Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_CPUSET_H
  3#define _LINUX_CPUSET_H
  4/*
  5 *  cpuset interface
  6 *
  7 *  Copyright (C) 2003 BULL SA
  8 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  9 *
 10 */
 11
 12#include <linux/sched.h>
 13#include <linux/sched/topology.h>
 14#include <linux/sched/task.h>
 15#include <linux/cpumask.h>
 16#include <linux/nodemask.h>
 17#include <linux/mm.h>
 
 18#include <linux/jump_label.h>
 19
 20#ifdef CONFIG_CPUSETS
 21
 22/*
 23 * Static branch rewrites can happen in an arbitrary order for a given
 24 * key. In code paths where we need to loop with read_mems_allowed_begin() and
 25 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
 26 * to ensure that begin() always gets rewritten before retry() in the
 27 * disabled -> enabled transition. If not, then if local irqs are disabled
 28 * around the loop, we can deadlock since retry() would always be
 29 * comparing the latest value of the mems_allowed seqcount against 0 as
 30 * begin() still would see cpusets_enabled() as false. The enabled -> disabled
 31 * transition should happen in reverse order for the same reasons (want to stop
 32 * looking at real value of mems_allowed.sequence in retry() first).
 33 */
 34extern struct static_key_false cpusets_pre_enable_key;
 35extern struct static_key_false cpusets_enabled_key;
 
 
 36static inline bool cpusets_enabled(void)
 37{
 38	return static_branch_unlikely(&cpusets_enabled_key);
 39}
 40
 41static inline void cpuset_inc(void)
 42{
 43	static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
 44	static_branch_inc_cpuslocked(&cpusets_enabled_key);
 45}
 46
 47static inline void cpuset_dec(void)
 48{
 49	static_branch_dec_cpuslocked(&cpusets_enabled_key);
 50	static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
 51}
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 53extern int cpuset_init(void);
 54extern void cpuset_init_smp(void);
 55extern void cpuset_force_rebuild(void);
 56extern void cpuset_update_active_cpus(void);
 57extern void cpuset_wait_for_hotplug(void);
 58extern void cpuset_read_lock(void);
 59extern void cpuset_read_unlock(void);
 
 
 60extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
 61extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
 
 62extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
 63#define cpuset_current_mems_allowed (current->mems_allowed)
 64void cpuset_init_current_mems_allowed(void);
 65int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
 66
 67extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
 68
 69static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
 70{
 71	if (cpusets_enabled())
 72		return __cpuset_node_allowed(node, gfp_mask);
 73	return true;
 74}
 75
 76static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
 77{
 78	return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
 79}
 80
 81static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
 82{
 83	if (cpusets_enabled())
 84		return __cpuset_zone_allowed(z, gfp_mask);
 85	return true;
 86}
 87
 88extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
 89					  const struct task_struct *tsk2);
 90
 91#define cpuset_memory_pressure_bump() 				\
 92	do {							\
 93		if (cpuset_memory_pressure_enabled)		\
 94			__cpuset_memory_pressure_bump();	\
 95	} while (0)
 96extern int cpuset_memory_pressure_enabled;
 97extern void __cpuset_memory_pressure_bump(void);
 98
 99extern void cpuset_task_status_allowed(struct seq_file *m,
100					struct task_struct *task);
101extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
102			    struct pid *pid, struct task_struct *tsk);
103
104extern int cpuset_mem_spread_node(void);
105extern int cpuset_slab_spread_node(void);
106
107static inline int cpuset_do_page_mem_spread(void)
108{
109	return task_spread_page(current);
110}
111
112static inline int cpuset_do_slab_mem_spread(void)
113{
114	return task_spread_slab(current);
115}
116
117extern bool current_cpuset_is_being_rebound(void);
118
119extern void rebuild_sched_domains(void);
120
121extern void cpuset_print_current_mems_allowed(void);
122
123/*
124 * read_mems_allowed_begin is required when making decisions involving
125 * mems_allowed such as during page allocation. mems_allowed can be updated in
126 * parallel and depending on the new value an operation can fail potentially
127 * causing process failure. A retry loop with read_mems_allowed_begin and
128 * read_mems_allowed_retry prevents these artificial failures.
129 */
130static inline unsigned int read_mems_allowed_begin(void)
131{
132	if (!static_branch_unlikely(&cpusets_pre_enable_key))
133		return 0;
134
135	return read_seqcount_begin(&current->mems_allowed_seq);
136}
137
138/*
139 * If this returns true, the operation that took place after
140 * read_mems_allowed_begin may have failed artificially due to a concurrent
141 * update of mems_allowed. It is up to the caller to retry the operation if
142 * appropriate.
143 */
144static inline bool read_mems_allowed_retry(unsigned int seq)
145{
146	if (!static_branch_unlikely(&cpusets_enabled_key))
147		return false;
148
149	return read_seqcount_retry(&current->mems_allowed_seq, seq);
150}
151
152static inline void set_mems_allowed(nodemask_t nodemask)
153{
154	unsigned long flags;
155
156	task_lock(current);
157	local_irq_save(flags);
158	write_seqcount_begin(&current->mems_allowed_seq);
159	current->mems_allowed = nodemask;
160	write_seqcount_end(&current->mems_allowed_seq);
161	local_irq_restore(flags);
162	task_unlock(current);
163}
164
165#else /* !CONFIG_CPUSETS */
166
167static inline bool cpusets_enabled(void) { return false; }
168
 
 
169static inline int cpuset_init(void) { return 0; }
170static inline void cpuset_init_smp(void) {}
171
172static inline void cpuset_force_rebuild(void) { }
173
174static inline void cpuset_update_active_cpus(void)
175{
176	partition_sched_domains(1, NULL, NULL);
177}
178
179static inline void cpuset_wait_for_hotplug(void) { }
180
181static inline void cpuset_read_lock(void) { }
182static inline void cpuset_read_unlock(void) { }
 
 
183
184static inline void cpuset_cpus_allowed(struct task_struct *p,
185				       struct cpumask *mask)
186{
187	cpumask_copy(mask, cpu_possible_mask);
188}
189
190static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
191{
 
 
 
 
 
 
192}
193
194static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
195{
196	return node_possible_map;
197}
198
199#define cpuset_current_mems_allowed (node_states[N_MEMORY])
200static inline void cpuset_init_current_mems_allowed(void) {}
201
202static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
203{
204	return 1;
205}
206
207static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
208{
209	return true;
210}
211
212static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
213{
214	return true;
215}
216
217static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
218{
219	return true;
220}
221
222static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
223						 const struct task_struct *tsk2)
224{
225	return 1;
226}
227
228static inline void cpuset_memory_pressure_bump(void) {}
229
230static inline void cpuset_task_status_allowed(struct seq_file *m,
231						struct task_struct *task)
232{
233}
234
235static inline int cpuset_mem_spread_node(void)
236{
237	return 0;
238}
239
240static inline int cpuset_slab_spread_node(void)
241{
242	return 0;
243}
244
245static inline int cpuset_do_page_mem_spread(void)
246{
247	return 0;
248}
249
250static inline int cpuset_do_slab_mem_spread(void)
251{
252	return 0;
253}
254
255static inline bool current_cpuset_is_being_rebound(void)
256{
257	return false;
258}
259
260static inline void rebuild_sched_domains(void)
261{
262	partition_sched_domains(1, NULL, NULL);
263}
264
265static inline void cpuset_print_current_mems_allowed(void)
266{
267}
268
269static inline void set_mems_allowed(nodemask_t nodemask)
270{
271}
272
273static inline unsigned int read_mems_allowed_begin(void)
274{
275	return 0;
276}
277
278static inline bool read_mems_allowed_retry(unsigned int seq)
279{
280	return false;
281}
282
283#endif /* !CONFIG_CPUSETS */
284
285#endif /* _LINUX_CPUSET_H */
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_CPUSET_H
  3#define _LINUX_CPUSET_H
  4/*
  5 *  cpuset interface
  6 *
  7 *  Copyright (C) 2003 BULL SA
  8 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  9 *
 10 */
 11
 12#include <linux/sched.h>
 13#include <linux/sched/topology.h>
 14#include <linux/sched/task.h>
 15#include <linux/cpumask.h>
 16#include <linux/nodemask.h>
 17#include <linux/mm.h>
 18#include <linux/mmu_context.h>
 19#include <linux/jump_label.h>
 20
 21#ifdef CONFIG_CPUSETS
 22
 23/*
 24 * Static branch rewrites can happen in an arbitrary order for a given
 25 * key. In code paths where we need to loop with read_mems_allowed_begin() and
 26 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
 27 * to ensure that begin() always gets rewritten before retry() in the
 28 * disabled -> enabled transition. If not, then if local irqs are disabled
 29 * around the loop, we can deadlock since retry() would always be
 30 * comparing the latest value of the mems_allowed seqcount against 0 as
 31 * begin() still would see cpusets_enabled() as false. The enabled -> disabled
 32 * transition should happen in reverse order for the same reasons (want to stop
 33 * looking at real value of mems_allowed.sequence in retry() first).
 34 */
 35extern struct static_key_false cpusets_pre_enable_key;
 36extern struct static_key_false cpusets_enabled_key;
 37extern struct static_key_false cpusets_insane_config_key;
 38
 39static inline bool cpusets_enabled(void)
 40{
 41	return static_branch_unlikely(&cpusets_enabled_key);
 42}
 43
 44static inline void cpuset_inc(void)
 45{
 46	static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
 47	static_branch_inc_cpuslocked(&cpusets_enabled_key);
 48}
 49
 50static inline void cpuset_dec(void)
 51{
 52	static_branch_dec_cpuslocked(&cpusets_enabled_key);
 53	static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
 54}
 55
 56/*
 57 * This will get enabled whenever a cpuset configuration is considered
 58 * unsupportable in general. E.g. movable only node which cannot satisfy
 59 * any non movable allocations (see update_nodemask). Page allocator
 60 * needs to make additional checks for those configurations and this
 61 * check is meant to guard those checks without any overhead for sane
 62 * configurations.
 63 */
 64static inline bool cpusets_insane_config(void)
 65{
 66	return static_branch_unlikely(&cpusets_insane_config_key);
 67}
 68
 69extern int cpuset_init(void);
 70extern void cpuset_init_smp(void);
 71extern void cpuset_force_rebuild(void);
 72extern void cpuset_update_active_cpus(void);
 73extern void cpuset_wait_for_hotplug(void);
 74extern void inc_dl_tasks_cs(struct task_struct *task);
 75extern void dec_dl_tasks_cs(struct task_struct *task);
 76extern void cpuset_lock(void);
 77extern void cpuset_unlock(void);
 78extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
 79extern bool cpuset_cpus_allowed_fallback(struct task_struct *p);
 80extern bool cpuset_cpu_is_isolated(int cpu);
 81extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
 82#define cpuset_current_mems_allowed (current->mems_allowed)
 83void cpuset_init_current_mems_allowed(void);
 84int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
 85
 86extern bool cpuset_node_allowed(int node, gfp_t gfp_mask);
 
 
 
 
 
 
 
 87
 88static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
 89{
 90	return cpuset_node_allowed(zone_to_nid(z), gfp_mask);
 91}
 92
 93static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
 94{
 95	if (cpusets_enabled())
 96		return __cpuset_zone_allowed(z, gfp_mask);
 97	return true;
 98}
 99
100extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
101					  const struct task_struct *tsk2);
102
103#define cpuset_memory_pressure_bump() 				\
104	do {							\
105		if (cpuset_memory_pressure_enabled)		\
106			__cpuset_memory_pressure_bump();	\
107	} while (0)
108extern int cpuset_memory_pressure_enabled;
109extern void __cpuset_memory_pressure_bump(void);
110
111extern void cpuset_task_status_allowed(struct seq_file *m,
112					struct task_struct *task);
113extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
114			    struct pid *pid, struct task_struct *tsk);
115
116extern int cpuset_mem_spread_node(void);
117extern int cpuset_slab_spread_node(void);
118
119static inline int cpuset_do_page_mem_spread(void)
120{
121	return task_spread_page(current);
122}
123
 
 
 
 
 
124extern bool current_cpuset_is_being_rebound(void);
125
126extern void rebuild_sched_domains(void);
127
128extern void cpuset_print_current_mems_allowed(void);
129
130/*
131 * read_mems_allowed_begin is required when making decisions involving
132 * mems_allowed such as during page allocation. mems_allowed can be updated in
133 * parallel and depending on the new value an operation can fail potentially
134 * causing process failure. A retry loop with read_mems_allowed_begin and
135 * read_mems_allowed_retry prevents these artificial failures.
136 */
137static inline unsigned int read_mems_allowed_begin(void)
138{
139	if (!static_branch_unlikely(&cpusets_pre_enable_key))
140		return 0;
141
142	return read_seqcount_begin(&current->mems_allowed_seq);
143}
144
145/*
146 * If this returns true, the operation that took place after
147 * read_mems_allowed_begin may have failed artificially due to a concurrent
148 * update of mems_allowed. It is up to the caller to retry the operation if
149 * appropriate.
150 */
151static inline bool read_mems_allowed_retry(unsigned int seq)
152{
153	if (!static_branch_unlikely(&cpusets_enabled_key))
154		return false;
155
156	return read_seqcount_retry(&current->mems_allowed_seq, seq);
157}
158
159static inline void set_mems_allowed(nodemask_t nodemask)
160{
161	unsigned long flags;
162
163	task_lock(current);
164	local_irq_save(flags);
165	write_seqcount_begin(&current->mems_allowed_seq);
166	current->mems_allowed = nodemask;
167	write_seqcount_end(&current->mems_allowed_seq);
168	local_irq_restore(flags);
169	task_unlock(current);
170}
171
172#else /* !CONFIG_CPUSETS */
173
174static inline bool cpusets_enabled(void) { return false; }
175
176static inline bool cpusets_insane_config(void) { return false; }
177
178static inline int cpuset_init(void) { return 0; }
179static inline void cpuset_init_smp(void) {}
180
181static inline void cpuset_force_rebuild(void) { }
182
183static inline void cpuset_update_active_cpus(void)
184{
185	partition_sched_domains(1, NULL, NULL);
186}
187
188static inline void cpuset_wait_for_hotplug(void) { }
189
190static inline void inc_dl_tasks_cs(struct task_struct *task) { }
191static inline void dec_dl_tasks_cs(struct task_struct *task) { }
192static inline void cpuset_lock(void) { }
193static inline void cpuset_unlock(void) { }
194
195static inline void cpuset_cpus_allowed(struct task_struct *p,
196				       struct cpumask *mask)
197{
198	cpumask_copy(mask, task_cpu_possible_mask(p));
199}
200
201static inline bool cpuset_cpus_allowed_fallback(struct task_struct *p)
202{
203	return false;
204}
205
206static inline bool cpuset_cpu_is_isolated(int cpu)
207{
208	return false;
209}
210
211static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
212{
213	return node_possible_map;
214}
215
216#define cpuset_current_mems_allowed (node_states[N_MEMORY])
217static inline void cpuset_init_current_mems_allowed(void) {}
218
219static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
220{
221	return 1;
222}
223
 
 
 
 
 
224static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
225{
226	return true;
227}
228
229static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
230{
231	return true;
232}
233
234static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
235						 const struct task_struct *tsk2)
236{
237	return 1;
238}
239
240static inline void cpuset_memory_pressure_bump(void) {}
241
242static inline void cpuset_task_status_allowed(struct seq_file *m,
243						struct task_struct *task)
244{
245}
246
247static inline int cpuset_mem_spread_node(void)
248{
249	return 0;
250}
251
252static inline int cpuset_slab_spread_node(void)
253{
254	return 0;
255}
256
257static inline int cpuset_do_page_mem_spread(void)
 
 
 
 
 
258{
259	return 0;
260}
261
262static inline bool current_cpuset_is_being_rebound(void)
263{
264	return false;
265}
266
267static inline void rebuild_sched_domains(void)
268{
269	partition_sched_domains(1, NULL, NULL);
270}
271
272static inline void cpuset_print_current_mems_allowed(void)
273{
274}
275
276static inline void set_mems_allowed(nodemask_t nodemask)
277{
278}
279
280static inline unsigned int read_mems_allowed_begin(void)
281{
282	return 0;
283}
284
285static inline bool read_mems_allowed_retry(unsigned int seq)
286{
287	return false;
288}
289
290#endif /* !CONFIG_CPUSETS */
291
292#endif /* _LINUX_CPUSET_H */