Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Support for INET connection oriented protocols.
   8 *
   9 * Authors:	See the TCP sources
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/jhash.h>
  14
  15#include <net/inet_connection_sock.h>
  16#include <net/inet_hashtables.h>
  17#include <net/inet_timewait_sock.h>
  18#include <net/ip.h>
  19#include <net/route.h>
  20#include <net/tcp_states.h>
  21#include <net/xfrm.h>
  22#include <net/tcp.h>
  23#include <net/sock_reuseport.h>
  24#include <net/addrconf.h>
  25
  26#if IS_ENABLED(CONFIG_IPV6)
  27/* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
  28 *				if IPv6 only, and any IPv4 addresses
  29 *				if not IPv6 only
  30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  31 *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
  32 *				and 0.0.0.0 equals to 0.0.0.0 only
  33 */
  34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
  35				 const struct in6_addr *sk2_rcv_saddr6,
  36				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  37				 bool sk1_ipv6only, bool sk2_ipv6only,
  38				 bool match_sk1_wildcard,
  39				 bool match_sk2_wildcard)
  40{
  41	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
  42	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  43
  44	/* if both are mapped, treat as IPv4 */
  45	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
  46		if (!sk2_ipv6only) {
  47			if (sk1_rcv_saddr == sk2_rcv_saddr)
  48				return true;
  49			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  50				(match_sk2_wildcard && !sk2_rcv_saddr);
  51		}
  52		return false;
  53	}
  54
  55	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
  56		return true;
  57
  58	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
  59	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  60		return true;
  61
  62	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
  63	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  64		return true;
  65
  66	if (sk2_rcv_saddr6 &&
  67	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
  68		return true;
  69
  70	return false;
  71}
  72#endif
  73
  74/* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
  75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  76 *				0.0.0.0 only equals to 0.0.0.0
  77 */
  78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  79				 bool sk2_ipv6only, bool match_sk1_wildcard,
  80				 bool match_sk2_wildcard)
  81{
  82	if (!sk2_ipv6only) {
  83		if (sk1_rcv_saddr == sk2_rcv_saddr)
  84			return true;
  85		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  86			(match_sk2_wildcard && !sk2_rcv_saddr);
  87	}
  88	return false;
  89}
  90
  91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
  92			  bool match_wildcard)
  93{
  94#if IS_ENABLED(CONFIG_IPV6)
  95	if (sk->sk_family == AF_INET6)
  96		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
  97					    inet6_rcv_saddr(sk2),
  98					    sk->sk_rcv_saddr,
  99					    sk2->sk_rcv_saddr,
 100					    ipv6_only_sock(sk),
 101					    ipv6_only_sock(sk2),
 102					    match_wildcard,
 103					    match_wildcard);
 104#endif
 105	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
 106				    ipv6_only_sock(sk2), match_wildcard,
 107				    match_wildcard);
 108}
 109EXPORT_SYMBOL(inet_rcv_saddr_equal);
 110
 111bool inet_rcv_saddr_any(const struct sock *sk)
 112{
 113#if IS_ENABLED(CONFIG_IPV6)
 114	if (sk->sk_family == AF_INET6)
 115		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
 116#endif
 117	return !sk->sk_rcv_saddr;
 118}
 119
 120void inet_get_local_port_range(struct net *net, int *low, int *high)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121{
 122	unsigned int seq;
 123
 124	do {
 125		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
 
 
 
 126
 127		*low = net->ipv4.ip_local_ports.range[0];
 128		*high = net->ipv4.ip_local_ports.range[1];
 129	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
 130}
 131EXPORT_SYMBOL(inet_get_local_port_range);
 132
 
 
 
 
 
 133static int inet_csk_bind_conflict(const struct sock *sk,
 134				  const struct inet_bind_bucket *tb,
 
 135				  bool relax, bool reuseport_ok)
 136{
 137	struct sock *sk2;
 138	bool reuseport_cb_ok;
 139	bool reuse = sk->sk_reuse;
 140	bool reuseport = !!sk->sk_reuseport;
 141	struct sock_reuseport *reuseport_cb;
 142	kuid_t uid = sock_i_uid((struct sock *)sk);
 
 
 
 143
 144	rcu_read_lock();
 145	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
 146	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
 147	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
 148	rcu_read_unlock();
 149
 150	/*
 151	 * Unlike other sk lookup places we do not check
 
 
 
 
 
 
 
 
 152	 * for sk_net here, since _all_ the socks listed
 153	 * in tb->owners list belong to the same net - the
 154	 * one this bucket belongs to.
 155	 */
 
 
 
 156
 157	sk_for_each_bound(sk2, &tb->owners) {
 158		if (sk != sk2 &&
 159		    (!sk->sk_bound_dev_if ||
 160		     !sk2->sk_bound_dev_if ||
 161		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
 162			if (reuse && sk2->sk_reuse &&
 163			    sk2->sk_state != TCP_LISTEN) {
 164				if ((!relax ||
 165				     (!reuseport_ok &&
 166				      reuseport && sk2->sk_reuseport &&
 167				      reuseport_cb_ok &&
 168				      (sk2->sk_state == TCP_TIME_WAIT ||
 169				       uid_eq(uid, sock_i_uid(sk2))))) &&
 170				    inet_rcv_saddr_equal(sk, sk2, true))
 171					break;
 172			} else if (!reuseport_ok ||
 173				   !reuseport || !sk2->sk_reuseport ||
 174				   !reuseport_cb_ok ||
 175				   (sk2->sk_state != TCP_TIME_WAIT &&
 176				    !uid_eq(uid, sock_i_uid(sk2)))) {
 177				if (inet_rcv_saddr_equal(sk, sk2, true))
 178					break;
 179			}
 180		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181	}
 182	return sk2 != NULL;
 
 
 
 183}
 184
 185/*
 186 * Find an open port number for the socket.  Returns with the
 187 * inet_bind_hashbucket lock held.
 188 */
 189static struct inet_bind_hashbucket *
 190inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
 191{
 192	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
 193	int port = 0;
 194	struct inet_bind_hashbucket *head;
 
 
 195	struct net *net = sock_net(sk);
 196	bool relax = false;
 197	int i, low, high, attempt_half;
 198	struct inet_bind_bucket *tb;
 199	u32 remaining, offset;
 200	int l3mdev;
 201
 202	l3mdev = inet_sk_bound_l3mdev(sk);
 203ports_exhausted:
 204	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
 205other_half_scan:
 206	inet_get_local_port_range(net, &low, &high);
 207	high++; /* [32768, 60999] -> [32768, 61000[ */
 208	if (high - low < 4)
 209		attempt_half = 0;
 210	if (attempt_half) {
 211		int half = low + (((high - low) >> 2) << 1);
 212
 213		if (attempt_half == 1)
 214			high = half;
 215		else
 216			low = half;
 217	}
 218	remaining = high - low;
 219	if (likely(remaining > 1))
 220		remaining &= ~1U;
 221
 222	offset = prandom_u32() % remaining;
 223	/* __inet_hash_connect() favors ports having @low parity
 224	 * We do the opposite to not pollute connect() users.
 225	 */
 226	offset |= 1U;
 227
 228other_parity_scan:
 229	port = low + offset;
 230	for (i = 0; i < remaining; i += 2, port += 2) {
 231		if (unlikely(port >= high))
 232			port -= remaining;
 233		if (inet_is_local_reserved_port(net, port))
 234			continue;
 235		head = &hinfo->bhash[inet_bhashfn(net, port,
 236						  hinfo->bhash_size)];
 237		spin_lock_bh(&head->lock);
 
 
 
 
 
 
 
 
 238		inet_bind_bucket_for_each(tb, &head->chain)
 239			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
 240			    tb->port == port) {
 241				if (!inet_csk_bind_conflict(sk, tb, relax, false))
 242					goto success;
 
 243				goto next_port;
 244			}
 245		tb = NULL;
 246		goto success;
 247next_port:
 248		spin_unlock_bh(&head->lock);
 249		cond_resched();
 250	}
 251
 252	offset--;
 253	if (!(offset & 1))
 254		goto other_parity_scan;
 255
 256	if (attempt_half == 1) {
 257		/* OK we now try the upper half of the range */
 258		attempt_half = 2;
 259		goto other_half_scan;
 260	}
 261
 262	if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
 263		/* We still have a chance to connect to different destinations */
 264		relax = true;
 265		goto ports_exhausted;
 266	}
 267	return NULL;
 268success:
 269	*port_ret = port;
 270	*tb_ret = tb;
 
 
 271	return head;
 272}
 273
 274static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
 275				     struct sock *sk)
 276{
 277	kuid_t uid = sock_i_uid(sk);
 278
 279	if (tb->fastreuseport <= 0)
 280		return 0;
 281	if (!sk->sk_reuseport)
 282		return 0;
 283	if (rcu_access_pointer(sk->sk_reuseport_cb))
 284		return 0;
 285	if (!uid_eq(tb->fastuid, uid))
 286		return 0;
 287	/* We only need to check the rcv_saddr if this tb was once marked
 288	 * without fastreuseport and then was reset, as we can only know that
 289	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
 290	 * owners list.
 291	 */
 292	if (tb->fastreuseport == FASTREUSEPORT_ANY)
 293		return 1;
 294#if IS_ENABLED(CONFIG_IPV6)
 295	if (tb->fast_sk_family == AF_INET6)
 296		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
 297					    inet6_rcv_saddr(sk),
 298					    tb->fast_rcv_saddr,
 299					    sk->sk_rcv_saddr,
 300					    tb->fast_ipv6_only,
 301					    ipv6_only_sock(sk), true, false);
 302#endif
 303	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
 304				    ipv6_only_sock(sk), true, false);
 305}
 306
 307void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
 308			       struct sock *sk)
 309{
 310	kuid_t uid = sock_i_uid(sk);
 311	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 312
 313	if (hlist_empty(&tb->owners)) {
 314		tb->fastreuse = reuse;
 315		if (sk->sk_reuseport) {
 316			tb->fastreuseport = FASTREUSEPORT_ANY;
 317			tb->fastuid = uid;
 318			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 319			tb->fast_ipv6_only = ipv6_only_sock(sk);
 320			tb->fast_sk_family = sk->sk_family;
 321#if IS_ENABLED(CONFIG_IPV6)
 322			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 323#endif
 324		} else {
 325			tb->fastreuseport = 0;
 326		}
 327	} else {
 328		if (!reuse)
 329			tb->fastreuse = 0;
 330		if (sk->sk_reuseport) {
 331			/* We didn't match or we don't have fastreuseport set on
 332			 * the tb, but we have sk_reuseport set on this socket
 333			 * and we know that there are no bind conflicts with
 334			 * this socket in this tb, so reset our tb's reuseport
 335			 * settings so that any subsequent sockets that match
 336			 * our current socket will be put on the fast path.
 337			 *
 338			 * If we reset we need to set FASTREUSEPORT_STRICT so we
 339			 * do extra checking for all subsequent sk_reuseport
 340			 * socks.
 341			 */
 342			if (!sk_reuseport_match(tb, sk)) {
 343				tb->fastreuseport = FASTREUSEPORT_STRICT;
 344				tb->fastuid = uid;
 345				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 346				tb->fast_ipv6_only = ipv6_only_sock(sk);
 347				tb->fast_sk_family = sk->sk_family;
 348#if IS_ENABLED(CONFIG_IPV6)
 349				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 350#endif
 351			}
 352		} else {
 353			tb->fastreuseport = 0;
 354		}
 355	}
 356}
 357
 358/* Obtain a reference to a local port for the given sock,
 359 * if snum is zero it means select any available local port.
 360 * We try to allocate an odd port (and leave even ports for connect())
 361 */
 362int inet_csk_get_port(struct sock *sk, unsigned short snum)
 363{
 
 364	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 365	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
 366	int ret = 1, port = snum;
 367	struct inet_bind_hashbucket *head;
 368	struct net *net = sock_net(sk);
 
 369	struct inet_bind_bucket *tb = NULL;
 370	int l3mdev;
 
 371
 372	l3mdev = inet_sk_bound_l3mdev(sk);
 373
 374	if (!port) {
 375		head = inet_csk_find_open_port(sk, &tb, &port);
 376		if (!head)
 377			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 378		if (!tb)
 379			goto tb_not_found;
 380		goto success;
 381	}
 382	head = &hinfo->bhash[inet_bhashfn(net, port,
 383					  hinfo->bhash_size)];
 384	spin_lock_bh(&head->lock);
 385	inet_bind_bucket_for_each(tb, &head->chain)
 386		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
 387		    tb->port == port)
 388			goto tb_found;
 389tb_not_found:
 390	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
 391				     net, head, port, l3mdev);
 392	if (!tb)
 393		goto fail_unlock;
 394tb_found:
 395	if (!hlist_empty(&tb->owners)) {
 396		if (sk->sk_reuse == SK_FORCE_REUSE)
 397			goto success;
 398
 399		if ((tb->fastreuse > 0 && reuse) ||
 400		    sk_reuseport_match(tb, sk))
 401			goto success;
 402		if (inet_csk_bind_conflict(sk, tb, true, true))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403			goto fail_unlock;
 
 404	}
 
 
 
 
 
 
 405success:
 406	inet_csk_update_fastreuse(tb, sk);
 407
 408	if (!inet_csk(sk)->icsk_bind_hash)
 409		inet_bind_hash(sk, tb, port);
 410	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
 
 411	ret = 0;
 412
 413fail_unlock:
 
 
 
 
 
 
 
 
 414	spin_unlock_bh(&head->lock);
 415	return ret;
 416}
 417EXPORT_SYMBOL_GPL(inet_csk_get_port);
 418
 419/*
 420 * Wait for an incoming connection, avoid race conditions. This must be called
 421 * with the socket locked.
 422 */
 423static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
 424{
 425	struct inet_connection_sock *icsk = inet_csk(sk);
 426	DEFINE_WAIT(wait);
 427	int err;
 428
 429	/*
 430	 * True wake-one mechanism for incoming connections: only
 431	 * one process gets woken up, not the 'whole herd'.
 432	 * Since we do not 'race & poll' for established sockets
 433	 * anymore, the common case will execute the loop only once.
 434	 *
 435	 * Subtle issue: "add_wait_queue_exclusive()" will be added
 436	 * after any current non-exclusive waiters, and we know that
 437	 * it will always _stay_ after any new non-exclusive waiters
 438	 * because all non-exclusive waiters are added at the
 439	 * beginning of the wait-queue. As such, it's ok to "drop"
 440	 * our exclusiveness temporarily when we get woken up without
 441	 * having to remove and re-insert us on the wait queue.
 442	 */
 443	for (;;) {
 444		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
 445					  TASK_INTERRUPTIBLE);
 446		release_sock(sk);
 447		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
 448			timeo = schedule_timeout(timeo);
 449		sched_annotate_sleep();
 450		lock_sock(sk);
 451		err = 0;
 452		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
 453			break;
 454		err = -EINVAL;
 455		if (sk->sk_state != TCP_LISTEN)
 456			break;
 457		err = sock_intr_errno(timeo);
 458		if (signal_pending(current))
 459			break;
 460		err = -EAGAIN;
 461		if (!timeo)
 462			break;
 463	}
 464	finish_wait(sk_sleep(sk), &wait);
 465	return err;
 466}
 467
 468/*
 469 * This will accept the next outstanding connection.
 470 */
 471struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
 472{
 473	struct inet_connection_sock *icsk = inet_csk(sk);
 474	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 475	struct request_sock *req;
 476	struct sock *newsk;
 477	int error;
 478
 479	lock_sock(sk);
 480
 481	/* We need to make sure that this socket is listening,
 482	 * and that it has something pending.
 483	 */
 484	error = -EINVAL;
 485	if (sk->sk_state != TCP_LISTEN)
 486		goto out_err;
 487
 488	/* Find already established connection */
 489	if (reqsk_queue_empty(queue)) {
 490		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
 491
 492		/* If this is a non blocking socket don't sleep */
 493		error = -EAGAIN;
 494		if (!timeo)
 495			goto out_err;
 496
 497		error = inet_csk_wait_for_connect(sk, timeo);
 498		if (error)
 499			goto out_err;
 500	}
 501	req = reqsk_queue_remove(queue, sk);
 502	newsk = req->sk;
 503
 504	if (sk->sk_protocol == IPPROTO_TCP &&
 505	    tcp_rsk(req)->tfo_listener) {
 506		spin_lock_bh(&queue->fastopenq.lock);
 507		if (tcp_rsk(req)->tfo_listener) {
 508			/* We are still waiting for the final ACK from 3WHS
 509			 * so can't free req now. Instead, we set req->sk to
 510			 * NULL to signify that the child socket is taken
 511			 * so reqsk_fastopen_remove() will free the req
 512			 * when 3WHS finishes (or is aborted).
 513			 */
 514			req->sk = NULL;
 515			req = NULL;
 516		}
 517		spin_unlock_bh(&queue->fastopenq.lock);
 518	}
 519
 520out:
 521	release_sock(sk);
 522	if (newsk && mem_cgroup_sockets_enabled) {
 523		int amt;
 524
 525		/* atomically get the memory usage, set and charge the
 526		 * newsk->sk_memcg.
 527		 */
 528		lock_sock(newsk);
 529
 530		/* The socket has not been accepted yet, no need to look at
 531		 * newsk->sk_wmem_queued.
 532		 */
 533		amt = sk_mem_pages(newsk->sk_forward_alloc +
 534				   atomic_read(&newsk->sk_rmem_alloc));
 535		mem_cgroup_sk_alloc(newsk);
 536		if (newsk->sk_memcg && amt)
 537			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
 
 
 
 
 
 
 
 
 
 538
 539		release_sock(newsk);
 540	}
 541	if (req)
 542		reqsk_put(req);
 
 
 
 
 543	return newsk;
 544out_err:
 545	newsk = NULL;
 546	req = NULL;
 547	*err = error;
 548	goto out;
 549}
 550EXPORT_SYMBOL(inet_csk_accept);
 551
 552/*
 553 * Using different timers for retransmit, delayed acks and probes
 554 * We may wish use just one timer maintaining a list of expire jiffies
 555 * to optimize.
 556 */
 557void inet_csk_init_xmit_timers(struct sock *sk,
 558			       void (*retransmit_handler)(struct timer_list *t),
 559			       void (*delack_handler)(struct timer_list *t),
 560			       void (*keepalive_handler)(struct timer_list *t))
 561{
 562	struct inet_connection_sock *icsk = inet_csk(sk);
 563
 564	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
 565	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
 566	timer_setup(&sk->sk_timer, keepalive_handler, 0);
 567	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 568}
 569EXPORT_SYMBOL(inet_csk_init_xmit_timers);
 570
 571void inet_csk_clear_xmit_timers(struct sock *sk)
 572{
 573	struct inet_connection_sock *icsk = inet_csk(sk);
 574
 575	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 576
 577	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
 578	sk_stop_timer(sk, &icsk->icsk_delack_timer);
 579	sk_stop_timer(sk, &sk->sk_timer);
 580}
 581EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
 582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583void inet_csk_delete_keepalive_timer(struct sock *sk)
 584{
 585	sk_stop_timer(sk, &sk->sk_timer);
 586}
 587EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
 588
 589void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
 590{
 591	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
 592}
 593EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
 594
 595struct dst_entry *inet_csk_route_req(const struct sock *sk,
 596				     struct flowi4 *fl4,
 597				     const struct request_sock *req)
 598{
 599	const struct inet_request_sock *ireq = inet_rsk(req);
 600	struct net *net = read_pnet(&ireq->ireq_net);
 601	struct ip_options_rcu *opt;
 602	struct rtable *rt;
 603
 604	rcu_read_lock();
 605	opt = rcu_dereference(ireq->ireq_opt);
 606
 607	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 608			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 609			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 610			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 611			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 612			   htons(ireq->ir_num), sk->sk_uid);
 613	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 614	rt = ip_route_output_flow(net, fl4, sk);
 615	if (IS_ERR(rt))
 616		goto no_route;
 617	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 618		goto route_err;
 619	rcu_read_unlock();
 620	return &rt->dst;
 621
 622route_err:
 623	ip_rt_put(rt);
 624no_route:
 625	rcu_read_unlock();
 626	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 627	return NULL;
 628}
 629EXPORT_SYMBOL_GPL(inet_csk_route_req);
 630
 631struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
 632					    struct sock *newsk,
 633					    const struct request_sock *req)
 634{
 635	const struct inet_request_sock *ireq = inet_rsk(req);
 636	struct net *net = read_pnet(&ireq->ireq_net);
 637	struct inet_sock *newinet = inet_sk(newsk);
 638	struct ip_options_rcu *opt;
 639	struct flowi4 *fl4;
 640	struct rtable *rt;
 641
 642	opt = rcu_dereference(ireq->ireq_opt);
 643	fl4 = &newinet->cork.fl.u.ip4;
 644
 645	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 646			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
 647			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 648			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 649			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 650			   htons(ireq->ir_num), sk->sk_uid);
 651	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 652	rt = ip_route_output_flow(net, fl4, sk);
 653	if (IS_ERR(rt))
 654		goto no_route;
 655	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 656		goto route_err;
 657	return &rt->dst;
 658
 659route_err:
 660	ip_rt_put(rt);
 661no_route:
 662	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 663	return NULL;
 664}
 665EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
 666
 667/* Decide when to expire the request and when to resend SYN-ACK */
 668static void syn_ack_recalc(struct request_sock *req,
 669			   const int max_syn_ack_retries,
 670			   const u8 rskq_defer_accept,
 671			   int *expire, int *resend)
 672{
 673	if (!rskq_defer_accept) {
 674		*expire = req->num_timeout >= max_syn_ack_retries;
 675		*resend = 1;
 676		return;
 677	}
 678	*expire = req->num_timeout >= max_syn_ack_retries &&
 679		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
 680	/* Do not resend while waiting for data after ACK,
 681	 * start to resend on end of deferring period to give
 682	 * last chance for data or ACK to create established socket.
 683	 */
 684	*resend = !inet_rsk(req)->acked ||
 685		  req->num_timeout >= rskq_defer_accept - 1;
 686}
 687
 688int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
 689{
 690	int err = req->rsk_ops->rtx_syn_ack(parent, req);
 691
 692	if (!err)
 693		req->num_retrans++;
 694	return err;
 695}
 696EXPORT_SYMBOL(inet_rtx_syn_ack);
 697
 698static struct request_sock *inet_reqsk_clone(struct request_sock *req,
 699					     struct sock *sk)
 700{
 701	struct sock *req_sk, *nreq_sk;
 702	struct request_sock *nreq;
 703
 704	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
 705	if (!nreq) {
 706		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
 707
 708		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
 709		sock_put(sk);
 710		return NULL;
 711	}
 712
 713	req_sk = req_to_sk(req);
 714	nreq_sk = req_to_sk(nreq);
 715
 716	memcpy(nreq_sk, req_sk,
 717	       offsetof(struct sock, sk_dontcopy_begin));
 718	memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
 719	       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
 
 720
 721	sk_node_init(&nreq_sk->sk_node);
 722	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
 723#ifdef CONFIG_XPS
 724	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
 725#endif
 726	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
 727
 728	nreq->rsk_listener = sk;
 729
 730	/* We need not acquire fastopenq->lock
 731	 * because the child socket is locked in inet_csk_listen_stop().
 732	 */
 733	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
 734		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
 735
 736	return nreq;
 737}
 738
 739static void reqsk_queue_migrated(struct request_sock_queue *queue,
 740				 const struct request_sock *req)
 741{
 742	if (req->num_timeout == 0)
 743		atomic_inc(&queue->young);
 744	atomic_inc(&queue->qlen);
 745}
 746
 747static void reqsk_migrate_reset(struct request_sock *req)
 748{
 749	req->saved_syn = NULL;
 750#if IS_ENABLED(CONFIG_IPV6)
 751	inet_rsk(req)->ipv6_opt = NULL;
 752	inet_rsk(req)->pktopts = NULL;
 753#else
 754	inet_rsk(req)->ireq_opt = NULL;
 755#endif
 756}
 757
 758/* return true if req was found in the ehash table */
 759static bool reqsk_queue_unlink(struct request_sock *req)
 760{
 761	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
 762	bool found = false;
 763
 764	if (sk_hashed(req_to_sk(req))) {
 
 765		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
 766
 767		spin_lock(lock);
 768		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
 769		spin_unlock(lock);
 770	}
 771	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
 772		reqsk_put(req);
 773	return found;
 774}
 775
 776bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
 777{
 778	bool unlinked = reqsk_queue_unlink(req);
 779
 780	if (unlinked) {
 781		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
 782		reqsk_put(req);
 783	}
 784	return unlinked;
 785}
 786EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
 787
 788void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
 789{
 790	inet_csk_reqsk_queue_drop(sk, req);
 791	reqsk_put(req);
 792}
 793EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
 794
 795static void reqsk_timer_handler(struct timer_list *t)
 796{
 797	struct request_sock *req = from_timer(req, t, rsk_timer);
 798	struct request_sock *nreq = NULL, *oreq = req;
 799	struct sock *sk_listener = req->rsk_listener;
 800	struct inet_connection_sock *icsk;
 801	struct request_sock_queue *queue;
 802	struct net *net;
 803	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
 804
 805	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
 806		struct sock *nsk;
 807
 808		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
 809		if (!nsk)
 810			goto drop;
 811
 812		nreq = inet_reqsk_clone(req, nsk);
 813		if (!nreq)
 814			goto drop;
 815
 816		/* The new timer for the cloned req can decrease the 2
 817		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
 818		 * hold another count to prevent use-after-free and
 819		 * call reqsk_put() just before return.
 820		 */
 821		refcount_set(&nreq->rsk_refcnt, 2 + 1);
 822		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
 823		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
 824
 825		req = nreq;
 826		sk_listener = nsk;
 827	}
 828
 829	icsk = inet_csk(sk_listener);
 830	net = sock_net(sk_listener);
 831	max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
 
 832	/* Normally all the openreqs are young and become mature
 833	 * (i.e. converted to established socket) for first timeout.
 834	 * If synack was not acknowledged for 1 second, it means
 835	 * one of the following things: synack was lost, ack was lost,
 836	 * rtt is high or nobody planned to ack (i.e. synflood).
 837	 * When server is a bit loaded, queue is populated with old
 838	 * open requests, reducing effective size of queue.
 839	 * When server is well loaded, queue size reduces to zero
 840	 * after several minutes of work. It is not synflood,
 841	 * it is normal operation. The solution is pruning
 842	 * too old entries overriding normal timeout, when
 843	 * situation becomes dangerous.
 844	 *
 845	 * Essentially, we reserve half of room for young
 846	 * embrions; and abort old ones without pity, if old
 847	 * ones are about to clog our table.
 848	 */
 849	queue = &icsk->icsk_accept_queue;
 850	qlen = reqsk_queue_len(queue);
 851	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
 852		int young = reqsk_queue_len_young(queue) << 1;
 853
 854		while (max_syn_ack_retries > 2) {
 855			if (qlen < young)
 856				break;
 857			max_syn_ack_retries--;
 858			young <<= 1;
 859		}
 860	}
 861	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
 862		       &expire, &resend);
 863	req->rsk_ops->syn_ack_timeout(req);
 864	if (!expire &&
 865	    (!resend ||
 866	     !inet_rtx_syn_ack(sk_listener, req) ||
 867	     inet_rsk(req)->acked)) {
 868		unsigned long timeo;
 869
 870		if (req->num_timeout++ == 0)
 871			atomic_dec(&queue->young);
 872		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
 873		mod_timer(&req->rsk_timer, jiffies + timeo);
 874
 875		if (!nreq)
 876			return;
 877
 878		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
 879			/* delete timer */
 880			inet_csk_reqsk_queue_drop(sk_listener, nreq);
 881			goto no_ownership;
 882		}
 883
 884		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
 885		reqsk_migrate_reset(oreq);
 886		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
 887		reqsk_put(oreq);
 888
 889		reqsk_put(nreq);
 890		return;
 891	}
 892
 893	/* Even if we can clone the req, we may need not retransmit any more
 894	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
 895	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
 896	 */
 897	if (nreq) {
 898		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
 899no_ownership:
 900		reqsk_migrate_reset(nreq);
 901		reqsk_queue_removed(queue, nreq);
 902		__reqsk_free(nreq);
 903	}
 904
 905drop:
 906	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
 907}
 908
 909static void reqsk_queue_hash_req(struct request_sock *req,
 910				 unsigned long timeout)
 911{
 912	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
 913	mod_timer(&req->rsk_timer, jiffies + timeout);
 914
 915	inet_ehash_insert(req_to_sk(req), NULL, NULL);
 916	/* before letting lookups find us, make sure all req fields
 917	 * are committed to memory and refcnt initialized.
 918	 */
 919	smp_wmb();
 920	refcount_set(&req->rsk_refcnt, 2 + 1);
 921}
 922
 923void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
 924				   unsigned long timeout)
 925{
 926	reqsk_queue_hash_req(req, timeout);
 927	inet_csk_reqsk_queue_added(sk);
 928}
 929EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
 930
 931static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
 932			   const gfp_t priority)
 933{
 934	struct inet_connection_sock *icsk = inet_csk(newsk);
 935
 936	if (!icsk->icsk_ulp_ops)
 937		return;
 938
 939	if (icsk->icsk_ulp_ops->clone)
 940		icsk->icsk_ulp_ops->clone(req, newsk, priority);
 941}
 942
 943/**
 944 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
 945 *	@sk: the socket to clone
 946 *	@req: request_sock
 947 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
 948 *
 949 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
 950 */
 951struct sock *inet_csk_clone_lock(const struct sock *sk,
 952				 const struct request_sock *req,
 953				 const gfp_t priority)
 954{
 955	struct sock *newsk = sk_clone_lock(sk, priority);
 956
 957	if (newsk) {
 958		struct inet_connection_sock *newicsk = inet_csk(newsk);
 959
 960		inet_sk_set_state(newsk, TCP_SYN_RECV);
 961		newicsk->icsk_bind_hash = NULL;
 
 962
 963		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
 964		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
 965		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
 966
 967		/* listeners have SOCK_RCU_FREE, not the children */
 968		sock_reset_flag(newsk, SOCK_RCU_FREE);
 969
 970		inet_sk(newsk)->mc_list = NULL;
 971
 972		newsk->sk_mark = inet_rsk(req)->ir_mark;
 973		atomic64_set(&newsk->sk_cookie,
 974			     atomic64_read(&inet_rsk(req)->ir_cookie));
 975
 976		newicsk->icsk_retransmits = 0;
 977		newicsk->icsk_backoff	  = 0;
 978		newicsk->icsk_probes_out  = 0;
 979		newicsk->icsk_probes_tstamp = 0;
 980
 981		/* Deinitialize accept_queue to trap illegal accesses. */
 982		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
 983
 984		inet_clone_ulp(req, newsk, priority);
 985
 986		security_inet_csk_clone(newsk, req);
 987	}
 988	return newsk;
 989}
 990EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
 991
 992/*
 993 * At this point, there should be no process reference to this
 994 * socket, and thus no user references at all.  Therefore we
 995 * can assume the socket waitqueue is inactive and nobody will
 996 * try to jump onto it.
 997 */
 998void inet_csk_destroy_sock(struct sock *sk)
 999{
1000	WARN_ON(sk->sk_state != TCP_CLOSE);
1001	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1002
1003	/* It cannot be in hash table! */
1004	WARN_ON(!sk_unhashed(sk));
1005
1006	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1007	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1008
1009	sk->sk_prot->destroy(sk);
1010
1011	sk_stream_kill_queues(sk);
1012
1013	xfrm_sk_free_policy(sk);
1014
1015	sk_refcnt_debug_release(sk);
1016
1017	percpu_counter_dec(sk->sk_prot->orphan_count);
1018
1019	sock_put(sk);
1020}
1021EXPORT_SYMBOL(inet_csk_destroy_sock);
1022
1023/* This function allows to force a closure of a socket after the call to
1024 * tcp/dccp_create_openreq_child().
1025 */
1026void inet_csk_prepare_forced_close(struct sock *sk)
1027	__releases(&sk->sk_lock.slock)
1028{
1029	/* sk_clone_lock locked the socket and set refcnt to 2 */
1030	bh_unlock_sock(sk);
1031	sock_put(sk);
1032	inet_csk_prepare_for_destroy_sock(sk);
1033	inet_sk(sk)->inet_num = 0;
1034}
1035EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1036
1037int inet_csk_listen_start(struct sock *sk, int backlog)
 
 
 
 
 
 
 
 
 
 
1038{
1039	struct inet_connection_sock *icsk = inet_csk(sk);
1040	struct inet_sock *inet = inet_sk(sk);
1041	int err = -EADDRINUSE;
 
 
 
 
1042
1043	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1044
1045	sk->sk_ack_backlog = 0;
1046	inet_csk_delack_init(sk);
1047
1048	/* There is race window here: we announce ourselves listening,
1049	 * but this transition is still not validated by get_port().
1050	 * It is OK, because this socket enters to hash table only
1051	 * after validation is complete.
1052	 */
1053	inet_sk_state_store(sk, TCP_LISTEN);
1054	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
 
1055		inet->inet_sport = htons(inet->inet_num);
1056
1057		sk_dst_reset(sk);
1058		err = sk->sk_prot->hash(sk);
1059
1060		if (likely(!err))
1061			return 0;
1062	}
1063
1064	inet_sk_set_state(sk, TCP_CLOSE);
1065	return err;
1066}
1067EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1068
1069static void inet_child_forget(struct sock *sk, struct request_sock *req,
1070			      struct sock *child)
1071{
1072	sk->sk_prot->disconnect(child, O_NONBLOCK);
1073
1074	sock_orphan(child);
1075
1076	percpu_counter_inc(sk->sk_prot->orphan_count);
1077
1078	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1079		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1080		BUG_ON(sk != req->rsk_listener);
1081
1082		/* Paranoid, to prevent race condition if
1083		 * an inbound pkt destined for child is
1084		 * blocked by sock lock in tcp_v4_rcv().
1085		 * Also to satisfy an assertion in
1086		 * tcp_v4_destroy_sock().
1087		 */
1088		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1089	}
1090	inet_csk_destroy_sock(child);
1091}
1092
1093struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1094				      struct request_sock *req,
1095				      struct sock *child)
1096{
1097	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1098
1099	spin_lock(&queue->rskq_lock);
1100	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1101		inet_child_forget(sk, req, child);
1102		child = NULL;
1103	} else {
1104		req->sk = child;
1105		req->dl_next = NULL;
1106		if (queue->rskq_accept_head == NULL)
1107			WRITE_ONCE(queue->rskq_accept_head, req);
1108		else
1109			queue->rskq_accept_tail->dl_next = req;
1110		queue->rskq_accept_tail = req;
1111		sk_acceptq_added(sk);
1112	}
1113	spin_unlock(&queue->rskq_lock);
1114	return child;
1115}
1116EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1117
1118struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1119					 struct request_sock *req, bool own_req)
1120{
1121	if (own_req) {
1122		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1123		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1124
1125		if (sk != req->rsk_listener) {
1126			/* another listening sk has been selected,
1127			 * migrate the req to it.
1128			 */
1129			struct request_sock *nreq;
1130
1131			/* hold a refcnt for the nreq->rsk_listener
1132			 * which is assigned in inet_reqsk_clone()
1133			 */
1134			sock_hold(sk);
1135			nreq = inet_reqsk_clone(req, sk);
1136			if (!nreq) {
1137				inet_child_forget(sk, req, child);
1138				goto child_put;
1139			}
1140
1141			refcount_set(&nreq->rsk_refcnt, 1);
1142			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1143				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1144				reqsk_migrate_reset(req);
1145				reqsk_put(req);
1146				return child;
1147			}
1148
1149			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1150			reqsk_migrate_reset(nreq);
1151			__reqsk_free(nreq);
1152		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1153			return child;
1154		}
1155	}
1156	/* Too bad, another child took ownership of the request, undo. */
1157child_put:
1158	bh_unlock_sock(child);
1159	sock_put(child);
1160	return NULL;
1161}
1162EXPORT_SYMBOL(inet_csk_complete_hashdance);
1163
1164/*
1165 *	This routine closes sockets which have been at least partially
1166 *	opened, but not yet accepted.
1167 */
1168void inet_csk_listen_stop(struct sock *sk)
1169{
1170	struct inet_connection_sock *icsk = inet_csk(sk);
1171	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1172	struct request_sock *next, *req;
1173
1174	/* Following specs, it would be better either to send FIN
1175	 * (and enter FIN-WAIT-1, it is normal close)
1176	 * or to send active reset (abort).
1177	 * Certainly, it is pretty dangerous while synflood, but it is
1178	 * bad justification for our negligence 8)
1179	 * To be honest, we are not able to make either
1180	 * of the variants now.			--ANK
1181	 */
1182	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1183		struct sock *child = req->sk, *nsk;
1184		struct request_sock *nreq;
1185
1186		local_bh_disable();
1187		bh_lock_sock(child);
1188		WARN_ON(sock_owned_by_user(child));
1189		sock_hold(child);
1190
1191		nsk = reuseport_migrate_sock(sk, child, NULL);
1192		if (nsk) {
1193			nreq = inet_reqsk_clone(req, nsk);
1194			if (nreq) {
1195				refcount_set(&nreq->rsk_refcnt, 1);
1196
1197				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1198					__NET_INC_STATS(sock_net(nsk),
1199							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1200					reqsk_migrate_reset(req);
1201				} else {
1202					__NET_INC_STATS(sock_net(nsk),
1203							LINUX_MIB_TCPMIGRATEREQFAILURE);
1204					reqsk_migrate_reset(nreq);
1205					__reqsk_free(nreq);
1206				}
1207
1208				/* inet_csk_reqsk_queue_add() has already
1209				 * called inet_child_forget() on failure case.
1210				 */
1211				goto skip_child_forget;
1212			}
1213		}
1214
1215		inet_child_forget(sk, req, child);
1216skip_child_forget:
1217		reqsk_put(req);
1218		bh_unlock_sock(child);
1219		local_bh_enable();
1220		sock_put(child);
1221
1222		cond_resched();
1223	}
1224	if (queue->fastopenq.rskq_rst_head) {
1225		/* Free all the reqs queued in rskq_rst_head. */
1226		spin_lock_bh(&queue->fastopenq.lock);
1227		req = queue->fastopenq.rskq_rst_head;
1228		queue->fastopenq.rskq_rst_head = NULL;
1229		spin_unlock_bh(&queue->fastopenq.lock);
1230		while (req != NULL) {
1231			next = req->dl_next;
1232			reqsk_put(req);
1233			req = next;
1234		}
1235	}
1236	WARN_ON_ONCE(sk->sk_ack_backlog);
1237}
1238EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1239
1240void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1241{
1242	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1243	const struct inet_sock *inet = inet_sk(sk);
1244
1245	sin->sin_family		= AF_INET;
1246	sin->sin_addr.s_addr	= inet->inet_daddr;
1247	sin->sin_port		= inet->inet_dport;
1248}
1249EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1250
1251static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1252{
1253	const struct inet_sock *inet = inet_sk(sk);
1254	const struct ip_options_rcu *inet_opt;
1255	__be32 daddr = inet->inet_daddr;
1256	struct flowi4 *fl4;
1257	struct rtable *rt;
1258
1259	rcu_read_lock();
1260	inet_opt = rcu_dereference(inet->inet_opt);
1261	if (inet_opt && inet_opt->opt.srr)
1262		daddr = inet_opt->opt.faddr;
1263	fl4 = &fl->u.ip4;
1264	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1265				   inet->inet_saddr, inet->inet_dport,
1266				   inet->inet_sport, sk->sk_protocol,
1267				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1268	if (IS_ERR(rt))
1269		rt = NULL;
1270	if (rt)
1271		sk_setup_caps(sk, &rt->dst);
1272	rcu_read_unlock();
1273
1274	return &rt->dst;
1275}
1276
1277struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1278{
1279	struct dst_entry *dst = __sk_dst_check(sk, 0);
1280	struct inet_sock *inet = inet_sk(sk);
1281
1282	if (!dst) {
1283		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1284		if (!dst)
1285			goto out;
1286	}
1287	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1288
1289	dst = __sk_dst_check(sk, 0);
1290	if (!dst)
1291		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1292out:
1293	return dst;
1294}
1295EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Support for INET connection oriented protocols.
   8 *
   9 * Authors:	See the TCP sources
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/jhash.h>
  14
  15#include <net/inet_connection_sock.h>
  16#include <net/inet_hashtables.h>
  17#include <net/inet_timewait_sock.h>
  18#include <net/ip.h>
  19#include <net/route.h>
  20#include <net/tcp_states.h>
  21#include <net/xfrm.h>
  22#include <net/tcp.h>
  23#include <net/sock_reuseport.h>
  24#include <net/addrconf.h>
  25
  26#if IS_ENABLED(CONFIG_IPV6)
  27/* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
  28 *				if IPv6 only, and any IPv4 addresses
  29 *				if not IPv6 only
  30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  31 *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
  32 *				and 0.0.0.0 equals to 0.0.0.0 only
  33 */
  34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
  35				 const struct in6_addr *sk2_rcv_saddr6,
  36				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  37				 bool sk1_ipv6only, bool sk2_ipv6only,
  38				 bool match_sk1_wildcard,
  39				 bool match_sk2_wildcard)
  40{
  41	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
  42	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
  43
  44	/* if both are mapped, treat as IPv4 */
  45	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
  46		if (!sk2_ipv6only) {
  47			if (sk1_rcv_saddr == sk2_rcv_saddr)
  48				return true;
  49			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  50				(match_sk2_wildcard && !sk2_rcv_saddr);
  51		}
  52		return false;
  53	}
  54
  55	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
  56		return true;
  57
  58	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
  59	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
  60		return true;
  61
  62	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
  63	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
  64		return true;
  65
  66	if (sk2_rcv_saddr6 &&
  67	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
  68		return true;
  69
  70	return false;
  71}
  72#endif
  73
  74/* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
  75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
  76 *				0.0.0.0 only equals to 0.0.0.0
  77 */
  78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
  79				 bool sk2_ipv6only, bool match_sk1_wildcard,
  80				 bool match_sk2_wildcard)
  81{
  82	if (!sk2_ipv6only) {
  83		if (sk1_rcv_saddr == sk2_rcv_saddr)
  84			return true;
  85		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
  86			(match_sk2_wildcard && !sk2_rcv_saddr);
  87	}
  88	return false;
  89}
  90
  91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
  92			  bool match_wildcard)
  93{
  94#if IS_ENABLED(CONFIG_IPV6)
  95	if (sk->sk_family == AF_INET6)
  96		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
  97					    inet6_rcv_saddr(sk2),
  98					    sk->sk_rcv_saddr,
  99					    sk2->sk_rcv_saddr,
 100					    ipv6_only_sock(sk),
 101					    ipv6_only_sock(sk2),
 102					    match_wildcard,
 103					    match_wildcard);
 104#endif
 105	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
 106				    ipv6_only_sock(sk2), match_wildcard,
 107				    match_wildcard);
 108}
 109EXPORT_SYMBOL(inet_rcv_saddr_equal);
 110
 111bool inet_rcv_saddr_any(const struct sock *sk)
 112{
 113#if IS_ENABLED(CONFIG_IPV6)
 114	if (sk->sk_family == AF_INET6)
 115		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
 116#endif
 117	return !sk->sk_rcv_saddr;
 118}
 119
 120/**
 121 *	inet_sk_get_local_port_range - fetch ephemeral ports range
 122 *	@sk: socket
 123 *	@low: pointer to low port
 124 *	@high: pointer to high port
 125 *
 126 *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
 127 *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
 128 *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
 129 */
 130bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
 131{
 132	int lo, hi, sk_lo, sk_hi;
 133	bool local_range = false;
 134	u32 sk_range;
 135
 136	inet_get_local_port_range(sock_net(sk), &lo, &hi);
 137
 138	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
 139	if (unlikely(sk_range)) {
 140		sk_lo = sk_range & 0xffff;
 141		sk_hi = sk_range >> 16;
 142
 143		if (lo <= sk_lo && sk_lo <= hi)
 144			lo = sk_lo;
 145		if (lo <= sk_hi && sk_hi <= hi)
 146			hi = sk_hi;
 147		local_range = true;
 148	}
 149
 150	*low = lo;
 151	*high = hi;
 152	return local_range;
 153}
 154EXPORT_SYMBOL(inet_sk_get_local_port_range);
 155
 156static bool inet_use_bhash2_on_bind(const struct sock *sk)
 157{
 158#if IS_ENABLED(CONFIG_IPV6)
 159	if (sk->sk_family == AF_INET6) {
 160		int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
 161
 162		if (addr_type == IPV6_ADDR_ANY)
 163			return false;
 164
 165		if (addr_type != IPV6_ADDR_MAPPED)
 166			return true;
 167	}
 168#endif
 169	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
 170}
 171
 172static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
 173			       kuid_t sk_uid, bool relax,
 174			       bool reuseport_cb_ok, bool reuseport_ok)
 175{
 176	int bound_dev_if2;
 177
 178	if (sk == sk2)
 179		return false;
 180
 181	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
 182
 183	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
 184	    sk->sk_bound_dev_if == bound_dev_if2) {
 185		if (sk->sk_reuse && sk2->sk_reuse &&
 186		    sk2->sk_state != TCP_LISTEN) {
 187			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
 188				       sk2->sk_reuseport && reuseport_cb_ok &&
 189				       (sk2->sk_state == TCP_TIME_WAIT ||
 190					uid_eq(sk_uid, sock_i_uid(sk2)))))
 191				return true;
 192		} else if (!reuseport_ok || !sk->sk_reuseport ||
 193			   !sk2->sk_reuseport || !reuseport_cb_ok ||
 194			   (sk2->sk_state != TCP_TIME_WAIT &&
 195			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
 196			return true;
 197		}
 198	}
 199	return false;
 200}
 201
 202static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
 203				   kuid_t sk_uid, bool relax,
 204				   bool reuseport_cb_ok, bool reuseport_ok)
 205{
 206	if (ipv6_only_sock(sk2)) {
 207		if (sk->sk_family == AF_INET)
 208			return false;
 209
 210#if IS_ENABLED(CONFIG_IPV6)
 211		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
 212			return false;
 213#endif
 214	}
 215
 216	return inet_bind_conflict(sk, sk2, sk_uid, relax,
 217				  reuseport_cb_ok, reuseport_ok);
 218}
 219
 220static bool inet_bhash2_conflict(const struct sock *sk,
 221				 const struct inet_bind2_bucket *tb2,
 222				 kuid_t sk_uid,
 223				 bool relax, bool reuseport_cb_ok,
 224				 bool reuseport_ok)
 225{
 226	struct sock *sk2;
 227
 228	sk_for_each_bound(sk2, &tb2->owners) {
 229		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
 230					   reuseport_cb_ok, reuseport_ok))
 231			return true;
 232	}
 233
 234	return false;
 
 
 235}
 
 236
 237#define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
 238	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
 239		sk_for_each_bound(sk2, &(__tb2)->owners)
 240
 241/* This should be called only when the tb and tb2 hashbuckets' locks are held */
 242static int inet_csk_bind_conflict(const struct sock *sk,
 243				  const struct inet_bind_bucket *tb,
 244				  const struct inet_bind2_bucket *tb2, /* may be null */
 245				  bool relax, bool reuseport_ok)
 246{
 
 
 
 
 
 247	kuid_t uid = sock_i_uid((struct sock *)sk);
 248	struct sock_reuseport *reuseport_cb;
 249	bool reuseport_cb_ok;
 250	struct sock *sk2;
 251
 252	rcu_read_lock();
 253	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
 254	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
 255	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
 256	rcu_read_unlock();
 257
 258	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
 259	 * ipv4) should have been checked already. We need to do these two
 260	 * checks separately because their spinlocks have to be acquired/released
 261	 * independently of each other, to prevent possible deadlocks
 262	 */
 263	if (inet_use_bhash2_on_bind(sk))
 264		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
 265						   reuseport_cb_ok, reuseport_ok);
 266
 267	/* Unlike other sk lookup places we do not check
 268	 * for sk_net here, since _all_ the socks listed
 269	 * in tb->owners and tb2->owners list belong
 270	 * to the same net - the one this bucket belongs to.
 271	 */
 272	sk_for_each_bound_bhash(sk2, tb2, tb) {
 273		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
 274			continue;
 275
 276		if (inet_rcv_saddr_equal(sk, sk2, true))
 277			return true;
 278	}
 279
 280	return false;
 281}
 282
 283/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
 284 * INADDR_ANY (if ipv4) socket.
 285 *
 286 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
 287 * against concurrent binds on the port for addr any
 288 */
 289static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
 290					  bool relax, bool reuseport_ok)
 291{
 292	kuid_t uid = sock_i_uid((struct sock *)sk);
 293	const struct net *net = sock_net(sk);
 294	struct sock_reuseport *reuseport_cb;
 295	struct inet_bind_hashbucket *head2;
 296	struct inet_bind2_bucket *tb2;
 297	bool conflict = false;
 298	bool reuseport_cb_ok;
 299
 300	rcu_read_lock();
 301	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
 302	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
 303	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
 304	rcu_read_unlock();
 305
 306	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
 307
 308	spin_lock(&head2->lock);
 309
 310	inet_bind_bucket_for_each(tb2, &head2->chain) {
 311		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
 312			continue;
 313
 314		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
 315			continue;
 316
 317		conflict = true;
 318		break;
 319	}
 320
 321	spin_unlock(&head2->lock);
 322
 323	return conflict;
 324}
 325
 326/*
 327 * Find an open port number for the socket.  Returns with the
 328 * inet_bind_hashbucket locks held if successful.
 329 */
 330static struct inet_bind_hashbucket *
 331inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
 332			struct inet_bind2_bucket **tb2_ret,
 333			struct inet_bind_hashbucket **head2_ret, int *port_ret)
 334{
 335	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
 336	int i, low, high, attempt_half, port, l3mdev;
 337	struct inet_bind_hashbucket *head, *head2;
 338	struct net *net = sock_net(sk);
 339	struct inet_bind2_bucket *tb2;
 
 340	struct inet_bind_bucket *tb;
 341	u32 remaining, offset;
 342	bool relax = false;
 343
 344	l3mdev = inet_sk_bound_l3mdev(sk);
 345ports_exhausted:
 346	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
 347other_half_scan:
 348	inet_sk_get_local_port_range(sk, &low, &high);
 349	high++; /* [32768, 60999] -> [32768, 61000[ */
 350	if (high - low < 4)
 351		attempt_half = 0;
 352	if (attempt_half) {
 353		int half = low + (((high - low) >> 2) << 1);
 354
 355		if (attempt_half == 1)
 356			high = half;
 357		else
 358			low = half;
 359	}
 360	remaining = high - low;
 361	if (likely(remaining > 1))
 362		remaining &= ~1U;
 363
 364	offset = get_random_u32_below(remaining);
 365	/* __inet_hash_connect() favors ports having @low parity
 366	 * We do the opposite to not pollute connect() users.
 367	 */
 368	offset |= 1U;
 369
 370other_parity_scan:
 371	port = low + offset;
 372	for (i = 0; i < remaining; i += 2, port += 2) {
 373		if (unlikely(port >= high))
 374			port -= remaining;
 375		if (inet_is_local_reserved_port(net, port))
 376			continue;
 377		head = &hinfo->bhash[inet_bhashfn(net, port,
 378						  hinfo->bhash_size)];
 379		spin_lock_bh(&head->lock);
 380		if (inet_use_bhash2_on_bind(sk)) {
 381			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
 382				goto next_port;
 383		}
 384
 385		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
 386		spin_lock(&head2->lock);
 387		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
 388		inet_bind_bucket_for_each(tb, &head->chain)
 389			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
 390				if (!inet_csk_bind_conflict(sk, tb, tb2,
 391							    relax, false))
 392					goto success;
 393				spin_unlock(&head2->lock);
 394				goto next_port;
 395			}
 396		tb = NULL;
 397		goto success;
 398next_port:
 399		spin_unlock_bh(&head->lock);
 400		cond_resched();
 401	}
 402
 403	offset--;
 404	if (!(offset & 1))
 405		goto other_parity_scan;
 406
 407	if (attempt_half == 1) {
 408		/* OK we now try the upper half of the range */
 409		attempt_half = 2;
 410		goto other_half_scan;
 411	}
 412
 413	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
 414		/* We still have a chance to connect to different destinations */
 415		relax = true;
 416		goto ports_exhausted;
 417	}
 418	return NULL;
 419success:
 420	*port_ret = port;
 421	*tb_ret = tb;
 422	*tb2_ret = tb2;
 423	*head2_ret = head2;
 424	return head;
 425}
 426
 427static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
 428				     struct sock *sk)
 429{
 430	kuid_t uid = sock_i_uid(sk);
 431
 432	if (tb->fastreuseport <= 0)
 433		return 0;
 434	if (!sk->sk_reuseport)
 435		return 0;
 436	if (rcu_access_pointer(sk->sk_reuseport_cb))
 437		return 0;
 438	if (!uid_eq(tb->fastuid, uid))
 439		return 0;
 440	/* We only need to check the rcv_saddr if this tb was once marked
 441	 * without fastreuseport and then was reset, as we can only know that
 442	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
 443	 * owners list.
 444	 */
 445	if (tb->fastreuseport == FASTREUSEPORT_ANY)
 446		return 1;
 447#if IS_ENABLED(CONFIG_IPV6)
 448	if (tb->fast_sk_family == AF_INET6)
 449		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
 450					    inet6_rcv_saddr(sk),
 451					    tb->fast_rcv_saddr,
 452					    sk->sk_rcv_saddr,
 453					    tb->fast_ipv6_only,
 454					    ipv6_only_sock(sk), true, false);
 455#endif
 456	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
 457				    ipv6_only_sock(sk), true, false);
 458}
 459
 460void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
 461			       struct sock *sk)
 462{
 463	kuid_t uid = sock_i_uid(sk);
 464	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 465
 466	if (hlist_empty(&tb->bhash2)) {
 467		tb->fastreuse = reuse;
 468		if (sk->sk_reuseport) {
 469			tb->fastreuseport = FASTREUSEPORT_ANY;
 470			tb->fastuid = uid;
 471			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 472			tb->fast_ipv6_only = ipv6_only_sock(sk);
 473			tb->fast_sk_family = sk->sk_family;
 474#if IS_ENABLED(CONFIG_IPV6)
 475			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 476#endif
 477		} else {
 478			tb->fastreuseport = 0;
 479		}
 480	} else {
 481		if (!reuse)
 482			tb->fastreuse = 0;
 483		if (sk->sk_reuseport) {
 484			/* We didn't match or we don't have fastreuseport set on
 485			 * the tb, but we have sk_reuseport set on this socket
 486			 * and we know that there are no bind conflicts with
 487			 * this socket in this tb, so reset our tb's reuseport
 488			 * settings so that any subsequent sockets that match
 489			 * our current socket will be put on the fast path.
 490			 *
 491			 * If we reset we need to set FASTREUSEPORT_STRICT so we
 492			 * do extra checking for all subsequent sk_reuseport
 493			 * socks.
 494			 */
 495			if (!sk_reuseport_match(tb, sk)) {
 496				tb->fastreuseport = FASTREUSEPORT_STRICT;
 497				tb->fastuid = uid;
 498				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
 499				tb->fast_ipv6_only = ipv6_only_sock(sk);
 500				tb->fast_sk_family = sk->sk_family;
 501#if IS_ENABLED(CONFIG_IPV6)
 502				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 503#endif
 504			}
 505		} else {
 506			tb->fastreuseport = 0;
 507		}
 508	}
 509}
 510
 511/* Obtain a reference to a local port for the given sock,
 512 * if snum is zero it means select any available local port.
 513 * We try to allocate an odd port (and leave even ports for connect())
 514 */
 515int inet_csk_get_port(struct sock *sk, unsigned short snum)
 516{
 517	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
 518	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
 519	bool found_port = false, check_bind_conflict = true;
 520	bool bhash_created = false, bhash2_created = false;
 521	int ret = -EADDRINUSE, port = snum, l3mdev;
 522	struct inet_bind_hashbucket *head, *head2;
 523	struct inet_bind2_bucket *tb2 = NULL;
 524	struct inet_bind_bucket *tb = NULL;
 525	bool head2_lock_acquired = false;
 526	struct net *net = sock_net(sk);
 527
 528	l3mdev = inet_sk_bound_l3mdev(sk);
 529
 530	if (!port) {
 531		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
 532		if (!head)
 533			return ret;
 534
 535		head2_lock_acquired = true;
 536
 537		if (tb && tb2)
 538			goto success;
 539		found_port = true;
 540	} else {
 541		head = &hinfo->bhash[inet_bhashfn(net, port,
 542						  hinfo->bhash_size)];
 543		spin_lock_bh(&head->lock);
 544		inet_bind_bucket_for_each(tb, &head->chain)
 545			if (inet_bind_bucket_match(tb, net, port, l3mdev))
 546				break;
 547	}
 548
 549	if (!tb) {
 550		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
 551					     head, port, l3mdev);
 552		if (!tb)
 553			goto fail_unlock;
 554		bhash_created = true;
 555	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557	if (!found_port) {
 558		if (!hlist_empty(&tb->bhash2)) {
 559			if (sk->sk_reuse == SK_FORCE_REUSE ||
 560			    (tb->fastreuse > 0 && reuse) ||
 561			    sk_reuseport_match(tb, sk))
 562				check_bind_conflict = false;
 563		}
 564
 565		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
 566			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
 567				goto fail_unlock;
 568		}
 569
 570		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
 571		spin_lock(&head2->lock);
 572		head2_lock_acquired = true;
 573		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
 574	}
 575
 576	if (!tb2) {
 577		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
 578					       net, head2, tb, sk);
 579		if (!tb2)
 580			goto fail_unlock;
 581		bhash2_created = true;
 582	}
 583
 584	if (!found_port && check_bind_conflict) {
 585		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
 586			goto fail_unlock;
 587	}
 588
 589success:
 590	inet_csk_update_fastreuse(tb, sk);
 591
 592	if (!inet_csk(sk)->icsk_bind_hash)
 593		inet_bind_hash(sk, tb, tb2, port);
 594	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
 595	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
 596	ret = 0;
 597
 598fail_unlock:
 599	if (ret) {
 600		if (bhash2_created)
 601			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
 602		if (bhash_created)
 603			inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
 604	}
 605	if (head2_lock_acquired)
 606		spin_unlock(&head2->lock);
 607	spin_unlock_bh(&head->lock);
 608	return ret;
 609}
 610EXPORT_SYMBOL_GPL(inet_csk_get_port);
 611
 612/*
 613 * Wait for an incoming connection, avoid race conditions. This must be called
 614 * with the socket locked.
 615 */
 616static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
 617{
 618	struct inet_connection_sock *icsk = inet_csk(sk);
 619	DEFINE_WAIT(wait);
 620	int err;
 621
 622	/*
 623	 * True wake-one mechanism for incoming connections: only
 624	 * one process gets woken up, not the 'whole herd'.
 625	 * Since we do not 'race & poll' for established sockets
 626	 * anymore, the common case will execute the loop only once.
 627	 *
 628	 * Subtle issue: "add_wait_queue_exclusive()" will be added
 629	 * after any current non-exclusive waiters, and we know that
 630	 * it will always _stay_ after any new non-exclusive waiters
 631	 * because all non-exclusive waiters are added at the
 632	 * beginning of the wait-queue. As such, it's ok to "drop"
 633	 * our exclusiveness temporarily when we get woken up without
 634	 * having to remove and re-insert us on the wait queue.
 635	 */
 636	for (;;) {
 637		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
 638					  TASK_INTERRUPTIBLE);
 639		release_sock(sk);
 640		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
 641			timeo = schedule_timeout(timeo);
 642		sched_annotate_sleep();
 643		lock_sock(sk);
 644		err = 0;
 645		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
 646			break;
 647		err = -EINVAL;
 648		if (sk->sk_state != TCP_LISTEN)
 649			break;
 650		err = sock_intr_errno(timeo);
 651		if (signal_pending(current))
 652			break;
 653		err = -EAGAIN;
 654		if (!timeo)
 655			break;
 656	}
 657	finish_wait(sk_sleep(sk), &wait);
 658	return err;
 659}
 660
 661/*
 662 * This will accept the next outstanding connection.
 663 */
 664struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
 665{
 666	struct inet_connection_sock *icsk = inet_csk(sk);
 667	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
 668	struct request_sock *req;
 669	struct sock *newsk;
 670	int error;
 671
 672	lock_sock(sk);
 673
 674	/* We need to make sure that this socket is listening,
 675	 * and that it has something pending.
 676	 */
 677	error = -EINVAL;
 678	if (sk->sk_state != TCP_LISTEN)
 679		goto out_err;
 680
 681	/* Find already established connection */
 682	if (reqsk_queue_empty(queue)) {
 683		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
 684
 685		/* If this is a non blocking socket don't sleep */
 686		error = -EAGAIN;
 687		if (!timeo)
 688			goto out_err;
 689
 690		error = inet_csk_wait_for_connect(sk, timeo);
 691		if (error)
 692			goto out_err;
 693	}
 694	req = reqsk_queue_remove(queue, sk);
 695	newsk = req->sk;
 696
 697	if (sk->sk_protocol == IPPROTO_TCP &&
 698	    tcp_rsk(req)->tfo_listener) {
 699		spin_lock_bh(&queue->fastopenq.lock);
 700		if (tcp_rsk(req)->tfo_listener) {
 701			/* We are still waiting for the final ACK from 3WHS
 702			 * so can't free req now. Instead, we set req->sk to
 703			 * NULL to signify that the child socket is taken
 704			 * so reqsk_fastopen_remove() will free the req
 705			 * when 3WHS finishes (or is aborted).
 706			 */
 707			req->sk = NULL;
 708			req = NULL;
 709		}
 710		spin_unlock_bh(&queue->fastopenq.lock);
 711	}
 712
 713out:
 714	release_sock(sk);
 715	if (newsk && mem_cgroup_sockets_enabled) {
 716		int amt = 0;
 717
 718		/* atomically get the memory usage, set and charge the
 719		 * newsk->sk_memcg.
 720		 */
 721		lock_sock(newsk);
 722
 
 
 
 
 
 723		mem_cgroup_sk_alloc(newsk);
 724		if (newsk->sk_memcg) {
 725			/* The socket has not been accepted yet, no need
 726			 * to look at newsk->sk_wmem_queued.
 727			 */
 728			amt = sk_mem_pages(newsk->sk_forward_alloc +
 729					   atomic_read(&newsk->sk_rmem_alloc));
 730		}
 731
 732		if (amt)
 733			mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
 734						GFP_KERNEL | __GFP_NOFAIL);
 735
 736		release_sock(newsk);
 737	}
 738	if (req)
 739		reqsk_put(req);
 740
 741	if (newsk)
 742		inet_init_csk_locks(newsk);
 743
 744	return newsk;
 745out_err:
 746	newsk = NULL;
 747	req = NULL;
 748	*err = error;
 749	goto out;
 750}
 751EXPORT_SYMBOL(inet_csk_accept);
 752
 753/*
 754 * Using different timers for retransmit, delayed acks and probes
 755 * We may wish use just one timer maintaining a list of expire jiffies
 756 * to optimize.
 757 */
 758void inet_csk_init_xmit_timers(struct sock *sk,
 759			       void (*retransmit_handler)(struct timer_list *t),
 760			       void (*delack_handler)(struct timer_list *t),
 761			       void (*keepalive_handler)(struct timer_list *t))
 762{
 763	struct inet_connection_sock *icsk = inet_csk(sk);
 764
 765	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
 766	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
 767	timer_setup(&sk->sk_timer, keepalive_handler, 0);
 768	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 769}
 770EXPORT_SYMBOL(inet_csk_init_xmit_timers);
 771
 772void inet_csk_clear_xmit_timers(struct sock *sk)
 773{
 774	struct inet_connection_sock *icsk = inet_csk(sk);
 775
 776	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 777
 778	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
 779	sk_stop_timer(sk, &icsk->icsk_delack_timer);
 780	sk_stop_timer(sk, &sk->sk_timer);
 781}
 782EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
 783
 784void inet_csk_clear_xmit_timers_sync(struct sock *sk)
 785{
 786	struct inet_connection_sock *icsk = inet_csk(sk);
 787
 788	/* ongoing timer handlers need to acquire socket lock. */
 789	sock_not_owned_by_me(sk);
 790
 791	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
 792
 793	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
 794	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
 795	sk_stop_timer_sync(sk, &sk->sk_timer);
 796}
 797
 798void inet_csk_delete_keepalive_timer(struct sock *sk)
 799{
 800	sk_stop_timer(sk, &sk->sk_timer);
 801}
 802EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
 803
 804void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
 805{
 806	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
 807}
 808EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
 809
 810struct dst_entry *inet_csk_route_req(const struct sock *sk,
 811				     struct flowi4 *fl4,
 812				     const struct request_sock *req)
 813{
 814	const struct inet_request_sock *ireq = inet_rsk(req);
 815	struct net *net = read_pnet(&ireq->ireq_net);
 816	struct ip_options_rcu *opt;
 817	struct rtable *rt;
 818
 819	rcu_read_lock();
 820	opt = rcu_dereference(ireq->ireq_opt);
 821
 822	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 823			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
 824			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 825			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 826			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 827			   htons(ireq->ir_num), sk->sk_uid);
 828	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 829	rt = ip_route_output_flow(net, fl4, sk);
 830	if (IS_ERR(rt))
 831		goto no_route;
 832	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 833		goto route_err;
 834	rcu_read_unlock();
 835	return &rt->dst;
 836
 837route_err:
 838	ip_rt_put(rt);
 839no_route:
 840	rcu_read_unlock();
 841	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 842	return NULL;
 843}
 844EXPORT_SYMBOL_GPL(inet_csk_route_req);
 845
 846struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
 847					    struct sock *newsk,
 848					    const struct request_sock *req)
 849{
 850	const struct inet_request_sock *ireq = inet_rsk(req);
 851	struct net *net = read_pnet(&ireq->ireq_net);
 852	struct inet_sock *newinet = inet_sk(newsk);
 853	struct ip_options_rcu *opt;
 854	struct flowi4 *fl4;
 855	struct rtable *rt;
 856
 857	opt = rcu_dereference(ireq->ireq_opt);
 858	fl4 = &newinet->cork.fl.u.ip4;
 859
 860	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
 861			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
 862			   sk->sk_protocol, inet_sk_flowi_flags(sk),
 863			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
 864			   ireq->ir_loc_addr, ireq->ir_rmt_port,
 865			   htons(ireq->ir_num), sk->sk_uid);
 866	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
 867	rt = ip_route_output_flow(net, fl4, sk);
 868	if (IS_ERR(rt))
 869		goto no_route;
 870	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
 871		goto route_err;
 872	return &rt->dst;
 873
 874route_err:
 875	ip_rt_put(rt);
 876no_route:
 877	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 878	return NULL;
 879}
 880EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
 881
 882/* Decide when to expire the request and when to resend SYN-ACK */
 883static void syn_ack_recalc(struct request_sock *req,
 884			   const int max_syn_ack_retries,
 885			   const u8 rskq_defer_accept,
 886			   int *expire, int *resend)
 887{
 888	if (!rskq_defer_accept) {
 889		*expire = req->num_timeout >= max_syn_ack_retries;
 890		*resend = 1;
 891		return;
 892	}
 893	*expire = req->num_timeout >= max_syn_ack_retries &&
 894		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
 895	/* Do not resend while waiting for data after ACK,
 896	 * start to resend on end of deferring period to give
 897	 * last chance for data or ACK to create established socket.
 898	 */
 899	*resend = !inet_rsk(req)->acked ||
 900		  req->num_timeout >= rskq_defer_accept - 1;
 901}
 902
 903int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
 904{
 905	int err = req->rsk_ops->rtx_syn_ack(parent, req);
 906
 907	if (!err)
 908		req->num_retrans++;
 909	return err;
 910}
 911EXPORT_SYMBOL(inet_rtx_syn_ack);
 912
 913static struct request_sock *inet_reqsk_clone(struct request_sock *req,
 914					     struct sock *sk)
 915{
 916	struct sock *req_sk, *nreq_sk;
 917	struct request_sock *nreq;
 918
 919	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
 920	if (!nreq) {
 921		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
 922
 923		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
 924		sock_put(sk);
 925		return NULL;
 926	}
 927
 928	req_sk = req_to_sk(req);
 929	nreq_sk = req_to_sk(nreq);
 930
 931	memcpy(nreq_sk, req_sk,
 932	       offsetof(struct sock, sk_dontcopy_begin));
 933	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
 934		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
 935		      /* alloc is larger than struct, see above */);
 936
 937	sk_node_init(&nreq_sk->sk_node);
 938	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
 939#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
 940	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
 941#endif
 942	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
 943
 944	nreq->rsk_listener = sk;
 945
 946	/* We need not acquire fastopenq->lock
 947	 * because the child socket is locked in inet_csk_listen_stop().
 948	 */
 949	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
 950		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
 951
 952	return nreq;
 953}
 954
 955static void reqsk_queue_migrated(struct request_sock_queue *queue,
 956				 const struct request_sock *req)
 957{
 958	if (req->num_timeout == 0)
 959		atomic_inc(&queue->young);
 960	atomic_inc(&queue->qlen);
 961}
 962
 963static void reqsk_migrate_reset(struct request_sock *req)
 964{
 965	req->saved_syn = NULL;
 966#if IS_ENABLED(CONFIG_IPV6)
 967	inet_rsk(req)->ipv6_opt = NULL;
 968	inet_rsk(req)->pktopts = NULL;
 969#else
 970	inet_rsk(req)->ireq_opt = NULL;
 971#endif
 972}
 973
 974/* return true if req was found in the ehash table */
 975static bool reqsk_queue_unlink(struct request_sock *req)
 976{
 977	struct sock *sk = req_to_sk(req);
 978	bool found = false;
 979
 980	if (sk_hashed(sk)) {
 981		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
 982		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
 983
 984		spin_lock(lock);
 985		found = __sk_nulls_del_node_init_rcu(sk);
 986		spin_unlock(lock);
 987	}
 988	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
 989		reqsk_put(req);
 990	return found;
 991}
 992
 993bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
 994{
 995	bool unlinked = reqsk_queue_unlink(req);
 996
 997	if (unlinked) {
 998		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
 999		reqsk_put(req);
1000	}
1001	return unlinked;
1002}
1003EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1004
1005void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1006{
1007	inet_csk_reqsk_queue_drop(sk, req);
1008	reqsk_put(req);
1009}
1010EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1011
1012static void reqsk_timer_handler(struct timer_list *t)
1013{
1014	struct request_sock *req = from_timer(req, t, rsk_timer);
1015	struct request_sock *nreq = NULL, *oreq = req;
1016	struct sock *sk_listener = req->rsk_listener;
1017	struct inet_connection_sock *icsk;
1018	struct request_sock_queue *queue;
1019	struct net *net;
1020	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1021
1022	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1023		struct sock *nsk;
1024
1025		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1026		if (!nsk)
1027			goto drop;
1028
1029		nreq = inet_reqsk_clone(req, nsk);
1030		if (!nreq)
1031			goto drop;
1032
1033		/* The new timer for the cloned req can decrease the 2
1034		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1035		 * hold another count to prevent use-after-free and
1036		 * call reqsk_put() just before return.
1037		 */
1038		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1039		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1040		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1041
1042		req = nreq;
1043		sk_listener = nsk;
1044	}
1045
1046	icsk = inet_csk(sk_listener);
1047	net = sock_net(sk_listener);
1048	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1049		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1050	/* Normally all the openreqs are young and become mature
1051	 * (i.e. converted to established socket) for first timeout.
1052	 * If synack was not acknowledged for 1 second, it means
1053	 * one of the following things: synack was lost, ack was lost,
1054	 * rtt is high or nobody planned to ack (i.e. synflood).
1055	 * When server is a bit loaded, queue is populated with old
1056	 * open requests, reducing effective size of queue.
1057	 * When server is well loaded, queue size reduces to zero
1058	 * after several minutes of work. It is not synflood,
1059	 * it is normal operation. The solution is pruning
1060	 * too old entries overriding normal timeout, when
1061	 * situation becomes dangerous.
1062	 *
1063	 * Essentially, we reserve half of room for young
1064	 * embrions; and abort old ones without pity, if old
1065	 * ones are about to clog our table.
1066	 */
1067	queue = &icsk->icsk_accept_queue;
1068	qlen = reqsk_queue_len(queue);
1069	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1070		int young = reqsk_queue_len_young(queue) << 1;
1071
1072		while (max_syn_ack_retries > 2) {
1073			if (qlen < young)
1074				break;
1075			max_syn_ack_retries--;
1076			young <<= 1;
1077		}
1078	}
1079	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1080		       &expire, &resend);
1081	req->rsk_ops->syn_ack_timeout(req);
1082	if (!expire &&
1083	    (!resend ||
1084	     !inet_rtx_syn_ack(sk_listener, req) ||
1085	     inet_rsk(req)->acked)) {
 
 
1086		if (req->num_timeout++ == 0)
1087			atomic_dec(&queue->young);
1088		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
 
1089
1090		if (!nreq)
1091			return;
1092
1093		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1094			/* delete timer */
1095			inet_csk_reqsk_queue_drop(sk_listener, nreq);
1096			goto no_ownership;
1097		}
1098
1099		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1100		reqsk_migrate_reset(oreq);
1101		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1102		reqsk_put(oreq);
1103
1104		reqsk_put(nreq);
1105		return;
1106	}
1107
1108	/* Even if we can clone the req, we may need not retransmit any more
1109	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1110	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1111	 */
1112	if (nreq) {
1113		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1114no_ownership:
1115		reqsk_migrate_reset(nreq);
1116		reqsk_queue_removed(queue, nreq);
1117		__reqsk_free(nreq);
1118	}
1119
1120drop:
1121	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1122}
1123
1124static void reqsk_queue_hash_req(struct request_sock *req,
1125				 unsigned long timeout)
1126{
1127	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1128	mod_timer(&req->rsk_timer, jiffies + timeout);
1129
1130	inet_ehash_insert(req_to_sk(req), NULL, NULL);
1131	/* before letting lookups find us, make sure all req fields
1132	 * are committed to memory and refcnt initialized.
1133	 */
1134	smp_wmb();
1135	refcount_set(&req->rsk_refcnt, 2 + 1);
1136}
1137
1138void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1139				   unsigned long timeout)
1140{
1141	reqsk_queue_hash_req(req, timeout);
1142	inet_csk_reqsk_queue_added(sk);
1143}
1144EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1145
1146static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1147			   const gfp_t priority)
1148{
1149	struct inet_connection_sock *icsk = inet_csk(newsk);
1150
1151	if (!icsk->icsk_ulp_ops)
1152		return;
1153
1154	icsk->icsk_ulp_ops->clone(req, newsk, priority);
 
1155}
1156
1157/**
1158 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1159 *	@sk: the socket to clone
1160 *	@req: request_sock
1161 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1162 *
1163 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1164 */
1165struct sock *inet_csk_clone_lock(const struct sock *sk,
1166				 const struct request_sock *req,
1167				 const gfp_t priority)
1168{
1169	struct sock *newsk = sk_clone_lock(sk, priority);
1170
1171	if (newsk) {
1172		struct inet_connection_sock *newicsk = inet_csk(newsk);
1173
1174		inet_sk_set_state(newsk, TCP_SYN_RECV);
1175		newicsk->icsk_bind_hash = NULL;
1176		newicsk->icsk_bind2_hash = NULL;
1177
1178		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1179		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1180		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1181
1182		/* listeners have SOCK_RCU_FREE, not the children */
1183		sock_reset_flag(newsk, SOCK_RCU_FREE);
1184
1185		inet_sk(newsk)->mc_list = NULL;
1186
1187		newsk->sk_mark = inet_rsk(req)->ir_mark;
1188		atomic64_set(&newsk->sk_cookie,
1189			     atomic64_read(&inet_rsk(req)->ir_cookie));
1190
1191		newicsk->icsk_retransmits = 0;
1192		newicsk->icsk_backoff	  = 0;
1193		newicsk->icsk_probes_out  = 0;
1194		newicsk->icsk_probes_tstamp = 0;
1195
1196		/* Deinitialize accept_queue to trap illegal accesses. */
1197		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1198
1199		inet_clone_ulp(req, newsk, priority);
1200
1201		security_inet_csk_clone(newsk, req);
1202	}
1203	return newsk;
1204}
1205EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1206
1207/*
1208 * At this point, there should be no process reference to this
1209 * socket, and thus no user references at all.  Therefore we
1210 * can assume the socket waitqueue is inactive and nobody will
1211 * try to jump onto it.
1212 */
1213void inet_csk_destroy_sock(struct sock *sk)
1214{
1215	WARN_ON(sk->sk_state != TCP_CLOSE);
1216	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1217
1218	/* It cannot be in hash table! */
1219	WARN_ON(!sk_unhashed(sk));
1220
1221	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1222	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1223
1224	sk->sk_prot->destroy(sk);
1225
1226	sk_stream_kill_queues(sk);
1227
1228	xfrm_sk_free_policy(sk);
1229
1230	this_cpu_dec(*sk->sk_prot->orphan_count);
 
 
1231
1232	sock_put(sk);
1233}
1234EXPORT_SYMBOL(inet_csk_destroy_sock);
1235
1236/* This function allows to force a closure of a socket after the call to
1237 * tcp/dccp_create_openreq_child().
1238 */
1239void inet_csk_prepare_forced_close(struct sock *sk)
1240	__releases(&sk->sk_lock.slock)
1241{
1242	/* sk_clone_lock locked the socket and set refcnt to 2 */
1243	bh_unlock_sock(sk);
1244	sock_put(sk);
1245	inet_csk_prepare_for_destroy_sock(sk);
1246	inet_sk(sk)->inet_num = 0;
1247}
1248EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1249
1250static int inet_ulp_can_listen(const struct sock *sk)
1251{
1252	const struct inet_connection_sock *icsk = inet_csk(sk);
1253
1254	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1255		return -EINVAL;
1256
1257	return 0;
1258}
1259
1260int inet_csk_listen_start(struct sock *sk)
1261{
1262	struct inet_connection_sock *icsk = inet_csk(sk);
1263	struct inet_sock *inet = inet_sk(sk);
1264	int err;
1265
1266	err = inet_ulp_can_listen(sk);
1267	if (unlikely(err))
1268		return err;
1269
1270	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1271
1272	sk->sk_ack_backlog = 0;
1273	inet_csk_delack_init(sk);
1274
1275	/* There is race window here: we announce ourselves listening,
1276	 * but this transition is still not validated by get_port().
1277	 * It is OK, because this socket enters to hash table only
1278	 * after validation is complete.
1279	 */
1280	inet_sk_state_store(sk, TCP_LISTEN);
1281	err = sk->sk_prot->get_port(sk, inet->inet_num);
1282	if (!err) {
1283		inet->inet_sport = htons(inet->inet_num);
1284
1285		sk_dst_reset(sk);
1286		err = sk->sk_prot->hash(sk);
1287
1288		if (likely(!err))
1289			return 0;
1290	}
1291
1292	inet_sk_set_state(sk, TCP_CLOSE);
1293	return err;
1294}
1295EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1296
1297static void inet_child_forget(struct sock *sk, struct request_sock *req,
1298			      struct sock *child)
1299{
1300	sk->sk_prot->disconnect(child, O_NONBLOCK);
1301
1302	sock_orphan(child);
1303
1304	this_cpu_inc(*sk->sk_prot->orphan_count);
1305
1306	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1307		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1308		BUG_ON(sk != req->rsk_listener);
1309
1310		/* Paranoid, to prevent race condition if
1311		 * an inbound pkt destined for child is
1312		 * blocked by sock lock in tcp_v4_rcv().
1313		 * Also to satisfy an assertion in
1314		 * tcp_v4_destroy_sock().
1315		 */
1316		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1317	}
1318	inet_csk_destroy_sock(child);
1319}
1320
1321struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1322				      struct request_sock *req,
1323				      struct sock *child)
1324{
1325	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1326
1327	spin_lock(&queue->rskq_lock);
1328	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1329		inet_child_forget(sk, req, child);
1330		child = NULL;
1331	} else {
1332		req->sk = child;
1333		req->dl_next = NULL;
1334		if (queue->rskq_accept_head == NULL)
1335			WRITE_ONCE(queue->rskq_accept_head, req);
1336		else
1337			queue->rskq_accept_tail->dl_next = req;
1338		queue->rskq_accept_tail = req;
1339		sk_acceptq_added(sk);
1340	}
1341	spin_unlock(&queue->rskq_lock);
1342	return child;
1343}
1344EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1345
1346struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1347					 struct request_sock *req, bool own_req)
1348{
1349	if (own_req) {
1350		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1351		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1352
1353		if (sk != req->rsk_listener) {
1354			/* another listening sk has been selected,
1355			 * migrate the req to it.
1356			 */
1357			struct request_sock *nreq;
1358
1359			/* hold a refcnt for the nreq->rsk_listener
1360			 * which is assigned in inet_reqsk_clone()
1361			 */
1362			sock_hold(sk);
1363			nreq = inet_reqsk_clone(req, sk);
1364			if (!nreq) {
1365				inet_child_forget(sk, req, child);
1366				goto child_put;
1367			}
1368
1369			refcount_set(&nreq->rsk_refcnt, 1);
1370			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1371				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1372				reqsk_migrate_reset(req);
1373				reqsk_put(req);
1374				return child;
1375			}
1376
1377			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1378			reqsk_migrate_reset(nreq);
1379			__reqsk_free(nreq);
1380		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1381			return child;
1382		}
1383	}
1384	/* Too bad, another child took ownership of the request, undo. */
1385child_put:
1386	bh_unlock_sock(child);
1387	sock_put(child);
1388	return NULL;
1389}
1390EXPORT_SYMBOL(inet_csk_complete_hashdance);
1391
1392/*
1393 *	This routine closes sockets which have been at least partially
1394 *	opened, but not yet accepted.
1395 */
1396void inet_csk_listen_stop(struct sock *sk)
1397{
1398	struct inet_connection_sock *icsk = inet_csk(sk);
1399	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1400	struct request_sock *next, *req;
1401
1402	/* Following specs, it would be better either to send FIN
1403	 * (and enter FIN-WAIT-1, it is normal close)
1404	 * or to send active reset (abort).
1405	 * Certainly, it is pretty dangerous while synflood, but it is
1406	 * bad justification for our negligence 8)
1407	 * To be honest, we are not able to make either
1408	 * of the variants now.			--ANK
1409	 */
1410	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1411		struct sock *child = req->sk, *nsk;
1412		struct request_sock *nreq;
1413
1414		local_bh_disable();
1415		bh_lock_sock(child);
1416		WARN_ON(sock_owned_by_user(child));
1417		sock_hold(child);
1418
1419		nsk = reuseport_migrate_sock(sk, child, NULL);
1420		if (nsk) {
1421			nreq = inet_reqsk_clone(req, nsk);
1422			if (nreq) {
1423				refcount_set(&nreq->rsk_refcnt, 1);
1424
1425				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1426					__NET_INC_STATS(sock_net(nsk),
1427							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1428					reqsk_migrate_reset(req);
1429				} else {
1430					__NET_INC_STATS(sock_net(nsk),
1431							LINUX_MIB_TCPMIGRATEREQFAILURE);
1432					reqsk_migrate_reset(nreq);
1433					__reqsk_free(nreq);
1434				}
1435
1436				/* inet_csk_reqsk_queue_add() has already
1437				 * called inet_child_forget() on failure case.
1438				 */
1439				goto skip_child_forget;
1440			}
1441		}
1442
1443		inet_child_forget(sk, req, child);
1444skip_child_forget:
1445		reqsk_put(req);
1446		bh_unlock_sock(child);
1447		local_bh_enable();
1448		sock_put(child);
1449
1450		cond_resched();
1451	}
1452	if (queue->fastopenq.rskq_rst_head) {
1453		/* Free all the reqs queued in rskq_rst_head. */
1454		spin_lock_bh(&queue->fastopenq.lock);
1455		req = queue->fastopenq.rskq_rst_head;
1456		queue->fastopenq.rskq_rst_head = NULL;
1457		spin_unlock_bh(&queue->fastopenq.lock);
1458		while (req != NULL) {
1459			next = req->dl_next;
1460			reqsk_put(req);
1461			req = next;
1462		}
1463	}
1464	WARN_ON_ONCE(sk->sk_ack_backlog);
1465}
1466EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1467
1468void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1469{
1470	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1471	const struct inet_sock *inet = inet_sk(sk);
1472
1473	sin->sin_family		= AF_INET;
1474	sin->sin_addr.s_addr	= inet->inet_daddr;
1475	sin->sin_port		= inet->inet_dport;
1476}
1477EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1478
1479static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1480{
1481	const struct inet_sock *inet = inet_sk(sk);
1482	const struct ip_options_rcu *inet_opt;
1483	__be32 daddr = inet->inet_daddr;
1484	struct flowi4 *fl4;
1485	struct rtable *rt;
1486
1487	rcu_read_lock();
1488	inet_opt = rcu_dereference(inet->inet_opt);
1489	if (inet_opt && inet_opt->opt.srr)
1490		daddr = inet_opt->opt.faddr;
1491	fl4 = &fl->u.ip4;
1492	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1493				   inet->inet_saddr, inet->inet_dport,
1494				   inet->inet_sport, sk->sk_protocol,
1495				   ip_sock_rt_tos(sk), sk->sk_bound_dev_if);
1496	if (IS_ERR(rt))
1497		rt = NULL;
1498	if (rt)
1499		sk_setup_caps(sk, &rt->dst);
1500	rcu_read_unlock();
1501
1502	return &rt->dst;
1503}
1504
1505struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1506{
1507	struct dst_entry *dst = __sk_dst_check(sk, 0);
1508	struct inet_sock *inet = inet_sk(sk);
1509
1510	if (!dst) {
1511		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1512		if (!dst)
1513			goto out;
1514	}
1515	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1516
1517	dst = __sk_dst_check(sk, 0);
1518	if (!dst)
1519		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1520out:
1521	return dst;
1522}
1523EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);