Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->freelist(index): links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
 
 
 
 
 
 
 
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <linux/pgtable.h>
  43#include <asm/tlbflush.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/pseudo_fs.h>
  56#include <linux/migrate.h>
  57#include <linux/wait.h>
  58#include <linux/pagemap.h>
  59#include <linux/fs.h>
 
  60
  61#define ZSPAGE_MAGIC	0x58
  62
  63/*
  64 * This must be power of 2 and greater than or equal to sizeof(link_free).
  65 * These two conditions ensure that any 'struct link_free' itself doesn't
  66 * span more than 1 page which avoids complex case of mapping 2 pages simply
  67 * to restore link_free pointer values.
  68 */
  69#define ZS_ALIGN		8
  70
  71/*
  72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  74 */
  75#define ZS_MAX_ZSPAGE_ORDER 2
  76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  77
  78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  79
  80/*
  81 * Object location (<PFN>, <obj_idx>) is encoded as
  82 * a single (unsigned long) handle value.
  83 *
  84 * Note that object index <obj_idx> starts from 0.
  85 *
  86 * This is made more complicated by various memory models and PAE.
  87 */
  88
  89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  90#ifdef MAX_PHYSMEM_BITS
  91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  92#else
  93/*
  94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  95 * be PAGE_SHIFT
  96 */
  97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  98#endif
  99#endif
 100
 101#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 102
 103/*
 104 * Memory for allocating for handle keeps object position by
 105 * encoding <page, obj_idx> and the encoded value has a room
 106 * in least bit(ie, look at obj_to_location).
 107 * We use the bit to synchronize between object access by
 108 * user and migration.
 109 */
 110#define HANDLE_PIN_BIT	0
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 121#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 
 
 
 122#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 124#define FULLNESS_BITS	2
 
 125#define CLASS_BITS	8
 126#define ISOLATED_BITS	3
 127#define MAGIC_VAL_BITS	8
 128
 129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 
 
 
 130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 131#define ZS_MIN_ALLOC_SIZE \
 132	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 133/* each chunk includes extra space to keep handle */
 134#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 135
 136/*
 137 * On systems with 4K page size, this gives 255 size classes! There is a
 138 * trader-off here:
 139 *  - Large number of size classes is potentially wasteful as free page are
 140 *    spread across these classes
 141 *  - Small number of size classes causes large internal fragmentation
 142 *  - Probably its better to use specific size classes (empirically
 143 *    determined). NOTE: all those class sizes must be set as multiple of
 144 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 145 *
 146 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 147 *  (reason above)
 148 */
 149#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 150#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 151				      ZS_SIZE_CLASS_DELTA) + 1)
 152
 
 
 
 
 
 
 
 
 
 
 153enum fullness_group {
 154	ZS_EMPTY,
 155	ZS_ALMOST_EMPTY,
 156	ZS_ALMOST_FULL,
 157	ZS_FULL,
 158	NR_ZS_FULLNESS,
 
 159};
 160
 161enum zs_stat_type {
 162	CLASS_EMPTY,
 163	CLASS_ALMOST_EMPTY,
 164	CLASS_ALMOST_FULL,
 165	CLASS_FULL,
 166	OBJ_ALLOCATED,
 167	OBJ_USED,
 168	NR_ZS_STAT_TYPE,
 169};
 170
 171struct zs_size_stat {
 172	unsigned long objs[NR_ZS_STAT_TYPE];
 173};
 174
 175#ifdef CONFIG_ZSMALLOC_STAT
 176static struct dentry *zs_stat_root;
 177#endif
 178
 179#ifdef CONFIG_COMPACTION
 180static struct vfsmount *zsmalloc_mnt;
 181#endif
 182
 183/*
 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 185 *	n <= N / f, where
 186 * n = number of allocated objects
 187 * N = total number of objects zspage can store
 188 * f = fullness_threshold_frac
 189 *
 190 * Similarly, we assign zspage to:
 191 *	ZS_ALMOST_FULL	when n > N / f
 192 *	ZS_EMPTY	when n == 0
 193 *	ZS_FULL		when n == N
 194 *
 195 * (see: fix_fullness_group())
 196 */
 197static const int fullness_threshold_frac = 4;
 198static size_t huge_class_size;
 199
 200struct size_class {
 201	spinlock_t lock;
 202	struct list_head fullness_list[NR_ZS_FULLNESS];
 203	/*
 204	 * Size of objects stored in this class. Must be multiple
 205	 * of ZS_ALIGN.
 206	 */
 207	int size;
 208	int objs_per_zspage;
 209	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 210	int pages_per_zspage;
 211
 212	unsigned int index;
 213	struct zs_size_stat stats;
 214};
 215
 216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 217static void SetPageHugeObject(struct page *page)
 218{
 219	SetPageOwnerPriv1(page);
 220}
 221
 222static void ClearPageHugeObject(struct page *page)
 223{
 224	ClearPageOwnerPriv1(page);
 225}
 226
 227static int PageHugeObject(struct page *page)
 228{
 229	return PageOwnerPriv1(page);
 230}
 231
 232/*
 233 * Placed within free objects to form a singly linked list.
 234 * For every zspage, zspage->freeobj gives head of this list.
 235 *
 236 * This must be power of 2 and less than or equal to ZS_ALIGN
 237 */
 238struct link_free {
 239	union {
 240		/*
 241		 * Free object index;
 242		 * It's valid for non-allocated object
 243		 */
 244		unsigned long next;
 245		/*
 246		 * Handle of allocated object.
 247		 */
 248		unsigned long handle;
 249	};
 250};
 251
 252struct zs_pool {
 253	const char *name;
 254
 255	struct size_class *size_class[ZS_SIZE_CLASSES];
 256	struct kmem_cache *handle_cachep;
 257	struct kmem_cache *zspage_cachep;
 258
 259	atomic_long_t pages_allocated;
 260
 261	struct zs_pool_stats stats;
 262
 263	/* Compact classes */
 264	struct shrinker shrinker;
 265
 266#ifdef CONFIG_ZSMALLOC_STAT
 267	struct dentry *stat_dentry;
 268#endif
 269#ifdef CONFIG_COMPACTION
 270	struct inode *inode;
 271	struct work_struct free_work;
 272	/* A wait queue for when migration races with async_free_zspage() */
 273	struct wait_queue_head migration_wait;
 274	atomic_long_t isolated_pages;
 275	bool destroying;
 276#endif
 
 
 277};
 278
 279struct zspage {
 280	struct {
 
 281		unsigned int fullness:FULLNESS_BITS;
 282		unsigned int class:CLASS_BITS + 1;
 283		unsigned int isolated:ISOLATED_BITS;
 284		unsigned int magic:MAGIC_VAL_BITS;
 285	};
 286	unsigned int inuse;
 287	unsigned int freeobj;
 288	struct page *first_page;
 289	struct list_head list; /* fullness list */
 290#ifdef CONFIG_COMPACTION
 291	rwlock_t lock;
 292#endif
 293};
 294
 295struct mapping_area {
 
 296	char *vm_buf; /* copy buffer for objects that span pages */
 297	char *vm_addr; /* address of kmap_atomic()'ed pages */
 298	enum zs_mapmode vm_mm; /* mapping mode */
 299};
 300
 301#ifdef CONFIG_COMPACTION
 302static int zs_register_migration(struct zs_pool *pool);
 303static void zs_unregister_migration(struct zs_pool *pool);
 
 
 
 
 
 
 
 
 304static void migrate_lock_init(struct zspage *zspage);
 305static void migrate_read_lock(struct zspage *zspage);
 306static void migrate_read_unlock(struct zspage *zspage);
 
 
 
 
 307static void kick_deferred_free(struct zs_pool *pool);
 308static void init_deferred_free(struct zs_pool *pool);
 309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 310#else
 311static int zsmalloc_mount(void) { return 0; }
 312static void zsmalloc_unmount(void) {}
 313static int zs_register_migration(struct zs_pool *pool) { return 0; }
 314static void zs_unregister_migration(struct zs_pool *pool) {}
 315static void migrate_lock_init(struct zspage *zspage) {}
 316static void migrate_read_lock(struct zspage *zspage) {}
 317static void migrate_read_unlock(struct zspage *zspage) {}
 318static void kick_deferred_free(struct zs_pool *pool) {}
 319static void init_deferred_free(struct zs_pool *pool) {}
 320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 321#endif
 322
 323static int create_cache(struct zs_pool *pool)
 324{
 325	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 326					0, 0, NULL);
 327	if (!pool->handle_cachep)
 328		return 1;
 329
 330	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 331					0, 0, NULL);
 332	if (!pool->zspage_cachep) {
 333		kmem_cache_destroy(pool->handle_cachep);
 334		pool->handle_cachep = NULL;
 335		return 1;
 336	}
 337
 338	return 0;
 339}
 340
 341static void destroy_cache(struct zs_pool *pool)
 342{
 343	kmem_cache_destroy(pool->handle_cachep);
 344	kmem_cache_destroy(pool->zspage_cachep);
 345}
 346
 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 348{
 349	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 350			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 351}
 352
 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 354{
 355	kmem_cache_free(pool->handle_cachep, (void *)handle);
 356}
 357
 358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 359{
 360	return kmem_cache_zalloc(pool->zspage_cachep,
 361			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 362}
 363
 364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 365{
 366	kmem_cache_free(pool->zspage_cachep, zspage);
 367}
 368
 
 369static void record_obj(unsigned long handle, unsigned long obj)
 370{
 371	/*
 372	 * lsb of @obj represents handle lock while other bits
 373	 * represent object value the handle is pointing so
 374	 * updating shouldn't do store tearing.
 375	 */
 376	WRITE_ONCE(*(unsigned long *)handle, obj);
 377}
 378
 379/* zpool driver */
 380
 381#ifdef CONFIG_ZPOOL
 382
 383static void *zs_zpool_create(const char *name, gfp_t gfp,
 384			     const struct zpool_ops *zpool_ops,
 385			     struct zpool *zpool)
 386{
 387	/*
 388	 * Ignore global gfp flags: zs_malloc() may be invoked from
 389	 * different contexts and its caller must provide a valid
 390	 * gfp mask.
 391	 */
 392	return zs_create_pool(name);
 393}
 394
 395static void zs_zpool_destroy(void *pool)
 396{
 397	zs_destroy_pool(pool);
 398}
 399
 400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 401			unsigned long *handle)
 402{
 403	*handle = zs_malloc(pool, size, gfp);
 404	return *handle ? 0 : -1;
 
 
 
 405}
 406static void zs_zpool_free(void *pool, unsigned long handle)
 407{
 408	zs_free(pool, handle);
 409}
 410
 411static void *zs_zpool_map(void *pool, unsigned long handle,
 412			enum zpool_mapmode mm)
 413{
 414	enum zs_mapmode zs_mm;
 415
 416	switch (mm) {
 417	case ZPOOL_MM_RO:
 418		zs_mm = ZS_MM_RO;
 419		break;
 420	case ZPOOL_MM_WO:
 421		zs_mm = ZS_MM_WO;
 422		break;
 423	case ZPOOL_MM_RW:
 424	default:
 425		zs_mm = ZS_MM_RW;
 426		break;
 427	}
 428
 429	return zs_map_object(pool, handle, zs_mm);
 430}
 431static void zs_zpool_unmap(void *pool, unsigned long handle)
 432{
 433	zs_unmap_object(pool, handle);
 434}
 435
 436static u64 zs_zpool_total_size(void *pool)
 437{
 438	return zs_get_total_pages(pool) << PAGE_SHIFT;
 439}
 440
 441static struct zpool_driver zs_zpool_driver = {
 442	.type =			  "zsmalloc",
 443	.owner =		  THIS_MODULE,
 444	.create =		  zs_zpool_create,
 445	.destroy =		  zs_zpool_destroy,
 446	.malloc_support_movable = true,
 447	.malloc =		  zs_zpool_malloc,
 448	.free =			  zs_zpool_free,
 449	.map =			  zs_zpool_map,
 450	.unmap =		  zs_zpool_unmap,
 451	.total_size =		  zs_zpool_total_size,
 452};
 453
 454MODULE_ALIAS("zpool-zsmalloc");
 455#endif /* CONFIG_ZPOOL */
 456
 457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 459
 460static bool is_zspage_isolated(struct zspage *zspage)
 461{
 462	return zspage->isolated;
 463}
 464
 465static __maybe_unused int is_first_page(struct page *page)
 466{
 467	return PagePrivate(page);
 468}
 469
 470/* Protected by class->lock */
 471static inline int get_zspage_inuse(struct zspage *zspage)
 472{
 473	return zspage->inuse;
 474}
 475
 476
 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 478{
 479	zspage->inuse += val;
 480}
 481
 482static inline struct page *get_first_page(struct zspage *zspage)
 483{
 484	struct page *first_page = zspage->first_page;
 485
 486	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 487	return first_page;
 488}
 489
 490static inline int get_first_obj_offset(struct page *page)
 491{
 492	return page->units;
 493}
 494
 495static inline void set_first_obj_offset(struct page *page, int offset)
 496{
 497	page->units = offset;
 498}
 499
 500static inline unsigned int get_freeobj(struct zspage *zspage)
 501{
 502	return zspage->freeobj;
 503}
 504
 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 506{
 507	zspage->freeobj = obj;
 508}
 509
 510static void get_zspage_mapping(struct zspage *zspage,
 511				unsigned int *class_idx,
 512				enum fullness_group *fullness)
 513{
 514	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 515
 516	*fullness = zspage->fullness;
 517	*class_idx = zspage->class;
 518}
 519
 520static void set_zspage_mapping(struct zspage *zspage,
 521				unsigned int class_idx,
 522				enum fullness_group fullness)
 523{
 524	zspage->class = class_idx;
 525	zspage->fullness = fullness;
 526}
 527
 528/*
 529 * zsmalloc divides the pool into various size classes where each
 530 * class maintains a list of zspages where each zspage is divided
 531 * into equal sized chunks. Each allocation falls into one of these
 532 * classes depending on its size. This function returns index of the
 533 * size class which has chunk size big enough to hold the given size.
 534 */
 535static int get_size_class_index(int size)
 536{
 537	int idx = 0;
 538
 539	if (likely(size > ZS_MIN_ALLOC_SIZE))
 540		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 541				ZS_SIZE_CLASS_DELTA);
 542
 543	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 544}
 545
 546/* type can be of enum type zs_stat_type or fullness_group */
 547static inline void zs_stat_inc(struct size_class *class,
 548				int type, unsigned long cnt)
 549{
 550	class->stats.objs[type] += cnt;
 551}
 552
 553/* type can be of enum type zs_stat_type or fullness_group */
 554static inline void zs_stat_dec(struct size_class *class,
 555				int type, unsigned long cnt)
 556{
 557	class->stats.objs[type] -= cnt;
 558}
 559
 560/* type can be of enum type zs_stat_type or fullness_group */
 561static inline unsigned long zs_stat_get(struct size_class *class,
 562				int type)
 563{
 564	return class->stats.objs[type];
 565}
 566
 567#ifdef CONFIG_ZSMALLOC_STAT
 568
 569static void __init zs_stat_init(void)
 570{
 571	if (!debugfs_initialized()) {
 572		pr_warn("debugfs not available, stat dir not created\n");
 573		return;
 574	}
 575
 576	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 577}
 578
 579static void __exit zs_stat_exit(void)
 580{
 581	debugfs_remove_recursive(zs_stat_root);
 582}
 583
 584static unsigned long zs_can_compact(struct size_class *class);
 585
 586static int zs_stats_size_show(struct seq_file *s, void *v)
 587{
 588	int i;
 589	struct zs_pool *pool = s->private;
 590	struct size_class *class;
 591	int objs_per_zspage;
 592	unsigned long class_almost_full, class_almost_empty;
 593	unsigned long obj_allocated, obj_used, pages_used, freeable;
 594	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 595	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 596	unsigned long total_freeable = 0;
 
 597
 598	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 599			"class", "size", "almost_full", "almost_empty",
 
 600			"obj_allocated", "obj_used", "pages_used",
 601			"pages_per_zspage", "freeable");
 602
 603	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 
 604		class = pool->size_class[i];
 605
 606		if (class->index != i)
 607			continue;
 608
 609		spin_lock(&class->lock);
 610		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 611		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 612		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 613		obj_used = zs_stat_get(class, OBJ_USED);
 
 
 
 
 
 614		freeable = zs_can_compact(class);
 615		spin_unlock(&class->lock);
 616
 617		objs_per_zspage = class->objs_per_zspage;
 618		pages_used = obj_allocated / objs_per_zspage *
 619				class->pages_per_zspage;
 620
 621		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 622				" %10lu %10lu %16d %8lu\n",
 623			i, class->size, class_almost_full, class_almost_empty,
 624			obj_allocated, obj_used, pages_used,
 625			class->pages_per_zspage, freeable);
 626
 627		total_class_almost_full += class_almost_full;
 628		total_class_almost_empty += class_almost_empty;
 629		total_objs += obj_allocated;
 630		total_used_objs += obj_used;
 631		total_pages += pages_used;
 632		total_freeable += freeable;
 633	}
 634
 635	seq_puts(s, "\n");
 636	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 637			"Total", "", total_class_almost_full,
 638			total_class_almost_empty, total_objs,
 639			total_used_objs, total_pages, "", total_freeable);
 
 
 
 
 640
 641	return 0;
 642}
 643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 644
 645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 646{
 647	if (!zs_stat_root) {
 648		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 649		return;
 650	}
 651
 652	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 653
 654	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 655			    &zs_stats_size_fops);
 656}
 657
 658static void zs_pool_stat_destroy(struct zs_pool *pool)
 659{
 660	debugfs_remove_recursive(pool->stat_dentry);
 661}
 662
 663#else /* CONFIG_ZSMALLOC_STAT */
 664static void __init zs_stat_init(void)
 665{
 666}
 667
 668static void __exit zs_stat_exit(void)
 669{
 670}
 671
 672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 673{
 674}
 675
 676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 677{
 678}
 679#endif
 680
 681
 682/*
 683 * For each size class, zspages are divided into different groups
 684 * depending on how "full" they are. This was done so that we could
 685 * easily find empty or nearly empty zspages when we try to shrink
 686 * the pool (not yet implemented). This function returns fullness
 687 * status of the given page.
 688 */
 689static enum fullness_group get_fullness_group(struct size_class *class,
 690						struct zspage *zspage)
 691{
 692	int inuse, objs_per_zspage;
 693	enum fullness_group fg;
 694
 695	inuse = get_zspage_inuse(zspage);
 696	objs_per_zspage = class->objs_per_zspage;
 697
 698	if (inuse == 0)
 699		fg = ZS_EMPTY;
 700	else if (inuse == objs_per_zspage)
 701		fg = ZS_FULL;
 702	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 703		fg = ZS_ALMOST_EMPTY;
 704	else
 705		fg = ZS_ALMOST_FULL;
 706
 707	return fg;
 
 
 
 
 
 
 708}
 709
 710/*
 711 * Each size class maintains various freelists and zspages are assigned
 712 * to one of these freelists based on the number of live objects they
 713 * have. This functions inserts the given zspage into the freelist
 714 * identified by <class, fullness_group>.
 715 */
 716static void insert_zspage(struct size_class *class,
 717				struct zspage *zspage,
 718				enum fullness_group fullness)
 719{
 720	struct zspage *head;
 721
 722	zs_stat_inc(class, fullness, 1);
 723	head = list_first_entry_or_null(&class->fullness_list[fullness],
 724					struct zspage, list);
 725	/*
 726	 * We want to see more ZS_FULL pages and less almost empty/full.
 727	 * Put pages with higher ->inuse first.
 728	 */
 729	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
 730		list_add(&zspage->list, &head->list);
 731	else
 732		list_add(&zspage->list, &class->fullness_list[fullness]);
 733}
 734
 735/*
 736 * This function removes the given zspage from the freelist identified
 737 * by <class, fullness_group>.
 738 */
 739static void remove_zspage(struct size_class *class,
 740				struct zspage *zspage,
 741				enum fullness_group fullness)
 742{
 
 
 743	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 744	VM_BUG_ON(is_zspage_isolated(zspage));
 745
 746	list_del_init(&zspage->list);
 747	zs_stat_dec(class, fullness, 1);
 748}
 749
 750/*
 751 * Each size class maintains zspages in different fullness groups depending
 752 * on the number of live objects they contain. When allocating or freeing
 753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 754 * to ALMOST_EMPTY when freeing an object. This function checks if such
 755 * a status change has occurred for the given page and accordingly moves the
 756 * page from the freelist of the old fullness group to that of the new
 757 * fullness group.
 758 */
 759static enum fullness_group fix_fullness_group(struct size_class *class,
 760						struct zspage *zspage)
 761{
 762	int class_idx;
 763	enum fullness_group currfg, newfg;
 764
 765	get_zspage_mapping(zspage, &class_idx, &currfg);
 766	newfg = get_fullness_group(class, zspage);
 767	if (newfg == currfg)
 768		goto out;
 769
 770	if (!is_zspage_isolated(zspage)) {
 771		remove_zspage(class, zspage, currfg);
 772		insert_zspage(class, zspage, newfg);
 773	}
 774
 775	set_zspage_mapping(zspage, class_idx, newfg);
 776
 777out:
 778	return newfg;
 779}
 780
 781/*
 782 * We have to decide on how many pages to link together
 783 * to form a zspage for each size class. This is important
 784 * to reduce wastage due to unusable space left at end of
 785 * each zspage which is given as:
 786 *     wastage = Zp % class_size
 787 *     usage = Zp - wastage
 788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 789 *
 790 * For example, for size class of 3/8 * PAGE_SIZE, we should
 791 * link together 3 PAGE_SIZE sized pages to form a zspage
 792 * since then we can perfectly fit in 8 such objects.
 793 */
 794static int get_pages_per_zspage(int class_size)
 795{
 796	int i, max_usedpc = 0;
 797	/* zspage order which gives maximum used size per KB */
 798	int max_usedpc_order = 1;
 799
 800	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 801		int zspage_size;
 802		int waste, usedpc;
 803
 804		zspage_size = i * PAGE_SIZE;
 805		waste = zspage_size % class_size;
 806		usedpc = (zspage_size - waste) * 100 / zspage_size;
 807
 808		if (usedpc > max_usedpc) {
 809			max_usedpc = usedpc;
 810			max_usedpc_order = i;
 811		}
 812	}
 813
 814	return max_usedpc_order;
 815}
 816
 817static struct zspage *get_zspage(struct page *page)
 818{
 819	struct zspage *zspage = (struct zspage *)page_private(page);
 820
 821	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 822	return zspage;
 823}
 824
 825static struct page *get_next_page(struct page *page)
 826{
 827	if (unlikely(PageHugeObject(page)))
 
 
 828		return NULL;
 829
 830	return page->freelist;
 831}
 832
 833/**
 834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 835 * @obj: the encoded object value
 836 * @page: page object resides in zspage
 837 * @obj_idx: object index
 838 */
 839static void obj_to_location(unsigned long obj, struct page **page,
 840				unsigned int *obj_idx)
 841{
 842	obj >>= OBJ_TAG_BITS;
 843	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 844	*obj_idx = (obj & OBJ_INDEX_MASK);
 845}
 846
 
 
 
 
 
 847/**
 848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 849 * @page: page object resides in zspage
 850 * @obj_idx: object index
 851 */
 852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 853{
 854	unsigned long obj;
 855
 856	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 857	obj |= obj_idx & OBJ_INDEX_MASK;
 858	obj <<= OBJ_TAG_BITS;
 859
 860	return obj;
 861}
 862
 863static unsigned long handle_to_obj(unsigned long handle)
 864{
 865	return *(unsigned long *)handle;
 866}
 867
 868static unsigned long obj_to_head(struct page *page, void *obj)
 
 869{
 870	if (unlikely(PageHugeObject(page))) {
 
 
 
 871		VM_BUG_ON_PAGE(!is_first_page(page), page);
 872		return page->index;
 873	} else
 874		return *(unsigned long *)obj;
 875}
 876
 877static inline int testpin_tag(unsigned long handle)
 878{
 879	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 880}
 881
 882static inline int trypin_tag(unsigned long handle)
 883{
 884	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 885}
 886
 887static void pin_tag(unsigned long handle) __acquires(bitlock)
 888{
 889	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 890}
 891
 892static void unpin_tag(unsigned long handle) __releases(bitlock)
 893{
 894	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 895}
 896
 897static void reset_page(struct page *page)
 898{
 899	__ClearPageMovable(page);
 900	ClearPagePrivate(page);
 901	set_page_private(page, 0);
 902	page_mapcount_reset(page);
 903	ClearPageHugeObject(page);
 904	page->freelist = NULL;
 905}
 906
 907static int trylock_zspage(struct zspage *zspage)
 908{
 909	struct page *cursor, *fail;
 910
 911	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 912					get_next_page(cursor)) {
 913		if (!trylock_page(cursor)) {
 914			fail = cursor;
 915			goto unlock;
 916		}
 917	}
 918
 919	return 1;
 920unlock:
 921	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 922					get_next_page(cursor))
 923		unlock_page(cursor);
 924
 925	return 0;
 926}
 927
 928static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 929				struct zspage *zspage)
 930{
 931	struct page *page, *next;
 932	enum fullness_group fg;
 933	unsigned int class_idx;
 934
 935	get_zspage_mapping(zspage, &class_idx, &fg);
 936
 937	assert_spin_locked(&class->lock);
 938
 939	VM_BUG_ON(get_zspage_inuse(zspage));
 940	VM_BUG_ON(fg != ZS_EMPTY);
 941
 942	next = page = get_first_page(zspage);
 943	do {
 944		VM_BUG_ON_PAGE(!PageLocked(page), page);
 945		next = get_next_page(page);
 946		reset_page(page);
 947		unlock_page(page);
 948		dec_zone_page_state(page, NR_ZSPAGES);
 949		put_page(page);
 950		page = next;
 951	} while (page != NULL);
 952
 953	cache_free_zspage(pool, zspage);
 954
 955	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 956	atomic_long_sub(class->pages_per_zspage,
 957					&pool->pages_allocated);
 958}
 959
 960static void free_zspage(struct zs_pool *pool, struct size_class *class,
 961				struct zspage *zspage)
 962{
 963	VM_BUG_ON(get_zspage_inuse(zspage));
 964	VM_BUG_ON(list_empty(&zspage->list));
 965
 
 
 
 
 
 966	if (!trylock_zspage(zspage)) {
 967		kick_deferred_free(pool);
 968		return;
 969	}
 970
 971	remove_zspage(class, zspage, ZS_EMPTY);
 972	__free_zspage(pool, class, zspage);
 973}
 974
 975/* Initialize a newly allocated zspage */
 976static void init_zspage(struct size_class *class, struct zspage *zspage)
 977{
 978	unsigned int freeobj = 1;
 979	unsigned long off = 0;
 980	struct page *page = get_first_page(zspage);
 981
 982	while (page) {
 983		struct page *next_page;
 984		struct link_free *link;
 985		void *vaddr;
 986
 987		set_first_obj_offset(page, off);
 988
 989		vaddr = kmap_atomic(page);
 990		link = (struct link_free *)vaddr + off / sizeof(*link);
 991
 992		while ((off += class->size) < PAGE_SIZE) {
 993			link->next = freeobj++ << OBJ_TAG_BITS;
 994			link += class->size / sizeof(*link);
 995		}
 996
 997		/*
 998		 * We now come to the last (full or partial) object on this
 999		 * page, which must point to the first object on the next
1000		 * page (if present)
1001		 */
1002		next_page = get_next_page(page);
1003		if (next_page) {
1004			link->next = freeobj++ << OBJ_TAG_BITS;
1005		} else {
1006			/*
1007			 * Reset OBJ_TAG_BITS bit to last link to tell
1008			 * whether it's allocated object or not.
1009			 */
1010			link->next = -1UL << OBJ_TAG_BITS;
1011		}
1012		kunmap_atomic(vaddr);
1013		page = next_page;
1014		off %= PAGE_SIZE;
1015	}
1016
1017	set_freeobj(zspage, 0);
1018}
1019
1020static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021				struct page *pages[])
1022{
1023	int i;
1024	struct page *page;
1025	struct page *prev_page = NULL;
1026	int nr_pages = class->pages_per_zspage;
1027
1028	/*
1029	 * Allocate individual pages and link them together as:
1030	 * 1. all pages are linked together using page->freelist
1031	 * 2. each sub-page point to zspage using page->private
1032	 *
1033	 * we set PG_private to identify the first page (i.e. no other sub-page
1034	 * has this flag set).
1035	 */
1036	for (i = 0; i < nr_pages; i++) {
1037		page = pages[i];
1038		set_page_private(page, (unsigned long)zspage);
1039		page->freelist = NULL;
1040		if (i == 0) {
1041			zspage->first_page = page;
1042			SetPagePrivate(page);
1043			if (unlikely(class->objs_per_zspage == 1 &&
1044					class->pages_per_zspage == 1))
1045				SetPageHugeObject(page);
1046		} else {
1047			prev_page->freelist = page;
1048		}
1049		prev_page = page;
1050	}
1051}
1052
1053/*
1054 * Allocate a zspage for the given size class
1055 */
1056static struct zspage *alloc_zspage(struct zs_pool *pool,
1057					struct size_class *class,
1058					gfp_t gfp)
1059{
1060	int i;
1061	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1062	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064	if (!zspage)
1065		return NULL;
1066
1067	zspage->magic = ZSPAGE_MAGIC;
1068	migrate_lock_init(zspage);
1069
1070	for (i = 0; i < class->pages_per_zspage; i++) {
1071		struct page *page;
1072
1073		page = alloc_page(gfp);
1074		if (!page) {
1075			while (--i >= 0) {
1076				dec_zone_page_state(pages[i], NR_ZSPAGES);
1077				__free_page(pages[i]);
1078			}
1079			cache_free_zspage(pool, zspage);
1080			return NULL;
1081		}
1082
1083		inc_zone_page_state(page, NR_ZSPAGES);
1084		pages[i] = page;
1085	}
1086
1087	create_page_chain(class, zspage, pages);
1088	init_zspage(class, zspage);
 
 
1089
1090	return zspage;
1091}
1092
1093static struct zspage *find_get_zspage(struct size_class *class)
1094{
1095	int i;
1096	struct zspage *zspage;
1097
1098	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1099		zspage = list_first_entry_or_null(&class->fullness_list[i],
1100				struct zspage, list);
1101		if (zspage)
1102			break;
1103	}
1104
1105	return zspage;
1106}
1107
1108static inline int __zs_cpu_up(struct mapping_area *area)
1109{
1110	/*
1111	 * Make sure we don't leak memory if a cpu UP notification
1112	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1113	 */
1114	if (area->vm_buf)
1115		return 0;
1116	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1117	if (!area->vm_buf)
1118		return -ENOMEM;
1119	return 0;
1120}
1121
1122static inline void __zs_cpu_down(struct mapping_area *area)
1123{
1124	kfree(area->vm_buf);
1125	area->vm_buf = NULL;
1126}
1127
1128static void *__zs_map_object(struct mapping_area *area,
1129			struct page *pages[2], int off, int size)
1130{
1131	int sizes[2];
1132	void *addr;
1133	char *buf = area->vm_buf;
1134
1135	/* disable page faults to match kmap_atomic() return conditions */
1136	pagefault_disable();
1137
1138	/* no read fastpath */
1139	if (area->vm_mm == ZS_MM_WO)
1140		goto out;
1141
1142	sizes[0] = PAGE_SIZE - off;
1143	sizes[1] = size - sizes[0];
1144
1145	/* copy object to per-cpu buffer */
1146	addr = kmap_atomic(pages[0]);
1147	memcpy(buf, addr + off, sizes[0]);
1148	kunmap_atomic(addr);
1149	addr = kmap_atomic(pages[1]);
1150	memcpy(buf + sizes[0], addr, sizes[1]);
1151	kunmap_atomic(addr);
1152out:
1153	return area->vm_buf;
1154}
1155
1156static void __zs_unmap_object(struct mapping_area *area,
1157			struct page *pages[2], int off, int size)
1158{
1159	int sizes[2];
1160	void *addr;
1161	char *buf;
1162
1163	/* no write fastpath */
1164	if (area->vm_mm == ZS_MM_RO)
1165		goto out;
1166
1167	buf = area->vm_buf;
1168	buf = buf + ZS_HANDLE_SIZE;
1169	size -= ZS_HANDLE_SIZE;
1170	off += ZS_HANDLE_SIZE;
1171
1172	sizes[0] = PAGE_SIZE - off;
1173	sizes[1] = size - sizes[0];
1174
1175	/* copy per-cpu buffer to object */
1176	addr = kmap_atomic(pages[0]);
1177	memcpy(addr + off, buf, sizes[0]);
1178	kunmap_atomic(addr);
1179	addr = kmap_atomic(pages[1]);
1180	memcpy(addr, buf + sizes[0], sizes[1]);
1181	kunmap_atomic(addr);
1182
1183out:
1184	/* enable page faults to match kunmap_atomic() return conditions */
1185	pagefault_enable();
1186}
1187
1188static int zs_cpu_prepare(unsigned int cpu)
1189{
1190	struct mapping_area *area;
1191
1192	area = &per_cpu(zs_map_area, cpu);
1193	return __zs_cpu_up(area);
1194}
1195
1196static int zs_cpu_dead(unsigned int cpu)
1197{
1198	struct mapping_area *area;
1199
1200	area = &per_cpu(zs_map_area, cpu);
1201	__zs_cpu_down(area);
1202	return 0;
1203}
1204
1205static bool can_merge(struct size_class *prev, int pages_per_zspage,
1206					int objs_per_zspage)
1207{
1208	if (prev->pages_per_zspage == pages_per_zspage &&
1209		prev->objs_per_zspage == objs_per_zspage)
1210		return true;
1211
1212	return false;
1213}
1214
1215static bool zspage_full(struct size_class *class, struct zspage *zspage)
1216{
1217	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1218}
1219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220unsigned long zs_get_total_pages(struct zs_pool *pool)
1221{
1222	return atomic_long_read(&pool->pages_allocated);
1223}
1224EXPORT_SYMBOL_GPL(zs_get_total_pages);
1225
1226/**
1227 * zs_map_object - get address of allocated object from handle.
1228 * @pool: pool from which the object was allocated
1229 * @handle: handle returned from zs_malloc
1230 * @mm: mapping mode to use
1231 *
1232 * Before using an object allocated from zs_malloc, it must be mapped using
1233 * this function. When done with the object, it must be unmapped using
1234 * zs_unmap_object.
1235 *
1236 * Only one object can be mapped per cpu at a time. There is no protection
1237 * against nested mappings.
1238 *
1239 * This function returns with preemption and page faults disabled.
1240 */
1241void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1242			enum zs_mapmode mm)
1243{
1244	struct zspage *zspage;
1245	struct page *page;
1246	unsigned long obj, off;
1247	unsigned int obj_idx;
1248
1249	unsigned int class_idx;
1250	enum fullness_group fg;
1251	struct size_class *class;
1252	struct mapping_area *area;
1253	struct page *pages[2];
1254	void *ret;
1255
1256	/*
1257	 * Because we use per-cpu mapping areas shared among the
1258	 * pools/users, we can't allow mapping in interrupt context
1259	 * because it can corrupt another users mappings.
1260	 */
1261	BUG_ON(in_interrupt());
1262
1263	/* From now on, migration cannot move the object */
1264	pin_tag(handle);
1265
1266	obj = handle_to_obj(handle);
1267	obj_to_location(obj, &page, &obj_idx);
1268	zspage = get_zspage(page);
1269
1270	/* migration cannot move any subpage in this zspage */
 
 
 
 
 
1271	migrate_read_lock(zspage);
 
1272
1273	get_zspage_mapping(zspage, &class_idx, &fg);
1274	class = pool->size_class[class_idx];
1275	off = (class->size * obj_idx) & ~PAGE_MASK;
1276
1277	area = &get_cpu_var(zs_map_area);
 
1278	area->vm_mm = mm;
1279	if (off + class->size <= PAGE_SIZE) {
1280		/* this object is contained entirely within a page */
1281		area->vm_addr = kmap_atomic(page);
1282		ret = area->vm_addr + off;
1283		goto out;
1284	}
1285
1286	/* this object spans two pages */
1287	pages[0] = page;
1288	pages[1] = get_next_page(page);
1289	BUG_ON(!pages[1]);
1290
1291	ret = __zs_map_object(area, pages, off, class->size);
1292out:
1293	if (likely(!PageHugeObject(page)))
1294		ret += ZS_HANDLE_SIZE;
1295
1296	return ret;
1297}
1298EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301{
1302	struct zspage *zspage;
1303	struct page *page;
1304	unsigned long obj, off;
1305	unsigned int obj_idx;
1306
1307	unsigned int class_idx;
1308	enum fullness_group fg;
1309	struct size_class *class;
1310	struct mapping_area *area;
1311
1312	obj = handle_to_obj(handle);
1313	obj_to_location(obj, &page, &obj_idx);
1314	zspage = get_zspage(page);
1315	get_zspage_mapping(zspage, &class_idx, &fg);
1316	class = pool->size_class[class_idx];
1317	off = (class->size * obj_idx) & ~PAGE_MASK;
1318
1319	area = this_cpu_ptr(&zs_map_area);
1320	if (off + class->size <= PAGE_SIZE)
1321		kunmap_atomic(area->vm_addr);
1322	else {
1323		struct page *pages[2];
1324
1325		pages[0] = page;
1326		pages[1] = get_next_page(page);
1327		BUG_ON(!pages[1]);
1328
1329		__zs_unmap_object(area, pages, off, class->size);
1330	}
1331	put_cpu_var(zs_map_area);
1332
1333	migrate_read_unlock(zspage);
1334	unpin_tag(handle);
1335}
1336EXPORT_SYMBOL_GPL(zs_unmap_object);
1337
1338/**
1339 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1340 *                        zsmalloc &size_class.
1341 * @pool: zsmalloc pool to use
1342 *
1343 * The function returns the size of the first huge class - any object of equal
1344 * or bigger size will be stored in zspage consisting of a single physical
1345 * page.
1346 *
1347 * Context: Any context.
1348 *
1349 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1350 */
1351size_t zs_huge_class_size(struct zs_pool *pool)
1352{
1353	return huge_class_size;
1354}
1355EXPORT_SYMBOL_GPL(zs_huge_class_size);
1356
1357static unsigned long obj_malloc(struct size_class *class,
1358				struct zspage *zspage, unsigned long handle)
1359{
1360	int i, nr_page, offset;
1361	unsigned long obj;
1362	struct link_free *link;
 
1363
1364	struct page *m_page;
1365	unsigned long m_offset;
1366	void *vaddr;
1367
 
1368	handle |= OBJ_ALLOCATED_TAG;
1369	obj = get_freeobj(zspage);
1370
1371	offset = obj * class->size;
1372	nr_page = offset >> PAGE_SHIFT;
1373	m_offset = offset & ~PAGE_MASK;
1374	m_page = get_first_page(zspage);
1375
1376	for (i = 0; i < nr_page; i++)
1377		m_page = get_next_page(m_page);
1378
1379	vaddr = kmap_atomic(m_page);
1380	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1381	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1382	if (likely(!PageHugeObject(m_page)))
1383		/* record handle in the header of allocated chunk */
1384		link->handle = handle;
1385	else
1386		/* record handle to page->index */
1387		zspage->first_page->index = handle;
1388
1389	kunmap_atomic(vaddr);
1390	mod_zspage_inuse(zspage, 1);
1391	zs_stat_inc(class, OBJ_USED, 1);
1392
1393	obj = location_to_obj(m_page, obj);
1394
1395	return obj;
1396}
1397
1398
1399/**
1400 * zs_malloc - Allocate block of given size from pool.
1401 * @pool: pool to allocate from
1402 * @size: size of block to allocate
1403 * @gfp: gfp flags when allocating object
1404 *
1405 * On success, handle to the allocated object is returned,
1406 * otherwise 0.
1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408 */
1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1410{
1411	unsigned long handle, obj;
1412	struct size_class *class;
1413	enum fullness_group newfg;
1414	struct zspage *zspage;
1415
1416	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1417		return 0;
 
 
 
1418
1419	handle = cache_alloc_handle(pool, gfp);
1420	if (!handle)
1421		return 0;
1422
1423	/* extra space in chunk to keep the handle */
1424	size += ZS_HANDLE_SIZE;
1425	class = pool->size_class[get_size_class_index(size)];
1426
1427	spin_lock(&class->lock);
 
1428	zspage = find_get_zspage(class);
1429	if (likely(zspage)) {
1430		obj = obj_malloc(class, zspage, handle);
1431		/* Now move the zspage to another fullness group, if required */
1432		fix_fullness_group(class, zspage);
1433		record_obj(handle, obj);
1434		spin_unlock(&class->lock);
1435
1436		return handle;
1437	}
1438
1439	spin_unlock(&class->lock);
1440
1441	zspage = alloc_zspage(pool, class, gfp);
1442	if (!zspage) {
1443		cache_free_handle(pool, handle);
1444		return 0;
1445	}
1446
1447	spin_lock(&class->lock);
1448	obj = obj_malloc(class, zspage, handle);
1449	newfg = get_fullness_group(class, zspage);
1450	insert_zspage(class, zspage, newfg);
1451	set_zspage_mapping(zspage, class->index, newfg);
1452	record_obj(handle, obj);
1453	atomic_long_add(class->pages_per_zspage,
1454				&pool->pages_allocated);
1455	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1456
1457	/* We completely set up zspage so mark them as movable */
1458	SetZsPageMovable(pool, zspage);
1459	spin_unlock(&class->lock);
 
1460
1461	return handle;
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465static void obj_free(struct size_class *class, unsigned long obj)
1466{
1467	struct link_free *link;
1468	struct zspage *zspage;
1469	struct page *f_page;
1470	unsigned long f_offset;
1471	unsigned int f_objidx;
1472	void *vaddr;
1473
1474	obj_to_location(obj, &f_page, &f_objidx);
1475	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1476	zspage = get_zspage(f_page);
1477
1478	vaddr = kmap_atomic(f_page);
 
1479
1480	/* Insert this object in containing zspage's freelist */
1481	link = (struct link_free *)(vaddr + f_offset);
1482	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1483	kunmap_atomic(vaddr);
 
1484	set_freeobj(zspage, f_objidx);
 
 
1485	mod_zspage_inuse(zspage, -1);
1486	zs_stat_dec(class, OBJ_USED, 1);
1487}
1488
1489void zs_free(struct zs_pool *pool, unsigned long handle)
1490{
1491	struct zspage *zspage;
1492	struct page *f_page;
1493	unsigned long obj;
1494	unsigned int f_objidx;
1495	int class_idx;
1496	struct size_class *class;
1497	enum fullness_group fullness;
1498	bool isolated;
1499
1500	if (unlikely(!handle))
1501		return;
1502
1503	pin_tag(handle);
 
 
 
 
1504	obj = handle_to_obj(handle);
1505	obj_to_location(obj, &f_page, &f_objidx);
1506	zspage = get_zspage(f_page);
 
1507
1508	migrate_read_lock(zspage);
1509
1510	get_zspage_mapping(zspage, &class_idx, &fullness);
1511	class = pool->size_class[class_idx];
1512
1513	spin_lock(&class->lock);
1514	obj_free(class, obj);
1515	fullness = fix_fullness_group(class, zspage);
1516	if (fullness != ZS_EMPTY) {
1517		migrate_read_unlock(zspage);
1518		goto out;
1519	}
1520
1521	isolated = is_zspage_isolated(zspage);
1522	migrate_read_unlock(zspage);
1523	/* If zspage is isolated, zs_page_putback will free the zspage */
1524	if (likely(!isolated))
1525		free_zspage(pool, class, zspage);
1526out:
1527
1528	spin_unlock(&class->lock);
1529	unpin_tag(handle);
1530	cache_free_handle(pool, handle);
1531}
1532EXPORT_SYMBOL_GPL(zs_free);
1533
1534static void zs_object_copy(struct size_class *class, unsigned long dst,
1535				unsigned long src)
1536{
1537	struct page *s_page, *d_page;
1538	unsigned int s_objidx, d_objidx;
1539	unsigned long s_off, d_off;
1540	void *s_addr, *d_addr;
1541	int s_size, d_size, size;
1542	int written = 0;
1543
1544	s_size = d_size = class->size;
1545
1546	obj_to_location(src, &s_page, &s_objidx);
1547	obj_to_location(dst, &d_page, &d_objidx);
1548
1549	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1550	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1551
1552	if (s_off + class->size > PAGE_SIZE)
1553		s_size = PAGE_SIZE - s_off;
1554
1555	if (d_off + class->size > PAGE_SIZE)
1556		d_size = PAGE_SIZE - d_off;
1557
1558	s_addr = kmap_atomic(s_page);
1559	d_addr = kmap_atomic(d_page);
1560
1561	while (1) {
1562		size = min(s_size, d_size);
1563		memcpy(d_addr + d_off, s_addr + s_off, size);
1564		written += size;
1565
1566		if (written == class->size)
1567			break;
1568
1569		s_off += size;
1570		s_size -= size;
1571		d_off += size;
1572		d_size -= size;
1573
 
 
 
 
 
 
 
1574		if (s_off >= PAGE_SIZE) {
1575			kunmap_atomic(d_addr);
1576			kunmap_atomic(s_addr);
1577			s_page = get_next_page(s_page);
1578			s_addr = kmap_atomic(s_page);
1579			d_addr = kmap_atomic(d_page);
1580			s_size = class->size - written;
1581			s_off = 0;
1582		}
1583
1584		if (d_off >= PAGE_SIZE) {
1585			kunmap_atomic(d_addr);
1586			d_page = get_next_page(d_page);
1587			d_addr = kmap_atomic(d_page);
1588			d_size = class->size - written;
1589			d_off = 0;
1590		}
1591	}
1592
1593	kunmap_atomic(d_addr);
1594	kunmap_atomic(s_addr);
1595}
1596
1597/*
1598 * Find alloced object in zspage from index object and
1599 * return handle.
1600 */
1601static unsigned long find_alloced_obj(struct size_class *class,
1602					struct page *page, int *obj_idx)
1603{
1604	unsigned long head;
1605	int offset = 0;
1606	int index = *obj_idx;
1607	unsigned long handle = 0;
1608	void *addr = kmap_atomic(page);
1609
1610	offset = get_first_obj_offset(page);
1611	offset += class->size * index;
1612
1613	while (offset < PAGE_SIZE) {
1614		head = obj_to_head(page, addr + offset);
1615		if (head & OBJ_ALLOCATED_TAG) {
1616			handle = head & ~OBJ_ALLOCATED_TAG;
1617			if (trypin_tag(handle))
1618				break;
1619			handle = 0;
1620		}
1621
1622		offset += class->size;
1623		index++;
1624	}
1625
1626	kunmap_atomic(addr);
1627
1628	*obj_idx = index;
1629
1630	return handle;
1631}
1632
1633struct zs_compact_control {
1634	/* Source spage for migration which could be a subpage of zspage */
1635	struct page *s_page;
1636	/* Destination page for migration which should be a first page
1637	 * of zspage. */
1638	struct page *d_page;
1639	 /* Starting object index within @s_page which used for live object
1640	  * in the subpage. */
1641	int obj_idx;
1642};
1643
1644static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1645				struct zs_compact_control *cc)
1646{
1647	unsigned long used_obj, free_obj;
1648	unsigned long handle;
1649	struct page *s_page = cc->s_page;
1650	struct page *d_page = cc->d_page;
1651	int obj_idx = cc->obj_idx;
1652	int ret = 0;
1653
1654	while (1) {
1655		handle = find_alloced_obj(class, s_page, &obj_idx);
1656		if (!handle) {
1657			s_page = get_next_page(s_page);
1658			if (!s_page)
1659				break;
1660			obj_idx = 0;
1661			continue;
1662		}
1663
1664		/* Stop if there is no more space */
1665		if (zspage_full(class, get_zspage(d_page))) {
1666			unpin_tag(handle);
1667			ret = -ENOMEM;
1668			break;
1669		}
1670
1671		used_obj = handle_to_obj(handle);
1672		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1673		zs_object_copy(class, free_obj, used_obj);
1674		obj_idx++;
1675		/*
1676		 * record_obj updates handle's value to free_obj and it will
1677		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1678		 * breaks synchronization using pin_tag(e,g, zs_free) so
1679		 * let's keep the lock bit.
1680		 */
1681		free_obj |= BIT(HANDLE_PIN_BIT);
1682		record_obj(handle, free_obj);
1683		unpin_tag(handle);
1684		obj_free(class, used_obj);
1685	}
1686
1687	/* Remember last position in this iteration */
1688	cc->s_page = s_page;
1689	cc->obj_idx = obj_idx;
1690
1691	return ret;
 
 
 
1692}
1693
1694static struct zspage *isolate_zspage(struct size_class *class, bool source)
1695{
1696	int i;
1697	struct zspage *zspage;
1698	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1699
1700	if (!source) {
1701		fg[0] = ZS_ALMOST_FULL;
1702		fg[1] = ZS_ALMOST_EMPTY;
 
 
 
 
1703	}
1704
1705	for (i = 0; i < 2; i++) {
1706		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1707							struct zspage, list);
 
 
 
 
 
 
 
 
1708		if (zspage) {
1709			VM_BUG_ON(is_zspage_isolated(zspage));
1710			remove_zspage(class, zspage, fg[i]);
1711			return zspage;
1712		}
1713	}
1714
1715	return zspage;
1716}
1717
1718/*
1719 * putback_zspage - add @zspage into right class's fullness list
1720 * @class: destination class
1721 * @zspage: target page
1722 *
1723 * Return @zspage's fullness_group
1724 */
1725static enum fullness_group putback_zspage(struct size_class *class,
1726			struct zspage *zspage)
1727{
1728	enum fullness_group fullness;
1729
1730	VM_BUG_ON(is_zspage_isolated(zspage));
1731
1732	fullness = get_fullness_group(class, zspage);
1733	insert_zspage(class, zspage, fullness);
1734	set_zspage_mapping(zspage, class->index, fullness);
1735
1736	return fullness;
1737}
1738
1739#ifdef CONFIG_COMPACTION
1740/*
1741 * To prevent zspage destroy during migration, zspage freeing should
1742 * hold locks of all pages in the zspage.
1743 */
1744static void lock_zspage(struct zspage *zspage)
1745{
1746	struct page *page = get_first_page(zspage);
1747
1748	do {
1749		lock_page(page);
1750	} while ((page = get_next_page(page)) != NULL);
1751}
1752
1753static int zs_init_fs_context(struct fs_context *fc)
1754{
1755	return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1756}
1757
1758static struct file_system_type zsmalloc_fs = {
1759	.name		= "zsmalloc",
1760	.init_fs_context = zs_init_fs_context,
1761	.kill_sb	= kill_anon_super,
1762};
1763
1764static int zsmalloc_mount(void)
1765{
1766	int ret = 0;
1767
1768	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1769	if (IS_ERR(zsmalloc_mnt))
1770		ret = PTR_ERR(zsmalloc_mnt);
1771
1772	return ret;
1773}
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775static void zsmalloc_unmount(void)
1776{
1777	kern_unmount(zsmalloc_mnt);
 
 
 
 
 
 
 
 
 
 
1778}
 
1779
1780static void migrate_lock_init(struct zspage *zspage)
1781{
1782	rwlock_init(&zspage->lock);
1783}
1784
1785static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1786{
1787	read_lock(&zspage->lock);
1788}
1789
1790static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1791{
1792	read_unlock(&zspage->lock);
1793}
1794
1795static void migrate_write_lock(struct zspage *zspage)
1796{
1797	write_lock(&zspage->lock);
1798}
1799
1800static void migrate_write_unlock(struct zspage *zspage)
1801{
1802	write_unlock(&zspage->lock);
1803}
1804
1805/* Number of isolated subpage for *page migration* in this zspage */
1806static void inc_zspage_isolation(struct zspage *zspage)
1807{
1808	zspage->isolated++;
1809}
1810
1811static void dec_zspage_isolation(struct zspage *zspage)
1812{
1813	zspage->isolated--;
1814}
1815
1816static void putback_zspage_deferred(struct zs_pool *pool,
1817				    struct size_class *class,
1818				    struct zspage *zspage)
1819{
1820	enum fullness_group fg;
1821
1822	fg = putback_zspage(class, zspage);
1823	if (fg == ZS_EMPTY)
1824		schedule_work(&pool->free_work);
1825
1826}
1827
1828static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1829{
1830	VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1831	atomic_long_dec(&pool->isolated_pages);
1832	/*
1833	 * There's no possibility of racing, since wait_for_isolated_drain()
1834	 * checks the isolated count under &class->lock after enqueuing
1835	 * on migration_wait.
1836	 */
1837	if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1838		wake_up_all(&pool->migration_wait);
1839}
1840
1841static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1842				struct page *newpage, struct page *oldpage)
1843{
1844	struct page *page;
1845	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1846	int idx = 0;
1847
1848	page = get_first_page(zspage);
1849	do {
1850		if (page == oldpage)
1851			pages[idx] = newpage;
1852		else
1853			pages[idx] = page;
1854		idx++;
1855	} while ((page = get_next_page(page)) != NULL);
1856
1857	create_page_chain(class, zspage, pages);
1858	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1859	if (unlikely(PageHugeObject(oldpage)))
1860		newpage->index = oldpage->index;
1861	__SetPageMovable(newpage, page_mapping(oldpage));
1862}
1863
1864static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1865{
1866	struct zs_pool *pool;
1867	struct size_class *class;
1868	int class_idx;
1869	enum fullness_group fullness;
1870	struct zspage *zspage;
1871	struct address_space *mapping;
1872
1873	/*
1874	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1875	 * lock_zspage in free_zspage.
1876	 */
1877	VM_BUG_ON_PAGE(!PageMovable(page), page);
1878	VM_BUG_ON_PAGE(PageIsolated(page), page);
1879
1880	zspage = get_zspage(page);
1881
1882	/*
1883	 * Without class lock, fullness could be stale while class_idx is okay
1884	 * because class_idx is constant unless page is freed so we should get
1885	 * fullness again under class lock.
1886	 */
1887	get_zspage_mapping(zspage, &class_idx, &fullness);
1888	mapping = page_mapping(page);
1889	pool = mapping->private_data;
1890	class = pool->size_class[class_idx];
1891
1892	spin_lock(&class->lock);
1893	if (get_zspage_inuse(zspage) == 0) {
1894		spin_unlock(&class->lock);
1895		return false;
1896	}
1897
1898	/* zspage is isolated for object migration */
1899	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1900		spin_unlock(&class->lock);
1901		return false;
1902	}
1903
1904	/*
1905	 * If this is first time isolation for the zspage, isolate zspage from
1906	 * size_class to prevent further object allocation from the zspage.
1907	 */
1908	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1909		get_zspage_mapping(zspage, &class_idx, &fullness);
1910		atomic_long_inc(&pool->isolated_pages);
1911		remove_zspage(class, zspage, fullness);
1912	}
1913
1914	inc_zspage_isolation(zspage);
1915	spin_unlock(&class->lock);
1916
1917	return true;
1918}
1919
1920static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1921		struct page *page, enum migrate_mode mode)
1922{
1923	struct zs_pool *pool;
1924	struct size_class *class;
1925	int class_idx;
1926	enum fullness_group fullness;
1927	struct zspage *zspage;
1928	struct page *dummy;
1929	void *s_addr, *d_addr, *addr;
1930	int offset, pos;
1931	unsigned long handle, head;
1932	unsigned long old_obj, new_obj;
1933	unsigned int obj_idx;
1934	int ret = -EAGAIN;
1935
1936	/*
1937	 * We cannot support the _NO_COPY case here, because copy needs to
1938	 * happen under the zs lock, which does not work with
1939	 * MIGRATE_SYNC_NO_COPY workflow.
1940	 */
1941	if (mode == MIGRATE_SYNC_NO_COPY)
1942		return -EINVAL;
1943
1944	VM_BUG_ON_PAGE(!PageMovable(page), page);
1945	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1946
 
1947	zspage = get_zspage(page);
 
1948
1949	/* Concurrent compactor cannot migrate any subpage in zspage */
1950	migrate_write_lock(zspage);
1951	get_zspage_mapping(zspage, &class_idx, &fullness);
1952	pool = mapping->private_data;
1953	class = pool->size_class[class_idx];
1954	offset = get_first_obj_offset(page);
1955
1956	spin_lock(&class->lock);
1957	if (!get_zspage_inuse(zspage)) {
1958		/*
1959		 * Set "offset" to end of the page so that every loops
1960		 * skips unnecessary object scanning.
1961		 */
1962		offset = PAGE_SIZE;
1963	}
1964
1965	pos = offset;
1966	s_addr = kmap_atomic(page);
1967	while (pos < PAGE_SIZE) {
1968		head = obj_to_head(page, s_addr + pos);
1969		if (head & OBJ_ALLOCATED_TAG) {
1970			handle = head & ~OBJ_ALLOCATED_TAG;
1971			if (!trypin_tag(handle))
1972				goto unpin_objects;
1973		}
1974		pos += class->size;
1975	}
1976
1977	/*
1978	 * Here, any user cannot access all objects in the zspage so let's move.
1979	 */
1980	d_addr = kmap_atomic(newpage);
1981	memcpy(d_addr, s_addr, PAGE_SIZE);
1982	kunmap_atomic(d_addr);
1983
1984	for (addr = s_addr + offset; addr < s_addr + pos;
1985					addr += class->size) {
1986		head = obj_to_head(page, addr);
1987		if (head & OBJ_ALLOCATED_TAG) {
1988			handle = head & ~OBJ_ALLOCATED_TAG;
1989			BUG_ON(!testpin_tag(handle));
1990
1991			old_obj = handle_to_obj(handle);
1992			obj_to_location(old_obj, &dummy, &obj_idx);
1993			new_obj = (unsigned long)location_to_obj(newpage,
1994								obj_idx);
1995			new_obj |= BIT(HANDLE_PIN_BIT);
1996			record_obj(handle, new_obj);
1997		}
1998	}
 
1999
2000	replace_sub_page(class, zspage, newpage, page);
2001	get_page(newpage);
2002
2003	dec_zspage_isolation(zspage);
2004
2005	/*
2006	 * Page migration is done so let's putback isolated zspage to
2007	 * the list if @page is final isolated subpage in the zspage.
2008	 */
2009	if (!is_zspage_isolated(zspage)) {
2010		/*
2011		 * We cannot race with zs_destroy_pool() here because we wait
2012		 * for isolation to hit zero before we start destroying.
2013		 * Also, we ensure that everyone can see pool->destroying before
2014		 * we start waiting.
2015		 */
2016		putback_zspage_deferred(pool, class, zspage);
2017		zs_pool_dec_isolated(pool);
2018	}
2019
 
2020	if (page_zone(newpage) != page_zone(page)) {
2021		dec_zone_page_state(page, NR_ZSPAGES);
2022		inc_zone_page_state(newpage, NR_ZSPAGES);
2023	}
2024
2025	reset_page(page);
2026	put_page(page);
2027	page = newpage;
2028
2029	ret = MIGRATEPAGE_SUCCESS;
2030unpin_objects:
2031	for (addr = s_addr + offset; addr < s_addr + pos;
2032						addr += class->size) {
2033		head = obj_to_head(page, addr);
2034		if (head & OBJ_ALLOCATED_TAG) {
2035			handle = head & ~OBJ_ALLOCATED_TAG;
2036			BUG_ON(!testpin_tag(handle));
2037			unpin_tag(handle);
2038		}
2039	}
2040	kunmap_atomic(s_addr);
2041	spin_unlock(&class->lock);
2042	migrate_write_unlock(zspage);
2043
2044	return ret;
2045}
2046
2047static void zs_page_putback(struct page *page)
2048{
2049	struct zs_pool *pool;
2050	struct size_class *class;
2051	int class_idx;
2052	enum fullness_group fg;
2053	struct address_space *mapping;
2054	struct zspage *zspage;
2055
2056	VM_BUG_ON_PAGE(!PageMovable(page), page);
2057	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2058
2059	zspage = get_zspage(page);
2060	get_zspage_mapping(zspage, &class_idx, &fg);
2061	mapping = page_mapping(page);
2062	pool = mapping->private_data;
2063	class = pool->size_class[class_idx];
2064
2065	spin_lock(&class->lock);
2066	dec_zspage_isolation(zspage);
2067	if (!is_zspage_isolated(zspage)) {
2068		/*
2069		 * Due to page_lock, we cannot free zspage immediately
2070		 * so let's defer.
2071		 */
2072		putback_zspage_deferred(pool, class, zspage);
2073		zs_pool_dec_isolated(pool);
2074	}
2075	spin_unlock(&class->lock);
2076}
2077
2078static const struct address_space_operations zsmalloc_aops = {
2079	.isolate_page = zs_page_isolate,
2080	.migratepage = zs_page_migrate,
2081	.putback_page = zs_page_putback,
2082};
2083
2084static int zs_register_migration(struct zs_pool *pool)
2085{
2086	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2087	if (IS_ERR(pool->inode)) {
2088		pool->inode = NULL;
2089		return 1;
2090	}
2091
2092	pool->inode->i_mapping->private_data = pool;
2093	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2094	return 0;
2095}
2096
2097static bool pool_isolated_are_drained(struct zs_pool *pool)
2098{
2099	return atomic_long_read(&pool->isolated_pages) == 0;
2100}
2101
2102/* Function for resolving migration */
2103static void wait_for_isolated_drain(struct zs_pool *pool)
2104{
2105
2106	/*
2107	 * We're in the process of destroying the pool, so there are no
2108	 * active allocations. zs_page_isolate() fails for completely free
2109	 * zspages, so we need only wait for the zs_pool's isolated
2110	 * count to hit zero.
2111	 */
2112	wait_event(pool->migration_wait,
2113		   pool_isolated_are_drained(pool));
2114}
2115
2116static void zs_unregister_migration(struct zs_pool *pool)
2117{
2118	pool->destroying = true;
2119	/*
2120	 * We need a memory barrier here to ensure global visibility of
2121	 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2122	 * case we don't care, or it will be > 0 and pool->destroying will
2123	 * ensure that we wake up once isolation hits 0.
2124	 */
2125	smp_mb();
2126	wait_for_isolated_drain(pool); /* This can block */
2127	flush_work(&pool->free_work);
2128	iput(pool->inode);
2129}
2130
2131/*
2132 * Caller should hold page_lock of all pages in the zspage
2133 * In here, we cannot use zspage meta data.
2134 */
2135static void async_free_zspage(struct work_struct *work)
2136{
2137	int i;
2138	struct size_class *class;
2139	unsigned int class_idx;
2140	enum fullness_group fullness;
2141	struct zspage *zspage, *tmp;
2142	LIST_HEAD(free_pages);
2143	struct zs_pool *pool = container_of(work, struct zs_pool,
2144					free_work);
2145
2146	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2147		class = pool->size_class[i];
2148		if (class->index != i)
2149			continue;
2150
2151		spin_lock(&class->lock);
2152		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2153		spin_unlock(&class->lock);
 
2154	}
2155
2156
2157	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2158		list_del(&zspage->list);
2159		lock_zspage(zspage);
2160
2161		get_zspage_mapping(zspage, &class_idx, &fullness);
2162		VM_BUG_ON(fullness != ZS_EMPTY);
2163		class = pool->size_class[class_idx];
2164		spin_lock(&class->lock);
2165		__free_zspage(pool, class, zspage);
2166		spin_unlock(&class->lock);
2167	}
2168};
2169
2170static void kick_deferred_free(struct zs_pool *pool)
2171{
2172	schedule_work(&pool->free_work);
2173}
2174
 
 
 
 
 
2175static void init_deferred_free(struct zs_pool *pool)
2176{
2177	INIT_WORK(&pool->free_work, async_free_zspage);
2178}
2179
2180static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2181{
2182	struct page *page = get_first_page(zspage);
2183
2184	do {
2185		WARN_ON(!trylock_page(page));
2186		__SetPageMovable(page, pool->inode->i_mapping);
2187		unlock_page(page);
2188	} while ((page = get_next_page(page)) != NULL);
2189}
 
 
2190#endif
2191
2192/*
2193 *
2194 * Based on the number of unused allocated objects calculate
2195 * and return the number of pages that we can free.
2196 */
2197static unsigned long zs_can_compact(struct size_class *class)
2198{
2199	unsigned long obj_wasted;
2200	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2201	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2202
2203	if (obj_allocated <= obj_used)
2204		return 0;
2205
2206	obj_wasted = obj_allocated - obj_used;
2207	obj_wasted /= class->objs_per_zspage;
2208
2209	return obj_wasted * class->pages_per_zspage;
2210}
2211
2212static unsigned long __zs_compact(struct zs_pool *pool,
2213				  struct size_class *class)
2214{
2215	struct zs_compact_control cc;
2216	struct zspage *src_zspage;
2217	struct zspage *dst_zspage = NULL;
2218	unsigned long pages_freed = 0;
2219
2220	spin_lock(&class->lock);
2221	while ((src_zspage = isolate_zspage(class, true))) {
2222
2223		if (!zs_can_compact(class))
2224			break;
2225
2226		cc.obj_idx = 0;
2227		cc.s_page = get_first_page(src_zspage);
2228
2229		while ((dst_zspage = isolate_zspage(class, false))) {
2230			cc.d_page = get_first_page(dst_zspage);
2231			/*
2232			 * If there is no more space in dst_page, resched
2233			 * and see if anyone had allocated another zspage.
2234			 */
2235			if (!migrate_zspage(pool, class, &cc))
2236				break;
2237
2238			putback_zspage(class, dst_zspage);
2239		}
2240
2241		/* Stop if we couldn't find slot */
2242		if (dst_zspage == NULL)
2243			break;
2244
2245		putback_zspage(class, dst_zspage);
2246		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
 
 
 
 
2247			free_zspage(pool, class, src_zspage);
2248			pages_freed += class->pages_per_zspage;
2249		}
2250		spin_unlock(&class->lock);
2251		cond_resched();
2252		spin_lock(&class->lock);
 
 
 
 
 
 
 
 
2253	}
2254
2255	if (src_zspage)
2256		putback_zspage(class, src_zspage);
2257
2258	spin_unlock(&class->lock);
 
 
 
2259
2260	return pages_freed;
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265	int i;
2266	struct size_class *class;
2267	unsigned long pages_freed = 0;
2268
 
 
 
 
 
 
 
 
 
2269	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270		class = pool->size_class[i];
2271		if (!class)
2272			continue;
2273		if (class->index != i)
2274			continue;
2275		pages_freed += __zs_compact(pool, class);
2276	}
2277	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
 
2278
2279	return pages_freed;
2280}
2281EXPORT_SYMBOL_GPL(zs_compact);
2282
2283void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2284{
2285	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2286}
2287EXPORT_SYMBOL_GPL(zs_pool_stats);
2288
2289static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2290		struct shrink_control *sc)
2291{
2292	unsigned long pages_freed;
2293	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2294			shrinker);
2295
2296	/*
2297	 * Compact classes and calculate compaction delta.
2298	 * Can run concurrently with a manually triggered
2299	 * (by user) compaction.
2300	 */
2301	pages_freed = zs_compact(pool);
2302
2303	return pages_freed ? pages_freed : SHRINK_STOP;
2304}
2305
2306static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307		struct shrink_control *sc)
2308{
2309	int i;
2310	struct size_class *class;
2311	unsigned long pages_to_free = 0;
2312	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313			shrinker);
2314
2315	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316		class = pool->size_class[i];
2317		if (!class)
2318			continue;
2319		if (class->index != i)
2320			continue;
2321
2322		pages_to_free += zs_can_compact(class);
2323	}
2324
2325	return pages_to_free;
2326}
2327
2328static void zs_unregister_shrinker(struct zs_pool *pool)
2329{
2330	unregister_shrinker(&pool->shrinker);
2331}
2332
2333static int zs_register_shrinker(struct zs_pool *pool)
2334{
2335	pool->shrinker.scan_objects = zs_shrinker_scan;
2336	pool->shrinker.count_objects = zs_shrinker_count;
2337	pool->shrinker.batch = 0;
2338	pool->shrinker.seeks = DEFAULT_SEEKS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	return register_shrinker(&pool->shrinker);
 
 
 
 
 
 
 
2341}
2342
2343/**
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2346 *
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2349 *
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2352 */
2353struct zs_pool *zs_create_pool(const char *name)
2354{
2355	int i;
2356	struct zs_pool *pool;
2357	struct size_class *prev_class = NULL;
2358
2359	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360	if (!pool)
2361		return NULL;
2362
2363	init_deferred_free(pool);
 
 
2364
2365	pool->name = kstrdup(name, GFP_KERNEL);
2366	if (!pool->name)
2367		goto err;
2368
2369#ifdef CONFIG_COMPACTION
2370	init_waitqueue_head(&pool->migration_wait);
2371#endif
2372
2373	if (create_cache(pool))
2374		goto err;
2375
2376	/*
2377	 * Iterate reversely, because, size of size_class that we want to use
2378	 * for merging should be larger or equal to current size.
2379	 */
2380	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381		int size;
2382		int pages_per_zspage;
2383		int objs_per_zspage;
2384		struct size_class *class;
2385		int fullness = 0;
2386
2387		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2388		if (size > ZS_MAX_ALLOC_SIZE)
2389			size = ZS_MAX_ALLOC_SIZE;
2390		pages_per_zspage = get_pages_per_zspage(size);
2391		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2392
2393		/*
2394		 * We iterate from biggest down to smallest classes,
2395		 * so huge_class_size holds the size of the first huge
2396		 * class. Any object bigger than or equal to that will
2397		 * endup in the huge class.
2398		 */
2399		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2400				!huge_class_size) {
2401			huge_class_size = size;
2402			/*
2403			 * The object uses ZS_HANDLE_SIZE bytes to store the
2404			 * handle. We need to subtract it, because zs_malloc()
2405			 * unconditionally adds handle size before it performs
2406			 * size class search - so object may be smaller than
2407			 * huge class size, yet it still can end up in the huge
2408			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2409			 * right before class lookup.
2410			 */
2411			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2412		}
2413
2414		/*
2415		 * size_class is used for normal zsmalloc operation such
2416		 * as alloc/free for that size. Although it is natural that we
2417		 * have one size_class for each size, there is a chance that we
2418		 * can get more memory utilization if we use one size_class for
2419		 * many different sizes whose size_class have same
2420		 * characteristics. So, we makes size_class point to
2421		 * previous size_class if possible.
2422		 */
2423		if (prev_class) {
2424			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2425				pool->size_class[i] = prev_class;
2426				continue;
2427			}
2428		}
2429
2430		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2431		if (!class)
2432			goto err;
2433
2434		class->size = size;
2435		class->index = i;
2436		class->pages_per_zspage = pages_per_zspage;
2437		class->objs_per_zspage = objs_per_zspage;
2438		spin_lock_init(&class->lock);
2439		pool->size_class[i] = class;
2440		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2441							fullness++)
 
2442			INIT_LIST_HEAD(&class->fullness_list[fullness]);
 
 
2443
2444		prev_class = class;
2445	}
2446
2447	/* debug only, don't abort if it fails */
2448	zs_pool_stat_create(pool, name);
2449
2450	if (zs_register_migration(pool))
2451		goto err;
2452
2453	/*
2454	 * Not critical since shrinker is only used to trigger internal
2455	 * defragmentation of the pool which is pretty optional thing.  If
2456	 * registration fails we still can use the pool normally and user can
2457	 * trigger compaction manually. Thus, ignore return code.
2458	 */
2459	zs_register_shrinker(pool);
2460
2461	return pool;
2462
2463err:
2464	zs_destroy_pool(pool);
2465	return NULL;
2466}
2467EXPORT_SYMBOL_GPL(zs_create_pool);
2468
2469void zs_destroy_pool(struct zs_pool *pool)
2470{
2471	int i;
2472
2473	zs_unregister_shrinker(pool);
2474	zs_unregister_migration(pool);
2475	zs_pool_stat_destroy(pool);
2476
2477	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2478		int fg;
2479		struct size_class *class = pool->size_class[i];
2480
2481		if (!class)
2482			continue;
2483
2484		if (class->index != i)
2485			continue;
2486
2487		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2488			if (!list_empty(&class->fullness_list[fg])) {
2489				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2490					class->size, fg);
2491			}
 
2492		}
2493		kfree(class);
2494	}
2495
2496	destroy_cache(pool);
2497	kfree(pool->name);
2498	kfree(pool);
2499}
2500EXPORT_SYMBOL_GPL(zs_destroy_pool);
2501
2502static int __init zs_init(void)
2503{
2504	int ret;
2505
2506	ret = zsmalloc_mount();
2507	if (ret)
2508		goto out;
2509
2510	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2511				zs_cpu_prepare, zs_cpu_dead);
2512	if (ret)
2513		goto hp_setup_fail;
2514
2515#ifdef CONFIG_ZPOOL
2516	zpool_register_driver(&zs_zpool_driver);
2517#endif
2518
2519	zs_stat_init();
2520
2521	return 0;
2522
2523hp_setup_fail:
2524	zsmalloc_unmount();
2525out:
2526	return ret;
2527}
2528
2529static void __exit zs_exit(void)
2530{
2531#ifdef CONFIG_ZPOOL
2532	zpool_unregister_driver(&zs_zpool_driver);
2533#endif
2534	zsmalloc_unmount();
2535	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2536
2537	zs_stat_exit();
2538}
2539
2540module_init(zs_init);
2541module_exit(zs_exit);
2542
2543MODULE_LICENSE("Dual BSD/GPL");
2544MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
v6.9.4
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *	page->private: points to zspage
  20 *	page->index: links together all component pages of a zspage
  21 *		For the huge page, this is always 0, so we use this field
  22 *		to store handle.
  23 *	page->page_type: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *	PG_private: identifies the first component page
  27 *	PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33/*
  34 * lock ordering:
  35 *	page_lock
  36 *	pool->lock
  37 *	zspage->lock
  38 */
  39
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/sched.h>
 
  43#include <linux/bitops.h>
  44#include <linux/errno.h>
  45#include <linux/highmem.h>
  46#include <linux/string.h>
  47#include <linux/slab.h>
  48#include <linux/pgtable.h>
  49#include <asm/tlbflush.h>
  50#include <linux/cpumask.h>
  51#include <linux/cpu.h>
  52#include <linux/vmalloc.h>
  53#include <linux/preempt.h>
  54#include <linux/spinlock.h>
  55#include <linux/shrinker.h>
  56#include <linux/types.h>
  57#include <linux/debugfs.h>
  58#include <linux/zsmalloc.h>
  59#include <linux/zpool.h>
 
 
  60#include <linux/migrate.h>
  61#include <linux/wait.h>
  62#include <linux/pagemap.h>
  63#include <linux/fs.h>
  64#include <linux/local_lock.h>
  65
  66#define ZSPAGE_MAGIC	0x58
  67
  68/*
  69 * This must be power of 2 and greater than or equal to sizeof(link_free).
  70 * These two conditions ensure that any 'struct link_free' itself doesn't
  71 * span more than 1 page which avoids complex case of mapping 2 pages simply
  72 * to restore link_free pointer values.
  73 */
  74#define ZS_ALIGN		8
  75
 
 
 
 
 
 
 
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * a single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 
 
 
 
 
 
 
 
 
 102 * Head in allocated object should have OBJ_ALLOCATED_TAG
 103 * to identify the object was allocated or not.
 104 * It's okay to add the status bit in the least bit because
 105 * header keeps handle which is 4byte-aligned address so we
 106 * have room for two bit at least.
 107 */
 108#define OBJ_ALLOCATED_TAG 1
 109
 110#define OBJ_TAG_BITS	1
 111#define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
 112
 113#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
 114#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 115
 116#define HUGE_BITS	1
 117#define FULLNESS_BITS	4
 118#define CLASS_BITS	8
 
 119#define MAGIC_VAL_BITS	8
 120
 121#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 122
 123#define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
 124
 125/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 126#define ZS_MIN_ALLOC_SIZE \
 127	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 128/* each chunk includes extra space to keep handle */
 129#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 130
 131/*
 132 * On systems with 4K page size, this gives 255 size classes! There is a
 133 * trader-off here:
 134 *  - Large number of size classes is potentially wasteful as free page are
 135 *    spread across these classes
 136 *  - Small number of size classes causes large internal fragmentation
 137 *  - Probably its better to use specific size classes (empirically
 138 *    determined). NOTE: all those class sizes must be set as multiple of
 139 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 140 *
 141 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 142 *  (reason above)
 143 */
 144#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
 145#define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 146				      ZS_SIZE_CLASS_DELTA) + 1)
 147
 148/*
 149 * Pages are distinguished by the ratio of used memory (that is the ratio
 150 * of ->inuse objects to all objects that page can store). For example,
 151 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
 152 *
 153 * The number of fullness groups is not random. It allows us to keep
 154 * difference between the least busy page in the group (minimum permitted
 155 * number of ->inuse objects) and the most busy page (maximum permitted
 156 * number of ->inuse objects) at a reasonable value.
 157 */
 158enum fullness_group {
 159	ZS_INUSE_RATIO_0,
 160	ZS_INUSE_RATIO_10,
 161	/* NOTE: 8 more fullness groups here */
 162	ZS_INUSE_RATIO_99       = 10,
 163	ZS_INUSE_RATIO_100,
 164	NR_FULLNESS_GROUPS,
 165};
 166
 167enum class_stat_type {
 168	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
 169	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
 170	ZS_OBJS_INUSE,
 171	NR_CLASS_STAT_TYPES,
 
 
 
 172};
 173
 174struct zs_size_stat {
 175	unsigned long objs[NR_CLASS_STAT_TYPES];
 176};
 177
 178#ifdef CONFIG_ZSMALLOC_STAT
 179static struct dentry *zs_stat_root;
 180#endif
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182static size_t huge_class_size;
 183
 184struct size_class {
 185	struct list_head fullness_list[NR_FULLNESS_GROUPS];
 
 186	/*
 187	 * Size of objects stored in this class. Must be multiple
 188	 * of ZS_ALIGN.
 189	 */
 190	int size;
 191	int objs_per_zspage;
 192	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 193	int pages_per_zspage;
 194
 195	unsigned int index;
 196	struct zs_size_stat stats;
 197};
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199/*
 200 * Placed within free objects to form a singly linked list.
 201 * For every zspage, zspage->freeobj gives head of this list.
 202 *
 203 * This must be power of 2 and less than or equal to ZS_ALIGN
 204 */
 205struct link_free {
 206	union {
 207		/*
 208		 * Free object index;
 209		 * It's valid for non-allocated object
 210		 */
 211		unsigned long next;
 212		/*
 213		 * Handle of allocated object.
 214		 */
 215		unsigned long handle;
 216	};
 217};
 218
 219struct zs_pool {
 220	const char *name;
 221
 222	struct size_class *size_class[ZS_SIZE_CLASSES];
 223	struct kmem_cache *handle_cachep;
 224	struct kmem_cache *zspage_cachep;
 225
 226	atomic_long_t pages_allocated;
 227
 228	struct zs_pool_stats stats;
 229
 230	/* Compact classes */
 231	struct shrinker *shrinker;
 232
 233#ifdef CONFIG_ZSMALLOC_STAT
 234	struct dentry *stat_dentry;
 235#endif
 236#ifdef CONFIG_COMPACTION
 
 237	struct work_struct free_work;
 
 
 
 
 238#endif
 239	spinlock_t lock;
 240	atomic_t compaction_in_progress;
 241};
 242
 243struct zspage {
 244	struct {
 245		unsigned int huge:HUGE_BITS;
 246		unsigned int fullness:FULLNESS_BITS;
 247		unsigned int class:CLASS_BITS + 1;
 
 248		unsigned int magic:MAGIC_VAL_BITS;
 249	};
 250	unsigned int inuse;
 251	unsigned int freeobj;
 252	struct page *first_page;
 253	struct list_head list; /* fullness list */
 254	struct zs_pool *pool;
 255	rwlock_t lock;
 
 256};
 257
 258struct mapping_area {
 259	local_lock_t lock;
 260	char *vm_buf; /* copy buffer for objects that span pages */
 261	char *vm_addr; /* address of kmap_atomic()'ed pages */
 262	enum zs_mapmode vm_mm; /* mapping mode */
 263};
 264
 265/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 266static void SetZsHugePage(struct zspage *zspage)
 267{
 268	zspage->huge = 1;
 269}
 270
 271static bool ZsHugePage(struct zspage *zspage)
 272{
 273	return zspage->huge;
 274}
 275
 276static void migrate_lock_init(struct zspage *zspage);
 277static void migrate_read_lock(struct zspage *zspage);
 278static void migrate_read_unlock(struct zspage *zspage);
 279static void migrate_write_lock(struct zspage *zspage);
 280static void migrate_write_unlock(struct zspage *zspage);
 281
 282#ifdef CONFIG_COMPACTION
 283static void kick_deferred_free(struct zs_pool *pool);
 284static void init_deferred_free(struct zs_pool *pool);
 285static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 286#else
 
 
 
 
 
 
 
 287static void kick_deferred_free(struct zs_pool *pool) {}
 288static void init_deferred_free(struct zs_pool *pool) {}
 289static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 290#endif
 291
 292static int create_cache(struct zs_pool *pool)
 293{
 294	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 295					0, 0, NULL);
 296	if (!pool->handle_cachep)
 297		return 1;
 298
 299	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 300					0, 0, NULL);
 301	if (!pool->zspage_cachep) {
 302		kmem_cache_destroy(pool->handle_cachep);
 303		pool->handle_cachep = NULL;
 304		return 1;
 305	}
 306
 307	return 0;
 308}
 309
 310static void destroy_cache(struct zs_pool *pool)
 311{
 312	kmem_cache_destroy(pool->handle_cachep);
 313	kmem_cache_destroy(pool->zspage_cachep);
 314}
 315
 316static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 317{
 318	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 319			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 320}
 321
 322static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 323{
 324	kmem_cache_free(pool->handle_cachep, (void *)handle);
 325}
 326
 327static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 328{
 329	return kmem_cache_zalloc(pool->zspage_cachep,
 330			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 331}
 332
 333static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 334{
 335	kmem_cache_free(pool->zspage_cachep, zspage);
 336}
 337
 338/* pool->lock(which owns the handle) synchronizes races */
 339static void record_obj(unsigned long handle, unsigned long obj)
 340{
 341	*(unsigned long *)handle = obj;
 
 
 
 
 
 342}
 343
 344/* zpool driver */
 345
 346#ifdef CONFIG_ZPOOL
 347
 348static void *zs_zpool_create(const char *name, gfp_t gfp)
 
 
 349{
 350	/*
 351	 * Ignore global gfp flags: zs_malloc() may be invoked from
 352	 * different contexts and its caller must provide a valid
 353	 * gfp mask.
 354	 */
 355	return zs_create_pool(name);
 356}
 357
 358static void zs_zpool_destroy(void *pool)
 359{
 360	zs_destroy_pool(pool);
 361}
 362
 363static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 364			unsigned long *handle)
 365{
 366	*handle = zs_malloc(pool, size, gfp);
 367
 368	if (IS_ERR_VALUE(*handle))
 369		return PTR_ERR((void *)*handle);
 370	return 0;
 371}
 372static void zs_zpool_free(void *pool, unsigned long handle)
 373{
 374	zs_free(pool, handle);
 375}
 376
 377static void *zs_zpool_map(void *pool, unsigned long handle,
 378			enum zpool_mapmode mm)
 379{
 380	enum zs_mapmode zs_mm;
 381
 382	switch (mm) {
 383	case ZPOOL_MM_RO:
 384		zs_mm = ZS_MM_RO;
 385		break;
 386	case ZPOOL_MM_WO:
 387		zs_mm = ZS_MM_WO;
 388		break;
 389	case ZPOOL_MM_RW:
 390	default:
 391		zs_mm = ZS_MM_RW;
 392		break;
 393	}
 394
 395	return zs_map_object(pool, handle, zs_mm);
 396}
 397static void zs_zpool_unmap(void *pool, unsigned long handle)
 398{
 399	zs_unmap_object(pool, handle);
 400}
 401
 402static u64 zs_zpool_total_size(void *pool)
 403{
 404	return zs_get_total_pages(pool) << PAGE_SHIFT;
 405}
 406
 407static struct zpool_driver zs_zpool_driver = {
 408	.type =			  "zsmalloc",
 409	.owner =		  THIS_MODULE,
 410	.create =		  zs_zpool_create,
 411	.destroy =		  zs_zpool_destroy,
 412	.malloc_support_movable = true,
 413	.malloc =		  zs_zpool_malloc,
 414	.free =			  zs_zpool_free,
 415	.map =			  zs_zpool_map,
 416	.unmap =		  zs_zpool_unmap,
 417	.total_size =		  zs_zpool_total_size,
 418};
 419
 420MODULE_ALIAS("zpool-zsmalloc");
 421#endif /* CONFIG_ZPOOL */
 422
 423/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 424static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
 425	.lock	= INIT_LOCAL_LOCK(lock),
 426};
 
 
 
 427
 428static __maybe_unused int is_first_page(struct page *page)
 429{
 430	return PagePrivate(page);
 431}
 432
 433/* Protected by pool->lock */
 434static inline int get_zspage_inuse(struct zspage *zspage)
 435{
 436	return zspage->inuse;
 437}
 438
 439
 440static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 441{
 442	zspage->inuse += val;
 443}
 444
 445static inline struct page *get_first_page(struct zspage *zspage)
 446{
 447	struct page *first_page = zspage->first_page;
 448
 449	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 450	return first_page;
 451}
 452
 453static inline unsigned int get_first_obj_offset(struct page *page)
 454{
 455	return page->page_type;
 456}
 457
 458static inline void set_first_obj_offset(struct page *page, unsigned int offset)
 459{
 460	page->page_type = offset;
 461}
 462
 463static inline unsigned int get_freeobj(struct zspage *zspage)
 464{
 465	return zspage->freeobj;
 466}
 467
 468static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 469{
 470	zspage->freeobj = obj;
 471}
 472
 473static struct size_class *zspage_class(struct zs_pool *pool,
 474				       struct zspage *zspage)
 
 475{
 476	return pool->size_class[zspage->class];
 
 
 
 
 
 
 
 
 
 
 
 477}
 478
 479/*
 480 * zsmalloc divides the pool into various size classes where each
 481 * class maintains a list of zspages where each zspage is divided
 482 * into equal sized chunks. Each allocation falls into one of these
 483 * classes depending on its size. This function returns index of the
 484 * size class which has chunk size big enough to hold the given size.
 485 */
 486static int get_size_class_index(int size)
 487{
 488	int idx = 0;
 489
 490	if (likely(size > ZS_MIN_ALLOC_SIZE))
 491		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 492				ZS_SIZE_CLASS_DELTA);
 493
 494	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 495}
 496
 497static inline void class_stat_inc(struct size_class *class,
 
 498				int type, unsigned long cnt)
 499{
 500	class->stats.objs[type] += cnt;
 501}
 502
 503static inline void class_stat_dec(struct size_class *class,
 
 504				int type, unsigned long cnt)
 505{
 506	class->stats.objs[type] -= cnt;
 507}
 508
 509static inline unsigned long zs_stat_get(struct size_class *class, int type)
 
 
 510{
 511	return class->stats.objs[type];
 512}
 513
 514#ifdef CONFIG_ZSMALLOC_STAT
 515
 516static void __init zs_stat_init(void)
 517{
 518	if (!debugfs_initialized()) {
 519		pr_warn("debugfs not available, stat dir not created\n");
 520		return;
 521	}
 522
 523	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 524}
 525
 526static void __exit zs_stat_exit(void)
 527{
 528	debugfs_remove_recursive(zs_stat_root);
 529}
 530
 531static unsigned long zs_can_compact(struct size_class *class);
 532
 533static int zs_stats_size_show(struct seq_file *s, void *v)
 534{
 535	int i, fg;
 536	struct zs_pool *pool = s->private;
 537	struct size_class *class;
 538	int objs_per_zspage;
 
 539	unsigned long obj_allocated, obj_used, pages_used, freeable;
 
 540	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 541	unsigned long total_freeable = 0;
 542	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
 543
 544	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
 545			"class", "size", "10%", "20%", "30%", "40%",
 546			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
 547			"obj_allocated", "obj_used", "pages_used",
 548			"pages_per_zspage", "freeable");
 549
 550	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 551
 552		class = pool->size_class[i];
 553
 554		if (class->index != i)
 555			continue;
 556
 557		spin_lock(&pool->lock);
 558
 559		seq_printf(s, " %5u %5u ", i, class->size);
 560		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
 561			inuse_totals[fg] += zs_stat_get(class, fg);
 562			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
 563		}
 564
 565		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
 566		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
 567		freeable = zs_can_compact(class);
 568		spin_unlock(&pool->lock);
 569
 570		objs_per_zspage = class->objs_per_zspage;
 571		pages_used = obj_allocated / objs_per_zspage *
 572				class->pages_per_zspage;
 573
 574		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
 575			   obj_allocated, obj_used, pages_used,
 576			   class->pages_per_zspage, freeable);
 
 
 577
 
 
 578		total_objs += obj_allocated;
 579		total_used_objs += obj_used;
 580		total_pages += pages_used;
 581		total_freeable += freeable;
 582	}
 583
 584	seq_puts(s, "\n");
 585	seq_printf(s, " %5s %5s ", "Total", "");
 586
 587	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
 588		seq_printf(s, "%9lu ", inuse_totals[fg]);
 589
 590	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
 591		   total_objs, total_used_objs, total_pages, "",
 592		   total_freeable);
 593
 594	return 0;
 595}
 596DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 597
 598static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 599{
 600	if (!zs_stat_root) {
 601		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 602		return;
 603	}
 604
 605	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 606
 607	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 608			    &zs_stats_size_fops);
 609}
 610
 611static void zs_pool_stat_destroy(struct zs_pool *pool)
 612{
 613	debugfs_remove_recursive(pool->stat_dentry);
 614}
 615
 616#else /* CONFIG_ZSMALLOC_STAT */
 617static void __init zs_stat_init(void)
 618{
 619}
 620
 621static void __exit zs_stat_exit(void)
 622{
 623}
 624
 625static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 626{
 627}
 628
 629static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 630{
 631}
 632#endif
 633
 634
 635/*
 636 * For each size class, zspages are divided into different groups
 637 * depending on their usage ratio. This function returns fullness
 
 
 638 * status of the given page.
 639 */
 640static int get_fullness_group(struct size_class *class, struct zspage *zspage)
 
 641{
 642	int inuse, objs_per_zspage, ratio;
 
 643
 644	inuse = get_zspage_inuse(zspage);
 645	objs_per_zspage = class->objs_per_zspage;
 646
 647	if (inuse == 0)
 648		return ZS_INUSE_RATIO_0;
 649	if (inuse == objs_per_zspage)
 650		return ZS_INUSE_RATIO_100;
 
 
 
 
 651
 652	ratio = 100 * inuse / objs_per_zspage;
 653	/*
 654	 * Take integer division into consideration: a page with one inuse
 655	 * object out of 127 possible, will end up having 0 usage ratio,
 656	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
 657	 */
 658	return ratio / 10 + 1;
 659}
 660
 661/*
 662 * Each size class maintains various freelists and zspages are assigned
 663 * to one of these freelists based on the number of live objects they
 664 * have. This functions inserts the given zspage into the freelist
 665 * identified by <class, fullness_group>.
 666 */
 667static void insert_zspage(struct size_class *class,
 668				struct zspage *zspage,
 669				int fullness)
 670{
 671	class_stat_inc(class, fullness, 1);
 672	list_add(&zspage->list, &class->fullness_list[fullness]);
 673	zspage->fullness = fullness;
 
 
 
 
 
 
 
 
 
 
 674}
 675
 676/*
 677 * This function removes the given zspage from the freelist identified
 678 * by <class, fullness_group>.
 679 */
 680static void remove_zspage(struct size_class *class, struct zspage *zspage)
 
 
 681{
 682	int fullness = zspage->fullness;
 683
 684	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 
 685
 686	list_del_init(&zspage->list);
 687	class_stat_dec(class, fullness, 1);
 688}
 689
 690/*
 691 * Each size class maintains zspages in different fullness groups depending
 692 * on the number of live objects they contain. When allocating or freeing
 693 * objects, the fullness status of the page can change, for instance, from
 694 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
 695 * checks if such a status change has occurred for the given page and
 696 * accordingly moves the page from the list of the old fullness group to that
 697 * of the new fullness group.
 698 */
 699static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
 
 700{
 701	int newfg;
 
 702
 
 703	newfg = get_fullness_group(class, zspage);
 704	if (newfg == zspage->fullness)
 705		goto out;
 706
 707	remove_zspage(class, zspage);
 708	insert_zspage(class, zspage, newfg);
 
 
 
 
 
 709out:
 710	return newfg;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713static struct zspage *get_zspage(struct page *page)
 714{
 715	struct zspage *zspage = (struct zspage *)page_private(page);
 716
 717	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 718	return zspage;
 719}
 720
 721static struct page *get_next_page(struct page *page)
 722{
 723	struct zspage *zspage = get_zspage(page);
 724
 725	if (unlikely(ZsHugePage(zspage)))
 726		return NULL;
 727
 728	return (struct page *)page->index;
 729}
 730
 731/**
 732 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 733 * @obj: the encoded object value
 734 * @page: page object resides in zspage
 735 * @obj_idx: object index
 736 */
 737static void obj_to_location(unsigned long obj, struct page **page,
 738				unsigned int *obj_idx)
 739{
 
 740	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 741	*obj_idx = (obj & OBJ_INDEX_MASK);
 742}
 743
 744static void obj_to_page(unsigned long obj, struct page **page)
 745{
 746	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 747}
 748
 749/**
 750 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 751 * @page: page object resides in zspage
 752 * @obj_idx: object index
 753 */
 754static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 755{
 756	unsigned long obj;
 757
 758	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 759	obj |= obj_idx & OBJ_INDEX_MASK;
 
 760
 761	return obj;
 762}
 763
 764static unsigned long handle_to_obj(unsigned long handle)
 765{
 766	return *(unsigned long *)handle;
 767}
 768
 769static inline bool obj_allocated(struct page *page, void *obj,
 770				 unsigned long *phandle)
 771{
 772	unsigned long handle;
 773	struct zspage *zspage = get_zspage(page);
 774
 775	if (unlikely(ZsHugePage(zspage))) {
 776		VM_BUG_ON_PAGE(!is_first_page(page), page);
 777		handle = page->index;
 778	} else
 779		handle = *(unsigned long *)obj;
 
 
 
 
 
 
 780
 781	if (!(handle & OBJ_ALLOCATED_TAG))
 782		return false;
 
 
 
 
 
 
 
 783
 784	/* Clear all tags before returning the handle */
 785	*phandle = handle & ~OBJ_TAG_MASK;
 786	return true;
 787}
 788
 789static void reset_page(struct page *page)
 790{
 791	__ClearPageMovable(page);
 792	ClearPagePrivate(page);
 793	set_page_private(page, 0);
 794	page_mapcount_reset(page);
 795	page->index = 0;
 
 796}
 797
 798static int trylock_zspage(struct zspage *zspage)
 799{
 800	struct page *cursor, *fail;
 801
 802	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 803					get_next_page(cursor)) {
 804		if (!trylock_page(cursor)) {
 805			fail = cursor;
 806			goto unlock;
 807		}
 808	}
 809
 810	return 1;
 811unlock:
 812	for (cursor = get_first_page(zspage); cursor != fail; cursor =
 813					get_next_page(cursor))
 814		unlock_page(cursor);
 815
 816	return 0;
 817}
 818
 819static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 820				struct zspage *zspage)
 821{
 822	struct page *page, *next;
 
 
 
 
 823
 824	assert_spin_locked(&pool->lock);
 825
 826	VM_BUG_ON(get_zspage_inuse(zspage));
 827	VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
 828
 829	next = page = get_first_page(zspage);
 830	do {
 831		VM_BUG_ON_PAGE(!PageLocked(page), page);
 832		next = get_next_page(page);
 833		reset_page(page);
 834		unlock_page(page);
 835		dec_zone_page_state(page, NR_ZSPAGES);
 836		put_page(page);
 837		page = next;
 838	} while (page != NULL);
 839
 840	cache_free_zspage(pool, zspage);
 841
 842	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
 843	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
 
 844}
 845
 846static void free_zspage(struct zs_pool *pool, struct size_class *class,
 847				struct zspage *zspage)
 848{
 849	VM_BUG_ON(get_zspage_inuse(zspage));
 850	VM_BUG_ON(list_empty(&zspage->list));
 851
 852	/*
 853	 * Since zs_free couldn't be sleepable, this function cannot call
 854	 * lock_page. The page locks trylock_zspage got will be released
 855	 * by __free_zspage.
 856	 */
 857	if (!trylock_zspage(zspage)) {
 858		kick_deferred_free(pool);
 859		return;
 860	}
 861
 862	remove_zspage(class, zspage);
 863	__free_zspage(pool, class, zspage);
 864}
 865
 866/* Initialize a newly allocated zspage */
 867static void init_zspage(struct size_class *class, struct zspage *zspage)
 868{
 869	unsigned int freeobj = 1;
 870	unsigned long off = 0;
 871	struct page *page = get_first_page(zspage);
 872
 873	while (page) {
 874		struct page *next_page;
 875		struct link_free *link;
 876		void *vaddr;
 877
 878		set_first_obj_offset(page, off);
 879
 880		vaddr = kmap_atomic(page);
 881		link = (struct link_free *)vaddr + off / sizeof(*link);
 882
 883		while ((off += class->size) < PAGE_SIZE) {
 884			link->next = freeobj++ << OBJ_TAG_BITS;
 885			link += class->size / sizeof(*link);
 886		}
 887
 888		/*
 889		 * We now come to the last (full or partial) object on this
 890		 * page, which must point to the first object on the next
 891		 * page (if present)
 892		 */
 893		next_page = get_next_page(page);
 894		if (next_page) {
 895			link->next = freeobj++ << OBJ_TAG_BITS;
 896		} else {
 897			/*
 898			 * Reset OBJ_TAG_BITS bit to last link to tell
 899			 * whether it's allocated object or not.
 900			 */
 901			link->next = -1UL << OBJ_TAG_BITS;
 902		}
 903		kunmap_atomic(vaddr);
 904		page = next_page;
 905		off %= PAGE_SIZE;
 906	}
 907
 908	set_freeobj(zspage, 0);
 909}
 910
 911static void create_page_chain(struct size_class *class, struct zspage *zspage,
 912				struct page *pages[])
 913{
 914	int i;
 915	struct page *page;
 916	struct page *prev_page = NULL;
 917	int nr_pages = class->pages_per_zspage;
 918
 919	/*
 920	 * Allocate individual pages and link them together as:
 921	 * 1. all pages are linked together using page->index
 922	 * 2. each sub-page point to zspage using page->private
 923	 *
 924	 * we set PG_private to identify the first page (i.e. no other sub-page
 925	 * has this flag set).
 926	 */
 927	for (i = 0; i < nr_pages; i++) {
 928		page = pages[i];
 929		set_page_private(page, (unsigned long)zspage);
 930		page->index = 0;
 931		if (i == 0) {
 932			zspage->first_page = page;
 933			SetPagePrivate(page);
 934			if (unlikely(class->objs_per_zspage == 1 &&
 935					class->pages_per_zspage == 1))
 936				SetZsHugePage(zspage);
 937		} else {
 938			prev_page->index = (unsigned long)page;
 939		}
 940		prev_page = page;
 941	}
 942}
 943
 944/*
 945 * Allocate a zspage for the given size class
 946 */
 947static struct zspage *alloc_zspage(struct zs_pool *pool,
 948					struct size_class *class,
 949					gfp_t gfp)
 950{
 951	int i;
 952	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
 953	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
 954
 955	if (!zspage)
 956		return NULL;
 957
 958	zspage->magic = ZSPAGE_MAGIC;
 959	migrate_lock_init(zspage);
 960
 961	for (i = 0; i < class->pages_per_zspage; i++) {
 962		struct page *page;
 963
 964		page = alloc_page(gfp);
 965		if (!page) {
 966			while (--i >= 0) {
 967				dec_zone_page_state(pages[i], NR_ZSPAGES);
 968				__free_page(pages[i]);
 969			}
 970			cache_free_zspage(pool, zspage);
 971			return NULL;
 972		}
 973
 974		inc_zone_page_state(page, NR_ZSPAGES);
 975		pages[i] = page;
 976	}
 977
 978	create_page_chain(class, zspage, pages);
 979	init_zspage(class, zspage);
 980	zspage->pool = pool;
 981	zspage->class = class->index;
 982
 983	return zspage;
 984}
 985
 986static struct zspage *find_get_zspage(struct size_class *class)
 987{
 988	int i;
 989	struct zspage *zspage;
 990
 991	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
 992		zspage = list_first_entry_or_null(&class->fullness_list[i],
 993						  struct zspage, list);
 994		if (zspage)
 995			break;
 996	}
 997
 998	return zspage;
 999}
1000
1001static inline int __zs_cpu_up(struct mapping_area *area)
1002{
1003	/*
1004	 * Make sure we don't leak memory if a cpu UP notification
1005	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1006	 */
1007	if (area->vm_buf)
1008		return 0;
1009	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1010	if (!area->vm_buf)
1011		return -ENOMEM;
1012	return 0;
1013}
1014
1015static inline void __zs_cpu_down(struct mapping_area *area)
1016{
1017	kfree(area->vm_buf);
1018	area->vm_buf = NULL;
1019}
1020
1021static void *__zs_map_object(struct mapping_area *area,
1022			struct page *pages[2], int off, int size)
1023{
1024	int sizes[2];
1025	void *addr;
1026	char *buf = area->vm_buf;
1027
1028	/* disable page faults to match kmap_atomic() return conditions */
1029	pagefault_disable();
1030
1031	/* no read fastpath */
1032	if (area->vm_mm == ZS_MM_WO)
1033		goto out;
1034
1035	sizes[0] = PAGE_SIZE - off;
1036	sizes[1] = size - sizes[0];
1037
1038	/* copy object to per-cpu buffer */
1039	addr = kmap_atomic(pages[0]);
1040	memcpy(buf, addr + off, sizes[0]);
1041	kunmap_atomic(addr);
1042	addr = kmap_atomic(pages[1]);
1043	memcpy(buf + sizes[0], addr, sizes[1]);
1044	kunmap_atomic(addr);
1045out:
1046	return area->vm_buf;
1047}
1048
1049static void __zs_unmap_object(struct mapping_area *area,
1050			struct page *pages[2], int off, int size)
1051{
1052	int sizes[2];
1053	void *addr;
1054	char *buf;
1055
1056	/* no write fastpath */
1057	if (area->vm_mm == ZS_MM_RO)
1058		goto out;
1059
1060	buf = area->vm_buf;
1061	buf = buf + ZS_HANDLE_SIZE;
1062	size -= ZS_HANDLE_SIZE;
1063	off += ZS_HANDLE_SIZE;
1064
1065	sizes[0] = PAGE_SIZE - off;
1066	sizes[1] = size - sizes[0];
1067
1068	/* copy per-cpu buffer to object */
1069	addr = kmap_atomic(pages[0]);
1070	memcpy(addr + off, buf, sizes[0]);
1071	kunmap_atomic(addr);
1072	addr = kmap_atomic(pages[1]);
1073	memcpy(addr, buf + sizes[0], sizes[1]);
1074	kunmap_atomic(addr);
1075
1076out:
1077	/* enable page faults to match kunmap_atomic() return conditions */
1078	pagefault_enable();
1079}
1080
1081static int zs_cpu_prepare(unsigned int cpu)
1082{
1083	struct mapping_area *area;
1084
1085	area = &per_cpu(zs_map_area, cpu);
1086	return __zs_cpu_up(area);
1087}
1088
1089static int zs_cpu_dead(unsigned int cpu)
1090{
1091	struct mapping_area *area;
1092
1093	area = &per_cpu(zs_map_area, cpu);
1094	__zs_cpu_down(area);
1095	return 0;
1096}
1097
1098static bool can_merge(struct size_class *prev, int pages_per_zspage,
1099					int objs_per_zspage)
1100{
1101	if (prev->pages_per_zspage == pages_per_zspage &&
1102		prev->objs_per_zspage == objs_per_zspage)
1103		return true;
1104
1105	return false;
1106}
1107
1108static bool zspage_full(struct size_class *class, struct zspage *zspage)
1109{
1110	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1111}
1112
1113static bool zspage_empty(struct zspage *zspage)
1114{
1115	return get_zspage_inuse(zspage) == 0;
1116}
1117
1118/**
1119 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1120 * that hold objects of the provided size.
1121 * @pool: zsmalloc pool to use
1122 * @size: object size
1123 *
1124 * Context: Any context.
1125 *
1126 * Return: the index of the zsmalloc &size_class that hold objects of the
1127 * provided size.
1128 */
1129unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1130{
1131	struct size_class *class;
1132
1133	class = pool->size_class[get_size_class_index(size)];
1134
1135	return class->index;
1136}
1137EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1138
1139unsigned long zs_get_total_pages(struct zs_pool *pool)
1140{
1141	return atomic_long_read(&pool->pages_allocated);
1142}
1143EXPORT_SYMBOL_GPL(zs_get_total_pages);
1144
1145/**
1146 * zs_map_object - get address of allocated object from handle.
1147 * @pool: pool from which the object was allocated
1148 * @handle: handle returned from zs_malloc
1149 * @mm: mapping mode to use
1150 *
1151 * Before using an object allocated from zs_malloc, it must be mapped using
1152 * this function. When done with the object, it must be unmapped using
1153 * zs_unmap_object.
1154 *
1155 * Only one object can be mapped per cpu at a time. There is no protection
1156 * against nested mappings.
1157 *
1158 * This function returns with preemption and page faults disabled.
1159 */
1160void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1161			enum zs_mapmode mm)
1162{
1163	struct zspage *zspage;
1164	struct page *page;
1165	unsigned long obj, off;
1166	unsigned int obj_idx;
1167
 
 
1168	struct size_class *class;
1169	struct mapping_area *area;
1170	struct page *pages[2];
1171	void *ret;
1172
1173	/*
1174	 * Because we use per-cpu mapping areas shared among the
1175	 * pools/users, we can't allow mapping in interrupt context
1176	 * because it can corrupt another users mappings.
1177	 */
1178	BUG_ON(in_interrupt());
1179
1180	/* It guarantees it can get zspage from handle safely */
1181	spin_lock(&pool->lock);
 
1182	obj = handle_to_obj(handle);
1183	obj_to_location(obj, &page, &obj_idx);
1184	zspage = get_zspage(page);
1185
1186	/*
1187	 * migration cannot move any zpages in this zspage. Here, pool->lock
1188	 * is too heavy since callers would take some time until they calls
1189	 * zs_unmap_object API so delegate the locking from class to zspage
1190	 * which is smaller granularity.
1191	 */
1192	migrate_read_lock(zspage);
1193	spin_unlock(&pool->lock);
1194
1195	class = zspage_class(pool, zspage);
1196	off = offset_in_page(class->size * obj_idx);
 
1197
1198	local_lock(&zs_map_area.lock);
1199	area = this_cpu_ptr(&zs_map_area);
1200	area->vm_mm = mm;
1201	if (off + class->size <= PAGE_SIZE) {
1202		/* this object is contained entirely within a page */
1203		area->vm_addr = kmap_atomic(page);
1204		ret = area->vm_addr + off;
1205		goto out;
1206	}
1207
1208	/* this object spans two pages */
1209	pages[0] = page;
1210	pages[1] = get_next_page(page);
1211	BUG_ON(!pages[1]);
1212
1213	ret = __zs_map_object(area, pages, off, class->size);
1214out:
1215	if (likely(!ZsHugePage(zspage)))
1216		ret += ZS_HANDLE_SIZE;
1217
1218	return ret;
1219}
1220EXPORT_SYMBOL_GPL(zs_map_object);
1221
1222void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1223{
1224	struct zspage *zspage;
1225	struct page *page;
1226	unsigned long obj, off;
1227	unsigned int obj_idx;
1228
 
 
1229	struct size_class *class;
1230	struct mapping_area *area;
1231
1232	obj = handle_to_obj(handle);
1233	obj_to_location(obj, &page, &obj_idx);
1234	zspage = get_zspage(page);
1235	class = zspage_class(pool, zspage);
1236	off = offset_in_page(class->size * obj_idx);
 
1237
1238	area = this_cpu_ptr(&zs_map_area);
1239	if (off + class->size <= PAGE_SIZE)
1240		kunmap_atomic(area->vm_addr);
1241	else {
1242		struct page *pages[2];
1243
1244		pages[0] = page;
1245		pages[1] = get_next_page(page);
1246		BUG_ON(!pages[1]);
1247
1248		__zs_unmap_object(area, pages, off, class->size);
1249	}
1250	local_unlock(&zs_map_area.lock);
1251
1252	migrate_read_unlock(zspage);
 
1253}
1254EXPORT_SYMBOL_GPL(zs_unmap_object);
1255
1256/**
1257 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1258 *                        zsmalloc &size_class.
1259 * @pool: zsmalloc pool to use
1260 *
1261 * The function returns the size of the first huge class - any object of equal
1262 * or bigger size will be stored in zspage consisting of a single physical
1263 * page.
1264 *
1265 * Context: Any context.
1266 *
1267 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1268 */
1269size_t zs_huge_class_size(struct zs_pool *pool)
1270{
1271	return huge_class_size;
1272}
1273EXPORT_SYMBOL_GPL(zs_huge_class_size);
1274
1275static unsigned long obj_malloc(struct zs_pool *pool,
1276				struct zspage *zspage, unsigned long handle)
1277{
1278	int i, nr_page, offset;
1279	unsigned long obj;
1280	struct link_free *link;
1281	struct size_class *class;
1282
1283	struct page *m_page;
1284	unsigned long m_offset;
1285	void *vaddr;
1286
1287	class = pool->size_class[zspage->class];
1288	handle |= OBJ_ALLOCATED_TAG;
1289	obj = get_freeobj(zspage);
1290
1291	offset = obj * class->size;
1292	nr_page = offset >> PAGE_SHIFT;
1293	m_offset = offset_in_page(offset);
1294	m_page = get_first_page(zspage);
1295
1296	for (i = 0; i < nr_page; i++)
1297		m_page = get_next_page(m_page);
1298
1299	vaddr = kmap_atomic(m_page);
1300	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1301	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1302	if (likely(!ZsHugePage(zspage)))
1303		/* record handle in the header of allocated chunk */
1304		link->handle = handle;
1305	else
1306		/* record handle to page->index */
1307		zspage->first_page->index = handle;
1308
1309	kunmap_atomic(vaddr);
1310	mod_zspage_inuse(zspage, 1);
 
1311
1312	obj = location_to_obj(m_page, obj);
1313
1314	return obj;
1315}
1316
1317
1318/**
1319 * zs_malloc - Allocate block of given size from pool.
1320 * @pool: pool to allocate from
1321 * @size: size of block to allocate
1322 * @gfp: gfp flags when allocating object
1323 *
1324 * On success, handle to the allocated object is returned,
1325 * otherwise an ERR_PTR().
1326 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1327 */
1328unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1329{
1330	unsigned long handle, obj;
1331	struct size_class *class;
1332	int newfg;
1333	struct zspage *zspage;
1334
1335	if (unlikely(!size))
1336		return (unsigned long)ERR_PTR(-EINVAL);
1337
1338	if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1339		return (unsigned long)ERR_PTR(-ENOSPC);
1340
1341	handle = cache_alloc_handle(pool, gfp);
1342	if (!handle)
1343		return (unsigned long)ERR_PTR(-ENOMEM);
1344
1345	/* extra space in chunk to keep the handle */
1346	size += ZS_HANDLE_SIZE;
1347	class = pool->size_class[get_size_class_index(size)];
1348
1349	/* pool->lock effectively protects the zpage migration */
1350	spin_lock(&pool->lock);
1351	zspage = find_get_zspage(class);
1352	if (likely(zspage)) {
1353		obj = obj_malloc(pool, zspage, handle);
1354		/* Now move the zspage to another fullness group, if required */
1355		fix_fullness_group(class, zspage);
1356		record_obj(handle, obj);
1357		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1358
1359		goto out;
1360	}
1361
1362	spin_unlock(&pool->lock);
1363
1364	zspage = alloc_zspage(pool, class, gfp);
1365	if (!zspage) {
1366		cache_free_handle(pool, handle);
1367		return (unsigned long)ERR_PTR(-ENOMEM);
1368	}
1369
1370	spin_lock(&pool->lock);
1371	obj = obj_malloc(pool, zspage, handle);
1372	newfg = get_fullness_group(class, zspage);
1373	insert_zspage(class, zspage, newfg);
 
1374	record_obj(handle, obj);
1375	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1376	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1377	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1378
1379	/* We completely set up zspage so mark them as movable */
1380	SetZsPageMovable(pool, zspage);
1381out:
1382	spin_unlock(&pool->lock);
1383
1384	return handle;
1385}
1386EXPORT_SYMBOL_GPL(zs_malloc);
1387
1388static void obj_free(int class_size, unsigned long obj)
1389{
1390	struct link_free *link;
1391	struct zspage *zspage;
1392	struct page *f_page;
1393	unsigned long f_offset;
1394	unsigned int f_objidx;
1395	void *vaddr;
1396
1397	obj_to_location(obj, &f_page, &f_objidx);
1398	f_offset = offset_in_page(class_size * f_objidx);
1399	zspage = get_zspage(f_page);
1400
1401	vaddr = kmap_atomic(f_page);
1402	link = (struct link_free *)(vaddr + f_offset);
1403
1404	/* Insert this object in containing zspage's freelist */
1405	if (likely(!ZsHugePage(zspage)))
1406		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1407	else
1408		f_page->index = 0;
1409	set_freeobj(zspage, f_objidx);
1410
1411	kunmap_atomic(vaddr);
1412	mod_zspage_inuse(zspage, -1);
 
1413}
1414
1415void zs_free(struct zs_pool *pool, unsigned long handle)
1416{
1417	struct zspage *zspage;
1418	struct page *f_page;
1419	unsigned long obj;
 
 
1420	struct size_class *class;
1421	int fullness;
 
1422
1423	if (IS_ERR_OR_NULL((void *)handle))
1424		return;
1425
1426	/*
1427	 * The pool->lock protects the race with zpage's migration
1428	 * so it's safe to get the page from handle.
1429	 */
1430	spin_lock(&pool->lock);
1431	obj = handle_to_obj(handle);
1432	obj_to_page(obj, &f_page);
1433	zspage = get_zspage(f_page);
1434	class = zspage_class(pool, zspage);
1435
1436	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1437	obj_free(class->size, obj);
 
 
1438
 
 
1439	fullness = fix_fullness_group(class, zspage);
1440	if (fullness == ZS_INUSE_RATIO_0)
 
 
 
 
 
 
 
 
1441		free_zspage(pool, class, zspage);
 
1442
1443	spin_unlock(&pool->lock);
 
1444	cache_free_handle(pool, handle);
1445}
1446EXPORT_SYMBOL_GPL(zs_free);
1447
1448static void zs_object_copy(struct size_class *class, unsigned long dst,
1449				unsigned long src)
1450{
1451	struct page *s_page, *d_page;
1452	unsigned int s_objidx, d_objidx;
1453	unsigned long s_off, d_off;
1454	void *s_addr, *d_addr;
1455	int s_size, d_size, size;
1456	int written = 0;
1457
1458	s_size = d_size = class->size;
1459
1460	obj_to_location(src, &s_page, &s_objidx);
1461	obj_to_location(dst, &d_page, &d_objidx);
1462
1463	s_off = offset_in_page(class->size * s_objidx);
1464	d_off = offset_in_page(class->size * d_objidx);
1465
1466	if (s_off + class->size > PAGE_SIZE)
1467		s_size = PAGE_SIZE - s_off;
1468
1469	if (d_off + class->size > PAGE_SIZE)
1470		d_size = PAGE_SIZE - d_off;
1471
1472	s_addr = kmap_atomic(s_page);
1473	d_addr = kmap_atomic(d_page);
1474
1475	while (1) {
1476		size = min(s_size, d_size);
1477		memcpy(d_addr + d_off, s_addr + s_off, size);
1478		written += size;
1479
1480		if (written == class->size)
1481			break;
1482
1483		s_off += size;
1484		s_size -= size;
1485		d_off += size;
1486		d_size -= size;
1487
1488		/*
1489		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1490		 * calls must occurs in reverse order of calls to kmap_atomic().
1491		 * So, to call kunmap_atomic(s_addr) we should first call
1492		 * kunmap_atomic(d_addr). For more details see
1493		 * Documentation/mm/highmem.rst.
1494		 */
1495		if (s_off >= PAGE_SIZE) {
1496			kunmap_atomic(d_addr);
1497			kunmap_atomic(s_addr);
1498			s_page = get_next_page(s_page);
1499			s_addr = kmap_atomic(s_page);
1500			d_addr = kmap_atomic(d_page);
1501			s_size = class->size - written;
1502			s_off = 0;
1503		}
1504
1505		if (d_off >= PAGE_SIZE) {
1506			kunmap_atomic(d_addr);
1507			d_page = get_next_page(d_page);
1508			d_addr = kmap_atomic(d_page);
1509			d_size = class->size - written;
1510			d_off = 0;
1511		}
1512	}
1513
1514	kunmap_atomic(d_addr);
1515	kunmap_atomic(s_addr);
1516}
1517
1518/*
1519 * Find alloced object in zspage from index object and
1520 * return handle.
1521 */
1522static unsigned long find_alloced_obj(struct size_class *class,
1523				      struct page *page, int *obj_idx)
1524{
1525	unsigned int offset;
 
1526	int index = *obj_idx;
1527	unsigned long handle = 0;
1528	void *addr = kmap_atomic(page);
1529
1530	offset = get_first_obj_offset(page);
1531	offset += class->size * index;
1532
1533	while (offset < PAGE_SIZE) {
1534		if (obj_allocated(page, addr + offset, &handle))
1535			break;
 
 
 
 
 
1536
1537		offset += class->size;
1538		index++;
1539	}
1540
1541	kunmap_atomic(addr);
1542
1543	*obj_idx = index;
1544
1545	return handle;
1546}
1547
1548static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1549			   struct zspage *dst_zspage)
 
 
 
 
 
 
 
 
 
 
 
1550{
1551	unsigned long used_obj, free_obj;
1552	unsigned long handle;
1553	int obj_idx = 0;
1554	struct page *s_page = get_first_page(src_zspage);
1555	struct size_class *class = pool->size_class[src_zspage->class];
 
1556
1557	while (1) {
1558		handle = find_alloced_obj(class, s_page, &obj_idx);
1559		if (!handle) {
1560			s_page = get_next_page(s_page);
1561			if (!s_page)
1562				break;
1563			obj_idx = 0;
1564			continue;
1565		}
1566
 
 
 
 
 
 
 
1567		used_obj = handle_to_obj(handle);
1568		free_obj = obj_malloc(pool, dst_zspage, handle);
1569		zs_object_copy(class, free_obj, used_obj);
1570		obj_idx++;
 
 
 
 
 
 
 
1571		record_obj(handle, free_obj);
1572		obj_free(class->size, used_obj);
 
 
1573
1574		/* Stop if there is no more space */
1575		if (zspage_full(class, dst_zspage))
1576			break;
1577
1578		/* Stop if there are no more objects to migrate */
1579		if (zspage_empty(src_zspage))
1580			break;
1581	}
1582}
1583
1584static struct zspage *isolate_src_zspage(struct size_class *class)
1585{
 
1586	struct zspage *zspage;
1587	int fg;
1588
1589	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1590		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1591						  struct zspage, list);
1592		if (zspage) {
1593			remove_zspage(class, zspage);
1594			return zspage;
1595		}
1596	}
1597
1598	return zspage;
1599}
1600
1601static struct zspage *isolate_dst_zspage(struct size_class *class)
1602{
1603	struct zspage *zspage;
1604	int fg;
1605
1606	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1607		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1608						  struct zspage, list);
1609		if (zspage) {
1610			remove_zspage(class, zspage);
 
1611			return zspage;
1612		}
1613	}
1614
1615	return zspage;
1616}
1617
1618/*
1619 * putback_zspage - add @zspage into right class's fullness list
1620 * @class: destination class
1621 * @zspage: target page
1622 *
1623 * Return @zspage's fullness status
1624 */
1625static int putback_zspage(struct size_class *class, struct zspage *zspage)
 
1626{
1627	int fullness;
 
 
1628
1629	fullness = get_fullness_group(class, zspage);
1630	insert_zspage(class, zspage, fullness);
 
1631
1632	return fullness;
1633}
1634
1635#ifdef CONFIG_COMPACTION
1636/*
1637 * To prevent zspage destroy during migration, zspage freeing should
1638 * hold locks of all pages in the zspage.
1639 */
1640static void lock_zspage(struct zspage *zspage)
1641{
1642	struct page *curr_page, *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
1644	/*
1645	 * Pages we haven't locked yet can be migrated off the list while we're
1646	 * trying to lock them, so we need to be careful and only attempt to
1647	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1648	 * may no longer belong to the zspage. This means that we may wait for
1649	 * the wrong page to unlock, so we must take a reference to the page
1650	 * prior to waiting for it to unlock outside migrate_read_lock().
1651	 */
1652	while (1) {
1653		migrate_read_lock(zspage);
1654		page = get_first_page(zspage);
1655		if (trylock_page(page))
1656			break;
1657		get_page(page);
1658		migrate_read_unlock(zspage);
1659		wait_on_page_locked(page);
1660		put_page(page);
1661	}
1662
1663	curr_page = page;
1664	while ((page = get_next_page(curr_page))) {
1665		if (trylock_page(page)) {
1666			curr_page = page;
1667		} else {
1668			get_page(page);
1669			migrate_read_unlock(zspage);
1670			wait_on_page_locked(page);
1671			put_page(page);
1672			migrate_read_lock(zspage);
1673		}
1674	}
1675	migrate_read_unlock(zspage);
1676}
1677#endif /* CONFIG_COMPACTION */
1678
1679static void migrate_lock_init(struct zspage *zspage)
1680{
1681	rwlock_init(&zspage->lock);
1682}
1683
1684static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1685{
1686	read_lock(&zspage->lock);
1687}
1688
1689static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1690{
1691	read_unlock(&zspage->lock);
1692}
1693
1694static void migrate_write_lock(struct zspage *zspage)
1695{
1696	write_lock(&zspage->lock);
1697}
1698
1699static void migrate_write_unlock(struct zspage *zspage)
1700{
1701	write_unlock(&zspage->lock);
1702}
1703
1704#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
1706static const struct movable_operations zsmalloc_mops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1707
1708static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1709				struct page *newpage, struct page *oldpage)
1710{
1711	struct page *page;
1712	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1713	int idx = 0;
1714
1715	page = get_first_page(zspage);
1716	do {
1717		if (page == oldpage)
1718			pages[idx] = newpage;
1719		else
1720			pages[idx] = page;
1721		idx++;
1722	} while ((page = get_next_page(page)) != NULL);
1723
1724	create_page_chain(class, zspage, pages);
1725	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1726	if (unlikely(ZsHugePage(zspage)))
1727		newpage->index = oldpage->index;
1728	__SetPageMovable(newpage, &zsmalloc_mops);
1729}
1730
1731static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1732{
 
 
 
 
 
 
 
1733	/*
1734	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1735	 * lock_zspage in free_zspage.
1736	 */
 
1737	VM_BUG_ON_PAGE(PageIsolated(page), page);
1738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739	return true;
1740}
1741
1742static int zs_page_migrate(struct page *newpage, struct page *page,
1743		enum migrate_mode mode)
1744{
1745	struct zs_pool *pool;
1746	struct size_class *class;
 
 
1747	struct zspage *zspage;
1748	struct page *dummy;
1749	void *s_addr, *d_addr, *addr;
1750	unsigned int offset;
1751	unsigned long handle;
1752	unsigned long old_obj, new_obj;
1753	unsigned int obj_idx;
 
1754
1755	/*
1756	 * We cannot support the _NO_COPY case here, because copy needs to
1757	 * happen under the zs lock, which does not work with
1758	 * MIGRATE_SYNC_NO_COPY workflow.
1759	 */
1760	if (mode == MIGRATE_SYNC_NO_COPY)
1761		return -EINVAL;
1762
 
1763	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1764
1765	/* The page is locked, so this pointer must remain valid */
1766	zspage = get_zspage(page);
1767	pool = zspage->pool;
1768
1769	/*
1770	 * The pool's lock protects the race between zpage migration
1771	 * and zs_free.
1772	 */
1773	spin_lock(&pool->lock);
1774	class = zspage_class(pool, zspage);
1775
1776	/* the migrate_write_lock protects zpage access via zs_map_object */
1777	migrate_write_lock(zspage);
 
 
 
 
 
 
1778
1779	offset = get_first_obj_offset(page);
1780	s_addr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
1781
1782	/*
1783	 * Here, any user cannot access all objects in the zspage so let's move.
1784	 */
1785	d_addr = kmap_atomic(newpage);
1786	copy_page(d_addr, s_addr);
1787	kunmap_atomic(d_addr);
1788
1789	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1790					addr += class->size) {
1791		if (obj_allocated(page, addr, &handle)) {
 
 
 
1792
1793			old_obj = handle_to_obj(handle);
1794			obj_to_location(old_obj, &dummy, &obj_idx);
1795			new_obj = (unsigned long)location_to_obj(newpage,
1796								obj_idx);
 
1797			record_obj(handle, new_obj);
1798		}
1799	}
1800	kunmap_atomic(s_addr);
1801
1802	replace_sub_page(class, zspage, newpage, page);
 
 
 
 
1803	/*
1804	 * Since we complete the data copy and set up new zspage structure,
1805	 * it's okay to release the pool's lock.
1806	 */
1807	spin_unlock(&pool->lock);
1808	migrate_write_unlock(zspage);
 
 
 
 
 
 
 
 
1809
1810	get_page(newpage);
1811	if (page_zone(newpage) != page_zone(page)) {
1812		dec_zone_page_state(page, NR_ZSPAGES);
1813		inc_zone_page_state(newpage, NR_ZSPAGES);
1814	}
1815
1816	reset_page(page);
1817	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819	return MIGRATEPAGE_SUCCESS;
1820}
1821
1822static void zs_page_putback(struct page *page)
1823{
 
 
 
 
 
 
 
 
1824	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1825}
1826
1827static const struct movable_operations zsmalloc_mops = {
1828	.isolate_page = zs_page_isolate,
1829	.migrate_page = zs_page_migrate,
1830	.putback_page = zs_page_putback,
1831};
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833/*
1834 * Caller should hold page_lock of all pages in the zspage
1835 * In here, we cannot use zspage meta data.
1836 */
1837static void async_free_zspage(struct work_struct *work)
1838{
1839	int i;
1840	struct size_class *class;
 
 
1841	struct zspage *zspage, *tmp;
1842	LIST_HEAD(free_pages);
1843	struct zs_pool *pool = container_of(work, struct zs_pool,
1844					free_work);
1845
1846	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1847		class = pool->size_class[i];
1848		if (class->index != i)
1849			continue;
1850
1851		spin_lock(&pool->lock);
1852		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1853				 &free_pages);
1854		spin_unlock(&pool->lock);
1855	}
1856
 
1857	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1858		list_del(&zspage->list);
1859		lock_zspage(zspage);
1860
1861		spin_lock(&pool->lock);
1862		class = zspage_class(pool, zspage);
 
 
1863		__free_zspage(pool, class, zspage);
1864		spin_unlock(&pool->lock);
1865	}
1866};
1867
1868static void kick_deferred_free(struct zs_pool *pool)
1869{
1870	schedule_work(&pool->free_work);
1871}
1872
1873static void zs_flush_migration(struct zs_pool *pool)
1874{
1875	flush_work(&pool->free_work);
1876}
1877
1878static void init_deferred_free(struct zs_pool *pool)
1879{
1880	INIT_WORK(&pool->free_work, async_free_zspage);
1881}
1882
1883static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1884{
1885	struct page *page = get_first_page(zspage);
1886
1887	do {
1888		WARN_ON(!trylock_page(page));
1889		__SetPageMovable(page, &zsmalloc_mops);
1890		unlock_page(page);
1891	} while ((page = get_next_page(page)) != NULL);
1892}
1893#else
1894static inline void zs_flush_migration(struct zs_pool *pool) { }
1895#endif
1896
1897/*
1898 *
1899 * Based on the number of unused allocated objects calculate
1900 * and return the number of pages that we can free.
1901 */
1902static unsigned long zs_can_compact(struct size_class *class)
1903{
1904	unsigned long obj_wasted;
1905	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
1906	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1907
1908	if (obj_allocated <= obj_used)
1909		return 0;
1910
1911	obj_wasted = obj_allocated - obj_used;
1912	obj_wasted /= class->objs_per_zspage;
1913
1914	return obj_wasted * class->pages_per_zspage;
1915}
1916
1917static unsigned long __zs_compact(struct zs_pool *pool,
1918				  struct size_class *class)
1919{
1920	struct zspage *src_zspage = NULL;
 
1921	struct zspage *dst_zspage = NULL;
1922	unsigned long pages_freed = 0;
1923
1924	/*
1925	 * protect the race between zpage migration and zs_free
1926	 * as well as zpage allocation/free
1927	 */
1928	spin_lock(&pool->lock);
1929	while (zs_can_compact(class)) {
1930		int fg;
 
1931
1932		if (!dst_zspage) {
1933			dst_zspage = isolate_dst_zspage(class);
1934			if (!dst_zspage)
 
 
 
 
1935				break;
 
 
1936		}
1937
1938		src_zspage = isolate_src_zspage(class);
1939		if (!src_zspage)
1940			break;
1941
1942		migrate_write_lock(src_zspage);
1943		migrate_zspage(pool, src_zspage, dst_zspage);
1944		migrate_write_unlock(src_zspage);
1945
1946		fg = putback_zspage(class, src_zspage);
1947		if (fg == ZS_INUSE_RATIO_0) {
1948			free_zspage(pool, class, src_zspage);
1949			pages_freed += class->pages_per_zspage;
1950		}
1951		src_zspage = NULL;
1952
1953		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1954		    || spin_is_contended(&pool->lock)) {
1955			putback_zspage(class, dst_zspage);
1956			dst_zspage = NULL;
1957
1958			spin_unlock(&pool->lock);
1959			cond_resched();
1960			spin_lock(&pool->lock);
1961		}
1962	}
1963
1964	if (src_zspage)
1965		putback_zspage(class, src_zspage);
1966
1967	if (dst_zspage)
1968		putback_zspage(class, dst_zspage);
1969
1970	spin_unlock(&pool->lock);
1971
1972	return pages_freed;
1973}
1974
1975unsigned long zs_compact(struct zs_pool *pool)
1976{
1977	int i;
1978	struct size_class *class;
1979	unsigned long pages_freed = 0;
1980
1981	/*
1982	 * Pool compaction is performed under pool->lock so it is basically
1983	 * single-threaded. Having more than one thread in __zs_compact()
1984	 * will increase pool->lock contention, which will impact other
1985	 * zsmalloc operations that need pool->lock.
1986	 */
1987	if (atomic_xchg(&pool->compaction_in_progress, 1))
1988		return 0;
1989
1990	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
1991		class = pool->size_class[i];
 
 
1992		if (class->index != i)
1993			continue;
1994		pages_freed += __zs_compact(pool, class);
1995	}
1996	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
1997	atomic_set(&pool->compaction_in_progress, 0);
1998
1999	return pages_freed;
2000}
2001EXPORT_SYMBOL_GPL(zs_compact);
2002
2003void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2004{
2005	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2006}
2007EXPORT_SYMBOL_GPL(zs_pool_stats);
2008
2009static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2010		struct shrink_control *sc)
2011{
2012	unsigned long pages_freed;
2013	struct zs_pool *pool = shrinker->private_data;
 
2014
2015	/*
2016	 * Compact classes and calculate compaction delta.
2017	 * Can run concurrently with a manually triggered
2018	 * (by user) compaction.
2019	 */
2020	pages_freed = zs_compact(pool);
2021
2022	return pages_freed ? pages_freed : SHRINK_STOP;
2023}
2024
2025static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2026		struct shrink_control *sc)
2027{
2028	int i;
2029	struct size_class *class;
2030	unsigned long pages_to_free = 0;
2031	struct zs_pool *pool = shrinker->private_data;
 
2032
2033	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2034		class = pool->size_class[i];
 
 
2035		if (class->index != i)
2036			continue;
2037
2038		pages_to_free += zs_can_compact(class);
2039	}
2040
2041	return pages_to_free;
2042}
2043
2044static void zs_unregister_shrinker(struct zs_pool *pool)
2045{
2046	shrinker_free(pool->shrinker);
2047}
2048
2049static int zs_register_shrinker(struct zs_pool *pool)
2050{
2051	pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2052	if (!pool->shrinker)
2053		return -ENOMEM;
2054
2055	pool->shrinker->scan_objects = zs_shrinker_scan;
2056	pool->shrinker->count_objects = zs_shrinker_count;
2057	pool->shrinker->batch = 0;
2058	pool->shrinker->private_data = pool;
2059
2060	shrinker_register(pool->shrinker);
2061
2062	return 0;
2063}
2064
2065static int calculate_zspage_chain_size(int class_size)
2066{
2067	int i, min_waste = INT_MAX;
2068	int chain_size = 1;
2069
2070	if (is_power_of_2(class_size))
2071		return chain_size;
2072
2073	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2074		int waste;
2075
2076		waste = (i * PAGE_SIZE) % class_size;
2077		if (waste < min_waste) {
2078			min_waste = waste;
2079			chain_size = i;
2080		}
2081	}
2082
2083	return chain_size;
2084}
2085
2086/**
2087 * zs_create_pool - Creates an allocation pool to work from.
2088 * @name: pool name to be created
2089 *
2090 * This function must be called before anything when using
2091 * the zsmalloc allocator.
2092 *
2093 * On success, a pointer to the newly created pool is returned,
2094 * otherwise NULL.
2095 */
2096struct zs_pool *zs_create_pool(const char *name)
2097{
2098	int i;
2099	struct zs_pool *pool;
2100	struct size_class *prev_class = NULL;
2101
2102	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2103	if (!pool)
2104		return NULL;
2105
2106	init_deferred_free(pool);
2107	spin_lock_init(&pool->lock);
2108	atomic_set(&pool->compaction_in_progress, 0);
2109
2110	pool->name = kstrdup(name, GFP_KERNEL);
2111	if (!pool->name)
2112		goto err;
2113
 
 
 
 
2114	if (create_cache(pool))
2115		goto err;
2116
2117	/*
2118	 * Iterate reversely, because, size of size_class that we want to use
2119	 * for merging should be larger or equal to current size.
2120	 */
2121	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2122		int size;
2123		int pages_per_zspage;
2124		int objs_per_zspage;
2125		struct size_class *class;
2126		int fullness;
2127
2128		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2129		if (size > ZS_MAX_ALLOC_SIZE)
2130			size = ZS_MAX_ALLOC_SIZE;
2131		pages_per_zspage = calculate_zspage_chain_size(size);
2132		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2133
2134		/*
2135		 * We iterate from biggest down to smallest classes,
2136		 * so huge_class_size holds the size of the first huge
2137		 * class. Any object bigger than or equal to that will
2138		 * endup in the huge class.
2139		 */
2140		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2141				!huge_class_size) {
2142			huge_class_size = size;
2143			/*
2144			 * The object uses ZS_HANDLE_SIZE bytes to store the
2145			 * handle. We need to subtract it, because zs_malloc()
2146			 * unconditionally adds handle size before it performs
2147			 * size class search - so object may be smaller than
2148			 * huge class size, yet it still can end up in the huge
2149			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2150			 * right before class lookup.
2151			 */
2152			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2153		}
2154
2155		/*
2156		 * size_class is used for normal zsmalloc operation such
2157		 * as alloc/free for that size. Although it is natural that we
2158		 * have one size_class for each size, there is a chance that we
2159		 * can get more memory utilization if we use one size_class for
2160		 * many different sizes whose size_class have same
2161		 * characteristics. So, we makes size_class point to
2162		 * previous size_class if possible.
2163		 */
2164		if (prev_class) {
2165			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2166				pool->size_class[i] = prev_class;
2167				continue;
2168			}
2169		}
2170
2171		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2172		if (!class)
2173			goto err;
2174
2175		class->size = size;
2176		class->index = i;
2177		class->pages_per_zspage = pages_per_zspage;
2178		class->objs_per_zspage = objs_per_zspage;
 
2179		pool->size_class[i] = class;
2180
2181		fullness = ZS_INUSE_RATIO_0;
2182		while (fullness < NR_FULLNESS_GROUPS) {
2183			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2184			fullness++;
2185		}
2186
2187		prev_class = class;
2188	}
2189
2190	/* debug only, don't abort if it fails */
2191	zs_pool_stat_create(pool, name);
2192
 
 
 
2193	/*
2194	 * Not critical since shrinker is only used to trigger internal
2195	 * defragmentation of the pool which is pretty optional thing.  If
2196	 * registration fails we still can use the pool normally and user can
2197	 * trigger compaction manually. Thus, ignore return code.
2198	 */
2199	zs_register_shrinker(pool);
2200
2201	return pool;
2202
2203err:
2204	zs_destroy_pool(pool);
2205	return NULL;
2206}
2207EXPORT_SYMBOL_GPL(zs_create_pool);
2208
2209void zs_destroy_pool(struct zs_pool *pool)
2210{
2211	int i;
2212
2213	zs_unregister_shrinker(pool);
2214	zs_flush_migration(pool);
2215	zs_pool_stat_destroy(pool);
2216
2217	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2218		int fg;
2219		struct size_class *class = pool->size_class[i];
2220
2221		if (!class)
2222			continue;
2223
2224		if (class->index != i)
2225			continue;
2226
2227		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2228			if (list_empty(&class->fullness_list[fg]))
2229				continue;
2230
2231			pr_err("Class-%d fullness group %d is not empty\n",
2232			       class->size, fg);
2233		}
2234		kfree(class);
2235	}
2236
2237	destroy_cache(pool);
2238	kfree(pool->name);
2239	kfree(pool);
2240}
2241EXPORT_SYMBOL_GPL(zs_destroy_pool);
2242
2243static int __init zs_init(void)
2244{
2245	int ret;
2246
 
 
 
 
2247	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2248				zs_cpu_prepare, zs_cpu_dead);
2249	if (ret)
2250		goto out;
2251
2252#ifdef CONFIG_ZPOOL
2253	zpool_register_driver(&zs_zpool_driver);
2254#endif
2255
2256	zs_stat_init();
2257
2258	return 0;
2259
 
 
2260out:
2261	return ret;
2262}
2263
2264static void __exit zs_exit(void)
2265{
2266#ifdef CONFIG_ZPOOL
2267	zpool_unregister_driver(&zs_zpool_driver);
2268#endif
 
2269	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2270
2271	zs_stat_exit();
2272}
2273
2274module_init(zs_init);
2275module_exit(zs_exit);
2276
2277MODULE_LICENSE("Dual BSD/GPL");
2278MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");