Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  24 *				:	Fragmentation on mtu decrease
  25 *				:	Segment collapse on retransmit
  26 *				:	AF independence
  27 *
  28 *		Linus Torvalds	:	send_delayed_ack
  29 *		David S. Miller	:	Charge memory using the right skb
  30 *					during syn/ack processing.
  31 *		David S. Miller :	Output engine completely rewritten.
  32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  33 *		Cacophonix Gaul :	draft-minshall-nagle-01
  34 *		J Hadi Salim	:	ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55	u64 val = tcp_clock_ns();
  56
  57	tp->tcp_clock_cache = val;
  58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62			   int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67	struct inet_connection_sock *icsk = inet_csk(sk);
  68	struct tcp_sock *tp = tcp_sk(sk);
  69	unsigned int prior_packets = tp->packets_out;
  70
  71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73	__skb_unlink(skb, &sk->sk_write_queue);
  74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76	if (tp->highest_sack == NULL)
  77		tp->highest_sack = skb;
  78
  79	tp->packets_out += tcp_skb_pcount(skb);
  80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81		tcp_rearm_rto(sk);
  82
  83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84		      tcp_skb_pcount(skb));
 
  85}
  86
  87/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  88 * window scaling factor due to loss of precision.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96	const struct tcp_sock *tp = tcp_sk(sk);
  97
  98	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
  99	    (tp->rx_opt.wscale_ok &&
 100	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 101		return tp->snd_nxt;
 102	else
 103		return tcp_wnd_end(tp);
 104}
 105
 106/* Calculate mss to advertise in SYN segment.
 107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 108 *
 109 * 1. It is independent of path mtu.
 110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 112 *    attached devices, because some buggy hosts are confused by
 113 *    large MSS.
 114 * 4. We do not make 3, we advertise MSS, calculated from first
 115 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 116 *    This may be overridden via information stored in routing table.
 117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 118 *    probably even Jumbo".
 119 */
 120static __u16 tcp_advertise_mss(struct sock *sk)
 121{
 122	struct tcp_sock *tp = tcp_sk(sk);
 123	const struct dst_entry *dst = __sk_dst_get(sk);
 124	int mss = tp->advmss;
 125
 126	if (dst) {
 127		unsigned int metric = dst_metric_advmss(dst);
 128
 129		if (metric < mss) {
 130			mss = metric;
 131			tp->advmss = mss;
 132		}
 133	}
 134
 135	return (__u16)mss;
 136}
 137
 138/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 139 * This is the first part of cwnd validation mechanism.
 140 */
 141void tcp_cwnd_restart(struct sock *sk, s32 delta)
 142{
 143	struct tcp_sock *tp = tcp_sk(sk);
 144	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 145	u32 cwnd = tp->snd_cwnd;
 146
 147	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 148
 149	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 150	restart_cwnd = min(restart_cwnd, cwnd);
 151
 152	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 153		cwnd >>= 1;
 154	tp->snd_cwnd = max(cwnd, restart_cwnd);
 155	tp->snd_cwnd_stamp = tcp_jiffies32;
 156	tp->snd_cwnd_used = 0;
 157}
 158
 159/* Congestion state accounting after a packet has been sent. */
 160static void tcp_event_data_sent(struct tcp_sock *tp,
 161				struct sock *sk)
 162{
 163	struct inet_connection_sock *icsk = inet_csk(sk);
 164	const u32 now = tcp_jiffies32;
 165
 166	if (tcp_packets_in_flight(tp) == 0)
 167		tcp_ca_event(sk, CA_EVENT_TX_START);
 168
 169	/* If this is the first data packet sent in response to the
 170	 * previous received data,
 171	 * and it is a reply for ato after last received packet,
 172	 * increase pingpong count.
 173	 */
 174	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
 175	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 176		inet_csk_inc_pingpong_cnt(sk);
 177
 178	tp->lsndtime = now;
 179}
 180
 181/* Account for an ACK we sent. */
 182static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
 183				      u32 rcv_nxt)
 184{
 185	struct tcp_sock *tp = tcp_sk(sk);
 186
 187	if (unlikely(tp->compressed_ack)) {
 188		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 189			      tp->compressed_ack);
 190		tp->compressed_ack = 0;
 191		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 192			__sock_put(sk);
 193	}
 194
 195	if (unlikely(rcv_nxt != tp->rcv_nxt))
 196		return;  /* Special ACK sent by DCTCP to reflect ECN */
 197	tcp_dec_quickack_mode(sk, pkts);
 198	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 199}
 200
 201/* Determine a window scaling and initial window to offer.
 202 * Based on the assumption that the given amount of space
 203 * will be offered. Store the results in the tp structure.
 204 * NOTE: for smooth operation initial space offering should
 205 * be a multiple of mss if possible. We assume here that mss >= 1.
 206 * This MUST be enforced by all callers.
 207 */
 208void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 209			       __u32 *rcv_wnd, __u32 *window_clamp,
 210			       int wscale_ok, __u8 *rcv_wscale,
 211			       __u32 init_rcv_wnd)
 212{
 213	unsigned int space = (__space < 0 ? 0 : __space);
 214
 215	/* If no clamp set the clamp to the max possible scaled window */
 216	if (*window_clamp == 0)
 217		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 218	space = min(*window_clamp, space);
 219
 220	/* Quantize space offering to a multiple of mss if possible. */
 221	if (space > mss)
 222		space = rounddown(space, mss);
 223
 224	/* NOTE: offering an initial window larger than 32767
 225	 * will break some buggy TCP stacks. If the admin tells us
 226	 * it is likely we could be speaking with such a buggy stack
 227	 * we will truncate our initial window offering to 32K-1
 228	 * unless the remote has sent us a window scaling option,
 229	 * which we interpret as a sign the remote TCP is not
 230	 * misinterpreting the window field as a signed quantity.
 231	 */
 232	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 233		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 234	else
 235		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 236
 237	if (init_rcv_wnd)
 238		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 239
 240	*rcv_wscale = 0;
 241	if (wscale_ok) {
 242		/* Set window scaling on max possible window */
 243		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 244		space = max_t(u32, space, sysctl_rmem_max);
 245		space = min_t(u32, space, *window_clamp);
 246		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 247				      0, TCP_MAX_WSCALE);
 248	}
 249	/* Set the clamp no higher than max representable value */
 250	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 251}
 252EXPORT_SYMBOL(tcp_select_initial_window);
 253
 254/* Chose a new window to advertise, update state in tcp_sock for the
 255 * socket, and return result with RFC1323 scaling applied.  The return
 256 * value can be stuffed directly into th->window for an outgoing
 257 * frame.
 258 */
 259static u16 tcp_select_window(struct sock *sk)
 260{
 261	struct tcp_sock *tp = tcp_sk(sk);
 
 262	u32 old_win = tp->rcv_wnd;
 263	u32 cur_win = tcp_receive_window(tp);
 264	u32 new_win = __tcp_select_window(sk);
 265
 266	/* Never shrink the offered window */
 
 
 
 
 
 
 
 
 267	if (new_win < cur_win) {
 268		/* Danger Will Robinson!
 269		 * Don't update rcv_wup/rcv_wnd here or else
 270		 * we will not be able to advertise a zero
 271		 * window in time.  --DaveM
 272		 *
 273		 * Relax Will Robinson.
 274		 */
 275		if (new_win == 0)
 276			NET_INC_STATS(sock_net(sk),
 277				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 278		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 
 
 279	}
 
 280	tp->rcv_wnd = new_win;
 281	tp->rcv_wup = tp->rcv_nxt;
 282
 283	/* Make sure we do not exceed the maximum possible
 284	 * scaled window.
 285	 */
 286	if (!tp->rx_opt.rcv_wscale &&
 287	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
 288		new_win = min(new_win, MAX_TCP_WINDOW);
 289	else
 290		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 291
 292	/* RFC1323 scaling applied */
 293	new_win >>= tp->rx_opt.rcv_wscale;
 294
 295	/* If we advertise zero window, disable fast path. */
 296	if (new_win == 0) {
 297		tp->pred_flags = 0;
 298		if (old_win)
 299			NET_INC_STATS(sock_net(sk),
 300				      LINUX_MIB_TCPTOZEROWINDOWADV);
 301	} else if (old_win == 0) {
 302		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 303	}
 304
 305	return new_win;
 306}
 307
 308/* Packet ECN state for a SYN-ACK */
 309static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 310{
 311	const struct tcp_sock *tp = tcp_sk(sk);
 312
 313	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 314	if (!(tp->ecn_flags & TCP_ECN_OK))
 315		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 316	else if (tcp_ca_needs_ecn(sk) ||
 317		 tcp_bpf_ca_needs_ecn(sk))
 318		INET_ECN_xmit(sk);
 319}
 320
 321/* Packet ECN state for a SYN.  */
 322static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 323{
 324	struct tcp_sock *tp = tcp_sk(sk);
 325	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 326	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 327		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 328
 329	if (!use_ecn) {
 330		const struct dst_entry *dst = __sk_dst_get(sk);
 331
 332		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 333			use_ecn = true;
 334	}
 335
 336	tp->ecn_flags = 0;
 337
 338	if (use_ecn) {
 339		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 340		tp->ecn_flags = TCP_ECN_OK;
 341		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 342			INET_ECN_xmit(sk);
 343	}
 344}
 345
 346static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 347{
 348	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 349		/* tp->ecn_flags are cleared at a later point in time when
 350		 * SYN ACK is ultimatively being received.
 351		 */
 352		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 353}
 354
 355static void
 356tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 357{
 358	if (inet_rsk(req)->ecn_ok)
 359		th->ece = 1;
 360}
 361
 362/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 363 * be sent.
 364 */
 365static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 366			 struct tcphdr *th, int tcp_header_len)
 367{
 368	struct tcp_sock *tp = tcp_sk(sk);
 369
 370	if (tp->ecn_flags & TCP_ECN_OK) {
 371		/* Not-retransmitted data segment: set ECT and inject CWR. */
 372		if (skb->len != tcp_header_len &&
 373		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 374			INET_ECN_xmit(sk);
 375			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 376				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 377				th->cwr = 1;
 378				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 379			}
 380		} else if (!tcp_ca_needs_ecn(sk)) {
 381			/* ACK or retransmitted segment: clear ECT|CE */
 382			INET_ECN_dontxmit(sk);
 383		}
 384		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 385			th->ece = 1;
 386	}
 387}
 388
 389/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 390 * auto increment end seqno.
 391 */
 392static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 393{
 394	skb->ip_summed = CHECKSUM_PARTIAL;
 395
 396	TCP_SKB_CB(skb)->tcp_flags = flags;
 397	TCP_SKB_CB(skb)->sacked = 0;
 398
 399	tcp_skb_pcount_set(skb, 1);
 400
 401	TCP_SKB_CB(skb)->seq = seq;
 402	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 403		seq++;
 404	TCP_SKB_CB(skb)->end_seq = seq;
 405}
 406
 407static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 408{
 409	return tp->snd_una != tp->snd_up;
 410}
 411
 412#define OPTION_SACK_ADVERTISE	(1 << 0)
 413#define OPTION_TS		(1 << 1)
 414#define OPTION_MD5		(1 << 2)
 415#define OPTION_WSCALE		(1 << 3)
 416#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 417#define OPTION_SMC		(1 << 9)
 418#define OPTION_MPTCP		(1 << 10)
 
 419
 420static void smc_options_write(__be32 *ptr, u16 *options)
 421{
 422#if IS_ENABLED(CONFIG_SMC)
 423	if (static_branch_unlikely(&tcp_have_smc)) {
 424		if (unlikely(OPTION_SMC & *options)) {
 425			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 426				       (TCPOPT_NOP  << 16) |
 427				       (TCPOPT_EXP <<  8) |
 428				       (TCPOLEN_EXP_SMC_BASE));
 429			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 430		}
 431	}
 432#endif
 433}
 434
 435struct tcp_out_options {
 436	u16 options;		/* bit field of OPTION_* */
 437	u16 mss;		/* 0 to disable */
 438	u8 ws;			/* window scale, 0 to disable */
 439	u8 num_sack_blocks;	/* number of SACK blocks to include */
 440	u8 hash_size;		/* bytes in hash_location */
 441	u8 bpf_opt_len;		/* length of BPF hdr option */
 442	__u8 *hash_location;	/* temporary pointer, overloaded */
 443	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 444	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 445	struct mptcp_out_options mptcp;
 446};
 447
 448static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp,
 
 449				struct tcp_out_options *opts)
 450{
 451#if IS_ENABLED(CONFIG_MPTCP)
 452	if (unlikely(OPTION_MPTCP & opts->options))
 453		mptcp_write_options(ptr, tp, &opts->mptcp);
 454#endif
 455}
 456
 457#ifdef CONFIG_CGROUP_BPF
 458static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
 459					enum tcp_synack_type synack_type)
 460{
 461	if (unlikely(!skb))
 462		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
 463
 464	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
 465		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
 466
 467	return 0;
 468}
 469
 470/* req, syn_skb and synack_type are used when writing synack */
 471static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 472				  struct request_sock *req,
 473				  struct sk_buff *syn_skb,
 474				  enum tcp_synack_type synack_type,
 475				  struct tcp_out_options *opts,
 476				  unsigned int *remaining)
 477{
 478	struct bpf_sock_ops_kern sock_ops;
 479	int err;
 480
 481	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 482					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
 483	    !*remaining)
 484		return;
 485
 486	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
 487
 488	/* init sock_ops */
 489	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 490
 491	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
 492
 493	if (req) {
 494		/* The listen "sk" cannot be passed here because
 495		 * it is not locked.  It would not make too much
 496		 * sense to do bpf_setsockopt(listen_sk) based
 497		 * on individual connection request also.
 498		 *
 499		 * Thus, "req" is passed here and the cgroup-bpf-progs
 500		 * of the listen "sk" will be run.
 501		 *
 502		 * "req" is also used here for fastopen even the "sk" here is
 503		 * a fullsock "child" sk.  It is to keep the behavior
 504		 * consistent between fastopen and non-fastopen on
 505		 * the bpf programming side.
 506		 */
 507		sock_ops.sk = (struct sock *)req;
 508		sock_ops.syn_skb = syn_skb;
 509	} else {
 510		sock_owned_by_me(sk);
 511
 512		sock_ops.is_fullsock = 1;
 513		sock_ops.sk = sk;
 514	}
 515
 516	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 517	sock_ops.remaining_opt_len = *remaining;
 518	/* tcp_current_mss() does not pass a skb */
 519	if (skb)
 520		bpf_skops_init_skb(&sock_ops, skb, 0);
 521
 522	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 523
 524	if (err || sock_ops.remaining_opt_len == *remaining)
 525		return;
 526
 527	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
 528	/* round up to 4 bytes */
 529	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
 530
 531	*remaining -= opts->bpf_opt_len;
 532}
 533
 534static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 535				    struct request_sock *req,
 536				    struct sk_buff *syn_skb,
 537				    enum tcp_synack_type synack_type,
 538				    struct tcp_out_options *opts)
 539{
 540	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
 541	struct bpf_sock_ops_kern sock_ops;
 542	int err;
 543
 544	if (likely(!max_opt_len))
 545		return;
 546
 547	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 548
 549	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
 550
 551	if (req) {
 552		sock_ops.sk = (struct sock *)req;
 553		sock_ops.syn_skb = syn_skb;
 554	} else {
 555		sock_owned_by_me(sk);
 556
 557		sock_ops.is_fullsock = 1;
 558		sock_ops.sk = sk;
 559	}
 560
 561	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 562	sock_ops.remaining_opt_len = max_opt_len;
 563	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
 564	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
 565
 566	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 567
 568	if (err)
 569		nr_written = 0;
 570	else
 571		nr_written = max_opt_len - sock_ops.remaining_opt_len;
 572
 573	if (nr_written < max_opt_len)
 574		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
 575		       max_opt_len - nr_written);
 576}
 577#else
 578static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 579				  struct request_sock *req,
 580				  struct sk_buff *syn_skb,
 581				  enum tcp_synack_type synack_type,
 582				  struct tcp_out_options *opts,
 583				  unsigned int *remaining)
 584{
 585}
 586
 587static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 588				    struct request_sock *req,
 589				    struct sk_buff *syn_skb,
 590				    enum tcp_synack_type synack_type,
 591				    struct tcp_out_options *opts)
 592{
 593}
 594#endif
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596/* Write previously computed TCP options to the packet.
 597 *
 598 * Beware: Something in the Internet is very sensitive to the ordering of
 599 * TCP options, we learned this through the hard way, so be careful here.
 600 * Luckily we can at least blame others for their non-compliance but from
 601 * inter-operability perspective it seems that we're somewhat stuck with
 602 * the ordering which we have been using if we want to keep working with
 603 * those broken things (not that it currently hurts anybody as there isn't
 604 * particular reason why the ordering would need to be changed).
 605 *
 606 * At least SACK_PERM as the first option is known to lead to a disaster
 607 * (but it may well be that other scenarios fail similarly).
 608 */
 609static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 610			      struct tcp_out_options *opts)
 
 
 611{
 
 612	u16 options = opts->options;	/* mungable copy */
 613
 614	if (unlikely(OPTION_MD5 & options)) {
 615		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 616			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 617		/* overload cookie hash location */
 618		opts->hash_location = (__u8 *)ptr;
 619		ptr += 4;
 
 
 620	}
 621
 622	if (unlikely(opts->mss)) {
 623		*ptr++ = htonl((TCPOPT_MSS << 24) |
 624			       (TCPOLEN_MSS << 16) |
 625			       opts->mss);
 626	}
 627
 628	if (likely(OPTION_TS & options)) {
 629		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 630			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 631				       (TCPOLEN_SACK_PERM << 16) |
 632				       (TCPOPT_TIMESTAMP << 8) |
 633				       TCPOLEN_TIMESTAMP);
 634			options &= ~OPTION_SACK_ADVERTISE;
 635		} else {
 636			*ptr++ = htonl((TCPOPT_NOP << 24) |
 637				       (TCPOPT_NOP << 16) |
 638				       (TCPOPT_TIMESTAMP << 8) |
 639				       TCPOLEN_TIMESTAMP);
 640		}
 641		*ptr++ = htonl(opts->tsval);
 642		*ptr++ = htonl(opts->tsecr);
 643	}
 644
 645	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 646		*ptr++ = htonl((TCPOPT_NOP << 24) |
 647			       (TCPOPT_NOP << 16) |
 648			       (TCPOPT_SACK_PERM << 8) |
 649			       TCPOLEN_SACK_PERM);
 650	}
 651
 652	if (unlikely(OPTION_WSCALE & options)) {
 653		*ptr++ = htonl((TCPOPT_NOP << 24) |
 654			       (TCPOPT_WINDOW << 16) |
 655			       (TCPOLEN_WINDOW << 8) |
 656			       opts->ws);
 657	}
 658
 659	if (unlikely(opts->num_sack_blocks)) {
 660		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 661			tp->duplicate_sack : tp->selective_acks;
 662		int this_sack;
 663
 664		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 665			       (TCPOPT_NOP  << 16) |
 666			       (TCPOPT_SACK <<  8) |
 667			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 668						     TCPOLEN_SACK_PERBLOCK)));
 669
 670		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 671		     ++this_sack) {
 672			*ptr++ = htonl(sp[this_sack].start_seq);
 673			*ptr++ = htonl(sp[this_sack].end_seq);
 674		}
 675
 676		tp->rx_opt.dsack = 0;
 677	}
 678
 679	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 680		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 681		u8 *p = (u8 *)ptr;
 682		u32 len; /* Fast Open option length */
 683
 684		if (foc->exp) {
 685			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 686			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 687				     TCPOPT_FASTOPEN_MAGIC);
 688			p += TCPOLEN_EXP_FASTOPEN_BASE;
 689		} else {
 690			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 691			*p++ = TCPOPT_FASTOPEN;
 692			*p++ = len;
 693		}
 694
 695		memcpy(p, foc->val, foc->len);
 696		if ((len & 3) == 2) {
 697			p[foc->len] = TCPOPT_NOP;
 698			p[foc->len + 1] = TCPOPT_NOP;
 699		}
 700		ptr += (len + 3) >> 2;
 701	}
 702
 703	smc_options_write(ptr, &options);
 704
 705	mptcp_options_write(ptr, tp, opts);
 706}
 707
 708static void smc_set_option(const struct tcp_sock *tp,
 709			   struct tcp_out_options *opts,
 710			   unsigned int *remaining)
 711{
 712#if IS_ENABLED(CONFIG_SMC)
 713	if (static_branch_unlikely(&tcp_have_smc)) {
 714		if (tp->syn_smc) {
 715			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 716				opts->options |= OPTION_SMC;
 717				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 718			}
 719		}
 720	}
 721#endif
 722}
 723
 724static void smc_set_option_cond(const struct tcp_sock *tp,
 725				const struct inet_request_sock *ireq,
 726				struct tcp_out_options *opts,
 727				unsigned int *remaining)
 728{
 729#if IS_ENABLED(CONFIG_SMC)
 730	if (static_branch_unlikely(&tcp_have_smc)) {
 731		if (tp->syn_smc && ireq->smc_ok) {
 732			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 733				opts->options |= OPTION_SMC;
 734				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 735			}
 736		}
 737	}
 738#endif
 739}
 740
 741static void mptcp_set_option_cond(const struct request_sock *req,
 742				  struct tcp_out_options *opts,
 743				  unsigned int *remaining)
 744{
 745	if (rsk_is_mptcp(req)) {
 746		unsigned int size;
 747
 748		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 749			if (*remaining >= size) {
 750				opts->options |= OPTION_MPTCP;
 751				*remaining -= size;
 752			}
 753		}
 754	}
 755}
 756
 757/* Compute TCP options for SYN packets. This is not the final
 758 * network wire format yet.
 759 */
 760static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 761				struct tcp_out_options *opts,
 762				struct tcp_md5sig_key **md5)
 763{
 764	struct tcp_sock *tp = tcp_sk(sk);
 765	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 766	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 
 767
 768	*md5 = NULL;
 769#ifdef CONFIG_TCP_MD5SIG
 770	if (static_branch_unlikely(&tcp_md5_needed) &&
 771	    rcu_access_pointer(tp->md5sig_info)) {
 772		*md5 = tp->af_specific->md5_lookup(sk, sk);
 773		if (*md5) {
 774			opts->options |= OPTION_MD5;
 775			remaining -= TCPOLEN_MD5SIG_ALIGNED;
 
 
 776		}
 777	}
 778#endif
 779
 780	/* We always get an MSS option.  The option bytes which will be seen in
 781	 * normal data packets should timestamps be used, must be in the MSS
 782	 * advertised.  But we subtract them from tp->mss_cache so that
 783	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 784	 * fact here if necessary.  If we don't do this correctly, as a
 785	 * receiver we won't recognize data packets as being full sized when we
 786	 * should, and thus we won't abide by the delayed ACK rules correctly.
 787	 * SACKs don't matter, we never delay an ACK when we have any of those
 788	 * going out.  */
 789	opts->mss = tcp_advertise_mss(sk);
 790	remaining -= TCPOLEN_MSS_ALIGNED;
 791
 792	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
 793		opts->options |= OPTION_TS;
 794		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 795		opts->tsecr = tp->rx_opt.ts_recent;
 796		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 797	}
 798	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
 799		opts->ws = tp->rx_opt.rcv_wscale;
 800		opts->options |= OPTION_WSCALE;
 801		remaining -= TCPOLEN_WSCALE_ALIGNED;
 802	}
 803	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
 804		opts->options |= OPTION_SACK_ADVERTISE;
 805		if (unlikely(!(OPTION_TS & opts->options)))
 806			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 807	}
 808
 809	if (fastopen && fastopen->cookie.len >= 0) {
 810		u32 need = fastopen->cookie.len;
 811
 812		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 813					       TCPOLEN_FASTOPEN_BASE;
 814		need = (need + 3) & ~3U;  /* Align to 32 bits */
 815		if (remaining >= need) {
 816			opts->options |= OPTION_FAST_OPEN_COOKIE;
 817			opts->fastopen_cookie = &fastopen->cookie;
 818			remaining -= need;
 819			tp->syn_fastopen = 1;
 820			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 821		}
 822	}
 823
 824	smc_set_option(tp, opts, &remaining);
 825
 826	if (sk_is_mptcp(sk)) {
 827		unsigned int size;
 828
 829		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 830			opts->options |= OPTION_MPTCP;
 831			remaining -= size;
 832		}
 833	}
 834
 835	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 836
 837	return MAX_TCP_OPTION_SPACE - remaining;
 838}
 839
 840/* Set up TCP options for SYN-ACKs. */
 841static unsigned int tcp_synack_options(const struct sock *sk,
 842				       struct request_sock *req,
 843				       unsigned int mss, struct sk_buff *skb,
 844				       struct tcp_out_options *opts,
 845				       const struct tcp_md5sig_key *md5,
 846				       struct tcp_fastopen_cookie *foc,
 847				       enum tcp_synack_type synack_type,
 848				       struct sk_buff *syn_skb)
 849{
 850	struct inet_request_sock *ireq = inet_rsk(req);
 851	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 852
 853#ifdef CONFIG_TCP_MD5SIG
 854	if (md5) {
 855		opts->options |= OPTION_MD5;
 856		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 857
 858		/* We can't fit any SACK blocks in a packet with MD5 + TS
 859		 * options. There was discussion about disabling SACK
 860		 * rather than TS in order to fit in better with old,
 861		 * buggy kernels, but that was deemed to be unnecessary.
 862		 */
 863		if (synack_type != TCP_SYNACK_COOKIE)
 864			ireq->tstamp_ok &= !ireq->sack_ok;
 
 
 
 
 865	}
 866#endif
 867
 868	/* We always send an MSS option. */
 869	opts->mss = mss;
 870	remaining -= TCPOLEN_MSS_ALIGNED;
 871
 872	if (likely(ireq->wscale_ok)) {
 873		opts->ws = ireq->rcv_wscale;
 874		opts->options |= OPTION_WSCALE;
 875		remaining -= TCPOLEN_WSCALE_ALIGNED;
 876	}
 877	if (likely(ireq->tstamp_ok)) {
 878		opts->options |= OPTION_TS;
 879		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
 880		opts->tsecr = req->ts_recent;
 
 881		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 882	}
 883	if (likely(ireq->sack_ok)) {
 884		opts->options |= OPTION_SACK_ADVERTISE;
 885		if (unlikely(!ireq->tstamp_ok))
 886			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 887	}
 888	if (foc != NULL && foc->len >= 0) {
 889		u32 need = foc->len;
 890
 891		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 892				   TCPOLEN_FASTOPEN_BASE;
 893		need = (need + 3) & ~3U;  /* Align to 32 bits */
 894		if (remaining >= need) {
 895			opts->options |= OPTION_FAST_OPEN_COOKIE;
 896			opts->fastopen_cookie = foc;
 897			remaining -= need;
 898		}
 899	}
 900
 901	mptcp_set_option_cond(req, opts, &remaining);
 902
 903	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 904
 905	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
 906			      synack_type, opts, &remaining);
 907
 908	return MAX_TCP_OPTION_SPACE - remaining;
 909}
 910
 911/* Compute TCP options for ESTABLISHED sockets. This is not the
 912 * final wire format yet.
 913 */
 914static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 915					struct tcp_out_options *opts,
 916					struct tcp_md5sig_key **md5)
 917{
 918	struct tcp_sock *tp = tcp_sk(sk);
 919	unsigned int size = 0;
 920	unsigned int eff_sacks;
 921
 922	opts->options = 0;
 923
 924	*md5 = NULL;
 925#ifdef CONFIG_TCP_MD5SIG
 926	if (static_branch_unlikely(&tcp_md5_needed) &&
 927	    rcu_access_pointer(tp->md5sig_info)) {
 928		*md5 = tp->af_specific->md5_lookup(sk, sk);
 929		if (*md5) {
 930			opts->options |= OPTION_MD5;
 931			size += TCPOLEN_MD5SIG_ALIGNED;
 932		}
 933	}
 934#endif
 935
 936	if (likely(tp->rx_opt.tstamp_ok)) {
 937		opts->options |= OPTION_TS;
 938		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 
 939		opts->tsecr = tp->rx_opt.ts_recent;
 940		size += TCPOLEN_TSTAMP_ALIGNED;
 941	}
 942
 943	/* MPTCP options have precedence over SACK for the limited TCP
 944	 * option space because a MPTCP connection would be forced to
 945	 * fall back to regular TCP if a required multipath option is
 946	 * missing. SACK still gets a chance to use whatever space is
 947	 * left.
 948	 */
 949	if (sk_is_mptcp(sk)) {
 950		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 951		unsigned int opt_size = 0;
 952
 953		if (mptcp_established_options(sk, skb, &opt_size, remaining,
 954					      &opts->mptcp)) {
 955			opts->options |= OPTION_MPTCP;
 956			size += opt_size;
 957		}
 958	}
 959
 960	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 961	if (unlikely(eff_sacks)) {
 962		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 963		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
 964					 TCPOLEN_SACK_PERBLOCK))
 965			return size;
 966
 967		opts->num_sack_blocks =
 968			min_t(unsigned int, eff_sacks,
 969			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 970			      TCPOLEN_SACK_PERBLOCK);
 971
 972		size += TCPOLEN_SACK_BASE_ALIGNED +
 973			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 974	}
 975
 976	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
 977					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
 978		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 979
 980		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 981
 982		size = MAX_TCP_OPTION_SPACE - remaining;
 983	}
 984
 985	return size;
 986}
 987
 988
 989/* TCP SMALL QUEUES (TSQ)
 990 *
 991 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 992 * to reduce RTT and bufferbloat.
 993 * We do this using a special skb destructor (tcp_wfree).
 994 *
 995 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 996 * needs to be reallocated in a driver.
 997 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 998 *
 999 * Since transmit from skb destructor is forbidden, we use a tasklet
1000 * to process all sockets that eventually need to send more skbs.
1001 * We use one tasklet per cpu, with its own queue of sockets.
1002 */
1003struct tsq_tasklet {
1004	struct tasklet_struct	tasklet;
1005	struct list_head	head; /* queue of tcp sockets */
1006};
1007static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1008
1009static void tcp_tsq_write(struct sock *sk)
1010{
1011	if ((1 << sk->sk_state) &
1012	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1013	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1014		struct tcp_sock *tp = tcp_sk(sk);
1015
1016		if (tp->lost_out > tp->retrans_out &&
1017		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1018			tcp_mstamp_refresh(tp);
1019			tcp_xmit_retransmit_queue(sk);
1020		}
1021
1022		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1023			       0, GFP_ATOMIC);
1024	}
1025}
1026
1027static void tcp_tsq_handler(struct sock *sk)
1028{
1029	bh_lock_sock(sk);
1030	if (!sock_owned_by_user(sk))
1031		tcp_tsq_write(sk);
1032	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1033		sock_hold(sk);
1034	bh_unlock_sock(sk);
1035}
1036/*
1037 * One tasklet per cpu tries to send more skbs.
1038 * We run in tasklet context but need to disable irqs when
1039 * transferring tsq->head because tcp_wfree() might
1040 * interrupt us (non NAPI drivers)
1041 */
1042static void tcp_tasklet_func(struct tasklet_struct *t)
1043{
1044	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1045	LIST_HEAD(list);
1046	unsigned long flags;
1047	struct list_head *q, *n;
1048	struct tcp_sock *tp;
1049	struct sock *sk;
1050
1051	local_irq_save(flags);
1052	list_splice_init(&tsq->head, &list);
1053	local_irq_restore(flags);
1054
1055	list_for_each_safe(q, n, &list) {
1056		tp = list_entry(q, struct tcp_sock, tsq_node);
1057		list_del(&tp->tsq_node);
1058
1059		sk = (struct sock *)tp;
1060		smp_mb__before_atomic();
1061		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1062
1063		tcp_tsq_handler(sk);
1064		sk_free(sk);
1065	}
1066}
1067
1068#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1069			  TCPF_WRITE_TIMER_DEFERRED |	\
1070			  TCPF_DELACK_TIMER_DEFERRED |	\
1071			  TCPF_MTU_REDUCED_DEFERRED)
 
1072/**
1073 * tcp_release_cb - tcp release_sock() callback
1074 * @sk: socket
1075 *
1076 * called from release_sock() to perform protocol dependent
1077 * actions before socket release.
1078 */
1079void tcp_release_cb(struct sock *sk)
1080{
1081	unsigned long flags, nflags;
 
1082
1083	/* perform an atomic operation only if at least one flag is set */
1084	do {
1085		flags = sk->sk_tsq_flags;
1086		if (!(flags & TCP_DEFERRED_ALL))
1087			return;
1088		nflags = flags & ~TCP_DEFERRED_ALL;
1089	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1090
1091	if (flags & TCPF_TSQ_DEFERRED) {
1092		tcp_tsq_write(sk);
1093		__sock_put(sk);
1094	}
1095	/* Here begins the tricky part :
1096	 * We are called from release_sock() with :
1097	 * 1) BH disabled
1098	 * 2) sk_lock.slock spinlock held
1099	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1100	 *
1101	 * But following code is meant to be called from BH handlers,
1102	 * so we should keep BH disabled, but early release socket ownership
1103	 */
1104	sock_release_ownership(sk);
1105
1106	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1107		tcp_write_timer_handler(sk);
1108		__sock_put(sk);
1109	}
1110	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1111		tcp_delack_timer_handler(sk);
1112		__sock_put(sk);
1113	}
1114	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1115		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1116		__sock_put(sk);
1117	}
 
 
1118}
1119EXPORT_SYMBOL(tcp_release_cb);
1120
1121void __init tcp_tasklet_init(void)
1122{
1123	int i;
1124
1125	for_each_possible_cpu(i) {
1126		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1127
1128		INIT_LIST_HEAD(&tsq->head);
1129		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1130	}
1131}
1132
1133/*
1134 * Write buffer destructor automatically called from kfree_skb.
1135 * We can't xmit new skbs from this context, as we might already
1136 * hold qdisc lock.
1137 */
1138void tcp_wfree(struct sk_buff *skb)
1139{
1140	struct sock *sk = skb->sk;
1141	struct tcp_sock *tp = tcp_sk(sk);
1142	unsigned long flags, nval, oval;
 
 
1143
1144	/* Keep one reference on sk_wmem_alloc.
1145	 * Will be released by sk_free() from here or tcp_tasklet_func()
1146	 */
1147	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1148
1149	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1150	 * Wait until our queues (qdisc + devices) are drained.
1151	 * This gives :
1152	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1153	 * - chance for incoming ACK (processed by another cpu maybe)
1154	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1155	 */
1156	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1157		goto out;
1158
1159	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1160		struct tsq_tasklet *tsq;
1161		bool empty;
1162
1163		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1164			goto out;
1165
1166		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1167		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1168		if (nval != oval)
1169			continue;
1170
1171		/* queue this socket to tasklet queue */
1172		local_irq_save(flags);
1173		tsq = this_cpu_ptr(&tsq_tasklet);
1174		empty = list_empty(&tsq->head);
1175		list_add(&tp->tsq_node, &tsq->head);
1176		if (empty)
1177			tasklet_schedule(&tsq->tasklet);
1178		local_irq_restore(flags);
1179		return;
1180	}
1181out:
1182	sk_free(sk);
1183}
1184
1185/* Note: Called under soft irq.
1186 * We can call TCP stack right away, unless socket is owned by user.
1187 */
1188enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1189{
1190	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1191	struct sock *sk = (struct sock *)tp;
1192
1193	tcp_tsq_handler(sk);
1194	sock_put(sk);
1195
1196	return HRTIMER_NORESTART;
1197}
1198
1199static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1200				      u64 prior_wstamp)
1201{
1202	struct tcp_sock *tp = tcp_sk(sk);
1203
1204	if (sk->sk_pacing_status != SK_PACING_NONE) {
1205		unsigned long rate = sk->sk_pacing_rate;
1206
1207		/* Original sch_fq does not pace first 10 MSS
1208		 * Note that tp->data_segs_out overflows after 2^32 packets,
1209		 * this is a minor annoyance.
1210		 */
1211		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1212			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1213			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1214
1215			/* take into account OS jitter */
1216			len_ns -= min_t(u64, len_ns / 2, credit);
1217			tp->tcp_wstamp_ns += len_ns;
1218		}
1219	}
1220	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1221}
1222
1223INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1226
1227/* This routine actually transmits TCP packets queued in by
1228 * tcp_do_sendmsg().  This is used by both the initial
1229 * transmission and possible later retransmissions.
1230 * All SKB's seen here are completely headerless.  It is our
1231 * job to build the TCP header, and pass the packet down to
1232 * IP so it can do the same plus pass the packet off to the
1233 * device.
1234 *
1235 * We are working here with either a clone of the original
1236 * SKB, or a fresh unique copy made by the retransmit engine.
1237 */
1238static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1239			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1240{
1241	const struct inet_connection_sock *icsk = inet_csk(sk);
1242	struct inet_sock *inet;
1243	struct tcp_sock *tp;
1244	struct tcp_skb_cb *tcb;
1245	struct tcp_out_options opts;
1246	unsigned int tcp_options_size, tcp_header_size;
1247	struct sk_buff *oskb = NULL;
1248	struct tcp_md5sig_key *md5;
1249	struct tcphdr *th;
1250	u64 prior_wstamp;
1251	int err;
1252
1253	BUG_ON(!skb || !tcp_skb_pcount(skb));
1254	tp = tcp_sk(sk);
1255	prior_wstamp = tp->tcp_wstamp_ns;
1256	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1257	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1258	if (clone_it) {
1259		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1260			- tp->snd_una;
1261		oskb = skb;
1262
1263		tcp_skb_tsorted_save(oskb) {
1264			if (unlikely(skb_cloned(oskb)))
1265				skb = pskb_copy(oskb, gfp_mask);
1266			else
1267				skb = skb_clone(oskb, gfp_mask);
1268		} tcp_skb_tsorted_restore(oskb);
1269
1270		if (unlikely(!skb))
1271			return -ENOBUFS;
1272		/* retransmit skbs might have a non zero value in skb->dev
1273		 * because skb->dev is aliased with skb->rbnode.rb_left
1274		 */
1275		skb->dev = NULL;
1276	}
1277
1278	inet = inet_sk(sk);
1279	tcb = TCP_SKB_CB(skb);
1280	memset(&opts, 0, sizeof(opts));
1281
 
1282	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1283		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1284	} else {
1285		tcp_options_size = tcp_established_options(sk, skb, &opts,
1286							   &md5);
1287		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1288		 * at receiver : This slightly improve GRO performance.
1289		 * Note that we do not force the PSH flag for non GSO packets,
1290		 * because they might be sent under high congestion events,
1291		 * and in this case it is better to delay the delivery of 1-MSS
1292		 * packets and thus the corresponding ACK packet that would
1293		 * release the following packet.
1294		 */
1295		if (tcp_skb_pcount(skb) > 1)
1296			tcb->tcp_flags |= TCPHDR_PSH;
1297	}
1298	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1299
1300	/* if no packet is in qdisc/device queue, then allow XPS to select
1301	 * another queue. We can be called from tcp_tsq_handler()
1302	 * which holds one reference to sk.
1303	 *
1304	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1305	 * One way to get this would be to set skb->truesize = 2 on them.
 
 
 
 
 
 
1306	 */
1307	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 
1308
1309	/* If we had to use memory reserve to allocate this skb,
1310	 * this might cause drops if packet is looped back :
1311	 * Other socket might not have SOCK_MEMALLOC.
1312	 * Packets not looped back do not care about pfmemalloc.
1313	 */
1314	skb->pfmemalloc = 0;
1315
1316	skb_push(skb, tcp_header_size);
1317	skb_reset_transport_header(skb);
1318
1319	skb_orphan(skb);
1320	skb->sk = sk;
1321	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1322	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1323
1324	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1325
1326	/* Build TCP header and checksum it. */
1327	th = (struct tcphdr *)skb->data;
1328	th->source		= inet->inet_sport;
1329	th->dest		= inet->inet_dport;
1330	th->seq			= htonl(tcb->seq);
1331	th->ack_seq		= htonl(rcv_nxt);
1332	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1333					tcb->tcp_flags);
1334
1335	th->check		= 0;
1336	th->urg_ptr		= 0;
1337
1338	/* The urg_mode check is necessary during a below snd_una win probe */
1339	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1340		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1341			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1342			th->urg = 1;
1343		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1344			th->urg_ptr = htons(0xFFFF);
1345			th->urg = 1;
1346		}
1347	}
1348
1349	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1350	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1351		th->window      = htons(tcp_select_window(sk));
1352		tcp_ecn_send(sk, skb, th, tcp_header_size);
1353	} else {
1354		/* RFC1323: The window in SYN & SYN/ACK segments
1355		 * is never scaled.
1356		 */
1357		th->window	= htons(min(tp->rcv_wnd, 65535U));
1358	}
1359
1360	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1361
 
1362#ifdef CONFIG_TCP_MD5SIG
1363	/* Calculate the MD5 hash, as we have all we need now */
1364	if (md5) {
1365		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366		tp->af_specific->calc_md5_hash(opts.hash_location,
1367					       md5, sk, skb);
1368	}
1369#endif
 
 
 
 
 
 
 
 
 
 
1370
1371	/* BPF prog is the last one writing header option */
1372	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373
1374	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375			   tcp_v6_send_check, tcp_v4_send_check,
1376			   sk, skb);
1377
1378	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380
1381	if (skb->len != tcp_header_size) {
1382		tcp_event_data_sent(tp, sk);
1383		tp->data_segs_out += tcp_skb_pcount(skb);
1384		tp->bytes_sent += skb->len - tcp_header_size;
1385	}
1386
1387	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389			      tcp_skb_pcount(skb));
1390
1391	tp->segs_out += tcp_skb_pcount(skb);
1392	skb_set_hash_from_sk(skb, sk);
1393	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1394	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1395	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1396
1397	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1398
1399	/* Cleanup our debris for IP stacks */
1400	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1401			       sizeof(struct inet6_skb_parm)));
1402
1403	tcp_add_tx_delay(skb, tp);
1404
1405	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1406				 inet6_csk_xmit, ip_queue_xmit,
1407				 sk, skb, &inet->cork.fl);
1408
1409	if (unlikely(err > 0)) {
1410		tcp_enter_cwr(sk);
1411		err = net_xmit_eval(err);
1412	}
1413	if (!err && oskb) {
1414		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1415		tcp_rate_skb_sent(sk, oskb);
1416	}
1417	return err;
1418}
1419
1420static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1421			    gfp_t gfp_mask)
1422{
1423	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1424				  tcp_sk(sk)->rcv_nxt);
1425}
1426
1427/* This routine just queues the buffer for sending.
1428 *
1429 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1430 * otherwise socket can stall.
1431 */
1432static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1433{
1434	struct tcp_sock *tp = tcp_sk(sk);
1435
1436	/* Advance write_seq and place onto the write_queue. */
1437	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1438	__skb_header_release(skb);
1439	tcp_add_write_queue_tail(sk, skb);
1440	sk_wmem_queued_add(sk, skb->truesize);
1441	sk_mem_charge(sk, skb->truesize);
1442}
1443
1444/* Initialize TSO segments for a packet. */
1445static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1446{
1447	if (skb->len <= mss_now) {
1448		/* Avoid the costly divide in the normal
1449		 * non-TSO case.
1450		 */
1451		tcp_skb_pcount_set(skb, 1);
1452		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1453	} else {
1454		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1455		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1456	}
1457}
1458
1459/* Pcount in the middle of the write queue got changed, we need to do various
1460 * tweaks to fix counters
1461 */
1462static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1463{
1464	struct tcp_sock *tp = tcp_sk(sk);
1465
1466	tp->packets_out -= decr;
1467
1468	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1469		tp->sacked_out -= decr;
1470	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1471		tp->retrans_out -= decr;
1472	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1473		tp->lost_out -= decr;
1474
1475	/* Reno case is special. Sigh... */
1476	if (tcp_is_reno(tp) && decr > 0)
1477		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1478
1479	if (tp->lost_skb_hint &&
1480	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1481	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1482		tp->lost_cnt_hint -= decr;
1483
1484	tcp_verify_left_out(tp);
1485}
1486
1487static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1488{
1489	return TCP_SKB_CB(skb)->txstamp_ack ||
1490		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1491}
1492
1493static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1494{
1495	struct skb_shared_info *shinfo = skb_shinfo(skb);
1496
1497	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1498	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1499		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1500		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1501
1502		shinfo->tx_flags &= ~tsflags;
1503		shinfo2->tx_flags |= tsflags;
1504		swap(shinfo->tskey, shinfo2->tskey);
1505		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1506		TCP_SKB_CB(skb)->txstamp_ack = 0;
1507	}
1508}
1509
1510static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1511{
1512	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1513	TCP_SKB_CB(skb)->eor = 0;
1514}
1515
1516/* Insert buff after skb on the write or rtx queue of sk.  */
1517static void tcp_insert_write_queue_after(struct sk_buff *skb,
1518					 struct sk_buff *buff,
1519					 struct sock *sk,
1520					 enum tcp_queue tcp_queue)
1521{
1522	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1523		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1524	else
1525		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1526}
1527
1528/* Function to create two new TCP segments.  Shrinks the given segment
1529 * to the specified size and appends a new segment with the rest of the
1530 * packet to the list.  This won't be called frequently, I hope.
1531 * Remember, these are still headerless SKBs at this point.
1532 */
1533int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1534		 struct sk_buff *skb, u32 len,
1535		 unsigned int mss_now, gfp_t gfp)
1536{
1537	struct tcp_sock *tp = tcp_sk(sk);
1538	struct sk_buff *buff;
1539	int nsize, old_factor;
1540	long limit;
1541	int nlen;
1542	u8 flags;
1543
1544	if (WARN_ON(len > skb->len))
1545		return -EINVAL;
1546
1547	nsize = skb_headlen(skb) - len;
1548	if (nsize < 0)
1549		nsize = 0;
1550
1551	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1552	 * We need some allowance to not penalize applications setting small
1553	 * SO_SNDBUF values.
1554	 * Also allow first and last skb in retransmit queue to be split.
1555	 */
1556	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1557	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1558		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1559		     skb != tcp_rtx_queue_head(sk) &&
1560		     skb != tcp_rtx_queue_tail(sk))) {
1561		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1562		return -ENOMEM;
1563	}
1564
1565	if (skb_unclone(skb, gfp))
1566		return -ENOMEM;
1567
1568	/* Get a new skb... force flag on. */
1569	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1570	if (!buff)
1571		return -ENOMEM; /* We'll just try again later. */
1572	skb_copy_decrypted(buff, skb);
1573	mptcp_skb_ext_copy(buff, skb);
1574
1575	sk_wmem_queued_add(sk, buff->truesize);
1576	sk_mem_charge(sk, buff->truesize);
1577	nlen = skb->len - len - nsize;
1578	buff->truesize += nlen;
1579	skb->truesize -= nlen;
1580
1581	/* Correct the sequence numbers. */
1582	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1583	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1584	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1585
1586	/* PSH and FIN should only be set in the second packet. */
1587	flags = TCP_SKB_CB(skb)->tcp_flags;
1588	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1589	TCP_SKB_CB(buff)->tcp_flags = flags;
1590	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1591	tcp_skb_fragment_eor(skb, buff);
1592
1593	skb_split(skb, buff, len);
1594
1595	buff->ip_summed = CHECKSUM_PARTIAL;
1596
1597	buff->tstamp = skb->tstamp;
1598	tcp_fragment_tstamp(skb, buff);
1599
1600	old_factor = tcp_skb_pcount(skb);
1601
1602	/* Fix up tso_factor for both original and new SKB.  */
1603	tcp_set_skb_tso_segs(skb, mss_now);
1604	tcp_set_skb_tso_segs(buff, mss_now);
1605
1606	/* Update delivered info for the new segment */
1607	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1608
1609	/* If this packet has been sent out already, we must
1610	 * adjust the various packet counters.
1611	 */
1612	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1613		int diff = old_factor - tcp_skb_pcount(skb) -
1614			tcp_skb_pcount(buff);
1615
1616		if (diff)
1617			tcp_adjust_pcount(sk, skb, diff);
1618	}
1619
1620	/* Link BUFF into the send queue. */
1621	__skb_header_release(buff);
1622	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1623	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1624		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1625
1626	return 0;
1627}
1628
1629/* This is similar to __pskb_pull_tail(). The difference is that pulled
1630 * data is not copied, but immediately discarded.
1631 */
1632static int __pskb_trim_head(struct sk_buff *skb, int len)
1633{
1634	struct skb_shared_info *shinfo;
1635	int i, k, eat;
1636
1637	eat = min_t(int, len, skb_headlen(skb));
1638	if (eat) {
1639		__skb_pull(skb, eat);
1640		len -= eat;
1641		if (!len)
1642			return 0;
1643	}
1644	eat = len;
1645	k = 0;
1646	shinfo = skb_shinfo(skb);
1647	for (i = 0; i < shinfo->nr_frags; i++) {
1648		int size = skb_frag_size(&shinfo->frags[i]);
1649
1650		if (size <= eat) {
1651			skb_frag_unref(skb, i);
1652			eat -= size;
1653		} else {
1654			shinfo->frags[k] = shinfo->frags[i];
1655			if (eat) {
1656				skb_frag_off_add(&shinfo->frags[k], eat);
1657				skb_frag_size_sub(&shinfo->frags[k], eat);
1658				eat = 0;
1659			}
1660			k++;
1661		}
1662	}
1663	shinfo->nr_frags = k;
1664
1665	skb->data_len -= len;
1666	skb->len = skb->data_len;
1667	return len;
1668}
1669
1670/* Remove acked data from a packet in the transmit queue. */
1671int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1672{
1673	u32 delta_truesize;
1674
1675	if (skb_unclone(skb, GFP_ATOMIC))
1676		return -ENOMEM;
1677
1678	delta_truesize = __pskb_trim_head(skb, len);
1679
1680	TCP_SKB_CB(skb)->seq += len;
1681	skb->ip_summed = CHECKSUM_PARTIAL;
1682
1683	if (delta_truesize) {
1684		skb->truesize	   -= delta_truesize;
1685		sk_wmem_queued_add(sk, -delta_truesize);
1686		sk_mem_uncharge(sk, delta_truesize);
1687	}
1688
1689	/* Any change of skb->len requires recalculation of tso factor. */
1690	if (tcp_skb_pcount(skb) > 1)
1691		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1692
1693	return 0;
1694}
1695
1696/* Calculate MSS not accounting any TCP options.  */
1697static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1698{
1699	const struct tcp_sock *tp = tcp_sk(sk);
1700	const struct inet_connection_sock *icsk = inet_csk(sk);
1701	int mss_now;
1702
1703	/* Calculate base mss without TCP options:
1704	   It is MMS_S - sizeof(tcphdr) of rfc1122
1705	 */
1706	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1707
1708	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1709	if (icsk->icsk_af_ops->net_frag_header_len) {
1710		const struct dst_entry *dst = __sk_dst_get(sk);
1711
1712		if (dst && dst_allfrag(dst))
1713			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1714	}
1715
1716	/* Clamp it (mss_clamp does not include tcp options) */
1717	if (mss_now > tp->rx_opt.mss_clamp)
1718		mss_now = tp->rx_opt.mss_clamp;
1719
1720	/* Now subtract optional transport overhead */
1721	mss_now -= icsk->icsk_ext_hdr_len;
1722
1723	/* Then reserve room for full set of TCP options and 8 bytes of data */
1724	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
 
1725	return mss_now;
1726}
1727
1728/* Calculate MSS. Not accounting for SACKs here.  */
1729int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1730{
1731	/* Subtract TCP options size, not including SACKs */
1732	return __tcp_mtu_to_mss(sk, pmtu) -
1733	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1734}
1735EXPORT_SYMBOL(tcp_mtu_to_mss);
1736
1737/* Inverse of above */
1738int tcp_mss_to_mtu(struct sock *sk, int mss)
1739{
1740	const struct tcp_sock *tp = tcp_sk(sk);
1741	const struct inet_connection_sock *icsk = inet_csk(sk);
1742	int mtu;
1743
1744	mtu = mss +
1745	      tp->tcp_header_len +
1746	      icsk->icsk_ext_hdr_len +
1747	      icsk->icsk_af_ops->net_header_len;
1748
1749	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1750	if (icsk->icsk_af_ops->net_frag_header_len) {
1751		const struct dst_entry *dst = __sk_dst_get(sk);
1752
1753		if (dst && dst_allfrag(dst))
1754			mtu += icsk->icsk_af_ops->net_frag_header_len;
1755	}
1756	return mtu;
1757}
1758EXPORT_SYMBOL(tcp_mss_to_mtu);
1759
1760/* MTU probing init per socket */
1761void tcp_mtup_init(struct sock *sk)
1762{
1763	struct tcp_sock *tp = tcp_sk(sk);
1764	struct inet_connection_sock *icsk = inet_csk(sk);
1765	struct net *net = sock_net(sk);
1766
1767	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1768	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1769			       icsk->icsk_af_ops->net_header_len;
1770	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1771	icsk->icsk_mtup.probe_size = 0;
1772	if (icsk->icsk_mtup.enabled)
1773		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1774}
1775EXPORT_SYMBOL(tcp_mtup_init);
1776
1777/* This function synchronize snd mss to current pmtu/exthdr set.
1778
1779   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1780   for TCP options, but includes only bare TCP header.
1781
1782   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1783   It is minimum of user_mss and mss received with SYN.
1784   It also does not include TCP options.
1785
1786   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1787
1788   tp->mss_cache is current effective sending mss, including
1789   all tcp options except for SACKs. It is evaluated,
1790   taking into account current pmtu, but never exceeds
1791   tp->rx_opt.mss_clamp.
1792
1793   NOTE1. rfc1122 clearly states that advertised MSS
1794   DOES NOT include either tcp or ip options.
1795
1796   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1797   are READ ONLY outside this function.		--ANK (980731)
1798 */
1799unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1800{
1801	struct tcp_sock *tp = tcp_sk(sk);
1802	struct inet_connection_sock *icsk = inet_csk(sk);
1803	int mss_now;
1804
1805	if (icsk->icsk_mtup.search_high > pmtu)
1806		icsk->icsk_mtup.search_high = pmtu;
1807
1808	mss_now = tcp_mtu_to_mss(sk, pmtu);
1809	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1810
1811	/* And store cached results */
1812	icsk->icsk_pmtu_cookie = pmtu;
1813	if (icsk->icsk_mtup.enabled)
1814		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1815	tp->mss_cache = mss_now;
1816
1817	return mss_now;
1818}
1819EXPORT_SYMBOL(tcp_sync_mss);
1820
1821/* Compute the current effective MSS, taking SACKs and IP options,
1822 * and even PMTU discovery events into account.
1823 */
1824unsigned int tcp_current_mss(struct sock *sk)
1825{
1826	const struct tcp_sock *tp = tcp_sk(sk);
1827	const struct dst_entry *dst = __sk_dst_get(sk);
1828	u32 mss_now;
1829	unsigned int header_len;
1830	struct tcp_out_options opts;
1831	struct tcp_md5sig_key *md5;
1832
1833	mss_now = tp->mss_cache;
1834
1835	if (dst) {
1836		u32 mtu = dst_mtu(dst);
1837		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1838			mss_now = tcp_sync_mss(sk, mtu);
1839	}
1840
1841	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1842		     sizeof(struct tcphdr);
1843	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1844	 * some common options. If this is an odd packet (because we have SACK
1845	 * blocks etc) then our calculated header_len will be different, and
1846	 * we have to adjust mss_now correspondingly */
1847	if (header_len != tp->tcp_header_len) {
1848		int delta = (int) header_len - tp->tcp_header_len;
1849		mss_now -= delta;
1850	}
1851
1852	return mss_now;
1853}
1854
1855/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1856 * As additional protections, we do not touch cwnd in retransmission phases,
1857 * and if application hit its sndbuf limit recently.
1858 */
1859static void tcp_cwnd_application_limited(struct sock *sk)
1860{
1861	struct tcp_sock *tp = tcp_sk(sk);
1862
1863	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1864	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1865		/* Limited by application or receiver window. */
1866		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1867		u32 win_used = max(tp->snd_cwnd_used, init_win);
1868		if (win_used < tp->snd_cwnd) {
1869			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1870			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1871		}
1872		tp->snd_cwnd_used = 0;
1873	}
1874	tp->snd_cwnd_stamp = tcp_jiffies32;
1875}
1876
1877static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1878{
1879	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1880	struct tcp_sock *tp = tcp_sk(sk);
1881
1882	/* Track the maximum number of outstanding packets in each
1883	 * window, and remember whether we were cwnd-limited then.
1884	 */
1885	if (!before(tp->snd_una, tp->max_packets_seq) ||
1886	    tp->packets_out > tp->max_packets_out ||
1887	    is_cwnd_limited) {
1888		tp->max_packets_out = tp->packets_out;
1889		tp->max_packets_seq = tp->snd_nxt;
 
 
 
1890		tp->is_cwnd_limited = is_cwnd_limited;
 
 
1891	}
1892
1893	if (tcp_is_cwnd_limited(sk)) {
1894		/* Network is feed fully. */
1895		tp->snd_cwnd_used = 0;
1896		tp->snd_cwnd_stamp = tcp_jiffies32;
1897	} else {
1898		/* Network starves. */
1899		if (tp->packets_out > tp->snd_cwnd_used)
1900			tp->snd_cwnd_used = tp->packets_out;
1901
1902		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1903		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1904		    !ca_ops->cong_control)
1905			tcp_cwnd_application_limited(sk);
1906
1907		/* The following conditions together indicate the starvation
1908		 * is caused by insufficient sender buffer:
1909		 * 1) just sent some data (see tcp_write_xmit)
1910		 * 2) not cwnd limited (this else condition)
1911		 * 3) no more data to send (tcp_write_queue_empty())
1912		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1913		 */
1914		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1915		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1916		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1917			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1918	}
1919}
1920
1921/* Minshall's variant of the Nagle send check. */
1922static bool tcp_minshall_check(const struct tcp_sock *tp)
1923{
1924	return after(tp->snd_sml, tp->snd_una) &&
1925		!after(tp->snd_sml, tp->snd_nxt);
1926}
1927
1928/* Update snd_sml if this skb is under mss
1929 * Note that a TSO packet might end with a sub-mss segment
1930 * The test is really :
1931 * if ((skb->len % mss) != 0)
1932 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1933 * But we can avoid doing the divide again given we already have
1934 *  skb_pcount = skb->len / mss_now
1935 */
1936static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1937				const struct sk_buff *skb)
1938{
1939	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1940		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1941}
1942
1943/* Return false, if packet can be sent now without violation Nagle's rules:
1944 * 1. It is full sized. (provided by caller in %partial bool)
1945 * 2. Or it contains FIN. (already checked by caller)
1946 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1947 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1948 *    With Minshall's modification: all sent small packets are ACKed.
1949 */
1950static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1951			    int nonagle)
1952{
1953	return partial &&
1954		((nonagle & TCP_NAGLE_CORK) ||
1955		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1956}
1957
1958/* Return how many segs we'd like on a TSO packet,
1959 * to send one TSO packet per ms
 
 
 
 
 
 
 
 
 
 
 
1960 */
1961static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1962			    int min_tso_segs)
1963{
1964	u32 bytes, segs;
 
1965
1966	bytes = min_t(unsigned long,
1967		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1968		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1969
1970	/* Goal is to send at least one packet per ms,
1971	 * not one big TSO packet every 100 ms.
1972	 * This preserves ACK clocking and is consistent
1973	 * with tcp_tso_should_defer() heuristic.
1974	 */
1975	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1976
1977	return segs;
 
 
1978}
1979
1980/* Return the number of segments we want in the skb we are transmitting.
1981 * See if congestion control module wants to decide; otherwise, autosize.
1982 */
1983static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1984{
1985	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1986	u32 min_tso, tso_segs;
1987
1988	min_tso = ca_ops->min_tso_segs ?
1989			ca_ops->min_tso_segs(sk) :
1990			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1991
1992	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1993	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1994}
1995
1996/* Returns the portion of skb which can be sent right away */
1997static unsigned int tcp_mss_split_point(const struct sock *sk,
1998					const struct sk_buff *skb,
1999					unsigned int mss_now,
2000					unsigned int max_segs,
2001					int nonagle)
2002{
2003	const struct tcp_sock *tp = tcp_sk(sk);
2004	u32 partial, needed, window, max_len;
2005
2006	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2007	max_len = mss_now * max_segs;
2008
2009	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2010		return max_len;
2011
2012	needed = min(skb->len, window);
2013
2014	if (max_len <= needed)
2015		return max_len;
2016
2017	partial = needed % mss_now;
2018	/* If last segment is not a full MSS, check if Nagle rules allow us
2019	 * to include this last segment in this skb.
2020	 * Otherwise, we'll split the skb at last MSS boundary
2021	 */
2022	if (tcp_nagle_check(partial != 0, tp, nonagle))
2023		return needed - partial;
2024
2025	return needed;
2026}
2027
2028/* Can at least one segment of SKB be sent right now, according to the
2029 * congestion window rules?  If so, return how many segments are allowed.
2030 */
2031static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2032					 const struct sk_buff *skb)
2033{
2034	u32 in_flight, cwnd, halfcwnd;
2035
2036	/* Don't be strict about the congestion window for the final FIN.  */
2037	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2038	    tcp_skb_pcount(skb) == 1)
2039		return 1;
2040
2041	in_flight = tcp_packets_in_flight(tp);
2042	cwnd = tp->snd_cwnd;
2043	if (in_flight >= cwnd)
2044		return 0;
2045
2046	/* For better scheduling, ensure we have at least
2047	 * 2 GSO packets in flight.
2048	 */
2049	halfcwnd = max(cwnd >> 1, 1U);
2050	return min(halfcwnd, cwnd - in_flight);
2051}
2052
2053/* Initialize TSO state of a skb.
2054 * This must be invoked the first time we consider transmitting
2055 * SKB onto the wire.
2056 */
2057static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2058{
2059	int tso_segs = tcp_skb_pcount(skb);
2060
2061	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2062		tcp_set_skb_tso_segs(skb, mss_now);
2063		tso_segs = tcp_skb_pcount(skb);
2064	}
2065	return tso_segs;
2066}
2067
2068
2069/* Return true if the Nagle test allows this packet to be
2070 * sent now.
2071 */
2072static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2073				  unsigned int cur_mss, int nonagle)
2074{
2075	/* Nagle rule does not apply to frames, which sit in the middle of the
2076	 * write_queue (they have no chances to get new data).
2077	 *
2078	 * This is implemented in the callers, where they modify the 'nonagle'
2079	 * argument based upon the location of SKB in the send queue.
2080	 */
2081	if (nonagle & TCP_NAGLE_PUSH)
2082		return true;
2083
2084	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2085	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2086		return true;
2087
2088	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2089		return true;
2090
2091	return false;
2092}
2093
2094/* Does at least the first segment of SKB fit into the send window? */
2095static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2096			     const struct sk_buff *skb,
2097			     unsigned int cur_mss)
2098{
2099	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2100
2101	if (skb->len > cur_mss)
2102		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2103
2104	return !after(end_seq, tcp_wnd_end(tp));
2105}
2106
2107/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2108 * which is put after SKB on the list.  It is very much like
2109 * tcp_fragment() except that it may make several kinds of assumptions
2110 * in order to speed up the splitting operation.  In particular, we
2111 * know that all the data is in scatter-gather pages, and that the
2112 * packet has never been sent out before (and thus is not cloned).
2113 */
2114static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2115			unsigned int mss_now, gfp_t gfp)
2116{
2117	int nlen = skb->len - len;
2118	struct sk_buff *buff;
2119	u8 flags;
2120
2121	/* All of a TSO frame must be composed of paged data.  */
2122	if (skb->len != skb->data_len)
2123		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2124				    skb, len, mss_now, gfp);
2125
2126	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2127	if (unlikely(!buff))
2128		return -ENOMEM;
2129	skb_copy_decrypted(buff, skb);
2130	mptcp_skb_ext_copy(buff, skb);
2131
2132	sk_wmem_queued_add(sk, buff->truesize);
2133	sk_mem_charge(sk, buff->truesize);
2134	buff->truesize += nlen;
2135	skb->truesize -= nlen;
2136
2137	/* Correct the sequence numbers. */
2138	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2139	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2140	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2141
2142	/* PSH and FIN should only be set in the second packet. */
2143	flags = TCP_SKB_CB(skb)->tcp_flags;
2144	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2145	TCP_SKB_CB(buff)->tcp_flags = flags;
2146
2147	/* This packet was never sent out yet, so no SACK bits. */
2148	TCP_SKB_CB(buff)->sacked = 0;
2149
2150	tcp_skb_fragment_eor(skb, buff);
2151
2152	buff->ip_summed = CHECKSUM_PARTIAL;
2153	skb_split(skb, buff, len);
2154	tcp_fragment_tstamp(skb, buff);
2155
2156	/* Fix up tso_factor for both original and new SKB.  */
2157	tcp_set_skb_tso_segs(skb, mss_now);
2158	tcp_set_skb_tso_segs(buff, mss_now);
2159
2160	/* Link BUFF into the send queue. */
2161	__skb_header_release(buff);
2162	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2163
2164	return 0;
2165}
2166
2167/* Try to defer sending, if possible, in order to minimize the amount
2168 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2169 *
2170 * This algorithm is from John Heffner.
2171 */
2172static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2173				 bool *is_cwnd_limited,
2174				 bool *is_rwnd_limited,
2175				 u32 max_segs)
2176{
2177	const struct inet_connection_sock *icsk = inet_csk(sk);
2178	u32 send_win, cong_win, limit, in_flight;
2179	struct tcp_sock *tp = tcp_sk(sk);
2180	struct sk_buff *head;
2181	int win_divisor;
2182	s64 delta;
2183
2184	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2185		goto send_now;
2186
2187	/* Avoid bursty behavior by allowing defer
2188	 * only if the last write was recent (1 ms).
2189	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2190	 * packets waiting in a qdisc or device for EDT delivery.
2191	 */
2192	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2193	if (delta > 0)
2194		goto send_now;
2195
2196	in_flight = tcp_packets_in_flight(tp);
2197
2198	BUG_ON(tcp_skb_pcount(skb) <= 1);
2199	BUG_ON(tp->snd_cwnd <= in_flight);
2200
2201	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2202
2203	/* From in_flight test above, we know that cwnd > in_flight.  */
2204	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2205
2206	limit = min(send_win, cong_win);
2207
2208	/* If a full-sized TSO skb can be sent, do it. */
2209	if (limit >= max_segs * tp->mss_cache)
2210		goto send_now;
2211
2212	/* Middle in queue won't get any more data, full sendable already? */
2213	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2214		goto send_now;
2215
2216	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2217	if (win_divisor) {
2218		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2219
2220		/* If at least some fraction of a window is available,
2221		 * just use it.
2222		 */
2223		chunk /= win_divisor;
2224		if (limit >= chunk)
2225			goto send_now;
2226	} else {
2227		/* Different approach, try not to defer past a single
2228		 * ACK.  Receiver should ACK every other full sized
2229		 * frame, so if we have space for more than 3 frames
2230		 * then send now.
2231		 */
2232		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2233			goto send_now;
2234	}
2235
2236	/* TODO : use tsorted_sent_queue ? */
2237	head = tcp_rtx_queue_head(sk);
2238	if (!head)
2239		goto send_now;
2240	delta = tp->tcp_clock_cache - head->tstamp;
2241	/* If next ACK is likely to come too late (half srtt), do not defer */
2242	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2243		goto send_now;
2244
2245	/* Ok, it looks like it is advisable to defer.
2246	 * Three cases are tracked :
2247	 * 1) We are cwnd-limited
2248	 * 2) We are rwnd-limited
2249	 * 3) We are application limited.
2250	 */
2251	if (cong_win < send_win) {
2252		if (cong_win <= skb->len) {
2253			*is_cwnd_limited = true;
2254			return true;
2255		}
2256	} else {
2257		if (send_win <= skb->len) {
2258			*is_rwnd_limited = true;
2259			return true;
2260		}
2261	}
2262
2263	/* If this packet won't get more data, do not wait. */
2264	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2265	    TCP_SKB_CB(skb)->eor)
2266		goto send_now;
2267
2268	return true;
2269
2270send_now:
2271	return false;
2272}
2273
2274static inline void tcp_mtu_check_reprobe(struct sock *sk)
2275{
2276	struct inet_connection_sock *icsk = inet_csk(sk);
2277	struct tcp_sock *tp = tcp_sk(sk);
2278	struct net *net = sock_net(sk);
2279	u32 interval;
2280	s32 delta;
2281
2282	interval = net->ipv4.sysctl_tcp_probe_interval;
2283	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2284	if (unlikely(delta >= interval * HZ)) {
2285		int mss = tcp_current_mss(sk);
2286
2287		/* Update current search range */
2288		icsk->icsk_mtup.probe_size = 0;
2289		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2290			sizeof(struct tcphdr) +
2291			icsk->icsk_af_ops->net_header_len;
2292		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2293
2294		/* Update probe time stamp */
2295		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2296	}
2297}
2298
2299static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2300{
2301	struct sk_buff *skb, *next;
2302
2303	skb = tcp_send_head(sk);
2304	tcp_for_write_queue_from_safe(skb, next, sk) {
2305		if (len <= skb->len)
2306			break;
2307
2308		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
 
 
2309			return false;
2310
2311		len -= skb->len;
2312	}
2313
2314	return true;
2315}
2316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317/* Create a new MTU probe if we are ready.
2318 * MTU probe is regularly attempting to increase the path MTU by
2319 * deliberately sending larger packets.  This discovers routing
2320 * changes resulting in larger path MTUs.
2321 *
2322 * Returns 0 if we should wait to probe (no cwnd available),
2323 *         1 if a probe was sent,
2324 *         -1 otherwise
2325 */
2326static int tcp_mtu_probe(struct sock *sk)
2327{
2328	struct inet_connection_sock *icsk = inet_csk(sk);
2329	struct tcp_sock *tp = tcp_sk(sk);
2330	struct sk_buff *skb, *nskb, *next;
2331	struct net *net = sock_net(sk);
2332	int probe_size;
2333	int size_needed;
2334	int copy, len;
2335	int mss_now;
2336	int interval;
2337
2338	/* Not currently probing/verifying,
2339	 * not in recovery,
2340	 * have enough cwnd, and
2341	 * not SACKing (the variable headers throw things off)
2342	 */
2343	if (likely(!icsk->icsk_mtup.enabled ||
2344		   icsk->icsk_mtup.probe_size ||
2345		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2346		   tp->snd_cwnd < 11 ||
2347		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2348		return -1;
2349
2350	/* Use binary search for probe_size between tcp_mss_base,
2351	 * and current mss_clamp. if (search_high - search_low)
2352	 * smaller than a threshold, backoff from probing.
2353	 */
2354	mss_now = tcp_current_mss(sk);
2355	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2356				    icsk->icsk_mtup.search_low) >> 1);
2357	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2358	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2359	/* When misfortune happens, we are reprobing actively,
2360	 * and then reprobe timer has expired. We stick with current
2361	 * probing process by not resetting search range to its orignal.
2362	 */
2363	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2364		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2365		/* Check whether enough time has elaplased for
2366		 * another round of probing.
2367		 */
2368		tcp_mtu_check_reprobe(sk);
2369		return -1;
2370	}
2371
2372	/* Have enough data in the send queue to probe? */
2373	if (tp->write_seq - tp->snd_nxt < size_needed)
2374		return -1;
2375
2376	if (tp->snd_wnd < size_needed)
2377		return -1;
2378	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2379		return 0;
2380
2381	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2382	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2383		if (!tcp_packets_in_flight(tp))
2384			return -1;
2385		else
2386			return 0;
2387	}
2388
2389	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2390		return -1;
2391
2392	/* We're allowed to probe.  Build it now. */
2393	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2394	if (!nskb)
2395		return -1;
 
 
 
 
 
 
 
2396	sk_wmem_queued_add(sk, nskb->truesize);
2397	sk_mem_charge(sk, nskb->truesize);
2398
2399	skb = tcp_send_head(sk);
2400	skb_copy_decrypted(nskb, skb);
2401	mptcp_skb_ext_copy(nskb, skb);
2402
2403	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2404	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2405	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2406	TCP_SKB_CB(nskb)->sacked = 0;
2407	nskb->csum = 0;
2408	nskb->ip_summed = CHECKSUM_PARTIAL;
2409
2410	tcp_insert_write_queue_before(nskb, skb, sk);
2411	tcp_highest_sack_replace(sk, skb, nskb);
2412
2413	len = 0;
2414	tcp_for_write_queue_from_safe(skb, next, sk) {
2415		copy = min_t(int, skb->len, probe_size - len);
2416		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417
2418		if (skb->len <= copy) {
2419			/* We've eaten all the data from this skb.
2420			 * Throw it away. */
2421			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422			/* If this is the last SKB we copy and eor is set
2423			 * we need to propagate it to the new skb.
2424			 */
2425			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426			tcp_skb_collapse_tstamp(nskb, skb);
2427			tcp_unlink_write_queue(skb, sk);
2428			sk_wmem_free_skb(sk, skb);
2429		} else {
2430			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431						   ~(TCPHDR_FIN|TCPHDR_PSH);
2432			if (!skb_shinfo(skb)->nr_frags) {
2433				skb_pull(skb, copy);
2434			} else {
2435				__pskb_trim_head(skb, copy);
2436				tcp_set_skb_tso_segs(skb, mss_now);
2437			}
2438			TCP_SKB_CB(skb)->seq += copy;
2439		}
2440
2441		len += copy;
2442
2443		if (len >= probe_size)
2444			break;
2445	}
2446	tcp_init_tso_segs(nskb, nskb->len);
2447
2448	/* We're ready to send.  If this fails, the probe will
2449	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450	 */
2451	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452		/* Decrement cwnd here because we are sending
2453		 * effectively two packets. */
2454		tp->snd_cwnd--;
2455		tcp_event_new_data_sent(sk, nskb);
2456
2457		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2460
2461		return 1;
2462	}
2463
2464	return -1;
2465}
2466
2467static bool tcp_pacing_check(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
2470
2471	if (!tcp_needs_internal_pacing(sk))
2472		return false;
2473
2474	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2475		return false;
2476
2477	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478		hrtimer_start(&tp->pacing_timer,
2479			      ns_to_ktime(tp->tcp_wstamp_ns),
2480			      HRTIMER_MODE_ABS_PINNED_SOFT);
2481		sock_hold(sk);
2482	}
2483	return true;
2484}
2485
 
 
 
 
 
 
 
 
 
 
 
 
2486/* TCP Small Queues :
2487 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488 * (These limits are doubled for retransmits)
2489 * This allows for :
2490 *  - better RTT estimation and ACK scheduling
2491 *  - faster recovery
2492 *  - high rates
2493 * Alas, some drivers / subsystems require a fair amount
2494 * of queued bytes to ensure line rate.
2495 * One example is wifi aggregation (802.11 AMPDU)
2496 */
2497static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498				  unsigned int factor)
2499{
2500	unsigned long limit;
2501
2502	limit = max_t(unsigned long,
2503		      2 * skb->truesize,
2504		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505	if (sk->sk_pacing_status == SK_PACING_NONE)
2506		limit = min_t(unsigned long, limit,
2507			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2508	limit <<= factor;
2509
2510	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511	    tcp_sk(sk)->tcp_tx_delay) {
2512		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
 
2513
2514		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515		 * approximate our needs assuming an ~100% skb->truesize overhead.
2516		 * USEC_PER_SEC is approximated by 2^20.
2517		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518		 */
2519		extra_bytes >>= (20 - 1);
2520		limit += extra_bytes;
2521	}
2522	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523		/* Always send skb if rtx queue is empty.
2524		 * No need to wait for TX completion to call us back,
2525		 * after softirq/tasklet schedule.
2526		 * This helps when TX completions are delayed too much.
2527		 */
2528		if (tcp_rtx_queue_empty(sk))
2529			return false;
2530
2531		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532		/* It is possible TX completion already happened
2533		 * before we set TSQ_THROTTLED, so we must
2534		 * test again the condition.
2535		 */
2536		smp_mb__after_atomic();
2537		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2538			return true;
2539	}
2540	return false;
2541}
2542
2543static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544{
2545	const u32 now = tcp_jiffies32;
2546	enum tcp_chrono old = tp->chrono_type;
2547
2548	if (old > TCP_CHRONO_UNSPEC)
2549		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550	tp->chrono_start = now;
2551	tp->chrono_type = new;
2552}
2553
2554void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555{
2556	struct tcp_sock *tp = tcp_sk(sk);
2557
2558	/* If there are multiple conditions worthy of tracking in a
2559	 * chronograph then the highest priority enum takes precedence
2560	 * over the other conditions. So that if something "more interesting"
2561	 * starts happening, stop the previous chrono and start a new one.
2562	 */
2563	if (type > tp->chrono_type)
2564		tcp_chrono_set(tp, type);
2565}
2566
2567void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568{
2569	struct tcp_sock *tp = tcp_sk(sk);
2570
2571
2572	/* There are multiple conditions worthy of tracking in a
2573	 * chronograph, so that the highest priority enum takes
2574	 * precedence over the other conditions (see tcp_chrono_start).
2575	 * If a condition stops, we only stop chrono tracking if
2576	 * it's the "most interesting" or current chrono we are
2577	 * tracking and starts busy chrono if we have pending data.
2578	 */
2579	if (tcp_rtx_and_write_queues_empty(sk))
2580		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581	else if (type == tp->chrono_type)
2582		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2583}
2584
2585/* This routine writes packets to the network.  It advances the
2586 * send_head.  This happens as incoming acks open up the remote
2587 * window for us.
2588 *
2589 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591 * account rare use of URG, this is not a big flaw.
2592 *
2593 * Send at most one packet when push_one > 0. Temporarily ignore
2594 * cwnd limit to force at most one packet out when push_one == 2.
2595
2596 * Returns true, if no segments are in flight and we have queued segments,
2597 * but cannot send anything now because of SWS or another problem.
2598 */
2599static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600			   int push_one, gfp_t gfp)
2601{
2602	struct tcp_sock *tp = tcp_sk(sk);
2603	struct sk_buff *skb;
2604	unsigned int tso_segs, sent_pkts;
2605	int cwnd_quota;
2606	int result;
2607	bool is_cwnd_limited = false, is_rwnd_limited = false;
2608	u32 max_segs;
2609
2610	sent_pkts = 0;
2611
2612	tcp_mstamp_refresh(tp);
2613	if (!push_one) {
2614		/* Do MTU probing. */
2615		result = tcp_mtu_probe(sk);
2616		if (!result) {
2617			return false;
2618		} else if (result > 0) {
2619			sent_pkts = 1;
2620		}
2621	}
2622
2623	max_segs = tcp_tso_segs(sk, mss_now);
2624	while ((skb = tcp_send_head(sk))) {
2625		unsigned int limit;
2626
2627		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
 
2630			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2631			tcp_init_tso_segs(skb, mss_now);
2632			goto repair; /* Skip network transmission */
2633		}
2634
2635		if (tcp_pacing_check(sk))
2636			break;
2637
2638		tso_segs = tcp_init_tso_segs(skb, mss_now);
2639		BUG_ON(!tso_segs);
2640
2641		cwnd_quota = tcp_cwnd_test(tp, skb);
2642		if (!cwnd_quota) {
2643			if (push_one == 2)
2644				/* Force out a loss probe pkt. */
2645				cwnd_quota = 1;
2646			else
2647				break;
2648		}
2649
2650		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2651			is_rwnd_limited = true;
2652			break;
2653		}
2654
2655		if (tso_segs == 1) {
2656			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2657						     (tcp_skb_is_last(sk, skb) ?
2658						      nonagle : TCP_NAGLE_PUSH))))
2659				break;
2660		} else {
2661			if (!push_one &&
2662			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2663						 &is_rwnd_limited, max_segs))
2664				break;
2665		}
2666
2667		limit = mss_now;
2668		if (tso_segs > 1 && !tcp_urg_mode(tp))
2669			limit = tcp_mss_split_point(sk, skb, mss_now,
2670						    min_t(unsigned int,
2671							  cwnd_quota,
2672							  max_segs),
2673						    nonagle);
2674
2675		if (skb->len > limit &&
2676		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2677			break;
2678
2679		if (tcp_small_queue_check(sk, skb, 0))
2680			break;
2681
2682		/* Argh, we hit an empty skb(), presumably a thread
2683		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2684		 * We do not want to send a pure-ack packet and have
2685		 * a strange looking rtx queue with empty packet(s).
2686		 */
2687		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2688			break;
2689
2690		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2691			break;
2692
2693repair:
2694		/* Advance the send_head.  This one is sent out.
2695		 * This call will increment packets_out.
2696		 */
2697		tcp_event_new_data_sent(sk, skb);
2698
2699		tcp_minshall_update(tp, mss_now, skb);
2700		sent_pkts += tcp_skb_pcount(skb);
2701
2702		if (push_one)
2703			break;
2704	}
2705
2706	if (is_rwnd_limited)
2707		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2708	else
2709		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2710
2711	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2712	if (likely(sent_pkts || is_cwnd_limited))
2713		tcp_cwnd_validate(sk, is_cwnd_limited);
2714
2715	if (likely(sent_pkts)) {
2716		if (tcp_in_cwnd_reduction(sk))
2717			tp->prr_out += sent_pkts;
2718
2719		/* Send one loss probe per tail loss episode. */
2720		if (push_one != 2)
2721			tcp_schedule_loss_probe(sk, false);
2722		return false;
2723	}
2724	return !tp->packets_out && !tcp_write_queue_empty(sk);
2725}
2726
2727bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2728{
2729	struct inet_connection_sock *icsk = inet_csk(sk);
2730	struct tcp_sock *tp = tcp_sk(sk);
2731	u32 timeout, rto_delta_us;
2732	int early_retrans;
2733
2734	/* Don't do any loss probe on a Fast Open connection before 3WHS
2735	 * finishes.
2736	 */
2737	if (rcu_access_pointer(tp->fastopen_rsk))
2738		return false;
2739
2740	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2741	/* Schedule a loss probe in 2*RTT for SACK capable connections
2742	 * not in loss recovery, that are either limited by cwnd or application.
2743	 */
2744	if ((early_retrans != 3 && early_retrans != 4) ||
2745	    !tp->packets_out || !tcp_is_sack(tp) ||
2746	    (icsk->icsk_ca_state != TCP_CA_Open &&
2747	     icsk->icsk_ca_state != TCP_CA_CWR))
2748		return false;
2749
2750	/* Probe timeout is 2*rtt. Add minimum RTO to account
2751	 * for delayed ack when there's one outstanding packet. If no RTT
2752	 * sample is available then probe after TCP_TIMEOUT_INIT.
2753	 */
2754	if (tp->srtt_us) {
2755		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2756		if (tp->packets_out == 1)
2757			timeout += TCP_RTO_MIN;
2758		else
2759			timeout += TCP_TIMEOUT_MIN;
 
2760	} else {
2761		timeout = TCP_TIMEOUT_INIT;
2762	}
2763
2764	/* If the RTO formula yields an earlier time, then use that time. */
2765	rto_delta_us = advancing_rto ?
2766			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2767			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2768	if (rto_delta_us > 0)
2769		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2770
2771	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2772	return true;
2773}
2774
2775/* Thanks to skb fast clones, we can detect if a prior transmit of
2776 * a packet is still in a qdisc or driver queue.
2777 * In this case, there is very little point doing a retransmit !
2778 */
2779static bool skb_still_in_host_queue(struct sock *sk,
2780				    const struct sk_buff *skb)
2781{
2782	if (unlikely(skb_fclone_busy(sk, skb))) {
2783		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2784		smp_mb__after_atomic();
2785		if (skb_fclone_busy(sk, skb)) {
2786			NET_INC_STATS(sock_net(sk),
2787				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2788			return true;
2789		}
2790	}
2791	return false;
2792}
2793
2794/* When probe timeout (PTO) fires, try send a new segment if possible, else
2795 * retransmit the last segment.
2796 */
2797void tcp_send_loss_probe(struct sock *sk)
2798{
2799	struct tcp_sock *tp = tcp_sk(sk);
2800	struct sk_buff *skb;
2801	int pcount;
2802	int mss = tcp_current_mss(sk);
2803
2804	/* At most one outstanding TLP */
2805	if (tp->tlp_high_seq)
2806		goto rearm_timer;
2807
2808	tp->tlp_retrans = 0;
2809	skb = tcp_send_head(sk);
2810	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2811		pcount = tp->packets_out;
2812		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2813		if (tp->packets_out > pcount)
2814			goto probe_sent;
2815		goto rearm_timer;
2816	}
2817	skb = skb_rb_last(&sk->tcp_rtx_queue);
2818	if (unlikely(!skb)) {
2819		WARN_ONCE(tp->packets_out,
2820			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2821			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2822		inet_csk(sk)->icsk_pending = 0;
2823		return;
2824	}
2825
2826	if (skb_still_in_host_queue(sk, skb))
2827		goto rearm_timer;
2828
2829	pcount = tcp_skb_pcount(skb);
2830	if (WARN_ON(!pcount))
2831		goto rearm_timer;
2832
2833	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2834		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2835					  (pcount - 1) * mss, mss,
2836					  GFP_ATOMIC)))
2837			goto rearm_timer;
2838		skb = skb_rb_next(skb);
2839	}
2840
2841	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2842		goto rearm_timer;
2843
2844	if (__tcp_retransmit_skb(sk, skb, 1))
2845		goto rearm_timer;
2846
2847	tp->tlp_retrans = 1;
2848
2849probe_sent:
2850	/* Record snd_nxt for loss detection. */
2851	tp->tlp_high_seq = tp->snd_nxt;
2852
2853	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2854	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2855	inet_csk(sk)->icsk_pending = 0;
2856rearm_timer:
2857	tcp_rearm_rto(sk);
2858}
2859
2860/* Push out any pending frames which were held back due to
2861 * TCP_CORK or attempt at coalescing tiny packets.
2862 * The socket must be locked by the caller.
2863 */
2864void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2865			       int nonagle)
2866{
2867	/* If we are closed, the bytes will have to remain here.
2868	 * In time closedown will finish, we empty the write queue and
2869	 * all will be happy.
2870	 */
2871	if (unlikely(sk->sk_state == TCP_CLOSE))
2872		return;
2873
2874	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2875			   sk_gfp_mask(sk, GFP_ATOMIC)))
2876		tcp_check_probe_timer(sk);
2877}
2878
2879/* Send _single_ skb sitting at the send head. This function requires
2880 * true push pending frames to setup probe timer etc.
2881 */
2882void tcp_push_one(struct sock *sk, unsigned int mss_now)
2883{
2884	struct sk_buff *skb = tcp_send_head(sk);
2885
2886	BUG_ON(!skb || skb->len < mss_now);
2887
2888	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2889}
2890
2891/* This function returns the amount that we can raise the
2892 * usable window based on the following constraints
2893 *
2894 * 1. The window can never be shrunk once it is offered (RFC 793)
2895 * 2. We limit memory per socket
2896 *
2897 * RFC 1122:
2898 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2899 *  RECV.NEXT + RCV.WIN fixed until:
2900 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2901 *
2902 * i.e. don't raise the right edge of the window until you can raise
2903 * it at least MSS bytes.
2904 *
2905 * Unfortunately, the recommended algorithm breaks header prediction,
2906 * since header prediction assumes th->window stays fixed.
2907 *
2908 * Strictly speaking, keeping th->window fixed violates the receiver
2909 * side SWS prevention criteria. The problem is that under this rule
2910 * a stream of single byte packets will cause the right side of the
2911 * window to always advance by a single byte.
2912 *
2913 * Of course, if the sender implements sender side SWS prevention
2914 * then this will not be a problem.
2915 *
2916 * BSD seems to make the following compromise:
2917 *
2918 *	If the free space is less than the 1/4 of the maximum
2919 *	space available and the free space is less than 1/2 mss,
2920 *	then set the window to 0.
2921 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2922 *	Otherwise, just prevent the window from shrinking
2923 *	and from being larger than the largest representable value.
2924 *
2925 * This prevents incremental opening of the window in the regime
2926 * where TCP is limited by the speed of the reader side taking
2927 * data out of the TCP receive queue. It does nothing about
2928 * those cases where the window is constrained on the sender side
2929 * because the pipeline is full.
2930 *
2931 * BSD also seems to "accidentally" limit itself to windows that are a
2932 * multiple of MSS, at least until the free space gets quite small.
2933 * This would appear to be a side effect of the mbuf implementation.
2934 * Combining these two algorithms results in the observed behavior
2935 * of having a fixed window size at almost all times.
2936 *
2937 * Below we obtain similar behavior by forcing the offered window to
2938 * a multiple of the mss when it is feasible to do so.
2939 *
2940 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2941 * Regular options like TIMESTAMP are taken into account.
2942 */
2943u32 __tcp_select_window(struct sock *sk)
2944{
2945	struct inet_connection_sock *icsk = inet_csk(sk);
2946	struct tcp_sock *tp = tcp_sk(sk);
 
2947	/* MSS for the peer's data.  Previous versions used mss_clamp
2948	 * here.  I don't know if the value based on our guesses
2949	 * of peer's MSS is better for the performance.  It's more correct
2950	 * but may be worse for the performance because of rcv_mss
2951	 * fluctuations.  --SAW  1998/11/1
2952	 */
2953	int mss = icsk->icsk_ack.rcv_mss;
2954	int free_space = tcp_space(sk);
2955	int allowed_space = tcp_full_space(sk);
2956	int full_space, window;
2957
2958	if (sk_is_mptcp(sk))
2959		mptcp_space(sk, &free_space, &allowed_space);
2960
2961	full_space = min_t(int, tp->window_clamp, allowed_space);
2962
2963	if (unlikely(mss > full_space)) {
2964		mss = full_space;
2965		if (mss <= 0)
2966			return 0;
2967	}
 
 
 
 
 
 
 
 
 
2968	if (free_space < (full_space >> 1)) {
2969		icsk->icsk_ack.quick = 0;
2970
2971		if (tcp_under_memory_pressure(sk))
2972			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2973					       4U * tp->advmss);
2974
2975		/* free_space might become our new window, make sure we don't
2976		 * increase it due to wscale.
2977		 */
2978		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2979
2980		/* if free space is less than mss estimate, or is below 1/16th
2981		 * of the maximum allowed, try to move to zero-window, else
2982		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2983		 * new incoming data is dropped due to memory limits.
2984		 * With large window, mss test triggers way too late in order
2985		 * to announce zero window in time before rmem limit kicks in.
2986		 */
2987		if (free_space < (allowed_space >> 4) || free_space < mss)
2988			return 0;
2989	}
2990
2991	if (free_space > tp->rcv_ssthresh)
2992		free_space = tp->rcv_ssthresh;
2993
2994	/* Don't do rounding if we are using window scaling, since the
2995	 * scaled window will not line up with the MSS boundary anyway.
2996	 */
2997	if (tp->rx_opt.rcv_wscale) {
2998		window = free_space;
2999
3000		/* Advertise enough space so that it won't get scaled away.
3001		 * Import case: prevent zero window announcement if
3002		 * 1<<rcv_wscale > mss.
3003		 */
3004		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3005	} else {
3006		window = tp->rcv_wnd;
3007		/* Get the largest window that is a nice multiple of mss.
3008		 * Window clamp already applied above.
3009		 * If our current window offering is within 1 mss of the
3010		 * free space we just keep it. This prevents the divide
3011		 * and multiply from happening most of the time.
3012		 * We also don't do any window rounding when the free space
3013		 * is too small.
3014		 */
3015		if (window <= free_space - mss || window > free_space)
3016			window = rounddown(free_space, mss);
3017		else if (mss == full_space &&
3018			 free_space > window + (full_space >> 1))
3019			window = free_space;
3020	}
3021
3022	return window;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023}
3024
3025void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3026			     const struct sk_buff *next_skb)
3027{
3028	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3029		const struct skb_shared_info *next_shinfo =
3030			skb_shinfo(next_skb);
3031		struct skb_shared_info *shinfo = skb_shinfo(skb);
3032
3033		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3034		shinfo->tskey = next_shinfo->tskey;
3035		TCP_SKB_CB(skb)->txstamp_ack |=
3036			TCP_SKB_CB(next_skb)->txstamp_ack;
3037	}
3038}
3039
3040/* Collapses two adjacent SKB's during retransmission. */
3041static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3042{
3043	struct tcp_sock *tp = tcp_sk(sk);
3044	struct sk_buff *next_skb = skb_rb_next(skb);
3045	int next_skb_size;
3046
3047	next_skb_size = next_skb->len;
3048
3049	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3050
3051	if (next_skb_size) {
3052		if (next_skb_size <= skb_availroom(skb))
3053			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3054				      next_skb_size);
3055		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3056			return false;
3057	}
3058	tcp_highest_sack_replace(sk, next_skb, skb);
3059
3060	/* Update sequence range on original skb. */
3061	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3062
3063	/* Merge over control information. This moves PSH/FIN etc. over */
3064	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3065
3066	/* All done, get rid of second SKB and account for it so
3067	 * packet counting does not break.
3068	 */
3069	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3070	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3071
3072	/* changed transmit queue under us so clear hints */
3073	tcp_clear_retrans_hints_partial(tp);
3074	if (next_skb == tp->retransmit_skb_hint)
3075		tp->retransmit_skb_hint = skb;
3076
3077	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3078
3079	tcp_skb_collapse_tstamp(skb, next_skb);
3080
3081	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3082	return true;
3083}
3084
3085/* Check if coalescing SKBs is legal. */
3086static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3087{
3088	if (tcp_skb_pcount(skb) > 1)
3089		return false;
3090	if (skb_cloned(skb))
3091		return false;
3092	/* Some heuristics for collapsing over SACK'd could be invented */
3093	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3094		return false;
3095
3096	return true;
3097}
3098
3099/* Collapse packets in the retransmit queue to make to create
3100 * less packets on the wire. This is only done on retransmission.
3101 */
3102static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3103				     int space)
3104{
3105	struct tcp_sock *tp = tcp_sk(sk);
3106	struct sk_buff *skb = to, *tmp;
3107	bool first = true;
3108
3109	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3110		return;
3111	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3112		return;
3113
3114	skb_rbtree_walk_from_safe(skb, tmp) {
3115		if (!tcp_can_collapse(sk, skb))
3116			break;
3117
3118		if (!tcp_skb_can_collapse(to, skb))
3119			break;
3120
3121		space -= skb->len;
3122
3123		if (first) {
3124			first = false;
3125			continue;
3126		}
3127
3128		if (space < 0)
3129			break;
3130
3131		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3132			break;
3133
3134		if (!tcp_collapse_retrans(sk, to))
3135			break;
3136	}
3137}
3138
3139/* This retransmits one SKB.  Policy decisions and retransmit queue
3140 * state updates are done by the caller.  Returns non-zero if an
3141 * error occurred which prevented the send.
3142 */
3143int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3144{
3145	struct inet_connection_sock *icsk = inet_csk(sk);
3146	struct tcp_sock *tp = tcp_sk(sk);
3147	unsigned int cur_mss;
3148	int diff, len, err;
3149
3150
3151	/* Inconclusive MTU probe */
3152	if (icsk->icsk_mtup.probe_size)
3153		icsk->icsk_mtup.probe_size = 0;
3154
3155	if (skb_still_in_host_queue(sk, skb))
3156		return -EBUSY;
3157
 
3158	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
 
 
 
 
 
3159		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3160			WARN_ON_ONCE(1);
3161			return -EINVAL;
3162		}
3163		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3164			return -ENOMEM;
3165	}
3166
3167	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3168		return -EHOSTUNREACH; /* Routing failure or similar. */
3169
3170	cur_mss = tcp_current_mss(sk);
 
3171
3172	/* If receiver has shrunk his window, and skb is out of
3173	 * new window, do not retransmit it. The exception is the
3174	 * case, when window is shrunk to zero. In this case
3175	 * our retransmit serves as a zero window probe.
3176	 */
3177	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3178	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3179		return -EAGAIN;
 
 
3180
3181	len = cur_mss * segs;
 
 
 
 
 
3182	if (skb->len > len) {
3183		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3184				 cur_mss, GFP_ATOMIC))
3185			return -ENOMEM; /* We'll try again later. */
3186	} else {
3187		if (skb_unclone(skb, GFP_ATOMIC))
3188			return -ENOMEM;
3189
3190		diff = tcp_skb_pcount(skb);
3191		tcp_set_skb_tso_segs(skb, cur_mss);
3192		diff -= tcp_skb_pcount(skb);
3193		if (diff)
3194			tcp_adjust_pcount(sk, skb, diff);
3195		if (skb->len < cur_mss)
3196			tcp_retrans_try_collapse(sk, skb, cur_mss);
 
3197	}
3198
3199	/* RFC3168, section 6.1.1.1. ECN fallback */
3200	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3201		tcp_ecn_clear_syn(sk, skb);
3202
3203	/* Update global and local TCP statistics. */
3204	segs = tcp_skb_pcount(skb);
3205	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3206	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3207		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3208	tp->total_retrans += segs;
3209	tp->bytes_retrans += skb->len;
3210
3211	/* make sure skb->data is aligned on arches that require it
3212	 * and check if ack-trimming & collapsing extended the headroom
3213	 * beyond what csum_start can cover.
3214	 */
3215	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3216		     skb_headroom(skb) >= 0xFFFF)) {
3217		struct sk_buff *nskb;
3218
3219		tcp_skb_tsorted_save(skb) {
3220			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3221			if (nskb) {
3222				nskb->dev = NULL;
3223				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3224			} else {
3225				err = -ENOBUFS;
3226			}
3227		} tcp_skb_tsorted_restore(skb);
3228
3229		if (!err) {
3230			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3231			tcp_rate_skb_sent(sk, skb);
3232		}
3233	} else {
3234		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3235	}
3236
3237	/* To avoid taking spuriously low RTT samples based on a timestamp
3238	 * for a transmit that never happened, always mark EVER_RETRANS
3239	 */
3240	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3241
3242	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3243		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3244				  TCP_SKB_CB(skb)->seq, segs, err);
3245
3246	if (likely(!err)) {
3247		trace_tcp_retransmit_skb(sk, skb);
3248	} else if (err != -EBUSY) {
3249		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3250	}
3251	return err;
3252}
3253
3254int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3255{
3256	struct tcp_sock *tp = tcp_sk(sk);
3257	int err = __tcp_retransmit_skb(sk, skb, segs);
3258
3259	if (err == 0) {
3260#if FASTRETRANS_DEBUG > 0
3261		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3262			net_dbg_ratelimited("retrans_out leaked\n");
3263		}
3264#endif
3265		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3266		tp->retrans_out += tcp_skb_pcount(skb);
3267	}
3268
3269	/* Save stamp of the first (attempted) retransmit. */
3270	if (!tp->retrans_stamp)
3271		tp->retrans_stamp = tcp_skb_timestamp(skb);
3272
3273	if (tp->undo_retrans < 0)
3274		tp->undo_retrans = 0;
3275	tp->undo_retrans += tcp_skb_pcount(skb);
3276	return err;
3277}
3278
3279/* This gets called after a retransmit timeout, and the initially
3280 * retransmitted data is acknowledged.  It tries to continue
3281 * resending the rest of the retransmit queue, until either
3282 * we've sent it all or the congestion window limit is reached.
3283 */
3284void tcp_xmit_retransmit_queue(struct sock *sk)
3285{
3286	const struct inet_connection_sock *icsk = inet_csk(sk);
3287	struct sk_buff *skb, *rtx_head, *hole = NULL;
3288	struct tcp_sock *tp = tcp_sk(sk);
3289	bool rearm_timer = false;
3290	u32 max_segs;
3291	int mib_idx;
3292
3293	if (!tp->packets_out)
3294		return;
3295
3296	rtx_head = tcp_rtx_queue_head(sk);
3297	skb = tp->retransmit_skb_hint ?: rtx_head;
3298	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3299	skb_rbtree_walk_from(skb) {
3300		__u8 sacked;
3301		int segs;
3302
3303		if (tcp_pacing_check(sk))
3304			break;
3305
3306		/* we could do better than to assign each time */
3307		if (!hole)
3308			tp->retransmit_skb_hint = skb;
3309
3310		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3311		if (segs <= 0)
3312			break;
3313		sacked = TCP_SKB_CB(skb)->sacked;
3314		/* In case tcp_shift_skb_data() have aggregated large skbs,
3315		 * we need to make sure not sending too bigs TSO packets
3316		 */
3317		segs = min_t(int, segs, max_segs);
3318
3319		if (tp->retrans_out >= tp->lost_out) {
3320			break;
3321		} else if (!(sacked & TCPCB_LOST)) {
3322			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3323				hole = skb;
3324			continue;
3325
3326		} else {
3327			if (icsk->icsk_ca_state != TCP_CA_Loss)
3328				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3329			else
3330				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3331		}
3332
3333		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3334			continue;
3335
3336		if (tcp_small_queue_check(sk, skb, 1))
3337			break;
3338
3339		if (tcp_retransmit_skb(sk, skb, segs))
3340			break;
3341
3342		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3343
3344		if (tcp_in_cwnd_reduction(sk))
3345			tp->prr_out += tcp_skb_pcount(skb);
3346
3347		if (skb == rtx_head &&
3348		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3349			rearm_timer = true;
3350
3351	}
3352	if (rearm_timer)
3353		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3354				     inet_csk(sk)->icsk_rto,
3355				     TCP_RTO_MAX);
3356}
3357
3358/* We allow to exceed memory limits for FIN packets to expedite
3359 * connection tear down and (memory) recovery.
3360 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3361 * or even be forced to close flow without any FIN.
3362 * In general, we want to allow one skb per socket to avoid hangs
3363 * with edge trigger epoll()
3364 */
3365void sk_forced_mem_schedule(struct sock *sk, int size)
3366{
3367	int amt;
3368
3369	if (size <= sk->sk_forward_alloc)
 
3370		return;
3371	amt = sk_mem_pages(size);
3372	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3373	sk_memory_allocated_add(sk, amt);
3374
3375	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3376		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
 
3377}
3378
3379/* Send a FIN. The caller locks the socket for us.
3380 * We should try to send a FIN packet really hard, but eventually give up.
3381 */
3382void tcp_send_fin(struct sock *sk)
3383{
3384	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3385	struct tcp_sock *tp = tcp_sk(sk);
3386
3387	/* Optimization, tack on the FIN if we have one skb in write queue and
3388	 * this skb was not yet sent, or we are under memory pressure.
3389	 * Note: in the latter case, FIN packet will be sent after a timeout,
3390	 * as TCP stack thinks it has already been transmitted.
3391	 */
3392	tskb = tail;
3393	if (!tskb && tcp_under_memory_pressure(sk))
3394		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3395
3396	if (tskb) {
3397		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3398		TCP_SKB_CB(tskb)->end_seq++;
3399		tp->write_seq++;
3400		if (!tail) {
3401			/* This means tskb was already sent.
3402			 * Pretend we included the FIN on previous transmit.
3403			 * We need to set tp->snd_nxt to the value it would have
3404			 * if FIN had been sent. This is because retransmit path
3405			 * does not change tp->snd_nxt.
3406			 */
3407			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3408			return;
3409		}
3410	} else {
3411		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
 
 
3412		if (unlikely(!skb))
3413			return;
3414
3415		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3416		skb_reserve(skb, MAX_TCP_HEADER);
3417		sk_forced_mem_schedule(sk, skb->truesize);
3418		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3419		tcp_init_nondata_skb(skb, tp->write_seq,
3420				     TCPHDR_ACK | TCPHDR_FIN);
3421		tcp_queue_skb(sk, skb);
3422	}
3423	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3424}
3425
3426/* We get here when a process closes a file descriptor (either due to
3427 * an explicit close() or as a byproduct of exit()'ing) and there
3428 * was unread data in the receive queue.  This behavior is recommended
3429 * by RFC 2525, section 2.17.  -DaveM
3430 */
3431void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3432{
3433	struct sk_buff *skb;
3434
3435	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3436
3437	/* NOTE: No TCP options attached and we never retransmit this. */
3438	skb = alloc_skb(MAX_TCP_HEADER, priority);
3439	if (!skb) {
3440		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3441		return;
3442	}
3443
3444	/* Reserve space for headers and prepare control bits. */
3445	skb_reserve(skb, MAX_TCP_HEADER);
3446	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3447			     TCPHDR_ACK | TCPHDR_RST);
3448	tcp_mstamp_refresh(tcp_sk(sk));
3449	/* Send it off. */
3450	if (tcp_transmit_skb(sk, skb, 0, priority))
3451		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3452
3453	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3454	 * skb here is different to the troublesome skb, so use NULL
3455	 */
3456	trace_tcp_send_reset(sk, NULL);
3457}
3458
3459/* Send a crossed SYN-ACK during socket establishment.
3460 * WARNING: This routine must only be called when we have already sent
3461 * a SYN packet that crossed the incoming SYN that caused this routine
3462 * to get called. If this assumption fails then the initial rcv_wnd
3463 * and rcv_wscale values will not be correct.
3464 */
3465int tcp_send_synack(struct sock *sk)
3466{
3467	struct sk_buff *skb;
3468
3469	skb = tcp_rtx_queue_head(sk);
3470	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3471		pr_err("%s: wrong queue state\n", __func__);
3472		return -EFAULT;
3473	}
3474	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3475		if (skb_cloned(skb)) {
3476			struct sk_buff *nskb;
3477
3478			tcp_skb_tsorted_save(skb) {
3479				nskb = skb_copy(skb, GFP_ATOMIC);
3480			} tcp_skb_tsorted_restore(skb);
3481			if (!nskb)
3482				return -ENOMEM;
3483			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3484			tcp_highest_sack_replace(sk, skb, nskb);
3485			tcp_rtx_queue_unlink_and_free(skb, sk);
3486			__skb_header_release(nskb);
3487			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3488			sk_wmem_queued_add(sk, nskb->truesize);
3489			sk_mem_charge(sk, nskb->truesize);
3490			skb = nskb;
3491		}
3492
3493		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3494		tcp_ecn_send_synack(sk, skb);
3495	}
3496	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3497}
3498
3499/**
3500 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3501 * @sk: listener socket
3502 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3503 *       should not use it again.
3504 * @req: request_sock pointer
3505 * @foc: cookie for tcp fast open
3506 * @synack_type: Type of synack to prepare
3507 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3508 */
3509struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3510				struct request_sock *req,
3511				struct tcp_fastopen_cookie *foc,
3512				enum tcp_synack_type synack_type,
3513				struct sk_buff *syn_skb)
3514{
3515	struct inet_request_sock *ireq = inet_rsk(req);
3516	const struct tcp_sock *tp = tcp_sk(sk);
3517	struct tcp_md5sig_key *md5 = NULL;
3518	struct tcp_out_options opts;
 
3519	struct sk_buff *skb;
3520	int tcp_header_size;
3521	struct tcphdr *th;
3522	int mss;
3523	u64 now;
3524
3525	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3526	if (unlikely(!skb)) {
3527		dst_release(dst);
3528		return NULL;
3529	}
3530	/* Reserve space for headers. */
3531	skb_reserve(skb, MAX_TCP_HEADER);
3532
3533	switch (synack_type) {
3534	case TCP_SYNACK_NORMAL:
3535		skb_set_owner_w(skb, req_to_sk(req));
3536		break;
3537	case TCP_SYNACK_COOKIE:
3538		/* Under synflood, we do not attach skb to a socket,
3539		 * to avoid false sharing.
3540		 */
3541		break;
3542	case TCP_SYNACK_FASTOPEN:
3543		/* sk is a const pointer, because we want to express multiple
3544		 * cpu might call us concurrently.
3545		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3546		 */
3547		skb_set_owner_w(skb, (struct sock *)sk);
3548		break;
3549	}
3550	skb_dst_set(skb, dst);
3551
3552	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3553
3554	memset(&opts, 0, sizeof(opts));
3555	now = tcp_clock_ns();
3556#ifdef CONFIG_SYN_COOKIES
3557	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3558		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
 
3559	else
3560#endif
3561	{
3562		skb->skb_mstamp_ns = now;
3563		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3564			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3565	}
3566
3567#ifdef CONFIG_TCP_MD5SIG
3568	rcu_read_lock();
3569	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3570#endif
3571	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572	/* bpf program will be interested in the tcp_flags */
3573	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3574	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3575					     foc, synack_type,
3576					     syn_skb) + sizeof(*th);
3577
3578	skb_push(skb, tcp_header_size);
3579	skb_reset_transport_header(skb);
3580
3581	th = (struct tcphdr *)skb->data;
3582	memset(th, 0, sizeof(struct tcphdr));
3583	th->syn = 1;
3584	th->ack = 1;
3585	tcp_ecn_make_synack(req, th);
3586	th->source = htons(ireq->ir_num);
3587	th->dest = ireq->ir_rmt_port;
3588	skb->mark = ireq->ir_mark;
3589	skb->ip_summed = CHECKSUM_PARTIAL;
3590	th->seq = htonl(tcp_rsk(req)->snt_isn);
3591	/* XXX data is queued and acked as is. No buffer/window check */
3592	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3593
3594	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3595	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3596	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3597	th->doff = (tcp_header_size >> 2);
3598	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3599
3600#ifdef CONFIG_TCP_MD5SIG
3601	/* Okay, we have all we need - do the md5 hash if needed */
3602	if (md5)
 
3603		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3604					       md5, req_to_sk(req), skb);
 
 
 
 
 
 
 
 
 
3605	rcu_read_unlock();
3606#endif
3607
3608	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3609				synack_type, &opts);
3610
3611	skb->skb_mstamp_ns = now;
3612	tcp_add_tx_delay(skb, tp);
3613
3614	return skb;
3615}
3616EXPORT_SYMBOL(tcp_make_synack);
3617
3618static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3619{
3620	struct inet_connection_sock *icsk = inet_csk(sk);
3621	const struct tcp_congestion_ops *ca;
3622	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3623
3624	if (ca_key == TCP_CA_UNSPEC)
3625		return;
3626
3627	rcu_read_lock();
3628	ca = tcp_ca_find_key(ca_key);
3629	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3630		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3631		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3632		icsk->icsk_ca_ops = ca;
3633	}
3634	rcu_read_unlock();
3635}
3636
3637/* Do all connect socket setups that can be done AF independent. */
3638static void tcp_connect_init(struct sock *sk)
3639{
3640	const struct dst_entry *dst = __sk_dst_get(sk);
3641	struct tcp_sock *tp = tcp_sk(sk);
3642	__u8 rcv_wscale;
3643	u32 rcv_wnd;
3644
3645	/* We'll fix this up when we get a response from the other end.
3646	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3647	 */
3648	tp->tcp_header_len = sizeof(struct tcphdr);
3649	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3650		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3651
3652#ifdef CONFIG_TCP_MD5SIG
3653	if (tp->af_specific->md5_lookup(sk, sk))
3654		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3655#endif
3656
3657	/* If user gave his TCP_MAXSEG, record it to clamp */
3658	if (tp->rx_opt.user_mss)
3659		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3660	tp->max_window = 0;
3661	tcp_mtup_init(sk);
3662	tcp_sync_mss(sk, dst_mtu(dst));
3663
3664	tcp_ca_dst_init(sk, dst);
3665
3666	if (!tp->window_clamp)
3667		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3668	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3669
3670	tcp_initialize_rcv_mss(sk);
3671
3672	/* limit the window selection if the user enforce a smaller rx buffer */
3673	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3674	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3675		tp->window_clamp = tcp_full_space(sk);
3676
3677	rcv_wnd = tcp_rwnd_init_bpf(sk);
3678	if (rcv_wnd == 0)
3679		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3680
3681	tcp_select_initial_window(sk, tcp_full_space(sk),
3682				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3683				  &tp->rcv_wnd,
3684				  &tp->window_clamp,
3685				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3686				  &rcv_wscale,
3687				  rcv_wnd);
3688
3689	tp->rx_opt.rcv_wscale = rcv_wscale;
3690	tp->rcv_ssthresh = tp->rcv_wnd;
3691
3692	sk->sk_err = 0;
3693	sock_reset_flag(sk, SOCK_DONE);
3694	tp->snd_wnd = 0;
3695	tcp_init_wl(tp, 0);
3696	tcp_write_queue_purge(sk);
3697	tp->snd_una = tp->write_seq;
3698	tp->snd_sml = tp->write_seq;
3699	tp->snd_up = tp->write_seq;
3700	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3701
3702	if (likely(!tp->repair))
3703		tp->rcv_nxt = 0;
3704	else
3705		tp->rcv_tstamp = tcp_jiffies32;
3706	tp->rcv_wup = tp->rcv_nxt;
3707	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3708
3709	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3710	inet_csk(sk)->icsk_retransmits = 0;
3711	tcp_clear_retrans(tp);
3712}
3713
3714static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3715{
3716	struct tcp_sock *tp = tcp_sk(sk);
3717	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3718
3719	tcb->end_seq += skb->len;
3720	__skb_header_release(skb);
3721	sk_wmem_queued_add(sk, skb->truesize);
3722	sk_mem_charge(sk, skb->truesize);
3723	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3724	tp->packets_out += tcp_skb_pcount(skb);
3725}
3726
3727/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3728 * queue a data-only packet after the regular SYN, such that regular SYNs
3729 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3730 * only the SYN sequence, the data are retransmitted in the first ACK.
3731 * If cookie is not cached or other error occurs, falls back to send a
3732 * regular SYN with Fast Open cookie request option.
3733 */
3734static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3735{
 
3736	struct tcp_sock *tp = tcp_sk(sk);
3737	struct tcp_fastopen_request *fo = tp->fastopen_req;
3738	int space, err = 0;
3739	struct sk_buff *syn_data;
 
3740
3741	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3742	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3743		goto fallback;
3744
3745	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3746	 * user-MSS. Reserve maximum option space for middleboxes that add
3747	 * private TCP options. The cost is reduced data space in SYN :(
3748	 */
3749	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
 
 
3750
3751	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3752		MAX_TCP_OPTION_SPACE;
3753
3754	space = min_t(size_t, space, fo->size);
3755
3756	/* limit to order-0 allocations */
3757	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3758
3759	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
 
3760	if (!syn_data)
3761		goto fallback;
3762	syn_data->ip_summed = CHECKSUM_PARTIAL;
3763	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3764	if (space) {
3765		int copied = copy_from_iter(skb_put(syn_data, space), space,
3766					    &fo->data->msg_iter);
3767		if (unlikely(!copied)) {
 
 
 
 
3768			tcp_skb_tsorted_anchor_cleanup(syn_data);
3769			kfree_skb(syn_data);
3770			goto fallback;
3771		}
3772		if (copied != space) {
3773			skb_trim(syn_data, copied);
3774			space = copied;
3775		}
 
3776		skb_zcopy_set(syn_data, fo->uarg, NULL);
3777	}
3778	/* No more data pending in inet_wait_for_connect() */
3779	if (space == fo->size)
3780		fo->data = NULL;
3781	fo->copied = space;
3782
3783	tcp_connect_queue_skb(sk, syn_data);
3784	if (syn_data->len)
3785		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3786
3787	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3788
3789	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3790
3791	/* Now full SYN+DATA was cloned and sent (or not),
3792	 * remove the SYN from the original skb (syn_data)
3793	 * we keep in write queue in case of a retransmit, as we
3794	 * also have the SYN packet (with no data) in the same queue.
3795	 */
3796	TCP_SKB_CB(syn_data)->seq++;
3797	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3798	if (!err) {
3799		tp->syn_data = (fo->copied > 0);
3800		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3801		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3802		goto done;
3803	}
3804
3805	/* data was not sent, put it in write_queue */
3806	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3807	tp->packets_out -= tcp_skb_pcount(syn_data);
3808
3809fallback:
3810	/* Send a regular SYN with Fast Open cookie request option */
3811	if (fo->cookie.len > 0)
3812		fo->cookie.len = 0;
3813	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3814	if (err)
3815		tp->syn_fastopen = 0;
3816done:
3817	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3818	return err;
3819}
3820
3821/* Build a SYN and send it off. */
3822int tcp_connect(struct sock *sk)
3823{
3824	struct tcp_sock *tp = tcp_sk(sk);
3825	struct sk_buff *buff;
3826	int err;
3827
3828	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3830	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3831		return -EHOSTUNREACH; /* Routing failure or similar. */
3832
3833	tcp_connect_init(sk);
3834
3835	if (unlikely(tp->repair)) {
3836		tcp_finish_connect(sk, NULL);
3837		return 0;
3838	}
3839
3840	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3841	if (unlikely(!buff))
3842		return -ENOBUFS;
3843
3844	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3845	tcp_mstamp_refresh(tp);
3846	tp->retrans_stamp = tcp_time_stamp(tp);
3847	tcp_connect_queue_skb(sk, buff);
3848	tcp_ecn_send_syn(sk, buff);
3849	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3850
3851	/* Send off SYN; include data in Fast Open. */
3852	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3853	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3854	if (err == -ECONNREFUSED)
3855		return err;
3856
3857	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3858	 * in order to make this packet get counted in tcpOutSegs.
3859	 */
3860	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3861	tp->pushed_seq = tp->write_seq;
3862	buff = tcp_send_head(sk);
3863	if (unlikely(buff)) {
3864		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3865		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3866	}
3867	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3868
3869	/* Timer for repeating the SYN until an answer. */
3870	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3871				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3872	return 0;
3873}
3874EXPORT_SYMBOL(tcp_connect);
3875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3876/* Send out a delayed ack, the caller does the policy checking
3877 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3878 * for details.
3879 */
3880void tcp_send_delayed_ack(struct sock *sk)
3881{
3882	struct inet_connection_sock *icsk = inet_csk(sk);
3883	int ato = icsk->icsk_ack.ato;
3884	unsigned long timeout;
3885
3886	if (ato > TCP_DELACK_MIN) {
3887		const struct tcp_sock *tp = tcp_sk(sk);
3888		int max_ato = HZ / 2;
3889
3890		if (inet_csk_in_pingpong_mode(sk) ||
3891		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3892			max_ato = TCP_DELACK_MAX;
3893
3894		/* Slow path, intersegment interval is "high". */
3895
3896		/* If some rtt estimate is known, use it to bound delayed ack.
3897		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3898		 * directly.
3899		 */
3900		if (tp->srtt_us) {
3901			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3902					TCP_DELACK_MIN);
3903
3904			if (rtt < max_ato)
3905				max_ato = rtt;
3906		}
3907
3908		ato = min(ato, max_ato);
3909	}
3910
3911	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3912
3913	/* Stay within the limit we were given */
3914	timeout = jiffies + ato;
3915
3916	/* Use new timeout only if there wasn't a older one earlier. */
3917	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3918		/* If delack timer is about to expire, send ACK now. */
3919		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3920			tcp_send_ack(sk);
3921			return;
3922		}
3923
3924		if (!time_before(timeout, icsk->icsk_ack.timeout))
3925			timeout = icsk->icsk_ack.timeout;
3926	}
3927	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3928	icsk->icsk_ack.timeout = timeout;
3929	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3930}
3931
3932/* This routine sends an ack and also updates the window. */
3933void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3934{
3935	struct sk_buff *buff;
3936
3937	/* If we have been reset, we may not send again. */
3938	if (sk->sk_state == TCP_CLOSE)
3939		return;
3940
3941	/* We are not putting this on the write queue, so
3942	 * tcp_transmit_skb() will set the ownership to this
3943	 * sock.
3944	 */
3945	buff = alloc_skb(MAX_TCP_HEADER,
3946			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3947	if (unlikely(!buff)) {
3948		struct inet_connection_sock *icsk = inet_csk(sk);
3949		unsigned long delay;
3950
3951		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3952		if (delay < TCP_RTO_MAX)
3953			icsk->icsk_ack.retry++;
3954		inet_csk_schedule_ack(sk);
3955		icsk->icsk_ack.ato = TCP_ATO_MIN;
3956		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3957		return;
3958	}
3959
3960	/* Reserve space for headers and prepare control bits. */
3961	skb_reserve(buff, MAX_TCP_HEADER);
3962	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3963
3964	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3965	 * too much.
3966	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3967	 */
3968	skb_set_tcp_pure_ack(buff);
3969
3970	/* Send it off, this clears delayed acks for us. */
3971	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3972}
3973EXPORT_SYMBOL_GPL(__tcp_send_ack);
3974
3975void tcp_send_ack(struct sock *sk)
3976{
3977	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3978}
3979
3980/* This routine sends a packet with an out of date sequence
3981 * number. It assumes the other end will try to ack it.
3982 *
3983 * Question: what should we make while urgent mode?
3984 * 4.4BSD forces sending single byte of data. We cannot send
3985 * out of window data, because we have SND.NXT==SND.MAX...
3986 *
3987 * Current solution: to send TWO zero-length segments in urgent mode:
3988 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3989 * out-of-date with SND.UNA-1 to probe window.
3990 */
3991static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3992{
3993	struct tcp_sock *tp = tcp_sk(sk);
3994	struct sk_buff *skb;
3995
3996	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3997	skb = alloc_skb(MAX_TCP_HEADER,
3998			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3999	if (!skb)
4000		return -1;
4001
4002	/* Reserve space for headers and set control bits. */
4003	skb_reserve(skb, MAX_TCP_HEADER);
4004	/* Use a previous sequence.  This should cause the other
4005	 * end to send an ack.  Don't queue or clone SKB, just
4006	 * send it.
4007	 */
4008	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4009	NET_INC_STATS(sock_net(sk), mib);
4010	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4011}
4012
4013/* Called from setsockopt( ... TCP_REPAIR ) */
4014void tcp_send_window_probe(struct sock *sk)
4015{
4016	if (sk->sk_state == TCP_ESTABLISHED) {
4017		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4018		tcp_mstamp_refresh(tcp_sk(sk));
4019		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4020	}
4021}
4022
4023/* Initiate keepalive or window probe from timer. */
4024int tcp_write_wakeup(struct sock *sk, int mib)
4025{
4026	struct tcp_sock *tp = tcp_sk(sk);
4027	struct sk_buff *skb;
4028
4029	if (sk->sk_state == TCP_CLOSE)
4030		return -1;
4031
4032	skb = tcp_send_head(sk);
4033	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4034		int err;
4035		unsigned int mss = tcp_current_mss(sk);
4036		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4037
4038		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4039			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4040
4041		/* We are probing the opening of a window
4042		 * but the window size is != 0
4043		 * must have been a result SWS avoidance ( sender )
4044		 */
4045		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4046		    skb->len > mss) {
4047			seg_size = min(seg_size, mss);
4048			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4049			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4050					 skb, seg_size, mss, GFP_ATOMIC))
4051				return -1;
4052		} else if (!tcp_skb_pcount(skb))
4053			tcp_set_skb_tso_segs(skb, mss);
4054
4055		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4056		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4057		if (!err)
4058			tcp_event_new_data_sent(sk, skb);
4059		return err;
4060	} else {
4061		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4062			tcp_xmit_probe_skb(sk, 1, mib);
4063		return tcp_xmit_probe_skb(sk, 0, mib);
4064	}
4065}
4066
4067/* A window probe timeout has occurred.  If window is not closed send
4068 * a partial packet else a zero probe.
4069 */
4070void tcp_send_probe0(struct sock *sk)
4071{
4072	struct inet_connection_sock *icsk = inet_csk(sk);
4073	struct tcp_sock *tp = tcp_sk(sk);
4074	struct net *net = sock_net(sk);
4075	unsigned long timeout;
4076	int err;
4077
4078	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4079
4080	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4081		/* Cancel probe timer, if it is not required. */
4082		icsk->icsk_probes_out = 0;
4083		icsk->icsk_backoff = 0;
4084		icsk->icsk_probes_tstamp = 0;
4085		return;
4086	}
4087
4088	icsk->icsk_probes_out++;
4089	if (err <= 0) {
4090		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4091			icsk->icsk_backoff++;
4092		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4093	} else {
4094		/* If packet was not sent due to local congestion,
4095		 * Let senders fight for local resources conservatively.
4096		 */
4097		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4098	}
4099
4100	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4101	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4102}
4103
4104int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4105{
4106	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4107	struct flowi fl;
4108	int res;
4109
4110	tcp_rsk(req)->txhash = net_tx_rndhash();
 
 
4111	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4112				  NULL);
4113	if (!res) {
4114		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4115		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4116		if (unlikely(tcp_passive_fastopen(sk)))
4117			tcp_sk(sk)->total_retrans++;
 
 
 
 
 
4118		trace_tcp_retransmit_synack(sk, req);
4119	}
4120	return res;
4121}
4122EXPORT_SYMBOL(tcp_rtx_synack);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  24 *				:	Fragmentation on mtu decrease
  25 *				:	Segment collapse on retransmit
  26 *				:	AF independence
  27 *
  28 *		Linus Torvalds	:	send_delayed_ack
  29 *		David S. Miller	:	Charge memory using the right skb
  30 *					during syn/ack processing.
  31 *		David S. Miller :	Output engine completely rewritten.
  32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  33 *		Cacophonix Gaul :	draft-minshall-nagle-01
  34 *		J Hadi Salim	:	ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55	u64 val = tcp_clock_ns();
  56
  57	tp->tcp_clock_cache = val;
  58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62			   int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67	struct inet_connection_sock *icsk = inet_csk(sk);
  68	struct tcp_sock *tp = tcp_sk(sk);
  69	unsigned int prior_packets = tp->packets_out;
  70
  71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73	__skb_unlink(skb, &sk->sk_write_queue);
  74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76	if (tp->highest_sack == NULL)
  77		tp->highest_sack = skb;
  78
  79	tp->packets_out += tcp_skb_pcount(skb);
  80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  81		tcp_rearm_rto(sk);
  82
  83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84		      tcp_skb_pcount(skb));
  85	tcp_check_space(sk);
  86}
  87
  88/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  89 * window scaling factor due to loss of precision.
  90 * If window has been shrunk, what should we make? It is not clear at all.
  91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  93 * invalid. OK, let's make this for now:
  94 */
  95static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  96{
  97	const struct tcp_sock *tp = tcp_sk(sk);
  98
  99	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
 100	    (tp->rx_opt.wscale_ok &&
 101	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 102		return tp->snd_nxt;
 103	else
 104		return tcp_wnd_end(tp);
 105}
 106
 107/* Calculate mss to advertise in SYN segment.
 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 109 *
 110 * 1. It is independent of path mtu.
 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 113 *    attached devices, because some buggy hosts are confused by
 114 *    large MSS.
 115 * 4. We do not make 3, we advertise MSS, calculated from first
 116 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 117 *    This may be overridden via information stored in routing table.
 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 119 *    probably even Jumbo".
 120 */
 121static __u16 tcp_advertise_mss(struct sock *sk)
 122{
 123	struct tcp_sock *tp = tcp_sk(sk);
 124	const struct dst_entry *dst = __sk_dst_get(sk);
 125	int mss = tp->advmss;
 126
 127	if (dst) {
 128		unsigned int metric = dst_metric_advmss(dst);
 129
 130		if (metric < mss) {
 131			mss = metric;
 132			tp->advmss = mss;
 133		}
 134	}
 135
 136	return (__u16)mss;
 137}
 138
 139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 140 * This is the first part of cwnd validation mechanism.
 141 */
 142void tcp_cwnd_restart(struct sock *sk, s32 delta)
 143{
 144	struct tcp_sock *tp = tcp_sk(sk);
 145	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 146	u32 cwnd = tcp_snd_cwnd(tp);
 147
 148	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 149
 150	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 151	restart_cwnd = min(restart_cwnd, cwnd);
 152
 153	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 154		cwnd >>= 1;
 155	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
 156	tp->snd_cwnd_stamp = tcp_jiffies32;
 157	tp->snd_cwnd_used = 0;
 158}
 159
 160/* Congestion state accounting after a packet has been sent. */
 161static void tcp_event_data_sent(struct tcp_sock *tp,
 162				struct sock *sk)
 163{
 164	struct inet_connection_sock *icsk = inet_csk(sk);
 165	const u32 now = tcp_jiffies32;
 166
 167	if (tcp_packets_in_flight(tp) == 0)
 168		tcp_ca_event(sk, CA_EVENT_TX_START);
 169
 170	tp->lsndtime = now;
 171
 172	/* If it is a reply for ato after last received
 173	 * packet, increase pingpong count.
 174	 */
 175	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 
 176		inet_csk_inc_pingpong_cnt(sk);
 
 
 177}
 178
 179/* Account for an ACK we sent. */
 180static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
 
 181{
 182	struct tcp_sock *tp = tcp_sk(sk);
 183
 184	if (unlikely(tp->compressed_ack)) {
 185		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 186			      tp->compressed_ack);
 187		tp->compressed_ack = 0;
 188		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 189			__sock_put(sk);
 190	}
 191
 192	if (unlikely(rcv_nxt != tp->rcv_nxt))
 193		return;  /* Special ACK sent by DCTCP to reflect ECN */
 194	tcp_dec_quickack_mode(sk);
 195	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = rounddown(space, mss);
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 233
 234	if (init_rcv_wnd)
 235		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 236
 237	*rcv_wscale = 0;
 238	if (wscale_ok) {
 239		/* Set window scaling on max possible window */
 240		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 241		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
 242		space = min_t(u32, space, *window_clamp);
 243		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 244				      0, TCP_MAX_WSCALE);
 245	}
 246	/* Set the clamp no higher than max representable value */
 247	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 248}
 249EXPORT_SYMBOL(tcp_select_initial_window);
 250
 251/* Chose a new window to advertise, update state in tcp_sock for the
 252 * socket, and return result with RFC1323 scaling applied.  The return
 253 * value can be stuffed directly into th->window for an outgoing
 254 * frame.
 255 */
 256static u16 tcp_select_window(struct sock *sk)
 257{
 258	struct tcp_sock *tp = tcp_sk(sk);
 259	struct net *net = sock_net(sk);
 260	u32 old_win = tp->rcv_wnd;
 261	u32 cur_win, new_win;
 
 262
 263	/* Make the window 0 if we failed to queue the data because we
 264	 * are out of memory. The window is temporary, so we don't store
 265	 * it on the socket.
 266	 */
 267	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
 268		return 0;
 269
 270	cur_win = tcp_receive_window(tp);
 271	new_win = __tcp_select_window(sk);
 272	if (new_win < cur_win) {
 273		/* Danger Will Robinson!
 274		 * Don't update rcv_wup/rcv_wnd here or else
 275		 * we will not be able to advertise a zero
 276		 * window in time.  --DaveM
 277		 *
 278		 * Relax Will Robinson.
 279		 */
 280		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
 281			/* Never shrink the offered window */
 282			if (new_win == 0)
 283				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
 284			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 285		}
 286	}
 287
 288	tp->rcv_wnd = new_win;
 289	tp->rcv_wup = tp->rcv_nxt;
 290
 291	/* Make sure we do not exceed the maximum possible
 292	 * scaled window.
 293	 */
 294	if (!tp->rx_opt.rcv_wscale &&
 295	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
 296		new_win = min(new_win, MAX_TCP_WINDOW);
 297	else
 298		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 299
 300	/* RFC1323 scaling applied */
 301	new_win >>= tp->rx_opt.rcv_wscale;
 302
 303	/* If we advertise zero window, disable fast path. */
 304	if (new_win == 0) {
 305		tp->pred_flags = 0;
 306		if (old_win)
 307			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
 
 308	} else if (old_win == 0) {
 309		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
 310	}
 311
 312	return new_win;
 313}
 314
 315/* Packet ECN state for a SYN-ACK */
 316static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 317{
 318	const struct tcp_sock *tp = tcp_sk(sk);
 319
 320	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 321	if (!(tp->ecn_flags & TCP_ECN_OK))
 322		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 323	else if (tcp_ca_needs_ecn(sk) ||
 324		 tcp_bpf_ca_needs_ecn(sk))
 325		INET_ECN_xmit(sk);
 326}
 327
 328/* Packet ECN state for a SYN.  */
 329static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 330{
 331	struct tcp_sock *tp = tcp_sk(sk);
 332	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 333	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
 334		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 335
 336	if (!use_ecn) {
 337		const struct dst_entry *dst = __sk_dst_get(sk);
 338
 339		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 340			use_ecn = true;
 341	}
 342
 343	tp->ecn_flags = 0;
 344
 345	if (use_ecn) {
 346		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 347		tp->ecn_flags = TCP_ECN_OK;
 348		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 349			INET_ECN_xmit(sk);
 350	}
 351}
 352
 353static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 354{
 355	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
 356		/* tp->ecn_flags are cleared at a later point in time when
 357		 * SYN ACK is ultimatively being received.
 358		 */
 359		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 360}
 361
 362static void
 363tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 364{
 365	if (inet_rsk(req)->ecn_ok)
 366		th->ece = 1;
 367}
 368
 369/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 370 * be sent.
 371 */
 372static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 373			 struct tcphdr *th, int tcp_header_len)
 374{
 375	struct tcp_sock *tp = tcp_sk(sk);
 376
 377	if (tp->ecn_flags & TCP_ECN_OK) {
 378		/* Not-retransmitted data segment: set ECT and inject CWR. */
 379		if (skb->len != tcp_header_len &&
 380		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 381			INET_ECN_xmit(sk);
 382			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 383				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 384				th->cwr = 1;
 385				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 386			}
 387		} else if (!tcp_ca_needs_ecn(sk)) {
 388			/* ACK or retransmitted segment: clear ECT|CE */
 389			INET_ECN_dontxmit(sk);
 390		}
 391		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 392			th->ece = 1;
 393	}
 394}
 395
 396/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 397 * auto increment end seqno.
 398 */
 399static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 400{
 401	skb->ip_summed = CHECKSUM_PARTIAL;
 402
 403	TCP_SKB_CB(skb)->tcp_flags = flags;
 
 404
 405	tcp_skb_pcount_set(skb, 1);
 406
 407	TCP_SKB_CB(skb)->seq = seq;
 408	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 409		seq++;
 410	TCP_SKB_CB(skb)->end_seq = seq;
 411}
 412
 413static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 414{
 415	return tp->snd_una != tp->snd_up;
 416}
 417
 418#define OPTION_SACK_ADVERTISE	BIT(0)
 419#define OPTION_TS		BIT(1)
 420#define OPTION_MD5		BIT(2)
 421#define OPTION_WSCALE		BIT(3)
 422#define OPTION_FAST_OPEN_COOKIE	BIT(8)
 423#define OPTION_SMC		BIT(9)
 424#define OPTION_MPTCP		BIT(10)
 425#define OPTION_AO		BIT(11)
 426
 427static void smc_options_write(__be32 *ptr, u16 *options)
 428{
 429#if IS_ENABLED(CONFIG_SMC)
 430	if (static_branch_unlikely(&tcp_have_smc)) {
 431		if (unlikely(OPTION_SMC & *options)) {
 432			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 433				       (TCPOPT_NOP  << 16) |
 434				       (TCPOPT_EXP <<  8) |
 435				       (TCPOLEN_EXP_SMC_BASE));
 436			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 437		}
 438	}
 439#endif
 440}
 441
 442struct tcp_out_options {
 443	u16 options;		/* bit field of OPTION_* */
 444	u16 mss;		/* 0 to disable */
 445	u8 ws;			/* window scale, 0 to disable */
 446	u8 num_sack_blocks;	/* number of SACK blocks to include */
 447	u8 hash_size;		/* bytes in hash_location */
 448	u8 bpf_opt_len;		/* length of BPF hdr option */
 449	__u8 *hash_location;	/* temporary pointer, overloaded */
 450	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 451	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 452	struct mptcp_out_options mptcp;
 453};
 454
 455static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
 456				struct tcp_sock *tp,
 457				struct tcp_out_options *opts)
 458{
 459#if IS_ENABLED(CONFIG_MPTCP)
 460	if (unlikely(OPTION_MPTCP & opts->options))
 461		mptcp_write_options(th, ptr, tp, &opts->mptcp);
 462#endif
 463}
 464
 465#ifdef CONFIG_CGROUP_BPF
 466static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
 467					enum tcp_synack_type synack_type)
 468{
 469	if (unlikely(!skb))
 470		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
 471
 472	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
 473		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
 474
 475	return 0;
 476}
 477
 478/* req, syn_skb and synack_type are used when writing synack */
 479static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 480				  struct request_sock *req,
 481				  struct sk_buff *syn_skb,
 482				  enum tcp_synack_type synack_type,
 483				  struct tcp_out_options *opts,
 484				  unsigned int *remaining)
 485{
 486	struct bpf_sock_ops_kern sock_ops;
 487	int err;
 488
 489	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 490					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
 491	    !*remaining)
 492		return;
 493
 494	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
 495
 496	/* init sock_ops */
 497	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 498
 499	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
 500
 501	if (req) {
 502		/* The listen "sk" cannot be passed here because
 503		 * it is not locked.  It would not make too much
 504		 * sense to do bpf_setsockopt(listen_sk) based
 505		 * on individual connection request also.
 506		 *
 507		 * Thus, "req" is passed here and the cgroup-bpf-progs
 508		 * of the listen "sk" will be run.
 509		 *
 510		 * "req" is also used here for fastopen even the "sk" here is
 511		 * a fullsock "child" sk.  It is to keep the behavior
 512		 * consistent between fastopen and non-fastopen on
 513		 * the bpf programming side.
 514		 */
 515		sock_ops.sk = (struct sock *)req;
 516		sock_ops.syn_skb = syn_skb;
 517	} else {
 518		sock_owned_by_me(sk);
 519
 520		sock_ops.is_fullsock = 1;
 521		sock_ops.sk = sk;
 522	}
 523
 524	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 525	sock_ops.remaining_opt_len = *remaining;
 526	/* tcp_current_mss() does not pass a skb */
 527	if (skb)
 528		bpf_skops_init_skb(&sock_ops, skb, 0);
 529
 530	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 531
 532	if (err || sock_ops.remaining_opt_len == *remaining)
 533		return;
 534
 535	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
 536	/* round up to 4 bytes */
 537	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
 538
 539	*remaining -= opts->bpf_opt_len;
 540}
 541
 542static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 543				    struct request_sock *req,
 544				    struct sk_buff *syn_skb,
 545				    enum tcp_synack_type synack_type,
 546				    struct tcp_out_options *opts)
 547{
 548	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
 549	struct bpf_sock_ops_kern sock_ops;
 550	int err;
 551
 552	if (likely(!max_opt_len))
 553		return;
 554
 555	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 556
 557	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
 558
 559	if (req) {
 560		sock_ops.sk = (struct sock *)req;
 561		sock_ops.syn_skb = syn_skb;
 562	} else {
 563		sock_owned_by_me(sk);
 564
 565		sock_ops.is_fullsock = 1;
 566		sock_ops.sk = sk;
 567	}
 568
 569	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 570	sock_ops.remaining_opt_len = max_opt_len;
 571	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
 572	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
 573
 574	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 575
 576	if (err)
 577		nr_written = 0;
 578	else
 579		nr_written = max_opt_len - sock_ops.remaining_opt_len;
 580
 581	if (nr_written < max_opt_len)
 582		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
 583		       max_opt_len - nr_written);
 584}
 585#else
 586static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 587				  struct request_sock *req,
 588				  struct sk_buff *syn_skb,
 589				  enum tcp_synack_type synack_type,
 590				  struct tcp_out_options *opts,
 591				  unsigned int *remaining)
 592{
 593}
 594
 595static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 596				    struct request_sock *req,
 597				    struct sk_buff *syn_skb,
 598				    enum tcp_synack_type synack_type,
 599				    struct tcp_out_options *opts)
 600{
 601}
 602#endif
 603
 604static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
 605				      const struct tcp_request_sock *tcprsk,
 606				      struct tcp_out_options *opts,
 607				      struct tcp_key *key, __be32 *ptr)
 608{
 609#ifdef CONFIG_TCP_AO
 610	u8 maclen = tcp_ao_maclen(key->ao_key);
 611
 612	if (tcprsk) {
 613		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
 614
 615		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
 616			       (tcprsk->ao_keyid << 8) |
 617			       (tcprsk->ao_rcv_next));
 618	} else {
 619		struct tcp_ao_key *rnext_key;
 620		struct tcp_ao_info *ao_info;
 621
 622		ao_info = rcu_dereference_check(tp->ao_info,
 623			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
 624		rnext_key = READ_ONCE(ao_info->rnext_key);
 625		if (WARN_ON_ONCE(!rnext_key))
 626			return ptr;
 627		*ptr++ = htonl((TCPOPT_AO << 24) |
 628			       (tcp_ao_len(key->ao_key) << 16) |
 629			       (key->ao_key->sndid << 8) |
 630			       (rnext_key->rcvid));
 631	}
 632	opts->hash_location = (__u8 *)ptr;
 633	ptr += maclen / sizeof(*ptr);
 634	if (unlikely(maclen % sizeof(*ptr))) {
 635		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
 636		ptr++;
 637	}
 638#endif
 639	return ptr;
 640}
 641
 642/* Write previously computed TCP options to the packet.
 643 *
 644 * Beware: Something in the Internet is very sensitive to the ordering of
 645 * TCP options, we learned this through the hard way, so be careful here.
 646 * Luckily we can at least blame others for their non-compliance but from
 647 * inter-operability perspective it seems that we're somewhat stuck with
 648 * the ordering which we have been using if we want to keep working with
 649 * those broken things (not that it currently hurts anybody as there isn't
 650 * particular reason why the ordering would need to be changed).
 651 *
 652 * At least SACK_PERM as the first option is known to lead to a disaster
 653 * (but it may well be that other scenarios fail similarly).
 654 */
 655static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
 656			      const struct tcp_request_sock *tcprsk,
 657			      struct tcp_out_options *opts,
 658			      struct tcp_key *key)
 659{
 660	__be32 *ptr = (__be32 *)(th + 1);
 661	u16 options = opts->options;	/* mungable copy */
 662
 663	if (tcp_key_is_md5(key)) {
 664		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 665			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 666		/* overload cookie hash location */
 667		opts->hash_location = (__u8 *)ptr;
 668		ptr += 4;
 669	} else if (tcp_key_is_ao(key)) {
 670		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
 671	}
 
 672	if (unlikely(opts->mss)) {
 673		*ptr++ = htonl((TCPOPT_MSS << 24) |
 674			       (TCPOLEN_MSS << 16) |
 675			       opts->mss);
 676	}
 677
 678	if (likely(OPTION_TS & options)) {
 679		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 680			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 681				       (TCPOLEN_SACK_PERM << 16) |
 682				       (TCPOPT_TIMESTAMP << 8) |
 683				       TCPOLEN_TIMESTAMP);
 684			options &= ~OPTION_SACK_ADVERTISE;
 685		} else {
 686			*ptr++ = htonl((TCPOPT_NOP << 24) |
 687				       (TCPOPT_NOP << 16) |
 688				       (TCPOPT_TIMESTAMP << 8) |
 689				       TCPOLEN_TIMESTAMP);
 690		}
 691		*ptr++ = htonl(opts->tsval);
 692		*ptr++ = htonl(opts->tsecr);
 693	}
 694
 695	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 696		*ptr++ = htonl((TCPOPT_NOP << 24) |
 697			       (TCPOPT_NOP << 16) |
 698			       (TCPOPT_SACK_PERM << 8) |
 699			       TCPOLEN_SACK_PERM);
 700	}
 701
 702	if (unlikely(OPTION_WSCALE & options)) {
 703		*ptr++ = htonl((TCPOPT_NOP << 24) |
 704			       (TCPOPT_WINDOW << 16) |
 705			       (TCPOLEN_WINDOW << 8) |
 706			       opts->ws);
 707	}
 708
 709	if (unlikely(opts->num_sack_blocks)) {
 710		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 711			tp->duplicate_sack : tp->selective_acks;
 712		int this_sack;
 713
 714		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 715			       (TCPOPT_NOP  << 16) |
 716			       (TCPOPT_SACK <<  8) |
 717			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 718						     TCPOLEN_SACK_PERBLOCK)));
 719
 720		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 721		     ++this_sack) {
 722			*ptr++ = htonl(sp[this_sack].start_seq);
 723			*ptr++ = htonl(sp[this_sack].end_seq);
 724		}
 725
 726		tp->rx_opt.dsack = 0;
 727	}
 728
 729	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 730		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 731		u8 *p = (u8 *)ptr;
 732		u32 len; /* Fast Open option length */
 733
 734		if (foc->exp) {
 735			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 736			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 737				     TCPOPT_FASTOPEN_MAGIC);
 738			p += TCPOLEN_EXP_FASTOPEN_BASE;
 739		} else {
 740			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 741			*p++ = TCPOPT_FASTOPEN;
 742			*p++ = len;
 743		}
 744
 745		memcpy(p, foc->val, foc->len);
 746		if ((len & 3) == 2) {
 747			p[foc->len] = TCPOPT_NOP;
 748			p[foc->len + 1] = TCPOPT_NOP;
 749		}
 750		ptr += (len + 3) >> 2;
 751	}
 752
 753	smc_options_write(ptr, &options);
 754
 755	mptcp_options_write(th, ptr, tp, opts);
 756}
 757
 758static void smc_set_option(const struct tcp_sock *tp,
 759			   struct tcp_out_options *opts,
 760			   unsigned int *remaining)
 761{
 762#if IS_ENABLED(CONFIG_SMC)
 763	if (static_branch_unlikely(&tcp_have_smc)) {
 764		if (tp->syn_smc) {
 765			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 766				opts->options |= OPTION_SMC;
 767				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 768			}
 769		}
 770	}
 771#endif
 772}
 773
 774static void smc_set_option_cond(const struct tcp_sock *tp,
 775				const struct inet_request_sock *ireq,
 776				struct tcp_out_options *opts,
 777				unsigned int *remaining)
 778{
 779#if IS_ENABLED(CONFIG_SMC)
 780	if (static_branch_unlikely(&tcp_have_smc)) {
 781		if (tp->syn_smc && ireq->smc_ok) {
 782			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 783				opts->options |= OPTION_SMC;
 784				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 785			}
 786		}
 787	}
 788#endif
 789}
 790
 791static void mptcp_set_option_cond(const struct request_sock *req,
 792				  struct tcp_out_options *opts,
 793				  unsigned int *remaining)
 794{
 795	if (rsk_is_mptcp(req)) {
 796		unsigned int size;
 797
 798		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 799			if (*remaining >= size) {
 800				opts->options |= OPTION_MPTCP;
 801				*remaining -= size;
 802			}
 803		}
 804	}
 805}
 806
 807/* Compute TCP options for SYN packets. This is not the final
 808 * network wire format yet.
 809 */
 810static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 811				struct tcp_out_options *opts,
 812				struct tcp_key *key)
 813{
 814	struct tcp_sock *tp = tcp_sk(sk);
 815	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 816	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 817	bool timestamps;
 818
 819	/* Better than switch (key.type) as it has static branches */
 820	if (tcp_key_is_md5(key)) {
 821		timestamps = false;
 822		opts->options |= OPTION_MD5;
 823		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 824	} else {
 825		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
 826		if (tcp_key_is_ao(key)) {
 827			opts->options |= OPTION_AO;
 828			remaining -= tcp_ao_len_aligned(key->ao_key);
 829		}
 830	}
 
 831
 832	/* We always get an MSS option.  The option bytes which will be seen in
 833	 * normal data packets should timestamps be used, must be in the MSS
 834	 * advertised.  But we subtract them from tp->mss_cache so that
 835	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 836	 * fact here if necessary.  If we don't do this correctly, as a
 837	 * receiver we won't recognize data packets as being full sized when we
 838	 * should, and thus we won't abide by the delayed ACK rules correctly.
 839	 * SACKs don't matter, we never delay an ACK when we have any of those
 840	 * going out.  */
 841	opts->mss = tcp_advertise_mss(sk);
 842	remaining -= TCPOLEN_MSS_ALIGNED;
 843
 844	if (likely(timestamps)) {
 845		opts->options |= OPTION_TS;
 846		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
 847		opts->tsecr = tp->rx_opt.ts_recent;
 848		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 849	}
 850	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
 851		opts->ws = tp->rx_opt.rcv_wscale;
 852		opts->options |= OPTION_WSCALE;
 853		remaining -= TCPOLEN_WSCALE_ALIGNED;
 854	}
 855	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
 856		opts->options |= OPTION_SACK_ADVERTISE;
 857		if (unlikely(!(OPTION_TS & opts->options)))
 858			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 859	}
 860
 861	if (fastopen && fastopen->cookie.len >= 0) {
 862		u32 need = fastopen->cookie.len;
 863
 864		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 865					       TCPOLEN_FASTOPEN_BASE;
 866		need = (need + 3) & ~3U;  /* Align to 32 bits */
 867		if (remaining >= need) {
 868			opts->options |= OPTION_FAST_OPEN_COOKIE;
 869			opts->fastopen_cookie = &fastopen->cookie;
 870			remaining -= need;
 871			tp->syn_fastopen = 1;
 872			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 873		}
 874	}
 875
 876	smc_set_option(tp, opts, &remaining);
 877
 878	if (sk_is_mptcp(sk)) {
 879		unsigned int size;
 880
 881		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 882			opts->options |= OPTION_MPTCP;
 883			remaining -= size;
 884		}
 885	}
 886
 887	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 888
 889	return MAX_TCP_OPTION_SPACE - remaining;
 890}
 891
 892/* Set up TCP options for SYN-ACKs. */
 893static unsigned int tcp_synack_options(const struct sock *sk,
 894				       struct request_sock *req,
 895				       unsigned int mss, struct sk_buff *skb,
 896				       struct tcp_out_options *opts,
 897				       const struct tcp_key *key,
 898				       struct tcp_fastopen_cookie *foc,
 899				       enum tcp_synack_type synack_type,
 900				       struct sk_buff *syn_skb)
 901{
 902	struct inet_request_sock *ireq = inet_rsk(req);
 903	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 904
 905	if (tcp_key_is_md5(key)) {
 
 906		opts->options |= OPTION_MD5;
 907		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 908
 909		/* We can't fit any SACK blocks in a packet with MD5 + TS
 910		 * options. There was discussion about disabling SACK
 911		 * rather than TS in order to fit in better with old,
 912		 * buggy kernels, but that was deemed to be unnecessary.
 913		 */
 914		if (synack_type != TCP_SYNACK_COOKIE)
 915			ireq->tstamp_ok &= !ireq->sack_ok;
 916	} else if (tcp_key_is_ao(key)) {
 917		opts->options |= OPTION_AO;
 918		remaining -= tcp_ao_len_aligned(key->ao_key);
 919		ireq->tstamp_ok &= !ireq->sack_ok;
 920	}
 
 921
 922	/* We always send an MSS option. */
 923	opts->mss = mss;
 924	remaining -= TCPOLEN_MSS_ALIGNED;
 925
 926	if (likely(ireq->wscale_ok)) {
 927		opts->ws = ireq->rcv_wscale;
 928		opts->options |= OPTION_WSCALE;
 929		remaining -= TCPOLEN_WSCALE_ALIGNED;
 930	}
 931	if (likely(ireq->tstamp_ok)) {
 932		opts->options |= OPTION_TS;
 933		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
 934			      tcp_rsk(req)->ts_off;
 935		opts->tsecr = READ_ONCE(req->ts_recent);
 936		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 937	}
 938	if (likely(ireq->sack_ok)) {
 939		opts->options |= OPTION_SACK_ADVERTISE;
 940		if (unlikely(!ireq->tstamp_ok))
 941			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 942	}
 943	if (foc != NULL && foc->len >= 0) {
 944		u32 need = foc->len;
 945
 946		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 947				   TCPOLEN_FASTOPEN_BASE;
 948		need = (need + 3) & ~3U;  /* Align to 32 bits */
 949		if (remaining >= need) {
 950			opts->options |= OPTION_FAST_OPEN_COOKIE;
 951			opts->fastopen_cookie = foc;
 952			remaining -= need;
 953		}
 954	}
 955
 956	mptcp_set_option_cond(req, opts, &remaining);
 957
 958	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 959
 960	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
 961			      synack_type, opts, &remaining);
 962
 963	return MAX_TCP_OPTION_SPACE - remaining;
 964}
 965
 966/* Compute TCP options for ESTABLISHED sockets. This is not the
 967 * final wire format yet.
 968 */
 969static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 970					struct tcp_out_options *opts,
 971					struct tcp_key *key)
 972{
 973	struct tcp_sock *tp = tcp_sk(sk);
 974	unsigned int size = 0;
 975	unsigned int eff_sacks;
 976
 977	opts->options = 0;
 978
 979	/* Better than switch (key.type) as it has static branches */
 980	if (tcp_key_is_md5(key)) {
 981		opts->options |= OPTION_MD5;
 982		size += TCPOLEN_MD5SIG_ALIGNED;
 983	} else if (tcp_key_is_ao(key)) {
 984		opts->options |= OPTION_AO;
 985		size += tcp_ao_len_aligned(key->ao_key);
 
 
 986	}
 
 987
 988	if (likely(tp->rx_opt.tstamp_ok)) {
 989		opts->options |= OPTION_TS;
 990		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
 991				tp->tsoffset : 0;
 992		opts->tsecr = tp->rx_opt.ts_recent;
 993		size += TCPOLEN_TSTAMP_ALIGNED;
 994	}
 995
 996	/* MPTCP options have precedence over SACK for the limited TCP
 997	 * option space because a MPTCP connection would be forced to
 998	 * fall back to regular TCP if a required multipath option is
 999	 * missing. SACK still gets a chance to use whatever space is
1000	 * left.
1001	 */
1002	if (sk_is_mptcp(sk)) {
1003		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1004		unsigned int opt_size = 0;
1005
1006		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1007					      &opts->mptcp)) {
1008			opts->options |= OPTION_MPTCP;
1009			size += opt_size;
1010		}
1011	}
1012
1013	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1014	if (unlikely(eff_sacks)) {
1015		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1016		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1017					 TCPOLEN_SACK_PERBLOCK))
1018			return size;
1019
1020		opts->num_sack_blocks =
1021			min_t(unsigned int, eff_sacks,
1022			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1023			      TCPOLEN_SACK_PERBLOCK);
1024
1025		size += TCPOLEN_SACK_BASE_ALIGNED +
1026			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1027	}
1028
1029	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1030					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1031		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1032
1033		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1034
1035		size = MAX_TCP_OPTION_SPACE - remaining;
1036	}
1037
1038	return size;
1039}
1040
1041
1042/* TCP SMALL QUEUES (TSQ)
1043 *
1044 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1045 * to reduce RTT and bufferbloat.
1046 * We do this using a special skb destructor (tcp_wfree).
1047 *
1048 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1049 * needs to be reallocated in a driver.
1050 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1051 *
1052 * Since transmit from skb destructor is forbidden, we use a tasklet
1053 * to process all sockets that eventually need to send more skbs.
1054 * We use one tasklet per cpu, with its own queue of sockets.
1055 */
1056struct tsq_tasklet {
1057	struct tasklet_struct	tasklet;
1058	struct list_head	head; /* queue of tcp sockets */
1059};
1060static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1061
1062static void tcp_tsq_write(struct sock *sk)
1063{
1064	if ((1 << sk->sk_state) &
1065	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1066	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1067		struct tcp_sock *tp = tcp_sk(sk);
1068
1069		if (tp->lost_out > tp->retrans_out &&
1070		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1071			tcp_mstamp_refresh(tp);
1072			tcp_xmit_retransmit_queue(sk);
1073		}
1074
1075		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1076			       0, GFP_ATOMIC);
1077	}
1078}
1079
1080static void tcp_tsq_handler(struct sock *sk)
1081{
1082	bh_lock_sock(sk);
1083	if (!sock_owned_by_user(sk))
1084		tcp_tsq_write(sk);
1085	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1086		sock_hold(sk);
1087	bh_unlock_sock(sk);
1088}
1089/*
1090 * One tasklet per cpu tries to send more skbs.
1091 * We run in tasklet context but need to disable irqs when
1092 * transferring tsq->head because tcp_wfree() might
1093 * interrupt us (non NAPI drivers)
1094 */
1095static void tcp_tasklet_func(struct tasklet_struct *t)
1096{
1097	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1098	LIST_HEAD(list);
1099	unsigned long flags;
1100	struct list_head *q, *n;
1101	struct tcp_sock *tp;
1102	struct sock *sk;
1103
1104	local_irq_save(flags);
1105	list_splice_init(&tsq->head, &list);
1106	local_irq_restore(flags);
1107
1108	list_for_each_safe(q, n, &list) {
1109		tp = list_entry(q, struct tcp_sock, tsq_node);
1110		list_del(&tp->tsq_node);
1111
1112		sk = (struct sock *)tp;
1113		smp_mb__before_atomic();
1114		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1115
1116		tcp_tsq_handler(sk);
1117		sk_free(sk);
1118	}
1119}
1120
1121#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1122			  TCPF_WRITE_TIMER_DEFERRED |	\
1123			  TCPF_DELACK_TIMER_DEFERRED |	\
1124			  TCPF_MTU_REDUCED_DEFERRED |	\
1125			  TCPF_ACK_DEFERRED)
1126/**
1127 * tcp_release_cb - tcp release_sock() callback
1128 * @sk: socket
1129 *
1130 * called from release_sock() to perform protocol dependent
1131 * actions before socket release.
1132 */
1133void tcp_release_cb(struct sock *sk)
1134{
1135	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1136	unsigned long nflags;
1137
1138	/* perform an atomic operation only if at least one flag is set */
1139	do {
 
1140		if (!(flags & TCP_DEFERRED_ALL))
1141			return;
1142		nflags = flags & ~TCP_DEFERRED_ALL;
1143	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1144
1145	if (flags & TCPF_TSQ_DEFERRED) {
1146		tcp_tsq_write(sk);
1147		__sock_put(sk);
1148	}
 
 
 
 
 
 
 
 
 
 
1149
1150	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1151		tcp_write_timer_handler(sk);
1152		__sock_put(sk);
1153	}
1154	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1155		tcp_delack_timer_handler(sk);
1156		__sock_put(sk);
1157	}
1158	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1159		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1160		__sock_put(sk);
1161	}
1162	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1163		tcp_send_ack(sk);
1164}
1165EXPORT_SYMBOL(tcp_release_cb);
1166
1167void __init tcp_tasklet_init(void)
1168{
1169	int i;
1170
1171	for_each_possible_cpu(i) {
1172		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1173
1174		INIT_LIST_HEAD(&tsq->head);
1175		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1176	}
1177}
1178
1179/*
1180 * Write buffer destructor automatically called from kfree_skb.
1181 * We can't xmit new skbs from this context, as we might already
1182 * hold qdisc lock.
1183 */
1184void tcp_wfree(struct sk_buff *skb)
1185{
1186	struct sock *sk = skb->sk;
1187	struct tcp_sock *tp = tcp_sk(sk);
1188	unsigned long flags, nval, oval;
1189	struct tsq_tasklet *tsq;
1190	bool empty;
1191
1192	/* Keep one reference on sk_wmem_alloc.
1193	 * Will be released by sk_free() from here or tcp_tasklet_func()
1194	 */
1195	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1196
1197	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1198	 * Wait until our queues (qdisc + devices) are drained.
1199	 * This gives :
1200	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1201	 * - chance for incoming ACK (processed by another cpu maybe)
1202	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1203	 */
1204	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1205		goto out;
1206
1207	oval = smp_load_acquire(&sk->sk_tsq_flags);
1208	do {
 
 
1209		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1210			goto out;
1211
1212		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1213	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
 
 
1214
1215	/* queue this socket to tasklet queue */
1216	local_irq_save(flags);
1217	tsq = this_cpu_ptr(&tsq_tasklet);
1218	empty = list_empty(&tsq->head);
1219	list_add(&tp->tsq_node, &tsq->head);
1220	if (empty)
1221		tasklet_schedule(&tsq->tasklet);
1222	local_irq_restore(flags);
1223	return;
 
1224out:
1225	sk_free(sk);
1226}
1227
1228/* Note: Called under soft irq.
1229 * We can call TCP stack right away, unless socket is owned by user.
1230 */
1231enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1232{
1233	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1234	struct sock *sk = (struct sock *)tp;
1235
1236	tcp_tsq_handler(sk);
1237	sock_put(sk);
1238
1239	return HRTIMER_NORESTART;
1240}
1241
1242static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1243				      u64 prior_wstamp)
1244{
1245	struct tcp_sock *tp = tcp_sk(sk);
1246
1247	if (sk->sk_pacing_status != SK_PACING_NONE) {
1248		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1249
1250		/* Original sch_fq does not pace first 10 MSS
1251		 * Note that tp->data_segs_out overflows after 2^32 packets,
1252		 * this is a minor annoyance.
1253		 */
1254		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1255			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1256			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1257
1258			/* take into account OS jitter */
1259			len_ns -= min_t(u64, len_ns / 2, credit);
1260			tp->tcp_wstamp_ns += len_ns;
1261		}
1262	}
1263	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1264}
1265
1266INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1267INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1268INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1269
1270/* This routine actually transmits TCP packets queued in by
1271 * tcp_do_sendmsg().  This is used by both the initial
1272 * transmission and possible later retransmissions.
1273 * All SKB's seen here are completely headerless.  It is our
1274 * job to build the TCP header, and pass the packet down to
1275 * IP so it can do the same plus pass the packet off to the
1276 * device.
1277 *
1278 * We are working here with either a clone of the original
1279 * SKB, or a fresh unique copy made by the retransmit engine.
1280 */
1281static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1282			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1283{
1284	const struct inet_connection_sock *icsk = inet_csk(sk);
1285	struct inet_sock *inet;
1286	struct tcp_sock *tp;
1287	struct tcp_skb_cb *tcb;
1288	struct tcp_out_options opts;
1289	unsigned int tcp_options_size, tcp_header_size;
1290	struct sk_buff *oskb = NULL;
1291	struct tcp_key key;
1292	struct tcphdr *th;
1293	u64 prior_wstamp;
1294	int err;
1295
1296	BUG_ON(!skb || !tcp_skb_pcount(skb));
1297	tp = tcp_sk(sk);
1298	prior_wstamp = tp->tcp_wstamp_ns;
1299	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1300	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1301	if (clone_it) {
 
 
1302		oskb = skb;
1303
1304		tcp_skb_tsorted_save(oskb) {
1305			if (unlikely(skb_cloned(oskb)))
1306				skb = pskb_copy(oskb, gfp_mask);
1307			else
1308				skb = skb_clone(oskb, gfp_mask);
1309		} tcp_skb_tsorted_restore(oskb);
1310
1311		if (unlikely(!skb))
1312			return -ENOBUFS;
1313		/* retransmit skbs might have a non zero value in skb->dev
1314		 * because skb->dev is aliased with skb->rbnode.rb_left
1315		 */
1316		skb->dev = NULL;
1317	}
1318
1319	inet = inet_sk(sk);
1320	tcb = TCP_SKB_CB(skb);
1321	memset(&opts, 0, sizeof(opts));
1322
1323	tcp_get_current_key(sk, &key);
1324	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1325		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1326	} else {
1327		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
 
1328		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1329		 * at receiver : This slightly improve GRO performance.
1330		 * Note that we do not force the PSH flag for non GSO packets,
1331		 * because they might be sent under high congestion events,
1332		 * and in this case it is better to delay the delivery of 1-MSS
1333		 * packets and thus the corresponding ACK packet that would
1334		 * release the following packet.
1335		 */
1336		if (tcp_skb_pcount(skb) > 1)
1337			tcb->tcp_flags |= TCPHDR_PSH;
1338	}
1339	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1340
1341	/* We set skb->ooo_okay to one if this packet can select
1342	 * a different TX queue than prior packets of this flow,
1343	 * to avoid self inflicted reorders.
1344	 * The 'other' queue decision is based on current cpu number
1345	 * if XPS is enabled, or sk->sk_txhash otherwise.
1346	 * We can switch to another (and better) queue if:
1347	 * 1) No packet with payload is in qdisc/device queues.
1348	 *    Delays in TX completion can defeat the test
1349	 *    even if packets were already sent.
1350	 * 2) Or rtx queue is empty.
1351	 *    This mitigates above case if ACK packets for
1352	 *    all prior packets were already processed.
1353	 */
1354	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1355			tcp_rtx_queue_empty(sk);
1356
1357	/* If we had to use memory reserve to allocate this skb,
1358	 * this might cause drops if packet is looped back :
1359	 * Other socket might not have SOCK_MEMALLOC.
1360	 * Packets not looped back do not care about pfmemalloc.
1361	 */
1362	skb->pfmemalloc = 0;
1363
1364	skb_push(skb, tcp_header_size);
1365	skb_reset_transport_header(skb);
1366
1367	skb_orphan(skb);
1368	skb->sk = sk;
1369	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1370	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1371
1372	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1373
1374	/* Build TCP header and checksum it. */
1375	th = (struct tcphdr *)skb->data;
1376	th->source		= inet->inet_sport;
1377	th->dest		= inet->inet_dport;
1378	th->seq			= htonl(tcb->seq);
1379	th->ack_seq		= htonl(rcv_nxt);
1380	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1381					tcb->tcp_flags);
1382
1383	th->check		= 0;
1384	th->urg_ptr		= 0;
1385
1386	/* The urg_mode check is necessary during a below snd_una win probe */
1387	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1388		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1389			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1390			th->urg = 1;
1391		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1392			th->urg_ptr = htons(0xFFFF);
1393			th->urg = 1;
1394		}
1395	}
1396
1397	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1398	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1399		th->window      = htons(tcp_select_window(sk));
1400		tcp_ecn_send(sk, skb, th, tcp_header_size);
1401	} else {
1402		/* RFC1323: The window in SYN & SYN/ACK segments
1403		 * is never scaled.
1404		 */
1405		th->window	= htons(min(tp->rcv_wnd, 65535U));
1406	}
1407
1408	tcp_options_write(th, tp, NULL, &opts, &key);
1409
1410	if (tcp_key_is_md5(&key)) {
1411#ifdef CONFIG_TCP_MD5SIG
1412		/* Calculate the MD5 hash, as we have all we need now */
1413		sk_gso_disable(sk);
 
1414		tp->af_specific->calc_md5_hash(opts.hash_location,
1415					       key.md5_key, sk, skb);
 
1416#endif
1417	} else if (tcp_key_is_ao(&key)) {
1418		int err;
1419
1420		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1421					  opts.hash_location);
1422		if (err) {
1423			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1424			return -ENOMEM;
1425		}
1426	}
1427
1428	/* BPF prog is the last one writing header option */
1429	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1430
1431	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1432			   tcp_v6_send_check, tcp_v4_send_check,
1433			   sk, skb);
1434
1435	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1436		tcp_event_ack_sent(sk, rcv_nxt);
1437
1438	if (skb->len != tcp_header_size) {
1439		tcp_event_data_sent(tp, sk);
1440		tp->data_segs_out += tcp_skb_pcount(skb);
1441		tp->bytes_sent += skb->len - tcp_header_size;
1442	}
1443
1444	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1445		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1446			      tcp_skb_pcount(skb));
1447
1448	tp->segs_out += tcp_skb_pcount(skb);
1449	skb_set_hash_from_sk(skb, sk);
1450	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1451	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1452	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1453
1454	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1455
1456	/* Cleanup our debris for IP stacks */
1457	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1458			       sizeof(struct inet6_skb_parm)));
1459
1460	tcp_add_tx_delay(skb, tp);
1461
1462	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1463				 inet6_csk_xmit, ip_queue_xmit,
1464				 sk, skb, &inet->cork.fl);
1465
1466	if (unlikely(err > 0)) {
1467		tcp_enter_cwr(sk);
1468		err = net_xmit_eval(err);
1469	}
1470	if (!err && oskb) {
1471		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1472		tcp_rate_skb_sent(sk, oskb);
1473	}
1474	return err;
1475}
1476
1477static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1478			    gfp_t gfp_mask)
1479{
1480	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1481				  tcp_sk(sk)->rcv_nxt);
1482}
1483
1484/* This routine just queues the buffer for sending.
1485 *
1486 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1487 * otherwise socket can stall.
1488 */
1489static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1490{
1491	struct tcp_sock *tp = tcp_sk(sk);
1492
1493	/* Advance write_seq and place onto the write_queue. */
1494	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1495	__skb_header_release(skb);
1496	tcp_add_write_queue_tail(sk, skb);
1497	sk_wmem_queued_add(sk, skb->truesize);
1498	sk_mem_charge(sk, skb->truesize);
1499}
1500
1501/* Initialize TSO segments for a packet. */
1502static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1503{
1504	if (skb->len <= mss_now) {
1505		/* Avoid the costly divide in the normal
1506		 * non-TSO case.
1507		 */
1508		tcp_skb_pcount_set(skb, 1);
1509		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510	} else {
1511		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1512		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1513	}
1514}
1515
1516/* Pcount in the middle of the write queue got changed, we need to do various
1517 * tweaks to fix counters
1518 */
1519static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1520{
1521	struct tcp_sock *tp = tcp_sk(sk);
1522
1523	tp->packets_out -= decr;
1524
1525	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1526		tp->sacked_out -= decr;
1527	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1528		tp->retrans_out -= decr;
1529	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1530		tp->lost_out -= decr;
1531
1532	/* Reno case is special. Sigh... */
1533	if (tcp_is_reno(tp) && decr > 0)
1534		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1535
1536	if (tp->lost_skb_hint &&
1537	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1538	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1539		tp->lost_cnt_hint -= decr;
1540
1541	tcp_verify_left_out(tp);
1542}
1543
1544static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1545{
1546	return TCP_SKB_CB(skb)->txstamp_ack ||
1547		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1548}
1549
1550static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1551{
1552	struct skb_shared_info *shinfo = skb_shinfo(skb);
1553
1554	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1555	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1556		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1557		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1558
1559		shinfo->tx_flags &= ~tsflags;
1560		shinfo2->tx_flags |= tsflags;
1561		swap(shinfo->tskey, shinfo2->tskey);
1562		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1563		TCP_SKB_CB(skb)->txstamp_ack = 0;
1564	}
1565}
1566
1567static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1568{
1569	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1570	TCP_SKB_CB(skb)->eor = 0;
1571}
1572
1573/* Insert buff after skb on the write or rtx queue of sk.  */
1574static void tcp_insert_write_queue_after(struct sk_buff *skb,
1575					 struct sk_buff *buff,
1576					 struct sock *sk,
1577					 enum tcp_queue tcp_queue)
1578{
1579	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1580		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1581	else
1582		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1583}
1584
1585/* Function to create two new TCP segments.  Shrinks the given segment
1586 * to the specified size and appends a new segment with the rest of the
1587 * packet to the list.  This won't be called frequently, I hope.
1588 * Remember, these are still headerless SKBs at this point.
1589 */
1590int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1591		 struct sk_buff *skb, u32 len,
1592		 unsigned int mss_now, gfp_t gfp)
1593{
1594	struct tcp_sock *tp = tcp_sk(sk);
1595	struct sk_buff *buff;
1596	int old_factor;
1597	long limit;
1598	int nlen;
1599	u8 flags;
1600
1601	if (WARN_ON(len > skb->len))
1602		return -EINVAL;
1603
1604	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
1605
1606	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1607	 * We need some allowance to not penalize applications setting small
1608	 * SO_SNDBUF values.
1609	 * Also allow first and last skb in retransmit queue to be split.
1610	 */
1611	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1612	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1613		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1614		     skb != tcp_rtx_queue_head(sk) &&
1615		     skb != tcp_rtx_queue_tail(sk))) {
1616		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1617		return -ENOMEM;
1618	}
1619
1620	if (skb_unclone_keeptruesize(skb, gfp))
1621		return -ENOMEM;
1622
1623	/* Get a new skb... force flag on. */
1624	buff = tcp_stream_alloc_skb(sk, gfp, true);
1625	if (!buff)
1626		return -ENOMEM; /* We'll just try again later. */
1627	skb_copy_decrypted(buff, skb);
1628	mptcp_skb_ext_copy(buff, skb);
1629
1630	sk_wmem_queued_add(sk, buff->truesize);
1631	sk_mem_charge(sk, buff->truesize);
1632	nlen = skb->len - len;
1633	buff->truesize += nlen;
1634	skb->truesize -= nlen;
1635
1636	/* Correct the sequence numbers. */
1637	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1638	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1639	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1640
1641	/* PSH and FIN should only be set in the second packet. */
1642	flags = TCP_SKB_CB(skb)->tcp_flags;
1643	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1644	TCP_SKB_CB(buff)->tcp_flags = flags;
1645	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1646	tcp_skb_fragment_eor(skb, buff);
1647
1648	skb_split(skb, buff, len);
1649
1650	skb_set_delivery_time(buff, skb->tstamp, true);
 
 
1651	tcp_fragment_tstamp(skb, buff);
1652
1653	old_factor = tcp_skb_pcount(skb);
1654
1655	/* Fix up tso_factor for both original and new SKB.  */
1656	tcp_set_skb_tso_segs(skb, mss_now);
1657	tcp_set_skb_tso_segs(buff, mss_now);
1658
1659	/* Update delivered info for the new segment */
1660	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1661
1662	/* If this packet has been sent out already, we must
1663	 * adjust the various packet counters.
1664	 */
1665	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1666		int diff = old_factor - tcp_skb_pcount(skb) -
1667			tcp_skb_pcount(buff);
1668
1669		if (diff)
1670			tcp_adjust_pcount(sk, skb, diff);
1671	}
1672
1673	/* Link BUFF into the send queue. */
1674	__skb_header_release(buff);
1675	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1676	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1677		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1678
1679	return 0;
1680}
1681
1682/* This is similar to __pskb_pull_tail(). The difference is that pulled
1683 * data is not copied, but immediately discarded.
1684 */
1685static int __pskb_trim_head(struct sk_buff *skb, int len)
1686{
1687	struct skb_shared_info *shinfo;
1688	int i, k, eat;
1689
1690	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
 
 
 
 
1691	eat = len;
1692	k = 0;
1693	shinfo = skb_shinfo(skb);
1694	for (i = 0; i < shinfo->nr_frags; i++) {
1695		int size = skb_frag_size(&shinfo->frags[i]);
1696
1697		if (size <= eat) {
1698			skb_frag_unref(skb, i);
1699			eat -= size;
1700		} else {
1701			shinfo->frags[k] = shinfo->frags[i];
1702			if (eat) {
1703				skb_frag_off_add(&shinfo->frags[k], eat);
1704				skb_frag_size_sub(&shinfo->frags[k], eat);
1705				eat = 0;
1706			}
1707			k++;
1708		}
1709	}
1710	shinfo->nr_frags = k;
1711
1712	skb->data_len -= len;
1713	skb->len = skb->data_len;
1714	return len;
1715}
1716
1717/* Remove acked data from a packet in the transmit queue. */
1718int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1719{
1720	u32 delta_truesize;
1721
1722	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1723		return -ENOMEM;
1724
1725	delta_truesize = __pskb_trim_head(skb, len);
1726
1727	TCP_SKB_CB(skb)->seq += len;
 
1728
1729	skb->truesize	   -= delta_truesize;
1730	sk_wmem_queued_add(sk, -delta_truesize);
1731	if (!skb_zcopy_pure(skb))
1732		sk_mem_uncharge(sk, delta_truesize);
 
1733
1734	/* Any change of skb->len requires recalculation of tso factor. */
1735	if (tcp_skb_pcount(skb) > 1)
1736		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1737
1738	return 0;
1739}
1740
1741/* Calculate MSS not accounting any TCP options.  */
1742static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1743{
1744	const struct tcp_sock *tp = tcp_sk(sk);
1745	const struct inet_connection_sock *icsk = inet_csk(sk);
1746	int mss_now;
1747
1748	/* Calculate base mss without TCP options:
1749	   It is MMS_S - sizeof(tcphdr) of rfc1122
1750	 */
1751	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1752
 
 
 
 
 
 
 
 
1753	/* Clamp it (mss_clamp does not include tcp options) */
1754	if (mss_now > tp->rx_opt.mss_clamp)
1755		mss_now = tp->rx_opt.mss_clamp;
1756
1757	/* Now subtract optional transport overhead */
1758	mss_now -= icsk->icsk_ext_hdr_len;
1759
1760	/* Then reserve room for full set of TCP options and 8 bytes of data */
1761	mss_now = max(mss_now,
1762		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1763	return mss_now;
1764}
1765
1766/* Calculate MSS. Not accounting for SACKs here.  */
1767int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1768{
1769	/* Subtract TCP options size, not including SACKs */
1770	return __tcp_mtu_to_mss(sk, pmtu) -
1771	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1772}
1773EXPORT_SYMBOL(tcp_mtu_to_mss);
1774
1775/* Inverse of above */
1776int tcp_mss_to_mtu(struct sock *sk, int mss)
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	const struct inet_connection_sock *icsk = inet_csk(sk);
 
1780
1781	return mss +
1782	      tp->tcp_header_len +
1783	      icsk->icsk_ext_hdr_len +
1784	      icsk->icsk_af_ops->net_header_len;
 
 
 
 
 
 
 
 
 
1785}
1786EXPORT_SYMBOL(tcp_mss_to_mtu);
1787
1788/* MTU probing init per socket */
1789void tcp_mtup_init(struct sock *sk)
1790{
1791	struct tcp_sock *tp = tcp_sk(sk);
1792	struct inet_connection_sock *icsk = inet_csk(sk);
1793	struct net *net = sock_net(sk);
1794
1795	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1796	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1797			       icsk->icsk_af_ops->net_header_len;
1798	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1799	icsk->icsk_mtup.probe_size = 0;
1800	if (icsk->icsk_mtup.enabled)
1801		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1802}
1803EXPORT_SYMBOL(tcp_mtup_init);
1804
1805/* This function synchronize snd mss to current pmtu/exthdr set.
1806
1807   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1808   for TCP options, but includes only bare TCP header.
1809
1810   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1811   It is minimum of user_mss and mss received with SYN.
1812   It also does not include TCP options.
1813
1814   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1815
1816   tp->mss_cache is current effective sending mss, including
1817   all tcp options except for SACKs. It is evaluated,
1818   taking into account current pmtu, but never exceeds
1819   tp->rx_opt.mss_clamp.
1820
1821   NOTE1. rfc1122 clearly states that advertised MSS
1822   DOES NOT include either tcp or ip options.
1823
1824   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1825   are READ ONLY outside this function.		--ANK (980731)
1826 */
1827unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1828{
1829	struct tcp_sock *tp = tcp_sk(sk);
1830	struct inet_connection_sock *icsk = inet_csk(sk);
1831	int mss_now;
1832
1833	if (icsk->icsk_mtup.search_high > pmtu)
1834		icsk->icsk_mtup.search_high = pmtu;
1835
1836	mss_now = tcp_mtu_to_mss(sk, pmtu);
1837	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1838
1839	/* And store cached results */
1840	icsk->icsk_pmtu_cookie = pmtu;
1841	if (icsk->icsk_mtup.enabled)
1842		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1843	tp->mss_cache = mss_now;
1844
1845	return mss_now;
1846}
1847EXPORT_SYMBOL(tcp_sync_mss);
1848
1849/* Compute the current effective MSS, taking SACKs and IP options,
1850 * and even PMTU discovery events into account.
1851 */
1852unsigned int tcp_current_mss(struct sock *sk)
1853{
1854	const struct tcp_sock *tp = tcp_sk(sk);
1855	const struct dst_entry *dst = __sk_dst_get(sk);
1856	u32 mss_now;
1857	unsigned int header_len;
1858	struct tcp_out_options opts;
1859	struct tcp_key key;
1860
1861	mss_now = tp->mss_cache;
1862
1863	if (dst) {
1864		u32 mtu = dst_mtu(dst);
1865		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1866			mss_now = tcp_sync_mss(sk, mtu);
1867	}
1868	tcp_get_current_key(sk, &key);
1869	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1870		     sizeof(struct tcphdr);
1871	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1872	 * some common options. If this is an odd packet (because we have SACK
1873	 * blocks etc) then our calculated header_len will be different, and
1874	 * we have to adjust mss_now correspondingly */
1875	if (header_len != tp->tcp_header_len) {
1876		int delta = (int) header_len - tp->tcp_header_len;
1877		mss_now -= delta;
1878	}
1879
1880	return mss_now;
1881}
1882
1883/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1884 * As additional protections, we do not touch cwnd in retransmission phases,
1885 * and if application hit its sndbuf limit recently.
1886 */
1887static void tcp_cwnd_application_limited(struct sock *sk)
1888{
1889	struct tcp_sock *tp = tcp_sk(sk);
1890
1891	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1892	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1893		/* Limited by application or receiver window. */
1894		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1895		u32 win_used = max(tp->snd_cwnd_used, init_win);
1896		if (win_used < tcp_snd_cwnd(tp)) {
1897			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1898			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1899		}
1900		tp->snd_cwnd_used = 0;
1901	}
1902	tp->snd_cwnd_stamp = tcp_jiffies32;
1903}
1904
1905static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1906{
1907	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	/* Track the strongest available signal of the degree to which the cwnd
1911	 * is fully utilized. If cwnd-limited then remember that fact for the
1912	 * current window. If not cwnd-limited then track the maximum number of
1913	 * outstanding packets in the current window. (If cwnd-limited then we
1914	 * chose to not update tp->max_packets_out to avoid an extra else
1915	 * clause with no functional impact.)
1916	 */
1917	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1918	    is_cwnd_limited ||
1919	    (!tp->is_cwnd_limited &&
1920	     tp->packets_out > tp->max_packets_out)) {
1921		tp->is_cwnd_limited = is_cwnd_limited;
1922		tp->max_packets_out = tp->packets_out;
1923		tp->cwnd_usage_seq = tp->snd_nxt;
1924	}
1925
1926	if (tcp_is_cwnd_limited(sk)) {
1927		/* Network is feed fully. */
1928		tp->snd_cwnd_used = 0;
1929		tp->snd_cwnd_stamp = tcp_jiffies32;
1930	} else {
1931		/* Network starves. */
1932		if (tp->packets_out > tp->snd_cwnd_used)
1933			tp->snd_cwnd_used = tp->packets_out;
1934
1935		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1936		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1937		    !ca_ops->cong_control)
1938			tcp_cwnd_application_limited(sk);
1939
1940		/* The following conditions together indicate the starvation
1941		 * is caused by insufficient sender buffer:
1942		 * 1) just sent some data (see tcp_write_xmit)
1943		 * 2) not cwnd limited (this else condition)
1944		 * 3) no more data to send (tcp_write_queue_empty())
1945		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1946		 */
1947		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1948		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1949		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1950			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1951	}
1952}
1953
1954/* Minshall's variant of the Nagle send check. */
1955static bool tcp_minshall_check(const struct tcp_sock *tp)
1956{
1957	return after(tp->snd_sml, tp->snd_una) &&
1958		!after(tp->snd_sml, tp->snd_nxt);
1959}
1960
1961/* Update snd_sml if this skb is under mss
1962 * Note that a TSO packet might end with a sub-mss segment
1963 * The test is really :
1964 * if ((skb->len % mss) != 0)
1965 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966 * But we can avoid doing the divide again given we already have
1967 *  skb_pcount = skb->len / mss_now
1968 */
1969static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1970				const struct sk_buff *skb)
1971{
1972	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1973		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974}
1975
1976/* Return false, if packet can be sent now without violation Nagle's rules:
1977 * 1. It is full sized. (provided by caller in %partial bool)
1978 * 2. Or it contains FIN. (already checked by caller)
1979 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1980 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1981 *    With Minshall's modification: all sent small packets are ACKed.
1982 */
1983static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1984			    int nonagle)
1985{
1986	return partial &&
1987		((nonagle & TCP_NAGLE_CORK) ||
1988		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1989}
1990
1991/* Return how many segs we'd like on a TSO packet,
1992 * depending on current pacing rate, and how close the peer is.
1993 *
1994 * Rationale is:
1995 * - For close peers, we rather send bigger packets to reduce
1996 *   cpu costs, because occasional losses will be repaired fast.
1997 * - For long distance/rtt flows, we would like to get ACK clocking
1998 *   with 1 ACK per ms.
1999 *
2000 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2001 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2002 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2003 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2004 */
2005static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2006			    int min_tso_segs)
2007{
2008	unsigned long bytes;
2009	u32 r;
2010
2011	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
 
 
2012
2013	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2014	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2015		bytes += sk->sk_gso_max_size >> r;
 
 
 
2016
2017	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2018
2019	return max_t(u32, bytes / mss_now, min_tso_segs);
2020}
2021
2022/* Return the number of segments we want in the skb we are transmitting.
2023 * See if congestion control module wants to decide; otherwise, autosize.
2024 */
2025static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2026{
2027	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2028	u32 min_tso, tso_segs;
2029
2030	min_tso = ca_ops->min_tso_segs ?
2031			ca_ops->min_tso_segs(sk) :
2032			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2033
2034	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2035	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2036}
2037
2038/* Returns the portion of skb which can be sent right away */
2039static unsigned int tcp_mss_split_point(const struct sock *sk,
2040					const struct sk_buff *skb,
2041					unsigned int mss_now,
2042					unsigned int max_segs,
2043					int nonagle)
2044{
2045	const struct tcp_sock *tp = tcp_sk(sk);
2046	u32 partial, needed, window, max_len;
2047
2048	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2049	max_len = mss_now * max_segs;
2050
2051	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2052		return max_len;
2053
2054	needed = min(skb->len, window);
2055
2056	if (max_len <= needed)
2057		return max_len;
2058
2059	partial = needed % mss_now;
2060	/* If last segment is not a full MSS, check if Nagle rules allow us
2061	 * to include this last segment in this skb.
2062	 * Otherwise, we'll split the skb at last MSS boundary
2063	 */
2064	if (tcp_nagle_check(partial != 0, tp, nonagle))
2065		return needed - partial;
2066
2067	return needed;
2068}
2069
2070/* Can at least one segment of SKB be sent right now, according to the
2071 * congestion window rules?  If so, return how many segments are allowed.
2072 */
2073static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2074					 const struct sk_buff *skb)
2075{
2076	u32 in_flight, cwnd, halfcwnd;
2077
2078	/* Don't be strict about the congestion window for the final FIN.  */
2079	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2080	    tcp_skb_pcount(skb) == 1)
2081		return 1;
2082
2083	in_flight = tcp_packets_in_flight(tp);
2084	cwnd = tcp_snd_cwnd(tp);
2085	if (in_flight >= cwnd)
2086		return 0;
2087
2088	/* For better scheduling, ensure we have at least
2089	 * 2 GSO packets in flight.
2090	 */
2091	halfcwnd = max(cwnd >> 1, 1U);
2092	return min(halfcwnd, cwnd - in_flight);
2093}
2094
2095/* Initialize TSO state of a skb.
2096 * This must be invoked the first time we consider transmitting
2097 * SKB onto the wire.
2098 */
2099static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2100{
2101	int tso_segs = tcp_skb_pcount(skb);
2102
2103	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2104		tcp_set_skb_tso_segs(skb, mss_now);
2105		tso_segs = tcp_skb_pcount(skb);
2106	}
2107	return tso_segs;
2108}
2109
2110
2111/* Return true if the Nagle test allows this packet to be
2112 * sent now.
2113 */
2114static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115				  unsigned int cur_mss, int nonagle)
2116{
2117	/* Nagle rule does not apply to frames, which sit in the middle of the
2118	 * write_queue (they have no chances to get new data).
2119	 *
2120	 * This is implemented in the callers, where they modify the 'nonagle'
2121	 * argument based upon the location of SKB in the send queue.
2122	 */
2123	if (nonagle & TCP_NAGLE_PUSH)
2124		return true;
2125
2126	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128		return true;
2129
2130	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131		return true;
2132
2133	return false;
2134}
2135
2136/* Does at least the first segment of SKB fit into the send window? */
2137static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138			     const struct sk_buff *skb,
2139			     unsigned int cur_mss)
2140{
2141	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142
2143	if (skb->len > cur_mss)
2144		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145
2146	return !after(end_seq, tcp_wnd_end(tp));
2147}
2148
2149/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150 * which is put after SKB on the list.  It is very much like
2151 * tcp_fragment() except that it may make several kinds of assumptions
2152 * in order to speed up the splitting operation.  In particular, we
2153 * know that all the data is in scatter-gather pages, and that the
2154 * packet has never been sent out before (and thus is not cloned).
2155 */
2156static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157			unsigned int mss_now, gfp_t gfp)
2158{
2159	int nlen = skb->len - len;
2160	struct sk_buff *buff;
2161	u8 flags;
2162
2163	/* All of a TSO frame must be composed of paged data.  */
2164	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
 
 
2165
2166	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167	if (unlikely(!buff))
2168		return -ENOMEM;
2169	skb_copy_decrypted(buff, skb);
2170	mptcp_skb_ext_copy(buff, skb);
2171
2172	sk_wmem_queued_add(sk, buff->truesize);
2173	sk_mem_charge(sk, buff->truesize);
2174	buff->truesize += nlen;
2175	skb->truesize -= nlen;
2176
2177	/* Correct the sequence numbers. */
2178	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181
2182	/* PSH and FIN should only be set in the second packet. */
2183	flags = TCP_SKB_CB(skb)->tcp_flags;
2184	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185	TCP_SKB_CB(buff)->tcp_flags = flags;
2186
 
 
 
2187	tcp_skb_fragment_eor(skb, buff);
2188
 
2189	skb_split(skb, buff, len);
2190	tcp_fragment_tstamp(skb, buff);
2191
2192	/* Fix up tso_factor for both original and new SKB.  */
2193	tcp_set_skb_tso_segs(skb, mss_now);
2194	tcp_set_skb_tso_segs(buff, mss_now);
2195
2196	/* Link BUFF into the send queue. */
2197	__skb_header_release(buff);
2198	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199
2200	return 0;
2201}
2202
2203/* Try to defer sending, if possible, in order to minimize the amount
2204 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205 *
2206 * This algorithm is from John Heffner.
2207 */
2208static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209				 bool *is_cwnd_limited,
2210				 bool *is_rwnd_limited,
2211				 u32 max_segs)
2212{
2213	const struct inet_connection_sock *icsk = inet_csk(sk);
2214	u32 send_win, cong_win, limit, in_flight;
2215	struct tcp_sock *tp = tcp_sk(sk);
2216	struct sk_buff *head;
2217	int win_divisor;
2218	s64 delta;
2219
2220	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221		goto send_now;
2222
2223	/* Avoid bursty behavior by allowing defer
2224	 * only if the last write was recent (1 ms).
2225	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226	 * packets waiting in a qdisc or device for EDT delivery.
2227	 */
2228	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229	if (delta > 0)
2230		goto send_now;
2231
2232	in_flight = tcp_packets_in_flight(tp);
2233
2234	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236
2237	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238
2239	/* From in_flight test above, we know that cwnd > in_flight.  */
2240	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241
2242	limit = min(send_win, cong_win);
2243
2244	/* If a full-sized TSO skb can be sent, do it. */
2245	if (limit >= max_segs * tp->mss_cache)
2246		goto send_now;
2247
2248	/* Middle in queue won't get any more data, full sendable already? */
2249	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250		goto send_now;
2251
2252	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253	if (win_divisor) {
2254		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255
2256		/* If at least some fraction of a window is available,
2257		 * just use it.
2258		 */
2259		chunk /= win_divisor;
2260		if (limit >= chunk)
2261			goto send_now;
2262	} else {
2263		/* Different approach, try not to defer past a single
2264		 * ACK.  Receiver should ACK every other full sized
2265		 * frame, so if we have space for more than 3 frames
2266		 * then send now.
2267		 */
2268		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269			goto send_now;
2270	}
2271
2272	/* TODO : use tsorted_sent_queue ? */
2273	head = tcp_rtx_queue_head(sk);
2274	if (!head)
2275		goto send_now;
2276	delta = tp->tcp_clock_cache - head->tstamp;
2277	/* If next ACK is likely to come too late (half srtt), do not defer */
2278	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279		goto send_now;
2280
2281	/* Ok, it looks like it is advisable to defer.
2282	 * Three cases are tracked :
2283	 * 1) We are cwnd-limited
2284	 * 2) We are rwnd-limited
2285	 * 3) We are application limited.
2286	 */
2287	if (cong_win < send_win) {
2288		if (cong_win <= skb->len) {
2289			*is_cwnd_limited = true;
2290			return true;
2291		}
2292	} else {
2293		if (send_win <= skb->len) {
2294			*is_rwnd_limited = true;
2295			return true;
2296		}
2297	}
2298
2299	/* If this packet won't get more data, do not wait. */
2300	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301	    TCP_SKB_CB(skb)->eor)
2302		goto send_now;
2303
2304	return true;
2305
2306send_now:
2307	return false;
2308}
2309
2310static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311{
2312	struct inet_connection_sock *icsk = inet_csk(sk);
2313	struct tcp_sock *tp = tcp_sk(sk);
2314	struct net *net = sock_net(sk);
2315	u32 interval;
2316	s32 delta;
2317
2318	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320	if (unlikely(delta >= interval * HZ)) {
2321		int mss = tcp_current_mss(sk);
2322
2323		/* Update current search range */
2324		icsk->icsk_mtup.probe_size = 0;
2325		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326			sizeof(struct tcphdr) +
2327			icsk->icsk_af_ops->net_header_len;
2328		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329
2330		/* Update probe time stamp */
2331		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332	}
2333}
2334
2335static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336{
2337	struct sk_buff *skb, *next;
2338
2339	skb = tcp_send_head(sk);
2340	tcp_for_write_queue_from_safe(skb, next, sk) {
2341		if (len <= skb->len)
2342			break;
2343
2344		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345		    tcp_has_tx_tstamp(skb) ||
2346		    !skb_pure_zcopy_same(skb, next))
2347			return false;
2348
2349		len -= skb->len;
2350	}
2351
2352	return true;
2353}
2354
2355static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356			     int probe_size)
2357{
2358	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359	int i, todo, len = 0, nr_frags = 0;
2360	const struct sk_buff *skb;
2361
2362	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363		return -ENOMEM;
2364
2365	skb_queue_walk(&sk->sk_write_queue, skb) {
2366		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367
2368		if (skb_headlen(skb))
2369			return -EINVAL;
2370
2371		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372			if (len >= probe_size)
2373				goto commit;
2374			todo = min_t(int, skb_frag_size(fragfrom),
2375				     probe_size - len);
2376			len += todo;
2377			if (lastfrag &&
2378			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380						      skb_frag_size(lastfrag)) {
2381				skb_frag_size_add(lastfrag, todo);
2382				continue;
2383			}
2384			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385				return -E2BIG;
2386			skb_frag_page_copy(fragto, fragfrom);
2387			skb_frag_off_copy(fragto, fragfrom);
2388			skb_frag_size_set(fragto, todo);
2389			nr_frags++;
2390			lastfrag = fragto++;
2391		}
2392	}
2393commit:
2394	WARN_ON_ONCE(len != probe_size);
2395	for (i = 0; i < nr_frags; i++)
2396		skb_frag_ref(to, i);
2397
2398	skb_shinfo(to)->nr_frags = nr_frags;
2399	to->truesize += probe_size;
2400	to->len += probe_size;
2401	to->data_len += probe_size;
2402	__skb_header_release(to);
2403	return 0;
2404}
2405
2406/* Create a new MTU probe if we are ready.
2407 * MTU probe is regularly attempting to increase the path MTU by
2408 * deliberately sending larger packets.  This discovers routing
2409 * changes resulting in larger path MTUs.
2410 *
2411 * Returns 0 if we should wait to probe (no cwnd available),
2412 *         1 if a probe was sent,
2413 *         -1 otherwise
2414 */
2415static int tcp_mtu_probe(struct sock *sk)
2416{
2417	struct inet_connection_sock *icsk = inet_csk(sk);
2418	struct tcp_sock *tp = tcp_sk(sk);
2419	struct sk_buff *skb, *nskb, *next;
2420	struct net *net = sock_net(sk);
2421	int probe_size;
2422	int size_needed;
2423	int copy, len;
2424	int mss_now;
2425	int interval;
2426
2427	/* Not currently probing/verifying,
2428	 * not in recovery,
2429	 * have enough cwnd, and
2430	 * not SACKing (the variable headers throw things off)
2431	 */
2432	if (likely(!icsk->icsk_mtup.enabled ||
2433		   icsk->icsk_mtup.probe_size ||
2434		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2435		   tcp_snd_cwnd(tp) < 11 ||
2436		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2437		return -1;
2438
2439	/* Use binary search for probe_size between tcp_mss_base,
2440	 * and current mss_clamp. if (search_high - search_low)
2441	 * smaller than a threshold, backoff from probing.
2442	 */
2443	mss_now = tcp_current_mss(sk);
2444	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2445				    icsk->icsk_mtup.search_low) >> 1);
2446	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2447	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2448	/* When misfortune happens, we are reprobing actively,
2449	 * and then reprobe timer has expired. We stick with current
2450	 * probing process by not resetting search range to its orignal.
2451	 */
2452	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2453	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2454		/* Check whether enough time has elaplased for
2455		 * another round of probing.
2456		 */
2457		tcp_mtu_check_reprobe(sk);
2458		return -1;
2459	}
2460
2461	/* Have enough data in the send queue to probe? */
2462	if (tp->write_seq - tp->snd_nxt < size_needed)
2463		return -1;
2464
2465	if (tp->snd_wnd < size_needed)
2466		return -1;
2467	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2468		return 0;
2469
2470	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2471	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2472		if (!tcp_packets_in_flight(tp))
2473			return -1;
2474		else
2475			return 0;
2476	}
2477
2478	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2479		return -1;
2480
2481	/* We're allowed to probe.  Build it now. */
2482	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2483	if (!nskb)
2484		return -1;
2485
2486	/* build the payload, and be prepared to abort if this fails. */
2487	if (tcp_clone_payload(sk, nskb, probe_size)) {
2488		tcp_skb_tsorted_anchor_cleanup(nskb);
2489		consume_skb(nskb);
2490		return -1;
2491	}
2492	sk_wmem_queued_add(sk, nskb->truesize);
2493	sk_mem_charge(sk, nskb->truesize);
2494
2495	skb = tcp_send_head(sk);
2496	skb_copy_decrypted(nskb, skb);
2497	mptcp_skb_ext_copy(nskb, skb);
2498
2499	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2500	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2501	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
 
 
 
2502
2503	tcp_insert_write_queue_before(nskb, skb, sk);
2504	tcp_highest_sack_replace(sk, skb, nskb);
2505
2506	len = 0;
2507	tcp_for_write_queue_from_safe(skb, next, sk) {
2508		copy = min_t(int, skb->len, probe_size - len);
 
2509
2510		if (skb->len <= copy) {
2511			/* We've eaten all the data from this skb.
2512			 * Throw it away. */
2513			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2514			/* If this is the last SKB we copy and eor is set
2515			 * we need to propagate it to the new skb.
2516			 */
2517			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2518			tcp_skb_collapse_tstamp(nskb, skb);
2519			tcp_unlink_write_queue(skb, sk);
2520			tcp_wmem_free_skb(sk, skb);
2521		} else {
2522			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2523						   ~(TCPHDR_FIN|TCPHDR_PSH);
2524			__pskb_trim_head(skb, copy);
2525			tcp_set_skb_tso_segs(skb, mss_now);
 
 
 
 
2526			TCP_SKB_CB(skb)->seq += copy;
2527		}
2528
2529		len += copy;
2530
2531		if (len >= probe_size)
2532			break;
2533	}
2534	tcp_init_tso_segs(nskb, nskb->len);
2535
2536	/* We're ready to send.  If this fails, the probe will
2537	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2538	 */
2539	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2540		/* Decrement cwnd here because we are sending
2541		 * effectively two packets. */
2542		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2543		tcp_event_new_data_sent(sk, nskb);
2544
2545		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2546		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2547		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2548
2549		return 1;
2550	}
2551
2552	return -1;
2553}
2554
2555static bool tcp_pacing_check(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (!tcp_needs_internal_pacing(sk))
2560		return false;
2561
2562	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2563		return false;
2564
2565	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2566		hrtimer_start(&tp->pacing_timer,
2567			      ns_to_ktime(tp->tcp_wstamp_ns),
2568			      HRTIMER_MODE_ABS_PINNED_SOFT);
2569		sock_hold(sk);
2570	}
2571	return true;
2572}
2573
2574static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2575{
2576	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2577
2578	/* No skb in the rtx queue. */
2579	if (!node)
2580		return true;
2581
2582	/* Only one skb in rtx queue. */
2583	return !node->rb_left && !node->rb_right;
2584}
2585
2586/* TCP Small Queues :
2587 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2588 * (These limits are doubled for retransmits)
2589 * This allows for :
2590 *  - better RTT estimation and ACK scheduling
2591 *  - faster recovery
2592 *  - high rates
2593 * Alas, some drivers / subsystems require a fair amount
2594 * of queued bytes to ensure line rate.
2595 * One example is wifi aggregation (802.11 AMPDU)
2596 */
2597static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2598				  unsigned int factor)
2599{
2600	unsigned long limit;
2601
2602	limit = max_t(unsigned long,
2603		      2 * skb->truesize,
2604		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2605	if (sk->sk_pacing_status == SK_PACING_NONE)
2606		limit = min_t(unsigned long, limit,
2607			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2608	limit <<= factor;
2609
2610	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2611	    tcp_sk(sk)->tcp_tx_delay) {
2612		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2613				  tcp_sk(sk)->tcp_tx_delay;
2614
2615		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2616		 * approximate our needs assuming an ~100% skb->truesize overhead.
2617		 * USEC_PER_SEC is approximated by 2^20.
2618		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2619		 */
2620		extra_bytes >>= (20 - 1);
2621		limit += extra_bytes;
2622	}
2623	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2624		/* Always send skb if rtx queue is empty or has one skb.
2625		 * No need to wait for TX completion to call us back,
2626		 * after softirq/tasklet schedule.
2627		 * This helps when TX completions are delayed too much.
2628		 */
2629		if (tcp_rtx_queue_empty_or_single_skb(sk))
2630			return false;
2631
2632		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2633		/* It is possible TX completion already happened
2634		 * before we set TSQ_THROTTLED, so we must
2635		 * test again the condition.
2636		 */
2637		smp_mb__after_atomic();
2638		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2639			return true;
2640	}
2641	return false;
2642}
2643
2644static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2645{
2646	const u32 now = tcp_jiffies32;
2647	enum tcp_chrono old = tp->chrono_type;
2648
2649	if (old > TCP_CHRONO_UNSPEC)
2650		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2651	tp->chrono_start = now;
2652	tp->chrono_type = new;
2653}
2654
2655void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2656{
2657	struct tcp_sock *tp = tcp_sk(sk);
2658
2659	/* If there are multiple conditions worthy of tracking in a
2660	 * chronograph then the highest priority enum takes precedence
2661	 * over the other conditions. So that if something "more interesting"
2662	 * starts happening, stop the previous chrono and start a new one.
2663	 */
2664	if (type > tp->chrono_type)
2665		tcp_chrono_set(tp, type);
2666}
2667
2668void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672
2673	/* There are multiple conditions worthy of tracking in a
2674	 * chronograph, so that the highest priority enum takes
2675	 * precedence over the other conditions (see tcp_chrono_start).
2676	 * If a condition stops, we only stop chrono tracking if
2677	 * it's the "most interesting" or current chrono we are
2678	 * tracking and starts busy chrono if we have pending data.
2679	 */
2680	if (tcp_rtx_and_write_queues_empty(sk))
2681		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2682	else if (type == tp->chrono_type)
2683		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2684}
2685
2686/* This routine writes packets to the network.  It advances the
2687 * send_head.  This happens as incoming acks open up the remote
2688 * window for us.
2689 *
2690 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2691 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2692 * account rare use of URG, this is not a big flaw.
2693 *
2694 * Send at most one packet when push_one > 0. Temporarily ignore
2695 * cwnd limit to force at most one packet out when push_one == 2.
2696
2697 * Returns true, if no segments are in flight and we have queued segments,
2698 * but cannot send anything now because of SWS or another problem.
2699 */
2700static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2701			   int push_one, gfp_t gfp)
2702{
2703	struct tcp_sock *tp = tcp_sk(sk);
2704	struct sk_buff *skb;
2705	unsigned int tso_segs, sent_pkts;
2706	int cwnd_quota;
2707	int result;
2708	bool is_cwnd_limited = false, is_rwnd_limited = false;
2709	u32 max_segs;
2710
2711	sent_pkts = 0;
2712
2713	tcp_mstamp_refresh(tp);
2714	if (!push_one) {
2715		/* Do MTU probing. */
2716		result = tcp_mtu_probe(sk);
2717		if (!result) {
2718			return false;
2719		} else if (result > 0) {
2720			sent_pkts = 1;
2721		}
2722	}
2723
2724	max_segs = tcp_tso_segs(sk, mss_now);
2725	while ((skb = tcp_send_head(sk))) {
2726		unsigned int limit;
2727
2728		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2729			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2730			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2731			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2732			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2733			tcp_init_tso_segs(skb, mss_now);
2734			goto repair; /* Skip network transmission */
2735		}
2736
2737		if (tcp_pacing_check(sk))
2738			break;
2739
2740		tso_segs = tcp_init_tso_segs(skb, mss_now);
2741		BUG_ON(!tso_segs);
2742
2743		cwnd_quota = tcp_cwnd_test(tp, skb);
2744		if (!cwnd_quota) {
2745			if (push_one == 2)
2746				/* Force out a loss probe pkt. */
2747				cwnd_quota = 1;
2748			else
2749				break;
2750		}
2751
2752		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2753			is_rwnd_limited = true;
2754			break;
2755		}
2756
2757		if (tso_segs == 1) {
2758			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2759						     (tcp_skb_is_last(sk, skb) ?
2760						      nonagle : TCP_NAGLE_PUSH))))
2761				break;
2762		} else {
2763			if (!push_one &&
2764			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2765						 &is_rwnd_limited, max_segs))
2766				break;
2767		}
2768
2769		limit = mss_now;
2770		if (tso_segs > 1 && !tcp_urg_mode(tp))
2771			limit = tcp_mss_split_point(sk, skb, mss_now,
2772						    min_t(unsigned int,
2773							  cwnd_quota,
2774							  max_segs),
2775						    nonagle);
2776
2777		if (skb->len > limit &&
2778		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2779			break;
2780
2781		if (tcp_small_queue_check(sk, skb, 0))
2782			break;
2783
2784		/* Argh, we hit an empty skb(), presumably a thread
2785		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2786		 * We do not want to send a pure-ack packet and have
2787		 * a strange looking rtx queue with empty packet(s).
2788		 */
2789		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2790			break;
2791
2792		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2793			break;
2794
2795repair:
2796		/* Advance the send_head.  This one is sent out.
2797		 * This call will increment packets_out.
2798		 */
2799		tcp_event_new_data_sent(sk, skb);
2800
2801		tcp_minshall_update(tp, mss_now, skb);
2802		sent_pkts += tcp_skb_pcount(skb);
2803
2804		if (push_one)
2805			break;
2806	}
2807
2808	if (is_rwnd_limited)
2809		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2810	else
2811		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2812
2813	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2814	if (likely(sent_pkts || is_cwnd_limited))
2815		tcp_cwnd_validate(sk, is_cwnd_limited);
2816
2817	if (likely(sent_pkts)) {
2818		if (tcp_in_cwnd_reduction(sk))
2819			tp->prr_out += sent_pkts;
2820
2821		/* Send one loss probe per tail loss episode. */
2822		if (push_one != 2)
2823			tcp_schedule_loss_probe(sk, false);
2824		return false;
2825	}
2826	return !tp->packets_out && !tcp_write_queue_empty(sk);
2827}
2828
2829bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2830{
2831	struct inet_connection_sock *icsk = inet_csk(sk);
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	u32 timeout, timeout_us, rto_delta_us;
2834	int early_retrans;
2835
2836	/* Don't do any loss probe on a Fast Open connection before 3WHS
2837	 * finishes.
2838	 */
2839	if (rcu_access_pointer(tp->fastopen_rsk))
2840		return false;
2841
2842	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2843	/* Schedule a loss probe in 2*RTT for SACK capable connections
2844	 * not in loss recovery, that are either limited by cwnd or application.
2845	 */
2846	if ((early_retrans != 3 && early_retrans != 4) ||
2847	    !tp->packets_out || !tcp_is_sack(tp) ||
2848	    (icsk->icsk_ca_state != TCP_CA_Open &&
2849	     icsk->icsk_ca_state != TCP_CA_CWR))
2850		return false;
2851
2852	/* Probe timeout is 2*rtt. Add minimum RTO to account
2853	 * for delayed ack when there's one outstanding packet. If no RTT
2854	 * sample is available then probe after TCP_TIMEOUT_INIT.
2855	 */
2856	if (tp->srtt_us) {
2857		timeout_us = tp->srtt_us >> 2;
2858		if (tp->packets_out == 1)
2859			timeout_us += tcp_rto_min_us(sk);
2860		else
2861			timeout_us += TCP_TIMEOUT_MIN_US;
2862		timeout = usecs_to_jiffies(timeout_us);
2863	} else {
2864		timeout = TCP_TIMEOUT_INIT;
2865	}
2866
2867	/* If the RTO formula yields an earlier time, then use that time. */
2868	rto_delta_us = advancing_rto ?
2869			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2870			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2871	if (rto_delta_us > 0)
2872		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2873
2874	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2875	return true;
2876}
2877
2878/* Thanks to skb fast clones, we can detect if a prior transmit of
2879 * a packet is still in a qdisc or driver queue.
2880 * In this case, there is very little point doing a retransmit !
2881 */
2882static bool skb_still_in_host_queue(struct sock *sk,
2883				    const struct sk_buff *skb)
2884{
2885	if (unlikely(skb_fclone_busy(sk, skb))) {
2886		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2887		smp_mb__after_atomic();
2888		if (skb_fclone_busy(sk, skb)) {
2889			NET_INC_STATS(sock_net(sk),
2890				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2891			return true;
2892		}
2893	}
2894	return false;
2895}
2896
2897/* When probe timeout (PTO) fires, try send a new segment if possible, else
2898 * retransmit the last segment.
2899 */
2900void tcp_send_loss_probe(struct sock *sk)
2901{
2902	struct tcp_sock *tp = tcp_sk(sk);
2903	struct sk_buff *skb;
2904	int pcount;
2905	int mss = tcp_current_mss(sk);
2906
2907	/* At most one outstanding TLP */
2908	if (tp->tlp_high_seq)
2909		goto rearm_timer;
2910
2911	tp->tlp_retrans = 0;
2912	skb = tcp_send_head(sk);
2913	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2914		pcount = tp->packets_out;
2915		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2916		if (tp->packets_out > pcount)
2917			goto probe_sent;
2918		goto rearm_timer;
2919	}
2920	skb = skb_rb_last(&sk->tcp_rtx_queue);
2921	if (unlikely(!skb)) {
2922		WARN_ONCE(tp->packets_out,
2923			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2924			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2925		inet_csk(sk)->icsk_pending = 0;
2926		return;
2927	}
2928
2929	if (skb_still_in_host_queue(sk, skb))
2930		goto rearm_timer;
2931
2932	pcount = tcp_skb_pcount(skb);
2933	if (WARN_ON(!pcount))
2934		goto rearm_timer;
2935
2936	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2937		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2938					  (pcount - 1) * mss, mss,
2939					  GFP_ATOMIC)))
2940			goto rearm_timer;
2941		skb = skb_rb_next(skb);
2942	}
2943
2944	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2945		goto rearm_timer;
2946
2947	if (__tcp_retransmit_skb(sk, skb, 1))
2948		goto rearm_timer;
2949
2950	tp->tlp_retrans = 1;
2951
2952probe_sent:
2953	/* Record snd_nxt for loss detection. */
2954	tp->tlp_high_seq = tp->snd_nxt;
2955
2956	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2957	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2958	inet_csk(sk)->icsk_pending = 0;
2959rearm_timer:
2960	tcp_rearm_rto(sk);
2961}
2962
2963/* Push out any pending frames which were held back due to
2964 * TCP_CORK or attempt at coalescing tiny packets.
2965 * The socket must be locked by the caller.
2966 */
2967void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2968			       int nonagle)
2969{
2970	/* If we are closed, the bytes will have to remain here.
2971	 * In time closedown will finish, we empty the write queue and
2972	 * all will be happy.
2973	 */
2974	if (unlikely(sk->sk_state == TCP_CLOSE))
2975		return;
2976
2977	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2978			   sk_gfp_mask(sk, GFP_ATOMIC)))
2979		tcp_check_probe_timer(sk);
2980}
2981
2982/* Send _single_ skb sitting at the send head. This function requires
2983 * true push pending frames to setup probe timer etc.
2984 */
2985void tcp_push_one(struct sock *sk, unsigned int mss_now)
2986{
2987	struct sk_buff *skb = tcp_send_head(sk);
2988
2989	BUG_ON(!skb || skb->len < mss_now);
2990
2991	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2992}
2993
2994/* This function returns the amount that we can raise the
2995 * usable window based on the following constraints
2996 *
2997 * 1. The window can never be shrunk once it is offered (RFC 793)
2998 * 2. We limit memory per socket
2999 *
3000 * RFC 1122:
3001 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3002 *  RECV.NEXT + RCV.WIN fixed until:
3003 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3004 *
3005 * i.e. don't raise the right edge of the window until you can raise
3006 * it at least MSS bytes.
3007 *
3008 * Unfortunately, the recommended algorithm breaks header prediction,
3009 * since header prediction assumes th->window stays fixed.
3010 *
3011 * Strictly speaking, keeping th->window fixed violates the receiver
3012 * side SWS prevention criteria. The problem is that under this rule
3013 * a stream of single byte packets will cause the right side of the
3014 * window to always advance by a single byte.
3015 *
3016 * Of course, if the sender implements sender side SWS prevention
3017 * then this will not be a problem.
3018 *
3019 * BSD seems to make the following compromise:
3020 *
3021 *	If the free space is less than the 1/4 of the maximum
3022 *	space available and the free space is less than 1/2 mss,
3023 *	then set the window to 0.
3024 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3025 *	Otherwise, just prevent the window from shrinking
3026 *	and from being larger than the largest representable value.
3027 *
3028 * This prevents incremental opening of the window in the regime
3029 * where TCP is limited by the speed of the reader side taking
3030 * data out of the TCP receive queue. It does nothing about
3031 * those cases where the window is constrained on the sender side
3032 * because the pipeline is full.
3033 *
3034 * BSD also seems to "accidentally" limit itself to windows that are a
3035 * multiple of MSS, at least until the free space gets quite small.
3036 * This would appear to be a side effect of the mbuf implementation.
3037 * Combining these two algorithms results in the observed behavior
3038 * of having a fixed window size at almost all times.
3039 *
3040 * Below we obtain similar behavior by forcing the offered window to
3041 * a multiple of the mss when it is feasible to do so.
3042 *
3043 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3044 * Regular options like TIMESTAMP are taken into account.
3045 */
3046u32 __tcp_select_window(struct sock *sk)
3047{
3048	struct inet_connection_sock *icsk = inet_csk(sk);
3049	struct tcp_sock *tp = tcp_sk(sk);
3050	struct net *net = sock_net(sk);
3051	/* MSS for the peer's data.  Previous versions used mss_clamp
3052	 * here.  I don't know if the value based on our guesses
3053	 * of peer's MSS is better for the performance.  It's more correct
3054	 * but may be worse for the performance because of rcv_mss
3055	 * fluctuations.  --SAW  1998/11/1
3056	 */
3057	int mss = icsk->icsk_ack.rcv_mss;
3058	int free_space = tcp_space(sk);
3059	int allowed_space = tcp_full_space(sk);
3060	int full_space, window;
3061
3062	if (sk_is_mptcp(sk))
3063		mptcp_space(sk, &free_space, &allowed_space);
3064
3065	full_space = min_t(int, tp->window_clamp, allowed_space);
3066
3067	if (unlikely(mss > full_space)) {
3068		mss = full_space;
3069		if (mss <= 0)
3070			return 0;
3071	}
3072
3073	/* Only allow window shrink if the sysctl is enabled and we have
3074	 * a non-zero scaling factor in effect.
3075	 */
3076	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3077		goto shrink_window_allowed;
3078
3079	/* do not allow window to shrink */
3080
3081	if (free_space < (full_space >> 1)) {
3082		icsk->icsk_ack.quick = 0;
3083
3084		if (tcp_under_memory_pressure(sk))
3085			tcp_adjust_rcv_ssthresh(sk);
 
3086
3087		/* free_space might become our new window, make sure we don't
3088		 * increase it due to wscale.
3089		 */
3090		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3091
3092		/* if free space is less than mss estimate, or is below 1/16th
3093		 * of the maximum allowed, try to move to zero-window, else
3094		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3095		 * new incoming data is dropped due to memory limits.
3096		 * With large window, mss test triggers way too late in order
3097		 * to announce zero window in time before rmem limit kicks in.
3098		 */
3099		if (free_space < (allowed_space >> 4) || free_space < mss)
3100			return 0;
3101	}
3102
3103	if (free_space > tp->rcv_ssthresh)
3104		free_space = tp->rcv_ssthresh;
3105
3106	/* Don't do rounding if we are using window scaling, since the
3107	 * scaled window will not line up with the MSS boundary anyway.
3108	 */
3109	if (tp->rx_opt.rcv_wscale) {
3110		window = free_space;
3111
3112		/* Advertise enough space so that it won't get scaled away.
3113		 * Import case: prevent zero window announcement if
3114		 * 1<<rcv_wscale > mss.
3115		 */
3116		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3117	} else {
3118		window = tp->rcv_wnd;
3119		/* Get the largest window that is a nice multiple of mss.
3120		 * Window clamp already applied above.
3121		 * If our current window offering is within 1 mss of the
3122		 * free space we just keep it. This prevents the divide
3123		 * and multiply from happening most of the time.
3124		 * We also don't do any window rounding when the free space
3125		 * is too small.
3126		 */
3127		if (window <= free_space - mss || window > free_space)
3128			window = rounddown(free_space, mss);
3129		else if (mss == full_space &&
3130			 free_space > window + (full_space >> 1))
3131			window = free_space;
3132	}
3133
3134	return window;
3135
3136shrink_window_allowed:
3137	/* new window should always be an exact multiple of scaling factor */
3138	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3139
3140	if (free_space < (full_space >> 1)) {
3141		icsk->icsk_ack.quick = 0;
3142
3143		if (tcp_under_memory_pressure(sk))
3144			tcp_adjust_rcv_ssthresh(sk);
3145
3146		/* if free space is too low, return a zero window */
3147		if (free_space < (allowed_space >> 4) || free_space < mss ||
3148			free_space < (1 << tp->rx_opt.rcv_wscale))
3149			return 0;
3150	}
3151
3152	if (free_space > tp->rcv_ssthresh) {
3153		free_space = tp->rcv_ssthresh;
3154		/* new window should always be an exact multiple of scaling factor
3155		 *
3156		 * For this case, we ALIGN "up" (increase free_space) because
3157		 * we know free_space is not zero here, it has been reduced from
3158		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3159		 * (unlike sk_rcvbuf).
3160		 */
3161		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3162	}
3163
3164	return free_space;
3165}
3166
3167void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3168			     const struct sk_buff *next_skb)
3169{
3170	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3171		const struct skb_shared_info *next_shinfo =
3172			skb_shinfo(next_skb);
3173		struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3176		shinfo->tskey = next_shinfo->tskey;
3177		TCP_SKB_CB(skb)->txstamp_ack |=
3178			TCP_SKB_CB(next_skb)->txstamp_ack;
3179	}
3180}
3181
3182/* Collapses two adjacent SKB's during retransmission. */
3183static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3184{
3185	struct tcp_sock *tp = tcp_sk(sk);
3186	struct sk_buff *next_skb = skb_rb_next(skb);
3187	int next_skb_size;
3188
3189	next_skb_size = next_skb->len;
3190
3191	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3192
3193	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3194		return false;
3195
 
 
 
 
3196	tcp_highest_sack_replace(sk, next_skb, skb);
3197
3198	/* Update sequence range on original skb. */
3199	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3200
3201	/* Merge over control information. This moves PSH/FIN etc. over */
3202	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3203
3204	/* All done, get rid of second SKB and account for it so
3205	 * packet counting does not break.
3206	 */
3207	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3208	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3209
3210	/* changed transmit queue under us so clear hints */
3211	tcp_clear_retrans_hints_partial(tp);
3212	if (next_skb == tp->retransmit_skb_hint)
3213		tp->retransmit_skb_hint = skb;
3214
3215	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3216
3217	tcp_skb_collapse_tstamp(skb, next_skb);
3218
3219	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3220	return true;
3221}
3222
3223/* Check if coalescing SKBs is legal. */
3224static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3225{
3226	if (tcp_skb_pcount(skb) > 1)
3227		return false;
3228	if (skb_cloned(skb))
3229		return false;
3230	/* Some heuristics for collapsing over SACK'd could be invented */
3231	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3232		return false;
3233
3234	return true;
3235}
3236
3237/* Collapse packets in the retransmit queue to make to create
3238 * less packets on the wire. This is only done on retransmission.
3239 */
3240static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3241				     int space)
3242{
3243	struct tcp_sock *tp = tcp_sk(sk);
3244	struct sk_buff *skb = to, *tmp;
3245	bool first = true;
3246
3247	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3248		return;
3249	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3250		return;
3251
3252	skb_rbtree_walk_from_safe(skb, tmp) {
3253		if (!tcp_can_collapse(sk, skb))
3254			break;
3255
3256		if (!tcp_skb_can_collapse(to, skb))
3257			break;
3258
3259		space -= skb->len;
3260
3261		if (first) {
3262			first = false;
3263			continue;
3264		}
3265
3266		if (space < 0)
3267			break;
3268
3269		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3270			break;
3271
3272		if (!tcp_collapse_retrans(sk, to))
3273			break;
3274	}
3275}
3276
3277/* This retransmits one SKB.  Policy decisions and retransmit queue
3278 * state updates are done by the caller.  Returns non-zero if an
3279 * error occurred which prevented the send.
3280 */
3281int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3282{
3283	struct inet_connection_sock *icsk = inet_csk(sk);
3284	struct tcp_sock *tp = tcp_sk(sk);
3285	unsigned int cur_mss;
3286	int diff, len, err;
3287	int avail_wnd;
3288
3289	/* Inconclusive MTU probe */
3290	if (icsk->icsk_mtup.probe_size)
3291		icsk->icsk_mtup.probe_size = 0;
3292
3293	if (skb_still_in_host_queue(sk, skb))
3294		return -EBUSY;
3295
3296start:
3297	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3298		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3300			TCP_SKB_CB(skb)->seq++;
3301			goto start;
3302		}
3303		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3304			WARN_ON_ONCE(1);
3305			return -EINVAL;
3306		}
3307		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308			return -ENOMEM;
3309	}
3310
3311	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3312		return -EHOSTUNREACH; /* Routing failure or similar. */
3313
3314	cur_mss = tcp_current_mss(sk);
3315	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3316
3317	/* If receiver has shrunk his window, and skb is out of
3318	 * new window, do not retransmit it. The exception is the
3319	 * case, when window is shrunk to zero. In this case
3320	 * our retransmit of one segment serves as a zero window probe.
3321	 */
3322	if (avail_wnd <= 0) {
3323		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3324			return -EAGAIN;
3325		avail_wnd = cur_mss;
3326	}
3327
3328	len = cur_mss * segs;
3329	if (len > avail_wnd) {
3330		len = rounddown(avail_wnd, cur_mss);
3331		if (!len)
3332			len = avail_wnd;
3333	}
3334	if (skb->len > len) {
3335		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3336				 cur_mss, GFP_ATOMIC))
3337			return -ENOMEM; /* We'll try again later. */
3338	} else {
3339		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3340			return -ENOMEM;
3341
3342		diff = tcp_skb_pcount(skb);
3343		tcp_set_skb_tso_segs(skb, cur_mss);
3344		diff -= tcp_skb_pcount(skb);
3345		if (diff)
3346			tcp_adjust_pcount(sk, skb, diff);
3347		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348		if (skb->len < avail_wnd)
3349			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350	}
3351
3352	/* RFC3168, section 6.1.1.1. ECN fallback */
3353	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354		tcp_ecn_clear_syn(sk, skb);
3355
3356	/* Update global and local TCP statistics. */
3357	segs = tcp_skb_pcount(skb);
3358	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361	tp->total_retrans += segs;
3362	tp->bytes_retrans += skb->len;
3363
3364	/* make sure skb->data is aligned on arches that require it
3365	 * and check if ack-trimming & collapsing extended the headroom
3366	 * beyond what csum_start can cover.
3367	 */
3368	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369		     skb_headroom(skb) >= 0xFFFF)) {
3370		struct sk_buff *nskb;
3371
3372		tcp_skb_tsorted_save(skb) {
3373			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374			if (nskb) {
3375				nskb->dev = NULL;
3376				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377			} else {
3378				err = -ENOBUFS;
3379			}
3380		} tcp_skb_tsorted_restore(skb);
3381
3382		if (!err) {
3383			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384			tcp_rate_skb_sent(sk, skb);
3385		}
3386	} else {
3387		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388	}
3389
3390	/* To avoid taking spuriously low RTT samples based on a timestamp
3391	 * for a transmit that never happened, always mark EVER_RETRANS
3392	 */
3393	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3394
3395	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3396		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3397				  TCP_SKB_CB(skb)->seq, segs, err);
3398
3399	if (likely(!err)) {
3400		trace_tcp_retransmit_skb(sk, skb);
3401	} else if (err != -EBUSY) {
3402		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3403	}
3404	return err;
3405}
3406
3407int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408{
3409	struct tcp_sock *tp = tcp_sk(sk);
3410	int err = __tcp_retransmit_skb(sk, skb, segs);
3411
3412	if (err == 0) {
3413#if FASTRETRANS_DEBUG > 0
3414		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415			net_dbg_ratelimited("retrans_out leaked\n");
3416		}
3417#endif
3418		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419		tp->retrans_out += tcp_skb_pcount(skb);
3420	}
3421
3422	/* Save stamp of the first (attempted) retransmit. */
3423	if (!tp->retrans_stamp)
3424		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425
3426	if (tp->undo_retrans < 0)
3427		tp->undo_retrans = 0;
3428	tp->undo_retrans += tcp_skb_pcount(skb);
3429	return err;
3430}
3431
3432/* This gets called after a retransmit timeout, and the initially
3433 * retransmitted data is acknowledged.  It tries to continue
3434 * resending the rest of the retransmit queue, until either
3435 * we've sent it all or the congestion window limit is reached.
3436 */
3437void tcp_xmit_retransmit_queue(struct sock *sk)
3438{
3439	const struct inet_connection_sock *icsk = inet_csk(sk);
3440	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441	struct tcp_sock *tp = tcp_sk(sk);
3442	bool rearm_timer = false;
3443	u32 max_segs;
3444	int mib_idx;
3445
3446	if (!tp->packets_out)
3447		return;
3448
3449	rtx_head = tcp_rtx_queue_head(sk);
3450	skb = tp->retransmit_skb_hint ?: rtx_head;
3451	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452	skb_rbtree_walk_from(skb) {
3453		__u8 sacked;
3454		int segs;
3455
3456		if (tcp_pacing_check(sk))
3457			break;
3458
3459		/* we could do better than to assign each time */
3460		if (!hole)
3461			tp->retransmit_skb_hint = skb;
3462
3463		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464		if (segs <= 0)
3465			break;
3466		sacked = TCP_SKB_CB(skb)->sacked;
3467		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468		 * we need to make sure not sending too bigs TSO packets
3469		 */
3470		segs = min_t(int, segs, max_segs);
3471
3472		if (tp->retrans_out >= tp->lost_out) {
3473			break;
3474		} else if (!(sacked & TCPCB_LOST)) {
3475			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476				hole = skb;
3477			continue;
3478
3479		} else {
3480			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482			else
3483				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484		}
3485
3486		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487			continue;
3488
3489		if (tcp_small_queue_check(sk, skb, 1))
3490			break;
3491
3492		if (tcp_retransmit_skb(sk, skb, segs))
3493			break;
3494
3495		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496
3497		if (tcp_in_cwnd_reduction(sk))
3498			tp->prr_out += tcp_skb_pcount(skb);
3499
3500		if (skb == rtx_head &&
3501		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502			rearm_timer = true;
3503
3504	}
3505	if (rearm_timer)
3506		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507				     inet_csk(sk)->icsk_rto,
3508				     TCP_RTO_MAX);
3509}
3510
3511/* We allow to exceed memory limits for FIN packets to expedite
3512 * connection tear down and (memory) recovery.
3513 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3514 * or even be forced to close flow without any FIN.
3515 * In general, we want to allow one skb per socket to avoid hangs
3516 * with edge trigger epoll()
3517 */
3518void sk_forced_mem_schedule(struct sock *sk, int size)
3519{
3520	int delta, amt;
3521
3522	delta = size - sk->sk_forward_alloc;
3523	if (delta <= 0)
3524		return;
3525	amt = sk_mem_pages(delta);
3526	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3527	sk_memory_allocated_add(sk, amt);
3528
3529	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3530		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3531					gfp_memcg_charge() | __GFP_NOFAIL);
3532}
3533
3534/* Send a FIN. The caller locks the socket for us.
3535 * We should try to send a FIN packet really hard, but eventually give up.
3536 */
3537void tcp_send_fin(struct sock *sk)
3538{
3539	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3540	struct tcp_sock *tp = tcp_sk(sk);
3541
3542	/* Optimization, tack on the FIN if we have one skb in write queue and
3543	 * this skb was not yet sent, or we are under memory pressure.
3544	 * Note: in the latter case, FIN packet will be sent after a timeout,
3545	 * as TCP stack thinks it has already been transmitted.
3546	 */
3547	tskb = tail;
3548	if (!tskb && tcp_under_memory_pressure(sk))
3549		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3550
3551	if (tskb) {
3552		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3553		TCP_SKB_CB(tskb)->end_seq++;
3554		tp->write_seq++;
3555		if (!tail) {
3556			/* This means tskb was already sent.
3557			 * Pretend we included the FIN on previous transmit.
3558			 * We need to set tp->snd_nxt to the value it would have
3559			 * if FIN had been sent. This is because retransmit path
3560			 * does not change tp->snd_nxt.
3561			 */
3562			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3563			return;
3564		}
3565	} else {
3566		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3567				       sk_gfp_mask(sk, GFP_ATOMIC |
3568						       __GFP_NOWARN));
3569		if (unlikely(!skb))
3570			return;
3571
3572		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3573		skb_reserve(skb, MAX_TCP_HEADER);
3574		sk_forced_mem_schedule(sk, skb->truesize);
3575		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3576		tcp_init_nondata_skb(skb, tp->write_seq,
3577				     TCPHDR_ACK | TCPHDR_FIN);
3578		tcp_queue_skb(sk, skb);
3579	}
3580	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3581}
3582
3583/* We get here when a process closes a file descriptor (either due to
3584 * an explicit close() or as a byproduct of exit()'ing) and there
3585 * was unread data in the receive queue.  This behavior is recommended
3586 * by RFC 2525, section 2.17.  -DaveM
3587 */
3588void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3589{
3590	struct sk_buff *skb;
3591
3592	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3593
3594	/* NOTE: No TCP options attached and we never retransmit this. */
3595	skb = alloc_skb(MAX_TCP_HEADER, priority);
3596	if (!skb) {
3597		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3598		return;
3599	}
3600
3601	/* Reserve space for headers and prepare control bits. */
3602	skb_reserve(skb, MAX_TCP_HEADER);
3603	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3604			     TCPHDR_ACK | TCPHDR_RST);
3605	tcp_mstamp_refresh(tcp_sk(sk));
3606	/* Send it off. */
3607	if (tcp_transmit_skb(sk, skb, 0, priority))
3608		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3609
3610	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3611	 * skb here is different to the troublesome skb, so use NULL
3612	 */
3613	trace_tcp_send_reset(sk, NULL);
3614}
3615
3616/* Send a crossed SYN-ACK during socket establishment.
3617 * WARNING: This routine must only be called when we have already sent
3618 * a SYN packet that crossed the incoming SYN that caused this routine
3619 * to get called. If this assumption fails then the initial rcv_wnd
3620 * and rcv_wscale values will not be correct.
3621 */
3622int tcp_send_synack(struct sock *sk)
3623{
3624	struct sk_buff *skb;
3625
3626	skb = tcp_rtx_queue_head(sk);
3627	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3628		pr_err("%s: wrong queue state\n", __func__);
3629		return -EFAULT;
3630	}
3631	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3632		if (skb_cloned(skb)) {
3633			struct sk_buff *nskb;
3634
3635			tcp_skb_tsorted_save(skb) {
3636				nskb = skb_copy(skb, GFP_ATOMIC);
3637			} tcp_skb_tsorted_restore(skb);
3638			if (!nskb)
3639				return -ENOMEM;
3640			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3641			tcp_highest_sack_replace(sk, skb, nskb);
3642			tcp_rtx_queue_unlink_and_free(skb, sk);
3643			__skb_header_release(nskb);
3644			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3645			sk_wmem_queued_add(sk, nskb->truesize);
3646			sk_mem_charge(sk, nskb->truesize);
3647			skb = nskb;
3648		}
3649
3650		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3651		tcp_ecn_send_synack(sk, skb);
3652	}
3653	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3654}
3655
3656/**
3657 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3658 * @sk: listener socket
3659 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3660 *       should not use it again.
3661 * @req: request_sock pointer
3662 * @foc: cookie for tcp fast open
3663 * @synack_type: Type of synack to prepare
3664 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3665 */
3666struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3667				struct request_sock *req,
3668				struct tcp_fastopen_cookie *foc,
3669				enum tcp_synack_type synack_type,
3670				struct sk_buff *syn_skb)
3671{
3672	struct inet_request_sock *ireq = inet_rsk(req);
3673	const struct tcp_sock *tp = tcp_sk(sk);
 
3674	struct tcp_out_options opts;
3675	struct tcp_key key = {};
3676	struct sk_buff *skb;
3677	int tcp_header_size;
3678	struct tcphdr *th;
3679	int mss;
3680	u64 now;
3681
3682	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3683	if (unlikely(!skb)) {
3684		dst_release(dst);
3685		return NULL;
3686	}
3687	/* Reserve space for headers. */
3688	skb_reserve(skb, MAX_TCP_HEADER);
3689
3690	switch (synack_type) {
3691	case TCP_SYNACK_NORMAL:
3692		skb_set_owner_w(skb, req_to_sk(req));
3693		break;
3694	case TCP_SYNACK_COOKIE:
3695		/* Under synflood, we do not attach skb to a socket,
3696		 * to avoid false sharing.
3697		 */
3698		break;
3699	case TCP_SYNACK_FASTOPEN:
3700		/* sk is a const pointer, because we want to express multiple
3701		 * cpu might call us concurrently.
3702		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3703		 */
3704		skb_set_owner_w(skb, (struct sock *)sk);
3705		break;
3706	}
3707	skb_dst_set(skb, dst);
3708
3709	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3710
3711	memset(&opts, 0, sizeof(opts));
3712	now = tcp_clock_ns();
3713#ifdef CONFIG_SYN_COOKIES
3714	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3715		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3716				      true);
3717	else
3718#endif
3719	{
3720		skb_set_delivery_time(skb, now, true);
3721		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3722			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3723	}
3724
3725#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3726	rcu_read_lock();
 
3727#endif
3728	if (tcp_rsk_used_ao(req)) {
3729#ifdef CONFIG_TCP_AO
3730		struct tcp_ao_key *ao_key = NULL;
3731		u8 keyid = tcp_rsk(req)->ao_keyid;
3732
3733		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3734							    keyid, -1);
3735		/* If there is no matching key - avoid sending anything,
3736		 * especially usigned segments. It could try harder and lookup
3737		 * for another peer-matching key, but the peer has requested
3738		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3739		 */
3740		if (unlikely(!ao_key)) {
3741			rcu_read_unlock();
3742			kfree_skb(skb);
3743			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3744					     keyid);
3745			return NULL;
3746		}
3747		key.ao_key = ao_key;
3748		key.type = TCP_KEY_AO;
3749#endif
3750	} else {
3751#ifdef CONFIG_TCP_MD5SIG
3752		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3753					req_to_sk(req));
3754		if (key.md5_key)
3755			key.type = TCP_KEY_MD5;
3756#endif
3757	}
3758	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3759	/* bpf program will be interested in the tcp_flags */
3760	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3761	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3762					     &key, foc, synack_type, syn_skb)
3763					+ sizeof(*th);
3764
3765	skb_push(skb, tcp_header_size);
3766	skb_reset_transport_header(skb);
3767
3768	th = (struct tcphdr *)skb->data;
3769	memset(th, 0, sizeof(struct tcphdr));
3770	th->syn = 1;
3771	th->ack = 1;
3772	tcp_ecn_make_synack(req, th);
3773	th->source = htons(ireq->ir_num);
3774	th->dest = ireq->ir_rmt_port;
3775	skb->mark = ireq->ir_mark;
3776	skb->ip_summed = CHECKSUM_PARTIAL;
3777	th->seq = htonl(tcp_rsk(req)->snt_isn);
3778	/* XXX data is queued and acked as is. No buffer/window check */
3779	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3780
3781	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3782	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3783	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3784	th->doff = (tcp_header_size >> 2);
3785	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3786
 
3787	/* Okay, we have all we need - do the md5 hash if needed */
3788	if (tcp_key_is_md5(&key)) {
3789#ifdef CONFIG_TCP_MD5SIG
3790		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3791					key.md5_key, req_to_sk(req), skb);
3792#endif
3793	} else if (tcp_key_is_ao(&key)) {
3794#ifdef CONFIG_TCP_AO
3795		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3796					key.ao_key, req, skb,
3797					opts.hash_location - (u8 *)th, 0);
3798#endif
3799	}
3800#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3801	rcu_read_unlock();
3802#endif
3803
3804	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3805				synack_type, &opts);
3806
3807	skb_set_delivery_time(skb, now, true);
3808	tcp_add_tx_delay(skb, tp);
3809
3810	return skb;
3811}
3812EXPORT_SYMBOL(tcp_make_synack);
3813
3814static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3815{
3816	struct inet_connection_sock *icsk = inet_csk(sk);
3817	const struct tcp_congestion_ops *ca;
3818	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3819
3820	if (ca_key == TCP_CA_UNSPEC)
3821		return;
3822
3823	rcu_read_lock();
3824	ca = tcp_ca_find_key(ca_key);
3825	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3826		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3827		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3828		icsk->icsk_ca_ops = ca;
3829	}
3830	rcu_read_unlock();
3831}
3832
3833/* Do all connect socket setups that can be done AF independent. */
3834static void tcp_connect_init(struct sock *sk)
3835{
3836	const struct dst_entry *dst = __sk_dst_get(sk);
3837	struct tcp_sock *tp = tcp_sk(sk);
3838	__u8 rcv_wscale;
3839	u32 rcv_wnd;
3840
3841	/* We'll fix this up when we get a response from the other end.
3842	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3843	 */
3844	tp->tcp_header_len = sizeof(struct tcphdr);
3845	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3846		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3847
3848	tcp_ao_connect_init(sk);
 
 
 
3849
3850	/* If user gave his TCP_MAXSEG, record it to clamp */
3851	if (tp->rx_opt.user_mss)
3852		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3853	tp->max_window = 0;
3854	tcp_mtup_init(sk);
3855	tcp_sync_mss(sk, dst_mtu(dst));
3856
3857	tcp_ca_dst_init(sk, dst);
3858
3859	if (!tp->window_clamp)
3860		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3861	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3862
3863	tcp_initialize_rcv_mss(sk);
3864
3865	/* limit the window selection if the user enforce a smaller rx buffer */
3866	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3867	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3868		tp->window_clamp = tcp_full_space(sk);
3869
3870	rcv_wnd = tcp_rwnd_init_bpf(sk);
3871	if (rcv_wnd == 0)
3872		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3873
3874	tcp_select_initial_window(sk, tcp_full_space(sk),
3875				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3876				  &tp->rcv_wnd,
3877				  &tp->window_clamp,
3878				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3879				  &rcv_wscale,
3880				  rcv_wnd);
3881
3882	tp->rx_opt.rcv_wscale = rcv_wscale;
3883	tp->rcv_ssthresh = tp->rcv_wnd;
3884
3885	WRITE_ONCE(sk->sk_err, 0);
3886	sock_reset_flag(sk, SOCK_DONE);
3887	tp->snd_wnd = 0;
3888	tcp_init_wl(tp, 0);
3889	tcp_write_queue_purge(sk);
3890	tp->snd_una = tp->write_seq;
3891	tp->snd_sml = tp->write_seq;
3892	tp->snd_up = tp->write_seq;
3893	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3894
3895	if (likely(!tp->repair))
3896		tp->rcv_nxt = 0;
3897	else
3898		tp->rcv_tstamp = tcp_jiffies32;
3899	tp->rcv_wup = tp->rcv_nxt;
3900	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3901
3902	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3903	inet_csk(sk)->icsk_retransmits = 0;
3904	tcp_clear_retrans(tp);
3905}
3906
3907static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3908{
3909	struct tcp_sock *tp = tcp_sk(sk);
3910	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3911
3912	tcb->end_seq += skb->len;
3913	__skb_header_release(skb);
3914	sk_wmem_queued_add(sk, skb->truesize);
3915	sk_mem_charge(sk, skb->truesize);
3916	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3917	tp->packets_out += tcp_skb_pcount(skb);
3918}
3919
3920/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3921 * queue a data-only packet after the regular SYN, such that regular SYNs
3922 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3923 * only the SYN sequence, the data are retransmitted in the first ACK.
3924 * If cookie is not cached or other error occurs, falls back to send a
3925 * regular SYN with Fast Open cookie request option.
3926 */
3927static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3928{
3929	struct inet_connection_sock *icsk = inet_csk(sk);
3930	struct tcp_sock *tp = tcp_sk(sk);
3931	struct tcp_fastopen_request *fo = tp->fastopen_req;
3932	struct page_frag *pfrag = sk_page_frag(sk);
3933	struct sk_buff *syn_data;
3934	int space, err = 0;
3935
3936	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3937	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3938		goto fallback;
3939
3940	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3941	 * user-MSS. Reserve maximum option space for middleboxes that add
3942	 * private TCP options. The cost is reduced data space in SYN :(
3943	 */
3944	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3945	/* Sync mss_cache after updating the mss_clamp */
3946	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3947
3948	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3949		MAX_TCP_OPTION_SPACE;
3950
3951	space = min_t(size_t, space, fo->size);
3952
3953	if (space &&
3954	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3955				  pfrag, sk->sk_allocation))
3956		goto fallback;
3957	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3958	if (!syn_data)
3959		goto fallback;
 
3960	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3961	if (space) {
3962		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3963		space = tcp_wmem_schedule(sk, space);
3964	}
3965	if (space) {
3966		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3967					    space, &fo->data->msg_iter);
3968		if (unlikely(!space)) {
3969			tcp_skb_tsorted_anchor_cleanup(syn_data);
3970			kfree_skb(syn_data);
3971			goto fallback;
3972		}
3973		skb_fill_page_desc(syn_data, 0, pfrag->page,
3974				   pfrag->offset, space);
3975		page_ref_inc(pfrag->page);
3976		pfrag->offset += space;
3977		skb_len_add(syn_data, space);
3978		skb_zcopy_set(syn_data, fo->uarg, NULL);
3979	}
3980	/* No more data pending in inet_wait_for_connect() */
3981	if (space == fo->size)
3982		fo->data = NULL;
3983	fo->copied = space;
3984
3985	tcp_connect_queue_skb(sk, syn_data);
3986	if (syn_data->len)
3987		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3988
3989	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3990
3991	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3992
3993	/* Now full SYN+DATA was cloned and sent (or not),
3994	 * remove the SYN from the original skb (syn_data)
3995	 * we keep in write queue in case of a retransmit, as we
3996	 * also have the SYN packet (with no data) in the same queue.
3997	 */
3998	TCP_SKB_CB(syn_data)->seq++;
3999	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4000	if (!err) {
4001		tp->syn_data = (fo->copied > 0);
4002		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4003		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4004		goto done;
4005	}
4006
4007	/* data was not sent, put it in write_queue */
4008	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4009	tp->packets_out -= tcp_skb_pcount(syn_data);
4010
4011fallback:
4012	/* Send a regular SYN with Fast Open cookie request option */
4013	if (fo->cookie.len > 0)
4014		fo->cookie.len = 0;
4015	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4016	if (err)
4017		tp->syn_fastopen = 0;
4018done:
4019	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4020	return err;
4021}
4022
4023/* Build a SYN and send it off. */
4024int tcp_connect(struct sock *sk)
4025{
4026	struct tcp_sock *tp = tcp_sk(sk);
4027	struct sk_buff *buff;
4028	int err;
4029
4030	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4031
4032#if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4033	/* Has to be checked late, after setting daddr/saddr/ops.
4034	 * Return error if the peer has both a md5 and a tcp-ao key
4035	 * configured as this is ambiguous.
4036	 */
4037	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4038					       lockdep_sock_is_held(sk)))) {
4039		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4040		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4041		struct tcp_ao_info *ao_info;
4042
4043		ao_info = rcu_dereference_check(tp->ao_info,
4044						lockdep_sock_is_held(sk));
4045		if (ao_info) {
4046			/* This is an extra check: tcp_ao_required() in
4047			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4048			 * md5 keys on ao_required socket.
4049			 */
4050			needs_ao |= ao_info->ao_required;
4051			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4052		}
4053		if (needs_md5 && needs_ao)
4054			return -EKEYREJECTED;
4055
4056		/* If we have a matching md5 key and no matching tcp-ao key
4057		 * then free up ao_info if allocated.
4058		 */
4059		if (needs_md5) {
4060			tcp_ao_destroy_sock(sk, false);
4061		} else if (needs_ao) {
4062			tcp_clear_md5_list(sk);
4063			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4064						  lockdep_sock_is_held(sk)));
4065		}
4066	}
4067#endif
4068#ifdef CONFIG_TCP_AO
4069	if (unlikely(rcu_dereference_protected(tp->ao_info,
4070					       lockdep_sock_is_held(sk)))) {
4071		/* Don't allow connecting if ao is configured but no
4072		 * matching key is found.
4073		 */
4074		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4075			return -EKEYREJECTED;
4076	}
4077#endif
4078
4079	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4080		return -EHOSTUNREACH; /* Routing failure or similar. */
4081
4082	tcp_connect_init(sk);
4083
4084	if (unlikely(tp->repair)) {
4085		tcp_finish_connect(sk, NULL);
4086		return 0;
4087	}
4088
4089	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4090	if (unlikely(!buff))
4091		return -ENOBUFS;
4092
4093	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4094	tcp_mstamp_refresh(tp);
4095	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4096	tcp_connect_queue_skb(sk, buff);
4097	tcp_ecn_send_syn(sk, buff);
4098	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4099
4100	/* Send off SYN; include data in Fast Open. */
4101	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4102	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4103	if (err == -ECONNREFUSED)
4104		return err;
4105
4106	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4107	 * in order to make this packet get counted in tcpOutSegs.
4108	 */
4109	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4110	tp->pushed_seq = tp->write_seq;
4111	buff = tcp_send_head(sk);
4112	if (unlikely(buff)) {
4113		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4114		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4115	}
4116	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4117
4118	/* Timer for repeating the SYN until an answer. */
4119	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4120				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4121	return 0;
4122}
4123EXPORT_SYMBOL(tcp_connect);
4124
4125u32 tcp_delack_max(const struct sock *sk)
4126{
4127	const struct dst_entry *dst = __sk_dst_get(sk);
4128	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4129
4130	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4131		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4132		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4133
4134		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4135	}
4136	return delack_max;
4137}
4138
4139/* Send out a delayed ack, the caller does the policy checking
4140 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4141 * for details.
4142 */
4143void tcp_send_delayed_ack(struct sock *sk)
4144{
4145	struct inet_connection_sock *icsk = inet_csk(sk);
4146	int ato = icsk->icsk_ack.ato;
4147	unsigned long timeout;
4148
4149	if (ato > TCP_DELACK_MIN) {
4150		const struct tcp_sock *tp = tcp_sk(sk);
4151		int max_ato = HZ / 2;
4152
4153		if (inet_csk_in_pingpong_mode(sk) ||
4154		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4155			max_ato = TCP_DELACK_MAX;
4156
4157		/* Slow path, intersegment interval is "high". */
4158
4159		/* If some rtt estimate is known, use it to bound delayed ack.
4160		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4161		 * directly.
4162		 */
4163		if (tp->srtt_us) {
4164			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4165					TCP_DELACK_MIN);
4166
4167			if (rtt < max_ato)
4168				max_ato = rtt;
4169		}
4170
4171		ato = min(ato, max_ato);
4172	}
4173
4174	ato = min_t(u32, ato, tcp_delack_max(sk));
4175
4176	/* Stay within the limit we were given */
4177	timeout = jiffies + ato;
4178
4179	/* Use new timeout only if there wasn't a older one earlier. */
4180	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4181		/* If delack timer is about to expire, send ACK now. */
4182		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4183			tcp_send_ack(sk);
4184			return;
4185		}
4186
4187		if (!time_before(timeout, icsk->icsk_ack.timeout))
4188			timeout = icsk->icsk_ack.timeout;
4189	}
4190	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4191	icsk->icsk_ack.timeout = timeout;
4192	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4193}
4194
4195/* This routine sends an ack and also updates the window. */
4196void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4197{
4198	struct sk_buff *buff;
4199
4200	/* If we have been reset, we may not send again. */
4201	if (sk->sk_state == TCP_CLOSE)
4202		return;
4203
4204	/* We are not putting this on the write queue, so
4205	 * tcp_transmit_skb() will set the ownership to this
4206	 * sock.
4207	 */
4208	buff = alloc_skb(MAX_TCP_HEADER,
4209			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4210	if (unlikely(!buff)) {
4211		struct inet_connection_sock *icsk = inet_csk(sk);
4212		unsigned long delay;
4213
4214		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4215		if (delay < TCP_RTO_MAX)
4216			icsk->icsk_ack.retry++;
4217		inet_csk_schedule_ack(sk);
4218		icsk->icsk_ack.ato = TCP_ATO_MIN;
4219		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4220		return;
4221	}
4222
4223	/* Reserve space for headers and prepare control bits. */
4224	skb_reserve(buff, MAX_TCP_HEADER);
4225	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4226
4227	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4228	 * too much.
4229	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4230	 */
4231	skb_set_tcp_pure_ack(buff);
4232
4233	/* Send it off, this clears delayed acks for us. */
4234	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4235}
4236EXPORT_SYMBOL_GPL(__tcp_send_ack);
4237
4238void tcp_send_ack(struct sock *sk)
4239{
4240	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4241}
4242
4243/* This routine sends a packet with an out of date sequence
4244 * number. It assumes the other end will try to ack it.
4245 *
4246 * Question: what should we make while urgent mode?
4247 * 4.4BSD forces sending single byte of data. We cannot send
4248 * out of window data, because we have SND.NXT==SND.MAX...
4249 *
4250 * Current solution: to send TWO zero-length segments in urgent mode:
4251 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4252 * out-of-date with SND.UNA-1 to probe window.
4253 */
4254static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4255{
4256	struct tcp_sock *tp = tcp_sk(sk);
4257	struct sk_buff *skb;
4258
4259	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4260	skb = alloc_skb(MAX_TCP_HEADER,
4261			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4262	if (!skb)
4263		return -1;
4264
4265	/* Reserve space for headers and set control bits. */
4266	skb_reserve(skb, MAX_TCP_HEADER);
4267	/* Use a previous sequence.  This should cause the other
4268	 * end to send an ack.  Don't queue or clone SKB, just
4269	 * send it.
4270	 */
4271	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4272	NET_INC_STATS(sock_net(sk), mib);
4273	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4274}
4275
4276/* Called from setsockopt( ... TCP_REPAIR ) */
4277void tcp_send_window_probe(struct sock *sk)
4278{
4279	if (sk->sk_state == TCP_ESTABLISHED) {
4280		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4281		tcp_mstamp_refresh(tcp_sk(sk));
4282		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4283	}
4284}
4285
4286/* Initiate keepalive or window probe from timer. */
4287int tcp_write_wakeup(struct sock *sk, int mib)
4288{
4289	struct tcp_sock *tp = tcp_sk(sk);
4290	struct sk_buff *skb;
4291
4292	if (sk->sk_state == TCP_CLOSE)
4293		return -1;
4294
4295	skb = tcp_send_head(sk);
4296	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4297		int err;
4298		unsigned int mss = tcp_current_mss(sk);
4299		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4300
4301		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4302			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4303
4304		/* We are probing the opening of a window
4305		 * but the window size is != 0
4306		 * must have been a result SWS avoidance ( sender )
4307		 */
4308		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4309		    skb->len > mss) {
4310			seg_size = min(seg_size, mss);
4311			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4312			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4313					 skb, seg_size, mss, GFP_ATOMIC))
4314				return -1;
4315		} else if (!tcp_skb_pcount(skb))
4316			tcp_set_skb_tso_segs(skb, mss);
4317
4318		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4319		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4320		if (!err)
4321			tcp_event_new_data_sent(sk, skb);
4322		return err;
4323	} else {
4324		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4325			tcp_xmit_probe_skb(sk, 1, mib);
4326		return tcp_xmit_probe_skb(sk, 0, mib);
4327	}
4328}
4329
4330/* A window probe timeout has occurred.  If window is not closed send
4331 * a partial packet else a zero probe.
4332 */
4333void tcp_send_probe0(struct sock *sk)
4334{
4335	struct inet_connection_sock *icsk = inet_csk(sk);
4336	struct tcp_sock *tp = tcp_sk(sk);
4337	struct net *net = sock_net(sk);
4338	unsigned long timeout;
4339	int err;
4340
4341	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4342
4343	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4344		/* Cancel probe timer, if it is not required. */
4345		icsk->icsk_probes_out = 0;
4346		icsk->icsk_backoff = 0;
4347		icsk->icsk_probes_tstamp = 0;
4348		return;
4349	}
4350
4351	icsk->icsk_probes_out++;
4352	if (err <= 0) {
4353		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4354			icsk->icsk_backoff++;
4355		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4356	} else {
4357		/* If packet was not sent due to local congestion,
4358		 * Let senders fight for local resources conservatively.
4359		 */
4360		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4361	}
4362
4363	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4364	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4365}
4366
4367int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4368{
4369	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4370	struct flowi fl;
4371	int res;
4372
4373	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4374	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4375		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4376	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4377				  NULL);
4378	if (!res) {
4379		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4380		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4381		if (unlikely(tcp_passive_fastopen(sk))) {
4382			/* sk has const attribute because listeners are lockless.
4383			 * However in this case, we are dealing with a passive fastopen
4384			 * socket thus we can change total_retrans value.
4385			 */
4386			tcp_sk_rw(sk)->total_retrans++;
4387		}
4388		trace_tcp_retransmit_synack(sk, req);
4389	}
4390	return res;
4391}
4392EXPORT_SYMBOL(tcp_rtx_synack);