Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2#ifndef __LINUX_OVERFLOW_H
3#define __LINUX_OVERFLOW_H
4
5#include <linux/compiler.h>
6#include <linux/limits.h>
7
8/*
9 * In the fallback code below, we need to compute the minimum and
10 * maximum values representable in a given type. These macros may also
11 * be useful elsewhere, so we provide them outside the
12 * COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW block.
13 *
14 * It would seem more obvious to do something like
15 *
16 * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0)
17 * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0)
18 *
19 * Unfortunately, the middle expressions, strictly speaking, have
20 * undefined behaviour, and at least some versions of gcc warn about
21 * the type_max expression (but not if -fsanitize=undefined is in
22 * effect; in that case, the warning is deferred to runtime...).
23 *
24 * The slightly excessive casting in type_min is to make sure the
25 * macros also produce sensible values for the exotic type _Bool. [The
26 * overflow checkers only almost work for _Bool, but that's
27 * a-feature-not-a-bug, since people shouldn't be doing arithmetic on
28 * _Bools. Besides, the gcc builtins don't allow _Bool* as third
29 * argument.]
30 *
31 * Idea stolen from
32 * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html -
33 * credit to Christian Biere.
34 */
35#define is_signed_type(type) (((type)(-1)) < (type)1)
36#define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type)))
37#define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T)))
38#define type_min(T) ((T)((T)-type_max(T)-(T)1))
39
40/*
41 * Avoids triggering -Wtype-limits compilation warning,
42 * while using unsigned data types to check a < 0.
43 */
44#define is_non_negative(a) ((a) > 0 || (a) == 0)
45#define is_negative(a) (!(is_non_negative(a)))
46
47/*
48 * Allows for effectively applying __must_check to a macro so we can have
49 * both the type-agnostic benefits of the macros while also being able to
50 * enforce that the return value is, in fact, checked.
51 */
52static inline bool __must_check __must_check_overflow(bool overflow)
53{
54 return unlikely(overflow);
55}
56
57#ifdef COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW
58/*
59 * For simplicity and code hygiene, the fallback code below insists on
60 * a, b and *d having the same type (similar to the min() and max()
61 * macros), whereas gcc's type-generic overflow checkers accept
62 * different types. Hence we don't just make check_add_overflow an
63 * alias for __builtin_add_overflow, but add type checks similar to
64 * below.
65 */
66#define check_add_overflow(a, b, d) __must_check_overflow(({ \
67 typeof(a) __a = (a); \
68 typeof(b) __b = (b); \
69 typeof(d) __d = (d); \
70 (void) (&__a == &__b); \
71 (void) (&__a == __d); \
72 __builtin_add_overflow(__a, __b, __d); \
73}))
74
75#define check_sub_overflow(a, b, d) __must_check_overflow(({ \
76 typeof(a) __a = (a); \
77 typeof(b) __b = (b); \
78 typeof(d) __d = (d); \
79 (void) (&__a == &__b); \
80 (void) (&__a == __d); \
81 __builtin_sub_overflow(__a, __b, __d); \
82}))
83
84#define check_mul_overflow(a, b, d) __must_check_overflow(({ \
85 typeof(a) __a = (a); \
86 typeof(b) __b = (b); \
87 typeof(d) __d = (d); \
88 (void) (&__a == &__b); \
89 (void) (&__a == __d); \
90 __builtin_mul_overflow(__a, __b, __d); \
91}))
92
93#else
94
95
96/* Checking for unsigned overflow is relatively easy without causing UB. */
97#define __unsigned_add_overflow(a, b, d) ({ \
98 typeof(a) __a = (a); \
99 typeof(b) __b = (b); \
100 typeof(d) __d = (d); \
101 (void) (&__a == &__b); \
102 (void) (&__a == __d); \
103 *__d = __a + __b; \
104 *__d < __a; \
105})
106#define __unsigned_sub_overflow(a, b, d) ({ \
107 typeof(a) __a = (a); \
108 typeof(b) __b = (b); \
109 typeof(d) __d = (d); \
110 (void) (&__a == &__b); \
111 (void) (&__a == __d); \
112 *__d = __a - __b; \
113 __a < __b; \
114})
115/*
116 * If one of a or b is a compile-time constant, this avoids a division.
117 */
118#define __unsigned_mul_overflow(a, b, d) ({ \
119 typeof(a) __a = (a); \
120 typeof(b) __b = (b); \
121 typeof(d) __d = (d); \
122 (void) (&__a == &__b); \
123 (void) (&__a == __d); \
124 *__d = __a * __b; \
125 __builtin_constant_p(__b) ? \
126 __b > 0 && __a > type_max(typeof(__a)) / __b : \
127 __a > 0 && __b > type_max(typeof(__b)) / __a; \
128})
129
130/*
131 * For signed types, detecting overflow is much harder, especially if
132 * we want to avoid UB. But the interface of these macros is such that
133 * we must provide a result in *d, and in fact we must produce the
134 * result promised by gcc's builtins, which is simply the possibly
135 * wrapped-around value. Fortunately, we can just formally do the
136 * operations in the widest relevant unsigned type (u64) and then
137 * truncate the result - gcc is smart enough to generate the same code
138 * with and without the (u64) casts.
139 */
140
141/*
142 * Adding two signed integers can overflow only if they have the same
143 * sign, and overflow has happened iff the result has the opposite
144 * sign.
145 */
146#define __signed_add_overflow(a, b, d) ({ \
147 typeof(a) __a = (a); \
148 typeof(b) __b = (b); \
149 typeof(d) __d = (d); \
150 (void) (&__a == &__b); \
151 (void) (&__a == __d); \
152 *__d = (u64)__a + (u64)__b; \
153 (((~(__a ^ __b)) & (*__d ^ __a)) \
154 & type_min(typeof(__a))) != 0; \
155})
156
157/*
158 * Subtraction is similar, except that overflow can now happen only
159 * when the signs are opposite. In this case, overflow has happened if
160 * the result has the opposite sign of a.
161 */
162#define __signed_sub_overflow(a, b, d) ({ \
163 typeof(a) __a = (a); \
164 typeof(b) __b = (b); \
165 typeof(d) __d = (d); \
166 (void) (&__a == &__b); \
167 (void) (&__a == __d); \
168 *__d = (u64)__a - (u64)__b; \
169 ((((__a ^ __b)) & (*__d ^ __a)) \
170 & type_min(typeof(__a))) != 0; \
171})
172
173/*
174 * Signed multiplication is rather hard. gcc always follows C99, so
175 * division is truncated towards 0. This means that we can write the
176 * overflow check like this:
177 *
178 * (a > 0 && (b > MAX/a || b < MIN/a)) ||
179 * (a < -1 && (b > MIN/a || b < MAX/a) ||
180 * (a == -1 && b == MIN)
181 *
182 * The redundant casts of -1 are to silence an annoying -Wtype-limits
183 * (included in -Wextra) warning: When the type is u8 or u16, the
184 * __b_c_e in check_mul_overflow obviously selects
185 * __unsigned_mul_overflow, but unfortunately gcc still parses this
186 * code and warns about the limited range of __b.
187 */
188
189#define __signed_mul_overflow(a, b, d) ({ \
190 typeof(a) __a = (a); \
191 typeof(b) __b = (b); \
192 typeof(d) __d = (d); \
193 typeof(a) __tmax = type_max(typeof(a)); \
194 typeof(a) __tmin = type_min(typeof(a)); \
195 (void) (&__a == &__b); \
196 (void) (&__a == __d); \
197 *__d = (u64)__a * (u64)__b; \
198 (__b > 0 && (__a > __tmax/__b || __a < __tmin/__b)) || \
199 (__b < (typeof(__b))-1 && (__a > __tmin/__b || __a < __tmax/__b)) || \
200 (__b == (typeof(__b))-1 && __a == __tmin); \
201})
202
203
204#define check_add_overflow(a, b, d) __must_check_overflow( \
205 __builtin_choose_expr(is_signed_type(typeof(a)), \
206 __signed_add_overflow(a, b, d), \
207 __unsigned_add_overflow(a, b, d)))
208
209#define check_sub_overflow(a, b, d) __must_check_overflow( \
210 __builtin_choose_expr(is_signed_type(typeof(a)), \
211 __signed_sub_overflow(a, b, d), \
212 __unsigned_sub_overflow(a, b, d)))
213
214#define check_mul_overflow(a, b, d) __must_check_overflow( \
215 __builtin_choose_expr(is_signed_type(typeof(a)), \
216 __signed_mul_overflow(a, b, d), \
217 __unsigned_mul_overflow(a, b, d)))
218
219#endif /* COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW */
220
221/** check_shl_overflow() - Calculate a left-shifted value and check overflow
222 *
223 * @a: Value to be shifted
224 * @s: How many bits left to shift
225 * @d: Pointer to where to store the result
226 *
227 * Computes *@d = (@a << @s)
228 *
229 * Returns true if '*d' cannot hold the result or when 'a << s' doesn't
230 * make sense. Example conditions:
231 * - 'a << s' causes bits to be lost when stored in *d.
232 * - 's' is garbage (e.g. negative) or so large that the result of
233 * 'a << s' is guaranteed to be 0.
234 * - 'a' is negative.
235 * - 'a << s' sets the sign bit, if any, in '*d'.
236 *
237 * '*d' will hold the results of the attempted shift, but is not
238 * considered "safe for use" if true is returned.
239 */
240#define check_shl_overflow(a, s, d) __must_check_overflow(({ \
241 typeof(a) _a = a; \
242 typeof(s) _s = s; \
243 typeof(d) _d = d; \
244 u64 _a_full = _a; \
245 unsigned int _to_shift = \
246 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \
247 *_d = (_a_full << _to_shift); \
248 (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \
249 (*_d >> _to_shift) != _a); \
250}))
251
252/**
253 * array_size() - Calculate size of 2-dimensional array.
254 *
255 * @a: dimension one
256 * @b: dimension two
257 *
258 * Calculates size of 2-dimensional array: @a * @b.
259 *
260 * Returns: number of bytes needed to represent the array or SIZE_MAX on
261 * overflow.
262 */
263static inline __must_check size_t array_size(size_t a, size_t b)
264{
265 size_t bytes;
266
267 if (check_mul_overflow(a, b, &bytes))
268 return SIZE_MAX;
269
270 return bytes;
271}
272
273/**
274 * array3_size() - Calculate size of 3-dimensional array.
275 *
276 * @a: dimension one
277 * @b: dimension two
278 * @c: dimension three
279 *
280 * Calculates size of 3-dimensional array: @a * @b * @c.
281 *
282 * Returns: number of bytes needed to represent the array or SIZE_MAX on
283 * overflow.
284 */
285static inline __must_check size_t array3_size(size_t a, size_t b, size_t c)
286{
287 size_t bytes;
288
289 if (check_mul_overflow(a, b, &bytes))
290 return SIZE_MAX;
291 if (check_mul_overflow(bytes, c, &bytes))
292 return SIZE_MAX;
293
294 return bytes;
295}
296
297/*
298 * Compute a*b+c, returning SIZE_MAX on overflow. Internal helper for
299 * struct_size() below.
300 */
301static inline __must_check size_t __ab_c_size(size_t a, size_t b, size_t c)
302{
303 size_t bytes;
304
305 if (check_mul_overflow(a, b, &bytes))
306 return SIZE_MAX;
307 if (check_add_overflow(bytes, c, &bytes))
308 return SIZE_MAX;
309
310 return bytes;
311}
312
313/**
314 * struct_size() - Calculate size of structure with trailing array.
315 * @p: Pointer to the structure.
316 * @member: Name of the array member.
317 * @count: Number of elements in the array.
318 *
319 * Calculates size of memory needed for structure @p followed by an
320 * array of @count number of @member elements.
321 *
322 * Return: number of bytes needed or SIZE_MAX on overflow.
323 */
324#define struct_size(p, member, count) \
325 __ab_c_size(count, \
326 sizeof(*(p)->member) + __must_be_array((p)->member),\
327 sizeof(*(p)))
328
329/**
330 * flex_array_size() - Calculate size of a flexible array member
331 * within an enclosing structure.
332 *
333 * @p: Pointer to the structure.
334 * @member: Name of the flexible array member.
335 * @count: Number of elements in the array.
336 *
337 * Calculates size of a flexible array of @count number of @member
338 * elements, at the end of structure @p.
339 *
340 * Return: number of bytes needed or SIZE_MAX on overflow.
341 */
342#define flex_array_size(p, member, count) \
343 array_size(count, \
344 sizeof(*(p)->member) + __must_be_array((p)->member))
345
346#endif /* __LINUX_OVERFLOW_H */
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2#ifndef __LINUX_OVERFLOW_H
3#define __LINUX_OVERFLOW_H
4
5#include <linux/compiler.h>
6#include <linux/limits.h>
7#include <linux/const.h>
8
9/*
10 * We need to compute the minimum and maximum values representable in a given
11 * type. These macros may also be useful elsewhere. It would seem more obvious
12 * to do something like:
13 *
14 * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0)
15 * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0)
16 *
17 * Unfortunately, the middle expressions, strictly speaking, have
18 * undefined behaviour, and at least some versions of gcc warn about
19 * the type_max expression (but not if -fsanitize=undefined is in
20 * effect; in that case, the warning is deferred to runtime...).
21 *
22 * The slightly excessive casting in type_min is to make sure the
23 * macros also produce sensible values for the exotic type _Bool. [The
24 * overflow checkers only almost work for _Bool, but that's
25 * a-feature-not-a-bug, since people shouldn't be doing arithmetic on
26 * _Bools. Besides, the gcc builtins don't allow _Bool* as third
27 * argument.]
28 *
29 * Idea stolen from
30 * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html -
31 * credit to Christian Biere.
32 */
33#define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type)))
34#define __type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T)))
35#define type_max(t) __type_max(typeof(t))
36#define __type_min(T) ((T)((T)-type_max(T)-(T)1))
37#define type_min(t) __type_min(typeof(t))
38
39/*
40 * Avoids triggering -Wtype-limits compilation warning,
41 * while using unsigned data types to check a < 0.
42 */
43#define is_non_negative(a) ((a) > 0 || (a) == 0)
44#define is_negative(a) (!(is_non_negative(a)))
45
46/*
47 * Allows for effectively applying __must_check to a macro so we can have
48 * both the type-agnostic benefits of the macros while also being able to
49 * enforce that the return value is, in fact, checked.
50 */
51static inline bool __must_check __must_check_overflow(bool overflow)
52{
53 return unlikely(overflow);
54}
55
56/**
57 * check_add_overflow() - Calculate addition with overflow checking
58 * @a: first addend
59 * @b: second addend
60 * @d: pointer to store sum
61 *
62 * Returns true on wrap-around, false otherwise.
63 *
64 * *@d holds the results of the attempted addition, regardless of whether
65 * wrap-around occurred.
66 */
67#define check_add_overflow(a, b, d) \
68 __must_check_overflow(__builtin_add_overflow(a, b, d))
69
70/**
71 * wrapping_add() - Intentionally perform a wrapping addition
72 * @type: type for result of calculation
73 * @a: first addend
74 * @b: second addend
75 *
76 * Return the potentially wrapped-around addition without
77 * tripping any wrap-around sanitizers that may be enabled.
78 */
79#define wrapping_add(type, a, b) \
80 ({ \
81 type __val; \
82 __builtin_add_overflow(a, b, &__val); \
83 __val; \
84 })
85
86/**
87 * wrapping_assign_add() - Intentionally perform a wrapping increment assignment
88 * @var: variable to be incremented
89 * @offset: amount to add
90 *
91 * Increments @var by @offset with wrap-around. Returns the resulting
92 * value of @var. Will not trip any wrap-around sanitizers.
93 *
94 * Returns the new value of @var.
95 */
96#define wrapping_assign_add(var, offset) \
97 ({ \
98 typeof(var) *__ptr = &(var); \
99 *__ptr = wrapping_add(typeof(var), *__ptr, offset); \
100 })
101
102/**
103 * check_sub_overflow() - Calculate subtraction with overflow checking
104 * @a: minuend; value to subtract from
105 * @b: subtrahend; value to subtract from @a
106 * @d: pointer to store difference
107 *
108 * Returns true on wrap-around, false otherwise.
109 *
110 * *@d holds the results of the attempted subtraction, regardless of whether
111 * wrap-around occurred.
112 */
113#define check_sub_overflow(a, b, d) \
114 __must_check_overflow(__builtin_sub_overflow(a, b, d))
115
116/**
117 * wrapping_sub() - Intentionally perform a wrapping subtraction
118 * @type: type for result of calculation
119 * @a: minuend; value to subtract from
120 * @b: subtrahend; value to subtract from @a
121 *
122 * Return the potentially wrapped-around subtraction without
123 * tripping any wrap-around sanitizers that may be enabled.
124 */
125#define wrapping_sub(type, a, b) \
126 ({ \
127 type __val; \
128 __builtin_sub_overflow(a, b, &__val); \
129 __val; \
130 })
131
132/**
133 * wrapping_assign_sub() - Intentionally perform a wrapping decrement assign
134 * @var: variable to be decremented
135 * @offset: amount to subtract
136 *
137 * Decrements @var by @offset with wrap-around. Returns the resulting
138 * value of @var. Will not trip any wrap-around sanitizers.
139 *
140 * Returns the new value of @var.
141 */
142#define wrapping_assign_sub(var, offset) \
143 ({ \
144 typeof(var) *__ptr = &(var); \
145 *__ptr = wrapping_sub(typeof(var), *__ptr, offset); \
146 })
147
148/**
149 * check_mul_overflow() - Calculate multiplication with overflow checking
150 * @a: first factor
151 * @b: second factor
152 * @d: pointer to store product
153 *
154 * Returns true on wrap-around, false otherwise.
155 *
156 * *@d holds the results of the attempted multiplication, regardless of whether
157 * wrap-around occurred.
158 */
159#define check_mul_overflow(a, b, d) \
160 __must_check_overflow(__builtin_mul_overflow(a, b, d))
161
162/**
163 * wrapping_mul() - Intentionally perform a wrapping multiplication
164 * @type: type for result of calculation
165 * @a: first factor
166 * @b: second factor
167 *
168 * Return the potentially wrapped-around multiplication without
169 * tripping any wrap-around sanitizers that may be enabled.
170 */
171#define wrapping_mul(type, a, b) \
172 ({ \
173 type __val; \
174 __builtin_mul_overflow(a, b, &__val); \
175 __val; \
176 })
177
178/**
179 * check_shl_overflow() - Calculate a left-shifted value and check overflow
180 * @a: Value to be shifted
181 * @s: How many bits left to shift
182 * @d: Pointer to where to store the result
183 *
184 * Computes *@d = (@a << @s)
185 *
186 * Returns true if '*@d' cannot hold the result or when '@a << @s' doesn't
187 * make sense. Example conditions:
188 *
189 * - '@a << @s' causes bits to be lost when stored in *@d.
190 * - '@s' is garbage (e.g. negative) or so large that the result of
191 * '@a << @s' is guaranteed to be 0.
192 * - '@a' is negative.
193 * - '@a << @s' sets the sign bit, if any, in '*@d'.
194 *
195 * '*@d' will hold the results of the attempted shift, but is not
196 * considered "safe for use" if true is returned.
197 */
198#define check_shl_overflow(a, s, d) __must_check_overflow(({ \
199 typeof(a) _a = a; \
200 typeof(s) _s = s; \
201 typeof(d) _d = d; \
202 unsigned long long _a_full = _a; \
203 unsigned int _to_shift = \
204 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \
205 *_d = (_a_full << _to_shift); \
206 (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \
207 (*_d >> _to_shift) != _a); \
208}))
209
210#define __overflows_type_constexpr(x, T) ( \
211 is_unsigned_type(typeof(x)) ? \
212 (x) > type_max(T) : \
213 is_unsigned_type(typeof(T)) ? \
214 (x) < 0 || (x) > type_max(T) : \
215 (x) < type_min(T) || (x) > type_max(T))
216
217#define __overflows_type(x, T) ({ \
218 typeof(T) v = 0; \
219 check_add_overflow((x), v, &v); \
220})
221
222/**
223 * overflows_type - helper for checking the overflows between value, variables,
224 * or data type
225 *
226 * @n: source constant value or variable to be checked
227 * @T: destination variable or data type proposed to store @x
228 *
229 * Compares the @x expression for whether or not it can safely fit in
230 * the storage of the type in @T. @x and @T can have different types.
231 * If @x is a constant expression, this will also resolve to a constant
232 * expression.
233 *
234 * Returns: true if overflow can occur, false otherwise.
235 */
236#define overflows_type(n, T) \
237 __builtin_choose_expr(__is_constexpr(n), \
238 __overflows_type_constexpr(n, T), \
239 __overflows_type(n, T))
240
241/**
242 * castable_to_type - like __same_type(), but also allows for casted literals
243 *
244 * @n: variable or constant value
245 * @T: variable or data type
246 *
247 * Unlike the __same_type() macro, this allows a constant value as the
248 * first argument. If this value would not overflow into an assignment
249 * of the second argument's type, it returns true. Otherwise, this falls
250 * back to __same_type().
251 */
252#define castable_to_type(n, T) \
253 __builtin_choose_expr(__is_constexpr(n), \
254 !__overflows_type_constexpr(n, T), \
255 __same_type(n, T))
256
257/**
258 * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX
259 * @factor1: first factor
260 * @factor2: second factor
261 *
262 * Returns: calculate @factor1 * @factor2, both promoted to size_t,
263 * with any overflow causing the return value to be SIZE_MAX. The
264 * lvalue must be size_t to avoid implicit type conversion.
265 */
266static inline size_t __must_check size_mul(size_t factor1, size_t factor2)
267{
268 size_t bytes;
269
270 if (check_mul_overflow(factor1, factor2, &bytes))
271 return SIZE_MAX;
272
273 return bytes;
274}
275
276/**
277 * size_add() - Calculate size_t addition with saturation at SIZE_MAX
278 * @addend1: first addend
279 * @addend2: second addend
280 *
281 * Returns: calculate @addend1 + @addend2, both promoted to size_t,
282 * with any overflow causing the return value to be SIZE_MAX. The
283 * lvalue must be size_t to avoid implicit type conversion.
284 */
285static inline size_t __must_check size_add(size_t addend1, size_t addend2)
286{
287 size_t bytes;
288
289 if (check_add_overflow(addend1, addend2, &bytes))
290 return SIZE_MAX;
291
292 return bytes;
293}
294
295/**
296 * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX
297 * @minuend: value to subtract from
298 * @subtrahend: value to subtract from @minuend
299 *
300 * Returns: calculate @minuend - @subtrahend, both promoted to size_t,
301 * with any overflow causing the return value to be SIZE_MAX. For
302 * composition with the size_add() and size_mul() helpers, neither
303 * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX).
304 * The lvalue must be size_t to avoid implicit type conversion.
305 */
306static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend)
307{
308 size_t bytes;
309
310 if (minuend == SIZE_MAX || subtrahend == SIZE_MAX ||
311 check_sub_overflow(minuend, subtrahend, &bytes))
312 return SIZE_MAX;
313
314 return bytes;
315}
316
317/**
318 * array_size() - Calculate size of 2-dimensional array.
319 * @a: dimension one
320 * @b: dimension two
321 *
322 * Calculates size of 2-dimensional array: @a * @b.
323 *
324 * Returns: number of bytes needed to represent the array or SIZE_MAX on
325 * overflow.
326 */
327#define array_size(a, b) size_mul(a, b)
328
329/**
330 * array3_size() - Calculate size of 3-dimensional array.
331 * @a: dimension one
332 * @b: dimension two
333 * @c: dimension three
334 *
335 * Calculates size of 3-dimensional array: @a * @b * @c.
336 *
337 * Returns: number of bytes needed to represent the array or SIZE_MAX on
338 * overflow.
339 */
340#define array3_size(a, b, c) size_mul(size_mul(a, b), c)
341
342/**
343 * flex_array_size() - Calculate size of a flexible array member
344 * within an enclosing structure.
345 * @p: Pointer to the structure.
346 * @member: Name of the flexible array member.
347 * @count: Number of elements in the array.
348 *
349 * Calculates size of a flexible array of @count number of @member
350 * elements, at the end of structure @p.
351 *
352 * Return: number of bytes needed or SIZE_MAX on overflow.
353 */
354#define flex_array_size(p, member, count) \
355 __builtin_choose_expr(__is_constexpr(count), \
356 (count) * sizeof(*(p)->member) + __must_be_array((p)->member), \
357 size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member)))
358
359/**
360 * struct_size() - Calculate size of structure with trailing flexible array.
361 * @p: Pointer to the structure.
362 * @member: Name of the array member.
363 * @count: Number of elements in the array.
364 *
365 * Calculates size of memory needed for structure of @p followed by an
366 * array of @count number of @member elements.
367 *
368 * Return: number of bytes needed or SIZE_MAX on overflow.
369 */
370#define struct_size(p, member, count) \
371 __builtin_choose_expr(__is_constexpr(count), \
372 sizeof(*(p)) + flex_array_size(p, member, count), \
373 size_add(sizeof(*(p)), flex_array_size(p, member, count)))
374
375/**
376 * struct_size_t() - Calculate size of structure with trailing flexible array
377 * @type: structure type name.
378 * @member: Name of the array member.
379 * @count: Number of elements in the array.
380 *
381 * Calculates size of memory needed for structure @type followed by an
382 * array of @count number of @member elements. Prefer using struct_size()
383 * when possible instead, to keep calculations associated with a specific
384 * instance variable of type @type.
385 *
386 * Return: number of bytes needed or SIZE_MAX on overflow.
387 */
388#define struct_size_t(type, member, count) \
389 struct_size((type *)NULL, member, count)
390
391/**
392 * _DEFINE_FLEX() - helper macro for DEFINE_FLEX() family.
393 * Enables caller macro to pass (different) initializer.
394 *
395 * @type: structure type name, including "struct" keyword.
396 * @name: Name for a variable to define.
397 * @member: Name of the array member.
398 * @count: Number of elements in the array; must be compile-time const.
399 * @initializer: initializer expression (could be empty for no init).
400 */
401#define _DEFINE_FLEX(type, name, member, count, initializer...) \
402 _Static_assert(__builtin_constant_p(count), \
403 "onstack flex array members require compile-time const count"); \
404 union { \
405 u8 bytes[struct_size_t(type, member, count)]; \
406 type obj; \
407 } name##_u initializer; \
408 type *name = (type *)&name##_u
409
410/**
411 * DEFINE_RAW_FLEX() - Define an on-stack instance of structure with a trailing
412 * flexible array member, when it does not have a __counted_by annotation.
413 *
414 * @type: structure type name, including "struct" keyword.
415 * @name: Name for a variable to define.
416 * @member: Name of the array member.
417 * @count: Number of elements in the array; must be compile-time const.
418 *
419 * Define a zeroed, on-stack, instance of @type structure with a trailing
420 * flexible array member.
421 * Use __struct_size(@name) to get compile-time size of it afterwards.
422 */
423#define DEFINE_RAW_FLEX(type, name, member, count) \
424 _DEFINE_FLEX(type, name, member, count, = {})
425
426/**
427 * DEFINE_FLEX() - Define an on-stack instance of structure with a trailing
428 * flexible array member.
429 *
430 * @TYPE: structure type name, including "struct" keyword.
431 * @NAME: Name for a variable to define.
432 * @MEMBER: Name of the array member.
433 * @COUNTER: Name of the __counted_by member.
434 * @COUNT: Number of elements in the array; must be compile-time const.
435 *
436 * Define a zeroed, on-stack, instance of @TYPE structure with a trailing
437 * flexible array member.
438 * Use __struct_size(@NAME) to get compile-time size of it afterwards.
439 */
440#define DEFINE_FLEX(TYPE, NAME, MEMBER, COUNTER, COUNT) \
441 _DEFINE_FLEX(TYPE, NAME, MEMBER, COUNT, = { .obj.COUNTER = COUNT, })
442
443#endif /* __LINUX_OVERFLOW_H */