Loading...
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "intel_context.h"
8#include "intel_engine_pm.h"
9#include "intel_gpu_commands.h"
10#include "intel_gt.h"
11#include "intel_ring.h"
12#include "intel_workarounds.h"
13
14/**
15 * DOC: Hardware workarounds
16 *
17 * This file is intended as a central place to implement most [1]_ of the
18 * required workarounds for hardware to work as originally intended. They fall
19 * in five basic categories depending on how/when they are applied:
20 *
21 * - Workarounds that touch registers that are saved/restored to/from the HW
22 * context image. The list is emitted (via Load Register Immediate commands)
23 * everytime a new context is created.
24 * - GT workarounds. The list of these WAs is applied whenever these registers
25 * revert to default values (on GPU reset, suspend/resume [2]_, etc..).
26 * - Display workarounds. The list is applied during display clock-gating
27 * initialization.
28 * - Workarounds that whitelist a privileged register, so that UMDs can manage
29 * them directly. This is just a special case of a MMMIO workaround (as we
30 * write the list of these to/be-whitelisted registers to some special HW
31 * registers).
32 * - Workaround batchbuffers, that get executed automatically by the hardware
33 * on every HW context restore.
34 *
35 * .. [1] Please notice that there are other WAs that, due to their nature,
36 * cannot be applied from a central place. Those are peppered around the rest
37 * of the code, as needed.
38 *
39 * .. [2] Technically, some registers are powercontext saved & restored, so they
40 * survive a suspend/resume. In practice, writing them again is not too
41 * costly and simplifies things. We can revisit this in the future.
42 *
43 * Layout
44 * ~~~~~~
45 *
46 * Keep things in this file ordered by WA type, as per the above (context, GT,
47 * display, register whitelist, batchbuffer). Then, inside each type, keep the
48 * following order:
49 *
50 * - Infrastructure functions and macros
51 * - WAs per platform in standard gen/chrono order
52 * - Public functions to init or apply the given workaround type.
53 */
54
55static void wa_init_start(struct i915_wa_list *wal, const char *name, const char *engine_name)
56{
57 wal->name = name;
58 wal->engine_name = engine_name;
59}
60
61#define WA_LIST_CHUNK (1 << 4)
62
63static void wa_init_finish(struct i915_wa_list *wal)
64{
65 /* Trim unused entries. */
66 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
67 struct i915_wa *list = kmemdup(wal->list,
68 wal->count * sizeof(*list),
69 GFP_KERNEL);
70
71 if (list) {
72 kfree(wal->list);
73 wal->list = list;
74 }
75 }
76
77 if (!wal->count)
78 return;
79
80 DRM_DEBUG_DRIVER("Initialized %u %s workarounds on %s\n",
81 wal->wa_count, wal->name, wal->engine_name);
82}
83
84static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
85{
86 unsigned int addr = i915_mmio_reg_offset(wa->reg);
87 unsigned int start = 0, end = wal->count;
88 const unsigned int grow = WA_LIST_CHUNK;
89 struct i915_wa *wa_;
90
91 GEM_BUG_ON(!is_power_of_2(grow));
92
93 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
94 struct i915_wa *list;
95
96 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
97 GFP_KERNEL);
98 if (!list) {
99 DRM_ERROR("No space for workaround init!\n");
100 return;
101 }
102
103 if (wal->list) {
104 memcpy(list, wal->list, sizeof(*wa) * wal->count);
105 kfree(wal->list);
106 }
107
108 wal->list = list;
109 }
110
111 while (start < end) {
112 unsigned int mid = start + (end - start) / 2;
113
114 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
115 start = mid + 1;
116 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
117 end = mid;
118 } else {
119 wa_ = &wal->list[mid];
120
121 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
122 DRM_ERROR("Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
123 i915_mmio_reg_offset(wa_->reg),
124 wa_->clr, wa_->set);
125
126 wa_->set &= ~wa->clr;
127 }
128
129 wal->wa_count++;
130 wa_->set |= wa->set;
131 wa_->clr |= wa->clr;
132 wa_->read |= wa->read;
133 return;
134 }
135 }
136
137 wal->wa_count++;
138 wa_ = &wal->list[wal->count++];
139 *wa_ = *wa;
140
141 while (wa_-- > wal->list) {
142 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
143 i915_mmio_reg_offset(wa_[1].reg));
144 if (i915_mmio_reg_offset(wa_[1].reg) >
145 i915_mmio_reg_offset(wa_[0].reg))
146 break;
147
148 swap(wa_[1], wa_[0]);
149 }
150}
151
152static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
153 u32 clear, u32 set, u32 read_mask)
154{
155 struct i915_wa wa = {
156 .reg = reg,
157 .clr = clear,
158 .set = set,
159 .read = read_mask,
160 };
161
162 _wa_add(wal, &wa);
163}
164
165static void
166wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
167{
168 wa_add(wal, reg, clear, set, clear);
169}
170
171static void
172wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
173{
174 wa_write_clr_set(wal, reg, ~0, set);
175}
176
177static void
178wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
179{
180 wa_write_clr_set(wal, reg, set, set);
181}
182
183static void
184wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
185{
186 wa_write_clr_set(wal, reg, clr, 0);
187}
188
189/*
190 * WA operations on "masked register". A masked register has the upper 16 bits
191 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
192 * portion of the register without a rmw: you simply write in the upper 16 bits
193 * the mask of bits you are going to modify.
194 *
195 * The wa_masked_* family of functions already does the necessary operations to
196 * calculate the mask based on the parameters passed, so user only has to
197 * provide the lower 16 bits of that register.
198 */
199
200static void
201wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
202{
203 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val);
204}
205
206static void
207wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
208{
209 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val);
210}
211
212static void
213wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
214 u32 mask, u32 val)
215{
216 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask);
217}
218
219static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
220 struct i915_wa_list *wal)
221{
222 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
223}
224
225static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
226 struct i915_wa_list *wal)
227{
228 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
229}
230
231static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
232 struct i915_wa_list *wal)
233{
234 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
235
236 /* WaDisableAsyncFlipPerfMode:bdw,chv */
237 wa_masked_en(wal, MI_MODE, ASYNC_FLIP_PERF_DISABLE);
238
239 /* WaDisablePartialInstShootdown:bdw,chv */
240 wa_masked_en(wal, GEN8_ROW_CHICKEN,
241 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
242
243 /* Use Force Non-Coherent whenever executing a 3D context. This is a
244 * workaround for a possible hang in the unlikely event a TLB
245 * invalidation occurs during a PSD flush.
246 */
247 /* WaForceEnableNonCoherent:bdw,chv */
248 /* WaHdcDisableFetchWhenMasked:bdw,chv */
249 wa_masked_en(wal, HDC_CHICKEN0,
250 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
251 HDC_FORCE_NON_COHERENT);
252
253 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
254 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
255 * polygons in the same 8x4 pixel/sample area to be processed without
256 * stalling waiting for the earlier ones to write to Hierarchical Z
257 * buffer."
258 *
259 * This optimization is off by default for BDW and CHV; turn it on.
260 */
261 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
262
263 /* Wa4x4STCOptimizationDisable:bdw,chv */
264 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
265
266 /*
267 * BSpec recommends 8x4 when MSAA is used,
268 * however in practice 16x4 seems fastest.
269 *
270 * Note that PS/WM thread counts depend on the WIZ hashing
271 * disable bit, which we don't touch here, but it's good
272 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
273 */
274 wa_masked_field_set(wal, GEN7_GT_MODE,
275 GEN6_WIZ_HASHING_MASK,
276 GEN6_WIZ_HASHING_16x4);
277}
278
279static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
280 struct i915_wa_list *wal)
281{
282 struct drm_i915_private *i915 = engine->i915;
283
284 gen8_ctx_workarounds_init(engine, wal);
285
286 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
287 wa_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
288
289 /* WaDisableDopClockGating:bdw
290 *
291 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
292 * to disable EUTC clock gating.
293 */
294 wa_masked_en(wal, GEN7_ROW_CHICKEN2,
295 DOP_CLOCK_GATING_DISABLE);
296
297 wa_masked_en(wal, HALF_SLICE_CHICKEN3,
298 GEN8_SAMPLER_POWER_BYPASS_DIS);
299
300 wa_masked_en(wal, HDC_CHICKEN0,
301 /* WaForceContextSaveRestoreNonCoherent:bdw */
302 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
303 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
304 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
305}
306
307static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
308 struct i915_wa_list *wal)
309{
310 gen8_ctx_workarounds_init(engine, wal);
311
312 /* WaDisableThreadStallDopClockGating:chv */
313 wa_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
314
315 /* Improve HiZ throughput on CHV. */
316 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
317}
318
319static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
320 struct i915_wa_list *wal)
321{
322 struct drm_i915_private *i915 = engine->i915;
323
324 if (HAS_LLC(i915)) {
325 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
326 *
327 * Must match Display Engine. See
328 * WaCompressedResourceDisplayNewHashMode.
329 */
330 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
331 GEN9_PBE_COMPRESSED_HASH_SELECTION);
332 wa_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
333 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
334 }
335
336 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
337 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
338 wa_masked_en(wal, GEN8_ROW_CHICKEN,
339 FLOW_CONTROL_ENABLE |
340 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
341
342 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
343 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
344 wa_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
345 GEN9_ENABLE_YV12_BUGFIX |
346 GEN9_ENABLE_GPGPU_PREEMPTION);
347
348 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
349 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
350 wa_masked_en(wal, CACHE_MODE_1,
351 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
352 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
353
354 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
355 wa_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
356 GEN9_CCS_TLB_PREFETCH_ENABLE);
357
358 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
359 wa_masked_en(wal, HDC_CHICKEN0,
360 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
361 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
362
363 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
364 * both tied to WaForceContextSaveRestoreNonCoherent
365 * in some hsds for skl. We keep the tie for all gen9. The
366 * documentation is a bit hazy and so we want to get common behaviour,
367 * even though there is no clear evidence we would need both on kbl/bxt.
368 * This area has been source of system hangs so we play it safe
369 * and mimic the skl regardless of what bspec says.
370 *
371 * Use Force Non-Coherent whenever executing a 3D context. This
372 * is a workaround for a possible hang in the unlikely event
373 * a TLB invalidation occurs during a PSD flush.
374 */
375
376 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
377 wa_masked_en(wal, HDC_CHICKEN0,
378 HDC_FORCE_NON_COHERENT);
379
380 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
381 if (IS_SKYLAKE(i915) ||
382 IS_KABYLAKE(i915) ||
383 IS_COFFEELAKE(i915) ||
384 IS_COMETLAKE(i915))
385 wa_masked_en(wal, HALF_SLICE_CHICKEN3,
386 GEN8_SAMPLER_POWER_BYPASS_DIS);
387
388 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
389 wa_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
390
391 /*
392 * Supporting preemption with fine-granularity requires changes in the
393 * batch buffer programming. Since we can't break old userspace, we
394 * need to set our default preemption level to safe value. Userspace is
395 * still able to use more fine-grained preemption levels, since in
396 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
397 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
398 * not real HW workarounds, but merely a way to start using preemption
399 * while maintaining old contract with userspace.
400 */
401
402 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
403 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
404
405 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
406 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
407 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
408 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
409
410 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
411 if (IS_GEN9_LP(i915))
412 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
413}
414
415static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
416 struct i915_wa_list *wal)
417{
418 struct intel_gt *gt = engine->gt;
419 u8 vals[3] = { 0, 0, 0 };
420 unsigned int i;
421
422 for (i = 0; i < 3; i++) {
423 u8 ss;
424
425 /*
426 * Only consider slices where one, and only one, subslice has 7
427 * EUs
428 */
429 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
430 continue;
431
432 /*
433 * subslice_7eu[i] != 0 (because of the check above) and
434 * ss_max == 4 (maximum number of subslices possible per slice)
435 *
436 * -> 0 <= ss <= 3;
437 */
438 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
439 vals[i] = 3 - ss;
440 }
441
442 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
443 return;
444
445 /* Tune IZ hashing. See intel_device_info_runtime_init() */
446 wa_masked_field_set(wal, GEN7_GT_MODE,
447 GEN9_IZ_HASHING_MASK(2) |
448 GEN9_IZ_HASHING_MASK(1) |
449 GEN9_IZ_HASHING_MASK(0),
450 GEN9_IZ_HASHING(2, vals[2]) |
451 GEN9_IZ_HASHING(1, vals[1]) |
452 GEN9_IZ_HASHING(0, vals[0]));
453}
454
455static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
456 struct i915_wa_list *wal)
457{
458 gen9_ctx_workarounds_init(engine, wal);
459 skl_tune_iz_hashing(engine, wal);
460}
461
462static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
463 struct i915_wa_list *wal)
464{
465 gen9_ctx_workarounds_init(engine, wal);
466
467 /* WaDisableThreadStallDopClockGating:bxt */
468 wa_masked_en(wal, GEN8_ROW_CHICKEN,
469 STALL_DOP_GATING_DISABLE);
470
471 /* WaToEnableHwFixForPushConstHWBug:bxt */
472 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
473 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
474}
475
476static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
477 struct i915_wa_list *wal)
478{
479 struct drm_i915_private *i915 = engine->i915;
480
481 gen9_ctx_workarounds_init(engine, wal);
482
483 /* WaToEnableHwFixForPushConstHWBug:kbl */
484 if (IS_KBL_GT_STEP(i915, STEP_C0, STEP_FOREVER))
485 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
486 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
487
488 /* WaDisableSbeCacheDispatchPortSharing:kbl */
489 wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1,
490 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
491}
492
493static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
494 struct i915_wa_list *wal)
495{
496 gen9_ctx_workarounds_init(engine, wal);
497
498 /* WaToEnableHwFixForPushConstHWBug:glk */
499 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
500 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
501}
502
503static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
504 struct i915_wa_list *wal)
505{
506 gen9_ctx_workarounds_init(engine, wal);
507
508 /* WaToEnableHwFixForPushConstHWBug:cfl */
509 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
510 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
511
512 /* WaDisableSbeCacheDispatchPortSharing:cfl */
513 wa_masked_en(wal, GEN7_HALF_SLICE_CHICKEN1,
514 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
515}
516
517static void cnl_ctx_workarounds_init(struct intel_engine_cs *engine,
518 struct i915_wa_list *wal)
519{
520 /* WaForceContextSaveRestoreNonCoherent:cnl */
521 wa_masked_en(wal, CNL_HDC_CHICKEN0,
522 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT);
523
524 /* WaDisableReplayBufferBankArbitrationOptimization:cnl */
525 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
526 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
527
528 /* WaPushConstantDereferenceHoldDisable:cnl */
529 wa_masked_en(wal, GEN7_ROW_CHICKEN2, PUSH_CONSTANT_DEREF_DISABLE);
530
531 /* FtrEnableFastAnisoL1BankingFix:cnl */
532 wa_masked_en(wal, HALF_SLICE_CHICKEN3, CNL_FAST_ANISO_L1_BANKING_FIX);
533
534 /* WaDisable3DMidCmdPreemption:cnl */
535 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
536
537 /* WaDisableGPGPUMidCmdPreemption:cnl */
538 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
539 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
540 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
541
542 /* WaDisableEarlyEOT:cnl */
543 wa_masked_en(wal, GEN8_ROW_CHICKEN, DISABLE_EARLY_EOT);
544}
545
546static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
547 struct i915_wa_list *wal)
548{
549 struct drm_i915_private *i915 = engine->i915;
550
551 /* WaDisableBankHangMode:icl */
552 wa_write(wal,
553 GEN8_L3CNTLREG,
554 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
555 GEN8_ERRDETBCTRL);
556
557 /* Wa_1604370585:icl (pre-prod)
558 * Formerly known as WaPushConstantDereferenceHoldDisable
559 */
560 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_B0))
561 wa_masked_en(wal, GEN7_ROW_CHICKEN2,
562 PUSH_CONSTANT_DEREF_DISABLE);
563
564 /* WaForceEnableNonCoherent:icl
565 * This is not the same workaround as in early Gen9 platforms, where
566 * lacking this could cause system hangs, but coherency performance
567 * overhead is high and only a few compute workloads really need it
568 * (the register is whitelisted in hardware now, so UMDs can opt in
569 * for coherency if they have a good reason).
570 */
571 wa_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
572
573 /* Wa_2006611047:icl (pre-prod)
574 * Formerly known as WaDisableImprovedTdlClkGating
575 */
576 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_A0))
577 wa_masked_en(wal, GEN7_ROW_CHICKEN2,
578 GEN11_TDL_CLOCK_GATING_FIX_DISABLE);
579
580 /* Wa_2006665173:icl (pre-prod) */
581 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_A0))
582 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
583 GEN11_BLEND_EMB_FIX_DISABLE_IN_RCC);
584
585 /* WaEnableFloatBlendOptimization:icl */
586 wa_write_clr_set(wal,
587 GEN10_CACHE_MODE_SS,
588 0, /* write-only, so skip validation */
589 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE));
590
591 /* WaDisableGPGPUMidThreadPreemption:icl */
592 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
593 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
594 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
595
596 /* allow headerless messages for preemptible GPGPU context */
597 wa_masked_en(wal, GEN10_SAMPLER_MODE,
598 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
599
600 /* Wa_1604278689:icl,ehl */
601 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
602 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
603 0, /* write-only register; skip validation */
604 0xFFFFFFFF);
605
606 /* Wa_1406306137:icl,ehl */
607 wa_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
608}
609
610/*
611 * These settings aren't actually workarounds, but general tuning settings that
612 * need to be programmed on several platforms.
613 */
614static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
615 struct i915_wa_list *wal)
616{
617 /*
618 * Although some platforms refer to it as Wa_1604555607, we need to
619 * program it even on those that don't explicitly list that
620 * workaround.
621 *
622 * Note that the programming of this register is further modified
623 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
624 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
625 * value when read. The default value for this register is zero for all
626 * fields and there are no bit masks. So instead of doing a RMW we
627 * should just write TDS timer value. For the same reason read
628 * verification is ignored.
629 */
630 wa_add(wal,
631 FF_MODE2,
632 FF_MODE2_TDS_TIMER_MASK,
633 FF_MODE2_TDS_TIMER_128,
634 0);
635}
636
637static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
638 struct i915_wa_list *wal)
639{
640 gen12_ctx_gt_tuning_init(engine, wal);
641
642 /*
643 * Wa_1409142259:tgl
644 * Wa_1409347922:tgl
645 * Wa_1409252684:tgl
646 * Wa_1409217633:tgl
647 * Wa_1409207793:tgl
648 * Wa_1409178076:tgl
649 * Wa_1408979724:tgl
650 * Wa_14010443199:rkl
651 * Wa_14010698770:rkl
652 */
653 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
654 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
655
656 /* WaDisableGPGPUMidThreadPreemption:gen12 */
657 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
658 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
659 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
660
661 /*
662 * Wa_16011163337
663 *
664 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
665 * to Wa_1608008084.
666 */
667 wa_add(wal,
668 FF_MODE2,
669 FF_MODE2_GS_TIMER_MASK,
670 FF_MODE2_GS_TIMER_224,
671 0);
672}
673
674static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
675 struct i915_wa_list *wal)
676{
677 gen12_ctx_workarounds_init(engine, wal);
678
679 /* Wa_1409044764 */
680 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
681 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
682
683 /* Wa_22010493298 */
684 wa_masked_en(wal, HIZ_CHICKEN,
685 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
686}
687
688static void
689__intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
690 struct i915_wa_list *wal,
691 const char *name)
692{
693 struct drm_i915_private *i915 = engine->i915;
694
695 if (engine->class != RENDER_CLASS)
696 return;
697
698 wa_init_start(wal, name, engine->name);
699
700 if (IS_DG1(i915))
701 dg1_ctx_workarounds_init(engine, wal);
702 else if (GRAPHICS_VER(i915) == 12)
703 gen12_ctx_workarounds_init(engine, wal);
704 else if (GRAPHICS_VER(i915) == 11)
705 icl_ctx_workarounds_init(engine, wal);
706 else if (IS_CANNONLAKE(i915))
707 cnl_ctx_workarounds_init(engine, wal);
708 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
709 cfl_ctx_workarounds_init(engine, wal);
710 else if (IS_GEMINILAKE(i915))
711 glk_ctx_workarounds_init(engine, wal);
712 else if (IS_KABYLAKE(i915))
713 kbl_ctx_workarounds_init(engine, wal);
714 else if (IS_BROXTON(i915))
715 bxt_ctx_workarounds_init(engine, wal);
716 else if (IS_SKYLAKE(i915))
717 skl_ctx_workarounds_init(engine, wal);
718 else if (IS_CHERRYVIEW(i915))
719 chv_ctx_workarounds_init(engine, wal);
720 else if (IS_BROADWELL(i915))
721 bdw_ctx_workarounds_init(engine, wal);
722 else if (GRAPHICS_VER(i915) == 7)
723 gen7_ctx_workarounds_init(engine, wal);
724 else if (GRAPHICS_VER(i915) == 6)
725 gen6_ctx_workarounds_init(engine, wal);
726 else if (GRAPHICS_VER(i915) < 8)
727 ;
728 else
729 MISSING_CASE(GRAPHICS_VER(i915));
730
731 wa_init_finish(wal);
732}
733
734void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
735{
736 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
737}
738
739int intel_engine_emit_ctx_wa(struct i915_request *rq)
740{
741 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
742 struct i915_wa *wa;
743 unsigned int i;
744 u32 *cs;
745 int ret;
746
747 if (wal->count == 0)
748 return 0;
749
750 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
751 if (ret)
752 return ret;
753
754 cs = intel_ring_begin(rq, (wal->count * 2 + 2));
755 if (IS_ERR(cs))
756 return PTR_ERR(cs);
757
758 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
759 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
760 *cs++ = i915_mmio_reg_offset(wa->reg);
761 *cs++ = wa->set;
762 }
763 *cs++ = MI_NOOP;
764
765 intel_ring_advance(rq, cs);
766
767 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
768 if (ret)
769 return ret;
770
771 return 0;
772}
773
774static void
775gen4_gt_workarounds_init(struct drm_i915_private *i915,
776 struct i915_wa_list *wal)
777{
778 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
779 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
780}
781
782static void
783g4x_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
784{
785 gen4_gt_workarounds_init(i915, wal);
786
787 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
788 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
789}
790
791static void
792ilk_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
793{
794 g4x_gt_workarounds_init(i915, wal);
795
796 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
797}
798
799static void
800snb_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
801{
802}
803
804static void
805ivb_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
806{
807 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
808 wa_masked_dis(wal,
809 GEN7_COMMON_SLICE_CHICKEN1,
810 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
811
812 /* WaApplyL3ControlAndL3ChickenMode:ivb */
813 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
814 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
815
816 /* WaForceL3Serialization:ivb */
817 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
818}
819
820static void
821vlv_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
822{
823 /* WaForceL3Serialization:vlv */
824 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
825
826 /*
827 * WaIncreaseL3CreditsForVLVB0:vlv
828 * This is the hardware default actually.
829 */
830 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
831}
832
833static void
834hsw_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
835{
836 /* L3 caching of data atomics doesn't work -- disable it. */
837 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
838
839 wa_add(wal,
840 HSW_ROW_CHICKEN3, 0,
841 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
842 0 /* XXX does this reg exist? */);
843
844 /* WaVSRefCountFullforceMissDisable:hsw */
845 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
846}
847
848static void
849gen9_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
850{
851 /* WaDisableKillLogic:bxt,skl,kbl */
852 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
853 wa_write_or(wal,
854 GAM_ECOCHK,
855 ECOCHK_DIS_TLB);
856
857 if (HAS_LLC(i915)) {
858 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
859 *
860 * Must match Display Engine. See
861 * WaCompressedResourceDisplayNewHashMode.
862 */
863 wa_write_or(wal,
864 MMCD_MISC_CTRL,
865 MMCD_PCLA | MMCD_HOTSPOT_EN);
866 }
867
868 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
869 wa_write_or(wal,
870 GAM_ECOCHK,
871 BDW_DISABLE_HDC_INVALIDATION);
872}
873
874static void
875skl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
876{
877 gen9_gt_workarounds_init(i915, wal);
878
879 /* WaDisableGafsUnitClkGating:skl */
880 wa_write_or(wal,
881 GEN7_UCGCTL4,
882 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
883
884 /* WaInPlaceDecompressionHang:skl */
885 if (IS_SKL_REVID(i915, SKL_REVID_H0, REVID_FOREVER))
886 wa_write_or(wal,
887 GEN9_GAMT_ECO_REG_RW_IA,
888 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
889}
890
891static void
892bxt_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
893{
894 gen9_gt_workarounds_init(i915, wal);
895
896 /* WaInPlaceDecompressionHang:bxt */
897 wa_write_or(wal,
898 GEN9_GAMT_ECO_REG_RW_IA,
899 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
900}
901
902static void
903kbl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
904{
905 gen9_gt_workarounds_init(i915, wal);
906
907 /* WaDisableDynamicCreditSharing:kbl */
908 if (IS_KBL_GT_STEP(i915, 0, STEP_B0))
909 wa_write_or(wal,
910 GAMT_CHKN_BIT_REG,
911 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
912
913 /* WaDisableGafsUnitClkGating:kbl */
914 wa_write_or(wal,
915 GEN7_UCGCTL4,
916 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
917
918 /* WaInPlaceDecompressionHang:kbl */
919 wa_write_or(wal,
920 GEN9_GAMT_ECO_REG_RW_IA,
921 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
922}
923
924static void
925glk_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
926{
927 gen9_gt_workarounds_init(i915, wal);
928}
929
930static void
931cfl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
932{
933 gen9_gt_workarounds_init(i915, wal);
934
935 /* WaDisableGafsUnitClkGating:cfl */
936 wa_write_or(wal,
937 GEN7_UCGCTL4,
938 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
939
940 /* WaInPlaceDecompressionHang:cfl */
941 wa_write_or(wal,
942 GEN9_GAMT_ECO_REG_RW_IA,
943 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
944}
945
946static void
947wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
948{
949 const struct sseu_dev_info *sseu = &i915->gt.info.sseu;
950 unsigned int slice, subslice;
951 u32 l3_en, mcr, mcr_mask;
952
953 GEM_BUG_ON(GRAPHICS_VER(i915) < 10);
954
955 /*
956 * WaProgramMgsrForL3BankSpecificMmioReads: cnl,icl
957 * L3Banks could be fused off in single slice scenario. If that is
958 * the case, we might need to program MCR select to a valid L3Bank
959 * by default, to make sure we correctly read certain registers
960 * later on (in the range 0xB100 - 0xB3FF).
961 *
962 * WaProgramMgsrForCorrectSliceSpecificMmioReads:cnl,icl
963 * Before any MMIO read into slice/subslice specific registers, MCR
964 * packet control register needs to be programmed to point to any
965 * enabled s/ss pair. Otherwise, incorrect values will be returned.
966 * This means each subsequent MMIO read will be forwarded to an
967 * specific s/ss combination, but this is OK since these registers
968 * are consistent across s/ss in almost all cases. In the rare
969 * occasions, such as INSTDONE, where this value is dependent
970 * on s/ss combo, the read should be done with read_subslice_reg.
971 *
972 * Since GEN8_MCR_SELECTOR contains dual-purpose bits which select both
973 * to which subslice, or to which L3 bank, the respective mmio reads
974 * will go, we have to find a common index which works for both
975 * accesses.
976 *
977 * Case where we cannot find a common index fortunately should not
978 * happen in production hardware, so we only emit a warning instead of
979 * implementing something more complex that requires checking the range
980 * of every MMIO read.
981 */
982
983 if (GRAPHICS_VER(i915) >= 10 && is_power_of_2(sseu->slice_mask)) {
984 u32 l3_fuse =
985 intel_uncore_read(&i915->uncore, GEN10_MIRROR_FUSE3) &
986 GEN10_L3BANK_MASK;
987
988 drm_dbg(&i915->drm, "L3 fuse = %x\n", l3_fuse);
989 l3_en = ~(l3_fuse << GEN10_L3BANK_PAIR_COUNT | l3_fuse);
990 } else {
991 l3_en = ~0;
992 }
993
994 slice = fls(sseu->slice_mask) - 1;
995 subslice = fls(l3_en & intel_sseu_get_subslices(sseu, slice));
996 if (!subslice) {
997 drm_warn(&i915->drm,
998 "No common index found between subslice mask %x and L3 bank mask %x!\n",
999 intel_sseu_get_subslices(sseu, slice), l3_en);
1000 subslice = fls(l3_en);
1001 drm_WARN_ON(&i915->drm, !subslice);
1002 }
1003 subslice--;
1004
1005 if (GRAPHICS_VER(i915) >= 11) {
1006 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1007 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1008 } else {
1009 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1010 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1011 }
1012
1013 drm_dbg(&i915->drm, "MCR slice/subslice = %x\n", mcr);
1014
1015 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1016}
1017
1018static void
1019cnl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
1020{
1021 wa_init_mcr(i915, wal);
1022
1023 /* WaInPlaceDecompressionHang:cnl */
1024 wa_write_or(wal,
1025 GEN9_GAMT_ECO_REG_RW_IA,
1026 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1027}
1028
1029static void
1030icl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
1031{
1032 wa_init_mcr(i915, wal);
1033
1034 /* WaInPlaceDecompressionHang:icl */
1035 wa_write_or(wal,
1036 GEN9_GAMT_ECO_REG_RW_IA,
1037 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1038
1039 /* WaModifyGamTlbPartitioning:icl */
1040 wa_write_clr_set(wal,
1041 GEN11_GACB_PERF_CTRL,
1042 GEN11_HASH_CTRL_MASK,
1043 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1044
1045 /* Wa_1405766107:icl
1046 * Formerly known as WaCL2SFHalfMaxAlloc
1047 */
1048 wa_write_or(wal,
1049 GEN11_LSN_UNSLCVC,
1050 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1051 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1052
1053 /* Wa_220166154:icl
1054 * Formerly known as WaDisCtxReload
1055 */
1056 wa_write_or(wal,
1057 GEN8_GAMW_ECO_DEV_RW_IA,
1058 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1059
1060 /* Wa_1405779004:icl (pre-prod) */
1061 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_A0))
1062 wa_write_or(wal,
1063 SLICE_UNIT_LEVEL_CLKGATE,
1064 MSCUNIT_CLKGATE_DIS);
1065
1066 /* Wa_1406838659:icl (pre-prod) */
1067 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_B0))
1068 wa_write_or(wal,
1069 INF_UNIT_LEVEL_CLKGATE,
1070 CGPSF_CLKGATE_DIS);
1071
1072 /* Wa_1406463099:icl
1073 * Formerly known as WaGamTlbPendError
1074 */
1075 wa_write_or(wal,
1076 GAMT_CHKN_BIT_REG,
1077 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1078
1079 /* Wa_1607087056:icl,ehl,jsl */
1080 if (IS_ICELAKE(i915) ||
1081 IS_JSL_EHL_REVID(i915, EHL_REVID_A0, EHL_REVID_A0))
1082 wa_write_or(wal,
1083 SLICE_UNIT_LEVEL_CLKGATE,
1084 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1085}
1086
1087/*
1088 * Though there are per-engine instances of these registers,
1089 * they retain their value through engine resets and should
1090 * only be provided on the GT workaround list rather than
1091 * the engine-specific workaround list.
1092 */
1093static void
1094wa_14011060649(struct drm_i915_private *i915, struct i915_wa_list *wal)
1095{
1096 struct intel_engine_cs *engine;
1097 struct intel_gt *gt = &i915->gt;
1098 int id;
1099
1100 for_each_engine(engine, gt, id) {
1101 if (engine->class != VIDEO_DECODE_CLASS ||
1102 (engine->instance % 2))
1103 continue;
1104
1105 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1106 IECPUNIT_CLKGATE_DIS);
1107 }
1108}
1109
1110static void
1111gen12_gt_workarounds_init(struct drm_i915_private *i915,
1112 struct i915_wa_list *wal)
1113{
1114 wa_init_mcr(i915, wal);
1115
1116 /* Wa_14011060649:tgl,rkl,dg1,adls */
1117 wa_14011060649(i915, wal);
1118}
1119
1120static void
1121tgl_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
1122{
1123 gen12_gt_workarounds_init(i915, wal);
1124
1125 /* Wa_1409420604:tgl */
1126 if (IS_TGL_UY_GT_STEP(i915, STEP_A0, STEP_A0))
1127 wa_write_or(wal,
1128 SUBSLICE_UNIT_LEVEL_CLKGATE2,
1129 CPSSUNIT_CLKGATE_DIS);
1130
1131 /* Wa_1607087056:tgl also know as BUG:1409180338 */
1132 if (IS_TGL_UY_GT_STEP(i915, STEP_A0, STEP_A0))
1133 wa_write_or(wal,
1134 SLICE_UNIT_LEVEL_CLKGATE,
1135 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1136
1137 /* Wa_1408615072:tgl[a0] */
1138 if (IS_TGL_UY_GT_STEP(i915, STEP_A0, STEP_A0))
1139 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1140 VSUNIT_CLKGATE_DIS_TGL);
1141}
1142
1143static void
1144dg1_gt_workarounds_init(struct drm_i915_private *i915, struct i915_wa_list *wal)
1145{
1146 gen12_gt_workarounds_init(i915, wal);
1147
1148 /* Wa_1607087056:dg1 */
1149 if (IS_DG1_REVID(i915, DG1_REVID_A0, DG1_REVID_A0))
1150 wa_write_or(wal,
1151 SLICE_UNIT_LEVEL_CLKGATE,
1152 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1153
1154 /* Wa_1409420604:dg1 */
1155 if (IS_DG1(i915))
1156 wa_write_or(wal,
1157 SUBSLICE_UNIT_LEVEL_CLKGATE2,
1158 CPSSUNIT_CLKGATE_DIS);
1159
1160 /* Wa_1408615072:dg1 */
1161 /* Empirical testing shows this register is unaffected by engine reset. */
1162 if (IS_DG1(i915))
1163 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1164 VSUNIT_CLKGATE_DIS_TGL);
1165}
1166
1167static void
1168gt_init_workarounds(struct drm_i915_private *i915, struct i915_wa_list *wal)
1169{
1170 if (IS_DG1(i915))
1171 dg1_gt_workarounds_init(i915, wal);
1172 else if (IS_TIGERLAKE(i915))
1173 tgl_gt_workarounds_init(i915, wal);
1174 else if (GRAPHICS_VER(i915) == 12)
1175 gen12_gt_workarounds_init(i915, wal);
1176 else if (GRAPHICS_VER(i915) == 11)
1177 icl_gt_workarounds_init(i915, wal);
1178 else if (IS_CANNONLAKE(i915))
1179 cnl_gt_workarounds_init(i915, wal);
1180 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1181 cfl_gt_workarounds_init(i915, wal);
1182 else if (IS_GEMINILAKE(i915))
1183 glk_gt_workarounds_init(i915, wal);
1184 else if (IS_KABYLAKE(i915))
1185 kbl_gt_workarounds_init(i915, wal);
1186 else if (IS_BROXTON(i915))
1187 bxt_gt_workarounds_init(i915, wal);
1188 else if (IS_SKYLAKE(i915))
1189 skl_gt_workarounds_init(i915, wal);
1190 else if (IS_HASWELL(i915))
1191 hsw_gt_workarounds_init(i915, wal);
1192 else if (IS_VALLEYVIEW(i915))
1193 vlv_gt_workarounds_init(i915, wal);
1194 else if (IS_IVYBRIDGE(i915))
1195 ivb_gt_workarounds_init(i915, wal);
1196 else if (GRAPHICS_VER(i915) == 6)
1197 snb_gt_workarounds_init(i915, wal);
1198 else if (GRAPHICS_VER(i915) == 5)
1199 ilk_gt_workarounds_init(i915, wal);
1200 else if (IS_G4X(i915))
1201 g4x_gt_workarounds_init(i915, wal);
1202 else if (GRAPHICS_VER(i915) == 4)
1203 gen4_gt_workarounds_init(i915, wal);
1204 else if (GRAPHICS_VER(i915) <= 8)
1205 ;
1206 else
1207 MISSING_CASE(GRAPHICS_VER(i915));
1208}
1209
1210void intel_gt_init_workarounds(struct drm_i915_private *i915)
1211{
1212 struct i915_wa_list *wal = &i915->gt_wa_list;
1213
1214 wa_init_start(wal, "GT", "global");
1215 gt_init_workarounds(i915, wal);
1216 wa_init_finish(wal);
1217}
1218
1219static enum forcewake_domains
1220wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1221{
1222 enum forcewake_domains fw = 0;
1223 struct i915_wa *wa;
1224 unsigned int i;
1225
1226 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1227 fw |= intel_uncore_forcewake_for_reg(uncore,
1228 wa->reg,
1229 FW_REG_READ |
1230 FW_REG_WRITE);
1231
1232 return fw;
1233}
1234
1235static bool
1236wa_verify(const struct i915_wa *wa, u32 cur, const char *name, const char *from)
1237{
1238 if ((cur ^ wa->set) & wa->read) {
1239 DRM_ERROR("%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1240 name, from, i915_mmio_reg_offset(wa->reg),
1241 cur, cur & wa->read, wa->set & wa->read);
1242
1243 return false;
1244 }
1245
1246 return true;
1247}
1248
1249static void
1250wa_list_apply(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1251{
1252 enum forcewake_domains fw;
1253 unsigned long flags;
1254 struct i915_wa *wa;
1255 unsigned int i;
1256
1257 if (!wal->count)
1258 return;
1259
1260 fw = wal_get_fw_for_rmw(uncore, wal);
1261
1262 spin_lock_irqsave(&uncore->lock, flags);
1263 intel_uncore_forcewake_get__locked(uncore, fw);
1264
1265 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1266 if (wa->clr)
1267 intel_uncore_rmw_fw(uncore, wa->reg, wa->clr, wa->set);
1268 else
1269 intel_uncore_write_fw(uncore, wa->reg, wa->set);
1270 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1271 wa_verify(wa,
1272 intel_uncore_read_fw(uncore, wa->reg),
1273 wal->name, "application");
1274 }
1275
1276 intel_uncore_forcewake_put__locked(uncore, fw);
1277 spin_unlock_irqrestore(&uncore->lock, flags);
1278}
1279
1280void intel_gt_apply_workarounds(struct intel_gt *gt)
1281{
1282 wa_list_apply(gt->uncore, >->i915->gt_wa_list);
1283}
1284
1285static bool wa_list_verify(struct intel_uncore *uncore,
1286 const struct i915_wa_list *wal,
1287 const char *from)
1288{
1289 struct i915_wa *wa;
1290 unsigned int i;
1291 bool ok = true;
1292
1293 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1294 ok &= wa_verify(wa,
1295 intel_uncore_read(uncore, wa->reg),
1296 wal->name, from);
1297
1298 return ok;
1299}
1300
1301bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1302{
1303 return wa_list_verify(gt->uncore, >->i915->gt_wa_list, from);
1304}
1305
1306__maybe_unused
1307static bool is_nonpriv_flags_valid(u32 flags)
1308{
1309 /* Check only valid flag bits are set */
1310 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1311 return false;
1312
1313 /* NB: Only 3 out of 4 enum values are valid for access field */
1314 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1315 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1316 return false;
1317
1318 return true;
1319}
1320
1321static void
1322whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1323{
1324 struct i915_wa wa = {
1325 .reg = reg
1326 };
1327
1328 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1329 return;
1330
1331 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1332 return;
1333
1334 wa.reg.reg |= flags;
1335 _wa_add(wal, &wa);
1336}
1337
1338static void
1339whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1340{
1341 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1342}
1343
1344static void gen9_whitelist_build(struct i915_wa_list *w)
1345{
1346 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1347 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1348
1349 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1350 whitelist_reg(w, GEN8_CS_CHICKEN1);
1351
1352 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1353 whitelist_reg(w, GEN8_HDC_CHICKEN1);
1354
1355 /* WaSendPushConstantsFromMMIO:skl,bxt */
1356 whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1357}
1358
1359static void skl_whitelist_build(struct intel_engine_cs *engine)
1360{
1361 struct i915_wa_list *w = &engine->whitelist;
1362
1363 if (engine->class != RENDER_CLASS)
1364 return;
1365
1366 gen9_whitelist_build(w);
1367
1368 /* WaDisableLSQCROPERFforOCL:skl */
1369 whitelist_reg(w, GEN8_L3SQCREG4);
1370}
1371
1372static void bxt_whitelist_build(struct intel_engine_cs *engine)
1373{
1374 if (engine->class != RENDER_CLASS)
1375 return;
1376
1377 gen9_whitelist_build(&engine->whitelist);
1378}
1379
1380static void kbl_whitelist_build(struct intel_engine_cs *engine)
1381{
1382 struct i915_wa_list *w = &engine->whitelist;
1383
1384 if (engine->class != RENDER_CLASS)
1385 return;
1386
1387 gen9_whitelist_build(w);
1388
1389 /* WaDisableLSQCROPERFforOCL:kbl */
1390 whitelist_reg(w, GEN8_L3SQCREG4);
1391}
1392
1393static void glk_whitelist_build(struct intel_engine_cs *engine)
1394{
1395 struct i915_wa_list *w = &engine->whitelist;
1396
1397 if (engine->class != RENDER_CLASS)
1398 return;
1399
1400 gen9_whitelist_build(w);
1401
1402 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1403 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1404}
1405
1406static void cfl_whitelist_build(struct intel_engine_cs *engine)
1407{
1408 struct i915_wa_list *w = &engine->whitelist;
1409
1410 if (engine->class != RENDER_CLASS)
1411 return;
1412
1413 gen9_whitelist_build(w);
1414
1415 /*
1416 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1417 *
1418 * This covers 4 register which are next to one another :
1419 * - PS_INVOCATION_COUNT
1420 * - PS_INVOCATION_COUNT_UDW
1421 * - PS_DEPTH_COUNT
1422 * - PS_DEPTH_COUNT_UDW
1423 */
1424 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1425 RING_FORCE_TO_NONPRIV_ACCESS_RD |
1426 RING_FORCE_TO_NONPRIV_RANGE_4);
1427}
1428
1429static void cml_whitelist_build(struct intel_engine_cs *engine)
1430{
1431 struct i915_wa_list *w = &engine->whitelist;
1432
1433 if (engine->class != RENDER_CLASS)
1434 whitelist_reg_ext(w,
1435 RING_CTX_TIMESTAMP(engine->mmio_base),
1436 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1437
1438 cfl_whitelist_build(engine);
1439}
1440
1441static void cnl_whitelist_build(struct intel_engine_cs *engine)
1442{
1443 struct i915_wa_list *w = &engine->whitelist;
1444
1445 if (engine->class != RENDER_CLASS)
1446 return;
1447
1448 /* WaEnablePreemptionGranularityControlByUMD:cnl */
1449 whitelist_reg(w, GEN8_CS_CHICKEN1);
1450}
1451
1452static void icl_whitelist_build(struct intel_engine_cs *engine)
1453{
1454 struct i915_wa_list *w = &engine->whitelist;
1455
1456 switch (engine->class) {
1457 case RENDER_CLASS:
1458 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
1459 whitelist_reg(w, GEN9_HALF_SLICE_CHICKEN7);
1460
1461 /* WaAllowUMDToModifySamplerMode:icl */
1462 whitelist_reg(w, GEN10_SAMPLER_MODE);
1463
1464 /* WaEnableStateCacheRedirectToCS:icl */
1465 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1466
1467 /*
1468 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
1469 *
1470 * This covers 4 register which are next to one another :
1471 * - PS_INVOCATION_COUNT
1472 * - PS_INVOCATION_COUNT_UDW
1473 * - PS_DEPTH_COUNT
1474 * - PS_DEPTH_COUNT_UDW
1475 */
1476 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1477 RING_FORCE_TO_NONPRIV_ACCESS_RD |
1478 RING_FORCE_TO_NONPRIV_RANGE_4);
1479 break;
1480
1481 case VIDEO_DECODE_CLASS:
1482 /* hucStatusRegOffset */
1483 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
1484 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1485 /* hucUKernelHdrInfoRegOffset */
1486 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
1487 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1488 /* hucStatus2RegOffset */
1489 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
1490 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1491 whitelist_reg_ext(w,
1492 RING_CTX_TIMESTAMP(engine->mmio_base),
1493 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1494 break;
1495
1496 default:
1497 whitelist_reg_ext(w,
1498 RING_CTX_TIMESTAMP(engine->mmio_base),
1499 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1500 break;
1501 }
1502}
1503
1504static void tgl_whitelist_build(struct intel_engine_cs *engine)
1505{
1506 struct i915_wa_list *w = &engine->whitelist;
1507
1508 switch (engine->class) {
1509 case RENDER_CLASS:
1510 /*
1511 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
1512 * Wa_1408556865:tgl
1513 *
1514 * This covers 4 registers which are next to one another :
1515 * - PS_INVOCATION_COUNT
1516 * - PS_INVOCATION_COUNT_UDW
1517 * - PS_DEPTH_COUNT
1518 * - PS_DEPTH_COUNT_UDW
1519 */
1520 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1521 RING_FORCE_TO_NONPRIV_ACCESS_RD |
1522 RING_FORCE_TO_NONPRIV_RANGE_4);
1523
1524 /* Wa_1808121037:tgl */
1525 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
1526
1527 /* Wa_1806527549:tgl */
1528 whitelist_reg(w, HIZ_CHICKEN);
1529 break;
1530 default:
1531 whitelist_reg_ext(w,
1532 RING_CTX_TIMESTAMP(engine->mmio_base),
1533 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1534 break;
1535 }
1536}
1537
1538static void dg1_whitelist_build(struct intel_engine_cs *engine)
1539{
1540 struct i915_wa_list *w = &engine->whitelist;
1541
1542 tgl_whitelist_build(engine);
1543
1544 /* GEN:BUG:1409280441:dg1 */
1545 if (IS_DG1_REVID(engine->i915, DG1_REVID_A0, DG1_REVID_A0) &&
1546 (engine->class == RENDER_CLASS ||
1547 engine->class == COPY_ENGINE_CLASS))
1548 whitelist_reg_ext(w, RING_ID(engine->mmio_base),
1549 RING_FORCE_TO_NONPRIV_ACCESS_RD);
1550}
1551
1552void intel_engine_init_whitelist(struct intel_engine_cs *engine)
1553{
1554 struct drm_i915_private *i915 = engine->i915;
1555 struct i915_wa_list *w = &engine->whitelist;
1556
1557 wa_init_start(w, "whitelist", engine->name);
1558
1559 if (IS_DG1(i915))
1560 dg1_whitelist_build(engine);
1561 else if (GRAPHICS_VER(i915) == 12)
1562 tgl_whitelist_build(engine);
1563 else if (GRAPHICS_VER(i915) == 11)
1564 icl_whitelist_build(engine);
1565 else if (IS_CANNONLAKE(i915))
1566 cnl_whitelist_build(engine);
1567 else if (IS_COMETLAKE(i915))
1568 cml_whitelist_build(engine);
1569 else if (IS_COFFEELAKE(i915))
1570 cfl_whitelist_build(engine);
1571 else if (IS_GEMINILAKE(i915))
1572 glk_whitelist_build(engine);
1573 else if (IS_KABYLAKE(i915))
1574 kbl_whitelist_build(engine);
1575 else if (IS_BROXTON(i915))
1576 bxt_whitelist_build(engine);
1577 else if (IS_SKYLAKE(i915))
1578 skl_whitelist_build(engine);
1579 else if (GRAPHICS_VER(i915) <= 8)
1580 ;
1581 else
1582 MISSING_CASE(GRAPHICS_VER(i915));
1583
1584 wa_init_finish(w);
1585}
1586
1587void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
1588{
1589 const struct i915_wa_list *wal = &engine->whitelist;
1590 struct intel_uncore *uncore = engine->uncore;
1591 const u32 base = engine->mmio_base;
1592 struct i915_wa *wa;
1593 unsigned int i;
1594
1595 if (!wal->count)
1596 return;
1597
1598 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1599 intel_uncore_write(uncore,
1600 RING_FORCE_TO_NONPRIV(base, i),
1601 i915_mmio_reg_offset(wa->reg));
1602
1603 /* And clear the rest just in case of garbage */
1604 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
1605 intel_uncore_write(uncore,
1606 RING_FORCE_TO_NONPRIV(base, i),
1607 i915_mmio_reg_offset(RING_NOPID(base)));
1608}
1609
1610static void
1611rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
1612{
1613 struct drm_i915_private *i915 = engine->i915;
1614
1615 if (IS_DG1_REVID(i915, DG1_REVID_A0, DG1_REVID_A0) ||
1616 IS_TGL_UY_GT_STEP(i915, STEP_A0, STEP_A0)) {
1617 /*
1618 * Wa_1607138336:tgl[a0],dg1[a0]
1619 * Wa_1607063988:tgl[a0],dg1[a0]
1620 */
1621 wa_write_or(wal,
1622 GEN9_CTX_PREEMPT_REG,
1623 GEN12_DISABLE_POSH_BUSY_FF_DOP_CG);
1624 }
1625
1626 if (IS_TGL_UY_GT_STEP(i915, STEP_A0, STEP_A0)) {
1627 /*
1628 * Wa_1606679103:tgl
1629 * (see also Wa_1606682166:icl)
1630 */
1631 wa_write_or(wal,
1632 GEN7_SARCHKMD,
1633 GEN7_DISABLE_SAMPLER_PREFETCH);
1634 }
1635
1636 if (IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
1637 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
1638 /* Wa_1606931601:tgl,rkl,dg1,adl-s */
1639 wa_masked_en(wal, GEN7_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
1640
1641 /*
1642 * Wa_1407928979:tgl A*
1643 * Wa_18011464164:tgl[B0+],dg1[B0+]
1644 * Wa_22010931296:tgl[B0+],dg1[B0+]
1645 * Wa_14010919138:rkl,dg1,adl-s
1646 */
1647 wa_write_or(wal, GEN7_FF_THREAD_MODE,
1648 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
1649
1650 /*
1651 * Wa_1606700617:tgl,dg1
1652 * Wa_22010271021:tgl,rkl,dg1, adl-s
1653 */
1654 wa_masked_en(wal,
1655 GEN9_CS_DEBUG_MODE1,
1656 FF_DOP_CLOCK_GATE_DISABLE);
1657 }
1658
1659 if (IS_ALDERLAKE_S(i915) || IS_DG1_REVID(i915, DG1_REVID_A0, DG1_REVID_A0) ||
1660 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
1661 /* Wa_1409804808:tgl,rkl,dg1[a0],adl-s */
1662 wa_masked_en(wal, GEN7_ROW_CHICKEN2,
1663 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
1664
1665 /*
1666 * Wa_1409085225:tgl
1667 * Wa_14010229206:tgl,rkl,dg1[a0],adl-s
1668 */
1669 wa_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
1670 }
1671
1672
1673 if (IS_DG1_REVID(i915, DG1_REVID_A0, DG1_REVID_A0) ||
1674 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
1675 /*
1676 * Wa_1607030317:tgl
1677 * Wa_1607186500:tgl
1678 * Wa_1607297627:tgl,rkl,dg1[a0]
1679 *
1680 * On TGL and RKL there are multiple entries for this WA in the
1681 * BSpec; some indicate this is an A0-only WA, others indicate
1682 * it applies to all steppings so we trust the "all steppings."
1683 * For DG1 this only applies to A0.
1684 */
1685 wa_masked_en(wal,
1686 GEN6_RC_SLEEP_PSMI_CONTROL,
1687 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
1688 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
1689 }
1690
1691 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
1692 /* Wa_1406941453:tgl,rkl,dg1 */
1693 wa_masked_en(wal,
1694 GEN10_SAMPLER_MODE,
1695 ENABLE_SMALLPL);
1696 }
1697
1698 if (GRAPHICS_VER(i915) == 11) {
1699 /* This is not an Wa. Enable for better image quality */
1700 wa_masked_en(wal,
1701 _3D_CHICKEN3,
1702 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
1703
1704 /* WaPipelineFlushCoherentLines:icl */
1705 wa_write_or(wal,
1706 GEN8_L3SQCREG4,
1707 GEN8_LQSC_FLUSH_COHERENT_LINES);
1708
1709 /*
1710 * Wa_1405543622:icl
1711 * Formerly known as WaGAPZPriorityScheme
1712 */
1713 wa_write_or(wal,
1714 GEN8_GARBCNTL,
1715 GEN11_ARBITRATION_PRIO_ORDER_MASK);
1716
1717 /*
1718 * Wa_1604223664:icl
1719 * Formerly known as WaL3BankAddressHashing
1720 */
1721 wa_write_clr_set(wal,
1722 GEN8_GARBCNTL,
1723 GEN11_HASH_CTRL_EXCL_MASK,
1724 GEN11_HASH_CTRL_EXCL_BIT0);
1725 wa_write_clr_set(wal,
1726 GEN11_GLBLINVL,
1727 GEN11_BANK_HASH_ADDR_EXCL_MASK,
1728 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
1729
1730 /*
1731 * Wa_1405733216:icl
1732 * Formerly known as WaDisableCleanEvicts
1733 */
1734 wa_write_or(wal,
1735 GEN8_L3SQCREG4,
1736 GEN11_LQSC_CLEAN_EVICT_DISABLE);
1737
1738 /* WaForwardProgressSoftReset:icl */
1739 wa_write_or(wal,
1740 GEN10_SCRATCH_LNCF2,
1741 PMFLUSHDONE_LNICRSDROP |
1742 PMFLUSH_GAPL3UNBLOCK |
1743 PMFLUSHDONE_LNEBLK);
1744
1745 /* Wa_1406609255:icl (pre-prod) */
1746 if (IS_ICL_REVID(i915, ICL_REVID_A0, ICL_REVID_B0))
1747 wa_write_or(wal,
1748 GEN7_SARCHKMD,
1749 GEN7_DISABLE_DEMAND_PREFETCH);
1750
1751 /* Wa_1606682166:icl */
1752 wa_write_or(wal,
1753 GEN7_SARCHKMD,
1754 GEN7_DISABLE_SAMPLER_PREFETCH);
1755
1756 /* Wa_1409178092:icl */
1757 wa_write_clr_set(wal,
1758 GEN11_SCRATCH2,
1759 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
1760 0);
1761
1762 /* WaEnable32PlaneMode:icl */
1763 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
1764 GEN11_ENABLE_32_PLANE_MODE);
1765
1766 /*
1767 * Wa_1408615072:icl,ehl (vsunit)
1768 * Wa_1407596294:icl,ehl (hsunit)
1769 */
1770 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1771 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1772
1773 /* Wa_1407352427:icl,ehl */
1774 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1775 PSDUNIT_CLKGATE_DIS);
1776
1777 /* Wa_1406680159:icl,ehl */
1778 wa_write_or(wal,
1779 SUBSLICE_UNIT_LEVEL_CLKGATE,
1780 GWUNIT_CLKGATE_DIS);
1781
1782 /*
1783 * Wa_1408767742:icl[a2..forever],ehl[all]
1784 * Wa_1605460711:icl[a0..c0]
1785 */
1786 wa_write_or(wal,
1787 GEN7_FF_THREAD_MODE,
1788 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
1789
1790 /* Wa_22010271021 */
1791 wa_masked_en(wal,
1792 GEN9_CS_DEBUG_MODE1,
1793 FF_DOP_CLOCK_GATE_DISABLE);
1794 }
1795
1796 if (IS_GRAPHICS_VER(i915, 9, 12)) {
1797 /* FtrPerCtxtPreemptionGranularityControl:skl,bxt,kbl,cfl,cnl,icl,tgl */
1798 wa_masked_en(wal,
1799 GEN7_FF_SLICE_CS_CHICKEN1,
1800 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
1801 }
1802
1803 if (IS_SKYLAKE(i915) ||
1804 IS_KABYLAKE(i915) ||
1805 IS_COFFEELAKE(i915) ||
1806 IS_COMETLAKE(i915)) {
1807 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
1808 wa_write_or(wal,
1809 GEN8_GARBCNTL,
1810 GEN9_GAPS_TSV_CREDIT_DISABLE);
1811 }
1812
1813 if (IS_BROXTON(i915)) {
1814 /* WaDisablePooledEuLoadBalancingFix:bxt */
1815 wa_masked_en(wal,
1816 FF_SLICE_CS_CHICKEN2,
1817 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1818 }
1819
1820 if (GRAPHICS_VER(i915) == 9) {
1821 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
1822 wa_masked_en(wal,
1823 GEN9_CSFE_CHICKEN1_RCS,
1824 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
1825
1826 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
1827 wa_write_or(wal,
1828 BDW_SCRATCH1,
1829 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
1830
1831 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
1832 if (IS_GEN9_LP(i915))
1833 wa_write_clr_set(wal,
1834 GEN8_L3SQCREG1,
1835 L3_PRIO_CREDITS_MASK,
1836 L3_GENERAL_PRIO_CREDITS(62) |
1837 L3_HIGH_PRIO_CREDITS(2));
1838
1839 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
1840 wa_write_or(wal,
1841 GEN8_L3SQCREG4,
1842 GEN8_LQSC_FLUSH_COHERENT_LINES);
1843
1844 /* Disable atomics in L3 to prevent unrecoverable hangs */
1845 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
1846 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
1847 wa_write_clr_set(wal, GEN8_L3SQCREG4,
1848 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
1849 wa_write_clr_set(wal, GEN9_SCRATCH1,
1850 EVICTION_PERF_FIX_ENABLE, 0);
1851 }
1852
1853 if (IS_HASWELL(i915)) {
1854 /* WaSampleCChickenBitEnable:hsw */
1855 wa_masked_en(wal,
1856 HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
1857
1858 wa_masked_dis(wal,
1859 CACHE_MODE_0_GEN7,
1860 /* enable HiZ Raw Stall Optimization */
1861 HIZ_RAW_STALL_OPT_DISABLE);
1862 }
1863
1864 if (IS_VALLEYVIEW(i915)) {
1865 /* WaDisableEarlyCull:vlv */
1866 wa_masked_en(wal,
1867 _3D_CHICKEN3,
1868 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
1869
1870 /*
1871 * WaVSThreadDispatchOverride:ivb,vlv
1872 *
1873 * This actually overrides the dispatch
1874 * mode for all thread types.
1875 */
1876 wa_write_clr_set(wal,
1877 GEN7_FF_THREAD_MODE,
1878 GEN7_FF_SCHED_MASK,
1879 GEN7_FF_TS_SCHED_HW |
1880 GEN7_FF_VS_SCHED_HW |
1881 GEN7_FF_DS_SCHED_HW);
1882
1883 /* WaPsdDispatchEnable:vlv */
1884 /* WaDisablePSDDualDispatchEnable:vlv */
1885 wa_masked_en(wal,
1886 GEN7_HALF_SLICE_CHICKEN1,
1887 GEN7_MAX_PS_THREAD_DEP |
1888 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
1889 }
1890
1891 if (IS_IVYBRIDGE(i915)) {
1892 /* WaDisableEarlyCull:ivb */
1893 wa_masked_en(wal,
1894 _3D_CHICKEN3,
1895 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
1896
1897 if (0) { /* causes HiZ corruption on ivb:gt1 */
1898 /* enable HiZ Raw Stall Optimization */
1899 wa_masked_dis(wal,
1900 CACHE_MODE_0_GEN7,
1901 HIZ_RAW_STALL_OPT_DISABLE);
1902 }
1903
1904 /*
1905 * WaVSThreadDispatchOverride:ivb,vlv
1906 *
1907 * This actually overrides the dispatch
1908 * mode for all thread types.
1909 */
1910 wa_write_clr_set(wal,
1911 GEN7_FF_THREAD_MODE,
1912 GEN7_FF_SCHED_MASK,
1913 GEN7_FF_TS_SCHED_HW |
1914 GEN7_FF_VS_SCHED_HW |
1915 GEN7_FF_DS_SCHED_HW);
1916
1917 /* WaDisablePSDDualDispatchEnable:ivb */
1918 if (IS_IVB_GT1(i915))
1919 wa_masked_en(wal,
1920 GEN7_HALF_SLICE_CHICKEN1,
1921 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
1922 }
1923
1924 if (GRAPHICS_VER(i915) == 7) {
1925 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1926 wa_masked_en(wal,
1927 GFX_MODE_GEN7,
1928 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
1929
1930 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
1931 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
1932
1933 /*
1934 * BSpec says this must be set, even though
1935 * WaDisable4x2SubspanOptimization:ivb,hsw
1936 * WaDisable4x2SubspanOptimization isn't listed for VLV.
1937 */
1938 wa_masked_en(wal,
1939 CACHE_MODE_1,
1940 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
1941
1942 /*
1943 * BSpec recommends 8x4 when MSAA is used,
1944 * however in practice 16x4 seems fastest.
1945 *
1946 * Note that PS/WM thread counts depend on the WIZ hashing
1947 * disable bit, which we don't touch here, but it's good
1948 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
1949 */
1950 wa_add(wal, GEN7_GT_MODE, 0,
1951 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK,
1952 GEN6_WIZ_HASHING_16x4),
1953 GEN6_WIZ_HASHING_16x4);
1954 }
1955
1956 if (IS_GRAPHICS_VER(i915, 6, 7))
1957 /*
1958 * We need to disable the AsyncFlip performance optimisations in
1959 * order to use MI_WAIT_FOR_EVENT within the CS. It should
1960 * already be programmed to '1' on all products.
1961 *
1962 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1963 */
1964 wa_masked_en(wal,
1965 MI_MODE,
1966 ASYNC_FLIP_PERF_DISABLE);
1967
1968 if (GRAPHICS_VER(i915) == 6) {
1969 /*
1970 * Required for the hardware to program scanline values for
1971 * waiting
1972 * WaEnableFlushTlbInvalidationMode:snb
1973 */
1974 wa_masked_en(wal,
1975 GFX_MODE,
1976 GFX_TLB_INVALIDATE_EXPLICIT);
1977
1978 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
1979 wa_masked_en(wal,
1980 _3D_CHICKEN,
1981 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
1982
1983 wa_masked_en(wal,
1984 _3D_CHICKEN3,
1985 /* WaStripsFansDisableFastClipPerformanceFix:snb */
1986 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
1987 /*
1988 * Bspec says:
1989 * "This bit must be set if 3DSTATE_CLIP clip mode is set
1990 * to normal and 3DSTATE_SF number of SF output attributes
1991 * is more than 16."
1992 */
1993 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
1994
1995 /*
1996 * BSpec recommends 8x4 when MSAA is used,
1997 * however in practice 16x4 seems fastest.
1998 *
1999 * Note that PS/WM thread counts depend on the WIZ hashing
2000 * disable bit, which we don't touch here, but it's good
2001 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2002 */
2003 wa_add(wal,
2004 GEN6_GT_MODE, 0,
2005 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4),
2006 GEN6_WIZ_HASHING_16x4);
2007
2008 /* WaDisable_RenderCache_OperationalFlush:snb */
2009 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2010
2011 /*
2012 * From the Sandybridge PRM, volume 1 part 3, page 24:
2013 * "If this bit is set, STCunit will have LRA as replacement
2014 * policy. [...] This bit must be reset. LRA replacement
2015 * policy is not supported."
2016 */
2017 wa_masked_dis(wal,
2018 CACHE_MODE_0,
2019 CM0_STC_EVICT_DISABLE_LRA_SNB);
2020 }
2021
2022 if (IS_GRAPHICS_VER(i915, 4, 6))
2023 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2024 wa_add(wal, MI_MODE,
2025 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2026 /* XXX bit doesn't stick on Broadwater */
2027 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH);
2028
2029 if (GRAPHICS_VER(i915) == 4)
2030 /*
2031 * Disable CONSTANT_BUFFER before it is loaded from the context
2032 * image. For as it is loaded, it is executed and the stored
2033 * address may no longer be valid, leading to a GPU hang.
2034 *
2035 * This imposes the requirement that userspace reload their
2036 * CONSTANT_BUFFER on every batch, fortunately a requirement
2037 * they are already accustomed to from before contexts were
2038 * enabled.
2039 */
2040 wa_add(wal, ECOSKPD,
2041 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2042 0 /* XXX bit doesn't stick on Broadwater */);
2043}
2044
2045static void
2046xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2047{
2048 struct drm_i915_private *i915 = engine->i915;
2049
2050 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2051 if (IS_KBL_GT_STEP(i915, STEP_A0, STEP_E0)) {
2052 wa_write(wal,
2053 RING_SEMA_WAIT_POLL(engine->mmio_base),
2054 1);
2055 }
2056}
2057
2058static void
2059engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2060{
2061 if (I915_SELFTEST_ONLY(GRAPHICS_VER(engine->i915) < 4))
2062 return;
2063
2064 if (engine->class == RENDER_CLASS)
2065 rcs_engine_wa_init(engine, wal);
2066 else
2067 xcs_engine_wa_init(engine, wal);
2068}
2069
2070void intel_engine_init_workarounds(struct intel_engine_cs *engine)
2071{
2072 struct i915_wa_list *wal = &engine->wa_list;
2073
2074 if (GRAPHICS_VER(engine->i915) < 4)
2075 return;
2076
2077 wa_init_start(wal, "engine", engine->name);
2078 engine_init_workarounds(engine, wal);
2079 wa_init_finish(wal);
2080}
2081
2082void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
2083{
2084 wa_list_apply(engine->uncore, &engine->wa_list);
2085}
2086
2087struct mcr_range {
2088 u32 start;
2089 u32 end;
2090};
2091
2092static const struct mcr_range mcr_ranges_gen8[] = {
2093 { .start = 0x5500, .end = 0x55ff },
2094 { .start = 0x7000, .end = 0x7fff },
2095 { .start = 0x9400, .end = 0x97ff },
2096 { .start = 0xb000, .end = 0xb3ff },
2097 { .start = 0xe000, .end = 0xe7ff },
2098 {},
2099};
2100
2101static const struct mcr_range mcr_ranges_gen12[] = {
2102 { .start = 0x8150, .end = 0x815f },
2103 { .start = 0x9520, .end = 0x955f },
2104 { .start = 0xb100, .end = 0xb3ff },
2105 { .start = 0xde80, .end = 0xe8ff },
2106 { .start = 0x24a00, .end = 0x24a7f },
2107 {},
2108};
2109
2110static bool mcr_range(struct drm_i915_private *i915, u32 offset)
2111{
2112 const struct mcr_range *mcr_ranges;
2113 int i;
2114
2115 if (GRAPHICS_VER(i915) >= 12)
2116 mcr_ranges = mcr_ranges_gen12;
2117 else if (GRAPHICS_VER(i915) >= 8)
2118 mcr_ranges = mcr_ranges_gen8;
2119 else
2120 return false;
2121
2122 /*
2123 * Registers in these ranges are affected by the MCR selector
2124 * which only controls CPU initiated MMIO. Routing does not
2125 * work for CS access so we cannot verify them on this path.
2126 */
2127 for (i = 0; mcr_ranges[i].start; i++)
2128 if (offset >= mcr_ranges[i].start &&
2129 offset <= mcr_ranges[i].end)
2130 return true;
2131
2132 return false;
2133}
2134
2135static int
2136wa_list_srm(struct i915_request *rq,
2137 const struct i915_wa_list *wal,
2138 struct i915_vma *vma)
2139{
2140 struct drm_i915_private *i915 = rq->engine->i915;
2141 unsigned int i, count = 0;
2142 const struct i915_wa *wa;
2143 u32 srm, *cs;
2144
2145 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
2146 if (GRAPHICS_VER(i915) >= 8)
2147 srm++;
2148
2149 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2150 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
2151 count++;
2152 }
2153
2154 cs = intel_ring_begin(rq, 4 * count);
2155 if (IS_ERR(cs))
2156 return PTR_ERR(cs);
2157
2158 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2159 u32 offset = i915_mmio_reg_offset(wa->reg);
2160
2161 if (mcr_range(i915, offset))
2162 continue;
2163
2164 *cs++ = srm;
2165 *cs++ = offset;
2166 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
2167 *cs++ = 0;
2168 }
2169 intel_ring_advance(rq, cs);
2170
2171 return 0;
2172}
2173
2174static int engine_wa_list_verify(struct intel_context *ce,
2175 const struct i915_wa_list * const wal,
2176 const char *from)
2177{
2178 const struct i915_wa *wa;
2179 struct i915_request *rq;
2180 struct i915_vma *vma;
2181 struct i915_gem_ww_ctx ww;
2182 unsigned int i;
2183 u32 *results;
2184 int err;
2185
2186 if (!wal->count)
2187 return 0;
2188
2189 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
2190 wal->count * sizeof(u32));
2191 if (IS_ERR(vma))
2192 return PTR_ERR(vma);
2193
2194 intel_engine_pm_get(ce->engine);
2195 i915_gem_ww_ctx_init(&ww, false);
2196retry:
2197 err = i915_gem_object_lock(vma->obj, &ww);
2198 if (err == 0)
2199 err = intel_context_pin_ww(ce, &ww);
2200 if (err)
2201 goto err_pm;
2202
2203 err = i915_vma_pin_ww(vma, &ww, 0, 0,
2204 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
2205 if (err)
2206 goto err_unpin;
2207
2208 rq = i915_request_create(ce);
2209 if (IS_ERR(rq)) {
2210 err = PTR_ERR(rq);
2211 goto err_vma;
2212 }
2213
2214 err = i915_request_await_object(rq, vma->obj, true);
2215 if (err == 0)
2216 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
2217 if (err == 0)
2218 err = wa_list_srm(rq, wal, vma);
2219
2220 i915_request_get(rq);
2221 if (err)
2222 i915_request_set_error_once(rq, err);
2223 i915_request_add(rq);
2224
2225 if (err)
2226 goto err_rq;
2227
2228 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
2229 err = -ETIME;
2230 goto err_rq;
2231 }
2232
2233 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
2234 if (IS_ERR(results)) {
2235 err = PTR_ERR(results);
2236 goto err_rq;
2237 }
2238
2239 err = 0;
2240 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
2241 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
2242 continue;
2243
2244 if (!wa_verify(wa, results[i], wal->name, from))
2245 err = -ENXIO;
2246 }
2247
2248 i915_gem_object_unpin_map(vma->obj);
2249
2250err_rq:
2251 i915_request_put(rq);
2252err_vma:
2253 i915_vma_unpin(vma);
2254err_unpin:
2255 intel_context_unpin(ce);
2256err_pm:
2257 if (err == -EDEADLK) {
2258 err = i915_gem_ww_ctx_backoff(&ww);
2259 if (!err)
2260 goto retry;
2261 }
2262 i915_gem_ww_ctx_fini(&ww);
2263 intel_engine_pm_put(ce->engine);
2264 i915_vma_put(vma);
2265 return err;
2266}
2267
2268int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
2269 const char *from)
2270{
2271 return engine_wa_list_verify(engine->kernel_context,
2272 &engine->wa_list,
2273 from);
2274}
2275
2276#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2277#include "selftest_workarounds.c"
2278#endif
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014-2018 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "i915_reg.h"
8#include "intel_context.h"
9#include "intel_engine_pm.h"
10#include "intel_engine_regs.h"
11#include "intel_gpu_commands.h"
12#include "intel_gt.h"
13#include "intel_gt_ccs_mode.h"
14#include "intel_gt_mcr.h"
15#include "intel_gt_print.h"
16#include "intel_gt_regs.h"
17#include "intel_ring.h"
18#include "intel_workarounds.h"
19
20/**
21 * DOC: Hardware workarounds
22 *
23 * Hardware workarounds are register programming documented to be executed in
24 * the driver that fall outside of the normal programming sequences for a
25 * platform. There are some basic categories of workarounds, depending on
26 * how/when they are applied:
27 *
28 * - Context workarounds: workarounds that touch registers that are
29 * saved/restored to/from the HW context image. The list is emitted (via Load
30 * Register Immediate commands) once when initializing the device and saved in
31 * the default context. That default context is then used on every context
32 * creation to have a "primed golden context", i.e. a context image that
33 * already contains the changes needed to all the registers.
34 *
35 * Context workarounds should be implemented in the \*_ctx_workarounds_init()
36 * variants respective to the targeted platforms.
37 *
38 * - Engine workarounds: the list of these WAs is applied whenever the specific
39 * engine is reset. It's also possible that a set of engine classes share a
40 * common power domain and they are reset together. This happens on some
41 * platforms with render and compute engines. In this case (at least) one of
42 * them need to keeep the workaround programming: the approach taken in the
43 * driver is to tie those workarounds to the first compute/render engine that
44 * is registered. When executing with GuC submission, engine resets are
45 * outside of kernel driver control, hence the list of registers involved in
46 * written once, on engine initialization, and then passed to GuC, that
47 * saves/restores their values before/after the reset takes place. See
48 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
49 *
50 * Workarounds for registers specific to RCS and CCS should be implemented in
51 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
52 * registers belonging to BCS, VCS or VECS should be implemented in
53 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
54 * engine's MMIO range but that are part of of the common RCS/CCS reset domain
55 * should be implemented in general_render_compute_wa_init(). The settings
56 * about the CCS load balancing should be added in ccs_engine_wa_mode().
57 *
58 * - GT workarounds: the list of these WAs is applied whenever these registers
59 * revert to their default values: on GPU reset, suspend/resume [1]_, etc.
60 *
61 * GT workarounds should be implemented in the \*_gt_workarounds_init()
62 * variants respective to the targeted platforms.
63 *
64 * - Register whitelist: some workarounds need to be implemented in userspace,
65 * but need to touch privileged registers. The whitelist in the kernel
66 * instructs the hardware to allow the access to happen. From the kernel side,
67 * this is just a special case of a MMIO workaround (as we write the list of
68 * these to/be-whitelisted registers to some special HW registers).
69 *
70 * Register whitelisting should be done in the \*_whitelist_build() variants
71 * respective to the targeted platforms.
72 *
73 * - Workaround batchbuffers: buffers that get executed automatically by the
74 * hardware on every HW context restore. These buffers are created and
75 * programmed in the default context so the hardware always go through those
76 * programming sequences when switching contexts. The support for workaround
77 * batchbuffers is enabled these hardware mechanisms:
78 *
79 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
80 * context, pointing the hardware to jump to that location when that offset
81 * is reached in the context restore. Workaround batchbuffer in the driver
82 * currently uses this mechanism for all platforms.
83 *
84 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
85 * pointing the hardware to a buffer to continue executing after the
86 * engine registers are restored in a context restore sequence. This is
87 * currently not used in the driver.
88 *
89 * - Other: There are WAs that, due to their nature, cannot be applied from a
90 * central place. Those are peppered around the rest of the code, as needed.
91 * Workarounds related to the display IP are the main example.
92 *
93 * .. [1] Technically, some registers are powercontext saved & restored, so they
94 * survive a suspend/resume. In practice, writing them again is not too
95 * costly and simplifies things, so it's the approach taken in the driver.
96 */
97
98static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
99 const char *name, const char *engine_name)
100{
101 wal->gt = gt;
102 wal->name = name;
103 wal->engine_name = engine_name;
104}
105
106#define WA_LIST_CHUNK (1 << 4)
107
108static void wa_init_finish(struct i915_wa_list *wal)
109{
110 /* Trim unused entries. */
111 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
112 struct i915_wa *list = kmemdup(wal->list,
113 wal->count * sizeof(*list),
114 GFP_KERNEL);
115
116 if (list) {
117 kfree(wal->list);
118 wal->list = list;
119 }
120 }
121
122 if (!wal->count)
123 return;
124
125 gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
126 wal->wa_count, wal->name, wal->engine_name);
127}
128
129static enum forcewake_domains
130wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
131{
132 enum forcewake_domains fw = 0;
133 struct i915_wa *wa;
134 unsigned int i;
135
136 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
137 fw |= intel_uncore_forcewake_for_reg(uncore,
138 wa->reg,
139 FW_REG_READ |
140 FW_REG_WRITE);
141
142 return fw;
143}
144
145static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
146{
147 unsigned int addr = i915_mmio_reg_offset(wa->reg);
148 struct drm_i915_private *i915 = wal->gt->i915;
149 unsigned int start = 0, end = wal->count;
150 const unsigned int grow = WA_LIST_CHUNK;
151 struct i915_wa *wa_;
152
153 GEM_BUG_ON(!is_power_of_2(grow));
154
155 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
156 struct i915_wa *list;
157
158 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
159 GFP_KERNEL);
160 if (!list) {
161 drm_err(&i915->drm, "No space for workaround init!\n");
162 return;
163 }
164
165 if (wal->list) {
166 memcpy(list, wal->list, sizeof(*wa) * wal->count);
167 kfree(wal->list);
168 }
169
170 wal->list = list;
171 }
172
173 while (start < end) {
174 unsigned int mid = start + (end - start) / 2;
175
176 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
177 start = mid + 1;
178 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
179 end = mid;
180 } else {
181 wa_ = &wal->list[mid];
182
183 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
184 drm_err(&i915->drm,
185 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
186 i915_mmio_reg_offset(wa_->reg),
187 wa_->clr, wa_->set);
188
189 wa_->set &= ~wa->clr;
190 }
191
192 wal->wa_count++;
193 wa_->set |= wa->set;
194 wa_->clr |= wa->clr;
195 wa_->read |= wa->read;
196 return;
197 }
198 }
199
200 wal->wa_count++;
201 wa_ = &wal->list[wal->count++];
202 *wa_ = *wa;
203
204 while (wa_-- > wal->list) {
205 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
206 i915_mmio_reg_offset(wa_[1].reg));
207 if (i915_mmio_reg_offset(wa_[1].reg) >
208 i915_mmio_reg_offset(wa_[0].reg))
209 break;
210
211 swap(wa_[1], wa_[0]);
212 }
213}
214
215static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
216 u32 clear, u32 set, u32 read_mask, bool masked_reg)
217{
218 struct i915_wa wa = {
219 .reg = reg,
220 .clr = clear,
221 .set = set,
222 .read = read_mask,
223 .masked_reg = masked_reg,
224 };
225
226 _wa_add(wal, &wa);
227}
228
229static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
230 u32 clear, u32 set, u32 read_mask, bool masked_reg)
231{
232 struct i915_wa wa = {
233 .mcr_reg = reg,
234 .clr = clear,
235 .set = set,
236 .read = read_mask,
237 .masked_reg = masked_reg,
238 .is_mcr = 1,
239 };
240
241 _wa_add(wal, &wa);
242}
243
244static void
245wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
246{
247 wa_add(wal, reg, clear, set, clear | set, false);
248}
249
250static void
251wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
252{
253 wa_mcr_add(wal, reg, clear, set, clear | set, false);
254}
255
256static void
257wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
258{
259 wa_write_clr_set(wal, reg, ~0, set);
260}
261
262static void
263wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
264{
265 wa_mcr_write_clr_set(wal, reg, ~0, set);
266}
267
268static void
269wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
270{
271 wa_write_clr_set(wal, reg, set, set);
272}
273
274static void
275wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
276{
277 wa_mcr_write_clr_set(wal, reg, set, set);
278}
279
280static void
281wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
282{
283 wa_write_clr_set(wal, reg, clr, 0);
284}
285
286static void
287wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
288{
289 wa_mcr_write_clr_set(wal, reg, clr, 0);
290}
291
292/*
293 * WA operations on "masked register". A masked register has the upper 16 bits
294 * documented as "masked" in b-spec. Its purpose is to allow writing to just a
295 * portion of the register without a rmw: you simply write in the upper 16 bits
296 * the mask of bits you are going to modify.
297 *
298 * The wa_masked_* family of functions already does the necessary operations to
299 * calculate the mask based on the parameters passed, so user only has to
300 * provide the lower 16 bits of that register.
301 */
302
303static void
304wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
305{
306 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
307}
308
309static void
310wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
311{
312 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
313}
314
315static void
316wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
317{
318 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
319}
320
321static void
322wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
323{
324 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
325}
326
327static void
328wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
329 u32 mask, u32 val)
330{
331 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
332}
333
334static void
335wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
336 u32 mask, u32 val)
337{
338 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
339}
340
341static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
342 struct i915_wa_list *wal)
343{
344 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
345}
346
347static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
348 struct i915_wa_list *wal)
349{
350 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
351}
352
353static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
354 struct i915_wa_list *wal)
355{
356 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
357
358 /* WaDisableAsyncFlipPerfMode:bdw,chv */
359 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
360
361 /* WaDisablePartialInstShootdown:bdw,chv */
362 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
363 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
364
365 /* Use Force Non-Coherent whenever executing a 3D context. This is a
366 * workaround for a possible hang in the unlikely event a TLB
367 * invalidation occurs during a PSD flush.
368 */
369 /* WaForceEnableNonCoherent:bdw,chv */
370 /* WaHdcDisableFetchWhenMasked:bdw,chv */
371 wa_masked_en(wal, HDC_CHICKEN0,
372 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
373 HDC_FORCE_NON_COHERENT);
374
375 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
376 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
377 * polygons in the same 8x4 pixel/sample area to be processed without
378 * stalling waiting for the earlier ones to write to Hierarchical Z
379 * buffer."
380 *
381 * This optimization is off by default for BDW and CHV; turn it on.
382 */
383 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
384
385 /* Wa4x4STCOptimizationDisable:bdw,chv */
386 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
387
388 /*
389 * BSpec recommends 8x4 when MSAA is used,
390 * however in practice 16x4 seems fastest.
391 *
392 * Note that PS/WM thread counts depend on the WIZ hashing
393 * disable bit, which we don't touch here, but it's good
394 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
395 */
396 wa_masked_field_set(wal, GEN7_GT_MODE,
397 GEN6_WIZ_HASHING_MASK,
398 GEN6_WIZ_HASHING_16x4);
399}
400
401static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
402 struct i915_wa_list *wal)
403{
404 struct drm_i915_private *i915 = engine->i915;
405
406 gen8_ctx_workarounds_init(engine, wal);
407
408 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
409 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
410
411 /* WaDisableDopClockGating:bdw
412 *
413 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
414 * to disable EUTC clock gating.
415 */
416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
417 DOP_CLOCK_GATING_DISABLE);
418
419 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
420 GEN8_SAMPLER_POWER_BYPASS_DIS);
421
422 wa_masked_en(wal, HDC_CHICKEN0,
423 /* WaForceContextSaveRestoreNonCoherent:bdw */
424 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
425 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
426 (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
427}
428
429static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
430 struct i915_wa_list *wal)
431{
432 gen8_ctx_workarounds_init(engine, wal);
433
434 /* WaDisableThreadStallDopClockGating:chv */
435 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
436
437 /* Improve HiZ throughput on CHV. */
438 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
439}
440
441static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
442 struct i915_wa_list *wal)
443{
444 struct drm_i915_private *i915 = engine->i915;
445
446 if (HAS_LLC(i915)) {
447 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
448 *
449 * Must match Display Engine. See
450 * WaCompressedResourceDisplayNewHashMode.
451 */
452 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
453 GEN9_PBE_COMPRESSED_HASH_SELECTION);
454 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
455 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
456 }
457
458 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
459 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
460 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
461 FLOW_CONTROL_ENABLE |
462 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
463
464 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
465 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
466 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
467 GEN9_ENABLE_YV12_BUGFIX |
468 GEN9_ENABLE_GPGPU_PREEMPTION);
469
470 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
471 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
472 wa_masked_en(wal, CACHE_MODE_1,
473 GEN8_4x4_STC_OPTIMIZATION_DISABLE |
474 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
475
476 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
477 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
478 GEN9_CCS_TLB_PREFETCH_ENABLE);
479
480 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
481 wa_masked_en(wal, HDC_CHICKEN0,
482 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
483 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
484
485 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
486 * both tied to WaForceContextSaveRestoreNonCoherent
487 * in some hsds for skl. We keep the tie for all gen9. The
488 * documentation is a bit hazy and so we want to get common behaviour,
489 * even though there is no clear evidence we would need both on kbl/bxt.
490 * This area has been source of system hangs so we play it safe
491 * and mimic the skl regardless of what bspec says.
492 *
493 * Use Force Non-Coherent whenever executing a 3D context. This
494 * is a workaround for a possible hang in the unlikely event
495 * a TLB invalidation occurs during a PSD flush.
496 */
497
498 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
499 wa_masked_en(wal, HDC_CHICKEN0,
500 HDC_FORCE_NON_COHERENT);
501
502 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
503 if (IS_SKYLAKE(i915) ||
504 IS_KABYLAKE(i915) ||
505 IS_COFFEELAKE(i915) ||
506 IS_COMETLAKE(i915))
507 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
508 GEN8_SAMPLER_POWER_BYPASS_DIS);
509
510 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
511 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
512
513 /*
514 * Supporting preemption with fine-granularity requires changes in the
515 * batch buffer programming. Since we can't break old userspace, we
516 * need to set our default preemption level to safe value. Userspace is
517 * still able to use more fine-grained preemption levels, since in
518 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
519 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
520 * not real HW workarounds, but merely a way to start using preemption
521 * while maintaining old contract with userspace.
522 */
523
524 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
525 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
526
527 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
528 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
529 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
530 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
531
532 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */
533 if (IS_GEN9_LP(i915))
534 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
535}
536
537static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
538 struct i915_wa_list *wal)
539{
540 struct intel_gt *gt = engine->gt;
541 u8 vals[3] = { 0, 0, 0 };
542 unsigned int i;
543
544 for (i = 0; i < 3; i++) {
545 u8 ss;
546
547 /*
548 * Only consider slices where one, and only one, subslice has 7
549 * EUs
550 */
551 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
552 continue;
553
554 /*
555 * subslice_7eu[i] != 0 (because of the check above) and
556 * ss_max == 4 (maximum number of subslices possible per slice)
557 *
558 * -> 0 <= ss <= 3;
559 */
560 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
561 vals[i] = 3 - ss;
562 }
563
564 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
565 return;
566
567 /* Tune IZ hashing. See intel_device_info_runtime_init() */
568 wa_masked_field_set(wal, GEN7_GT_MODE,
569 GEN9_IZ_HASHING_MASK(2) |
570 GEN9_IZ_HASHING_MASK(1) |
571 GEN9_IZ_HASHING_MASK(0),
572 GEN9_IZ_HASHING(2, vals[2]) |
573 GEN9_IZ_HASHING(1, vals[1]) |
574 GEN9_IZ_HASHING(0, vals[0]));
575}
576
577static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
578 struct i915_wa_list *wal)
579{
580 gen9_ctx_workarounds_init(engine, wal);
581 skl_tune_iz_hashing(engine, wal);
582}
583
584static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
585 struct i915_wa_list *wal)
586{
587 gen9_ctx_workarounds_init(engine, wal);
588
589 /* WaDisableThreadStallDopClockGating:bxt */
590 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
591 STALL_DOP_GATING_DISABLE);
592
593 /* WaToEnableHwFixForPushConstHWBug:bxt */
594 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
595 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
596}
597
598static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
599 struct i915_wa_list *wal)
600{
601 struct drm_i915_private *i915 = engine->i915;
602
603 gen9_ctx_workarounds_init(engine, wal);
604
605 /* WaToEnableHwFixForPushConstHWBug:kbl */
606 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
607 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
608 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
609
610 /* WaDisableSbeCacheDispatchPortSharing:kbl */
611 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
612 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
613}
614
615static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
616 struct i915_wa_list *wal)
617{
618 gen9_ctx_workarounds_init(engine, wal);
619
620 /* WaToEnableHwFixForPushConstHWBug:glk */
621 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
622 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
623}
624
625static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
626 struct i915_wa_list *wal)
627{
628 gen9_ctx_workarounds_init(engine, wal);
629
630 /* WaToEnableHwFixForPushConstHWBug:cfl */
631 wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
632 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
633
634 /* WaDisableSbeCacheDispatchPortSharing:cfl */
635 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
636 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
637}
638
639static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
640 struct i915_wa_list *wal)
641{
642 /* Wa_1406697149 (WaDisableBankHangMode:icl) */
643 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
644
645 /* WaForceEnableNonCoherent:icl
646 * This is not the same workaround as in early Gen9 platforms, where
647 * lacking this could cause system hangs, but coherency performance
648 * overhead is high and only a few compute workloads really need it
649 * (the register is whitelisted in hardware now, so UMDs can opt in
650 * for coherency if they have a good reason).
651 */
652 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
653
654 /* WaEnableFloatBlendOptimization:icl */
655 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
656 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
657 0 /* write-only, so skip validation */,
658 true);
659
660 /* WaDisableGPGPUMidThreadPreemption:icl */
661 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
662 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
663 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
664
665 /* allow headerless messages for preemptible GPGPU context */
666 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
667 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
668
669 /* Wa_1604278689:icl,ehl */
670 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
671 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
672 0,
673 0xFFFFFFFF);
674
675 /* Wa_1406306137:icl,ehl */
676 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
677}
678
679/*
680 * These settings aren't actually workarounds, but general tuning settings that
681 * need to be programmed on dg2 platform.
682 */
683static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
684 struct i915_wa_list *wal)
685{
686 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
687 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
688 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
689 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
690 FF_MODE2_TDS_TIMER_128);
691}
692
693static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
694 struct i915_wa_list *wal)
695{
696 struct drm_i915_private *i915 = engine->i915;
697
698 /*
699 * Wa_1409142259:tgl,dg1,adl-p
700 * Wa_1409347922:tgl,dg1,adl-p
701 * Wa_1409252684:tgl,dg1,adl-p
702 * Wa_1409217633:tgl,dg1,adl-p
703 * Wa_1409207793:tgl,dg1,adl-p
704 * Wa_1409178076:tgl,dg1,adl-p
705 * Wa_1408979724:tgl,dg1,adl-p
706 * Wa_14010443199:tgl,rkl,dg1,adl-p
707 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
708 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
709 */
710 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
711 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
712
713 /* WaDisableGPGPUMidThreadPreemption:gen12 */
714 wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
715 GEN9_PREEMPT_GPGPU_LEVEL_MASK,
716 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
717
718 /*
719 * Wa_16011163337 - GS_TIMER
720 *
721 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
722 * need to program it even on those that don't explicitly list that
723 * workaround.
724 *
725 * Note that the programming of GEN12_FF_MODE2 is further modified
726 * according to the FF_MODE2 guidance given by Wa_1608008084.
727 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
728 * value when read from the CPU.
729 *
730 * The default value for this register is zero for all fields.
731 * So instead of doing a RMW we should just write the desired values
732 * for TDS and GS timers. Note that since the readback can't be trusted,
733 * the clear mask is just set to ~0 to make sure other bits are not
734 * inadvertently set. For the same reason read verification is ignored.
735 */
736 wa_add(wal,
737 GEN12_FF_MODE2,
738 ~0,
739 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
740 0, false);
741
742 if (!IS_DG1(i915)) {
743 /* Wa_1806527549 */
744 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
745
746 /* Wa_1606376872 */
747 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
748 }
749}
750
751static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
752 struct i915_wa_list *wal)
753{
754 gen12_ctx_workarounds_init(engine, wal);
755
756 /* Wa_1409044764 */
757 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
758 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
759
760 /* Wa_22010493298 */
761 wa_masked_en(wal, HIZ_CHICKEN,
762 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
763}
764
765static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
766 struct i915_wa_list *wal)
767{
768 dg2_ctx_gt_tuning_init(engine, wal);
769
770 /* Wa_16013271637:dg2 */
771 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
772 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
773
774 /* Wa_14014947963:dg2 */
775 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
776
777 /* Wa_18018764978:dg2 */
778 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
779
780 /* Wa_18019271663:dg2 */
781 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
782
783 /* Wa_14019877138:dg2 */
784 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
785}
786
787static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
788 struct i915_wa_list *wal)
789{
790 struct intel_gt *gt = engine->gt;
791
792 dg2_ctx_gt_tuning_init(engine, wal);
793
794 /*
795 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
796 * gen12_emit_indirect_ctx_rcs() rather than here on some early
797 * steppings.
798 */
799 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
800 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
801 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
802}
803
804static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
805 struct i915_wa_list *wal)
806{
807 struct intel_gt *gt = engine->gt;
808
809 xelpg_ctx_gt_tuning_init(engine, wal);
810
811 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
812 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
813 /* Wa_14014947963 */
814 wa_masked_field_set(wal, VF_PREEMPTION,
815 PREEMPTION_VERTEX_COUNT, 0x4000);
816
817 /* Wa_16013271637 */
818 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
819 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
820
821 /* Wa_18019627453 */
822 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
823
824 /* Wa_18018764978 */
825 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
826 }
827
828 /* Wa_18019271663 */
829 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
830
831 /* Wa_14019877138 */
832 wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
833}
834
835static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
836 struct i915_wa_list *wal)
837{
838 /*
839 * This is a "fake" workaround defined by software to ensure we
840 * maintain reliable, backward-compatible behavior for userspace with
841 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
842 *
843 * The per-context setting of MI_MODE[12] determines whether the bits
844 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
845 * in the traditional manner or whether they should instead use a new
846 * tgl+ meaning that breaks backward compatibility, but allows nesting
847 * into 3rd-level batchbuffers. When this new capability was first
848 * added in TGL, it remained off by default unless a context
849 * intentionally opted in to the new behavior. However Xe_HPG now
850 * flips this on by default and requires that we explicitly opt out if
851 * we don't want the new behavior.
852 *
853 * From a SW perspective, we want to maintain the backward-compatible
854 * behavior for userspace, so we'll apply a fake workaround to set it
855 * back to the legacy behavior on platforms where the hardware default
856 * is to break compatibility. At the moment there is no Linux
857 * userspace that utilizes third-level batchbuffers, so this will avoid
858 * userspace from needing to make any changes. using the legacy
859 * meaning is the correct thing to do. If/when we have userspace
860 * consumers that want to utilize third-level batch nesting, we can
861 * provide a context parameter to allow them to opt-in.
862 */
863 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
864}
865
866static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
867 struct i915_wa_list *wal)
868{
869 u8 mocs;
870
871 /*
872 * Some blitter commands do not have a field for MOCS, those
873 * commands will use MOCS index pointed by BLIT_CCTL.
874 * BLIT_CCTL registers are needed to be programmed to un-cached.
875 */
876 if (engine->class == COPY_ENGINE_CLASS) {
877 mocs = engine->gt->mocs.uc_index;
878 wa_write_clr_set(wal,
879 BLIT_CCTL(engine->mmio_base),
880 BLIT_CCTL_MASK,
881 BLIT_CCTL_MOCS(mocs, mocs));
882 }
883}
884
885/*
886 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
887 * defined by the hardware team, but it programming general context registers.
888 * Adding those context register programming in context workaround
889 * allow us to use the wa framework for proper application and validation.
890 */
891static void
892gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
893 struct i915_wa_list *wal)
894{
895 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
896 fakewa_disable_nestedbb_mode(engine, wal);
897
898 gen12_ctx_gt_mocs_init(engine, wal);
899}
900
901static void
902__intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
903 struct i915_wa_list *wal,
904 const char *name)
905{
906 struct drm_i915_private *i915 = engine->i915;
907
908 wa_init_start(wal, engine->gt, name, engine->name);
909
910 /* Applies to all engines */
911 /*
912 * Fake workarounds are not the actual workaround but
913 * programming of context registers using workaround framework.
914 */
915 if (GRAPHICS_VER(i915) >= 12)
916 gen12_ctx_gt_fake_wa_init(engine, wal);
917
918 if (engine->class != RENDER_CLASS)
919 goto done;
920
921 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
922 xelpg_ctx_workarounds_init(engine, wal);
923 else if (IS_PONTEVECCHIO(i915))
924 ; /* noop; none at this time */
925 else if (IS_DG2(i915))
926 dg2_ctx_workarounds_init(engine, wal);
927 else if (IS_XEHPSDV(i915))
928 ; /* noop; none at this time */
929 else if (IS_DG1(i915))
930 dg1_ctx_workarounds_init(engine, wal);
931 else if (GRAPHICS_VER(i915) == 12)
932 gen12_ctx_workarounds_init(engine, wal);
933 else if (GRAPHICS_VER(i915) == 11)
934 icl_ctx_workarounds_init(engine, wal);
935 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
936 cfl_ctx_workarounds_init(engine, wal);
937 else if (IS_GEMINILAKE(i915))
938 glk_ctx_workarounds_init(engine, wal);
939 else if (IS_KABYLAKE(i915))
940 kbl_ctx_workarounds_init(engine, wal);
941 else if (IS_BROXTON(i915))
942 bxt_ctx_workarounds_init(engine, wal);
943 else if (IS_SKYLAKE(i915))
944 skl_ctx_workarounds_init(engine, wal);
945 else if (IS_CHERRYVIEW(i915))
946 chv_ctx_workarounds_init(engine, wal);
947 else if (IS_BROADWELL(i915))
948 bdw_ctx_workarounds_init(engine, wal);
949 else if (GRAPHICS_VER(i915) == 7)
950 gen7_ctx_workarounds_init(engine, wal);
951 else if (GRAPHICS_VER(i915) == 6)
952 gen6_ctx_workarounds_init(engine, wal);
953 else if (GRAPHICS_VER(i915) < 8)
954 ;
955 else
956 MISSING_CASE(GRAPHICS_VER(i915));
957
958done:
959 wa_init_finish(wal);
960}
961
962void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
963{
964 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
965}
966
967int intel_engine_emit_ctx_wa(struct i915_request *rq)
968{
969 struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
970 struct intel_uncore *uncore = rq->engine->uncore;
971 enum forcewake_domains fw;
972 unsigned long flags;
973 struct i915_wa *wa;
974 unsigned int i;
975 u32 *cs;
976 int ret;
977
978 if (wal->count == 0)
979 return 0;
980
981 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
982 if (ret)
983 return ret;
984
985 cs = intel_ring_begin(rq, (wal->count * 2 + 2));
986 if (IS_ERR(cs))
987 return PTR_ERR(cs);
988
989 fw = wal_get_fw_for_rmw(uncore, wal);
990
991 intel_gt_mcr_lock(wal->gt, &flags);
992 spin_lock(&uncore->lock);
993 intel_uncore_forcewake_get__locked(uncore, fw);
994
995 *cs++ = MI_LOAD_REGISTER_IMM(wal->count);
996 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
997 u32 val;
998
999 /* Skip reading the register if it's not really needed */
1000 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1001 val = wa->set;
1002 } else {
1003 val = wa->is_mcr ?
1004 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1005 intel_uncore_read_fw(uncore, wa->reg);
1006 val &= ~wa->clr;
1007 val |= wa->set;
1008 }
1009
1010 *cs++ = i915_mmio_reg_offset(wa->reg);
1011 *cs++ = val;
1012 }
1013 *cs++ = MI_NOOP;
1014
1015 intel_uncore_forcewake_put__locked(uncore, fw);
1016 spin_unlock(&uncore->lock);
1017 intel_gt_mcr_unlock(wal->gt, flags);
1018
1019 intel_ring_advance(rq, cs);
1020
1021 ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1022 if (ret)
1023 return ret;
1024
1025 return 0;
1026}
1027
1028static void
1029gen4_gt_workarounds_init(struct intel_gt *gt,
1030 struct i915_wa_list *wal)
1031{
1032 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1033 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1034}
1035
1036static void
1037g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1038{
1039 gen4_gt_workarounds_init(gt, wal);
1040
1041 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1042 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1043}
1044
1045static void
1046ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1047{
1048 g4x_gt_workarounds_init(gt, wal);
1049
1050 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1051}
1052
1053static void
1054snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1055{
1056}
1057
1058static void
1059ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060{
1061 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1062 wa_masked_dis(wal,
1063 GEN7_COMMON_SLICE_CHICKEN1,
1064 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1065
1066 /* WaApplyL3ControlAndL3ChickenMode:ivb */
1067 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1068 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1069
1070 /* WaForceL3Serialization:ivb */
1071 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1072}
1073
1074static void
1075vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1076{
1077 /* WaForceL3Serialization:vlv */
1078 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1079
1080 /*
1081 * WaIncreaseL3CreditsForVLVB0:vlv
1082 * This is the hardware default actually.
1083 */
1084 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1085}
1086
1087static void
1088hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1089{
1090 /* L3 caching of data atomics doesn't work -- disable it. */
1091 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1092
1093 wa_add(wal,
1094 HSW_ROW_CHICKEN3, 0,
1095 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1096 0 /* XXX does this reg exist? */, true);
1097
1098 /* WaVSRefCountFullforceMissDisable:hsw */
1099 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1100}
1101
1102static void
1103gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1104{
1105 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1106 unsigned int slice, subslice;
1107 u32 mcr, mcr_mask;
1108
1109 GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1110
1111 /*
1112 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1113 * Before any MMIO read into slice/subslice specific registers, MCR
1114 * packet control register needs to be programmed to point to any
1115 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1116 * This means each subsequent MMIO read will be forwarded to an
1117 * specific s/ss combination, but this is OK since these registers
1118 * are consistent across s/ss in almost all cases. In the rare
1119 * occasions, such as INSTDONE, where this value is dependent
1120 * on s/ss combo, the read should be done with read_subslice_reg.
1121 */
1122 slice = ffs(sseu->slice_mask) - 1;
1123 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1124 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1125 GEM_BUG_ON(!subslice);
1126 subslice--;
1127
1128 /*
1129 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1130 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1131 */
1132 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1133 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1134
1135 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1136
1137 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1138}
1139
1140static void
1141gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1142{
1143 struct drm_i915_private *i915 = gt->i915;
1144
1145 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1146 gen9_wa_init_mcr(i915, wal);
1147
1148 /* WaDisableKillLogic:bxt,skl,kbl */
1149 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1150 wa_write_or(wal,
1151 GAM_ECOCHK,
1152 ECOCHK_DIS_TLB);
1153
1154 if (HAS_LLC(i915)) {
1155 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1156 *
1157 * Must match Display Engine. See
1158 * WaCompressedResourceDisplayNewHashMode.
1159 */
1160 wa_write_or(wal,
1161 MMCD_MISC_CTRL,
1162 MMCD_PCLA | MMCD_HOTSPOT_EN);
1163 }
1164
1165 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1166 wa_write_or(wal,
1167 GAM_ECOCHK,
1168 BDW_DISABLE_HDC_INVALIDATION);
1169}
1170
1171static void
1172skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1173{
1174 gen9_gt_workarounds_init(gt, wal);
1175
1176 /* WaDisableGafsUnitClkGating:skl */
1177 wa_write_or(wal,
1178 GEN7_UCGCTL4,
1179 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1180
1181 /* WaInPlaceDecompressionHang:skl */
1182 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1183 wa_write_or(wal,
1184 GEN9_GAMT_ECO_REG_RW_IA,
1185 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1186}
1187
1188static void
1189kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1190{
1191 gen9_gt_workarounds_init(gt, wal);
1192
1193 /* WaDisableDynamicCreditSharing:kbl */
1194 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1195 wa_write_or(wal,
1196 GAMT_CHKN_BIT_REG,
1197 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1198
1199 /* WaDisableGafsUnitClkGating:kbl */
1200 wa_write_or(wal,
1201 GEN7_UCGCTL4,
1202 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1203
1204 /* WaInPlaceDecompressionHang:kbl */
1205 wa_write_or(wal,
1206 GEN9_GAMT_ECO_REG_RW_IA,
1207 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1208}
1209
1210static void
1211glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1212{
1213 gen9_gt_workarounds_init(gt, wal);
1214}
1215
1216static void
1217cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1218{
1219 gen9_gt_workarounds_init(gt, wal);
1220
1221 /* WaDisableGafsUnitClkGating:cfl */
1222 wa_write_or(wal,
1223 GEN7_UCGCTL4,
1224 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1225
1226 /* WaInPlaceDecompressionHang:cfl */
1227 wa_write_or(wal,
1228 GEN9_GAMT_ECO_REG_RW_IA,
1229 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1230}
1231
1232static void __set_mcr_steering(struct i915_wa_list *wal,
1233 i915_reg_t steering_reg,
1234 unsigned int slice, unsigned int subslice)
1235{
1236 u32 mcr, mcr_mask;
1237
1238 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1239 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1240
1241 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1242}
1243
1244static void debug_dump_steering(struct intel_gt *gt)
1245{
1246 struct drm_printer p = drm_dbg_printer(>->i915->drm, DRM_UT_DRIVER,
1247 "MCR Steering:");
1248
1249 if (drm_debug_enabled(DRM_UT_DRIVER))
1250 intel_gt_mcr_report_steering(&p, gt, false);
1251}
1252
1253static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1254 unsigned int slice, unsigned int subslice)
1255{
1256 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1257
1258 gt->default_steering.groupid = slice;
1259 gt->default_steering.instanceid = subslice;
1260
1261 debug_dump_steering(gt);
1262}
1263
1264static void
1265icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1266{
1267 const struct sseu_dev_info *sseu = >->info.sseu;
1268 unsigned int subslice;
1269
1270 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1271 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1272
1273 /*
1274 * Although a platform may have subslices, we need to always steer
1275 * reads to the lowest instance that isn't fused off. When Render
1276 * Power Gating is enabled, grabbing forcewake will only power up a
1277 * single subslice (the "minconfig") if there isn't a real workload
1278 * that needs to be run; this means that if we steer register reads to
1279 * one of the higher subslices, we run the risk of reading back 0's or
1280 * random garbage.
1281 */
1282 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1283
1284 /*
1285 * If the subslice we picked above also steers us to a valid L3 bank,
1286 * then we can just rely on the default steering and won't need to
1287 * worry about explicitly re-steering L3BANK reads later.
1288 */
1289 if (gt->info.l3bank_mask & BIT(subslice))
1290 gt->steering_table[L3BANK] = NULL;
1291
1292 __add_mcr_wa(gt, wal, 0, subslice);
1293}
1294
1295static void
1296xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1297{
1298 const struct sseu_dev_info *sseu = >->info.sseu;
1299 unsigned long slice, subslice = 0, slice_mask = 0;
1300 u32 lncf_mask = 0;
1301 int i;
1302
1303 /*
1304 * On Xe_HP the steering increases in complexity. There are now several
1305 * more units that require steering and we're not guaranteed to be able
1306 * to find a common setting for all of them. These are:
1307 * - GSLICE (fusable)
1308 * - DSS (sub-unit within gslice; fusable)
1309 * - L3 Bank (fusable)
1310 * - MSLICE (fusable)
1311 * - LNCF (sub-unit within mslice; always present if mslice is present)
1312 *
1313 * We'll do our default/implicit steering based on GSLICE (in the
1314 * sliceid field) and DSS (in the subsliceid field). If we can
1315 * find overlap between the valid MSLICE and/or LNCF values with
1316 * a suitable GSLICE, then we can just re-use the default value and
1317 * skip and explicit steering at runtime.
1318 *
1319 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1320 * a valid sliceid value. DSS steering is the only type of steering
1321 * that utilizes the 'subsliceid' bits.
1322 *
1323 * Also note that, even though the steering domain is called "GSlice"
1324 * and it is encoded in the register using the gslice format, the spec
1325 * says that the combined (geometry | compute) fuse should be used to
1326 * select the steering.
1327 */
1328
1329 /* Find the potential gslice candidates */
1330 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1331 GEN_DSS_PER_GSLICE);
1332
1333 /*
1334 * Find the potential LNCF candidates. Either LNCF within a valid
1335 * mslice is fine.
1336 */
1337 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES)
1338 lncf_mask |= (0x3 << (i * 2));
1339
1340 /*
1341 * Are there any sliceid values that work for both GSLICE and LNCF
1342 * steering?
1343 */
1344 if (slice_mask & lncf_mask) {
1345 slice_mask &= lncf_mask;
1346 gt->steering_table[LNCF] = NULL;
1347 }
1348
1349 /* How about sliceid values that also work for MSLICE steering? */
1350 if (slice_mask & gt->info.mslice_mask) {
1351 slice_mask &= gt->info.mslice_mask;
1352 gt->steering_table[MSLICE] = NULL;
1353 }
1354
1355 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1356 gt->steering_table[GAM] = NULL;
1357
1358 slice = __ffs(slice_mask);
1359 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1360 GEN_DSS_PER_GSLICE;
1361
1362 __add_mcr_wa(gt, wal, slice, subslice);
1363
1364 /*
1365 * SQIDI ranges are special because they use different steering
1366 * registers than everything else we work with. On XeHP SDV and
1367 * DG2-G10, any value in the steering registers will work fine since
1368 * all instances are present, but DG2-G11 only has SQIDI instances at
1369 * ID's 2 and 3, so we need to steer to one of those. For simplicity
1370 * we'll just steer to a hardcoded "2" since that value will work
1371 * everywhere.
1372 */
1373 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1374 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1375
1376 /*
1377 * On DG2, GAM registers have a dedicated steering control register
1378 * and must always be programmed to a hardcoded groupid of "1."
1379 */
1380 if (IS_DG2(gt->i915))
1381 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1382}
1383
1384static void
1385pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1386{
1387 unsigned int dss;
1388
1389 /*
1390 * Setup implicit steering for COMPUTE and DSS ranges to the first
1391 * non-fused-off DSS. All other types of MCR registers will be
1392 * explicitly steered.
1393 */
1394 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0);
1395 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1396}
1397
1398static void
1399icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1400{
1401 struct drm_i915_private *i915 = gt->i915;
1402
1403 icl_wa_init_mcr(gt, wal);
1404
1405 /* WaModifyGamTlbPartitioning:icl */
1406 wa_write_clr_set(wal,
1407 GEN11_GACB_PERF_CTRL,
1408 GEN11_HASH_CTRL_MASK,
1409 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1410
1411 /* Wa_1405766107:icl
1412 * Formerly known as WaCL2SFHalfMaxAlloc
1413 */
1414 wa_write_or(wal,
1415 GEN11_LSN_UNSLCVC,
1416 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1417 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1418
1419 /* Wa_220166154:icl
1420 * Formerly known as WaDisCtxReload
1421 */
1422 wa_write_or(wal,
1423 GEN8_GAMW_ECO_DEV_RW_IA,
1424 GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1425
1426 /* Wa_1406463099:icl
1427 * Formerly known as WaGamTlbPendError
1428 */
1429 wa_write_or(wal,
1430 GAMT_CHKN_BIT_REG,
1431 GAMT_CHKN_DISABLE_L3_COH_PIPE);
1432
1433 /*
1434 * Wa_1408615072:icl,ehl (vsunit)
1435 * Wa_1407596294:icl,ehl (hsunit)
1436 */
1437 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1438 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1439
1440 /* Wa_1407352427:icl,ehl */
1441 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1442 PSDUNIT_CLKGATE_DIS);
1443
1444 /* Wa_1406680159:icl,ehl */
1445 wa_mcr_write_or(wal,
1446 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1447 GWUNIT_CLKGATE_DIS);
1448
1449 /* Wa_1607087056:icl,ehl,jsl */
1450 if (IS_ICELAKE(i915) ||
1451 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1452 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1453 wa_write_or(wal,
1454 GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1455 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1456
1457 /*
1458 * This is not a documented workaround, but rather an optimization
1459 * to reduce sampler power.
1460 */
1461 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1462}
1463
1464/*
1465 * Though there are per-engine instances of these registers,
1466 * they retain their value through engine resets and should
1467 * only be provided on the GT workaround list rather than
1468 * the engine-specific workaround list.
1469 */
1470static void
1471wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1472{
1473 struct intel_engine_cs *engine;
1474 int id;
1475
1476 for_each_engine(engine, gt, id) {
1477 if (engine->class != VIDEO_DECODE_CLASS ||
1478 (engine->instance % 2))
1479 continue;
1480
1481 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1482 IECPUNIT_CLKGATE_DIS);
1483 }
1484}
1485
1486static void
1487gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1488{
1489 icl_wa_init_mcr(gt, wal);
1490
1491 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1492 wa_14011060649(gt, wal);
1493
1494 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1495 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1496
1497 /*
1498 * Wa_14015795083
1499 *
1500 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1501 * preventing i915 from modifying it for this workaround. Skip the
1502 * readback verification for this workaround on debug builds; if the
1503 * workaround doesn't stick due to firmware behavior, it's not an error
1504 * that we want CI to flag.
1505 */
1506 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1507 0, 0, false);
1508}
1509
1510static void
1511dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1512{
1513 gen12_gt_workarounds_init(gt, wal);
1514
1515 /* Wa_1409420604:dg1 */
1516 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1517 CPSSUNIT_CLKGATE_DIS);
1518
1519 /* Wa_1408615072:dg1 */
1520 /* Empirical testing shows this register is unaffected by engine reset. */
1521 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1522}
1523
1524static void
1525xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1526{
1527 struct drm_i915_private *i915 = gt->i915;
1528
1529 xehp_init_mcr(gt, wal);
1530
1531 /* Wa_1409757795:xehpsdv */
1532 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1533
1534 /* Wa_18011725039:xehpsdv */
1535 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1536 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1537 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1538 }
1539
1540 /* Wa_16011155590:xehpsdv */
1541 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1542 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1543 TSGUNIT_CLKGATE_DIS);
1544
1545 /* Wa_14011780169:xehpsdv */
1546 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1547 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1548 GAMTLBVDBOX7_CLKGATE_DIS |
1549 GAMTLBVDBOX6_CLKGATE_DIS |
1550 GAMTLBVDBOX5_CLKGATE_DIS |
1551 GAMTLBVDBOX4_CLKGATE_DIS |
1552 GAMTLBVDBOX3_CLKGATE_DIS |
1553 GAMTLBVDBOX2_CLKGATE_DIS |
1554 GAMTLBVDBOX1_CLKGATE_DIS |
1555 GAMTLBVDBOX0_CLKGATE_DIS |
1556 GAMTLBKCR_CLKGATE_DIS |
1557 GAMTLBGUC_CLKGATE_DIS |
1558 GAMTLBBLT_CLKGATE_DIS);
1559 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1560 GAMTLBGFXA1_CLKGATE_DIS |
1561 GAMTLBCOMPA0_CLKGATE_DIS |
1562 GAMTLBCOMPA1_CLKGATE_DIS |
1563 GAMTLBCOMPB0_CLKGATE_DIS |
1564 GAMTLBCOMPB1_CLKGATE_DIS |
1565 GAMTLBCOMPC0_CLKGATE_DIS |
1566 GAMTLBCOMPC1_CLKGATE_DIS |
1567 GAMTLBCOMPD0_CLKGATE_DIS |
1568 GAMTLBCOMPD1_CLKGATE_DIS |
1569 GAMTLBMERT_CLKGATE_DIS |
1570 GAMTLBVEBOX3_CLKGATE_DIS |
1571 GAMTLBVEBOX2_CLKGATE_DIS |
1572 GAMTLBVEBOX1_CLKGATE_DIS |
1573 GAMTLBVEBOX0_CLKGATE_DIS);
1574 }
1575
1576 /* Wa_16012725990:xehpsdv */
1577 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1578 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1579
1580 /* Wa_14011060649:xehpsdv */
1581 wa_14011060649(gt, wal);
1582
1583 /* Wa_14012362059:xehpsdv */
1584 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1585
1586 /* Wa_14014368820:xehpsdv */
1587 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1588 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1589
1590 /* Wa_14010670810:xehpsdv */
1591 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1592}
1593
1594static void
1595dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1596{
1597 xehp_init_mcr(gt, wal);
1598
1599 /* Wa_14011060649:dg2 */
1600 wa_14011060649(gt, wal);
1601
1602 if (IS_DG2_G10(gt->i915)) {
1603 /* Wa_22010523718:dg2 */
1604 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1605 CG3DDISCFEG_CLKGATE_DIS);
1606
1607 /* Wa_14011006942:dg2 */
1608 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1609 DSS_ROUTER_CLKGATE_DIS);
1610 }
1611
1612 /* Wa_14014830051:dg2 */
1613 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1614
1615 /*
1616 * Wa_14015795083
1617 * Skip verification for possibly locked register.
1618 */
1619 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1620 0, 0, false);
1621
1622 /* Wa_18018781329 */
1623 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1624 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1625 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1626 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1627
1628 /* Wa_1509235366:dg2 */
1629 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1630 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1631
1632 /* Wa_14010648519:dg2 */
1633 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1634}
1635
1636static void
1637pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1638{
1639 pvc_init_mcr(gt, wal);
1640
1641 /* Wa_14015795083 */
1642 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1643
1644 /* Wa_18018781329 */
1645 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1646 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1647 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1648 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1649
1650 /* Wa_16016694945 */
1651 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1652}
1653
1654static void
1655xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1656{
1657 /* Wa_14018575942 / Wa_18018781329 */
1658 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1659 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1660
1661 /* Wa_22016670082 */
1662 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1663
1664 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1665 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1666 /* Wa_14014830051 */
1667 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1668
1669 /* Wa_14015795083 */
1670 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1671 }
1672
1673 /*
1674 * Unlike older platforms, we no longer setup implicit steering here;
1675 * all MCR accesses are explicitly steered.
1676 */
1677 debug_dump_steering(gt);
1678}
1679
1680static void
1681wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
1682{
1683 struct intel_engine_cs *engine;
1684 int id;
1685
1686 for_each_engine(engine, gt, id)
1687 if (engine->class == VIDEO_DECODE_CLASS)
1688 wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
1689 MFXPIPE_CLKGATE_DIS);
1690}
1691
1692static void
1693xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1694{
1695 wa_16021867713(gt, wal);
1696
1697 /*
1698 * Wa_14018778641
1699 * Wa_18018781329
1700 *
1701 * Note that although these registers are MCR on the primary
1702 * GT, the media GT's versions are regular singleton registers.
1703 */
1704 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1705
1706 /* Wa_22016670082 */
1707 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1708
1709 debug_dump_steering(gt);
1710}
1711
1712/*
1713 * The bspec performance guide has recommended MMIO tuning settings. These
1714 * aren't truly "workarounds" but we want to program them through the
1715 * workaround infrastructure to make sure they're (re)applied at the proper
1716 * times.
1717 *
1718 * The programming in this function is for settings that persist through
1719 * engine resets and also are not part of any engine's register state context.
1720 * I.e., settings that only need to be re-applied in the event of a full GT
1721 * reset.
1722 */
1723static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1724{
1725 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1726 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1727 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1728 }
1729
1730 if (IS_PONTEVECCHIO(gt->i915)) {
1731 wa_mcr_write(wal, XEHPC_L3SCRUB,
1732 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1733 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1734 }
1735
1736 if (IS_DG2(gt->i915)) {
1737 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1738 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1739 }
1740}
1741
1742static void
1743gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1744{
1745 struct drm_i915_private *i915 = gt->i915;
1746
1747 gt_tuning_settings(gt, wal);
1748
1749 if (gt->type == GT_MEDIA) {
1750 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
1751 xelpmp_gt_workarounds_init(gt, wal);
1752 else
1753 MISSING_CASE(MEDIA_VER_FULL(i915));
1754
1755 return;
1756 }
1757
1758 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1759 xelpg_gt_workarounds_init(gt, wal);
1760 else if (IS_PONTEVECCHIO(i915))
1761 pvc_gt_workarounds_init(gt, wal);
1762 else if (IS_DG2(i915))
1763 dg2_gt_workarounds_init(gt, wal);
1764 else if (IS_XEHPSDV(i915))
1765 xehpsdv_gt_workarounds_init(gt, wal);
1766 else if (IS_DG1(i915))
1767 dg1_gt_workarounds_init(gt, wal);
1768 else if (GRAPHICS_VER(i915) == 12)
1769 gen12_gt_workarounds_init(gt, wal);
1770 else if (GRAPHICS_VER(i915) == 11)
1771 icl_gt_workarounds_init(gt, wal);
1772 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1773 cfl_gt_workarounds_init(gt, wal);
1774 else if (IS_GEMINILAKE(i915))
1775 glk_gt_workarounds_init(gt, wal);
1776 else if (IS_KABYLAKE(i915))
1777 kbl_gt_workarounds_init(gt, wal);
1778 else if (IS_BROXTON(i915))
1779 gen9_gt_workarounds_init(gt, wal);
1780 else if (IS_SKYLAKE(i915))
1781 skl_gt_workarounds_init(gt, wal);
1782 else if (IS_HASWELL(i915))
1783 hsw_gt_workarounds_init(gt, wal);
1784 else if (IS_VALLEYVIEW(i915))
1785 vlv_gt_workarounds_init(gt, wal);
1786 else if (IS_IVYBRIDGE(i915))
1787 ivb_gt_workarounds_init(gt, wal);
1788 else if (GRAPHICS_VER(i915) == 6)
1789 snb_gt_workarounds_init(gt, wal);
1790 else if (GRAPHICS_VER(i915) == 5)
1791 ilk_gt_workarounds_init(gt, wal);
1792 else if (IS_G4X(i915))
1793 g4x_gt_workarounds_init(gt, wal);
1794 else if (GRAPHICS_VER(i915) == 4)
1795 gen4_gt_workarounds_init(gt, wal);
1796 else if (GRAPHICS_VER(i915) <= 8)
1797 ;
1798 else
1799 MISSING_CASE(GRAPHICS_VER(i915));
1800}
1801
1802void intel_gt_init_workarounds(struct intel_gt *gt)
1803{
1804 struct i915_wa_list *wal = >->wa_list;
1805
1806 wa_init_start(wal, gt, "GT", "global");
1807 gt_init_workarounds(gt, wal);
1808 wa_init_finish(wal);
1809}
1810
1811static bool
1812wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1813 const char *name, const char *from)
1814{
1815 if ((cur ^ wa->set) & wa->read) {
1816 gt_err(gt,
1817 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1818 name, from, i915_mmio_reg_offset(wa->reg),
1819 cur, cur & wa->read, wa->set & wa->read);
1820
1821 return false;
1822 }
1823
1824 return true;
1825}
1826
1827static void wa_list_apply(const struct i915_wa_list *wal)
1828{
1829 struct intel_gt *gt = wal->gt;
1830 struct intel_uncore *uncore = gt->uncore;
1831 enum forcewake_domains fw;
1832 unsigned long flags;
1833 struct i915_wa *wa;
1834 unsigned int i;
1835
1836 if (!wal->count)
1837 return;
1838
1839 fw = wal_get_fw_for_rmw(uncore, wal);
1840
1841 intel_gt_mcr_lock(gt, &flags);
1842 spin_lock(&uncore->lock);
1843 intel_uncore_forcewake_get__locked(uncore, fw);
1844
1845 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1846 u32 val, old = 0;
1847
1848 /* open-coded rmw due to steering */
1849 if (wa->clr)
1850 old = wa->is_mcr ?
1851 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1852 intel_uncore_read_fw(uncore, wa->reg);
1853 val = (old & ~wa->clr) | wa->set;
1854 if (val != old || !wa->clr) {
1855 if (wa->is_mcr)
1856 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1857 else
1858 intel_uncore_write_fw(uncore, wa->reg, val);
1859 }
1860
1861 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1862 u32 val = wa->is_mcr ?
1863 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1864 intel_uncore_read_fw(uncore, wa->reg);
1865
1866 wa_verify(gt, wa, val, wal->name, "application");
1867 }
1868 }
1869
1870 intel_uncore_forcewake_put__locked(uncore, fw);
1871 spin_unlock(&uncore->lock);
1872 intel_gt_mcr_unlock(gt, flags);
1873}
1874
1875void intel_gt_apply_workarounds(struct intel_gt *gt)
1876{
1877 wa_list_apply(>->wa_list);
1878}
1879
1880static bool wa_list_verify(struct intel_gt *gt,
1881 const struct i915_wa_list *wal,
1882 const char *from)
1883{
1884 struct intel_uncore *uncore = gt->uncore;
1885 struct i915_wa *wa;
1886 enum forcewake_domains fw;
1887 unsigned long flags;
1888 unsigned int i;
1889 bool ok = true;
1890
1891 fw = wal_get_fw_for_rmw(uncore, wal);
1892
1893 intel_gt_mcr_lock(gt, &flags);
1894 spin_lock(&uncore->lock);
1895 intel_uncore_forcewake_get__locked(uncore, fw);
1896
1897 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1898 ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1899 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1900 intel_uncore_read_fw(uncore, wa->reg),
1901 wal->name, from);
1902
1903 intel_uncore_forcewake_put__locked(uncore, fw);
1904 spin_unlock(&uncore->lock);
1905 intel_gt_mcr_unlock(gt, flags);
1906
1907 return ok;
1908}
1909
1910bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1911{
1912 return wa_list_verify(gt, >->wa_list, from);
1913}
1914
1915__maybe_unused
1916static bool is_nonpriv_flags_valid(u32 flags)
1917{
1918 /* Check only valid flag bits are set */
1919 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1920 return false;
1921
1922 /* NB: Only 3 out of 4 enum values are valid for access field */
1923 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1924 RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1925 return false;
1926
1927 return true;
1928}
1929
1930static void
1931whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1932{
1933 struct i915_wa wa = {
1934 .reg = reg
1935 };
1936
1937 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1938 return;
1939
1940 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1941 return;
1942
1943 wa.reg.reg |= flags;
1944 _wa_add(wal, &wa);
1945}
1946
1947static void
1948whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1949{
1950 struct i915_wa wa = {
1951 .mcr_reg = reg,
1952 .is_mcr = 1,
1953 };
1954
1955 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1956 return;
1957
1958 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1959 return;
1960
1961 wa.mcr_reg.reg |= flags;
1962 _wa_add(wal, &wa);
1963}
1964
1965static void
1966whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1967{
1968 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1969}
1970
1971static void
1972whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1973{
1974 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1975}
1976
1977static void gen9_whitelist_build(struct i915_wa_list *w)
1978{
1979 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1980 whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1981
1982 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1983 whitelist_reg(w, GEN8_CS_CHICKEN1);
1984
1985 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1986 whitelist_reg(w, GEN8_HDC_CHICKEN1);
1987
1988 /* WaSendPushConstantsFromMMIO:skl,bxt */
1989 whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1990}
1991
1992static void skl_whitelist_build(struct intel_engine_cs *engine)
1993{
1994 struct i915_wa_list *w = &engine->whitelist;
1995
1996 if (engine->class != RENDER_CLASS)
1997 return;
1998
1999 gen9_whitelist_build(w);
2000
2001 /* WaDisableLSQCROPERFforOCL:skl */
2002 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2003}
2004
2005static void bxt_whitelist_build(struct intel_engine_cs *engine)
2006{
2007 if (engine->class != RENDER_CLASS)
2008 return;
2009
2010 gen9_whitelist_build(&engine->whitelist);
2011}
2012
2013static void kbl_whitelist_build(struct intel_engine_cs *engine)
2014{
2015 struct i915_wa_list *w = &engine->whitelist;
2016
2017 if (engine->class != RENDER_CLASS)
2018 return;
2019
2020 gen9_whitelist_build(w);
2021
2022 /* WaDisableLSQCROPERFforOCL:kbl */
2023 whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2024}
2025
2026static void glk_whitelist_build(struct intel_engine_cs *engine)
2027{
2028 struct i915_wa_list *w = &engine->whitelist;
2029
2030 if (engine->class != RENDER_CLASS)
2031 return;
2032
2033 gen9_whitelist_build(w);
2034
2035 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2036 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2037}
2038
2039static void cfl_whitelist_build(struct intel_engine_cs *engine)
2040{
2041 struct i915_wa_list *w = &engine->whitelist;
2042
2043 if (engine->class != RENDER_CLASS)
2044 return;
2045
2046 gen9_whitelist_build(w);
2047
2048 /*
2049 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2050 *
2051 * This covers 4 register which are next to one another :
2052 * - PS_INVOCATION_COUNT
2053 * - PS_INVOCATION_COUNT_UDW
2054 * - PS_DEPTH_COUNT
2055 * - PS_DEPTH_COUNT_UDW
2056 */
2057 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2058 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2059 RING_FORCE_TO_NONPRIV_RANGE_4);
2060}
2061
2062static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2063{
2064 struct i915_wa_list *w = &engine->whitelist;
2065
2066 if (engine->class != RENDER_CLASS)
2067 whitelist_reg_ext(w,
2068 RING_CTX_TIMESTAMP(engine->mmio_base),
2069 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2070}
2071
2072static void cml_whitelist_build(struct intel_engine_cs *engine)
2073{
2074 allow_read_ctx_timestamp(engine);
2075
2076 cfl_whitelist_build(engine);
2077}
2078
2079static void icl_whitelist_build(struct intel_engine_cs *engine)
2080{
2081 struct i915_wa_list *w = &engine->whitelist;
2082
2083 allow_read_ctx_timestamp(engine);
2084
2085 switch (engine->class) {
2086 case RENDER_CLASS:
2087 /* WaAllowUMDToModifyHalfSliceChicken7:icl */
2088 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2089
2090 /* WaAllowUMDToModifySamplerMode:icl */
2091 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2092
2093 /* WaEnableStateCacheRedirectToCS:icl */
2094 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2095
2096 /*
2097 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2098 *
2099 * This covers 4 register which are next to one another :
2100 * - PS_INVOCATION_COUNT
2101 * - PS_INVOCATION_COUNT_UDW
2102 * - PS_DEPTH_COUNT
2103 * - PS_DEPTH_COUNT_UDW
2104 */
2105 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2106 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2107 RING_FORCE_TO_NONPRIV_RANGE_4);
2108 break;
2109
2110 case VIDEO_DECODE_CLASS:
2111 /* hucStatusRegOffset */
2112 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2113 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2114 /* hucUKernelHdrInfoRegOffset */
2115 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2116 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2117 /* hucStatus2RegOffset */
2118 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2119 RING_FORCE_TO_NONPRIV_ACCESS_RD);
2120 break;
2121
2122 default:
2123 break;
2124 }
2125}
2126
2127static void tgl_whitelist_build(struct intel_engine_cs *engine)
2128{
2129 struct i915_wa_list *w = &engine->whitelist;
2130
2131 allow_read_ctx_timestamp(engine);
2132
2133 switch (engine->class) {
2134 case RENDER_CLASS:
2135 /*
2136 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2137 * Wa_1408556865:tgl
2138 *
2139 * This covers 4 registers which are next to one another :
2140 * - PS_INVOCATION_COUNT
2141 * - PS_INVOCATION_COUNT_UDW
2142 * - PS_DEPTH_COUNT
2143 * - PS_DEPTH_COUNT_UDW
2144 */
2145 whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2146 RING_FORCE_TO_NONPRIV_ACCESS_RD |
2147 RING_FORCE_TO_NONPRIV_RANGE_4);
2148
2149 /*
2150 * Wa_1808121037:tgl
2151 * Wa_14012131227:dg1
2152 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2153 */
2154 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2155
2156 /* Wa_1806527549:tgl */
2157 whitelist_reg(w, HIZ_CHICKEN);
2158
2159 /* Required by recommended tuning setting (not a workaround) */
2160 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2161
2162 break;
2163 default:
2164 break;
2165 }
2166}
2167
2168static void dg2_whitelist_build(struct intel_engine_cs *engine)
2169{
2170 struct i915_wa_list *w = &engine->whitelist;
2171
2172 switch (engine->class) {
2173 case RENDER_CLASS:
2174 /* Required by recommended tuning setting (not a workaround) */
2175 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2176
2177 break;
2178 default:
2179 break;
2180 }
2181}
2182
2183static void blacklist_trtt(struct intel_engine_cs *engine)
2184{
2185 struct i915_wa_list *w = &engine->whitelist;
2186
2187 /*
2188 * Prevent read/write access to [0x4400, 0x4600) which covers
2189 * the TRTT range across all engines. Note that normally userspace
2190 * cannot access the other engines' trtt control, but for simplicity
2191 * we cover the entire range on each engine.
2192 */
2193 whitelist_reg_ext(w, _MMIO(0x4400),
2194 RING_FORCE_TO_NONPRIV_DENY |
2195 RING_FORCE_TO_NONPRIV_RANGE_64);
2196 whitelist_reg_ext(w, _MMIO(0x4500),
2197 RING_FORCE_TO_NONPRIV_DENY |
2198 RING_FORCE_TO_NONPRIV_RANGE_64);
2199}
2200
2201static void pvc_whitelist_build(struct intel_engine_cs *engine)
2202{
2203 /* Wa_16014440446:pvc */
2204 blacklist_trtt(engine);
2205}
2206
2207static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2208{
2209 struct i915_wa_list *w = &engine->whitelist;
2210
2211 switch (engine->class) {
2212 case RENDER_CLASS:
2213 /* Required by recommended tuning setting (not a workaround) */
2214 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2215
2216 break;
2217 default:
2218 break;
2219 }
2220}
2221
2222void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2223{
2224 struct drm_i915_private *i915 = engine->i915;
2225 struct i915_wa_list *w = &engine->whitelist;
2226
2227 wa_init_start(w, engine->gt, "whitelist", engine->name);
2228
2229 if (engine->gt->type == GT_MEDIA)
2230 ; /* none yet */
2231 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2232 xelpg_whitelist_build(engine);
2233 else if (IS_PONTEVECCHIO(i915))
2234 pvc_whitelist_build(engine);
2235 else if (IS_DG2(i915))
2236 dg2_whitelist_build(engine);
2237 else if (IS_XEHPSDV(i915))
2238 ; /* none needed */
2239 else if (GRAPHICS_VER(i915) == 12)
2240 tgl_whitelist_build(engine);
2241 else if (GRAPHICS_VER(i915) == 11)
2242 icl_whitelist_build(engine);
2243 else if (IS_COMETLAKE(i915))
2244 cml_whitelist_build(engine);
2245 else if (IS_COFFEELAKE(i915))
2246 cfl_whitelist_build(engine);
2247 else if (IS_GEMINILAKE(i915))
2248 glk_whitelist_build(engine);
2249 else if (IS_KABYLAKE(i915))
2250 kbl_whitelist_build(engine);
2251 else if (IS_BROXTON(i915))
2252 bxt_whitelist_build(engine);
2253 else if (IS_SKYLAKE(i915))
2254 skl_whitelist_build(engine);
2255 else if (GRAPHICS_VER(i915) <= 8)
2256 ;
2257 else
2258 MISSING_CASE(GRAPHICS_VER(i915));
2259
2260 wa_init_finish(w);
2261}
2262
2263void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2264{
2265 const struct i915_wa_list *wal = &engine->whitelist;
2266 struct intel_uncore *uncore = engine->uncore;
2267 const u32 base = engine->mmio_base;
2268 struct i915_wa *wa;
2269 unsigned int i;
2270
2271 if (!wal->count)
2272 return;
2273
2274 for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2275 intel_uncore_write(uncore,
2276 RING_FORCE_TO_NONPRIV(base, i),
2277 i915_mmio_reg_offset(wa->reg));
2278
2279 /* And clear the rest just in case of garbage */
2280 for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2281 intel_uncore_write(uncore,
2282 RING_FORCE_TO_NONPRIV(base, i),
2283 i915_mmio_reg_offset(RING_NOPID(base)));
2284}
2285
2286/*
2287 * engine_fake_wa_init(), a place holder to program the registers
2288 * which are not part of an official workaround defined by the
2289 * hardware team.
2290 * Adding programming of those register inside workaround will
2291 * allow utilizing wa framework to proper application and verification.
2292 */
2293static void
2294engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2295{
2296 u8 mocs_w, mocs_r;
2297
2298 /*
2299 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2300 * by the command streamer when executing commands that don't have
2301 * a way to explicitly specify a MOCS setting. The default should
2302 * usually reference whichever MOCS entry corresponds to uncached
2303 * behavior, although use of a WB cached entry is recommended by the
2304 * spec in certain circumstances on specific platforms.
2305 */
2306 if (GRAPHICS_VER(engine->i915) >= 12) {
2307 mocs_r = engine->gt->mocs.uc_index;
2308 mocs_w = engine->gt->mocs.uc_index;
2309
2310 if (HAS_L3_CCS_READ(engine->i915) &&
2311 engine->class == COMPUTE_CLASS) {
2312 mocs_r = engine->gt->mocs.wb_index;
2313
2314 /*
2315 * Even on the few platforms where MOCS 0 is a
2316 * legitimate table entry, it's never the correct
2317 * setting to use here; we can assume the MOCS init
2318 * just forgot to initialize wb_index.
2319 */
2320 drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2321 }
2322
2323 wa_masked_field_set(wal,
2324 RING_CMD_CCTL(engine->mmio_base),
2325 CMD_CCTL_MOCS_MASK,
2326 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2327 }
2328}
2329
2330static void
2331rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2332{
2333 struct drm_i915_private *i915 = engine->i915;
2334 struct intel_gt *gt = engine->gt;
2335
2336 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2337 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2338 /* Wa_22014600077 */
2339 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2340 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2341 }
2342
2343 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2344 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2345 IS_DG2(i915)) {
2346 /* Wa_1509727124 */
2347 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2348 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2349 }
2350
2351 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2352 IS_DG2(i915)) {
2353 /* Wa_22012856258 */
2354 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2355 GEN12_DISABLE_READ_SUPPRESSION);
2356 }
2357
2358 if (IS_DG2(i915)) {
2359 /*
2360 * Wa_22010960976:dg2
2361 * Wa_14013347512:dg2
2362 */
2363 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2364 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2365 }
2366
2367 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2368 IS_DG2(i915)) {
2369 /* Wa_14015150844 */
2370 wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2371 _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2372 0, true);
2373 }
2374
2375 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2376 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2377 /*
2378 * Wa_1606700617:tgl,dg1,adl-p
2379 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2380 * Wa_14010826681:tgl,dg1,rkl,adl-p
2381 * Wa_18019627453:dg2
2382 */
2383 wa_masked_en(wal,
2384 GEN9_CS_DEBUG_MODE1,
2385 FF_DOP_CLOCK_GATE_DISABLE);
2386 }
2387
2388 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2389 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2390 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2391 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2392
2393 /*
2394 * Wa_1407928979:tgl A*
2395 * Wa_18011464164:tgl[B0+],dg1[B0+]
2396 * Wa_22010931296:tgl[B0+],dg1[B0+]
2397 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2398 */
2399 wa_write_or(wal, GEN7_FF_THREAD_MODE,
2400 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2401
2402 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2403 wa_mcr_masked_en(wal,
2404 GEN10_SAMPLER_MODE,
2405 ENABLE_SMALLPL);
2406 }
2407
2408 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2409 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2410 /* Wa_1409804808 */
2411 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2412 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2413
2414 /* Wa_14010229206 */
2415 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2416 }
2417
2418 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2419 /*
2420 * Wa_1607297627
2421 *
2422 * On TGL and RKL there are multiple entries for this WA in the
2423 * BSpec; some indicate this is an A0-only WA, others indicate
2424 * it applies to all steppings so we trust the "all steppings."
2425 */
2426 wa_masked_en(wal,
2427 RING_PSMI_CTL(RENDER_RING_BASE),
2428 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2429 GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2430 }
2431
2432 if (GRAPHICS_VER(i915) == 11) {
2433 /* This is not an Wa. Enable for better image quality */
2434 wa_masked_en(wal,
2435 _3D_CHICKEN3,
2436 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2437
2438 /*
2439 * Wa_1405543622:icl
2440 * Formerly known as WaGAPZPriorityScheme
2441 */
2442 wa_write_or(wal,
2443 GEN8_GARBCNTL,
2444 GEN11_ARBITRATION_PRIO_ORDER_MASK);
2445
2446 /*
2447 * Wa_1604223664:icl
2448 * Formerly known as WaL3BankAddressHashing
2449 */
2450 wa_write_clr_set(wal,
2451 GEN8_GARBCNTL,
2452 GEN11_HASH_CTRL_EXCL_MASK,
2453 GEN11_HASH_CTRL_EXCL_BIT0);
2454 wa_write_clr_set(wal,
2455 GEN11_GLBLINVL,
2456 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2457 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2458
2459 /*
2460 * Wa_1405733216:icl
2461 * Formerly known as WaDisableCleanEvicts
2462 */
2463 wa_mcr_write_or(wal,
2464 GEN8_L3SQCREG4,
2465 GEN11_LQSC_CLEAN_EVICT_DISABLE);
2466
2467 /* Wa_1606682166:icl */
2468 wa_write_or(wal,
2469 GEN7_SARCHKMD,
2470 GEN7_DISABLE_SAMPLER_PREFETCH);
2471
2472 /* Wa_1409178092:icl */
2473 wa_mcr_write_clr_set(wal,
2474 GEN11_SCRATCH2,
2475 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2476 0);
2477
2478 /* WaEnable32PlaneMode:icl */
2479 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2480 GEN11_ENABLE_32_PLANE_MODE);
2481
2482 /*
2483 * Wa_1408767742:icl[a2..forever],ehl[all]
2484 * Wa_1605460711:icl[a0..c0]
2485 */
2486 wa_write_or(wal,
2487 GEN7_FF_THREAD_MODE,
2488 GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2489
2490 /* Wa_22010271021 */
2491 wa_masked_en(wal,
2492 GEN9_CS_DEBUG_MODE1,
2493 FF_DOP_CLOCK_GATE_DISABLE);
2494 }
2495
2496 /*
2497 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2498 * beyond) allow the kernel-mode driver to choose between two different
2499 * options for controlling preemption granularity and behavior.
2500 *
2501 * Option 1 (hardware default):
2502 * Preemption settings are controlled in a global manner via
2503 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
2504 * and settings chosen by the kernel-mode driver will apply to all
2505 * userspace clients.
2506 *
2507 * Option 2:
2508 * Preemption settings are controlled on a per-context basis via
2509 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
2510 * context switch and is writable by userspace (e.g., via
2511 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2512 * which allows different userspace drivers/clients to select
2513 * different settings, or to change those settings on the fly in
2514 * response to runtime needs. This option was known by name
2515 * "FtrPerCtxtPreemptionGranularityControl" at one time, although
2516 * that name is somewhat misleading as other non-granularity
2517 * preemption settings are also impacted by this decision.
2518 *
2519 * On Linux, our policy has always been to let userspace drivers
2520 * control preemption granularity/settings (Option 2). This was
2521 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2522 * userspace developed before object-level preemption was enabled would
2523 * not behave well if i915 were to go with Option 1 and enable that
2524 * preemption in a global manner). On gen9 each context would have
2525 * object-level preemption disabled by default (see
2526 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2527 * userspace drivers could opt-in to object-level preemption as they
2528 * saw fit. For post-gen9 platforms, we continue to utilize Option 2;
2529 * even though it is no longer necessary for ABI compatibility when
2530 * enabling a new platform, it does ensure that userspace will be able
2531 * to implement any workarounds that show up requiring temporary
2532 * adjustments to preemption behavior at runtime.
2533 *
2534 * Notes/Workarounds:
2535 * - Wa_14015141709: On DG2 and early steppings of MTL,
2536 * CS_CHICKEN1[0] does not disable object-level preemption as
2537 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2538 * using Option 1). Effectively this means userspace is unable
2539 * to disable object-level preemption on these platforms/steppings
2540 * despite the setting here.
2541 *
2542 * - Wa_16013994831: May require that userspace program
2543 * CS_CHICKEN1[10] when certain runtime conditions are true.
2544 * Userspace requires Option 2 to be in effect for their update of
2545 * CS_CHICKEN1[10] to be effective.
2546 *
2547 * Other workarounds may appear in the future that will also require
2548 * Option 2 behavior to allow proper userspace implementation.
2549 */
2550 if (GRAPHICS_VER(i915) >= 9)
2551 wa_masked_en(wal,
2552 GEN7_FF_SLICE_CS_CHICKEN1,
2553 GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2554
2555 if (IS_SKYLAKE(i915) ||
2556 IS_KABYLAKE(i915) ||
2557 IS_COFFEELAKE(i915) ||
2558 IS_COMETLAKE(i915)) {
2559 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2560 wa_write_or(wal,
2561 GEN8_GARBCNTL,
2562 GEN9_GAPS_TSV_CREDIT_DISABLE);
2563 }
2564
2565 if (IS_BROXTON(i915)) {
2566 /* WaDisablePooledEuLoadBalancingFix:bxt */
2567 wa_masked_en(wal,
2568 FF_SLICE_CS_CHICKEN2,
2569 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2570 }
2571
2572 if (GRAPHICS_VER(i915) == 9) {
2573 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2574 wa_masked_en(wal,
2575 GEN9_CSFE_CHICKEN1_RCS,
2576 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2577
2578 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2579 wa_mcr_write_or(wal,
2580 BDW_SCRATCH1,
2581 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2582
2583 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2584 if (IS_GEN9_LP(i915))
2585 wa_mcr_write_clr_set(wal,
2586 GEN8_L3SQCREG1,
2587 L3_PRIO_CREDITS_MASK,
2588 L3_GENERAL_PRIO_CREDITS(62) |
2589 L3_HIGH_PRIO_CREDITS(2));
2590
2591 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2592 wa_mcr_write_or(wal,
2593 GEN8_L3SQCREG4,
2594 GEN8_LQSC_FLUSH_COHERENT_LINES);
2595
2596 /* Disable atomics in L3 to prevent unrecoverable hangs */
2597 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2598 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2599 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2600 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2601 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2602 EVICTION_PERF_FIX_ENABLE, 0);
2603 }
2604
2605 if (IS_HASWELL(i915)) {
2606 /* WaSampleCChickenBitEnable:hsw */
2607 wa_masked_en(wal,
2608 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2609
2610 wa_masked_dis(wal,
2611 CACHE_MODE_0_GEN7,
2612 /* enable HiZ Raw Stall Optimization */
2613 HIZ_RAW_STALL_OPT_DISABLE);
2614 }
2615
2616 if (IS_VALLEYVIEW(i915)) {
2617 /* WaDisableEarlyCull:vlv */
2618 wa_masked_en(wal,
2619 _3D_CHICKEN3,
2620 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2621
2622 /*
2623 * WaVSThreadDispatchOverride:ivb,vlv
2624 *
2625 * This actually overrides the dispatch
2626 * mode for all thread types.
2627 */
2628 wa_write_clr_set(wal,
2629 GEN7_FF_THREAD_MODE,
2630 GEN7_FF_SCHED_MASK,
2631 GEN7_FF_TS_SCHED_HW |
2632 GEN7_FF_VS_SCHED_HW |
2633 GEN7_FF_DS_SCHED_HW);
2634
2635 /* WaPsdDispatchEnable:vlv */
2636 /* WaDisablePSDDualDispatchEnable:vlv */
2637 wa_masked_en(wal,
2638 GEN7_HALF_SLICE_CHICKEN1,
2639 GEN7_MAX_PS_THREAD_DEP |
2640 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2641 }
2642
2643 if (IS_IVYBRIDGE(i915)) {
2644 /* WaDisableEarlyCull:ivb */
2645 wa_masked_en(wal,
2646 _3D_CHICKEN3,
2647 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2648
2649 if (0) { /* causes HiZ corruption on ivb:gt1 */
2650 /* enable HiZ Raw Stall Optimization */
2651 wa_masked_dis(wal,
2652 CACHE_MODE_0_GEN7,
2653 HIZ_RAW_STALL_OPT_DISABLE);
2654 }
2655
2656 /*
2657 * WaVSThreadDispatchOverride:ivb,vlv
2658 *
2659 * This actually overrides the dispatch
2660 * mode for all thread types.
2661 */
2662 wa_write_clr_set(wal,
2663 GEN7_FF_THREAD_MODE,
2664 GEN7_FF_SCHED_MASK,
2665 GEN7_FF_TS_SCHED_HW |
2666 GEN7_FF_VS_SCHED_HW |
2667 GEN7_FF_DS_SCHED_HW);
2668
2669 /* WaDisablePSDDualDispatchEnable:ivb */
2670 if (IS_IVB_GT1(i915))
2671 wa_masked_en(wal,
2672 GEN7_HALF_SLICE_CHICKEN1,
2673 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2674 }
2675
2676 if (GRAPHICS_VER(i915) == 7) {
2677 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2678 wa_masked_en(wal,
2679 RING_MODE_GEN7(RENDER_RING_BASE),
2680 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2681
2682 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2683 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2684
2685 /*
2686 * BSpec says this must be set, even though
2687 * WaDisable4x2SubspanOptimization:ivb,hsw
2688 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2689 */
2690 wa_masked_en(wal,
2691 CACHE_MODE_1,
2692 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2693
2694 /*
2695 * BSpec recommends 8x4 when MSAA is used,
2696 * however in practice 16x4 seems fastest.
2697 *
2698 * Note that PS/WM thread counts depend on the WIZ hashing
2699 * disable bit, which we don't touch here, but it's good
2700 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2701 */
2702 wa_masked_field_set(wal,
2703 GEN7_GT_MODE,
2704 GEN6_WIZ_HASHING_MASK,
2705 GEN6_WIZ_HASHING_16x4);
2706 }
2707
2708 if (IS_GRAPHICS_VER(i915, 6, 7))
2709 /*
2710 * We need to disable the AsyncFlip performance optimisations in
2711 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2712 * already be programmed to '1' on all products.
2713 *
2714 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2715 */
2716 wa_masked_en(wal,
2717 RING_MI_MODE(RENDER_RING_BASE),
2718 ASYNC_FLIP_PERF_DISABLE);
2719
2720 if (GRAPHICS_VER(i915) == 6) {
2721 /*
2722 * Required for the hardware to program scanline values for
2723 * waiting
2724 * WaEnableFlushTlbInvalidationMode:snb
2725 */
2726 wa_masked_en(wal,
2727 GFX_MODE,
2728 GFX_TLB_INVALIDATE_EXPLICIT);
2729
2730 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2731 wa_masked_en(wal,
2732 _3D_CHICKEN,
2733 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2734
2735 wa_masked_en(wal,
2736 _3D_CHICKEN3,
2737 /* WaStripsFansDisableFastClipPerformanceFix:snb */
2738 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2739 /*
2740 * Bspec says:
2741 * "This bit must be set if 3DSTATE_CLIP clip mode is set
2742 * to normal and 3DSTATE_SF number of SF output attributes
2743 * is more than 16."
2744 */
2745 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2746
2747 /*
2748 * BSpec recommends 8x4 when MSAA is used,
2749 * however in practice 16x4 seems fastest.
2750 *
2751 * Note that PS/WM thread counts depend on the WIZ hashing
2752 * disable bit, which we don't touch here, but it's good
2753 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2754 */
2755 wa_masked_field_set(wal,
2756 GEN6_GT_MODE,
2757 GEN6_WIZ_HASHING_MASK,
2758 GEN6_WIZ_HASHING_16x4);
2759
2760 /* WaDisable_RenderCache_OperationalFlush:snb */
2761 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2762
2763 /*
2764 * From the Sandybridge PRM, volume 1 part 3, page 24:
2765 * "If this bit is set, STCunit will have LRA as replacement
2766 * policy. [...] This bit must be reset. LRA replacement
2767 * policy is not supported."
2768 */
2769 wa_masked_dis(wal,
2770 CACHE_MODE_0,
2771 CM0_STC_EVICT_DISABLE_LRA_SNB);
2772 }
2773
2774 if (IS_GRAPHICS_VER(i915, 4, 6))
2775 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2776 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2777 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2778 /* XXX bit doesn't stick on Broadwater */
2779 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2780
2781 if (GRAPHICS_VER(i915) == 4)
2782 /*
2783 * Disable CONSTANT_BUFFER before it is loaded from the context
2784 * image. For as it is loaded, it is executed and the stored
2785 * address may no longer be valid, leading to a GPU hang.
2786 *
2787 * This imposes the requirement that userspace reload their
2788 * CONSTANT_BUFFER on every batch, fortunately a requirement
2789 * they are already accustomed to from before contexts were
2790 * enabled.
2791 */
2792 wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2793 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2794 0 /* XXX bit doesn't stick on Broadwater */,
2795 true);
2796}
2797
2798static void
2799xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2800{
2801 struct drm_i915_private *i915 = engine->i915;
2802
2803 /* WaKBLVECSSemaphoreWaitPoll:kbl */
2804 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2805 wa_write(wal,
2806 RING_SEMA_WAIT_POLL(engine->mmio_base),
2807 1);
2808 }
2809 /* Wa_16018031267, Wa_16018063123 */
2810 if (NEEDS_FASTCOLOR_BLT_WABB(engine))
2811 wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
2812 XEHP_BLITTER_SCHEDULING_MODE_MASK,
2813 XEHP_BLITTER_ROUND_ROBIN_MODE);
2814}
2815
2816static void
2817ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2818{
2819 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2820 /* Wa_14014999345:pvc */
2821 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2822 }
2823}
2824
2825/*
2826 * The bspec performance guide has recommended MMIO tuning settings. These
2827 * aren't truly "workarounds" but we want to program them with the same
2828 * workaround infrastructure to ensure that they're automatically added to
2829 * the GuC save/restore lists, re-applied at the right times, and checked for
2830 * any conflicting programming requested by real workarounds.
2831 *
2832 * Programming settings should be added here only if their registers are not
2833 * part of an engine's register state context. If a register is part of a
2834 * context, then any tuning settings should be programmed in an appropriate
2835 * function invoked by __intel_engine_init_ctx_wa().
2836 */
2837static void
2838add_render_compute_tuning_settings(struct intel_gt *gt,
2839 struct i915_wa_list *wal)
2840{
2841 struct drm_i915_private *i915 = gt->i915;
2842
2843 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2844 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2845
2846 /*
2847 * This tuning setting proves beneficial only on ATS-M designs; the
2848 * default "age based" setting is optimal on regular DG2 and other
2849 * platforms.
2850 */
2851 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2852 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2853 THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2854
2855 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2856 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2857}
2858
2859static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2860{
2861 struct intel_gt *gt = engine->gt;
2862 u32 mode;
2863
2864 if (!IS_DG2(gt->i915))
2865 return;
2866
2867 /*
2868 * Wa_14019159160: This workaround, along with others, leads to
2869 * significant challenges in utilizing load balancing among the
2870 * CCS slices. Consequently, an architectural decision has been
2871 * made to completely disable automatic CCS load balancing.
2872 */
2873 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2874
2875 /*
2876 * After having disabled automatic load balancing we need to
2877 * assign all slices to a single CCS. We will call it CCS mode 1
2878 */
2879 mode = intel_gt_apply_ccs_mode(gt);
2880 wa_masked_en(wal, XEHP_CCS_MODE, mode);
2881}
2882
2883/*
2884 * The workarounds in this function apply to shared registers in
2885 * the general render reset domain that aren't tied to a
2886 * specific engine. Since all render+compute engines get reset
2887 * together, and the contents of these registers are lost during
2888 * the shared render domain reset, we'll define such workarounds
2889 * here and then add them to just a single RCS or CCS engine's
2890 * workaround list (whichever engine has the XXXX flag).
2891 */
2892static void
2893general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2894{
2895 struct drm_i915_private *i915 = engine->i915;
2896 struct intel_gt *gt = engine->gt;
2897
2898 add_render_compute_tuning_settings(gt, wal);
2899
2900 if (GRAPHICS_VER(i915) >= 11) {
2901 /* This is not a Wa (although referred to as
2902 * WaSetInidrectStateOverride in places), this allows
2903 * applications that reference sampler states through
2904 * the BindlessSamplerStateBaseAddress to have their
2905 * border color relative to DynamicStateBaseAddress
2906 * rather than BindlessSamplerStateBaseAddress.
2907 *
2908 * Otherwise SAMPLER_STATE border colors have to be
2909 * copied in multiple heaps (DynamicStateBaseAddress &
2910 * BindlessSamplerStateBaseAddress)
2911 *
2912 * BSpec: 46052
2913 */
2914 wa_mcr_masked_en(wal,
2915 GEN10_SAMPLER_MODE,
2916 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2917 }
2918
2919 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2920 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2921 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74)))
2922 /* Wa_14017856879 */
2923 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2924
2925 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2926 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2927 /*
2928 * Wa_14017066071
2929 * Wa_14017654203
2930 */
2931 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2932 MTL_DISABLE_SAMPLER_SC_OOO);
2933
2934 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2935 /* Wa_22015279794 */
2936 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2937 DISABLE_PREFETCH_INTO_IC);
2938
2939 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2940 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2941 IS_DG2(i915)) {
2942 /* Wa_22013037850 */
2943 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2944 DISABLE_128B_EVICTION_COMMAND_UDW);
2945
2946 /* Wa_18017747507 */
2947 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2948 }
2949
2950 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2951 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2952 IS_PONTEVECCHIO(i915) ||
2953 IS_DG2(i915)) {
2954 /* Wa_22014226127 */
2955 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2956 }
2957
2958 if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2959 /* Wa_14015227452:dg2,pvc */
2960 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2961
2962 /* Wa_16015675438:dg2,pvc */
2963 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2964 }
2965
2966 if (IS_DG2(i915)) {
2967 /*
2968 * Wa_16011620976:dg2_g11
2969 * Wa_22015475538:dg2
2970 */
2971 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2972
2973 /* Wa_18028616096 */
2974 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
2975 }
2976
2977 if (IS_DG2_G11(i915)) {
2978 /*
2979 * Wa_22012826095:dg2
2980 * Wa_22013059131:dg2
2981 */
2982 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2983 MAXREQS_PER_BANK,
2984 REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2985
2986 /* Wa_22013059131:dg2 */
2987 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2988 FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2989
2990 /*
2991 * Wa_22012654132
2992 *
2993 * Note that register 0xE420 is write-only and cannot be read
2994 * back for verification on DG2 (due to Wa_14012342262), so
2995 * we need to explicitly skip the readback.
2996 */
2997 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2998 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2999 0 /* write-only, so skip validation */,
3000 true);
3001 }
3002
3003 if (IS_XEHPSDV(i915)) {
3004 /* Wa_1409954639 */
3005 wa_mcr_masked_en(wal,
3006 GEN8_ROW_CHICKEN,
3007 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3008
3009 /* Wa_1607196519 */
3010 wa_mcr_masked_en(wal,
3011 GEN9_ROW_CHICKEN4,
3012 GEN12_DISABLE_GRF_CLEAR);
3013
3014 /* Wa_14010449647:xehpsdv */
3015 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3016 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3017 }
3018}
3019
3020static void
3021engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3022{
3023 if (GRAPHICS_VER(engine->i915) < 4)
3024 return;
3025
3026 engine_fake_wa_init(engine, wal);
3027
3028 /*
3029 * These are common workarounds that just need to applied
3030 * to a single RCS/CCS engine's workaround list since
3031 * they're reset as part of the general render domain reset.
3032 */
3033 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
3034 general_render_compute_wa_init(engine, wal);
3035 ccs_engine_wa_mode(engine, wal);
3036 }
3037
3038 if (engine->class == COMPUTE_CLASS)
3039 ccs_engine_wa_init(engine, wal);
3040 else if (engine->class == RENDER_CLASS)
3041 rcs_engine_wa_init(engine, wal);
3042 else
3043 xcs_engine_wa_init(engine, wal);
3044}
3045
3046void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3047{
3048 struct i915_wa_list *wal = &engine->wa_list;
3049
3050 wa_init_start(wal, engine->gt, "engine", engine->name);
3051 engine_init_workarounds(engine, wal);
3052 wa_init_finish(wal);
3053}
3054
3055void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3056{
3057 wa_list_apply(&engine->wa_list);
3058}
3059
3060static const struct i915_range mcr_ranges_gen8[] = {
3061 { .start = 0x5500, .end = 0x55ff },
3062 { .start = 0x7000, .end = 0x7fff },
3063 { .start = 0x9400, .end = 0x97ff },
3064 { .start = 0xb000, .end = 0xb3ff },
3065 { .start = 0xe000, .end = 0xe7ff },
3066 {},
3067};
3068
3069static const struct i915_range mcr_ranges_gen12[] = {
3070 { .start = 0x8150, .end = 0x815f },
3071 { .start = 0x9520, .end = 0x955f },
3072 { .start = 0xb100, .end = 0xb3ff },
3073 { .start = 0xde80, .end = 0xe8ff },
3074 { .start = 0x24a00, .end = 0x24a7f },
3075 {},
3076};
3077
3078static const struct i915_range mcr_ranges_xehp[] = {
3079 { .start = 0x4000, .end = 0x4aff },
3080 { .start = 0x5200, .end = 0x52ff },
3081 { .start = 0x5400, .end = 0x7fff },
3082 { .start = 0x8140, .end = 0x815f },
3083 { .start = 0x8c80, .end = 0x8dff },
3084 { .start = 0x94d0, .end = 0x955f },
3085 { .start = 0x9680, .end = 0x96ff },
3086 { .start = 0xb000, .end = 0xb3ff },
3087 { .start = 0xc800, .end = 0xcfff },
3088 { .start = 0xd800, .end = 0xd8ff },
3089 { .start = 0xdc00, .end = 0xffff },
3090 { .start = 0x17000, .end = 0x17fff },
3091 { .start = 0x24a00, .end = 0x24a7f },
3092 {},
3093};
3094
3095static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3096{
3097 const struct i915_range *mcr_ranges;
3098 int i;
3099
3100 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3101 mcr_ranges = mcr_ranges_xehp;
3102 else if (GRAPHICS_VER(i915) >= 12)
3103 mcr_ranges = mcr_ranges_gen12;
3104 else if (GRAPHICS_VER(i915) >= 8)
3105 mcr_ranges = mcr_ranges_gen8;
3106 else
3107 return false;
3108
3109 /*
3110 * Registers in these ranges are affected by the MCR selector
3111 * which only controls CPU initiated MMIO. Routing does not
3112 * work for CS access so we cannot verify them on this path.
3113 */
3114 for (i = 0; mcr_ranges[i].start; i++)
3115 if (offset >= mcr_ranges[i].start &&
3116 offset <= mcr_ranges[i].end)
3117 return true;
3118
3119 return false;
3120}
3121
3122static int
3123wa_list_srm(struct i915_request *rq,
3124 const struct i915_wa_list *wal,
3125 struct i915_vma *vma)
3126{
3127 struct drm_i915_private *i915 = rq->i915;
3128 unsigned int i, count = 0;
3129 const struct i915_wa *wa;
3130 u32 srm, *cs;
3131
3132 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3133 if (GRAPHICS_VER(i915) >= 8)
3134 srm++;
3135
3136 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3137 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3138 count++;
3139 }
3140
3141 cs = intel_ring_begin(rq, 4 * count);
3142 if (IS_ERR(cs))
3143 return PTR_ERR(cs);
3144
3145 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3146 u32 offset = i915_mmio_reg_offset(wa->reg);
3147
3148 if (mcr_range(i915, offset))
3149 continue;
3150
3151 *cs++ = srm;
3152 *cs++ = offset;
3153 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3154 *cs++ = 0;
3155 }
3156 intel_ring_advance(rq, cs);
3157
3158 return 0;
3159}
3160
3161static int engine_wa_list_verify(struct intel_context *ce,
3162 const struct i915_wa_list * const wal,
3163 const char *from)
3164{
3165 const struct i915_wa *wa;
3166 struct i915_request *rq;
3167 struct i915_vma *vma;
3168 struct i915_gem_ww_ctx ww;
3169 unsigned int i;
3170 u32 *results;
3171 int err;
3172
3173 if (!wal->count)
3174 return 0;
3175
3176 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3177 wal->count * sizeof(u32));
3178 if (IS_ERR(vma))
3179 return PTR_ERR(vma);
3180
3181 intel_engine_pm_get(ce->engine);
3182 i915_gem_ww_ctx_init(&ww, false);
3183retry:
3184 err = i915_gem_object_lock(vma->obj, &ww);
3185 if (err == 0)
3186 err = intel_context_pin_ww(ce, &ww);
3187 if (err)
3188 goto err_pm;
3189
3190 err = i915_vma_pin_ww(vma, &ww, 0, 0,
3191 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3192 if (err)
3193 goto err_unpin;
3194
3195 rq = i915_request_create(ce);
3196 if (IS_ERR(rq)) {
3197 err = PTR_ERR(rq);
3198 goto err_vma;
3199 }
3200
3201 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3202 if (err == 0)
3203 err = wa_list_srm(rq, wal, vma);
3204
3205 i915_request_get(rq);
3206 if (err)
3207 i915_request_set_error_once(rq, err);
3208 i915_request_add(rq);
3209
3210 if (err)
3211 goto err_rq;
3212
3213 if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3214 err = -ETIME;
3215 goto err_rq;
3216 }
3217
3218 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3219 if (IS_ERR(results)) {
3220 err = PTR_ERR(results);
3221 goto err_rq;
3222 }
3223
3224 err = 0;
3225 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3226 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3227 continue;
3228
3229 if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3230 err = -ENXIO;
3231 }
3232
3233 i915_gem_object_unpin_map(vma->obj);
3234
3235err_rq:
3236 i915_request_put(rq);
3237err_vma:
3238 i915_vma_unpin(vma);
3239err_unpin:
3240 intel_context_unpin(ce);
3241err_pm:
3242 if (err == -EDEADLK) {
3243 err = i915_gem_ww_ctx_backoff(&ww);
3244 if (!err)
3245 goto retry;
3246 }
3247 i915_gem_ww_ctx_fini(&ww);
3248 intel_engine_pm_put(ce->engine);
3249 i915_vma_put(vma);
3250 return err;
3251}
3252
3253int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3254 const char *from)
3255{
3256 return engine_wa_list_verify(engine->kernel_context,
3257 &engine->wa_list,
3258 from);
3259}
3260
3261#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3262#include "selftest_workarounds.c"
3263#endif