Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/swap_state.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *  Swap reorganised 29.12.95, Stephen Tweedie
  7 *
  8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  9 */
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/init.h>
 16#include <linux/pagemap.h>
 
 17#include <linux/backing-dev.h>
 18#include <linux/blkdev.h>
 19#include <linux/pagevec.h>
 20#include <linux/migrate.h>
 21#include <linux/vmalloc.h>
 22#include <linux/swap_slots.h>
 23#include <linux/huge_mm.h>
 24#include <linux/shmem_fs.h>
 25#include "internal.h"
 
 26
 27/*
 28 * swapper_space is a fiction, retained to simplify the path through
 29 * vmscan's shrink_page_list.
 30 */
 31static const struct address_space_operations swap_aops = {
 32	.writepage	= swap_writepage,
 33	.set_page_dirty	= swap_set_page_dirty,
 34#ifdef CONFIG_MIGRATION
 35	.migratepage	= migrate_page,
 36#endif
 37};
 38
 39struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 40static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 41static bool enable_vma_readahead __read_mostly = true;
 42
 43#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 44#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 45#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 46#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 47
 48#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 49#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 50#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 51
 52#define SWAP_RA_VAL(addr, win, hits)				\
 53	(((addr) & PAGE_MASK) |					\
 54	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 55	 ((hits) & SWAP_RA_HITS_MASK))
 56
 57/* Initial readahead hits is 4 to start up with a small window */
 58#define GET_SWAP_RA_VAL(vma)					\
 59	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 60
 61#define INC_CACHE_INFO(x)	data_race(swap_cache_info.x++)
 62#define ADD_CACHE_INFO(x, nr)	data_race(swap_cache_info.x += (nr))
 63
 64static struct {
 65	unsigned long add_total;
 66	unsigned long del_total;
 67	unsigned long find_success;
 68	unsigned long find_total;
 69} swap_cache_info;
 70
 71static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 72
 73void show_swap_cache_info(void)
 74{
 75	printk("%lu pages in swap cache\n", total_swapcache_pages());
 76	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
 77		swap_cache_info.add_total, swap_cache_info.del_total,
 78		swap_cache_info.find_success, swap_cache_info.find_total);
 79	printk("Free swap  = %ldkB\n",
 80		get_nr_swap_pages() << (PAGE_SHIFT - 10));
 81	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
 82}
 83
 84void *get_shadow_from_swap_cache(swp_entry_t entry)
 85{
 86	struct address_space *address_space = swap_address_space(entry);
 87	pgoff_t idx = swp_offset(entry);
 88	struct page *page;
 89
 90	page = xa_load(&address_space->i_pages, idx);
 91	if (xa_is_value(page))
 92		return page;
 93	return NULL;
 94}
 95
 96/*
 97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 98 * but sets SwapCache flag and private instead of mapping and index.
 99 */
100int add_to_swap_cache(struct page *page, swp_entry_t entry,
101			gfp_t gfp, void **shadowp)
102{
103	struct address_space *address_space = swap_address_space(entry);
104	pgoff_t idx = swp_offset(entry);
105	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106	unsigned long i, nr = thp_nr_pages(page);
107	void *old;
108
109	VM_BUG_ON_PAGE(!PageLocked(page), page);
110	VM_BUG_ON_PAGE(PageSwapCache(page), page);
111	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112
113	page_ref_add(page, nr);
114	SetPageSwapCache(page);
 
 
 
 
 
115
116	do {
117		xas_lock_irq(&xas);
118		xas_create_range(&xas);
119		if (xas_error(&xas))
120			goto unlock;
121		for (i = 0; i < nr; i++) {
122			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
123			old = xas_load(&xas);
124			if (xa_is_value(old)) {
125				if (shadowp)
126					*shadowp = old;
127			}
128			set_page_private(page + i, entry.val + i);
129			xas_store(&xas, page);
130			xas_next(&xas);
131		}
132		address_space->nrpages += nr;
133		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
134		__mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
135		ADD_CACHE_INFO(add_total, nr);
136unlock:
137		xas_unlock_irq(&xas);
138	} while (xas_nomem(&xas, gfp));
139
140	if (!xas_error(&xas))
141		return 0;
142
143	ClearPageSwapCache(page);
144	page_ref_sub(page, nr);
145	return xas_error(&xas);
146}
147
148/*
149 * This must be called only on pages that have
150 * been verified to be in the swap cache.
151 */
152void __delete_from_swap_cache(struct page *page,
153			swp_entry_t entry, void *shadow)
154{
155	struct address_space *address_space = swap_address_space(entry);
156	int i, nr = thp_nr_pages(page);
 
157	pgoff_t idx = swp_offset(entry);
158	XA_STATE(xas, &address_space->i_pages, idx);
159
160	VM_BUG_ON_PAGE(!PageLocked(page), page);
161	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
162	VM_BUG_ON_PAGE(PageWriteback(page), page);
 
 
163
164	for (i = 0; i < nr; i++) {
165		void *entry = xas_store(&xas, shadow);
166		VM_BUG_ON_PAGE(entry != page, entry);
167		set_page_private(page + i, 0);
168		xas_next(&xas);
169	}
170	ClearPageSwapCache(page);
 
171	address_space->nrpages -= nr;
172	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
173	__mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
174	ADD_CACHE_INFO(del_total, nr);
175}
176
177/**
178 * add_to_swap - allocate swap space for a page
179 * @page: page we want to move to swap
 
 
 
180 *
181 * Allocate swap space for the page and add the page to the
182 * swap cache.  Caller needs to hold the page lock. 
183 */
184int add_to_swap(struct page *page)
185{
186	swp_entry_t entry;
187	int err;
188
189	VM_BUG_ON_PAGE(!PageLocked(page), page);
190	VM_BUG_ON_PAGE(!PageUptodate(page), page);
191
192	entry = get_swap_page(page);
193	if (!entry.val)
194		return 0;
195
196	/*
197	 * XArray node allocations from PF_MEMALLOC contexts could
198	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199	 * stops emergency reserves from being allocated.
200	 *
201	 * TODO: this could cause a theoretical memory reclaim
202	 * deadlock in the swap out path.
203	 */
204	/*
205	 * Add it to the swap cache.
206	 */
207	err = add_to_swap_cache(page, entry,
208			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
209	if (err)
210		/*
211		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
212		 * clear SWAP_HAS_CACHE flag.
213		 */
214		goto fail;
215	/*
216	 * Normally the page will be dirtied in unmap because its pte should be
217	 * dirty. A special case is MADV_FREE page. The page's pte could have
218	 * dirty bit cleared but the page's SwapBacked bit is still set because
219	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
220	 * such page, unmap will not set dirty bit for it, so page reclaim will
221	 * not write the page out. This can cause data corruption when the page
222	 * is swap in later. Always setting the dirty bit for the page solves
223	 * the problem.
 
224	 */
225	set_page_dirty(page);
226
227	return 1;
228
229fail:
230	put_swap_page(page, entry);
231	return 0;
232}
233
234/*
235 * This must be called only on pages that have
236 * been verified to be in the swap cache and locked.
237 * It will never put the page into the free list,
238 * the caller has a reference on the page.
239 */
240void delete_from_swap_cache(struct page *page)
241{
242	swp_entry_t entry = { .val = page_private(page) };
243	struct address_space *address_space = swap_address_space(entry);
244
245	xa_lock_irq(&address_space->i_pages);
246	__delete_from_swap_cache(page, entry, NULL);
247	xa_unlock_irq(&address_space->i_pages);
248
249	put_swap_page(page, entry);
250	page_ref_sub(page, thp_nr_pages(page));
251}
252
253void clear_shadow_from_swap_cache(int type, unsigned long begin,
254				unsigned long end)
255{
256	unsigned long curr = begin;
257	void *old;
258
259	for (;;) {
260		swp_entry_t entry = swp_entry(type, curr);
261		struct address_space *address_space = swap_address_space(entry);
262		XA_STATE(xas, &address_space->i_pages, curr);
263
 
 
264		xa_lock_irq(&address_space->i_pages);
265		xas_for_each(&xas, old, end) {
266			if (!xa_is_value(old))
267				continue;
268			xas_store(&xas, NULL);
269		}
270		xa_unlock_irq(&address_space->i_pages);
271
272		/* search the next swapcache until we meet end */
273		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
274		curr++;
275		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
276		if (curr > end)
277			break;
278	}
279}
280
281/* 
282 * If we are the only user, then try to free up the swap cache. 
283 * 
284 * Its ok to check for PageSwapCache without the page lock
285 * here because we are going to recheck again inside
286 * try_to_free_swap() _with_ the lock.
287 * 					- Marcelo
288 */
289void free_swap_cache(struct page *page)
290{
291	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
292		try_to_free_swap(page);
293		unlock_page(page);
 
294	}
295}
296
297/* 
298 * Perform a free_page(), also freeing any swap cache associated with
299 * this page if it is the last user of the page.
300 */
301void free_page_and_swap_cache(struct page *page)
302{
303	free_swap_cache(page);
 
 
304	if (!is_huge_zero_page(page))
305		put_page(page);
306}
307
308/*
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them.  They are removed from the LRU and freed if this is their last use.
311 */
312void free_pages_and_swap_cache(struct page **pages, int nr)
313{
314	struct page **pagep = pages;
315	int i;
316
317	lru_add_drain();
318	for (i = 0; i < nr; i++)
319		free_swap_cache(pagep[i]);
320	release_pages(pagep, nr);
 
 
 
 
 
 
 
 
 
 
 
 
321}
322
323static inline bool swap_use_vma_readahead(void)
324{
325	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
326}
327
328/*
329 * Lookup a swap entry in the swap cache. A found page will be returned
330 * unlocked and with its refcount incremented - we rely on the kernel
331 * lock getting page table operations atomic even if we drop the page
332 * lock before returning.
 
 
333 */
334struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
335			       unsigned long addr)
336{
337	struct page *page;
338	struct swap_info_struct *si;
339
340	si = get_swap_device(entry);
341	if (!si)
342		return NULL;
343	page = find_get_page(swap_address_space(entry), swp_offset(entry));
344	put_swap_device(si);
345
346	INC_CACHE_INFO(find_total);
347	if (page) {
348		bool vma_ra = swap_use_vma_readahead();
349		bool readahead;
350
351		INC_CACHE_INFO(find_success);
352		/*
353		 * At the moment, we don't support PG_readahead for anon THP
354		 * so let's bail out rather than confusing the readahead stat.
355		 */
356		if (unlikely(PageTransCompound(page)))
357			return page;
358
359		readahead = TestClearPageReadahead(page);
360		if (vma && vma_ra) {
361			unsigned long ra_val;
362			int win, hits;
363
364			ra_val = GET_SWAP_RA_VAL(vma);
365			win = SWAP_RA_WIN(ra_val);
366			hits = SWAP_RA_HITS(ra_val);
367			if (readahead)
368				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
369			atomic_long_set(&vma->swap_readahead_info,
370					SWAP_RA_VAL(addr, win, hits));
371		}
372
373		if (readahead) {
374			count_vm_event(SWAP_RA_HIT);
375			if (!vma || !vma_ra)
376				atomic_inc(&swapin_readahead_hits);
377		}
 
 
378	}
379
380	return page;
381}
382
383/**
384 * find_get_incore_page - Find and get a page from the page or swap caches.
385 * @mapping: The address_space to search.
386 * @index: The page cache index.
387 *
388 * This differs from find_get_page() in that it will also look for the
389 * page in the swap cache.
390 *
391 * Return: The found page or %NULL.
392 */
393struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
 
394{
395	swp_entry_t swp;
396	struct swap_info_struct *si;
397	struct page *page = pagecache_get_page(mapping, index,
398						FGP_ENTRY | FGP_HEAD, 0);
399
400	if (!page)
401		return page;
402	if (!xa_is_value(page))
403		return find_subpage(page, index);
404	if (!shmem_mapping(mapping))
405		return NULL;
406
407	swp = radix_to_swp_entry(page);
 
 
 
408	/* Prevent swapoff from happening to us */
409	si = get_swap_device(swp);
410	if (!si)
411		return NULL;
412	page = find_get_page(swap_address_space(swp), swp_offset(swp));
 
413	put_swap_device(si);
414	return page;
415}
416
417struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
418			struct vm_area_struct *vma, unsigned long addr,
419			bool *new_page_allocated)
420{
421	struct swap_info_struct *si;
422	struct page *page;
423	void *shadow = NULL;
424
425	*new_page_allocated = false;
 
 
 
426
427	for (;;) {
428		int err;
429		/*
430		 * First check the swap cache.  Since this is normally
431		 * called after lookup_swap_cache() failed, re-calling
432		 * that would confuse statistics.
433		 */
434		si = get_swap_device(entry);
435		if (!si)
436			return NULL;
437		page = find_get_page(swap_address_space(entry),
438				     swp_offset(entry));
439		put_swap_device(si);
440		if (page)
441			return page;
442
443		/*
444		 * Just skip read ahead for unused swap slot.
445		 * During swap_off when swap_slot_cache is disabled,
446		 * we have to handle the race between putting
447		 * swap entry in swap cache and marking swap slot
448		 * as SWAP_HAS_CACHE.  That's done in later part of code or
449		 * else swap_off will be aborted if we return NULL.
450		 */
451		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
452			return NULL;
453
454		/*
455		 * Get a new page to read into from swap.  Allocate it now,
456		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
457		 * cause any racers to loop around until we add it to cache.
458		 */
459		page = alloc_page_vma(gfp_mask, vma, addr);
460		if (!page)
461			return NULL;
 
462
463		/*
464		 * Swap entry may have been freed since our caller observed it.
465		 */
466		err = swapcache_prepare(entry);
467		if (!err)
468			break;
469
470		put_page(page);
471		if (err != -EEXIST)
472			return NULL;
 
 
 
 
 
 
 
 
 
 
 
473
474		/*
475		 * We might race against __delete_from_swap_cache(), and
476		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
477		 * has not yet been cleared.  Or race against another
478		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
479		 * in swap_map, but not yet added its page to swap cache.
480		 */
481		cond_resched();
482	}
483
484	/*
485	 * The swap entry is ours to swap in. Prepare the new page.
486	 */
487
488	__SetPageLocked(page);
489	__SetPageSwapBacked(page);
490
491	if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
492		goto fail_unlock;
493
494	/* May fail (-ENOMEM) if XArray node allocation failed. */
495	if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
496		goto fail_unlock;
497
498	mem_cgroup_swapin_uncharge_swap(entry);
499
500	if (shadow)
501		workingset_refault(page, shadow);
502
503	/* Caller will initiate read into locked page */
504	lru_cache_add(page);
505	*new_page_allocated = true;
506	return page;
 
 
507
508fail_unlock:
509	put_swap_page(page, entry);
510	unlock_page(page);
511	put_page(page);
 
 
512	return NULL;
513}
514
515/*
516 * Locate a page of swap in physical memory, reserving swap cache space
517 * and reading the disk if it is not already cached.
518 * A failure return means that either the page allocation failed or that
519 * the swap entry is no longer in use.
520 */
521struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
522		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
 
 
 
 
 
523{
524	bool page_was_allocated;
525	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
526			vma, addr, &page_was_allocated);
527
528	if (page_was_allocated)
529		swap_readpage(retpage, do_poll);
530
531	return retpage;
 
 
 
 
 
532}
533
534static unsigned int __swapin_nr_pages(unsigned long prev_offset,
535				      unsigned long offset,
536				      int hits,
537				      int max_pages,
538				      int prev_win)
539{
540	unsigned int pages, last_ra;
541
542	/*
543	 * This heuristic has been found to work well on both sequential and
544	 * random loads, swapping to hard disk or to SSD: please don't ask
545	 * what the "+ 2" means, it just happens to work well, that's all.
546	 */
547	pages = hits + 2;
548	if (pages == 2) {
549		/*
550		 * We can have no readahead hits to judge by: but must not get
551		 * stuck here forever, so check for an adjacent offset instead
552		 * (and don't even bother to check whether swap type is same).
553		 */
554		if (offset != prev_offset + 1 && offset != prev_offset - 1)
555			pages = 1;
556	} else {
557		unsigned int roundup = 4;
558		while (roundup < pages)
559			roundup <<= 1;
560		pages = roundup;
561	}
562
563	if (pages > max_pages)
564		pages = max_pages;
565
566	/* Don't shrink readahead too fast */
567	last_ra = prev_win / 2;
568	if (pages < last_ra)
569		pages = last_ra;
570
571	return pages;
572}
573
574static unsigned long swapin_nr_pages(unsigned long offset)
575{
576	static unsigned long prev_offset;
577	unsigned int hits, pages, max_pages;
578	static atomic_t last_readahead_pages;
579
580	max_pages = 1 << READ_ONCE(page_cluster);
581	if (max_pages <= 1)
582		return 1;
583
584	hits = atomic_xchg(&swapin_readahead_hits, 0);
585	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
586				  max_pages,
587				  atomic_read(&last_readahead_pages));
588	if (!hits)
589		WRITE_ONCE(prev_offset, offset);
590	atomic_set(&last_readahead_pages, pages);
591
592	return pages;
593}
594
595/**
596 * swap_cluster_readahead - swap in pages in hope we need them soon
597 * @entry: swap entry of this memory
598 * @gfp_mask: memory allocation flags
599 * @vmf: fault information
 
600 *
601 * Returns the struct page for entry and addr, after queueing swapin.
602 *
603 * Primitive swap readahead code. We simply read an aligned block of
604 * (1 << page_cluster) entries in the swap area. This method is chosen
605 * because it doesn't cost us any seek time.  We also make sure to queue
606 * the 'original' request together with the readahead ones...
607 *
608 * This has been extended to use the NUMA policies from the mm triggering
609 * the readahead.
610 *
611 * Caller must hold read mmap_lock if vmf->vma is not NULL.
612 */
613struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
614				struct vm_fault *vmf)
615{
616	struct page *page;
617	unsigned long entry_offset = swp_offset(entry);
618	unsigned long offset = entry_offset;
619	unsigned long start_offset, end_offset;
620	unsigned long mask;
621	struct swap_info_struct *si = swp_swap_info(entry);
622	struct blk_plug plug;
623	bool do_poll = true, page_allocated;
624	struct vm_area_struct *vma = vmf->vma;
625	unsigned long addr = vmf->address;
626
627	mask = swapin_nr_pages(offset) - 1;
628	if (!mask)
629		goto skip;
630
631	do_poll = false;
632	/* Read a page_cluster sized and aligned cluster around offset. */
633	start_offset = offset & ~mask;
634	end_offset = offset | mask;
635	if (!start_offset)	/* First page is swap header. */
636		start_offset++;
637	if (end_offset >= si->max)
638		end_offset = si->max - 1;
639
640	blk_start_plug(&plug);
641	for (offset = start_offset; offset <= end_offset ; offset++) {
642		/* Ok, do the async read-ahead now */
643		page = __read_swap_cache_async(
644			swp_entry(swp_type(entry), offset),
645			gfp_mask, vma, addr, &page_allocated);
646		if (!page)
647			continue;
648		if (page_allocated) {
649			swap_readpage(page, false);
650			if (offset != entry_offset) {
651				SetPageReadahead(page);
652				count_vm_event(SWAP_RA);
653			}
654		}
655		put_page(page);
656	}
657	blk_finish_plug(&plug);
658
659	lru_add_drain();	/* Push any new pages onto the LRU now */
660skip:
661	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
 
 
 
 
 
 
 
662}
663
664int init_swap_address_space(unsigned int type, unsigned long nr_pages)
665{
666	struct address_space *spaces, *space;
667	unsigned int i, nr;
668
669	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
670	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
671	if (!spaces)
672		return -ENOMEM;
673	for (i = 0; i < nr; i++) {
674		space = spaces + i;
675		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
676		atomic_set(&space->i_mmap_writable, 0);
677		space->a_ops = &swap_aops;
678		/* swap cache doesn't use writeback related tags */
679		mapping_set_no_writeback_tags(space);
680	}
681	nr_swapper_spaces[type] = nr;
682	swapper_spaces[type] = spaces;
683
684	return 0;
685}
686
687void exit_swap_address_space(unsigned int type)
688{
689	int i;
690	struct address_space *spaces = swapper_spaces[type];
691
692	for (i = 0; i < nr_swapper_spaces[type]; i++)
693		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
694	kvfree(spaces);
695	nr_swapper_spaces[type] = 0;
696	swapper_spaces[type] = NULL;
697}
698
699static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
700				     unsigned long faddr,
701				     unsigned long lpfn,
702				     unsigned long rpfn,
703				     unsigned long *start,
704				     unsigned long *end)
705{
706	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
707		      PFN_DOWN(faddr & PMD_MASK));
708	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
709		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
710}
711
712static void swap_ra_info(struct vm_fault *vmf,
713			struct vma_swap_readahead *ra_info)
714{
715	struct vm_area_struct *vma = vmf->vma;
716	unsigned long ra_val;
717	unsigned long faddr, pfn, fpfn;
718	unsigned long start, end;
719	pte_t *pte, *orig_pte;
720	unsigned int max_win, hits, prev_win, win, left;
721#ifndef CONFIG_64BIT
722	pte_t *tpte;
723#endif
724
725	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
726			     SWAP_RA_ORDER_CEILING);
727	if (max_win == 1) {
728		ra_info->win = 1;
729		return;
730	}
731
732	faddr = vmf->address;
733	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
734
735	fpfn = PFN_DOWN(faddr);
736	ra_val = GET_SWAP_RA_VAL(vma);
737	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
738	prev_win = SWAP_RA_WIN(ra_val);
739	hits = SWAP_RA_HITS(ra_val);
740	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
741					       max_win, prev_win);
742	atomic_long_set(&vma->swap_readahead_info,
743			SWAP_RA_VAL(faddr, win, 0));
744
745	if (win == 1) {
746		pte_unmap(orig_pte);
747		return;
748	}
749
750	/* Copy the PTEs because the page table may be unmapped */
751	if (fpfn == pfn + 1)
752		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
753	else if (pfn == fpfn + 1)
754		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
755				  &start, &end);
756	else {
757		left = (win - 1) / 2;
758		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
759				  &start, &end);
 
760	}
 
 
 
 
 
761	ra_info->nr_pte = end - start;
762	ra_info->offset = fpfn - start;
763	pte -= ra_info->offset;
764#ifdef CONFIG_64BIT
765	ra_info->ptes = pte;
766#else
767	tpte = ra_info->ptes;
768	for (pfn = start; pfn != end; pfn++)
769		*tpte++ = *pte++;
770#endif
771	pte_unmap(orig_pte);
772}
773
774/**
775 * swap_vma_readahead - swap in pages in hope we need them soon
776 * @fentry: swap entry of this memory
777 * @gfp_mask: memory allocation flags
 
 
778 * @vmf: fault information
779 *
780 * Returns the struct page for entry and addr, after queueing swapin.
781 *
782 * Primitive swap readahead code. We simply read in a few pages whose
783 * virtual addresses are around the fault address in the same vma.
784 *
785 * Caller must hold read mmap_lock if vmf->vma is not NULL.
786 *
787 */
788static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
789				       struct vm_fault *vmf)
790{
791	struct blk_plug plug;
792	struct vm_area_struct *vma = vmf->vma;
793	struct page *page;
794	pte_t *pte, pentry;
 
795	swp_entry_t entry;
 
796	unsigned int i;
797	bool page_allocated;
798	struct vma_swap_readahead ra_info = {
799		.win = 1,
800	};
801
802	swap_ra_info(vmf, &ra_info);
803	if (ra_info.win == 1)
804		goto skip;
805
 
 
 
806	blk_start_plug(&plug);
807	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
808	     i++, pte++) {
809		pentry = *pte;
810		if (pte_none(pentry))
811			continue;
812		if (pte_present(pentry))
 
 
813			continue;
814		entry = pte_to_swp_entry(pentry);
815		if (unlikely(non_swap_entry(entry)))
816			continue;
817		page = __read_swap_cache_async(entry, gfp_mask, vma,
818					       vmf->address, &page_allocated);
819		if (!page)
 
 
820			continue;
821		if (page_allocated) {
822			swap_readpage(page, false);
823			if (i != ra_info.offset) {
824				SetPageReadahead(page);
825				count_vm_event(SWAP_RA);
826			}
827		}
828		put_page(page);
829	}
 
 
830	blk_finish_plug(&plug);
 
831	lru_add_drain();
832skip:
833	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
834				     ra_info.win == 1);
 
 
 
 
 
 
835}
836
837/**
838 * swapin_readahead - swap in pages in hope we need them soon
839 * @entry: swap entry of this memory
840 * @gfp_mask: memory allocation flags
841 * @vmf: fault information
842 *
843 * Returns the struct page for entry and addr, after queueing swapin.
844 *
845 * It's a main entry function for swap readahead. By the configuration,
846 * it will read ahead blocks by cluster-based(ie, physical disk based)
847 * or vma-based(ie, virtual address based on faulty address) readahead.
848 */
849struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
850				struct vm_fault *vmf)
851{
852	return swap_use_vma_readahead() ?
853			swap_vma_readahead(entry, gfp_mask, vmf) :
854			swap_cluster_readahead(entry, gfp_mask, vmf);
 
 
 
 
 
 
 
 
 
 
855}
856
857#ifdef CONFIG_SYSFS
858static ssize_t vma_ra_enabled_show(struct kobject *kobj,
859				     struct kobj_attribute *attr, char *buf)
860{
861	return sysfs_emit(buf, "%s\n",
862			  enable_vma_readahead ? "true" : "false");
863}
864static ssize_t vma_ra_enabled_store(struct kobject *kobj,
865				      struct kobj_attribute *attr,
866				      const char *buf, size_t count)
867{
868	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
869		enable_vma_readahead = true;
870	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
871		enable_vma_readahead = false;
872	else
873		return -EINVAL;
874
875	return count;
876}
877static struct kobj_attribute vma_ra_enabled_attr =
878	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
879	       vma_ra_enabled_store);
880
881static struct attribute *swap_attrs[] = {
882	&vma_ra_enabled_attr.attr,
883	NULL,
884};
885
886static const struct attribute_group swap_attr_group = {
887	.attrs = swap_attrs,
888};
889
890static int __init swap_init_sysfs(void)
891{
892	int err;
893	struct kobject *swap_kobj;
894
895	swap_kobj = kobject_create_and_add("swap", mm_kobj);
896	if (!swap_kobj) {
897		pr_err("failed to create swap kobject\n");
898		return -ENOMEM;
899	}
900	err = sysfs_create_group(swap_kobj, &swap_attr_group);
901	if (err) {
902		pr_err("failed to register swap group\n");
903		goto delete_obj;
904	}
905	return 0;
906
907delete_obj:
908	kobject_put(swap_kobj);
909	return err;
910}
911subsys_initcall(swap_init_sysfs);
912#endif
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/swap_state.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *  Swap reorganised 29.12.95, Stephen Tweedie
  7 *
  8 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
  9 */
 10#include <linux/mm.h>
 11#include <linux/gfp.h>
 12#include <linux/kernel_stat.h>
 13#include <linux/mempolicy.h>
 14#include <linux/swap.h>
 15#include <linux/swapops.h>
 16#include <linux/init.h>
 17#include <linux/pagemap.h>
 18#include <linux/pagevec.h>
 19#include <linux/backing-dev.h>
 20#include <linux/blkdev.h>
 
 21#include <linux/migrate.h>
 22#include <linux/vmalloc.h>
 23#include <linux/swap_slots.h>
 24#include <linux/huge_mm.h>
 25#include <linux/shmem_fs.h>
 26#include "internal.h"
 27#include "swap.h"
 28
 29/*
 30 * swapper_space is a fiction, retained to simplify the path through
 31 * vmscan's shrink_page_list.
 32 */
 33static const struct address_space_operations swap_aops = {
 34	.writepage	= swap_writepage,
 35	.dirty_folio	= noop_dirty_folio,
 36#ifdef CONFIG_MIGRATION
 37	.migrate_folio	= migrate_folio,
 38#endif
 39};
 40
 41struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
 42static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
 43static bool enable_vma_readahead __read_mostly = true;
 44
 45#define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
 46#define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
 47#define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
 48#define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
 49
 50#define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
 51#define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
 52#define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
 53
 54#define SWAP_RA_VAL(addr, win, hits)				\
 55	(((addr) & PAGE_MASK) |					\
 56	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
 57	 ((hits) & SWAP_RA_HITS_MASK))
 58
 59/* Initial readahead hits is 4 to start up with a small window */
 60#define GET_SWAP_RA_VAL(vma)					\
 61	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
 62
 
 
 
 
 
 
 
 
 
 
 63static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
 64
 65void show_swap_cache_info(void)
 66{
 67	printk("%lu pages in swap cache\n", total_swapcache_pages());
 68	printk("Free swap  = %ldkB\n", K(get_nr_swap_pages()));
 69	printk("Total swap = %lukB\n", K(total_swap_pages));
 
 
 
 
 70}
 71
 72void *get_shadow_from_swap_cache(swp_entry_t entry)
 73{
 74	struct address_space *address_space = swap_address_space(entry);
 75	pgoff_t idx = swp_offset(entry);
 76	struct page *page;
 77
 78	page = xa_load(&address_space->i_pages, idx);
 79	if (xa_is_value(page))
 80		return page;
 81	return NULL;
 82}
 83
 84/*
 85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
 86 * but sets SwapCache flag and private instead of mapping and index.
 87 */
 88int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
 89			gfp_t gfp, void **shadowp)
 90{
 91	struct address_space *address_space = swap_address_space(entry);
 92	pgoff_t idx = swp_offset(entry);
 93	XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
 94	unsigned long i, nr = folio_nr_pages(folio);
 95	void *old;
 96
 97	xas_set_update(&xas, workingset_update_node);
 
 
 98
 99	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100	VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
102
103	folio_ref_add(folio, nr);
104	folio_set_swapcache(folio);
105	folio->swap = entry;
106
107	do {
108		xas_lock_irq(&xas);
109		xas_create_range(&xas);
110		if (xas_error(&xas))
111			goto unlock;
112		for (i = 0; i < nr; i++) {
113			VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
114			if (shadowp) {
115				old = xas_load(&xas);
116				if (xa_is_value(old))
117					*shadowp = old;
118			}
119			xas_store(&xas, folio);
 
120			xas_next(&xas);
121		}
122		address_space->nrpages += nr;
123		__node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124		__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
 
125unlock:
126		xas_unlock_irq(&xas);
127	} while (xas_nomem(&xas, gfp));
128
129	if (!xas_error(&xas))
130		return 0;
131
132	folio_clear_swapcache(folio);
133	folio_ref_sub(folio, nr);
134	return xas_error(&xas);
135}
136
137/*
138 * This must be called only on folios that have
139 * been verified to be in the swap cache.
140 */
141void __delete_from_swap_cache(struct folio *folio,
142			swp_entry_t entry, void *shadow)
143{
144	struct address_space *address_space = swap_address_space(entry);
145	int i;
146	long nr = folio_nr_pages(folio);
147	pgoff_t idx = swp_offset(entry);
148	XA_STATE(xas, &address_space->i_pages, idx);
149
150	xas_set_update(&xas, workingset_update_node);
151
152	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
155
156	for (i = 0; i < nr; i++) {
157		void *entry = xas_store(&xas, shadow);
158		VM_BUG_ON_PAGE(entry != folio, entry);
 
159		xas_next(&xas);
160	}
161	folio->swap.val = 0;
162	folio_clear_swapcache(folio);
163	address_space->nrpages -= nr;
164	__node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165	__lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
 
166}
167
168/**
169 * add_to_swap - allocate swap space for a folio
170 * @folio: folio we want to move to swap
171 *
172 * Allocate swap space for the folio and add the folio to the
173 * swap cache.
174 *
175 * Context: Caller needs to hold the folio lock.
176 * Return: Whether the folio was added to the swap cache.
177 */
178bool add_to_swap(struct folio *folio)
179{
180	swp_entry_t entry;
181	int err;
182
183	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184	VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
185
186	entry = folio_alloc_swap(folio);
187	if (!entry.val)
188		return false;
189
190	/*
191	 * XArray node allocations from PF_MEMALLOC contexts could
192	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193	 * stops emergency reserves from being allocated.
194	 *
195	 * TODO: this could cause a theoretical memory reclaim
196	 * deadlock in the swap out path.
197	 */
198	/*
199	 * Add it to the swap cache.
200	 */
201	err = add_to_swap_cache(folio, entry,
202			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
203	if (err)
204		/*
205		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206		 * clear SWAP_HAS_CACHE flag.
207		 */
208		goto fail;
209	/*
210	 * Normally the folio will be dirtied in unmap because its
211	 * pte should be dirty. A special case is MADV_FREE page. The
212	 * page's pte could have dirty bit cleared but the folio's
213	 * SwapBacked flag is still set because clearing the dirty bit
214	 * and SwapBacked flag has no lock protected. For such folio,
215	 * unmap will not set dirty bit for it, so folio reclaim will
216	 * not write the folio out. This can cause data corruption when
217	 * the folio is swapped in later. Always setting the dirty flag
218	 * for the folio solves the problem.
219	 */
220	folio_mark_dirty(folio);
221
222	return true;
223
224fail:
225	put_swap_folio(folio, entry);
226	return false;
227}
228
229/*
230 * This must be called only on folios that have
231 * been verified to be in the swap cache and locked.
232 * It will never put the folio into the free list,
233 * the caller has a reference on the folio.
234 */
235void delete_from_swap_cache(struct folio *folio)
236{
237	swp_entry_t entry = folio->swap;
238	struct address_space *address_space = swap_address_space(entry);
239
240	xa_lock_irq(&address_space->i_pages);
241	__delete_from_swap_cache(folio, entry, NULL);
242	xa_unlock_irq(&address_space->i_pages);
243
244	put_swap_folio(folio, entry);
245	folio_ref_sub(folio, folio_nr_pages(folio));
246}
247
248void clear_shadow_from_swap_cache(int type, unsigned long begin,
249				unsigned long end)
250{
251	unsigned long curr = begin;
252	void *old;
253
254	for (;;) {
255		swp_entry_t entry = swp_entry(type, curr);
256		struct address_space *address_space = swap_address_space(entry);
257		XA_STATE(xas, &address_space->i_pages, curr);
258
259		xas_set_update(&xas, workingset_update_node);
260
261		xa_lock_irq(&address_space->i_pages);
262		xas_for_each(&xas, old, end) {
263			if (!xa_is_value(old))
264				continue;
265			xas_store(&xas, NULL);
266		}
267		xa_unlock_irq(&address_space->i_pages);
268
269		/* search the next swapcache until we meet end */
270		curr >>= SWAP_ADDRESS_SPACE_SHIFT;
271		curr++;
272		curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273		if (curr > end)
274			break;
275	}
276}
277
278/*
279 * If we are the only user, then try to free up the swap cache.
280 *
281 * Its ok to check the swapcache flag without the folio lock
282 * here because we are going to recheck again inside
283 * folio_free_swap() _with_ the lock.
284 * 					- Marcelo
285 */
286void free_swap_cache(struct folio *folio)
287{
288	if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
289	    folio_trylock(folio)) {
290		folio_free_swap(folio);
291		folio_unlock(folio);
292	}
293}
294
295/*
296 * Perform a free_page(), also freeing any swap cache associated with
297 * this page if it is the last user of the page.
298 */
299void free_page_and_swap_cache(struct page *page)
300{
301	struct folio *folio = page_folio(page);
302
303	free_swap_cache(folio);
304	if (!is_huge_zero_page(page))
305		folio_put(folio);
306}
307
308/*
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them.  They are removed from the LRU and freed if this is their last use.
311 */
312void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
313{
314	struct folio_batch folios;
315	unsigned int refs[PAGEVEC_SIZE];
316
317	lru_add_drain();
318	folio_batch_init(&folios);
319	for (int i = 0; i < nr; i++) {
320		struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
321
322		free_swap_cache(folio);
323		refs[folios.nr] = 1;
324		if (unlikely(encoded_page_flags(pages[i]) &
325			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
326			refs[folios.nr] = encoded_nr_pages(pages[++i]);
327
328		if (folio_batch_add(&folios, folio) == 0)
329			folios_put_refs(&folios, refs);
330	}
331	if (folios.nr)
332		folios_put_refs(&folios, refs);
333}
334
335static inline bool swap_use_vma_readahead(void)
336{
337	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
338}
339
340/*
341 * Lookup a swap entry in the swap cache. A found folio will be returned
342 * unlocked and with its refcount incremented - we rely on the kernel
343 * lock getting page table operations atomic even if we drop the folio
344 * lock before returning.
345 *
346 * Caller must lock the swap device or hold a reference to keep it valid.
347 */
348struct folio *swap_cache_get_folio(swp_entry_t entry,
349		struct vm_area_struct *vma, unsigned long addr)
350{
351	struct folio *folio;
 
352
353	folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
354	if (!IS_ERR(folio)) {
 
 
 
 
 
 
355		bool vma_ra = swap_use_vma_readahead();
356		bool readahead;
357
 
358		/*
359		 * At the moment, we don't support PG_readahead for anon THP
360		 * so let's bail out rather than confusing the readahead stat.
361		 */
362		if (unlikely(folio_test_large(folio)))
363			return folio;
364
365		readahead = folio_test_clear_readahead(folio);
366		if (vma && vma_ra) {
367			unsigned long ra_val;
368			int win, hits;
369
370			ra_val = GET_SWAP_RA_VAL(vma);
371			win = SWAP_RA_WIN(ra_val);
372			hits = SWAP_RA_HITS(ra_val);
373			if (readahead)
374				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
375			atomic_long_set(&vma->swap_readahead_info,
376					SWAP_RA_VAL(addr, win, hits));
377		}
378
379		if (readahead) {
380			count_vm_event(SWAP_RA_HIT);
381			if (!vma || !vma_ra)
382				atomic_inc(&swapin_readahead_hits);
383		}
384	} else {
385		folio = NULL;
386	}
387
388	return folio;
389}
390
391/**
392 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
393 * @mapping: The address_space to search.
394 * @index: The page cache index.
395 *
396 * This differs from filemap_get_folio() in that it will also look for the
397 * folio in the swap cache.
398 *
399 * Return: The found folio or %NULL.
400 */
401struct folio *filemap_get_incore_folio(struct address_space *mapping,
402		pgoff_t index)
403{
404	swp_entry_t swp;
405	struct swap_info_struct *si;
406	struct folio *folio = filemap_get_entry(mapping, index);
 
407
408	if (!folio)
409		return ERR_PTR(-ENOENT);
410	if (!xa_is_value(folio))
411		return folio;
412	if (!shmem_mapping(mapping))
413		return ERR_PTR(-ENOENT);
414
415	swp = radix_to_swp_entry(folio);
416	/* There might be swapin error entries in shmem mapping. */
417	if (non_swap_entry(swp))
418		return ERR_PTR(-ENOENT);
419	/* Prevent swapoff from happening to us */
420	si = get_swap_device(swp);
421	if (!si)
422		return ERR_PTR(-ENOENT);
423	index = swp_offset(swp);
424	folio = filemap_get_folio(swap_address_space(swp), index);
425	put_swap_device(si);
426	return folio;
427}
428
429struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
430		struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
431		bool skip_if_exists)
432{
433	struct swap_info_struct *si;
434	struct folio *folio;
435	void *shadow = NULL;
436
437	*new_page_allocated = false;
438	si = get_swap_device(entry);
439	if (!si)
440		return NULL;
441
442	for (;;) {
443		int err;
444		/*
445		 * First check the swap cache.  Since this is normally
446		 * called after swap_cache_get_folio() failed, re-calling
447		 * that would confuse statistics.
448		 */
449		folio = filemap_get_folio(swap_address_space(entry),
450						swp_offset(entry));
451		if (!IS_ERR(folio))
452			goto got_folio;
 
 
 
 
453
454		/*
455		 * Just skip read ahead for unused swap slot.
456		 * During swap_off when swap_slot_cache is disabled,
457		 * we have to handle the race between putting
458		 * swap entry in swap cache and marking swap slot
459		 * as SWAP_HAS_CACHE.  That's done in later part of code or
460		 * else swap_off will be aborted if we return NULL.
461		 */
462		if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
463			goto fail_put_swap;
464
465		/*
466		 * Get a new folio to read into from swap.  Allocate it now,
467		 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
468		 * cause any racers to loop around until we add it to cache.
469		 */
470		folio = (struct folio *)alloc_pages_mpol(gfp_mask, 0,
471						mpol, ilx, numa_node_id());
472		if (!folio)
473                        goto fail_put_swap;
474
475		/*
476		 * Swap entry may have been freed since our caller observed it.
477		 */
478		err = swapcache_prepare(entry);
479		if (!err)
480			break;
481
482		folio_put(folio);
483		if (err != -EEXIST)
484			goto fail_put_swap;
485
486		/*
487		 * Protect against a recursive call to __read_swap_cache_async()
488		 * on the same entry waiting forever here because SWAP_HAS_CACHE
489		 * is set but the folio is not the swap cache yet. This can
490		 * happen today if mem_cgroup_swapin_charge_folio() below
491		 * triggers reclaim through zswap, which may call
492		 * __read_swap_cache_async() in the writeback path.
493		 */
494		if (skip_if_exists)
495			goto fail_put_swap;
496
497		/*
498		 * We might race against __delete_from_swap_cache(), and
499		 * stumble across a swap_map entry whose SWAP_HAS_CACHE
500		 * has not yet been cleared.  Or race against another
501		 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
502		 * in swap_map, but not yet added its folio to swap cache.
503		 */
504		schedule_timeout_uninterruptible(1);
505	}
506
507	/*
508	 * The swap entry is ours to swap in. Prepare the new folio.
509	 */
510
511	__folio_set_locked(folio);
512	__folio_set_swapbacked(folio);
513
514	if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
515		goto fail_unlock;
516
517	/* May fail (-ENOMEM) if XArray node allocation failed. */
518	if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
519		goto fail_unlock;
520
521	mem_cgroup_swapin_uncharge_swap(entry);
522
523	if (shadow)
524		workingset_refault(folio, shadow);
525
526	/* Caller will initiate read into locked folio */
527	folio_add_lru(folio);
528	*new_page_allocated = true;
529got_folio:
530	put_swap_device(si);
531	return folio;
532
533fail_unlock:
534	put_swap_folio(folio, entry);
535	folio_unlock(folio);
536	folio_put(folio);
537fail_put_swap:
538	put_swap_device(si);
539	return NULL;
540}
541
542/*
543 * Locate a page of swap in physical memory, reserving swap cache space
544 * and reading the disk if it is not already cached.
545 * A failure return means that either the page allocation failed or that
546 * the swap entry is no longer in use.
547 *
548 * get/put_swap_device() aren't needed to call this function, because
549 * __read_swap_cache_async() call them and swap_read_folio() holds the
550 * swap cache folio lock.
551 */
552struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
553		struct vm_area_struct *vma, unsigned long addr,
554		struct swap_iocb **plug)
555{
556	bool page_allocated;
557	struct mempolicy *mpol;
558	pgoff_t ilx;
559	struct folio *folio;
560
561	mpol = get_vma_policy(vma, addr, 0, &ilx);
562	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
563					&page_allocated, false);
564	mpol_cond_put(mpol);
565
566	if (page_allocated)
567		swap_read_folio(folio, false, plug);
568	return folio;
569}
570
571static unsigned int __swapin_nr_pages(unsigned long prev_offset,
572				      unsigned long offset,
573				      int hits,
574				      int max_pages,
575				      int prev_win)
576{
577	unsigned int pages, last_ra;
578
579	/*
580	 * This heuristic has been found to work well on both sequential and
581	 * random loads, swapping to hard disk or to SSD: please don't ask
582	 * what the "+ 2" means, it just happens to work well, that's all.
583	 */
584	pages = hits + 2;
585	if (pages == 2) {
586		/*
587		 * We can have no readahead hits to judge by: but must not get
588		 * stuck here forever, so check for an adjacent offset instead
589		 * (and don't even bother to check whether swap type is same).
590		 */
591		if (offset != prev_offset + 1 && offset != prev_offset - 1)
592			pages = 1;
593	} else {
594		unsigned int roundup = 4;
595		while (roundup < pages)
596			roundup <<= 1;
597		pages = roundup;
598	}
599
600	if (pages > max_pages)
601		pages = max_pages;
602
603	/* Don't shrink readahead too fast */
604	last_ra = prev_win / 2;
605	if (pages < last_ra)
606		pages = last_ra;
607
608	return pages;
609}
610
611static unsigned long swapin_nr_pages(unsigned long offset)
612{
613	static unsigned long prev_offset;
614	unsigned int hits, pages, max_pages;
615	static atomic_t last_readahead_pages;
616
617	max_pages = 1 << READ_ONCE(page_cluster);
618	if (max_pages <= 1)
619		return 1;
620
621	hits = atomic_xchg(&swapin_readahead_hits, 0);
622	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
623				  max_pages,
624				  atomic_read(&last_readahead_pages));
625	if (!hits)
626		WRITE_ONCE(prev_offset, offset);
627	atomic_set(&last_readahead_pages, pages);
628
629	return pages;
630}
631
632/**
633 * swap_cluster_readahead - swap in pages in hope we need them soon
634 * @entry: swap entry of this memory
635 * @gfp_mask: memory allocation flags
636 * @mpol: NUMA memory allocation policy to be applied
637 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
638 *
639 * Returns the struct folio for entry and addr, after queueing swapin.
640 *
641 * Primitive swap readahead code. We simply read an aligned block of
642 * (1 << page_cluster) entries in the swap area. This method is chosen
643 * because it doesn't cost us any seek time.  We also make sure to queue
644 * the 'original' request together with the readahead ones...
645 *
646 * Note: it is intentional that the same NUMA policy and interleave index
647 * are used for every page of the readahead: neighbouring pages on swap
648 * are fairly likely to have been swapped out from the same node.
 
649 */
650struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
651				    struct mempolicy *mpol, pgoff_t ilx)
652{
653	struct folio *folio;
654	unsigned long entry_offset = swp_offset(entry);
655	unsigned long offset = entry_offset;
656	unsigned long start_offset, end_offset;
657	unsigned long mask;
658	struct swap_info_struct *si = swp_swap_info(entry);
659	struct blk_plug plug;
660	struct swap_iocb *splug = NULL;
661	bool page_allocated;
 
662
663	mask = swapin_nr_pages(offset) - 1;
664	if (!mask)
665		goto skip;
666
 
667	/* Read a page_cluster sized and aligned cluster around offset. */
668	start_offset = offset & ~mask;
669	end_offset = offset | mask;
670	if (!start_offset)	/* First page is swap header. */
671		start_offset++;
672	if (end_offset >= si->max)
673		end_offset = si->max - 1;
674
675	blk_start_plug(&plug);
676	for (offset = start_offset; offset <= end_offset ; offset++) {
677		/* Ok, do the async read-ahead now */
678		folio = __read_swap_cache_async(
679				swp_entry(swp_type(entry), offset),
680				gfp_mask, mpol, ilx, &page_allocated, false);
681		if (!folio)
682			continue;
683		if (page_allocated) {
684			swap_read_folio(folio, false, &splug);
685			if (offset != entry_offset) {
686				folio_set_readahead(folio);
687				count_vm_event(SWAP_RA);
688			}
689		}
690		folio_put(folio);
691	}
692	blk_finish_plug(&plug);
693	swap_read_unplug(splug);
694	lru_add_drain();	/* Push any new pages onto the LRU now */
695skip:
696	/* The page was likely read above, so no need for plugging here */
697	folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
698					&page_allocated, false);
699	if (unlikely(page_allocated)) {
700		zswap_folio_swapin(folio);
701		swap_read_folio(folio, false, NULL);
702	}
703	return folio;
704}
705
706int init_swap_address_space(unsigned int type, unsigned long nr_pages)
707{
708	struct address_space *spaces, *space;
709	unsigned int i, nr;
710
711	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
712	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
713	if (!spaces)
714		return -ENOMEM;
715	for (i = 0; i < nr; i++) {
716		space = spaces + i;
717		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
718		atomic_set(&space->i_mmap_writable, 0);
719		space->a_ops = &swap_aops;
720		/* swap cache doesn't use writeback related tags */
721		mapping_set_no_writeback_tags(space);
722	}
723	nr_swapper_spaces[type] = nr;
724	swapper_spaces[type] = spaces;
725
726	return 0;
727}
728
729void exit_swap_address_space(unsigned int type)
730{
731	int i;
732	struct address_space *spaces = swapper_spaces[type];
733
734	for (i = 0; i < nr_swapper_spaces[type]; i++)
735		VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
736	kvfree(spaces);
737	nr_swapper_spaces[type] = 0;
738	swapper_spaces[type] = NULL;
739}
740
741#define SWAP_RA_ORDER_CEILING	5
742
743struct vma_swap_readahead {
744	unsigned short win;
745	unsigned short offset;
746	unsigned short nr_pte;
747};
 
 
 
 
 
748
749static void swap_ra_info(struct vm_fault *vmf,
750			 struct vma_swap_readahead *ra_info)
751{
752	struct vm_area_struct *vma = vmf->vma;
753	unsigned long ra_val;
754	unsigned long faddr, pfn, fpfn, lpfn, rpfn;
755	unsigned long start, end;
756	unsigned int max_win, hits, prev_win, win;
 
 
 
 
757
758	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
759			     SWAP_RA_ORDER_CEILING);
760	if (max_win == 1) {
761		ra_info->win = 1;
762		return;
763	}
764
765	faddr = vmf->address;
 
 
766	fpfn = PFN_DOWN(faddr);
767	ra_val = GET_SWAP_RA_VAL(vma);
768	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
769	prev_win = SWAP_RA_WIN(ra_val);
770	hits = SWAP_RA_HITS(ra_val);
771	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
772					       max_win, prev_win);
773	atomic_long_set(&vma->swap_readahead_info,
774			SWAP_RA_VAL(faddr, win, 0));
775	if (win == 1)
 
 
776		return;
 
777
778	if (fpfn == pfn + 1) {
779		lpfn = fpfn;
780		rpfn = fpfn + win;
781	} else if (pfn == fpfn + 1) {
782		lpfn = fpfn - win + 1;
783		rpfn = fpfn + 1;
784	} else {
785		unsigned int left = (win - 1) / 2;
786
787		lpfn = fpfn - left;
788		rpfn = fpfn + win - left;
789	}
790	start = max3(lpfn, PFN_DOWN(vma->vm_start),
791		     PFN_DOWN(faddr & PMD_MASK));
792	end = min3(rpfn, PFN_DOWN(vma->vm_end),
793		   PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
794
795	ra_info->nr_pte = end - start;
796	ra_info->offset = fpfn - start;
 
 
 
 
 
 
 
 
 
797}
798
799/**
800 * swap_vma_readahead - swap in pages in hope we need them soon
801 * @targ_entry: swap entry of the targeted memory
802 * @gfp_mask: memory allocation flags
803 * @mpol: NUMA memory allocation policy to be applied
804 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
805 * @vmf: fault information
806 *
807 * Returns the struct folio for entry and addr, after queueing swapin.
808 *
809 * Primitive swap readahead code. We simply read in a few pages whose
810 * virtual addresses are around the fault address in the same vma.
811 *
812 * Caller must hold read mmap_lock if vmf->vma is not NULL.
813 *
814 */
815static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
816		struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
817{
818	struct blk_plug plug;
819	struct swap_iocb *splug = NULL;
820	struct folio *folio;
821	pte_t *pte = NULL, pentry;
822	unsigned long addr;
823	swp_entry_t entry;
824	pgoff_t ilx;
825	unsigned int i;
826	bool page_allocated;
827	struct vma_swap_readahead ra_info = {
828		.win = 1,
829	};
830
831	swap_ra_info(vmf, &ra_info);
832	if (ra_info.win == 1)
833		goto skip;
834
835	addr = vmf->address - (ra_info.offset * PAGE_SIZE);
836	ilx = targ_ilx - ra_info.offset;
837
838	blk_start_plug(&plug);
839	for (i = 0; i < ra_info.nr_pte; i++, ilx++, addr += PAGE_SIZE) {
840		if (!pte++) {
841			pte = pte_offset_map(vmf->pmd, addr);
842			if (!pte)
843				break;
844		}
845		pentry = ptep_get_lockless(pte);
846		if (!is_swap_pte(pentry))
847			continue;
848		entry = pte_to_swp_entry(pentry);
849		if (unlikely(non_swap_entry(entry)))
850			continue;
851		pte_unmap(pte);
852		pte = NULL;
853		folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
854						&page_allocated, false);
855		if (!folio)
856			continue;
857		if (page_allocated) {
858			swap_read_folio(folio, false, &splug);
859			if (i != ra_info.offset) {
860				folio_set_readahead(folio);
861				count_vm_event(SWAP_RA);
862			}
863		}
864		folio_put(folio);
865	}
866	if (pte)
867		pte_unmap(pte);
868	blk_finish_plug(&plug);
869	swap_read_unplug(splug);
870	lru_add_drain();
871skip:
872	/* The folio was likely read above, so no need for plugging here */
873	folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
874					&page_allocated, false);
875	if (unlikely(page_allocated)) {
876		zswap_folio_swapin(folio);
877		swap_read_folio(folio, false, NULL);
878	}
879	return folio;
880}
881
882/**
883 * swapin_readahead - swap in pages in hope we need them soon
884 * @entry: swap entry of this memory
885 * @gfp_mask: memory allocation flags
886 * @vmf: fault information
887 *
888 * Returns the struct page for entry and addr, after queueing swapin.
889 *
890 * It's a main entry function for swap readahead. By the configuration,
891 * it will read ahead blocks by cluster-based(ie, physical disk based)
892 * or vma-based(ie, virtual address based on faulty address) readahead.
893 */
894struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
895				struct vm_fault *vmf)
896{
897	struct mempolicy *mpol;
898	pgoff_t ilx;
899	struct folio *folio;
900
901	mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
902	folio = swap_use_vma_readahead() ?
903		swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
904		swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
905	mpol_cond_put(mpol);
906
907	if (!folio)
908		return NULL;
909	return folio_file_page(folio, swp_offset(entry));
910}
911
912#ifdef CONFIG_SYSFS
913static ssize_t vma_ra_enabled_show(struct kobject *kobj,
914				     struct kobj_attribute *attr, char *buf)
915{
916	return sysfs_emit(buf, "%s\n",
917			  enable_vma_readahead ? "true" : "false");
918}
919static ssize_t vma_ra_enabled_store(struct kobject *kobj,
920				      struct kobj_attribute *attr,
921				      const char *buf, size_t count)
922{
923	ssize_t ret;
924
925	ret = kstrtobool(buf, &enable_vma_readahead);
926	if (ret)
927		return ret;
 
928
929	return count;
930}
931static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
 
 
932
933static struct attribute *swap_attrs[] = {
934	&vma_ra_enabled_attr.attr,
935	NULL,
936};
937
938static const struct attribute_group swap_attr_group = {
939	.attrs = swap_attrs,
940};
941
942static int __init swap_init_sysfs(void)
943{
944	int err;
945	struct kobject *swap_kobj;
946
947	swap_kobj = kobject_create_and_add("swap", mm_kobj);
948	if (!swap_kobj) {
949		pr_err("failed to create swap kobject\n");
950		return -ENOMEM;
951	}
952	err = sysfs_create_group(swap_kobj, &swap_attr_group);
953	if (err) {
954		pr_err("failed to register swap group\n");
955		goto delete_obj;
956	}
957	return 0;
958
959delete_obj:
960	kobject_put(swap_kobj);
961	return err;
962}
963subsys_initcall(swap_init_sysfs);
964#endif