAC_PROTO_ETHERNET) {
3407				u8 next_proto;
3408
3409				next_proto = tun_p_from_eth_p(eth_type);
3410				if (!next_proto)
3411					return -EINVAL;
3412			}
3413			mac_proto = MAC_PROTO_NONE;
3414			if (!validate_nsh(nla_data(a), false, true, true))
3415				return -EINVAL;
3416			break;
3417
3418		case OVS_ACTION_ATTR_POP_NSH: {
3419			__be16 inner_proto;
3420
3421			if (eth_type != htons(ETH_P_NSH))
3422				return -EINVAL;
3423			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3424			if (!inner_proto)
3425				return -EINVAL;
3426			if (key->nsh.base.np == TUN_P_ETHERNET)
3427				mac_proto = MAC_PROTO_ETHERNET;
3428			else
3429				mac_proto = MAC_PROTO_NONE;
3430			break;
3431		}
3432
3433		case OVS_ACTION_ATTR_METER:
3434			/* Non-existent meters are simply ignored.  */
3435			break;
3436
3437		case OVS_ACTION_ATTR_CLONE: {
3438			bool last = nla_is_last(a, rem);
3439
3440			err = validate_and_copy_clone(net, a, key, sfa,
3441						      eth_type, vlan_tci,
3442						      mpls_label_count,
3443						      log, last, depth);
3444			if (err)
3445				return err;
3446			skip_copy = true;
3447			break;
3448		}
3449
3450		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3451			bool last = nla_is_last(a, rem);
3452
3453			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3454							      eth_type,
3455							      vlan_tci,
3456							      mpls_label_count,
3457							      log, last,
3458							      depth);
3459			if (err)
3460				return err;
3461			skip_copy = true;
3462			break;
3463		}
3464
3465		case OVS_ACTION_ATTR_DEC_TTL:
3466			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3467							eth_type, vlan_tci,
3468							mpls_label_count, log,
3469							depth);
3470			if (err)
3471				return err;
3472			skip_copy = true;
3473			break;
3474
3475		case OVS_ACTION_ATTR_DROP:
3476			if (!nla_is_last(a, rem))
3477				return -EINVAL;
3478			break;
3479
3480		default:
3481			OVS_NLERR(log, "Unknown Action type %d", type);
3482			return -EINVAL;
3483		}
3484		if (!skip_copy) {
3485			err = copy_action(a, sfa, log);
3486			if (err)
3487				return err;
3488		}
3489	}
3490
3491	if (rem > 0)
3492		return -EINVAL;
3493
3494	return 0;
3495}
3496
3497/* 'key' must be the masked key. */
3498int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3499			 const struct sw_flow_key *key,
3500			 struct sw_flow_actions **sfa, bool log)
3501{
3502	int err;
3503	u32 mpls_label_count = 0;
3504
3505	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3506	if (IS_ERR(*sfa))
3507		return PTR_ERR(*sfa);
3508
3509	if (eth_p_mpls(key->eth.type))
3510		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3511
3512	(*sfa)->orig_len = nla_len(attr);
3513	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3514				     key->eth.vlan.tci, mpls_label_count, log,
3515				     0);
3516	if (err)
3517		ovs_nla_free_flow_actions(*sfa);
3518
3519	return err;
3520}
3521
3522static int sample_action_to_attr(const struct nlattr *attr,
3523				 struct sk_buff *skb)
3524{
3525	struct nlattr *start, *ac_start = NULL, *sample_arg;
3526	int err = 0, rem = nla_len(attr);
3527	const struct sample_arg *arg;
3528	struct nlattr *actions;
3529
3530	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3531	if (!start)
3532		return -EMSGSIZE;
3533
3534	sample_arg = nla_data(attr);
3535	arg = nla_data(sample_arg);
3536	actions = nla_next(sample_arg, &rem);
3537
3538	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3539		err = -EMSGSIZE;
3540		goto out;
3541	}
3542
3543	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3544	if (!ac_start) {
3545		err = -EMSGSIZE;
3546		goto out;
3547	}
3548
3549	err = ovs_nla_put_actions(actions, rem, skb);
3550
3551out:
3552	if (err) {
3553		nla_nest_cancel(skb, ac_start);
3554		nla_nest_cancel(skb, start);
3555	} else {
3556		nla_nest_end(skb, ac_start);
3557		nla_nest_end(skb, start);
3558	}
3559
3560	return err;
3561}
3562
3563static int clone_action_to_attr(const struct nlattr *attr,
3564				struct sk_buff *skb)
3565{
3566	struct nlattr *start;
3567	int err = 0, rem = nla_len(attr);
3568
3569	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3570	if (!start)
3571		return -EMSGSIZE;
3572
3573	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3574	attr = nla_next(nla_data(attr), &rem);
3575	err = ovs_nla_put_actions(attr, rem, skb);
3576
3577	if (err)
3578		nla_nest_cancel(skb, start);
3579	else
3580		nla_nest_end(skb, start);
3581
3582	return err;
3583}
3584
3585static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3586					struct sk_buff *skb)
3587{
3588	struct nlattr *start, *ac_start = NULL;
3589	const struct check_pkt_len_arg *arg;
3590	const struct nlattr *a, *cpl_arg;
3591	int err = 0, rem = nla_len(attr);
3592
3593	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3594	if (!start)
3595		return -EMSGSIZE;
3596
3597	/* The first nested attribute in 'attr' is always
3598	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3599	 */
3600	cpl_arg = nla_data(attr);
3601	arg = nla_data(cpl_arg);
3602
3603	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3604		err = -EMSGSIZE;
3605		goto out;
3606	}
3607
3608	/* Second nested attribute in 'attr' is always
3609	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3610	 */
3611	a = nla_next(cpl_arg, &rem);
3612	ac_start =  nla_nest_start_noflag(skb,
3613					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3614	if (!ac_start) {
3615		err = -EMSGSIZE;
3616		goto out;
3617	}
3618
3619	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3620	if (err) {
3621		nla_nest_cancel(skb, ac_start);
3622		goto out;
3623	} else {
3624		nla_nest_end(skb, ac_start);
3625	}
3626
3627	/* Third nested attribute in 'attr' is always
3628	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3629	 */
3630	a = nla_next(a, &rem);
3631	ac_start =  nla_nest_start_noflag(skb,
3632					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3633	if (!ac_start) {
3634		err = -EMSGSIZE;
3635		goto out;
3636	}
3637
3638	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3639	if (err) {
3640		nla_nest_cancel(skb, ac_start);
3641		goto out;
3642	} else {
3643		nla_nest_end(skb, ac_start);
3644	}
3645
3646	nla_nest_end(skb, start);
3647	return 0;
3648
3649out:
3650	nla_nest_cancel(skb, start);
3651	return err;
3652}
3653
3654static int dec_ttl_action_to_attr(const struct nlattr *attr,
3655				  struct sk_buff *skb)
3656{
3657	struct nlattr *start, *action_start;
3658	const struct nlattr *a;
3659	int err = 0, rem;
3660
3661	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3662	if (!start)
3663		return -EMSGSIZE;
3664
3665	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3666		switch (nla_type(a)) {
3667		case OVS_DEC_TTL_ATTR_ACTION:
3668
3669			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3670			if (!action_start) {
3671				err = -EMSGSIZE;
3672				goto out;
3673			}
3674
3675			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3676			if (err)
3677				goto out;
3678
3679			nla_nest_end(skb, action_start);
3680			break;
3681
3682		default:
3683			/* Ignore all other option to be future compatible */
3684			break;
3685		}
3686	}
3687
3688	nla_nest_end(skb, start);
3689	return 0;
3690
3691out:
3692	nla_nest_cancel(skb, start);
3693	return err;
3694}
3695
3696static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3697{
3698	const struct nlattr *ovs_key = nla_data(a);
3699	int key_type = nla_type(ovs_key);
3700	struct nlattr *start;
3701	int err;
3702
3703	switch (key_type) {
3704	case OVS_KEY_ATTR_TUNNEL_INFO: {
3705		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3706		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3707
3708		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3709		if (!start)
3710			return -EMSGSIZE;
3711
3712		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3713					ip_tunnel_info_opts(tun_info),
3714					tun_info->options_len,
3715					ip_tunnel_info_af(tun_info), tun_info->mode);
3716		if (err)
3717			return err;
3718		nla_nest_end(skb, start);
3719		break;
3720	}
3721	default:
3722		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3723			return -EMSGSIZE;
3724		break;
3725	}
3726
3727	return 0;
3728}
3729
3730static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3731						struct sk_buff *skb)
3732{
3733	const struct nlattr *ovs_key = nla_data(a);
3734	struct nlattr *nla;
3735	size_t key_len = nla_len(ovs_key) / 2;
3736
3737	/* Revert the conversion we did from a non-masked set action to
3738	 * masked set action.
3739	 */
3740	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3741	if (!nla)
3742		return -EMSGSIZE;
3743
3744	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3745		return -EMSGSIZE;
3746
3747	nla_nest_end(skb, nla);
3748	return 0;
3749}
3750
3751int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3752{
3753	const struct nlattr *a;
3754	int rem, err;
3755
3756	nla_for_each_attr(a, attr, len, rem) {
3757		int type = nla_type(a);
3758
3759		switch (type) {
3760		case OVS_ACTION_ATTR_SET:
3761			err = set_action_to_attr(a, skb);
3762			if (err)
3763				return err;
3764			break;
3765
3766		case OVS_ACTION_ATTR_SET_TO_MASKED:
3767			err = masked_set_action_to_set_action_attr(a, skb);
3768			if (err)
3769				return err;
3770			break;
3771
3772		case OVS_ACTION_ATTR_SAMPLE:
3773			err = sample_action_to_attr(a, skb);
3774			if (err)
3775				return err;
3776			break;
3777
3778		case OVS_ACTION_ATTR_CT:
3779			err = ovs_ct_action_to_attr(nla_data(a), skb);
3780			if (err)
3781				return err;
3782			break;
3783
3784		case OVS_ACTION_ATTR_CLONE:
3785			err = clone_action_to_attr(a, skb);
3786			if (err)
3787				return err;
3788			break;
3789
3790		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3791			err = check_pkt_len_action_to_attr(a, skb);
3792			if (err)
3793				return err;
3794			break;
3795
3796		case OVS_ACTION_ATTR_DEC_TTL:
3797			err = dec_ttl_action_to_attr(a, skb);
3798			if (err)
3799				return err;
3800			break;
3801
3802		default:
3803			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3804				return -EMSGSIZE;
3805			break;
3806		}
3807	}
3808
3809	return 0;
3810}