Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/secretmem.h>
14
15#include <linux/sched/signal.h>
16#include <linux/rwsem.h>
17#include <linux/hugetlb.h>
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
21
22#include <asm/mmu_context.h>
23#include <asm/tlbflush.h>
24
25#include "internal.h"
26
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
48/* Equivalent to calling put_page() @refs times. */
49static void put_page_refs(struct page *page, int refs)
50{
51#ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54#endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63}
64
65/*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69static inline struct page *try_get_compound_head(struct page *page, int refs)
70{
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
92 return head;
93}
94
95/*
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
99 * "grab" names in this file mean, "look at flags to decide whether to use
100 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
101 *
102 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
103 * same time. (That's true throughout the get_user_pages*() and
104 * pin_user_pages*() APIs.) Cases:
105 *
106 * FOLL_GET: page's refcount will be incremented by 1.
107 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
108 *
109 * Return: head page (with refcount appropriately incremented) for success, or
110 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
111 * considered failure, and furthermore, a likely bug in the caller, so a warning
112 * is also emitted.
113 */
114__maybe_unused struct page *try_grab_compound_head(struct page *page,
115 int refs, unsigned int flags)
116{
117 if (flags & FOLL_GET)
118 return try_get_compound_head(page, refs);
119 else if (flags & FOLL_PIN) {
120 int orig_refs = refs;
121
122 /*
123 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
124 * right zone, so fail and let the caller fall back to the slow
125 * path.
126 */
127 if (unlikely((flags & FOLL_LONGTERM) &&
128 !is_pinnable_page(page)))
129 return NULL;
130
131 /*
132 * CAUTION: Don't use compound_head() on the page before this
133 * point, the result won't be stable.
134 */
135 page = try_get_compound_head(page, refs);
136 if (!page)
137 return NULL;
138
139 /*
140 * When pinning a compound page of order > 1 (which is what
141 * hpage_pincount_available() checks for), use an exact count to
142 * track it, via hpage_pincount_add/_sub().
143 *
144 * However, be sure to *also* increment the normal page refcount
145 * field at least once, so that the page really is pinned.
146 */
147 if (hpage_pincount_available(page))
148 hpage_pincount_add(page, refs);
149 else
150 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
151
152 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
153 orig_refs);
154
155 return page;
156 }
157
158 WARN_ON_ONCE(1);
159 return NULL;
160}
161
162static void put_compound_head(struct page *page, int refs, unsigned int flags)
163{
164 if (flags & FOLL_PIN) {
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
166 refs);
167
168 if (hpage_pincount_available(page))
169 hpage_pincount_sub(page, refs);
170 else
171 refs *= GUP_PIN_COUNTING_BIAS;
172 }
173
174 put_page_refs(page, refs);
175}
176
177/**
178 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
179 *
180 * This might not do anything at all, depending on the flags argument.
181 *
182 * "grab" names in this file mean, "look at flags to decide whether to use
183 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
184 *
185 * @page: pointer to page to be grabbed
186 * @flags: gup flags: these are the FOLL_* flag values.
187 *
188 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
189 * time. Cases:
190 *
191 * FOLL_GET: page's refcount will be incremented by 1.
192 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
193 *
194 * Return: true for success, or if no action was required (if neither FOLL_PIN
195 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
196 * FOLL_PIN was set, but the page could not be grabbed.
197 */
198bool __must_check try_grab_page(struct page *page, unsigned int flags)
199{
200 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
201
202 if (flags & FOLL_GET)
203 return try_get_page(page);
204 else if (flags & FOLL_PIN) {
205 int refs = 1;
206
207 page = compound_head(page);
208
209 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
210 return false;
211
212 if (hpage_pincount_available(page))
213 hpage_pincount_add(page, 1);
214 else
215 refs = GUP_PIN_COUNTING_BIAS;
216
217 /*
218 * Similar to try_grab_compound_head(): even if using the
219 * hpage_pincount_add/_sub() routines, be sure to
220 * *also* increment the normal page refcount field at least
221 * once, so that the page really is pinned.
222 */
223 page_ref_add(page, refs);
224
225 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
226 }
227
228 return true;
229}
230
231/**
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
234 *
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
239 */
240void unpin_user_page(struct page *page)
241{
242 put_compound_head(compound_head(page), 1, FOLL_PIN);
243}
244EXPORT_SYMBOL(unpin_user_page);
245
246static inline void compound_range_next(unsigned long i, unsigned long npages,
247 struct page **list, struct page **head,
248 unsigned int *ntails)
249{
250 struct page *next, *page;
251 unsigned int nr = 1;
252
253 if (i >= npages)
254 return;
255
256 next = *list + i;
257 page = compound_head(next);
258 if (PageCompound(page) && compound_order(page) >= 1)
259 nr = min_t(unsigned int,
260 page + compound_nr(page) - next, npages - i);
261
262 *head = page;
263 *ntails = nr;
264}
265
266#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
267 for (__i = 0, \
268 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
269 __i < __npages; __i += __ntails, \
270 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
271
272static inline void compound_next(unsigned long i, unsigned long npages,
273 struct page **list, struct page **head,
274 unsigned int *ntails)
275{
276 struct page *page;
277 unsigned int nr;
278
279 if (i >= npages)
280 return;
281
282 page = compound_head(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (compound_head(list[nr]) != page)
285 break;
286 }
287
288 *head = page;
289 *ntails = nr - i;
290}
291
292#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
293 for (__i = 0, \
294 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
295 __i < __npages; __i += __ntails, \
296 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
297
298/**
299 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
300 * @pages: array of pages to be maybe marked dirty, and definitely released.
301 * @npages: number of pages in the @pages array.
302 * @make_dirty: whether to mark the pages dirty
303 *
304 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
305 * variants called on that page.
306 *
307 * For each page in the @pages array, make that page (or its head page, if a
308 * compound page) dirty, if @make_dirty is true, and if the page was previously
309 * listed as clean. In any case, releases all pages using unpin_user_page(),
310 * possibly via unpin_user_pages(), for the non-dirty case.
311 *
312 * Please see the unpin_user_page() documentation for details.
313 *
314 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
315 * required, then the caller should a) verify that this is really correct,
316 * because _lock() is usually required, and b) hand code it:
317 * set_page_dirty_lock(), unpin_user_page().
318 *
319 */
320void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
321 bool make_dirty)
322{
323 unsigned long index;
324 struct page *head;
325 unsigned int ntails;
326
327 if (!make_dirty) {
328 unpin_user_pages(pages, npages);
329 return;
330 }
331
332 for_each_compound_head(index, pages, npages, head, ntails) {
333 /*
334 * Checking PageDirty at this point may race with
335 * clear_page_dirty_for_io(), but that's OK. Two key
336 * cases:
337 *
338 * 1) This code sees the page as already dirty, so it
339 * skips the call to set_page_dirty(). That could happen
340 * because clear_page_dirty_for_io() called
341 * page_mkclean(), followed by set_page_dirty().
342 * However, now the page is going to get written back,
343 * which meets the original intention of setting it
344 * dirty, so all is well: clear_page_dirty_for_io() goes
345 * on to call TestClearPageDirty(), and write the page
346 * back.
347 *
348 * 2) This code sees the page as clean, so it calls
349 * set_page_dirty(). The page stays dirty, despite being
350 * written back, so it gets written back again in the
351 * next writeback cycle. This is harmless.
352 */
353 if (!PageDirty(head))
354 set_page_dirty_lock(head);
355 put_compound_head(head, ntails, FOLL_PIN);
356 }
357}
358EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
359
360/**
361 * unpin_user_page_range_dirty_lock() - release and optionally dirty
362 * gup-pinned page range
363 *
364 * @page: the starting page of a range maybe marked dirty, and definitely released.
365 * @npages: number of consecutive pages to release.
366 * @make_dirty: whether to mark the pages dirty
367 *
368 * "gup-pinned page range" refers to a range of pages that has had one of the
369 * pin_user_pages() variants called on that page.
370 *
371 * For the page ranges defined by [page .. page+npages], make that range (or
372 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
373 * page range was previously listed as clean.
374 *
375 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
376 * required, then the caller should a) verify that this is really correct,
377 * because _lock() is usually required, and b) hand code it:
378 * set_page_dirty_lock(), unpin_user_page().
379 *
380 */
381void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
382 bool make_dirty)
383{
384 unsigned long index;
385 struct page *head;
386 unsigned int ntails;
387
388 for_each_compound_range(index, &page, npages, head, ntails) {
389 if (make_dirty && !PageDirty(head))
390 set_page_dirty_lock(head);
391 put_compound_head(head, ntails, FOLL_PIN);
392 }
393}
394EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
395
396/**
397 * unpin_user_pages() - release an array of gup-pinned pages.
398 * @pages: array of pages to be marked dirty and released.
399 * @npages: number of pages in the @pages array.
400 *
401 * For each page in the @pages array, release the page using unpin_user_page().
402 *
403 * Please see the unpin_user_page() documentation for details.
404 */
405void unpin_user_pages(struct page **pages, unsigned long npages)
406{
407 unsigned long index;
408 struct page *head;
409 unsigned int ntails;
410
411 /*
412 * If this WARN_ON() fires, then the system *might* be leaking pages (by
413 * leaving them pinned), but probably not. More likely, gup/pup returned
414 * a hard -ERRNO error to the caller, who erroneously passed it here.
415 */
416 if (WARN_ON(IS_ERR_VALUE(npages)))
417 return;
418
419 for_each_compound_head(index, pages, npages, head, ntails)
420 put_compound_head(head, ntails, FOLL_PIN);
421}
422EXPORT_SYMBOL(unpin_user_pages);
423
424/*
425 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
426 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
427 * cache bouncing on large SMP machines for concurrent pinned gups.
428 */
429static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
430{
431 if (!test_bit(MMF_HAS_PINNED, mm_flags))
432 set_bit(MMF_HAS_PINNED, mm_flags);
433}
434
435#ifdef CONFIG_MMU
436static struct page *no_page_table(struct vm_area_struct *vma,
437 unsigned int flags)
438{
439 /*
440 * When core dumping an enormous anonymous area that nobody
441 * has touched so far, we don't want to allocate unnecessary pages or
442 * page tables. Return error instead of NULL to skip handle_mm_fault,
443 * then get_dump_page() will return NULL to leave a hole in the dump.
444 * But we can only make this optimization where a hole would surely
445 * be zero-filled if handle_mm_fault() actually did handle it.
446 */
447 if ((flags & FOLL_DUMP) &&
448 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
449 return ERR_PTR(-EFAULT);
450 return NULL;
451}
452
453static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
454 pte_t *pte, unsigned int flags)
455{
456 /* No page to get reference */
457 if (flags & FOLL_GET)
458 return -EFAULT;
459
460 if (flags & FOLL_TOUCH) {
461 pte_t entry = *pte;
462
463 if (flags & FOLL_WRITE)
464 entry = pte_mkdirty(entry);
465 entry = pte_mkyoung(entry);
466
467 if (!pte_same(*pte, entry)) {
468 set_pte_at(vma->vm_mm, address, pte, entry);
469 update_mmu_cache(vma, address, pte);
470 }
471 }
472
473 /* Proper page table entry exists, but no corresponding struct page */
474 return -EEXIST;
475}
476
477/*
478 * FOLL_FORCE can write to even unwritable pte's, but only
479 * after we've gone through a COW cycle and they are dirty.
480 */
481static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
482{
483 return pte_write(pte) ||
484 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
485}
486
487static struct page *follow_page_pte(struct vm_area_struct *vma,
488 unsigned long address, pmd_t *pmd, unsigned int flags,
489 struct dev_pagemap **pgmap)
490{
491 struct mm_struct *mm = vma->vm_mm;
492 struct page *page;
493 spinlock_t *ptl;
494 pte_t *ptep, pte;
495 int ret;
496
497 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
498 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
499 (FOLL_PIN | FOLL_GET)))
500 return ERR_PTR(-EINVAL);
501retry:
502 if (unlikely(pmd_bad(*pmd)))
503 return no_page_table(vma, flags);
504
505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
506 pte = *ptep;
507 if (!pte_present(pte)) {
508 swp_entry_t entry;
509 /*
510 * KSM's break_ksm() relies upon recognizing a ksm page
511 * even while it is being migrated, so for that case we
512 * need migration_entry_wait().
513 */
514 if (likely(!(flags & FOLL_MIGRATION)))
515 goto no_page;
516 if (pte_none(pte))
517 goto no_page;
518 entry = pte_to_swp_entry(pte);
519 if (!is_migration_entry(entry))
520 goto no_page;
521 pte_unmap_unlock(ptep, ptl);
522 migration_entry_wait(mm, pmd, address);
523 goto retry;
524 }
525 if ((flags & FOLL_NUMA) && pte_protnone(pte))
526 goto no_page;
527 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
528 pte_unmap_unlock(ptep, ptl);
529 return NULL;
530 }
531
532 page = vm_normal_page(vma, address, pte);
533 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
534 /*
535 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
536 * case since they are only valid while holding the pgmap
537 * reference.
538 */
539 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
540 if (*pgmap)
541 page = pte_page(pte);
542 else
543 goto no_page;
544 } else if (unlikely(!page)) {
545 if (flags & FOLL_DUMP) {
546 /* Avoid special (like zero) pages in core dumps */
547 page = ERR_PTR(-EFAULT);
548 goto out;
549 }
550
551 if (is_zero_pfn(pte_pfn(pte))) {
552 page = pte_page(pte);
553 } else {
554 ret = follow_pfn_pte(vma, address, ptep, flags);
555 page = ERR_PTR(ret);
556 goto out;
557 }
558 }
559
560 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
561 if (unlikely(!try_grab_page(page, flags))) {
562 page = ERR_PTR(-ENOMEM);
563 goto out;
564 }
565 /*
566 * We need to make the page accessible if and only if we are going
567 * to access its content (the FOLL_PIN case). Please see
568 * Documentation/core-api/pin_user_pages.rst for details.
569 */
570 if (flags & FOLL_PIN) {
571 ret = arch_make_page_accessible(page);
572 if (ret) {
573 unpin_user_page(page);
574 page = ERR_PTR(ret);
575 goto out;
576 }
577 }
578 if (flags & FOLL_TOUCH) {
579 if ((flags & FOLL_WRITE) &&
580 !pte_dirty(pte) && !PageDirty(page))
581 set_page_dirty(page);
582 /*
583 * pte_mkyoung() would be more correct here, but atomic care
584 * is needed to avoid losing the dirty bit: it is easier to use
585 * mark_page_accessed().
586 */
587 mark_page_accessed(page);
588 }
589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
590 /* Do not mlock pte-mapped THP */
591 if (PageTransCompound(page))
592 goto out;
593
594 /*
595 * The preliminary mapping check is mainly to avoid the
596 * pointless overhead of lock_page on the ZERO_PAGE
597 * which might bounce very badly if there is contention.
598 *
599 * If the page is already locked, we don't need to
600 * handle it now - vmscan will handle it later if and
601 * when it attempts to reclaim the page.
602 */
603 if (page->mapping && trylock_page(page)) {
604 lru_add_drain(); /* push cached pages to LRU */
605 /*
606 * Because we lock page here, and migration is
607 * blocked by the pte's page reference, and we
608 * know the page is still mapped, we don't even
609 * need to check for file-cache page truncation.
610 */
611 mlock_vma_page(page);
612 unlock_page(page);
613 }
614 }
615out:
616 pte_unmap_unlock(ptep, ptl);
617 return page;
618no_page:
619 pte_unmap_unlock(ptep, ptl);
620 if (!pte_none(pte))
621 return NULL;
622 return no_page_table(vma, flags);
623}
624
625static struct page *follow_pmd_mask(struct vm_area_struct *vma,
626 unsigned long address, pud_t *pudp,
627 unsigned int flags,
628 struct follow_page_context *ctx)
629{
630 pmd_t *pmd, pmdval;
631 spinlock_t *ptl;
632 struct page *page;
633 struct mm_struct *mm = vma->vm_mm;
634
635 pmd = pmd_offset(pudp, address);
636 /*
637 * The READ_ONCE() will stabilize the pmdval in a register or
638 * on the stack so that it will stop changing under the code.
639 */
640 pmdval = READ_ONCE(*pmd);
641 if (pmd_none(pmdval))
642 return no_page_table(vma, flags);
643 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
644 page = follow_huge_pmd(mm, address, pmd, flags);
645 if (page)
646 return page;
647 return no_page_table(vma, flags);
648 }
649 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
650 page = follow_huge_pd(vma, address,
651 __hugepd(pmd_val(pmdval)), flags,
652 PMD_SHIFT);
653 if (page)
654 return page;
655 return no_page_table(vma, flags);
656 }
657retry:
658 if (!pmd_present(pmdval)) {
659 if (likely(!(flags & FOLL_MIGRATION)))
660 return no_page_table(vma, flags);
661 VM_BUG_ON(thp_migration_supported() &&
662 !is_pmd_migration_entry(pmdval));
663 if (is_pmd_migration_entry(pmdval))
664 pmd_migration_entry_wait(mm, pmd);
665 pmdval = READ_ONCE(*pmd);
666 /*
667 * MADV_DONTNEED may convert the pmd to null because
668 * mmap_lock is held in read mode
669 */
670 if (pmd_none(pmdval))
671 return no_page_table(vma, flags);
672 goto retry;
673 }
674 if (pmd_devmap(pmdval)) {
675 ptl = pmd_lock(mm, pmd);
676 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
677 spin_unlock(ptl);
678 if (page)
679 return page;
680 }
681 if (likely(!pmd_trans_huge(pmdval)))
682 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
683
684 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
685 return no_page_table(vma, flags);
686
687retry_locked:
688 ptl = pmd_lock(mm, pmd);
689 if (unlikely(pmd_none(*pmd))) {
690 spin_unlock(ptl);
691 return no_page_table(vma, flags);
692 }
693 if (unlikely(!pmd_present(*pmd))) {
694 spin_unlock(ptl);
695 if (likely(!(flags & FOLL_MIGRATION)))
696 return no_page_table(vma, flags);
697 pmd_migration_entry_wait(mm, pmd);
698 goto retry_locked;
699 }
700 if (unlikely(!pmd_trans_huge(*pmd))) {
701 spin_unlock(ptl);
702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
703 }
704 if (flags & FOLL_SPLIT_PMD) {
705 int ret;
706 page = pmd_page(*pmd);
707 if (is_huge_zero_page(page)) {
708 spin_unlock(ptl);
709 ret = 0;
710 split_huge_pmd(vma, pmd, address);
711 if (pmd_trans_unstable(pmd))
712 ret = -EBUSY;
713 } else {
714 spin_unlock(ptl);
715 split_huge_pmd(vma, pmd, address);
716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
717 }
718
719 return ret ? ERR_PTR(ret) :
720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
721 }
722 page = follow_trans_huge_pmd(vma, address, pmd, flags);
723 spin_unlock(ptl);
724 ctx->page_mask = HPAGE_PMD_NR - 1;
725 return page;
726}
727
728static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 unsigned long address, p4d_t *p4dp,
730 unsigned int flags,
731 struct follow_page_context *ctx)
732{
733 pud_t *pud;
734 spinlock_t *ptl;
735 struct page *page;
736 struct mm_struct *mm = vma->vm_mm;
737
738 pud = pud_offset(p4dp, address);
739 if (pud_none(*pud))
740 return no_page_table(vma, flags);
741 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
742 page = follow_huge_pud(mm, address, pud, flags);
743 if (page)
744 return page;
745 return no_page_table(vma, flags);
746 }
747 if (is_hugepd(__hugepd(pud_val(*pud)))) {
748 page = follow_huge_pd(vma, address,
749 __hugepd(pud_val(*pud)), flags,
750 PUD_SHIFT);
751 if (page)
752 return page;
753 return no_page_table(vma, flags);
754 }
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
765 return follow_pmd_mask(vma, address, pud, flags, ctx);
766}
767
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
770 unsigned int flags,
771 struct follow_page_context *ctx)
772{
773 p4d_t *p4d;
774 struct page *page;
775
776 p4d = p4d_offset(pgdp, address);
777 if (p4d_none(*p4d))
778 return no_page_table(vma, flags);
779 BUILD_BUG_ON(p4d_huge(*p4d));
780 if (unlikely(p4d_bad(*p4d)))
781 return no_page_table(vma, flags);
782
783 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
784 page = follow_huge_pd(vma, address,
785 __hugepd(p4d_val(*p4d)), flags,
786 P4D_SHIFT);
787 if (page)
788 return page;
789 return no_page_table(vma, flags);
790 }
791 return follow_pud_mask(vma, address, p4d, flags, ctx);
792}
793
794/**
795 * follow_page_mask - look up a page descriptor from a user-virtual address
796 * @vma: vm_area_struct mapping @address
797 * @address: virtual address to look up
798 * @flags: flags modifying lookup behaviour
799 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
800 * pointer to output page_mask
801 *
802 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
803 *
804 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
805 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
806 *
807 * On output, the @ctx->page_mask is set according to the size of the page.
808 *
809 * Return: the mapped (struct page *), %NULL if no mapping exists, or
810 * an error pointer if there is a mapping to something not represented
811 * by a page descriptor (see also vm_normal_page()).
812 */
813static struct page *follow_page_mask(struct vm_area_struct *vma,
814 unsigned long address, unsigned int flags,
815 struct follow_page_context *ctx)
816{
817 pgd_t *pgd;
818 struct page *page;
819 struct mm_struct *mm = vma->vm_mm;
820
821 ctx->page_mask = 0;
822
823 /* make this handle hugepd */
824 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
825 if (!IS_ERR(page)) {
826 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
827 return page;
828 }
829
830 pgd = pgd_offset(mm, address);
831
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
834
835 if (pgd_huge(*pgd)) {
836 page = follow_huge_pgd(mm, address, pgd, flags);
837 if (page)
838 return page;
839 return no_page_table(vma, flags);
840 }
841 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
842 page = follow_huge_pd(vma, address,
843 __hugepd(pgd_val(*pgd)), flags,
844 PGDIR_SHIFT);
845 if (page)
846 return page;
847 return no_page_table(vma, flags);
848 }
849
850 return follow_p4d_mask(vma, address, pgd, flags, ctx);
851}
852
853struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
854 unsigned int foll_flags)
855{
856 struct follow_page_context ctx = { NULL };
857 struct page *page;
858
859 if (vma_is_secretmem(vma))
860 return NULL;
861
862 page = follow_page_mask(vma, address, foll_flags, &ctx);
863 if (ctx.pgmap)
864 put_dev_pagemap(ctx.pgmap);
865 return page;
866}
867
868static int get_gate_page(struct mm_struct *mm, unsigned long address,
869 unsigned int gup_flags, struct vm_area_struct **vma,
870 struct page **page)
871{
872 pgd_t *pgd;
873 p4d_t *p4d;
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *pte;
877 int ret = -EFAULT;
878
879 /* user gate pages are read-only */
880 if (gup_flags & FOLL_WRITE)
881 return -EFAULT;
882 if (address > TASK_SIZE)
883 pgd = pgd_offset_k(address);
884 else
885 pgd = pgd_offset_gate(mm, address);
886 if (pgd_none(*pgd))
887 return -EFAULT;
888 p4d = p4d_offset(pgd, address);
889 if (p4d_none(*p4d))
890 return -EFAULT;
891 pud = pud_offset(p4d, address);
892 if (pud_none(*pud))
893 return -EFAULT;
894 pmd = pmd_offset(pud, address);
895 if (!pmd_present(*pmd))
896 return -EFAULT;
897 VM_BUG_ON(pmd_trans_huge(*pmd));
898 pte = pte_offset_map(pmd, address);
899 if (pte_none(*pte))
900 goto unmap;
901 *vma = get_gate_vma(mm);
902 if (!page)
903 goto out;
904 *page = vm_normal_page(*vma, address, *pte);
905 if (!*page) {
906 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
907 goto unmap;
908 *page = pte_page(*pte);
909 }
910 if (unlikely(!try_grab_page(*page, gup_flags))) {
911 ret = -ENOMEM;
912 goto unmap;
913 }
914out:
915 ret = 0;
916unmap:
917 pte_unmap(pte);
918 return ret;
919}
920
921/*
922 * mmap_lock must be held on entry. If @locked != NULL and *@flags
923 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
924 * is, *@locked will be set to 0 and -EBUSY returned.
925 */
926static int faultin_page(struct vm_area_struct *vma,
927 unsigned long address, unsigned int *flags, int *locked)
928{
929 unsigned int fault_flags = 0;
930 vm_fault_t ret;
931
932 /* mlock all present pages, but do not fault in new pages */
933 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
934 return -ENOENT;
935 if (*flags & FOLL_WRITE)
936 fault_flags |= FAULT_FLAG_WRITE;
937 if (*flags & FOLL_REMOTE)
938 fault_flags |= FAULT_FLAG_REMOTE;
939 if (locked)
940 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
943 if (*flags & FOLL_TRIED) {
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
950
951 ret = handle_mm_fault(vma, address, fault_flags, NULL);
952 if (ret & VM_FAULT_ERROR) {
953 int err = vm_fault_to_errno(ret, *flags);
954
955 if (err)
956 return err;
957 BUG();
958 }
959
960 if (ret & VM_FAULT_RETRY) {
961 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
962 *locked = 0;
963 return -EBUSY;
964 }
965
966 /*
967 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
968 * necessary, even if maybe_mkwrite decided not to set pte_write. We
969 * can thus safely do subsequent page lookups as if they were reads.
970 * But only do so when looping for pte_write is futile: in some cases
971 * userspace may also be wanting to write to the gotten user page,
972 * which a read fault here might prevent (a readonly page might get
973 * reCOWed by userspace write).
974 */
975 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
976 *flags |= FOLL_COW;
977 return 0;
978}
979
980static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
981{
982 vm_flags_t vm_flags = vma->vm_flags;
983 int write = (gup_flags & FOLL_WRITE);
984 int foreign = (gup_flags & FOLL_REMOTE);
985
986 if (vm_flags & (VM_IO | VM_PFNMAP))
987 return -EFAULT;
988
989 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
990 return -EFAULT;
991
992 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
993 return -EOPNOTSUPP;
994
995 if (vma_is_secretmem(vma))
996 return -EFAULT;
997
998 if (write) {
999 if (!(vm_flags & VM_WRITE)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * We used to let the write,force case do COW in a
1004 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1005 * set a breakpoint in a read-only mapping of an
1006 * executable, without corrupting the file (yet only
1007 * when that file had been opened for writing!).
1008 * Anon pages in shared mappings are surprising: now
1009 * just reject it.
1010 */
1011 if (!is_cow_mapping(vm_flags))
1012 return -EFAULT;
1013 }
1014 } else if (!(vm_flags & VM_READ)) {
1015 if (!(gup_flags & FOLL_FORCE))
1016 return -EFAULT;
1017 /*
1018 * Is there actually any vma we can reach here which does not
1019 * have VM_MAYREAD set?
1020 */
1021 if (!(vm_flags & VM_MAYREAD))
1022 return -EFAULT;
1023 }
1024 /*
1025 * gups are always data accesses, not instruction
1026 * fetches, so execute=false here
1027 */
1028 if (!arch_vma_access_permitted(vma, write, false, foreign))
1029 return -EFAULT;
1030 return 0;
1031}
1032
1033/**
1034 * __get_user_pages() - pin user pages in memory
1035 * @mm: mm_struct of target mm
1036 * @start: starting user address
1037 * @nr_pages: number of pages from start to pin
1038 * @gup_flags: flags modifying pin behaviour
1039 * @pages: array that receives pointers to the pages pinned.
1040 * Should be at least nr_pages long. Or NULL, if caller
1041 * only intends to ensure the pages are faulted in.
1042 * @vmas: array of pointers to vmas corresponding to each page.
1043 * Or NULL if the caller does not require them.
1044 * @locked: whether we're still with the mmap_lock held
1045 *
1046 * Returns either number of pages pinned (which may be less than the
1047 * number requested), or an error. Details about the return value:
1048 *
1049 * -- If nr_pages is 0, returns 0.
1050 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1051 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1052 * pages pinned. Again, this may be less than nr_pages.
1053 * -- 0 return value is possible when the fault would need to be retried.
1054 *
1055 * The caller is responsible for releasing returned @pages, via put_page().
1056 *
1057 * @vmas are valid only as long as mmap_lock is held.
1058 *
1059 * Must be called with mmap_lock held. It may be released. See below.
1060 *
1061 * __get_user_pages walks a process's page tables and takes a reference to
1062 * each struct page that each user address corresponds to at a given
1063 * instant. That is, it takes the page that would be accessed if a user
1064 * thread accesses the given user virtual address at that instant.
1065 *
1066 * This does not guarantee that the page exists in the user mappings when
1067 * __get_user_pages returns, and there may even be a completely different
1068 * page there in some cases (eg. if mmapped pagecache has been invalidated
1069 * and subsequently re faulted). However it does guarantee that the page
1070 * won't be freed completely. And mostly callers simply care that the page
1071 * contains data that was valid *at some point in time*. Typically, an IO
1072 * or similar operation cannot guarantee anything stronger anyway because
1073 * locks can't be held over the syscall boundary.
1074 *
1075 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1076 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1077 * appropriate) must be called after the page is finished with, and
1078 * before put_page is called.
1079 *
1080 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1081 * released by an up_read(). That can happen if @gup_flags does not
1082 * have FOLL_NOWAIT.
1083 *
1084 * A caller using such a combination of @locked and @gup_flags
1085 * must therefore hold the mmap_lock for reading only, and recognize
1086 * when it's been released. Otherwise, it must be held for either
1087 * reading or writing and will not be released.
1088 *
1089 * In most cases, get_user_pages or get_user_pages_fast should be used
1090 * instead of __get_user_pages. __get_user_pages should be used only if
1091 * you need some special @gup_flags.
1092 */
1093static long __get_user_pages(struct mm_struct *mm,
1094 unsigned long start, unsigned long nr_pages,
1095 unsigned int gup_flags, struct page **pages,
1096 struct vm_area_struct **vmas, int *locked)
1097{
1098 long ret = 0, i = 0;
1099 struct vm_area_struct *vma = NULL;
1100 struct follow_page_context ctx = { NULL };
1101
1102 if (!nr_pages)
1103 return 0;
1104
1105 start = untagged_addr(start);
1106
1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1108
1109 /*
1110 * If FOLL_FORCE is set then do not force a full fault as the hinting
1111 * fault information is unrelated to the reference behaviour of a task
1112 * using the address space
1113 */
1114 if (!(gup_flags & FOLL_FORCE))
1115 gup_flags |= FOLL_NUMA;
1116
1117 do {
1118 struct page *page;
1119 unsigned int foll_flags = gup_flags;
1120 unsigned int page_increm;
1121
1122 /* first iteration or cross vma bound */
1123 if (!vma || start >= vma->vm_end) {
1124 vma = find_extend_vma(mm, start);
1125 if (!vma && in_gate_area(mm, start)) {
1126 ret = get_gate_page(mm, start & PAGE_MASK,
1127 gup_flags, &vma,
1128 pages ? &pages[i] : NULL);
1129 if (ret)
1130 goto out;
1131 ctx.page_mask = 0;
1132 goto next_page;
1133 }
1134
1135 if (!vma) {
1136 ret = -EFAULT;
1137 goto out;
1138 }
1139 ret = check_vma_flags(vma, gup_flags);
1140 if (ret)
1141 goto out;
1142
1143 if (is_vm_hugetlb_page(vma)) {
1144 i = follow_hugetlb_page(mm, vma, pages, vmas,
1145 &start, &nr_pages, i,
1146 gup_flags, locked);
1147 if (locked && *locked == 0) {
1148 /*
1149 * We've got a VM_FAULT_RETRY
1150 * and we've lost mmap_lock.
1151 * We must stop here.
1152 */
1153 BUG_ON(gup_flags & FOLL_NOWAIT);
1154 BUG_ON(ret != 0);
1155 goto out;
1156 }
1157 continue;
1158 }
1159 }
1160retry:
1161 /*
1162 * If we have a pending SIGKILL, don't keep faulting pages and
1163 * potentially allocating memory.
1164 */
1165 if (fatal_signal_pending(current)) {
1166 ret = -EINTR;
1167 goto out;
1168 }
1169 cond_resched();
1170
1171 page = follow_page_mask(vma, start, foll_flags, &ctx);
1172 if (!page) {
1173 ret = faultin_page(vma, start, &foll_flags, locked);
1174 switch (ret) {
1175 case 0:
1176 goto retry;
1177 case -EBUSY:
1178 ret = 0;
1179 fallthrough;
1180 case -EFAULT:
1181 case -ENOMEM:
1182 case -EHWPOISON:
1183 goto out;
1184 case -ENOENT:
1185 goto next_page;
1186 }
1187 BUG();
1188 } else if (PTR_ERR(page) == -EEXIST) {
1189 /*
1190 * Proper page table entry exists, but no corresponding
1191 * struct page.
1192 */
1193 goto next_page;
1194 } else if (IS_ERR(page)) {
1195 ret = PTR_ERR(page);
1196 goto out;
1197 }
1198 if (pages) {
1199 pages[i] = page;
1200 flush_anon_page(vma, page, start);
1201 flush_dcache_page(page);
1202 ctx.page_mask = 0;
1203 }
1204next_page:
1205 if (vmas) {
1206 vmas[i] = vma;
1207 ctx.page_mask = 0;
1208 }
1209 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1210 if (page_increm > nr_pages)
1211 page_increm = nr_pages;
1212 i += page_increm;
1213 start += page_increm * PAGE_SIZE;
1214 nr_pages -= page_increm;
1215 } while (nr_pages);
1216out:
1217 if (ctx.pgmap)
1218 put_dev_pagemap(ctx.pgmap);
1219 return i ? i : ret;
1220}
1221
1222static bool vma_permits_fault(struct vm_area_struct *vma,
1223 unsigned int fault_flags)
1224{
1225 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1226 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1227 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1228
1229 if (!(vm_flags & vma->vm_flags))
1230 return false;
1231
1232 /*
1233 * The architecture might have a hardware protection
1234 * mechanism other than read/write that can deny access.
1235 *
1236 * gup always represents data access, not instruction
1237 * fetches, so execute=false here:
1238 */
1239 if (!arch_vma_access_permitted(vma, write, false, foreign))
1240 return false;
1241
1242 return true;
1243}
1244
1245/**
1246 * fixup_user_fault() - manually resolve a user page fault
1247 * @mm: mm_struct of target mm
1248 * @address: user address
1249 * @fault_flags:flags to pass down to handle_mm_fault()
1250 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1251 * does not allow retry. If NULL, the caller must guarantee
1252 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1253 *
1254 * This is meant to be called in the specific scenario where for locking reasons
1255 * we try to access user memory in atomic context (within a pagefault_disable()
1256 * section), this returns -EFAULT, and we want to resolve the user fault before
1257 * trying again.
1258 *
1259 * Typically this is meant to be used by the futex code.
1260 *
1261 * The main difference with get_user_pages() is that this function will
1262 * unconditionally call handle_mm_fault() which will in turn perform all the
1263 * necessary SW fixup of the dirty and young bits in the PTE, while
1264 * get_user_pages() only guarantees to update these in the struct page.
1265 *
1266 * This is important for some architectures where those bits also gate the
1267 * access permission to the page because they are maintained in software. On
1268 * such architectures, gup() will not be enough to make a subsequent access
1269 * succeed.
1270 *
1271 * This function will not return with an unlocked mmap_lock. So it has not the
1272 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1273 */
1274int fixup_user_fault(struct mm_struct *mm,
1275 unsigned long address, unsigned int fault_flags,
1276 bool *unlocked)
1277{
1278 struct vm_area_struct *vma;
1279 vm_fault_t ret, major = 0;
1280
1281 address = untagged_addr(address);
1282
1283 if (unlocked)
1284 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1285
1286retry:
1287 vma = find_extend_vma(mm, address);
1288 if (!vma || address < vma->vm_start)
1289 return -EFAULT;
1290
1291 if (!vma_permits_fault(vma, fault_flags))
1292 return -EFAULT;
1293
1294 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1295 fatal_signal_pending(current))
1296 return -EINTR;
1297
1298 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1299 major |= ret & VM_FAULT_MAJOR;
1300 if (ret & VM_FAULT_ERROR) {
1301 int err = vm_fault_to_errno(ret, 0);
1302
1303 if (err)
1304 return err;
1305 BUG();
1306 }
1307
1308 if (ret & VM_FAULT_RETRY) {
1309 mmap_read_lock(mm);
1310 *unlocked = true;
1311 fault_flags |= FAULT_FLAG_TRIED;
1312 goto retry;
1313 }
1314
1315 return 0;
1316}
1317EXPORT_SYMBOL_GPL(fixup_user_fault);
1318
1319/*
1320 * Please note that this function, unlike __get_user_pages will not
1321 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1322 */
1323static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1324 unsigned long start,
1325 unsigned long nr_pages,
1326 struct page **pages,
1327 struct vm_area_struct **vmas,
1328 int *locked,
1329 unsigned int flags)
1330{
1331 long ret, pages_done;
1332 bool lock_dropped;
1333
1334 if (locked) {
1335 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1336 BUG_ON(vmas);
1337 /* check caller initialized locked */
1338 BUG_ON(*locked != 1);
1339 }
1340
1341 if (flags & FOLL_PIN)
1342 mm_set_has_pinned_flag(&mm->flags);
1343
1344 /*
1345 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1346 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1347 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1348 * for FOLL_GET, not for the newer FOLL_PIN.
1349 *
1350 * FOLL_PIN always expects pages to be non-null, but no need to assert
1351 * that here, as any failures will be obvious enough.
1352 */
1353 if (pages && !(flags & FOLL_PIN))
1354 flags |= FOLL_GET;
1355
1356 pages_done = 0;
1357 lock_dropped = false;
1358 for (;;) {
1359 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1360 vmas, locked);
1361 if (!locked)
1362 /* VM_FAULT_RETRY couldn't trigger, bypass */
1363 return ret;
1364
1365 /* VM_FAULT_RETRY cannot return errors */
1366 if (!*locked) {
1367 BUG_ON(ret < 0);
1368 BUG_ON(ret >= nr_pages);
1369 }
1370
1371 if (ret > 0) {
1372 nr_pages -= ret;
1373 pages_done += ret;
1374 if (!nr_pages)
1375 break;
1376 }
1377 if (*locked) {
1378 /*
1379 * VM_FAULT_RETRY didn't trigger or it was a
1380 * FOLL_NOWAIT.
1381 */
1382 if (!pages_done)
1383 pages_done = ret;
1384 break;
1385 }
1386 /*
1387 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1388 * For the prefault case (!pages) we only update counts.
1389 */
1390 if (likely(pages))
1391 pages += ret;
1392 start += ret << PAGE_SHIFT;
1393 lock_dropped = true;
1394
1395retry:
1396 /*
1397 * Repeat on the address that fired VM_FAULT_RETRY
1398 * with both FAULT_FLAG_ALLOW_RETRY and
1399 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1400 * by fatal signals, so we need to check it before we
1401 * start trying again otherwise it can loop forever.
1402 */
1403
1404 if (fatal_signal_pending(current)) {
1405 if (!pages_done)
1406 pages_done = -EINTR;
1407 break;
1408 }
1409
1410 ret = mmap_read_lock_killable(mm);
1411 if (ret) {
1412 BUG_ON(ret > 0);
1413 if (!pages_done)
1414 pages_done = ret;
1415 break;
1416 }
1417
1418 *locked = 1;
1419 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1420 pages, NULL, locked);
1421 if (!*locked) {
1422 /* Continue to retry until we succeeded */
1423 BUG_ON(ret != 0);
1424 goto retry;
1425 }
1426 if (ret != 1) {
1427 BUG_ON(ret > 1);
1428 if (!pages_done)
1429 pages_done = ret;
1430 break;
1431 }
1432 nr_pages--;
1433 pages_done++;
1434 if (!nr_pages)
1435 break;
1436 if (likely(pages))
1437 pages++;
1438 start += PAGE_SIZE;
1439 }
1440 if (lock_dropped && *locked) {
1441 /*
1442 * We must let the caller know we temporarily dropped the lock
1443 * and so the critical section protected by it was lost.
1444 */
1445 mmap_read_unlock(mm);
1446 *locked = 0;
1447 }
1448 return pages_done;
1449}
1450
1451/**
1452 * populate_vma_page_range() - populate a range of pages in the vma.
1453 * @vma: target vma
1454 * @start: start address
1455 * @end: end address
1456 * @locked: whether the mmap_lock is still held
1457 *
1458 * This takes care of mlocking the pages too if VM_LOCKED is set.
1459 *
1460 * Return either number of pages pinned in the vma, or a negative error
1461 * code on error.
1462 *
1463 * vma->vm_mm->mmap_lock must be held.
1464 *
1465 * If @locked is NULL, it may be held for read or write and will
1466 * be unperturbed.
1467 *
1468 * If @locked is non-NULL, it must held for read only and may be
1469 * released. If it's released, *@locked will be set to 0.
1470 */
1471long populate_vma_page_range(struct vm_area_struct *vma,
1472 unsigned long start, unsigned long end, int *locked)
1473{
1474 struct mm_struct *mm = vma->vm_mm;
1475 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1476 int gup_flags;
1477
1478 VM_BUG_ON(start & ~PAGE_MASK);
1479 VM_BUG_ON(end & ~PAGE_MASK);
1480 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1481 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1482 mmap_assert_locked(mm);
1483
1484 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1485 if (vma->vm_flags & VM_LOCKONFAULT)
1486 gup_flags &= ~FOLL_POPULATE;
1487 /*
1488 * We want to touch writable mappings with a write fault in order
1489 * to break COW, except for shared mappings because these don't COW
1490 * and we would not want to dirty them for nothing.
1491 */
1492 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1493 gup_flags |= FOLL_WRITE;
1494
1495 /*
1496 * We want mlock to succeed for regions that have any permissions
1497 * other than PROT_NONE.
1498 */
1499 if (vma_is_accessible(vma))
1500 gup_flags |= FOLL_FORCE;
1501
1502 /*
1503 * We made sure addr is within a VMA, so the following will
1504 * not result in a stack expansion that recurses back here.
1505 */
1506 return __get_user_pages(mm, start, nr_pages, gup_flags,
1507 NULL, NULL, locked);
1508}
1509
1510/*
1511 * faultin_vma_page_range() - populate (prefault) page tables inside the
1512 * given VMA range readable/writable
1513 *
1514 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1515 *
1516 * @vma: target vma
1517 * @start: start address
1518 * @end: end address
1519 * @write: whether to prefault readable or writable
1520 * @locked: whether the mmap_lock is still held
1521 *
1522 * Returns either number of processed pages in the vma, or a negative error
1523 * code on error (see __get_user_pages()).
1524 *
1525 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1526 * covered by the VMA.
1527 *
1528 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1529 *
1530 * If @locked is non-NULL, it must held for read only and may be released. If
1531 * it's released, *@locked will be set to 0.
1532 */
1533long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1534 unsigned long end, bool write, int *locked)
1535{
1536 struct mm_struct *mm = vma->vm_mm;
1537 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1538 int gup_flags;
1539
1540 VM_BUG_ON(!PAGE_ALIGNED(start));
1541 VM_BUG_ON(!PAGE_ALIGNED(end));
1542 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1543 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1544 mmap_assert_locked(mm);
1545
1546 /*
1547 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1548 * the page dirty with FOLL_WRITE -- which doesn't make a
1549 * difference with !FOLL_FORCE, because the page is writable
1550 * in the page table.
1551 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1552 * a poisoned page.
1553 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1554 * !FOLL_FORCE: Require proper access permissions.
1555 */
1556 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1557 if (write)
1558 gup_flags |= FOLL_WRITE;
1559
1560 /*
1561 * We want to report -EINVAL instead of -EFAULT for any permission
1562 * problems or incompatible mappings.
1563 */
1564 if (check_vma_flags(vma, gup_flags))
1565 return -EINVAL;
1566
1567 return __get_user_pages(mm, start, nr_pages, gup_flags,
1568 NULL, NULL, locked);
1569}
1570
1571/*
1572 * __mm_populate - populate and/or mlock pages within a range of address space.
1573 *
1574 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1575 * flags. VMAs must be already marked with the desired vm_flags, and
1576 * mmap_lock must not be held.
1577 */
1578int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1579{
1580 struct mm_struct *mm = current->mm;
1581 unsigned long end, nstart, nend;
1582 struct vm_area_struct *vma = NULL;
1583 int locked = 0;
1584 long ret = 0;
1585
1586 end = start + len;
1587
1588 for (nstart = start; nstart < end; nstart = nend) {
1589 /*
1590 * We want to fault in pages for [nstart; end) address range.
1591 * Find first corresponding VMA.
1592 */
1593 if (!locked) {
1594 locked = 1;
1595 mmap_read_lock(mm);
1596 vma = find_vma(mm, nstart);
1597 } else if (nstart >= vma->vm_end)
1598 vma = vma->vm_next;
1599 if (!vma || vma->vm_start >= end)
1600 break;
1601 /*
1602 * Set [nstart; nend) to intersection of desired address
1603 * range with the first VMA. Also, skip undesirable VMA types.
1604 */
1605 nend = min(end, vma->vm_end);
1606 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1607 continue;
1608 if (nstart < vma->vm_start)
1609 nstart = vma->vm_start;
1610 /*
1611 * Now fault in a range of pages. populate_vma_page_range()
1612 * double checks the vma flags, so that it won't mlock pages
1613 * if the vma was already munlocked.
1614 */
1615 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1616 if (ret < 0) {
1617 if (ignore_errors) {
1618 ret = 0;
1619 continue; /* continue at next VMA */
1620 }
1621 break;
1622 }
1623 nend = nstart + ret * PAGE_SIZE;
1624 ret = 0;
1625 }
1626 if (locked)
1627 mmap_read_unlock(mm);
1628 return ret; /* 0 or negative error code */
1629}
1630#else /* CONFIG_MMU */
1631static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1632 unsigned long nr_pages, struct page **pages,
1633 struct vm_area_struct **vmas, int *locked,
1634 unsigned int foll_flags)
1635{
1636 struct vm_area_struct *vma;
1637 unsigned long vm_flags;
1638 long i;
1639
1640 /* calculate required read or write permissions.
1641 * If FOLL_FORCE is set, we only require the "MAY" flags.
1642 */
1643 vm_flags = (foll_flags & FOLL_WRITE) ?
1644 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1645 vm_flags &= (foll_flags & FOLL_FORCE) ?
1646 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1647
1648 for (i = 0; i < nr_pages; i++) {
1649 vma = find_vma(mm, start);
1650 if (!vma)
1651 goto finish_or_fault;
1652
1653 /* protect what we can, including chardevs */
1654 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1655 !(vm_flags & vma->vm_flags))
1656 goto finish_or_fault;
1657
1658 if (pages) {
1659 pages[i] = virt_to_page(start);
1660 if (pages[i])
1661 get_page(pages[i]);
1662 }
1663 if (vmas)
1664 vmas[i] = vma;
1665 start = (start + PAGE_SIZE) & PAGE_MASK;
1666 }
1667
1668 return i;
1669
1670finish_or_fault:
1671 return i ? : -EFAULT;
1672}
1673#endif /* !CONFIG_MMU */
1674
1675/**
1676 * get_dump_page() - pin user page in memory while writing it to core dump
1677 * @addr: user address
1678 *
1679 * Returns struct page pointer of user page pinned for dump,
1680 * to be freed afterwards by put_page().
1681 *
1682 * Returns NULL on any kind of failure - a hole must then be inserted into
1683 * the corefile, to preserve alignment with its headers; and also returns
1684 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1685 * allowing a hole to be left in the corefile to save disk space.
1686 *
1687 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1688 */
1689#ifdef CONFIG_ELF_CORE
1690struct page *get_dump_page(unsigned long addr)
1691{
1692 struct mm_struct *mm = current->mm;
1693 struct page *page;
1694 int locked = 1;
1695 int ret;
1696
1697 if (mmap_read_lock_killable(mm))
1698 return NULL;
1699 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1700 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1701 if (locked)
1702 mmap_read_unlock(mm);
1703 return (ret == 1) ? page : NULL;
1704}
1705#endif /* CONFIG_ELF_CORE */
1706
1707#ifdef CONFIG_MIGRATION
1708/*
1709 * Check whether all pages are pinnable, if so return number of pages. If some
1710 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1711 * pages were migrated, or if some pages were not successfully isolated.
1712 * Return negative error if migration fails.
1713 */
1714static long check_and_migrate_movable_pages(unsigned long nr_pages,
1715 struct page **pages,
1716 unsigned int gup_flags)
1717{
1718 unsigned long i;
1719 unsigned long isolation_error_count = 0;
1720 bool drain_allow = true;
1721 LIST_HEAD(movable_page_list);
1722 long ret = 0;
1723 struct page *prev_head = NULL;
1724 struct page *head;
1725 struct migration_target_control mtc = {
1726 .nid = NUMA_NO_NODE,
1727 .gfp_mask = GFP_USER | __GFP_NOWARN,
1728 };
1729
1730 for (i = 0; i < nr_pages; i++) {
1731 head = compound_head(pages[i]);
1732 if (head == prev_head)
1733 continue;
1734 prev_head = head;
1735 /*
1736 * If we get a movable page, since we are going to be pinning
1737 * these entries, try to move them out if possible.
1738 */
1739 if (!is_pinnable_page(head)) {
1740 if (PageHuge(head)) {
1741 if (!isolate_huge_page(head, &movable_page_list))
1742 isolation_error_count++;
1743 } else {
1744 if (!PageLRU(head) && drain_allow) {
1745 lru_add_drain_all();
1746 drain_allow = false;
1747 }
1748
1749 if (isolate_lru_page(head)) {
1750 isolation_error_count++;
1751 continue;
1752 }
1753 list_add_tail(&head->lru, &movable_page_list);
1754 mod_node_page_state(page_pgdat(head),
1755 NR_ISOLATED_ANON +
1756 page_is_file_lru(head),
1757 thp_nr_pages(head));
1758 }
1759 }
1760 }
1761
1762 /*
1763 * If list is empty, and no isolation errors, means that all pages are
1764 * in the correct zone.
1765 */
1766 if (list_empty(&movable_page_list) && !isolation_error_count)
1767 return nr_pages;
1768
1769 if (gup_flags & FOLL_PIN) {
1770 unpin_user_pages(pages, nr_pages);
1771 } else {
1772 for (i = 0; i < nr_pages; i++)
1773 put_page(pages[i]);
1774 }
1775 if (!list_empty(&movable_page_list)) {
1776 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1777 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1778 MR_LONGTERM_PIN);
1779 if (ret && !list_empty(&movable_page_list))
1780 putback_movable_pages(&movable_page_list);
1781 }
1782
1783 return ret > 0 ? -ENOMEM : ret;
1784}
1785#else
1786static long check_and_migrate_movable_pages(unsigned long nr_pages,
1787 struct page **pages,
1788 unsigned int gup_flags)
1789{
1790 return nr_pages;
1791}
1792#endif /* CONFIG_MIGRATION */
1793
1794/*
1795 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1796 * allows us to process the FOLL_LONGTERM flag.
1797 */
1798static long __gup_longterm_locked(struct mm_struct *mm,
1799 unsigned long start,
1800 unsigned long nr_pages,
1801 struct page **pages,
1802 struct vm_area_struct **vmas,
1803 unsigned int gup_flags)
1804{
1805 unsigned int flags;
1806 long rc;
1807
1808 if (!(gup_flags & FOLL_LONGTERM))
1809 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1810 NULL, gup_flags);
1811 flags = memalloc_pin_save();
1812 do {
1813 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1814 NULL, gup_flags);
1815 if (rc <= 0)
1816 break;
1817 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1818 } while (!rc);
1819 memalloc_pin_restore(flags);
1820
1821 return rc;
1822}
1823
1824static bool is_valid_gup_flags(unsigned int gup_flags)
1825{
1826 /*
1827 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1828 * never directly by the caller, so enforce that with an assertion:
1829 */
1830 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1831 return false;
1832 /*
1833 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1834 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1835 * FOLL_PIN.
1836 */
1837 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1838 return false;
1839
1840 return true;
1841}
1842
1843#ifdef CONFIG_MMU
1844static long __get_user_pages_remote(struct mm_struct *mm,
1845 unsigned long start, unsigned long nr_pages,
1846 unsigned int gup_flags, struct page **pages,
1847 struct vm_area_struct **vmas, int *locked)
1848{
1849 /*
1850 * Parts of FOLL_LONGTERM behavior are incompatible with
1851 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1852 * vmas. However, this only comes up if locked is set, and there are
1853 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1854 * allow what we can.
1855 */
1856 if (gup_flags & FOLL_LONGTERM) {
1857 if (WARN_ON_ONCE(locked))
1858 return -EINVAL;
1859 /*
1860 * This will check the vmas (even if our vmas arg is NULL)
1861 * and return -ENOTSUPP if DAX isn't allowed in this case:
1862 */
1863 return __gup_longterm_locked(mm, start, nr_pages, pages,
1864 vmas, gup_flags | FOLL_TOUCH |
1865 FOLL_REMOTE);
1866 }
1867
1868 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1869 locked,
1870 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1871}
1872
1873/**
1874 * get_user_pages_remote() - pin user pages in memory
1875 * @mm: mm_struct of target mm
1876 * @start: starting user address
1877 * @nr_pages: number of pages from start to pin
1878 * @gup_flags: flags modifying lookup behaviour
1879 * @pages: array that receives pointers to the pages pinned.
1880 * Should be at least nr_pages long. Or NULL, if caller
1881 * only intends to ensure the pages are faulted in.
1882 * @vmas: array of pointers to vmas corresponding to each page.
1883 * Or NULL if the caller does not require them.
1884 * @locked: pointer to lock flag indicating whether lock is held and
1885 * subsequently whether VM_FAULT_RETRY functionality can be
1886 * utilised. Lock must initially be held.
1887 *
1888 * Returns either number of pages pinned (which may be less than the
1889 * number requested), or an error. Details about the return value:
1890 *
1891 * -- If nr_pages is 0, returns 0.
1892 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1893 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1894 * pages pinned. Again, this may be less than nr_pages.
1895 *
1896 * The caller is responsible for releasing returned @pages, via put_page().
1897 *
1898 * @vmas are valid only as long as mmap_lock is held.
1899 *
1900 * Must be called with mmap_lock held for read or write.
1901 *
1902 * get_user_pages_remote walks a process's page tables and takes a reference
1903 * to each struct page that each user address corresponds to at a given
1904 * instant. That is, it takes the page that would be accessed if a user
1905 * thread accesses the given user virtual address at that instant.
1906 *
1907 * This does not guarantee that the page exists in the user mappings when
1908 * get_user_pages_remote returns, and there may even be a completely different
1909 * page there in some cases (eg. if mmapped pagecache has been invalidated
1910 * and subsequently re faulted). However it does guarantee that the page
1911 * won't be freed completely. And mostly callers simply care that the page
1912 * contains data that was valid *at some point in time*. Typically, an IO
1913 * or similar operation cannot guarantee anything stronger anyway because
1914 * locks can't be held over the syscall boundary.
1915 *
1916 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1917 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1918 * be called after the page is finished with, and before put_page is called.
1919 *
1920 * get_user_pages_remote is typically used for fewer-copy IO operations,
1921 * to get a handle on the memory by some means other than accesses
1922 * via the user virtual addresses. The pages may be submitted for
1923 * DMA to devices or accessed via their kernel linear mapping (via the
1924 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1925 *
1926 * See also get_user_pages_fast, for performance critical applications.
1927 *
1928 * get_user_pages_remote should be phased out in favor of
1929 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1930 * should use get_user_pages_remote because it cannot pass
1931 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1932 */
1933long get_user_pages_remote(struct mm_struct *mm,
1934 unsigned long start, unsigned long nr_pages,
1935 unsigned int gup_flags, struct page **pages,
1936 struct vm_area_struct **vmas, int *locked)
1937{
1938 if (!is_valid_gup_flags(gup_flags))
1939 return -EINVAL;
1940
1941 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1942 pages, vmas, locked);
1943}
1944EXPORT_SYMBOL(get_user_pages_remote);
1945
1946#else /* CONFIG_MMU */
1947long get_user_pages_remote(struct mm_struct *mm,
1948 unsigned long start, unsigned long nr_pages,
1949 unsigned int gup_flags, struct page **pages,
1950 struct vm_area_struct **vmas, int *locked)
1951{
1952 return 0;
1953}
1954
1955static long __get_user_pages_remote(struct mm_struct *mm,
1956 unsigned long start, unsigned long nr_pages,
1957 unsigned int gup_flags, struct page **pages,
1958 struct vm_area_struct **vmas, int *locked)
1959{
1960 return 0;
1961}
1962#endif /* !CONFIG_MMU */
1963
1964/**
1965 * get_user_pages() - pin user pages in memory
1966 * @start: starting user address
1967 * @nr_pages: number of pages from start to pin
1968 * @gup_flags: flags modifying lookup behaviour
1969 * @pages: array that receives pointers to the pages pinned.
1970 * Should be at least nr_pages long. Or NULL, if caller
1971 * only intends to ensure the pages are faulted in.
1972 * @vmas: array of pointers to vmas corresponding to each page.
1973 * Or NULL if the caller does not require them.
1974 *
1975 * This is the same as get_user_pages_remote(), just with a less-flexible
1976 * calling convention where we assume that the mm being operated on belongs to
1977 * the current task, and doesn't allow passing of a locked parameter. We also
1978 * obviously don't pass FOLL_REMOTE in here.
1979 */
1980long get_user_pages(unsigned long start, unsigned long nr_pages,
1981 unsigned int gup_flags, struct page **pages,
1982 struct vm_area_struct **vmas)
1983{
1984 if (!is_valid_gup_flags(gup_flags))
1985 return -EINVAL;
1986
1987 return __gup_longterm_locked(current->mm, start, nr_pages,
1988 pages, vmas, gup_flags | FOLL_TOUCH);
1989}
1990EXPORT_SYMBOL(get_user_pages);
1991
1992/**
1993 * get_user_pages_locked() - variant of get_user_pages()
1994 *
1995 * @start: starting user address
1996 * @nr_pages: number of pages from start to pin
1997 * @gup_flags: flags modifying lookup behaviour
1998 * @pages: array that receives pointers to the pages pinned.
1999 * Should be at least nr_pages long. Or NULL, if caller
2000 * only intends to ensure the pages are faulted in.
2001 * @locked: pointer to lock flag indicating whether lock is held and
2002 * subsequently whether VM_FAULT_RETRY functionality can be
2003 * utilised. Lock must initially be held.
2004 *
2005 * It is suitable to replace the form:
2006 *
2007 * mmap_read_lock(mm);
2008 * do_something()
2009 * get_user_pages(mm, ..., pages, NULL);
2010 * mmap_read_unlock(mm);
2011 *
2012 * to:
2013 *
2014 * int locked = 1;
2015 * mmap_read_lock(mm);
2016 * do_something()
2017 * get_user_pages_locked(mm, ..., pages, &locked);
2018 * if (locked)
2019 * mmap_read_unlock(mm);
2020 *
2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022 * paths better by using either get_user_pages_locked() or
2023 * get_user_pages_unlocked().
2024 *
2025 */
2026long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 unsigned int gup_flags, struct page **pages,
2028 int *locked)
2029{
2030 /*
2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 * vmas. As there are no users of this flag in this call we simply
2034 * disallow this option for now.
2035 */
2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2037 return -EINVAL;
2038 /*
2039 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2040 * never directly by the caller, so enforce that:
2041 */
2042 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2043 return -EINVAL;
2044
2045 return __get_user_pages_locked(current->mm, start, nr_pages,
2046 pages, NULL, locked,
2047 gup_flags | FOLL_TOUCH);
2048}
2049EXPORT_SYMBOL(get_user_pages_locked);
2050
2051/*
2052 * get_user_pages_unlocked() is suitable to replace the form:
2053 *
2054 * mmap_read_lock(mm);
2055 * get_user_pages(mm, ..., pages, NULL);
2056 * mmap_read_unlock(mm);
2057 *
2058 * with:
2059 *
2060 * get_user_pages_unlocked(mm, ..., pages);
2061 *
2062 * It is functionally equivalent to get_user_pages_fast so
2063 * get_user_pages_fast should be used instead if specific gup_flags
2064 * (e.g. FOLL_FORCE) are not required.
2065 */
2066long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2067 struct page **pages, unsigned int gup_flags)
2068{
2069 struct mm_struct *mm = current->mm;
2070 int locked = 1;
2071 long ret;
2072
2073 /*
2074 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2075 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2076 * vmas. As there are no users of this flag in this call we simply
2077 * disallow this option for now.
2078 */
2079 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2080 return -EINVAL;
2081
2082 mmap_read_lock(mm);
2083 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2084 &locked, gup_flags | FOLL_TOUCH);
2085 if (locked)
2086 mmap_read_unlock(mm);
2087 return ret;
2088}
2089EXPORT_SYMBOL(get_user_pages_unlocked);
2090
2091/*
2092 * Fast GUP
2093 *
2094 * get_user_pages_fast attempts to pin user pages by walking the page
2095 * tables directly and avoids taking locks. Thus the walker needs to be
2096 * protected from page table pages being freed from under it, and should
2097 * block any THP splits.
2098 *
2099 * One way to achieve this is to have the walker disable interrupts, and
2100 * rely on IPIs from the TLB flushing code blocking before the page table
2101 * pages are freed. This is unsuitable for architectures that do not need
2102 * to broadcast an IPI when invalidating TLBs.
2103 *
2104 * Another way to achieve this is to batch up page table containing pages
2105 * belonging to more than one mm_user, then rcu_sched a callback to free those
2106 * pages. Disabling interrupts will allow the fast_gup walker to both block
2107 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2108 * (which is a relatively rare event). The code below adopts this strategy.
2109 *
2110 * Before activating this code, please be aware that the following assumptions
2111 * are currently made:
2112 *
2113 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2114 * free pages containing page tables or TLB flushing requires IPI broadcast.
2115 *
2116 * *) ptes can be read atomically by the architecture.
2117 *
2118 * *) access_ok is sufficient to validate userspace address ranges.
2119 *
2120 * The last two assumptions can be relaxed by the addition of helper functions.
2121 *
2122 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2123 */
2124#ifdef CONFIG_HAVE_FAST_GUP
2125
2126static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2127 unsigned int flags,
2128 struct page **pages)
2129{
2130 while ((*nr) - nr_start) {
2131 struct page *page = pages[--(*nr)];
2132
2133 ClearPageReferenced(page);
2134 if (flags & FOLL_PIN)
2135 unpin_user_page(page);
2136 else
2137 put_page(page);
2138 }
2139}
2140
2141#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2142static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2143 unsigned int flags, struct page **pages, int *nr)
2144{
2145 struct dev_pagemap *pgmap = NULL;
2146 int nr_start = *nr, ret = 0;
2147 pte_t *ptep, *ptem;
2148
2149 ptem = ptep = pte_offset_map(&pmd, addr);
2150 do {
2151 pte_t pte = ptep_get_lockless(ptep);
2152 struct page *head, *page;
2153
2154 /*
2155 * Similar to the PMD case below, NUMA hinting must take slow
2156 * path using the pte_protnone check.
2157 */
2158 if (pte_protnone(pte))
2159 goto pte_unmap;
2160
2161 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2162 goto pte_unmap;
2163
2164 if (pte_devmap(pte)) {
2165 if (unlikely(flags & FOLL_LONGTERM))
2166 goto pte_unmap;
2167
2168 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2169 if (unlikely(!pgmap)) {
2170 undo_dev_pagemap(nr, nr_start, flags, pages);
2171 goto pte_unmap;
2172 }
2173 } else if (pte_special(pte))
2174 goto pte_unmap;
2175
2176 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2177 page = pte_page(pte);
2178
2179 head = try_grab_compound_head(page, 1, flags);
2180 if (!head)
2181 goto pte_unmap;
2182
2183 if (unlikely(page_is_secretmem(page))) {
2184 put_compound_head(head, 1, flags);
2185 goto pte_unmap;
2186 }
2187
2188 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2189 put_compound_head(head, 1, flags);
2190 goto pte_unmap;
2191 }
2192
2193 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2194
2195 /*
2196 * We need to make the page accessible if and only if we are
2197 * going to access its content (the FOLL_PIN case). Please
2198 * see Documentation/core-api/pin_user_pages.rst for
2199 * details.
2200 */
2201 if (flags & FOLL_PIN) {
2202 ret = arch_make_page_accessible(page);
2203 if (ret) {
2204 unpin_user_page(page);
2205 goto pte_unmap;
2206 }
2207 }
2208 SetPageReferenced(page);
2209 pages[*nr] = page;
2210 (*nr)++;
2211
2212 } while (ptep++, addr += PAGE_SIZE, addr != end);
2213
2214 ret = 1;
2215
2216pte_unmap:
2217 if (pgmap)
2218 put_dev_pagemap(pgmap);
2219 pte_unmap(ptem);
2220 return ret;
2221}
2222#else
2223
2224/*
2225 * If we can't determine whether or not a pte is special, then fail immediately
2226 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2227 * to be special.
2228 *
2229 * For a futex to be placed on a THP tail page, get_futex_key requires a
2230 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2231 * useful to have gup_huge_pmd even if we can't operate on ptes.
2232 */
2233static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2234 unsigned int flags, struct page **pages, int *nr)
2235{
2236 return 0;
2237}
2238#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2239
2240#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2241static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2242 unsigned long end, unsigned int flags,
2243 struct page **pages, int *nr)
2244{
2245 int nr_start = *nr;
2246 struct dev_pagemap *pgmap = NULL;
2247
2248 do {
2249 struct page *page = pfn_to_page(pfn);
2250
2251 pgmap = get_dev_pagemap(pfn, pgmap);
2252 if (unlikely(!pgmap)) {
2253 undo_dev_pagemap(nr, nr_start, flags, pages);
2254 return 0;
2255 }
2256 SetPageReferenced(page);
2257 pages[*nr] = page;
2258 if (unlikely(!try_grab_page(page, flags))) {
2259 undo_dev_pagemap(nr, nr_start, flags, pages);
2260 return 0;
2261 }
2262 (*nr)++;
2263 pfn++;
2264 } while (addr += PAGE_SIZE, addr != end);
2265
2266 if (pgmap)
2267 put_dev_pagemap(pgmap);
2268 return 1;
2269}
2270
2271static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2272 unsigned long end, unsigned int flags,
2273 struct page **pages, int *nr)
2274{
2275 unsigned long fault_pfn;
2276 int nr_start = *nr;
2277
2278 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2279 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2280 return 0;
2281
2282 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2283 undo_dev_pagemap(nr, nr_start, flags, pages);
2284 return 0;
2285 }
2286 return 1;
2287}
2288
2289static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2290 unsigned long end, unsigned int flags,
2291 struct page **pages, int *nr)
2292{
2293 unsigned long fault_pfn;
2294 int nr_start = *nr;
2295
2296 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2297 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2298 return 0;
2299
2300 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2301 undo_dev_pagemap(nr, nr_start, flags, pages);
2302 return 0;
2303 }
2304 return 1;
2305}
2306#else
2307static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2308 unsigned long end, unsigned int flags,
2309 struct page **pages, int *nr)
2310{
2311 BUILD_BUG();
2312 return 0;
2313}
2314
2315static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2316 unsigned long end, unsigned int flags,
2317 struct page **pages, int *nr)
2318{
2319 BUILD_BUG();
2320 return 0;
2321}
2322#endif
2323
2324static int record_subpages(struct page *page, unsigned long addr,
2325 unsigned long end, struct page **pages)
2326{
2327 int nr;
2328
2329 for (nr = 0; addr != end; addr += PAGE_SIZE)
2330 pages[nr++] = page++;
2331
2332 return nr;
2333}
2334
2335#ifdef CONFIG_ARCH_HAS_HUGEPD
2336static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2337 unsigned long sz)
2338{
2339 unsigned long __boundary = (addr + sz) & ~(sz-1);
2340 return (__boundary - 1 < end - 1) ? __boundary : end;
2341}
2342
2343static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2344 unsigned long end, unsigned int flags,
2345 struct page **pages, int *nr)
2346{
2347 unsigned long pte_end;
2348 struct page *head, *page;
2349 pte_t pte;
2350 int refs;
2351
2352 pte_end = (addr + sz) & ~(sz-1);
2353 if (pte_end < end)
2354 end = pte_end;
2355
2356 pte = huge_ptep_get(ptep);
2357
2358 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2359 return 0;
2360
2361 /* hugepages are never "special" */
2362 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2363
2364 head = pte_page(pte);
2365 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2366 refs = record_subpages(page, addr, end, pages + *nr);
2367
2368 head = try_grab_compound_head(head, refs, flags);
2369 if (!head)
2370 return 0;
2371
2372 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2373 put_compound_head(head, refs, flags);
2374 return 0;
2375 }
2376
2377 *nr += refs;
2378 SetPageReferenced(head);
2379 return 1;
2380}
2381
2382static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2383 unsigned int pdshift, unsigned long end, unsigned int flags,
2384 struct page **pages, int *nr)
2385{
2386 pte_t *ptep;
2387 unsigned long sz = 1UL << hugepd_shift(hugepd);
2388 unsigned long next;
2389
2390 ptep = hugepte_offset(hugepd, addr, pdshift);
2391 do {
2392 next = hugepte_addr_end(addr, end, sz);
2393 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2394 return 0;
2395 } while (ptep++, addr = next, addr != end);
2396
2397 return 1;
2398}
2399#else
2400static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2401 unsigned int pdshift, unsigned long end, unsigned int flags,
2402 struct page **pages, int *nr)
2403{
2404 return 0;
2405}
2406#endif /* CONFIG_ARCH_HAS_HUGEPD */
2407
2408static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2409 unsigned long end, unsigned int flags,
2410 struct page **pages, int *nr)
2411{
2412 struct page *head, *page;
2413 int refs;
2414
2415 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2416 return 0;
2417
2418 if (pmd_devmap(orig)) {
2419 if (unlikely(flags & FOLL_LONGTERM))
2420 return 0;
2421 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2422 pages, nr);
2423 }
2424
2425 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2426 refs = record_subpages(page, addr, end, pages + *nr);
2427
2428 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2429 if (!head)
2430 return 0;
2431
2432 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2433 put_compound_head(head, refs, flags);
2434 return 0;
2435 }
2436
2437 *nr += refs;
2438 SetPageReferenced(head);
2439 return 1;
2440}
2441
2442static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2443 unsigned long end, unsigned int flags,
2444 struct page **pages, int *nr)
2445{
2446 struct page *head, *page;
2447 int refs;
2448
2449 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2450 return 0;
2451
2452 if (pud_devmap(orig)) {
2453 if (unlikely(flags & FOLL_LONGTERM))
2454 return 0;
2455 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2456 pages, nr);
2457 }
2458
2459 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2460 refs = record_subpages(page, addr, end, pages + *nr);
2461
2462 head = try_grab_compound_head(pud_page(orig), refs, flags);
2463 if (!head)
2464 return 0;
2465
2466 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2467 put_compound_head(head, refs, flags);
2468 return 0;
2469 }
2470
2471 *nr += refs;
2472 SetPageReferenced(head);
2473 return 1;
2474}
2475
2476static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2477 unsigned long end, unsigned int flags,
2478 struct page **pages, int *nr)
2479{
2480 int refs;
2481 struct page *head, *page;
2482
2483 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2484 return 0;
2485
2486 BUILD_BUG_ON(pgd_devmap(orig));
2487
2488 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2489 refs = record_subpages(page, addr, end, pages + *nr);
2490
2491 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2492 if (!head)
2493 return 0;
2494
2495 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2496 put_compound_head(head, refs, flags);
2497 return 0;
2498 }
2499
2500 *nr += refs;
2501 SetPageReferenced(head);
2502 return 1;
2503}
2504
2505static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2506 unsigned int flags, struct page **pages, int *nr)
2507{
2508 unsigned long next;
2509 pmd_t *pmdp;
2510
2511 pmdp = pmd_offset_lockless(pudp, pud, addr);
2512 do {
2513 pmd_t pmd = READ_ONCE(*pmdp);
2514
2515 next = pmd_addr_end(addr, end);
2516 if (!pmd_present(pmd))
2517 return 0;
2518
2519 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2520 pmd_devmap(pmd))) {
2521 /*
2522 * NUMA hinting faults need to be handled in the GUP
2523 * slowpath for accounting purposes and so that they
2524 * can be serialised against THP migration.
2525 */
2526 if (pmd_protnone(pmd))
2527 return 0;
2528
2529 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2530 pages, nr))
2531 return 0;
2532
2533 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2534 /*
2535 * architecture have different format for hugetlbfs
2536 * pmd format and THP pmd format
2537 */
2538 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2539 PMD_SHIFT, next, flags, pages, nr))
2540 return 0;
2541 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2542 return 0;
2543 } while (pmdp++, addr = next, addr != end);
2544
2545 return 1;
2546}
2547
2548static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2549 unsigned int flags, struct page **pages, int *nr)
2550{
2551 unsigned long next;
2552 pud_t *pudp;
2553
2554 pudp = pud_offset_lockless(p4dp, p4d, addr);
2555 do {
2556 pud_t pud = READ_ONCE(*pudp);
2557
2558 next = pud_addr_end(addr, end);
2559 if (unlikely(!pud_present(pud)))
2560 return 0;
2561 if (unlikely(pud_huge(pud))) {
2562 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2563 pages, nr))
2564 return 0;
2565 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2566 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2567 PUD_SHIFT, next, flags, pages, nr))
2568 return 0;
2569 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2570 return 0;
2571 } while (pudp++, addr = next, addr != end);
2572
2573 return 1;
2574}
2575
2576static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2577 unsigned int flags, struct page **pages, int *nr)
2578{
2579 unsigned long next;
2580 p4d_t *p4dp;
2581
2582 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2583 do {
2584 p4d_t p4d = READ_ONCE(*p4dp);
2585
2586 next = p4d_addr_end(addr, end);
2587 if (p4d_none(p4d))
2588 return 0;
2589 BUILD_BUG_ON(p4d_huge(p4d));
2590 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2591 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2592 P4D_SHIFT, next, flags, pages, nr))
2593 return 0;
2594 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2595 return 0;
2596 } while (p4dp++, addr = next, addr != end);
2597
2598 return 1;
2599}
2600
2601static void gup_pgd_range(unsigned long addr, unsigned long end,
2602 unsigned int flags, struct page **pages, int *nr)
2603{
2604 unsigned long next;
2605 pgd_t *pgdp;
2606
2607 pgdp = pgd_offset(current->mm, addr);
2608 do {
2609 pgd_t pgd = READ_ONCE(*pgdp);
2610
2611 next = pgd_addr_end(addr, end);
2612 if (pgd_none(pgd))
2613 return;
2614 if (unlikely(pgd_huge(pgd))) {
2615 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2616 pages, nr))
2617 return;
2618 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2619 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2620 PGDIR_SHIFT, next, flags, pages, nr))
2621 return;
2622 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2623 return;
2624 } while (pgdp++, addr = next, addr != end);
2625}
2626#else
2627static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2628 unsigned int flags, struct page **pages, int *nr)
2629{
2630}
2631#endif /* CONFIG_HAVE_FAST_GUP */
2632
2633#ifndef gup_fast_permitted
2634/*
2635 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2636 * we need to fall back to the slow version:
2637 */
2638static bool gup_fast_permitted(unsigned long start, unsigned long end)
2639{
2640 return true;
2641}
2642#endif
2643
2644static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2645 unsigned int gup_flags, struct page **pages)
2646{
2647 int ret;
2648
2649 /*
2650 * FIXME: FOLL_LONGTERM does not work with
2651 * get_user_pages_unlocked() (see comments in that function)
2652 */
2653 if (gup_flags & FOLL_LONGTERM) {
2654 mmap_read_lock(current->mm);
2655 ret = __gup_longterm_locked(current->mm,
2656 start, nr_pages,
2657 pages, NULL, gup_flags);
2658 mmap_read_unlock(current->mm);
2659 } else {
2660 ret = get_user_pages_unlocked(start, nr_pages,
2661 pages, gup_flags);
2662 }
2663
2664 return ret;
2665}
2666
2667static unsigned long lockless_pages_from_mm(unsigned long start,
2668 unsigned long end,
2669 unsigned int gup_flags,
2670 struct page **pages)
2671{
2672 unsigned long flags;
2673 int nr_pinned = 0;
2674 unsigned seq;
2675
2676 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2677 !gup_fast_permitted(start, end))
2678 return 0;
2679
2680 if (gup_flags & FOLL_PIN) {
2681 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2682 if (seq & 1)
2683 return 0;
2684 }
2685
2686 /*
2687 * Disable interrupts. The nested form is used, in order to allow full,
2688 * general purpose use of this routine.
2689 *
2690 * With interrupts disabled, we block page table pages from being freed
2691 * from under us. See struct mmu_table_batch comments in
2692 * include/asm-generic/tlb.h for more details.
2693 *
2694 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2695 * that come from THPs splitting.
2696 */
2697 local_irq_save(flags);
2698 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2699 local_irq_restore(flags);
2700
2701 /*
2702 * When pinning pages for DMA there could be a concurrent write protect
2703 * from fork() via copy_page_range(), in this case always fail fast GUP.
2704 */
2705 if (gup_flags & FOLL_PIN) {
2706 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2707 unpin_user_pages(pages, nr_pinned);
2708 return 0;
2709 }
2710 }
2711 return nr_pinned;
2712}
2713
2714static int internal_get_user_pages_fast(unsigned long start,
2715 unsigned long nr_pages,
2716 unsigned int gup_flags,
2717 struct page **pages)
2718{
2719 unsigned long len, end;
2720 unsigned long nr_pinned;
2721 int ret;
2722
2723 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2724 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2725 FOLL_FAST_ONLY)))
2726 return -EINVAL;
2727
2728 if (gup_flags & FOLL_PIN)
2729 mm_set_has_pinned_flag(¤t->mm->flags);
2730
2731 if (!(gup_flags & FOLL_FAST_ONLY))
2732 might_lock_read(¤t->mm->mmap_lock);
2733
2734 start = untagged_addr(start) & PAGE_MASK;
2735 len = nr_pages << PAGE_SHIFT;
2736 if (check_add_overflow(start, len, &end))
2737 return 0;
2738 if (unlikely(!access_ok((void __user *)start, len)))
2739 return -EFAULT;
2740
2741 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2742 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2743 return nr_pinned;
2744
2745 /* Slow path: try to get the remaining pages with get_user_pages */
2746 start += nr_pinned << PAGE_SHIFT;
2747 pages += nr_pinned;
2748 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2749 pages);
2750 if (ret < 0) {
2751 /*
2752 * The caller has to unpin the pages we already pinned so
2753 * returning -errno is not an option
2754 */
2755 if (nr_pinned)
2756 return nr_pinned;
2757 return ret;
2758 }
2759 return ret + nr_pinned;
2760}
2761
2762/**
2763 * get_user_pages_fast_only() - pin user pages in memory
2764 * @start: starting user address
2765 * @nr_pages: number of pages from start to pin
2766 * @gup_flags: flags modifying pin behaviour
2767 * @pages: array that receives pointers to the pages pinned.
2768 * Should be at least nr_pages long.
2769 *
2770 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2771 * the regular GUP.
2772 * Note a difference with get_user_pages_fast: this always returns the
2773 * number of pages pinned, 0 if no pages were pinned.
2774 *
2775 * If the architecture does not support this function, simply return with no
2776 * pages pinned.
2777 *
2778 * Careful, careful! COW breaking can go either way, so a non-write
2779 * access can get ambiguous page results. If you call this function without
2780 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2781 */
2782int get_user_pages_fast_only(unsigned long start, int nr_pages,
2783 unsigned int gup_flags, struct page **pages)
2784{
2785 int nr_pinned;
2786 /*
2787 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2788 * because gup fast is always a "pin with a +1 page refcount" request.
2789 *
2790 * FOLL_FAST_ONLY is required in order to match the API description of
2791 * this routine: no fall back to regular ("slow") GUP.
2792 */
2793 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2794
2795 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2796 pages);
2797
2798 /*
2799 * As specified in the API description above, this routine is not
2800 * allowed to return negative values. However, the common core
2801 * routine internal_get_user_pages_fast() *can* return -errno.
2802 * Therefore, correct for that here:
2803 */
2804 if (nr_pinned < 0)
2805 nr_pinned = 0;
2806
2807 return nr_pinned;
2808}
2809EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2810
2811/**
2812 * get_user_pages_fast() - pin user pages in memory
2813 * @start: starting user address
2814 * @nr_pages: number of pages from start to pin
2815 * @gup_flags: flags modifying pin behaviour
2816 * @pages: array that receives pointers to the pages pinned.
2817 * Should be at least nr_pages long.
2818 *
2819 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2820 * If not successful, it will fall back to taking the lock and
2821 * calling get_user_pages().
2822 *
2823 * Returns number of pages pinned. This may be fewer than the number requested.
2824 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2825 * -errno.
2826 */
2827int get_user_pages_fast(unsigned long start, int nr_pages,
2828 unsigned int gup_flags, struct page **pages)
2829{
2830 if (!is_valid_gup_flags(gup_flags))
2831 return -EINVAL;
2832
2833 /*
2834 * The caller may or may not have explicitly set FOLL_GET; either way is
2835 * OK. However, internally (within mm/gup.c), gup fast variants must set
2836 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2837 * request.
2838 */
2839 gup_flags |= FOLL_GET;
2840 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2841}
2842EXPORT_SYMBOL_GPL(get_user_pages_fast);
2843
2844/**
2845 * pin_user_pages_fast() - pin user pages in memory without taking locks
2846 *
2847 * @start: starting user address
2848 * @nr_pages: number of pages from start to pin
2849 * @gup_flags: flags modifying pin behaviour
2850 * @pages: array that receives pointers to the pages pinned.
2851 * Should be at least nr_pages long.
2852 *
2853 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2854 * get_user_pages_fast() for documentation on the function arguments, because
2855 * the arguments here are identical.
2856 *
2857 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2858 * see Documentation/core-api/pin_user_pages.rst for further details.
2859 */
2860int pin_user_pages_fast(unsigned long start, int nr_pages,
2861 unsigned int gup_flags, struct page **pages)
2862{
2863 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2864 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2865 return -EINVAL;
2866
2867 gup_flags |= FOLL_PIN;
2868 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2869}
2870EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2871
2872/*
2873 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2874 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2875 *
2876 * The API rules are the same, too: no negative values may be returned.
2877 */
2878int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2879 unsigned int gup_flags, struct page **pages)
2880{
2881 int nr_pinned;
2882
2883 /*
2884 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2885 * rules require returning 0, rather than -errno:
2886 */
2887 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2888 return 0;
2889 /*
2890 * FOLL_FAST_ONLY is required in order to match the API description of
2891 * this routine: no fall back to regular ("slow") GUP.
2892 */
2893 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2894 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2895 pages);
2896 /*
2897 * This routine is not allowed to return negative values. However,
2898 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2899 * correct for that here:
2900 */
2901 if (nr_pinned < 0)
2902 nr_pinned = 0;
2903
2904 return nr_pinned;
2905}
2906EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2907
2908/**
2909 * pin_user_pages_remote() - pin pages of a remote process
2910 *
2911 * @mm: mm_struct of target mm
2912 * @start: starting user address
2913 * @nr_pages: number of pages from start to pin
2914 * @gup_flags: flags modifying lookup behaviour
2915 * @pages: array that receives pointers to the pages pinned.
2916 * Should be at least nr_pages long. Or NULL, if caller
2917 * only intends to ensure the pages are faulted in.
2918 * @vmas: array of pointers to vmas corresponding to each page.
2919 * Or NULL if the caller does not require them.
2920 * @locked: pointer to lock flag indicating whether lock is held and
2921 * subsequently whether VM_FAULT_RETRY functionality can be
2922 * utilised. Lock must initially be held.
2923 *
2924 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2925 * get_user_pages_remote() for documentation on the function arguments, because
2926 * the arguments here are identical.
2927 *
2928 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2929 * see Documentation/core-api/pin_user_pages.rst for details.
2930 */
2931long pin_user_pages_remote(struct mm_struct *mm,
2932 unsigned long start, unsigned long nr_pages,
2933 unsigned int gup_flags, struct page **pages,
2934 struct vm_area_struct **vmas, int *locked)
2935{
2936 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2937 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2938 return -EINVAL;
2939
2940 gup_flags |= FOLL_PIN;
2941 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2942 pages, vmas, locked);
2943}
2944EXPORT_SYMBOL(pin_user_pages_remote);
2945
2946/**
2947 * pin_user_pages() - pin user pages in memory for use by other devices
2948 *
2949 * @start: starting user address
2950 * @nr_pages: number of pages from start to pin
2951 * @gup_flags: flags modifying lookup behaviour
2952 * @pages: array that receives pointers to the pages pinned.
2953 * Should be at least nr_pages long. Or NULL, if caller
2954 * only intends to ensure the pages are faulted in.
2955 * @vmas: array of pointers to vmas corresponding to each page.
2956 * Or NULL if the caller does not require them.
2957 *
2958 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2959 * FOLL_PIN is set.
2960 *
2961 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2962 * see Documentation/core-api/pin_user_pages.rst for details.
2963 */
2964long pin_user_pages(unsigned long start, unsigned long nr_pages,
2965 unsigned int gup_flags, struct page **pages,
2966 struct vm_area_struct **vmas)
2967{
2968 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2969 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2970 return -EINVAL;
2971
2972 gup_flags |= FOLL_PIN;
2973 return __gup_longterm_locked(current->mm, start, nr_pages,
2974 pages, vmas, gup_flags);
2975}
2976EXPORT_SYMBOL(pin_user_pages);
2977
2978/*
2979 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2980 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2981 * FOLL_PIN and rejects FOLL_GET.
2982 */
2983long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2984 struct page **pages, unsigned int gup_flags)
2985{
2986 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2987 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2988 return -EINVAL;
2989
2990 gup_flags |= FOLL_PIN;
2991 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2992}
2993EXPORT_SYMBOL(pin_user_pages_unlocked);
2994
2995/*
2996 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2997 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2998 * FOLL_GET.
2999 */
3000long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3001 unsigned int gup_flags, struct page **pages,
3002 int *locked)
3003{
3004 /*
3005 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3006 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3007 * vmas. As there are no users of this flag in this call we simply
3008 * disallow this option for now.
3009 */
3010 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3011 return -EINVAL;
3012
3013 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3014 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3015 return -EINVAL;
3016
3017 gup_flags |= FOLL_PIN;
3018 return __get_user_pages_locked(current->mm, start, nr_pages,
3019 pages, NULL, locked,
3020 gup_flags | FOLL_TOUCH);
3021}
3022EXPORT_SYMBOL(pin_user_pages_locked);
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
7#include <linux/mm.h>
8#include <linux/memremap.h>
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/secretmem.h>
14
15#include <linux/sched/signal.h>
16#include <linux/rwsem.h>
17#include <linux/hugetlb.h>
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
21#include <linux/shmem_fs.h>
22
23#include <asm/mmu_context.h>
24#include <asm/tlbflush.h>
25
26#include "internal.h"
27
28struct follow_page_context {
29 struct dev_pagemap *pgmap;
30 unsigned int page_mask;
31};
32
33static inline void sanity_check_pinned_pages(struct page **pages,
34 unsigned long npages)
35{
36 if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 return;
38
39 /*
40 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 * can no longer turn them possibly shared and PageAnonExclusive() will
42 * stick around until the page is freed.
43 *
44 * We'd like to verify that our pinned anonymous pages are still mapped
45 * exclusively. The issue with anon THP is that we don't know how
46 * they are/were mapped when pinning them. However, for anon
47 * THP we can assume that either the given page (PTE-mapped THP) or
48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 * neither is the case, there is certainly something wrong.
50 */
51 for (; npages; npages--, pages++) {
52 struct page *page = *pages;
53 struct folio *folio = page_folio(page);
54
55 if (is_zero_page(page) ||
56 !folio_test_anon(folio))
57 continue;
58 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 else
61 /* Either a PTE-mapped or a PMD-mapped THP. */
62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 !PageAnonExclusive(page), page);
64 }
65}
66
67/*
68 * Return the folio with ref appropriately incremented,
69 * or NULL if that failed.
70 */
71static inline struct folio *try_get_folio(struct page *page, int refs)
72{
73 struct folio *folio;
74
75retry:
76 folio = page_folio(page);
77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 return NULL;
79 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 return NULL;
81
82 /*
83 * At this point we have a stable reference to the folio; but it
84 * could be that between calling page_folio() and the refcount
85 * increment, the folio was split, in which case we'd end up
86 * holding a reference on a folio that has nothing to do with the page
87 * we were given anymore.
88 * So now that the folio is stable, recheck that the page still
89 * belongs to this folio.
90 */
91 if (unlikely(page_folio(page) != folio)) {
92 if (!put_devmap_managed_page_refs(&folio->page, refs))
93 folio_put_refs(folio, refs);
94 goto retry;
95 }
96
97 return folio;
98}
99
100/**
101 * try_grab_folio() - Attempt to get or pin a folio.
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the folio's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
113 * FOLL_GET: folio's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on large folios: folio's refcount will be incremented by
116 * @refs, and its pincount will be incremented by @refs.
117 *
118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
119 * @refs * GUP_PIN_COUNTING_BIAS.
120 *
121 * Return: The folio containing @page (with refcount appropriately
122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
124 * a likely bug in the caller, so a warning is also emitted.
125 */
126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127{
128 struct folio *folio;
129
130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 return NULL;
132
133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 return NULL;
135
136 if (flags & FOLL_GET)
137 return try_get_folio(page, refs);
138
139 /* FOLL_PIN is set */
140
141 /*
142 * Don't take a pin on the zero page - it's not going anywhere
143 * and it is used in a *lot* of places.
144 */
145 if (is_zero_page(page))
146 return page_folio(page);
147
148 folio = try_get_folio(page, refs);
149 if (!folio)
150 return NULL;
151
152 /*
153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 * right zone, so fail and let the caller fall back to the slow
155 * path.
156 */
157 if (unlikely((flags & FOLL_LONGTERM) &&
158 !folio_is_longterm_pinnable(folio))) {
159 if (!put_devmap_managed_page_refs(&folio->page, refs))
160 folio_put_refs(folio, refs);
161 return NULL;
162 }
163
164 /*
165 * When pinning a large folio, use an exact count to track it.
166 *
167 * However, be sure to *also* increment the normal folio
168 * refcount field at least once, so that the folio really
169 * is pinned. That's why the refcount from the earlier
170 * try_get_folio() is left intact.
171 */
172 if (folio_test_large(folio))
173 atomic_add(refs, &folio->_pincount);
174 else
175 folio_ref_add(folio,
176 refs * (GUP_PIN_COUNTING_BIAS - 1));
177 /*
178 * Adjust the pincount before re-checking the PTE for changes.
179 * This is essentially a smp_mb() and is paired with a memory
180 * barrier in folio_try_share_anon_rmap_*().
181 */
182 smp_mb__after_atomic();
183
184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185
186 return folio;
187}
188
189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190{
191 if (flags & FOLL_PIN) {
192 if (is_zero_folio(folio))
193 return;
194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 if (folio_test_large(folio))
196 atomic_sub(refs, &folio->_pincount);
197 else
198 refs *= GUP_PIN_COUNTING_BIAS;
199 }
200
201 if (!put_devmap_managed_page_refs(&folio->page, refs))
202 folio_put_refs(folio, refs);
203}
204
205/**
206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207 * @page: pointer to page to be grabbed
208 * @flags: gup flags: these are the FOLL_* flag values.
209 *
210 * This might not do anything at all, depending on the flags argument.
211 *
212 * "grab" names in this file mean, "look at flags to decide whether to use
213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214 *
215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216 * time. Cases: please see the try_grab_folio() documentation, with
217 * "refs=1".
218 *
219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221 *
222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not
223 * be grabbed.
224 */
225int __must_check try_grab_page(struct page *page, unsigned int flags)
226{
227 struct folio *folio = page_folio(page);
228
229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 return -ENOMEM;
231
232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 return -EREMOTEIO;
234
235 if (flags & FOLL_GET)
236 folio_ref_inc(folio);
237 else if (flags & FOLL_PIN) {
238 /*
239 * Don't take a pin on the zero page - it's not going anywhere
240 * and it is used in a *lot* of places.
241 */
242 if (is_zero_page(page))
243 return 0;
244
245 /*
246 * Similar to try_grab_folio(): be sure to *also*
247 * increment the normal page refcount field at least once,
248 * so that the page really is pinned.
249 */
250 if (folio_test_large(folio)) {
251 folio_ref_add(folio, 1);
252 atomic_add(1, &folio->_pincount);
253 } else {
254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 }
256
257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 }
259
260 return 0;
261}
262
263/**
264 * unpin_user_page() - release a dma-pinned page
265 * @page: pointer to page to be released
266 *
267 * Pages that were pinned via pin_user_pages*() must be released via either
268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269 * that such pages can be separately tracked and uniquely handled. In
270 * particular, interactions with RDMA and filesystems need special handling.
271 */
272void unpin_user_page(struct page *page)
273{
274 sanity_check_pinned_pages(&page, 1);
275 gup_put_folio(page_folio(page), 1, FOLL_PIN);
276}
277EXPORT_SYMBOL(unpin_user_page);
278
279/**
280 * folio_add_pin - Try to get an additional pin on a pinned folio
281 * @folio: The folio to be pinned
282 *
283 * Get an additional pin on a folio we already have a pin on. Makes no change
284 * if the folio is a zero_page.
285 */
286void folio_add_pin(struct folio *folio)
287{
288 if (is_zero_folio(folio))
289 return;
290
291 /*
292 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 * page refcount field at least once, so that the page really is
294 * pinned.
295 */
296 if (folio_test_large(folio)) {
297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 folio_ref_inc(folio);
299 atomic_inc(&folio->_pincount);
300 } else {
301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 }
304}
305
306static inline struct folio *gup_folio_range_next(struct page *start,
307 unsigned long npages, unsigned long i, unsigned int *ntails)
308{
309 struct page *next = nth_page(start, i);
310 struct folio *folio = page_folio(next);
311 unsigned int nr = 1;
312
313 if (folio_test_large(folio))
314 nr = min_t(unsigned int, npages - i,
315 folio_nr_pages(folio) - folio_page_idx(folio, next));
316
317 *ntails = nr;
318 return folio;
319}
320
321static inline struct folio *gup_folio_next(struct page **list,
322 unsigned long npages, unsigned long i, unsigned int *ntails)
323{
324 struct folio *folio = page_folio(list[i]);
325 unsigned int nr;
326
327 for (nr = i + 1; nr < npages; nr++) {
328 if (page_folio(list[nr]) != folio)
329 break;
330 }
331
332 *ntails = nr - i;
333 return folio;
334}
335
336/**
337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338 * @pages: array of pages to be maybe marked dirty, and definitely released.
339 * @npages: number of pages in the @pages array.
340 * @make_dirty: whether to mark the pages dirty
341 *
342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343 * variants called on that page.
344 *
345 * For each page in the @pages array, make that page (or its head page, if a
346 * compound page) dirty, if @make_dirty is true, and if the page was previously
347 * listed as clean. In any case, releases all pages using unpin_user_page(),
348 * possibly via unpin_user_pages(), for the non-dirty case.
349 *
350 * Please see the unpin_user_page() documentation for details.
351 *
352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353 * required, then the caller should a) verify that this is really correct,
354 * because _lock() is usually required, and b) hand code it:
355 * set_page_dirty_lock(), unpin_user_page().
356 *
357 */
358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 bool make_dirty)
360{
361 unsigned long i;
362 struct folio *folio;
363 unsigned int nr;
364
365 if (!make_dirty) {
366 unpin_user_pages(pages, npages);
367 return;
368 }
369
370 sanity_check_pinned_pages(pages, npages);
371 for (i = 0; i < npages; i += nr) {
372 folio = gup_folio_next(pages, npages, i, &nr);
373 /*
374 * Checking PageDirty at this point may race with
375 * clear_page_dirty_for_io(), but that's OK. Two key
376 * cases:
377 *
378 * 1) This code sees the page as already dirty, so it
379 * skips the call to set_page_dirty(). That could happen
380 * because clear_page_dirty_for_io() called
381 * page_mkclean(), followed by set_page_dirty().
382 * However, now the page is going to get written back,
383 * which meets the original intention of setting it
384 * dirty, so all is well: clear_page_dirty_for_io() goes
385 * on to call TestClearPageDirty(), and write the page
386 * back.
387 *
388 * 2) This code sees the page as clean, so it calls
389 * set_page_dirty(). The page stays dirty, despite being
390 * written back, so it gets written back again in the
391 * next writeback cycle. This is harmless.
392 */
393 if (!folio_test_dirty(folio)) {
394 folio_lock(folio);
395 folio_mark_dirty(folio);
396 folio_unlock(folio);
397 }
398 gup_put_folio(folio, nr, FOLL_PIN);
399 }
400}
401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402
403/**
404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
405 * gup-pinned page range
406 *
407 * @page: the starting page of a range maybe marked dirty, and definitely released.
408 * @npages: number of consecutive pages to release.
409 * @make_dirty: whether to mark the pages dirty
410 *
411 * "gup-pinned page range" refers to a range of pages that has had one of the
412 * pin_user_pages() variants called on that page.
413 *
414 * For the page ranges defined by [page .. page+npages], make that range (or
415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416 * page range was previously listed as clean.
417 *
418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419 * required, then the caller should a) verify that this is really correct,
420 * because _lock() is usually required, and b) hand code it:
421 * set_page_dirty_lock(), unpin_user_page().
422 *
423 */
424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 bool make_dirty)
426{
427 unsigned long i;
428 struct folio *folio;
429 unsigned int nr;
430
431 for (i = 0; i < npages; i += nr) {
432 folio = gup_folio_range_next(page, npages, i, &nr);
433 if (make_dirty && !folio_test_dirty(folio)) {
434 folio_lock(folio);
435 folio_mark_dirty(folio);
436 folio_unlock(folio);
437 }
438 gup_put_folio(folio, nr, FOLL_PIN);
439 }
440}
441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442
443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444{
445 unsigned long i;
446 struct folio *folio;
447 unsigned int nr;
448
449 /*
450 * Don't perform any sanity checks because we might have raced with
451 * fork() and some anonymous pages might now actually be shared --
452 * which is why we're unpinning after all.
453 */
454 for (i = 0; i < npages; i += nr) {
455 folio = gup_folio_next(pages, npages, i, &nr);
456 gup_put_folio(folio, nr, FOLL_PIN);
457 }
458}
459
460/**
461 * unpin_user_pages() - release an array of gup-pinned pages.
462 * @pages: array of pages to be marked dirty and released.
463 * @npages: number of pages in the @pages array.
464 *
465 * For each page in the @pages array, release the page using unpin_user_page().
466 *
467 * Please see the unpin_user_page() documentation for details.
468 */
469void unpin_user_pages(struct page **pages, unsigned long npages)
470{
471 unsigned long i;
472 struct folio *folio;
473 unsigned int nr;
474
475 /*
476 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 * leaving them pinned), but probably not. More likely, gup/pup returned
478 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 */
480 if (WARN_ON(IS_ERR_VALUE(npages)))
481 return;
482
483 sanity_check_pinned_pages(pages, npages);
484 for (i = 0; i < npages; i += nr) {
485 folio = gup_folio_next(pages, npages, i, &nr);
486 gup_put_folio(folio, nr, FOLL_PIN);
487 }
488}
489EXPORT_SYMBOL(unpin_user_pages);
490
491/*
492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
494 * cache bouncing on large SMP machines for concurrent pinned gups.
495 */
496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497{
498 if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 set_bit(MMF_HAS_PINNED, mm_flags);
500}
501
502#ifdef CONFIG_MMU
503static struct page *no_page_table(struct vm_area_struct *vma,
504 unsigned int flags)
505{
506 /*
507 * When core dumping an enormous anonymous area that nobody
508 * has touched so far, we don't want to allocate unnecessary pages or
509 * page tables. Return error instead of NULL to skip handle_mm_fault,
510 * then get_dump_page() will return NULL to leave a hole in the dump.
511 * But we can only make this optimization where a hole would surely
512 * be zero-filled if handle_mm_fault() actually did handle it.
513 */
514 if ((flags & FOLL_DUMP) &&
515 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 return ERR_PTR(-EFAULT);
517 return NULL;
518}
519
520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 pte_t *pte, unsigned int flags)
522{
523 if (flags & FOLL_TOUCH) {
524 pte_t orig_entry = ptep_get(pte);
525 pte_t entry = orig_entry;
526
527 if (flags & FOLL_WRITE)
528 entry = pte_mkdirty(entry);
529 entry = pte_mkyoung(entry);
530
531 if (!pte_same(orig_entry, entry)) {
532 set_pte_at(vma->vm_mm, address, pte, entry);
533 update_mmu_cache(vma, address, pte);
534 }
535 }
536
537 /* Proper page table entry exists, but no corresponding struct page */
538 return -EEXIST;
539}
540
541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 struct vm_area_struct *vma,
544 unsigned int flags)
545{
546 /* If the pte is writable, we can write to the page. */
547 if (pte_write(pte))
548 return true;
549
550 /* Maybe FOLL_FORCE is set to override it? */
551 if (!(flags & FOLL_FORCE))
552 return false;
553
554 /* But FOLL_FORCE has no effect on shared mappings */
555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 return false;
557
558 /* ... or read-only private ones */
559 if (!(vma->vm_flags & VM_MAYWRITE))
560 return false;
561
562 /* ... or already writable ones that just need to take a write fault */
563 if (vma->vm_flags & VM_WRITE)
564 return false;
565
566 /*
567 * See can_change_pte_writable(): we broke COW and could map the page
568 * writable if we have an exclusive anonymous page ...
569 */
570 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 return false;
572
573 /* ... and a write-fault isn't required for other reasons. */
574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 return false;
576 return !userfaultfd_pte_wp(vma, pte);
577}
578
579static struct page *follow_page_pte(struct vm_area_struct *vma,
580 unsigned long address, pmd_t *pmd, unsigned int flags,
581 struct dev_pagemap **pgmap)
582{
583 struct mm_struct *mm = vma->vm_mm;
584 struct page *page;
585 spinlock_t *ptl;
586 pte_t *ptep, pte;
587 int ret;
588
589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 (FOLL_PIN | FOLL_GET)))
592 return ERR_PTR(-EINVAL);
593
594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 if (!ptep)
596 return no_page_table(vma, flags);
597 pte = ptep_get(ptep);
598 if (!pte_present(pte))
599 goto no_page;
600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 goto no_page;
602
603 page = vm_normal_page(vma, address, pte);
604
605 /*
606 * We only care about anon pages in can_follow_write_pte() and don't
607 * have to worry about pte_devmap() because they are never anon.
608 */
609 if ((flags & FOLL_WRITE) &&
610 !can_follow_write_pte(pte, page, vma, flags)) {
611 page = NULL;
612 goto out;
613 }
614
615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 /*
617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 * case since they are only valid while holding the pgmap
619 * reference.
620 */
621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 if (*pgmap)
623 page = pte_page(pte);
624 else
625 goto no_page;
626 } else if (unlikely(!page)) {
627 if (flags & FOLL_DUMP) {
628 /* Avoid special (like zero) pages in core dumps */
629 page = ERR_PTR(-EFAULT);
630 goto out;
631 }
632
633 if (is_zero_pfn(pte_pfn(pte))) {
634 page = pte_page(pte);
635 } else {
636 ret = follow_pfn_pte(vma, address, ptep, flags);
637 page = ERR_PTR(ret);
638 goto out;
639 }
640 }
641
642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 page = ERR_PTR(-EMLINK);
644 goto out;
645 }
646
647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 !PageAnonExclusive(page), page);
649
650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 ret = try_grab_page(page, flags);
652 if (unlikely(ret)) {
653 page = ERR_PTR(ret);
654 goto out;
655 }
656
657 /*
658 * We need to make the page accessible if and only if we are going
659 * to access its content (the FOLL_PIN case). Please see
660 * Documentation/core-api/pin_user_pages.rst for details.
661 */
662 if (flags & FOLL_PIN) {
663 ret = arch_make_page_accessible(page);
664 if (ret) {
665 unpin_user_page(page);
666 page = ERR_PTR(ret);
667 goto out;
668 }
669 }
670 if (flags & FOLL_TOUCH) {
671 if ((flags & FOLL_WRITE) &&
672 !pte_dirty(pte) && !PageDirty(page))
673 set_page_dirty(page);
674 /*
675 * pte_mkyoung() would be more correct here, but atomic care
676 * is needed to avoid losing the dirty bit: it is easier to use
677 * mark_page_accessed().
678 */
679 mark_page_accessed(page);
680 }
681out:
682 pte_unmap_unlock(ptep, ptl);
683 return page;
684no_page:
685 pte_unmap_unlock(ptep, ptl);
686 if (!pte_none(pte))
687 return NULL;
688 return no_page_table(vma, flags);
689}
690
691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 unsigned long address, pud_t *pudp,
693 unsigned int flags,
694 struct follow_page_context *ctx)
695{
696 pmd_t *pmd, pmdval;
697 spinlock_t *ptl;
698 struct page *page;
699 struct mm_struct *mm = vma->vm_mm;
700
701 pmd = pmd_offset(pudp, address);
702 pmdval = pmdp_get_lockless(pmd);
703 if (pmd_none(pmdval))
704 return no_page_table(vma, flags);
705 if (!pmd_present(pmdval))
706 return no_page_table(vma, flags);
707 if (pmd_devmap(pmdval)) {
708 ptl = pmd_lock(mm, pmd);
709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 spin_unlock(ptl);
711 if (page)
712 return page;
713 return no_page_table(vma, flags);
714 }
715 if (likely(!pmd_trans_huge(pmdval)))
716 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
717
718 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
719 return no_page_table(vma, flags);
720
721 ptl = pmd_lock(mm, pmd);
722 if (unlikely(!pmd_present(*pmd))) {
723 spin_unlock(ptl);
724 return no_page_table(vma, flags);
725 }
726 if (unlikely(!pmd_trans_huge(*pmd))) {
727 spin_unlock(ptl);
728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729 }
730 if (flags & FOLL_SPLIT_PMD) {
731 spin_unlock(ptl);
732 split_huge_pmd(vma, pmd, address);
733 /* If pmd was left empty, stuff a page table in there quickly */
734 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
735 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
736 }
737 page = follow_trans_huge_pmd(vma, address, pmd, flags);
738 spin_unlock(ptl);
739 ctx->page_mask = HPAGE_PMD_NR - 1;
740 return page;
741}
742
743static struct page *follow_pud_mask(struct vm_area_struct *vma,
744 unsigned long address, p4d_t *p4dp,
745 unsigned int flags,
746 struct follow_page_context *ctx)
747{
748 pud_t *pud;
749 spinlock_t *ptl;
750 struct page *page;
751 struct mm_struct *mm = vma->vm_mm;
752
753 pud = pud_offset(p4dp, address);
754 if (pud_none(*pud))
755 return no_page_table(vma, flags);
756 if (pud_devmap(*pud)) {
757 ptl = pud_lock(mm, pud);
758 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
759 spin_unlock(ptl);
760 if (page)
761 return page;
762 return no_page_table(vma, flags);
763 }
764 if (unlikely(pud_bad(*pud)))
765 return no_page_table(vma, flags);
766
767 return follow_pmd_mask(vma, address, pud, flags, ctx);
768}
769
770static struct page *follow_p4d_mask(struct vm_area_struct *vma,
771 unsigned long address, pgd_t *pgdp,
772 unsigned int flags,
773 struct follow_page_context *ctx)
774{
775 p4d_t *p4d;
776
777 p4d = p4d_offset(pgdp, address);
778 if (p4d_none(*p4d))
779 return no_page_table(vma, flags);
780 BUILD_BUG_ON(p4d_huge(*p4d));
781 if (unlikely(p4d_bad(*p4d)))
782 return no_page_table(vma, flags);
783
784 return follow_pud_mask(vma, address, p4d, flags, ctx);
785}
786
787/**
788 * follow_page_mask - look up a page descriptor from a user-virtual address
789 * @vma: vm_area_struct mapping @address
790 * @address: virtual address to look up
791 * @flags: flags modifying lookup behaviour
792 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
793 * pointer to output page_mask
794 *
795 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
796 *
797 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
798 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
799 *
800 * When getting an anonymous page and the caller has to trigger unsharing
801 * of a shared anonymous page first, -EMLINK is returned. The caller should
802 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
803 * relevant with FOLL_PIN and !FOLL_WRITE.
804 *
805 * On output, the @ctx->page_mask is set according to the size of the page.
806 *
807 * Return: the mapped (struct page *), %NULL if no mapping exists, or
808 * an error pointer if there is a mapping to something not represented
809 * by a page descriptor (see also vm_normal_page()).
810 */
811static struct page *follow_page_mask(struct vm_area_struct *vma,
812 unsigned long address, unsigned int flags,
813 struct follow_page_context *ctx)
814{
815 pgd_t *pgd;
816 struct mm_struct *mm = vma->vm_mm;
817
818 ctx->page_mask = 0;
819
820 /*
821 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
822 * special hugetlb page table walking code. This eliminates the
823 * need to check for hugetlb entries in the general walking code.
824 */
825 if (is_vm_hugetlb_page(vma))
826 return hugetlb_follow_page_mask(vma, address, flags,
827 &ctx->page_mask);
828
829 pgd = pgd_offset(mm, address);
830
831 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
832 return no_page_table(vma, flags);
833
834 return follow_p4d_mask(vma, address, pgd, flags, ctx);
835}
836
837struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
838 unsigned int foll_flags)
839{
840 struct follow_page_context ctx = { NULL };
841 struct page *page;
842
843 if (vma_is_secretmem(vma))
844 return NULL;
845
846 if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
847 return NULL;
848
849 /*
850 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
851 * to fail on PROT_NONE-mapped pages.
852 */
853 page = follow_page_mask(vma, address, foll_flags, &ctx);
854 if (ctx.pgmap)
855 put_dev_pagemap(ctx.pgmap);
856 return page;
857}
858
859static int get_gate_page(struct mm_struct *mm, unsigned long address,
860 unsigned int gup_flags, struct vm_area_struct **vma,
861 struct page **page)
862{
863 pgd_t *pgd;
864 p4d_t *p4d;
865 pud_t *pud;
866 pmd_t *pmd;
867 pte_t *pte;
868 pte_t entry;
869 int ret = -EFAULT;
870
871 /* user gate pages are read-only */
872 if (gup_flags & FOLL_WRITE)
873 return -EFAULT;
874 if (address > TASK_SIZE)
875 pgd = pgd_offset_k(address);
876 else
877 pgd = pgd_offset_gate(mm, address);
878 if (pgd_none(*pgd))
879 return -EFAULT;
880 p4d = p4d_offset(pgd, address);
881 if (p4d_none(*p4d))
882 return -EFAULT;
883 pud = pud_offset(p4d, address);
884 if (pud_none(*pud))
885 return -EFAULT;
886 pmd = pmd_offset(pud, address);
887 if (!pmd_present(*pmd))
888 return -EFAULT;
889 pte = pte_offset_map(pmd, address);
890 if (!pte)
891 return -EFAULT;
892 entry = ptep_get(pte);
893 if (pte_none(entry))
894 goto unmap;
895 *vma = get_gate_vma(mm);
896 if (!page)
897 goto out;
898 *page = vm_normal_page(*vma, address, entry);
899 if (!*page) {
900 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
901 goto unmap;
902 *page = pte_page(entry);
903 }
904 ret = try_grab_page(*page, gup_flags);
905 if (unlikely(ret))
906 goto unmap;
907out:
908 ret = 0;
909unmap:
910 pte_unmap(pte);
911 return ret;
912}
913
914/*
915 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
916 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
917 * to 0 and -EBUSY returned.
918 */
919static int faultin_page(struct vm_area_struct *vma,
920 unsigned long address, unsigned int *flags, bool unshare,
921 int *locked)
922{
923 unsigned int fault_flags = 0;
924 vm_fault_t ret;
925
926 if (*flags & FOLL_NOFAULT)
927 return -EFAULT;
928 if (*flags & FOLL_WRITE)
929 fault_flags |= FAULT_FLAG_WRITE;
930 if (*flags & FOLL_REMOTE)
931 fault_flags |= FAULT_FLAG_REMOTE;
932 if (*flags & FOLL_UNLOCKABLE) {
933 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
934 /*
935 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
936 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
937 * That's because some callers may not be prepared to
938 * handle early exits caused by non-fatal signals.
939 */
940 if (*flags & FOLL_INTERRUPTIBLE)
941 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
942 }
943 if (*flags & FOLL_NOWAIT)
944 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
945 if (*flags & FOLL_TRIED) {
946 /*
947 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
948 * can co-exist
949 */
950 fault_flags |= FAULT_FLAG_TRIED;
951 }
952 if (unshare) {
953 fault_flags |= FAULT_FLAG_UNSHARE;
954 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
955 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
956 }
957
958 ret = handle_mm_fault(vma, address, fault_flags, NULL);
959
960 if (ret & VM_FAULT_COMPLETED) {
961 /*
962 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
963 * mmap lock in the page fault handler. Sanity check this.
964 */
965 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
966 *locked = 0;
967
968 /*
969 * We should do the same as VM_FAULT_RETRY, but let's not
970 * return -EBUSY since that's not reflecting the reality of
971 * what has happened - we've just fully completed a page
972 * fault, with the mmap lock released. Use -EAGAIN to show
973 * that we want to take the mmap lock _again_.
974 */
975 return -EAGAIN;
976 }
977
978 if (ret & VM_FAULT_ERROR) {
979 int err = vm_fault_to_errno(ret, *flags);
980
981 if (err)
982 return err;
983 BUG();
984 }
985
986 if (ret & VM_FAULT_RETRY) {
987 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
988 *locked = 0;
989 return -EBUSY;
990 }
991
992 return 0;
993}
994
995/*
996 * Writing to file-backed mappings which require folio dirty tracking using GUP
997 * is a fundamentally broken operation, as kernel write access to GUP mappings
998 * do not adhere to the semantics expected by a file system.
999 *
1000 * Consider the following scenario:-
1001 *
1002 * 1. A folio is written to via GUP which write-faults the memory, notifying
1003 * the file system and dirtying the folio.
1004 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1005 * the PTE being marked read-only.
1006 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1007 * direct mapping.
1008 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1009 * (though it does not have to).
1010 *
1011 * This results in both data being written to a folio without writenotify, and
1012 * the folio being dirtied unexpectedly (if the caller decides to do so).
1013 */
1014static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1015 unsigned long gup_flags)
1016{
1017 /*
1018 * If we aren't pinning then no problematic write can occur. A long term
1019 * pin is the most egregious case so this is the case we disallow.
1020 */
1021 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1022 (FOLL_PIN | FOLL_LONGTERM))
1023 return true;
1024
1025 /*
1026 * If the VMA does not require dirty tracking then no problematic write
1027 * can occur either.
1028 */
1029 return !vma_needs_dirty_tracking(vma);
1030}
1031
1032static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1033{
1034 vm_flags_t vm_flags = vma->vm_flags;
1035 int write = (gup_flags & FOLL_WRITE);
1036 int foreign = (gup_flags & FOLL_REMOTE);
1037 bool vma_anon = vma_is_anonymous(vma);
1038
1039 if (vm_flags & (VM_IO | VM_PFNMAP))
1040 return -EFAULT;
1041
1042 if ((gup_flags & FOLL_ANON) && !vma_anon)
1043 return -EFAULT;
1044
1045 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1046 return -EOPNOTSUPP;
1047
1048 if (vma_is_secretmem(vma))
1049 return -EFAULT;
1050
1051 if (write) {
1052 if (!vma_anon &&
1053 !writable_file_mapping_allowed(vma, gup_flags))
1054 return -EFAULT;
1055
1056 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1057 if (!(gup_flags & FOLL_FORCE))
1058 return -EFAULT;
1059 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1060 if (is_vm_hugetlb_page(vma))
1061 return -EFAULT;
1062 /*
1063 * We used to let the write,force case do COW in a
1064 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1065 * set a breakpoint in a read-only mapping of an
1066 * executable, without corrupting the file (yet only
1067 * when that file had been opened for writing!).
1068 * Anon pages in shared mappings are surprising: now
1069 * just reject it.
1070 */
1071 if (!is_cow_mapping(vm_flags))
1072 return -EFAULT;
1073 }
1074 } else if (!(vm_flags & VM_READ)) {
1075 if (!(gup_flags & FOLL_FORCE))
1076 return -EFAULT;
1077 /*
1078 * Is there actually any vma we can reach here which does not
1079 * have VM_MAYREAD set?
1080 */
1081 if (!(vm_flags & VM_MAYREAD))
1082 return -EFAULT;
1083 }
1084 /*
1085 * gups are always data accesses, not instruction
1086 * fetches, so execute=false here
1087 */
1088 if (!arch_vma_access_permitted(vma, write, false, foreign))
1089 return -EFAULT;
1090 return 0;
1091}
1092
1093/*
1094 * This is "vma_lookup()", but with a warning if we would have
1095 * historically expanded the stack in the GUP code.
1096 */
1097static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1098 unsigned long addr)
1099{
1100#ifdef CONFIG_STACK_GROWSUP
1101 return vma_lookup(mm, addr);
1102#else
1103 static volatile unsigned long next_warn;
1104 struct vm_area_struct *vma;
1105 unsigned long now, next;
1106
1107 vma = find_vma(mm, addr);
1108 if (!vma || (addr >= vma->vm_start))
1109 return vma;
1110
1111 /* Only warn for half-way relevant accesses */
1112 if (!(vma->vm_flags & VM_GROWSDOWN))
1113 return NULL;
1114 if (vma->vm_start - addr > 65536)
1115 return NULL;
1116
1117 /* Let's not warn more than once an hour.. */
1118 now = jiffies; next = next_warn;
1119 if (next && time_before(now, next))
1120 return NULL;
1121 next_warn = now + 60*60*HZ;
1122
1123 /* Let people know things may have changed. */
1124 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1125 current->comm, task_pid_nr(current),
1126 vma->vm_start, vma->vm_end, addr);
1127 dump_stack();
1128 return NULL;
1129#endif
1130}
1131
1132/**
1133 * __get_user_pages() - pin user pages in memory
1134 * @mm: mm_struct of target mm
1135 * @start: starting user address
1136 * @nr_pages: number of pages from start to pin
1137 * @gup_flags: flags modifying pin behaviour
1138 * @pages: array that receives pointers to the pages pinned.
1139 * Should be at least nr_pages long. Or NULL, if caller
1140 * only intends to ensure the pages are faulted in.
1141 * @locked: whether we're still with the mmap_lock held
1142 *
1143 * Returns either number of pages pinned (which may be less than the
1144 * number requested), or an error. Details about the return value:
1145 *
1146 * -- If nr_pages is 0, returns 0.
1147 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1148 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1149 * pages pinned. Again, this may be less than nr_pages.
1150 * -- 0 return value is possible when the fault would need to be retried.
1151 *
1152 * The caller is responsible for releasing returned @pages, via put_page().
1153 *
1154 * Must be called with mmap_lock held. It may be released. See below.
1155 *
1156 * __get_user_pages walks a process's page tables and takes a reference to
1157 * each struct page that each user address corresponds to at a given
1158 * instant. That is, it takes the page that would be accessed if a user
1159 * thread accesses the given user virtual address at that instant.
1160 *
1161 * This does not guarantee that the page exists in the user mappings when
1162 * __get_user_pages returns, and there may even be a completely different
1163 * page there in some cases (eg. if mmapped pagecache has been invalidated
1164 * and subsequently re-faulted). However it does guarantee that the page
1165 * won't be freed completely. And mostly callers simply care that the page
1166 * contains data that was valid *at some point in time*. Typically, an IO
1167 * or similar operation cannot guarantee anything stronger anyway because
1168 * locks can't be held over the syscall boundary.
1169 *
1170 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1171 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1172 * appropriate) must be called after the page is finished with, and
1173 * before put_page is called.
1174 *
1175 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1176 * be released. If this happens *@locked will be set to 0 on return.
1177 *
1178 * A caller using such a combination of @gup_flags must therefore hold the
1179 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1180 * it must be held for either reading or writing and will not be released.
1181 *
1182 * In most cases, get_user_pages or get_user_pages_fast should be used
1183 * instead of __get_user_pages. __get_user_pages should be used only if
1184 * you need some special @gup_flags.
1185 */
1186static long __get_user_pages(struct mm_struct *mm,
1187 unsigned long start, unsigned long nr_pages,
1188 unsigned int gup_flags, struct page **pages,
1189 int *locked)
1190{
1191 long ret = 0, i = 0;
1192 struct vm_area_struct *vma = NULL;
1193 struct follow_page_context ctx = { NULL };
1194
1195 if (!nr_pages)
1196 return 0;
1197
1198 start = untagged_addr_remote(mm, start);
1199
1200 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1201
1202 do {
1203 struct page *page;
1204 unsigned int foll_flags = gup_flags;
1205 unsigned int page_increm;
1206
1207 /* first iteration or cross vma bound */
1208 if (!vma || start >= vma->vm_end) {
1209 /*
1210 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1211 * lookups+error reporting differently.
1212 */
1213 if (gup_flags & FOLL_MADV_POPULATE) {
1214 vma = vma_lookup(mm, start);
1215 if (!vma) {
1216 ret = -ENOMEM;
1217 goto out;
1218 }
1219 if (check_vma_flags(vma, gup_flags)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223 goto retry;
1224 }
1225 vma = gup_vma_lookup(mm, start);
1226 if (!vma && in_gate_area(mm, start)) {
1227 ret = get_gate_page(mm, start & PAGE_MASK,
1228 gup_flags, &vma,
1229 pages ? &page : NULL);
1230 if (ret)
1231 goto out;
1232 ctx.page_mask = 0;
1233 goto next_page;
1234 }
1235
1236 if (!vma) {
1237 ret = -EFAULT;
1238 goto out;
1239 }
1240 ret = check_vma_flags(vma, gup_flags);
1241 if (ret)
1242 goto out;
1243 }
1244retry:
1245 /*
1246 * If we have a pending SIGKILL, don't keep faulting pages and
1247 * potentially allocating memory.
1248 */
1249 if (fatal_signal_pending(current)) {
1250 ret = -EINTR;
1251 goto out;
1252 }
1253 cond_resched();
1254
1255 page = follow_page_mask(vma, start, foll_flags, &ctx);
1256 if (!page || PTR_ERR(page) == -EMLINK) {
1257 ret = faultin_page(vma, start, &foll_flags,
1258 PTR_ERR(page) == -EMLINK, locked);
1259 switch (ret) {
1260 case 0:
1261 goto retry;
1262 case -EBUSY:
1263 case -EAGAIN:
1264 ret = 0;
1265 fallthrough;
1266 case -EFAULT:
1267 case -ENOMEM:
1268 case -EHWPOISON:
1269 goto out;
1270 }
1271 BUG();
1272 } else if (PTR_ERR(page) == -EEXIST) {
1273 /*
1274 * Proper page table entry exists, but no corresponding
1275 * struct page. If the caller expects **pages to be
1276 * filled in, bail out now, because that can't be done
1277 * for this page.
1278 */
1279 if (pages) {
1280 ret = PTR_ERR(page);
1281 goto out;
1282 }
1283 } else if (IS_ERR(page)) {
1284 ret = PTR_ERR(page);
1285 goto out;
1286 }
1287next_page:
1288 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1289 if (page_increm > nr_pages)
1290 page_increm = nr_pages;
1291
1292 if (pages) {
1293 struct page *subpage;
1294 unsigned int j;
1295
1296 /*
1297 * This must be a large folio (and doesn't need to
1298 * be the whole folio; it can be part of it), do
1299 * the refcount work for all the subpages too.
1300 *
1301 * NOTE: here the page may not be the head page
1302 * e.g. when start addr is not thp-size aligned.
1303 * try_grab_folio() should have taken care of tail
1304 * pages.
1305 */
1306 if (page_increm > 1) {
1307 struct folio *folio;
1308
1309 /*
1310 * Since we already hold refcount on the
1311 * large folio, this should never fail.
1312 */
1313 folio = try_grab_folio(page, page_increm - 1,
1314 foll_flags);
1315 if (WARN_ON_ONCE(!folio)) {
1316 /*
1317 * Release the 1st page ref if the
1318 * folio is problematic, fail hard.
1319 */
1320 gup_put_folio(page_folio(page), 1,
1321 foll_flags);
1322 ret = -EFAULT;
1323 goto out;
1324 }
1325 }
1326
1327 for (j = 0; j < page_increm; j++) {
1328 subpage = nth_page(page, j);
1329 pages[i + j] = subpage;
1330 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1331 flush_dcache_page(subpage);
1332 }
1333 }
1334
1335 i += page_increm;
1336 start += page_increm * PAGE_SIZE;
1337 nr_pages -= page_increm;
1338 } while (nr_pages);
1339out:
1340 if (ctx.pgmap)
1341 put_dev_pagemap(ctx.pgmap);
1342 return i ? i : ret;
1343}
1344
1345static bool vma_permits_fault(struct vm_area_struct *vma,
1346 unsigned int fault_flags)
1347{
1348 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1349 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1350 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1351
1352 if (!(vm_flags & vma->vm_flags))
1353 return false;
1354
1355 /*
1356 * The architecture might have a hardware protection
1357 * mechanism other than read/write that can deny access.
1358 *
1359 * gup always represents data access, not instruction
1360 * fetches, so execute=false here:
1361 */
1362 if (!arch_vma_access_permitted(vma, write, false, foreign))
1363 return false;
1364
1365 return true;
1366}
1367
1368/**
1369 * fixup_user_fault() - manually resolve a user page fault
1370 * @mm: mm_struct of target mm
1371 * @address: user address
1372 * @fault_flags:flags to pass down to handle_mm_fault()
1373 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1374 * does not allow retry. If NULL, the caller must guarantee
1375 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1376 *
1377 * This is meant to be called in the specific scenario where for locking reasons
1378 * we try to access user memory in atomic context (within a pagefault_disable()
1379 * section), this returns -EFAULT, and we want to resolve the user fault before
1380 * trying again.
1381 *
1382 * Typically this is meant to be used by the futex code.
1383 *
1384 * The main difference with get_user_pages() is that this function will
1385 * unconditionally call handle_mm_fault() which will in turn perform all the
1386 * necessary SW fixup of the dirty and young bits in the PTE, while
1387 * get_user_pages() only guarantees to update these in the struct page.
1388 *
1389 * This is important for some architectures where those bits also gate the
1390 * access permission to the page because they are maintained in software. On
1391 * such architectures, gup() will not be enough to make a subsequent access
1392 * succeed.
1393 *
1394 * This function will not return with an unlocked mmap_lock. So it has not the
1395 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1396 */
1397int fixup_user_fault(struct mm_struct *mm,
1398 unsigned long address, unsigned int fault_flags,
1399 bool *unlocked)
1400{
1401 struct vm_area_struct *vma;
1402 vm_fault_t ret;
1403
1404 address = untagged_addr_remote(mm, address);
1405
1406 if (unlocked)
1407 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1408
1409retry:
1410 vma = gup_vma_lookup(mm, address);
1411 if (!vma)
1412 return -EFAULT;
1413
1414 if (!vma_permits_fault(vma, fault_flags))
1415 return -EFAULT;
1416
1417 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1418 fatal_signal_pending(current))
1419 return -EINTR;
1420
1421 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1422
1423 if (ret & VM_FAULT_COMPLETED) {
1424 /*
1425 * NOTE: it's a pity that we need to retake the lock here
1426 * to pair with the unlock() in the callers. Ideally we
1427 * could tell the callers so they do not need to unlock.
1428 */
1429 mmap_read_lock(mm);
1430 *unlocked = true;
1431 return 0;
1432 }
1433
1434 if (ret & VM_FAULT_ERROR) {
1435 int err = vm_fault_to_errno(ret, 0);
1436
1437 if (err)
1438 return err;
1439 BUG();
1440 }
1441
1442 if (ret & VM_FAULT_RETRY) {
1443 mmap_read_lock(mm);
1444 *unlocked = true;
1445 fault_flags |= FAULT_FLAG_TRIED;
1446 goto retry;
1447 }
1448
1449 return 0;
1450}
1451EXPORT_SYMBOL_GPL(fixup_user_fault);
1452
1453/*
1454 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1455 * specified, it'll also respond to generic signals. The caller of GUP
1456 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1457 */
1458static bool gup_signal_pending(unsigned int flags)
1459{
1460 if (fatal_signal_pending(current))
1461 return true;
1462
1463 if (!(flags & FOLL_INTERRUPTIBLE))
1464 return false;
1465
1466 return signal_pending(current);
1467}
1468
1469/*
1470 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1471 * the caller. This function may drop the mmap_lock. If it does so, then it will
1472 * set (*locked = 0).
1473 *
1474 * (*locked == 0) means that the caller expects this function to acquire and
1475 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1476 * the function returns, even though it may have changed temporarily during
1477 * function execution.
1478 *
1479 * Please note that this function, unlike __get_user_pages(), will not return 0
1480 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1481 */
1482static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1483 unsigned long start,
1484 unsigned long nr_pages,
1485 struct page **pages,
1486 int *locked,
1487 unsigned int flags)
1488{
1489 long ret, pages_done;
1490 bool must_unlock = false;
1491
1492 if (!nr_pages)
1493 return 0;
1494
1495 /*
1496 * The internal caller expects GUP to manage the lock internally and the
1497 * lock must be released when this returns.
1498 */
1499 if (!*locked) {
1500 if (mmap_read_lock_killable(mm))
1501 return -EAGAIN;
1502 must_unlock = true;
1503 *locked = 1;
1504 }
1505 else
1506 mmap_assert_locked(mm);
1507
1508 if (flags & FOLL_PIN)
1509 mm_set_has_pinned_flag(&mm->flags);
1510
1511 /*
1512 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1513 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1514 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1515 * for FOLL_GET, not for the newer FOLL_PIN.
1516 *
1517 * FOLL_PIN always expects pages to be non-null, but no need to assert
1518 * that here, as any failures will be obvious enough.
1519 */
1520 if (pages && !(flags & FOLL_PIN))
1521 flags |= FOLL_GET;
1522
1523 pages_done = 0;
1524 for (;;) {
1525 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1526 locked);
1527 if (!(flags & FOLL_UNLOCKABLE)) {
1528 /* VM_FAULT_RETRY couldn't trigger, bypass */
1529 pages_done = ret;
1530 break;
1531 }
1532
1533 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1534 if (!*locked) {
1535 BUG_ON(ret < 0);
1536 BUG_ON(ret >= nr_pages);
1537 }
1538
1539 if (ret > 0) {
1540 nr_pages -= ret;
1541 pages_done += ret;
1542 if (!nr_pages)
1543 break;
1544 }
1545 if (*locked) {
1546 /*
1547 * VM_FAULT_RETRY didn't trigger or it was a
1548 * FOLL_NOWAIT.
1549 */
1550 if (!pages_done)
1551 pages_done = ret;
1552 break;
1553 }
1554 /*
1555 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1556 * For the prefault case (!pages) we only update counts.
1557 */
1558 if (likely(pages))
1559 pages += ret;
1560 start += ret << PAGE_SHIFT;
1561
1562 /* The lock was temporarily dropped, so we must unlock later */
1563 must_unlock = true;
1564
1565retry:
1566 /*
1567 * Repeat on the address that fired VM_FAULT_RETRY
1568 * with both FAULT_FLAG_ALLOW_RETRY and
1569 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1570 * by fatal signals of even common signals, depending on
1571 * the caller's request. So we need to check it before we
1572 * start trying again otherwise it can loop forever.
1573 */
1574 if (gup_signal_pending(flags)) {
1575 if (!pages_done)
1576 pages_done = -EINTR;
1577 break;
1578 }
1579
1580 ret = mmap_read_lock_killable(mm);
1581 if (ret) {
1582 BUG_ON(ret > 0);
1583 if (!pages_done)
1584 pages_done = ret;
1585 break;
1586 }
1587
1588 *locked = 1;
1589 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1590 pages, locked);
1591 if (!*locked) {
1592 /* Continue to retry until we succeeded */
1593 BUG_ON(ret != 0);
1594 goto retry;
1595 }
1596 if (ret != 1) {
1597 BUG_ON(ret > 1);
1598 if (!pages_done)
1599 pages_done = ret;
1600 break;
1601 }
1602 nr_pages--;
1603 pages_done++;
1604 if (!nr_pages)
1605 break;
1606 if (likely(pages))
1607 pages++;
1608 start += PAGE_SIZE;
1609 }
1610 if (must_unlock && *locked) {
1611 /*
1612 * We either temporarily dropped the lock, or the caller
1613 * requested that we both acquire and drop the lock. Either way,
1614 * we must now unlock, and notify the caller of that state.
1615 */
1616 mmap_read_unlock(mm);
1617 *locked = 0;
1618 }
1619
1620 /*
1621 * Failing to pin anything implies something has gone wrong (except when
1622 * FOLL_NOWAIT is specified).
1623 */
1624 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1625 return -EFAULT;
1626
1627 return pages_done;
1628}
1629
1630/**
1631 * populate_vma_page_range() - populate a range of pages in the vma.
1632 * @vma: target vma
1633 * @start: start address
1634 * @end: end address
1635 * @locked: whether the mmap_lock is still held
1636 *
1637 * This takes care of mlocking the pages too if VM_LOCKED is set.
1638 *
1639 * Return either number of pages pinned in the vma, or a negative error
1640 * code on error.
1641 *
1642 * vma->vm_mm->mmap_lock must be held.
1643 *
1644 * If @locked is NULL, it may be held for read or write and will
1645 * be unperturbed.
1646 *
1647 * If @locked is non-NULL, it must held for read only and may be
1648 * released. If it's released, *@locked will be set to 0.
1649 */
1650long populate_vma_page_range(struct vm_area_struct *vma,
1651 unsigned long start, unsigned long end, int *locked)
1652{
1653 struct mm_struct *mm = vma->vm_mm;
1654 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1655 int local_locked = 1;
1656 int gup_flags;
1657 long ret;
1658
1659 VM_BUG_ON(!PAGE_ALIGNED(start));
1660 VM_BUG_ON(!PAGE_ALIGNED(end));
1661 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1662 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1663 mmap_assert_locked(mm);
1664
1665 /*
1666 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1667 * faultin_page() to break COW, so it has no work to do here.
1668 */
1669 if (vma->vm_flags & VM_LOCKONFAULT)
1670 return nr_pages;
1671
1672 /* ... similarly, we've never faulted in PROT_NONE pages */
1673 if (!vma_is_accessible(vma))
1674 return -EFAULT;
1675
1676 gup_flags = FOLL_TOUCH;
1677 /*
1678 * We want to touch writable mappings with a write fault in order
1679 * to break COW, except for shared mappings because these don't COW
1680 * and we would not want to dirty them for nothing.
1681 *
1682 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1683 * readable (ie write-only or executable).
1684 */
1685 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1686 gup_flags |= FOLL_WRITE;
1687 else
1688 gup_flags |= FOLL_FORCE;
1689
1690 if (locked)
1691 gup_flags |= FOLL_UNLOCKABLE;
1692
1693 /*
1694 * We made sure addr is within a VMA, so the following will
1695 * not result in a stack expansion that recurses back here.
1696 */
1697 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1698 NULL, locked ? locked : &local_locked);
1699 lru_add_drain();
1700 return ret;
1701}
1702
1703/*
1704 * faultin_page_range() - populate (prefault) page tables inside the
1705 * given range readable/writable
1706 *
1707 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1708 *
1709 * @mm: the mm to populate page tables in
1710 * @start: start address
1711 * @end: end address
1712 * @write: whether to prefault readable or writable
1713 * @locked: whether the mmap_lock is still held
1714 *
1715 * Returns either number of processed pages in the MM, or a negative error
1716 * code on error (see __get_user_pages()). Note that this function reports
1717 * errors related to VMAs, such as incompatible mappings, as expected by
1718 * MADV_POPULATE_(READ|WRITE).
1719 *
1720 * The range must be page-aligned.
1721 *
1722 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1723 */
1724long faultin_page_range(struct mm_struct *mm, unsigned long start,
1725 unsigned long end, bool write, int *locked)
1726{
1727 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1728 int gup_flags;
1729 long ret;
1730
1731 VM_BUG_ON(!PAGE_ALIGNED(start));
1732 VM_BUG_ON(!PAGE_ALIGNED(end));
1733 mmap_assert_locked(mm);
1734
1735 /*
1736 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1737 * the page dirty with FOLL_WRITE -- which doesn't make a
1738 * difference with !FOLL_FORCE, because the page is writable
1739 * in the page table.
1740 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1741 * a poisoned page.
1742 * !FOLL_FORCE: Require proper access permissions.
1743 */
1744 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1745 FOLL_MADV_POPULATE;
1746 if (write)
1747 gup_flags |= FOLL_WRITE;
1748
1749 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1750 gup_flags);
1751 lru_add_drain();
1752 return ret;
1753}
1754
1755/*
1756 * __mm_populate - populate and/or mlock pages within a range of address space.
1757 *
1758 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1759 * flags. VMAs must be already marked with the desired vm_flags, and
1760 * mmap_lock must not be held.
1761 */
1762int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1763{
1764 struct mm_struct *mm = current->mm;
1765 unsigned long end, nstart, nend;
1766 struct vm_area_struct *vma = NULL;
1767 int locked = 0;
1768 long ret = 0;
1769
1770 end = start + len;
1771
1772 for (nstart = start; nstart < end; nstart = nend) {
1773 /*
1774 * We want to fault in pages for [nstart; end) address range.
1775 * Find first corresponding VMA.
1776 */
1777 if (!locked) {
1778 locked = 1;
1779 mmap_read_lock(mm);
1780 vma = find_vma_intersection(mm, nstart, end);
1781 } else if (nstart >= vma->vm_end)
1782 vma = find_vma_intersection(mm, vma->vm_end, end);
1783
1784 if (!vma)
1785 break;
1786 /*
1787 * Set [nstart; nend) to intersection of desired address
1788 * range with the first VMA. Also, skip undesirable VMA types.
1789 */
1790 nend = min(end, vma->vm_end);
1791 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1792 continue;
1793 if (nstart < vma->vm_start)
1794 nstart = vma->vm_start;
1795 /*
1796 * Now fault in a range of pages. populate_vma_page_range()
1797 * double checks the vma flags, so that it won't mlock pages
1798 * if the vma was already munlocked.
1799 */
1800 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1801 if (ret < 0) {
1802 if (ignore_errors) {
1803 ret = 0;
1804 continue; /* continue at next VMA */
1805 }
1806 break;
1807 }
1808 nend = nstart + ret * PAGE_SIZE;
1809 ret = 0;
1810 }
1811 if (locked)
1812 mmap_read_unlock(mm);
1813 return ret; /* 0 or negative error code */
1814}
1815#else /* CONFIG_MMU */
1816static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1817 unsigned long nr_pages, struct page **pages,
1818 int *locked, unsigned int foll_flags)
1819{
1820 struct vm_area_struct *vma;
1821 bool must_unlock = false;
1822 unsigned long vm_flags;
1823 long i;
1824
1825 if (!nr_pages)
1826 return 0;
1827
1828 /*
1829 * The internal caller expects GUP to manage the lock internally and the
1830 * lock must be released when this returns.
1831 */
1832 if (!*locked) {
1833 if (mmap_read_lock_killable(mm))
1834 return -EAGAIN;
1835 must_unlock = true;
1836 *locked = 1;
1837 }
1838
1839 /* calculate required read or write permissions.
1840 * If FOLL_FORCE is set, we only require the "MAY" flags.
1841 */
1842 vm_flags = (foll_flags & FOLL_WRITE) ?
1843 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1844 vm_flags &= (foll_flags & FOLL_FORCE) ?
1845 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1846
1847 for (i = 0; i < nr_pages; i++) {
1848 vma = find_vma(mm, start);
1849 if (!vma)
1850 break;
1851
1852 /* protect what we can, including chardevs */
1853 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1854 !(vm_flags & vma->vm_flags))
1855 break;
1856
1857 if (pages) {
1858 pages[i] = virt_to_page((void *)start);
1859 if (pages[i])
1860 get_page(pages[i]);
1861 }
1862
1863 start = (start + PAGE_SIZE) & PAGE_MASK;
1864 }
1865
1866 if (must_unlock && *locked) {
1867 mmap_read_unlock(mm);
1868 *locked = 0;
1869 }
1870
1871 return i ? : -EFAULT;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * fault_in_writeable - fault in userspace address range for writing
1877 * @uaddr: start of address range
1878 * @size: size of address range
1879 *
1880 * Returns the number of bytes not faulted in (like copy_to_user() and
1881 * copy_from_user()).
1882 */
1883size_t fault_in_writeable(char __user *uaddr, size_t size)
1884{
1885 char __user *start = uaddr, *end;
1886
1887 if (unlikely(size == 0))
1888 return 0;
1889 if (!user_write_access_begin(uaddr, size))
1890 return size;
1891 if (!PAGE_ALIGNED(uaddr)) {
1892 unsafe_put_user(0, uaddr, out);
1893 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1894 }
1895 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1896 if (unlikely(end < start))
1897 end = NULL;
1898 while (uaddr != end) {
1899 unsafe_put_user(0, uaddr, out);
1900 uaddr += PAGE_SIZE;
1901 }
1902
1903out:
1904 user_write_access_end();
1905 if (size > uaddr - start)
1906 return size - (uaddr - start);
1907 return 0;
1908}
1909EXPORT_SYMBOL(fault_in_writeable);
1910
1911/**
1912 * fault_in_subpage_writeable - fault in an address range for writing
1913 * @uaddr: start of address range
1914 * @size: size of address range
1915 *
1916 * Fault in a user address range for writing while checking for permissions at
1917 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1918 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1919 *
1920 * Returns the number of bytes not faulted in (like copy_to_user() and
1921 * copy_from_user()).
1922 */
1923size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1924{
1925 size_t faulted_in;
1926
1927 /*
1928 * Attempt faulting in at page granularity first for page table
1929 * permission checking. The arch-specific probe_subpage_writeable()
1930 * functions may not check for this.
1931 */
1932 faulted_in = size - fault_in_writeable(uaddr, size);
1933 if (faulted_in)
1934 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1935
1936 return size - faulted_in;
1937}
1938EXPORT_SYMBOL(fault_in_subpage_writeable);
1939
1940/*
1941 * fault_in_safe_writeable - fault in an address range for writing
1942 * @uaddr: start of address range
1943 * @size: length of address range
1944 *
1945 * Faults in an address range for writing. This is primarily useful when we
1946 * already know that some or all of the pages in the address range aren't in
1947 * memory.
1948 *
1949 * Unlike fault_in_writeable(), this function is non-destructive.
1950 *
1951 * Note that we don't pin or otherwise hold the pages referenced that we fault
1952 * in. There's no guarantee that they'll stay in memory for any duration of
1953 * time.
1954 *
1955 * Returns the number of bytes not faulted in, like copy_to_user() and
1956 * copy_from_user().
1957 */
1958size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1959{
1960 unsigned long start = (unsigned long)uaddr, end;
1961 struct mm_struct *mm = current->mm;
1962 bool unlocked = false;
1963
1964 if (unlikely(size == 0))
1965 return 0;
1966 end = PAGE_ALIGN(start + size);
1967 if (end < start)
1968 end = 0;
1969
1970 mmap_read_lock(mm);
1971 do {
1972 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1973 break;
1974 start = (start + PAGE_SIZE) & PAGE_MASK;
1975 } while (start != end);
1976 mmap_read_unlock(mm);
1977
1978 if (size > (unsigned long)uaddr - start)
1979 return size - ((unsigned long)uaddr - start);
1980 return 0;
1981}
1982EXPORT_SYMBOL(fault_in_safe_writeable);
1983
1984/**
1985 * fault_in_readable - fault in userspace address range for reading
1986 * @uaddr: start of user address range
1987 * @size: size of user address range
1988 *
1989 * Returns the number of bytes not faulted in (like copy_to_user() and
1990 * copy_from_user()).
1991 */
1992size_t fault_in_readable(const char __user *uaddr, size_t size)
1993{
1994 const char __user *start = uaddr, *end;
1995 volatile char c;
1996
1997 if (unlikely(size == 0))
1998 return 0;
1999 if (!user_read_access_begin(uaddr, size))
2000 return size;
2001 if (!PAGE_ALIGNED(uaddr)) {
2002 unsafe_get_user(c, uaddr, out);
2003 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2004 }
2005 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2006 if (unlikely(end < start))
2007 end = NULL;
2008 while (uaddr != end) {
2009 unsafe_get_user(c, uaddr, out);
2010 uaddr += PAGE_SIZE;
2011 }
2012
2013out:
2014 user_read_access_end();
2015 (void)c;
2016 if (size > uaddr - start)
2017 return size - (uaddr - start);
2018 return 0;
2019}
2020EXPORT_SYMBOL(fault_in_readable);
2021
2022/**
2023 * get_dump_page() - pin user page in memory while writing it to core dump
2024 * @addr: user address
2025 *
2026 * Returns struct page pointer of user page pinned for dump,
2027 * to be freed afterwards by put_page().
2028 *
2029 * Returns NULL on any kind of failure - a hole must then be inserted into
2030 * the corefile, to preserve alignment with its headers; and also returns
2031 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2032 * allowing a hole to be left in the corefile to save disk space.
2033 *
2034 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2035 */
2036#ifdef CONFIG_ELF_CORE
2037struct page *get_dump_page(unsigned long addr)
2038{
2039 struct page *page;
2040 int locked = 0;
2041 int ret;
2042
2043 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2044 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2045 return (ret == 1) ? page : NULL;
2046}
2047#endif /* CONFIG_ELF_CORE */
2048
2049#ifdef CONFIG_MIGRATION
2050/*
2051 * Returns the number of collected pages. Return value is always >= 0.
2052 */
2053static unsigned long collect_longterm_unpinnable_pages(
2054 struct list_head *movable_page_list,
2055 unsigned long nr_pages,
2056 struct page **pages)
2057{
2058 unsigned long i, collected = 0;
2059 struct folio *prev_folio = NULL;
2060 bool drain_allow = true;
2061
2062 for (i = 0; i < nr_pages; i++) {
2063 struct folio *folio = page_folio(pages[i]);
2064
2065 if (folio == prev_folio)
2066 continue;
2067 prev_folio = folio;
2068
2069 if (folio_is_longterm_pinnable(folio))
2070 continue;
2071
2072 collected++;
2073
2074 if (folio_is_device_coherent(folio))
2075 continue;
2076
2077 if (folio_test_hugetlb(folio)) {
2078 isolate_hugetlb(folio, movable_page_list);
2079 continue;
2080 }
2081
2082 if (!folio_test_lru(folio) && drain_allow) {
2083 lru_add_drain_all();
2084 drain_allow = false;
2085 }
2086
2087 if (!folio_isolate_lru(folio))
2088 continue;
2089
2090 list_add_tail(&folio->lru, movable_page_list);
2091 node_stat_mod_folio(folio,
2092 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2093 folio_nr_pages(folio));
2094 }
2095
2096 return collected;
2097}
2098
2099/*
2100 * Unpins all pages and migrates device coherent pages and movable_page_list.
2101 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2102 * (or partial success).
2103 */
2104static int migrate_longterm_unpinnable_pages(
2105 struct list_head *movable_page_list,
2106 unsigned long nr_pages,
2107 struct page **pages)
2108{
2109 int ret;
2110 unsigned long i;
2111
2112 for (i = 0; i < nr_pages; i++) {
2113 struct folio *folio = page_folio(pages[i]);
2114
2115 if (folio_is_device_coherent(folio)) {
2116 /*
2117 * Migration will fail if the page is pinned, so convert
2118 * the pin on the source page to a normal reference.
2119 */
2120 pages[i] = NULL;
2121 folio_get(folio);
2122 gup_put_folio(folio, 1, FOLL_PIN);
2123
2124 if (migrate_device_coherent_page(&folio->page)) {
2125 ret = -EBUSY;
2126 goto err;
2127 }
2128
2129 continue;
2130 }
2131
2132 /*
2133 * We can't migrate pages with unexpected references, so drop
2134 * the reference obtained by __get_user_pages_locked().
2135 * Migrating pages have been added to movable_page_list after
2136 * calling folio_isolate_lru() which takes a reference so the
2137 * page won't be freed if it's migrating.
2138 */
2139 unpin_user_page(pages[i]);
2140 pages[i] = NULL;
2141 }
2142
2143 if (!list_empty(movable_page_list)) {
2144 struct migration_target_control mtc = {
2145 .nid = NUMA_NO_NODE,
2146 .gfp_mask = GFP_USER | __GFP_NOWARN,
2147 };
2148
2149 if (migrate_pages(movable_page_list, alloc_migration_target,
2150 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2151 MR_LONGTERM_PIN, NULL)) {
2152 ret = -ENOMEM;
2153 goto err;
2154 }
2155 }
2156
2157 putback_movable_pages(movable_page_list);
2158
2159 return -EAGAIN;
2160
2161err:
2162 for (i = 0; i < nr_pages; i++)
2163 if (pages[i])
2164 unpin_user_page(pages[i]);
2165 putback_movable_pages(movable_page_list);
2166
2167 return ret;
2168}
2169
2170/*
2171 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2172 * pages in the range are required to be pinned via FOLL_PIN, before calling
2173 * this routine.
2174 *
2175 * If any pages in the range are not allowed to be pinned, then this routine
2176 * will migrate those pages away, unpin all the pages in the range and return
2177 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2178 * call this routine again.
2179 *
2180 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2181 * The caller should give up, and propagate the error back up the call stack.
2182 *
2183 * If everything is OK and all pages in the range are allowed to be pinned, then
2184 * this routine leaves all pages pinned and returns zero for success.
2185 */
2186static long check_and_migrate_movable_pages(unsigned long nr_pages,
2187 struct page **pages)
2188{
2189 unsigned long collected;
2190 LIST_HEAD(movable_page_list);
2191
2192 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2193 nr_pages, pages);
2194 if (!collected)
2195 return 0;
2196
2197 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2198 pages);
2199}
2200#else
2201static long check_and_migrate_movable_pages(unsigned long nr_pages,
2202 struct page **pages)
2203{
2204 return 0;
2205}
2206#endif /* CONFIG_MIGRATION */
2207
2208/*
2209 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2210 * allows us to process the FOLL_LONGTERM flag.
2211 */
2212static long __gup_longterm_locked(struct mm_struct *mm,
2213 unsigned long start,
2214 unsigned long nr_pages,
2215 struct page **pages,
2216 int *locked,
2217 unsigned int gup_flags)
2218{
2219 unsigned int flags;
2220 long rc, nr_pinned_pages;
2221
2222 if (!(gup_flags & FOLL_LONGTERM))
2223 return __get_user_pages_locked(mm, start, nr_pages, pages,
2224 locked, gup_flags);
2225
2226 flags = memalloc_pin_save();
2227 do {
2228 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2229 pages, locked,
2230 gup_flags);
2231 if (nr_pinned_pages <= 0) {
2232 rc = nr_pinned_pages;
2233 break;
2234 }
2235
2236 /* FOLL_LONGTERM implies FOLL_PIN */
2237 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2238 } while (rc == -EAGAIN);
2239 memalloc_pin_restore(flags);
2240 return rc ? rc : nr_pinned_pages;
2241}
2242
2243/*
2244 * Check that the given flags are valid for the exported gup/pup interface, and
2245 * update them with the required flags that the caller must have set.
2246 */
2247static bool is_valid_gup_args(struct page **pages, int *locked,
2248 unsigned int *gup_flags_p, unsigned int to_set)
2249{
2250 unsigned int gup_flags = *gup_flags_p;
2251
2252 /*
2253 * These flags not allowed to be specified externally to the gup
2254 * interfaces:
2255 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2256 * - FOLL_REMOTE is internal only and used on follow_page()
2257 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2258 */
2259 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2260 return false;
2261
2262 gup_flags |= to_set;
2263 if (locked) {
2264 /* At the external interface locked must be set */
2265 if (WARN_ON_ONCE(*locked != 1))
2266 return false;
2267
2268 gup_flags |= FOLL_UNLOCKABLE;
2269 }
2270
2271 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2272 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2273 (FOLL_PIN | FOLL_GET)))
2274 return false;
2275
2276 /* LONGTERM can only be specified when pinning */
2277 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2278 return false;
2279
2280 /* Pages input must be given if using GET/PIN */
2281 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2282 return false;
2283
2284 /* We want to allow the pgmap to be hot-unplugged at all times */
2285 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2286 (gup_flags & FOLL_PCI_P2PDMA)))
2287 return false;
2288
2289 *gup_flags_p = gup_flags;
2290 return true;
2291}
2292
2293#ifdef CONFIG_MMU
2294/**
2295 * get_user_pages_remote() - pin user pages in memory
2296 * @mm: mm_struct of target mm
2297 * @start: starting user address
2298 * @nr_pages: number of pages from start to pin
2299 * @gup_flags: flags modifying lookup behaviour
2300 * @pages: array that receives pointers to the pages pinned.
2301 * Should be at least nr_pages long. Or NULL, if caller
2302 * only intends to ensure the pages are faulted in.
2303 * @locked: pointer to lock flag indicating whether lock is held and
2304 * subsequently whether VM_FAULT_RETRY functionality can be
2305 * utilised. Lock must initially be held.
2306 *
2307 * Returns either number of pages pinned (which may be less than the
2308 * number requested), or an error. Details about the return value:
2309 *
2310 * -- If nr_pages is 0, returns 0.
2311 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2312 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2313 * pages pinned. Again, this may be less than nr_pages.
2314 *
2315 * The caller is responsible for releasing returned @pages, via put_page().
2316 *
2317 * Must be called with mmap_lock held for read or write.
2318 *
2319 * get_user_pages_remote walks a process's page tables and takes a reference
2320 * to each struct page that each user address corresponds to at a given
2321 * instant. That is, it takes the page that would be accessed if a user
2322 * thread accesses the given user virtual address at that instant.
2323 *
2324 * This does not guarantee that the page exists in the user mappings when
2325 * get_user_pages_remote returns, and there may even be a completely different
2326 * page there in some cases (eg. if mmapped pagecache has been invalidated
2327 * and subsequently re-faulted). However it does guarantee that the page
2328 * won't be freed completely. And mostly callers simply care that the page
2329 * contains data that was valid *at some point in time*. Typically, an IO
2330 * or similar operation cannot guarantee anything stronger anyway because
2331 * locks can't be held over the syscall boundary.
2332 *
2333 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2334 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2335 * be called after the page is finished with, and before put_page is called.
2336 *
2337 * get_user_pages_remote is typically used for fewer-copy IO operations,
2338 * to get a handle on the memory by some means other than accesses
2339 * via the user virtual addresses. The pages may be submitted for
2340 * DMA to devices or accessed via their kernel linear mapping (via the
2341 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2342 *
2343 * See also get_user_pages_fast, for performance critical applications.
2344 *
2345 * get_user_pages_remote should be phased out in favor of
2346 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2347 * should use get_user_pages_remote because it cannot pass
2348 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2349 */
2350long get_user_pages_remote(struct mm_struct *mm,
2351 unsigned long start, unsigned long nr_pages,
2352 unsigned int gup_flags, struct page **pages,
2353 int *locked)
2354{
2355 int local_locked = 1;
2356
2357 if (!is_valid_gup_args(pages, locked, &gup_flags,
2358 FOLL_TOUCH | FOLL_REMOTE))
2359 return -EINVAL;
2360
2361 return __get_user_pages_locked(mm, start, nr_pages, pages,
2362 locked ? locked : &local_locked,
2363 gup_flags);
2364}
2365EXPORT_SYMBOL(get_user_pages_remote);
2366
2367#else /* CONFIG_MMU */
2368long get_user_pages_remote(struct mm_struct *mm,
2369 unsigned long start, unsigned long nr_pages,
2370 unsigned int gup_flags, struct page **pages,
2371 int *locked)
2372{
2373 return 0;
2374}
2375#endif /* !CONFIG_MMU */
2376
2377/**
2378 * get_user_pages() - pin user pages in memory
2379 * @start: starting user address
2380 * @nr_pages: number of pages from start to pin
2381 * @gup_flags: flags modifying lookup behaviour
2382 * @pages: array that receives pointers to the pages pinned.
2383 * Should be at least nr_pages long. Or NULL, if caller
2384 * only intends to ensure the pages are faulted in.
2385 *
2386 * This is the same as get_user_pages_remote(), just with a less-flexible
2387 * calling convention where we assume that the mm being operated on belongs to
2388 * the current task, and doesn't allow passing of a locked parameter. We also
2389 * obviously don't pass FOLL_REMOTE in here.
2390 */
2391long get_user_pages(unsigned long start, unsigned long nr_pages,
2392 unsigned int gup_flags, struct page **pages)
2393{
2394 int locked = 1;
2395
2396 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2397 return -EINVAL;
2398
2399 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2400 &locked, gup_flags);
2401}
2402EXPORT_SYMBOL(get_user_pages);
2403
2404/*
2405 * get_user_pages_unlocked() is suitable to replace the form:
2406 *
2407 * mmap_read_lock(mm);
2408 * get_user_pages(mm, ..., pages, NULL);
2409 * mmap_read_unlock(mm);
2410 *
2411 * with:
2412 *
2413 * get_user_pages_unlocked(mm, ..., pages);
2414 *
2415 * It is functionally equivalent to get_user_pages_fast so
2416 * get_user_pages_fast should be used instead if specific gup_flags
2417 * (e.g. FOLL_FORCE) are not required.
2418 */
2419long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2420 struct page **pages, unsigned int gup_flags)
2421{
2422 int locked = 0;
2423
2424 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2425 FOLL_TOUCH | FOLL_UNLOCKABLE))
2426 return -EINVAL;
2427
2428 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2429 &locked, gup_flags);
2430}
2431EXPORT_SYMBOL(get_user_pages_unlocked);
2432
2433/*
2434 * Fast GUP
2435 *
2436 * get_user_pages_fast attempts to pin user pages by walking the page
2437 * tables directly and avoids taking locks. Thus the walker needs to be
2438 * protected from page table pages being freed from under it, and should
2439 * block any THP splits.
2440 *
2441 * One way to achieve this is to have the walker disable interrupts, and
2442 * rely on IPIs from the TLB flushing code blocking before the page table
2443 * pages are freed. This is unsuitable for architectures that do not need
2444 * to broadcast an IPI when invalidating TLBs.
2445 *
2446 * Another way to achieve this is to batch up page table containing pages
2447 * belonging to more than one mm_user, then rcu_sched a callback to free those
2448 * pages. Disabling interrupts will allow the fast_gup walker to both block
2449 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2450 * (which is a relatively rare event). The code below adopts this strategy.
2451 *
2452 * Before activating this code, please be aware that the following assumptions
2453 * are currently made:
2454 *
2455 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2456 * free pages containing page tables or TLB flushing requires IPI broadcast.
2457 *
2458 * *) ptes can be read atomically by the architecture.
2459 *
2460 * *) access_ok is sufficient to validate userspace address ranges.
2461 *
2462 * The last two assumptions can be relaxed by the addition of helper functions.
2463 *
2464 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2465 */
2466#ifdef CONFIG_HAVE_FAST_GUP
2467
2468/*
2469 * Used in the GUP-fast path to determine whether a pin is permitted for a
2470 * specific folio.
2471 *
2472 * This call assumes the caller has pinned the folio, that the lowest page table
2473 * level still points to this folio, and that interrupts have been disabled.
2474 *
2475 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2476 * (see comment describing the writable_file_mapping_allowed() function). We
2477 * therefore try to avoid the most egregious case of a long-term mapping doing
2478 * so.
2479 *
2480 * This function cannot be as thorough as that one as the VMA is not available
2481 * in the fast path, so instead we whitelist known good cases and if in doubt,
2482 * fall back to the slow path.
2483 */
2484static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2485{
2486 struct address_space *mapping;
2487 unsigned long mapping_flags;
2488
2489 /*
2490 * If we aren't pinning then no problematic write can occur. A long term
2491 * pin is the most egregious case so this is the one we disallow.
2492 */
2493 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2494 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2495 return true;
2496
2497 /* The folio is pinned, so we can safely access folio fields. */
2498
2499 if (WARN_ON_ONCE(folio_test_slab(folio)))
2500 return false;
2501
2502 /* hugetlb mappings do not require dirty-tracking. */
2503 if (folio_test_hugetlb(folio))
2504 return true;
2505
2506 /*
2507 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2508 * cannot proceed, which means no actions performed under RCU can
2509 * proceed either.
2510 *
2511 * inodes and thus their mappings are freed under RCU, which means the
2512 * mapping cannot be freed beneath us and thus we can safely dereference
2513 * it.
2514 */
2515 lockdep_assert_irqs_disabled();
2516
2517 /*
2518 * However, there may be operations which _alter_ the mapping, so ensure
2519 * we read it once and only once.
2520 */
2521 mapping = READ_ONCE(folio->mapping);
2522
2523 /*
2524 * The mapping may have been truncated, in any case we cannot determine
2525 * if this mapping is safe - fall back to slow path to determine how to
2526 * proceed.
2527 */
2528 if (!mapping)
2529 return false;
2530
2531 /* Anonymous folios pose no problem. */
2532 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2533 if (mapping_flags)
2534 return mapping_flags & PAGE_MAPPING_ANON;
2535
2536 /*
2537 * At this point, we know the mapping is non-null and points to an
2538 * address_space object. The only remaining whitelisted file system is
2539 * shmem.
2540 */
2541 return shmem_mapping(mapping);
2542}
2543
2544static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2545 unsigned int flags,
2546 struct page **pages)
2547{
2548 while ((*nr) - nr_start) {
2549 struct page *page = pages[--(*nr)];
2550
2551 ClearPageReferenced(page);
2552 if (flags & FOLL_PIN)
2553 unpin_user_page(page);
2554 else
2555 put_page(page);
2556 }
2557}
2558
2559#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2560/*
2561 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2562 * operations.
2563 *
2564 * To pin the page, fast-gup needs to do below in order:
2565 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2566 *
2567 * For the rest of pgtable operations where pgtable updates can be racy
2568 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2569 * is pinned.
2570 *
2571 * Above will work for all pte-level operations, including THP split.
2572 *
2573 * For THP collapse, it's a bit more complicated because fast-gup may be
2574 * walking a pgtable page that is being freed (pte is still valid but pmd
2575 * can be cleared already). To avoid race in such condition, we need to
2576 * also check pmd here to make sure pmd doesn't change (corresponds to
2577 * pmdp_collapse_flush() in the THP collapse code path).
2578 */
2579static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2580 unsigned long end, unsigned int flags,
2581 struct page **pages, int *nr)
2582{
2583 struct dev_pagemap *pgmap = NULL;
2584 int nr_start = *nr, ret = 0;
2585 pte_t *ptep, *ptem;
2586
2587 ptem = ptep = pte_offset_map(&pmd, addr);
2588 if (!ptep)
2589 return 0;
2590 do {
2591 pte_t pte = ptep_get_lockless(ptep);
2592 struct page *page;
2593 struct folio *folio;
2594
2595 /*
2596 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2597 * pte_access_permitted() better should reject these pages
2598 * either way: otherwise, GUP-fast might succeed in
2599 * cases where ordinary GUP would fail due to VMA access
2600 * permissions.
2601 */
2602 if (pte_protnone(pte))
2603 goto pte_unmap;
2604
2605 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2606 goto pte_unmap;
2607
2608 if (pte_devmap(pte)) {
2609 if (unlikely(flags & FOLL_LONGTERM))
2610 goto pte_unmap;
2611
2612 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2613 if (unlikely(!pgmap)) {
2614 undo_dev_pagemap(nr, nr_start, flags, pages);
2615 goto pte_unmap;
2616 }
2617 } else if (pte_special(pte))
2618 goto pte_unmap;
2619
2620 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2621 page = pte_page(pte);
2622
2623 folio = try_grab_folio(page, 1, flags);
2624 if (!folio)
2625 goto pte_unmap;
2626
2627 if (unlikely(folio_is_secretmem(folio))) {
2628 gup_put_folio(folio, 1, flags);
2629 goto pte_unmap;
2630 }
2631
2632 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2633 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2634 gup_put_folio(folio, 1, flags);
2635 goto pte_unmap;
2636 }
2637
2638 if (!folio_fast_pin_allowed(folio, flags)) {
2639 gup_put_folio(folio, 1, flags);
2640 goto pte_unmap;
2641 }
2642
2643 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2644 gup_put_folio(folio, 1, flags);
2645 goto pte_unmap;
2646 }
2647
2648 /*
2649 * We need to make the page accessible if and only if we are
2650 * going to access its content (the FOLL_PIN case). Please
2651 * see Documentation/core-api/pin_user_pages.rst for
2652 * details.
2653 */
2654 if (flags & FOLL_PIN) {
2655 ret = arch_make_page_accessible(page);
2656 if (ret) {
2657 gup_put_folio(folio, 1, flags);
2658 goto pte_unmap;
2659 }
2660 }
2661 folio_set_referenced(folio);
2662 pages[*nr] = page;
2663 (*nr)++;
2664 } while (ptep++, addr += PAGE_SIZE, addr != end);
2665
2666 ret = 1;
2667
2668pte_unmap:
2669 if (pgmap)
2670 put_dev_pagemap(pgmap);
2671 pte_unmap(ptem);
2672 return ret;
2673}
2674#else
2675
2676/*
2677 * If we can't determine whether or not a pte is special, then fail immediately
2678 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2679 * to be special.
2680 *
2681 * For a futex to be placed on a THP tail page, get_futex_key requires a
2682 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2683 * useful to have gup_huge_pmd even if we can't operate on ptes.
2684 */
2685static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2686 unsigned long end, unsigned int flags,
2687 struct page **pages, int *nr)
2688{
2689 return 0;
2690}
2691#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2692
2693#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2694static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2695 unsigned long end, unsigned int flags,
2696 struct page **pages, int *nr)
2697{
2698 int nr_start = *nr;
2699 struct dev_pagemap *pgmap = NULL;
2700
2701 do {
2702 struct page *page = pfn_to_page(pfn);
2703
2704 pgmap = get_dev_pagemap(pfn, pgmap);
2705 if (unlikely(!pgmap)) {
2706 undo_dev_pagemap(nr, nr_start, flags, pages);
2707 break;
2708 }
2709
2710 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2711 undo_dev_pagemap(nr, nr_start, flags, pages);
2712 break;
2713 }
2714
2715 SetPageReferenced(page);
2716 pages[*nr] = page;
2717 if (unlikely(try_grab_page(page, flags))) {
2718 undo_dev_pagemap(nr, nr_start, flags, pages);
2719 break;
2720 }
2721 (*nr)++;
2722 pfn++;
2723 } while (addr += PAGE_SIZE, addr != end);
2724
2725 put_dev_pagemap(pgmap);
2726 return addr == end;
2727}
2728
2729static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2730 unsigned long end, unsigned int flags,
2731 struct page **pages, int *nr)
2732{
2733 unsigned long fault_pfn;
2734 int nr_start = *nr;
2735
2736 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2737 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2738 return 0;
2739
2740 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2741 undo_dev_pagemap(nr, nr_start, flags, pages);
2742 return 0;
2743 }
2744 return 1;
2745}
2746
2747static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2748 unsigned long end, unsigned int flags,
2749 struct page **pages, int *nr)
2750{
2751 unsigned long fault_pfn;
2752 int nr_start = *nr;
2753
2754 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2755 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2756 return 0;
2757
2758 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2759 undo_dev_pagemap(nr, nr_start, flags, pages);
2760 return 0;
2761 }
2762 return 1;
2763}
2764#else
2765static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2766 unsigned long end, unsigned int flags,
2767 struct page **pages, int *nr)
2768{
2769 BUILD_BUG();
2770 return 0;
2771}
2772
2773static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2774 unsigned long end, unsigned int flags,
2775 struct page **pages, int *nr)
2776{
2777 BUILD_BUG();
2778 return 0;
2779}
2780#endif
2781
2782static int record_subpages(struct page *page, unsigned long addr,
2783 unsigned long end, struct page **pages)
2784{
2785 int nr;
2786
2787 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2788 pages[nr] = nth_page(page, nr);
2789
2790 return nr;
2791}
2792
2793#ifdef CONFIG_ARCH_HAS_HUGEPD
2794static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2795 unsigned long sz)
2796{
2797 unsigned long __boundary = (addr + sz) & ~(sz-1);
2798 return (__boundary - 1 < end - 1) ? __boundary : end;
2799}
2800
2801static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2802 unsigned long end, unsigned int flags,
2803 struct page **pages, int *nr)
2804{
2805 unsigned long pte_end;
2806 struct page *page;
2807 struct folio *folio;
2808 pte_t pte;
2809 int refs;
2810
2811 pte_end = (addr + sz) & ~(sz-1);
2812 if (pte_end < end)
2813 end = pte_end;
2814
2815 pte = huge_ptep_get(ptep);
2816
2817 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2818 return 0;
2819
2820 /* hugepages are never "special" */
2821 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2822
2823 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2824 refs = record_subpages(page, addr, end, pages + *nr);
2825
2826 folio = try_grab_folio(page, refs, flags);
2827 if (!folio)
2828 return 0;
2829
2830 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2831 gup_put_folio(folio, refs, flags);
2832 return 0;
2833 }
2834
2835 if (!folio_fast_pin_allowed(folio, flags)) {
2836 gup_put_folio(folio, refs, flags);
2837 return 0;
2838 }
2839
2840 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2841 gup_put_folio(folio, refs, flags);
2842 return 0;
2843 }
2844
2845 *nr += refs;
2846 folio_set_referenced(folio);
2847 return 1;
2848}
2849
2850static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2851 unsigned int pdshift, unsigned long end, unsigned int flags,
2852 struct page **pages, int *nr)
2853{
2854 pte_t *ptep;
2855 unsigned long sz = 1UL << hugepd_shift(hugepd);
2856 unsigned long next;
2857
2858 ptep = hugepte_offset(hugepd, addr, pdshift);
2859 do {
2860 next = hugepte_addr_end(addr, end, sz);
2861 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2862 return 0;
2863 } while (ptep++, addr = next, addr != end);
2864
2865 return 1;
2866}
2867#else
2868static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2869 unsigned int pdshift, unsigned long end, unsigned int flags,
2870 struct page **pages, int *nr)
2871{
2872 return 0;
2873}
2874#endif /* CONFIG_ARCH_HAS_HUGEPD */
2875
2876static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2877 unsigned long end, unsigned int flags,
2878 struct page **pages, int *nr)
2879{
2880 struct page *page;
2881 struct folio *folio;
2882 int refs;
2883
2884 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2885 return 0;
2886
2887 if (pmd_devmap(orig)) {
2888 if (unlikely(flags & FOLL_LONGTERM))
2889 return 0;
2890 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2891 pages, nr);
2892 }
2893
2894 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2895 refs = record_subpages(page, addr, end, pages + *nr);
2896
2897 folio = try_grab_folio(page, refs, flags);
2898 if (!folio)
2899 return 0;
2900
2901 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2902 gup_put_folio(folio, refs, flags);
2903 return 0;
2904 }
2905
2906 if (!folio_fast_pin_allowed(folio, flags)) {
2907 gup_put_folio(folio, refs, flags);
2908 return 0;
2909 }
2910 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2911 gup_put_folio(folio, refs, flags);
2912 return 0;
2913 }
2914
2915 *nr += refs;
2916 folio_set_referenced(folio);
2917 return 1;
2918}
2919
2920static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2921 unsigned long end, unsigned int flags,
2922 struct page **pages, int *nr)
2923{
2924 struct page *page;
2925 struct folio *folio;
2926 int refs;
2927
2928 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2929 return 0;
2930
2931 if (pud_devmap(orig)) {
2932 if (unlikely(flags & FOLL_LONGTERM))
2933 return 0;
2934 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2935 pages, nr);
2936 }
2937
2938 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2939 refs = record_subpages(page, addr, end, pages + *nr);
2940
2941 folio = try_grab_folio(page, refs, flags);
2942 if (!folio)
2943 return 0;
2944
2945 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2946 gup_put_folio(folio, refs, flags);
2947 return 0;
2948 }
2949
2950 if (!folio_fast_pin_allowed(folio, flags)) {
2951 gup_put_folio(folio, refs, flags);
2952 return 0;
2953 }
2954
2955 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2956 gup_put_folio(folio, refs, flags);
2957 return 0;
2958 }
2959
2960 *nr += refs;
2961 folio_set_referenced(folio);
2962 return 1;
2963}
2964
2965static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2966 unsigned long end, unsigned int flags,
2967 struct page **pages, int *nr)
2968{
2969 int refs;
2970 struct page *page;
2971 struct folio *folio;
2972
2973 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2974 return 0;
2975
2976 BUILD_BUG_ON(pgd_devmap(orig));
2977
2978 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2979 refs = record_subpages(page, addr, end, pages + *nr);
2980
2981 folio = try_grab_folio(page, refs, flags);
2982 if (!folio)
2983 return 0;
2984
2985 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2986 gup_put_folio(folio, refs, flags);
2987 return 0;
2988 }
2989
2990 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2991 gup_put_folio(folio, refs, flags);
2992 return 0;
2993 }
2994
2995 if (!folio_fast_pin_allowed(folio, flags)) {
2996 gup_put_folio(folio, refs, flags);
2997 return 0;
2998 }
2999
3000 *nr += refs;
3001 folio_set_referenced(folio);
3002 return 1;
3003}
3004
3005static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
3006 unsigned int flags, struct page **pages, int *nr)
3007{
3008 unsigned long next;
3009 pmd_t *pmdp;
3010
3011 pmdp = pmd_offset_lockless(pudp, pud, addr);
3012 do {
3013 pmd_t pmd = pmdp_get_lockless(pmdp);
3014
3015 next = pmd_addr_end(addr, end);
3016 if (!pmd_present(pmd))
3017 return 0;
3018
3019 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3020 pmd_devmap(pmd))) {
3021 /* See gup_pte_range() */
3022 if (pmd_protnone(pmd))
3023 return 0;
3024
3025 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3026 pages, nr))
3027 return 0;
3028
3029 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3030 /*
3031 * architecture have different format for hugetlbfs
3032 * pmd format and THP pmd format
3033 */
3034 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3035 PMD_SHIFT, next, flags, pages, nr))
3036 return 0;
3037 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3038 return 0;
3039 } while (pmdp++, addr = next, addr != end);
3040
3041 return 1;
3042}
3043
3044static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3045 unsigned int flags, struct page **pages, int *nr)
3046{
3047 unsigned long next;
3048 pud_t *pudp;
3049
3050 pudp = pud_offset_lockless(p4dp, p4d, addr);
3051 do {
3052 pud_t pud = READ_ONCE(*pudp);
3053
3054 next = pud_addr_end(addr, end);
3055 if (unlikely(!pud_present(pud)))
3056 return 0;
3057 if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3058 if (!gup_huge_pud(pud, pudp, addr, next, flags,
3059 pages, nr))
3060 return 0;
3061 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3062 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3063 PUD_SHIFT, next, flags, pages, nr))
3064 return 0;
3065 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3066 return 0;
3067 } while (pudp++, addr = next, addr != end);
3068
3069 return 1;
3070}
3071
3072static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3073 unsigned int flags, struct page **pages, int *nr)
3074{
3075 unsigned long next;
3076 p4d_t *p4dp;
3077
3078 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3079 do {
3080 p4d_t p4d = READ_ONCE(*p4dp);
3081
3082 next = p4d_addr_end(addr, end);
3083 if (p4d_none(p4d))
3084 return 0;
3085 BUILD_BUG_ON(p4d_huge(p4d));
3086 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3087 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3088 P4D_SHIFT, next, flags, pages, nr))
3089 return 0;
3090 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3091 return 0;
3092 } while (p4dp++, addr = next, addr != end);
3093
3094 return 1;
3095}
3096
3097static void gup_pgd_range(unsigned long addr, unsigned long end,
3098 unsigned int flags, struct page **pages, int *nr)
3099{
3100 unsigned long next;
3101 pgd_t *pgdp;
3102
3103 pgdp = pgd_offset(current->mm, addr);
3104 do {
3105 pgd_t pgd = READ_ONCE(*pgdp);
3106
3107 next = pgd_addr_end(addr, end);
3108 if (pgd_none(pgd))
3109 return;
3110 if (unlikely(pgd_huge(pgd))) {
3111 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3112 pages, nr))
3113 return;
3114 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3115 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3116 PGDIR_SHIFT, next, flags, pages, nr))
3117 return;
3118 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3119 return;
3120 } while (pgdp++, addr = next, addr != end);
3121}
3122#else
3123static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3124 unsigned int flags, struct page **pages, int *nr)
3125{
3126}
3127#endif /* CONFIG_HAVE_FAST_GUP */
3128
3129#ifndef gup_fast_permitted
3130/*
3131 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132 * we need to fall back to the slow version:
3133 */
3134static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135{
3136 return true;
3137}
3138#endif
3139
3140static unsigned long lockless_pages_from_mm(unsigned long start,
3141 unsigned long end,
3142 unsigned int gup_flags,
3143 struct page **pages)
3144{
3145 unsigned long flags;
3146 int nr_pinned = 0;
3147 unsigned seq;
3148
3149 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3150 !gup_fast_permitted(start, end))
3151 return 0;
3152
3153 if (gup_flags & FOLL_PIN) {
3154 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3155 if (seq & 1)
3156 return 0;
3157 }
3158
3159 /*
3160 * Disable interrupts. The nested form is used, in order to allow full,
3161 * general purpose use of this routine.
3162 *
3163 * With interrupts disabled, we block page table pages from being freed
3164 * from under us. See struct mmu_table_batch comments in
3165 * include/asm-generic/tlb.h for more details.
3166 *
3167 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3168 * that come from THPs splitting.
3169 */
3170 local_irq_save(flags);
3171 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3172 local_irq_restore(flags);
3173
3174 /*
3175 * When pinning pages for DMA there could be a concurrent write protect
3176 * from fork() via copy_page_range(), in this case always fail fast GUP.
3177 */
3178 if (gup_flags & FOLL_PIN) {
3179 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3180 unpin_user_pages_lockless(pages, nr_pinned);
3181 return 0;
3182 } else {
3183 sanity_check_pinned_pages(pages, nr_pinned);
3184 }
3185 }
3186 return nr_pinned;
3187}
3188
3189static int internal_get_user_pages_fast(unsigned long start,
3190 unsigned long nr_pages,
3191 unsigned int gup_flags,
3192 struct page **pages)
3193{
3194 unsigned long len, end;
3195 unsigned long nr_pinned;
3196 int locked = 0;
3197 int ret;
3198
3199 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3200 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3201 FOLL_FAST_ONLY | FOLL_NOFAULT |
3202 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3203 return -EINVAL;
3204
3205 if (gup_flags & FOLL_PIN)
3206 mm_set_has_pinned_flag(¤t->mm->flags);
3207
3208 if (!(gup_flags & FOLL_FAST_ONLY))
3209 might_lock_read(¤t->mm->mmap_lock);
3210
3211 start = untagged_addr(start) & PAGE_MASK;
3212 len = nr_pages << PAGE_SHIFT;
3213 if (check_add_overflow(start, len, &end))
3214 return -EOVERFLOW;
3215 if (end > TASK_SIZE_MAX)
3216 return -EFAULT;
3217 if (unlikely(!access_ok((void __user *)start, len)))
3218 return -EFAULT;
3219
3220 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3221 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3222 return nr_pinned;
3223
3224 /* Slow path: try to get the remaining pages with get_user_pages */
3225 start += nr_pinned << PAGE_SHIFT;
3226 pages += nr_pinned;
3227 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3228 pages, &locked,
3229 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3230 if (ret < 0) {
3231 /*
3232 * The caller has to unpin the pages we already pinned so
3233 * returning -errno is not an option
3234 */
3235 if (nr_pinned)
3236 return nr_pinned;
3237 return ret;
3238 }
3239 return ret + nr_pinned;
3240}
3241
3242/**
3243 * get_user_pages_fast_only() - pin user pages in memory
3244 * @start: starting user address
3245 * @nr_pages: number of pages from start to pin
3246 * @gup_flags: flags modifying pin behaviour
3247 * @pages: array that receives pointers to the pages pinned.
3248 * Should be at least nr_pages long.
3249 *
3250 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3251 * the regular GUP.
3252 *
3253 * If the architecture does not support this function, simply return with no
3254 * pages pinned.
3255 *
3256 * Careful, careful! COW breaking can go either way, so a non-write
3257 * access can get ambiguous page results. If you call this function without
3258 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3259 */
3260int get_user_pages_fast_only(unsigned long start, int nr_pages,
3261 unsigned int gup_flags, struct page **pages)
3262{
3263 /*
3264 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3265 * because gup fast is always a "pin with a +1 page refcount" request.
3266 *
3267 * FOLL_FAST_ONLY is required in order to match the API description of
3268 * this routine: no fall back to regular ("slow") GUP.
3269 */
3270 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3271 FOLL_GET | FOLL_FAST_ONLY))
3272 return -EINVAL;
3273
3274 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3275}
3276EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3277
3278/**
3279 * get_user_pages_fast() - pin user pages in memory
3280 * @start: starting user address
3281 * @nr_pages: number of pages from start to pin
3282 * @gup_flags: flags modifying pin behaviour
3283 * @pages: array that receives pointers to the pages pinned.
3284 * Should be at least nr_pages long.
3285 *
3286 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3287 * If not successful, it will fall back to taking the lock and
3288 * calling get_user_pages().
3289 *
3290 * Returns number of pages pinned. This may be fewer than the number requested.
3291 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3292 * -errno.
3293 */
3294int get_user_pages_fast(unsigned long start, int nr_pages,
3295 unsigned int gup_flags, struct page **pages)
3296{
3297 /*
3298 * The caller may or may not have explicitly set FOLL_GET; either way is
3299 * OK. However, internally (within mm/gup.c), gup fast variants must set
3300 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3301 * request.
3302 */
3303 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3304 return -EINVAL;
3305 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3306}
3307EXPORT_SYMBOL_GPL(get_user_pages_fast);
3308
3309/**
3310 * pin_user_pages_fast() - pin user pages in memory without taking locks
3311 *
3312 * @start: starting user address
3313 * @nr_pages: number of pages from start to pin
3314 * @gup_flags: flags modifying pin behaviour
3315 * @pages: array that receives pointers to the pages pinned.
3316 * Should be at least nr_pages long.
3317 *
3318 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3319 * get_user_pages_fast() for documentation on the function arguments, because
3320 * the arguments here are identical.
3321 *
3322 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3323 * see Documentation/core-api/pin_user_pages.rst for further details.
3324 *
3325 * Note that if a zero_page is amongst the returned pages, it will not have
3326 * pins in it and unpin_user_page() will not remove pins from it.
3327 */
3328int pin_user_pages_fast(unsigned long start, int nr_pages,
3329 unsigned int gup_flags, struct page **pages)
3330{
3331 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3332 return -EINVAL;
3333 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3334}
3335EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3336
3337/**
3338 * pin_user_pages_remote() - pin pages of a remote process
3339 *
3340 * @mm: mm_struct of target mm
3341 * @start: starting user address
3342 * @nr_pages: number of pages from start to pin
3343 * @gup_flags: flags modifying lookup behaviour
3344 * @pages: array that receives pointers to the pages pinned.
3345 * Should be at least nr_pages long.
3346 * @locked: pointer to lock flag indicating whether lock is held and
3347 * subsequently whether VM_FAULT_RETRY functionality can be
3348 * utilised. Lock must initially be held.
3349 *
3350 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3351 * get_user_pages_remote() for documentation on the function arguments, because
3352 * the arguments here are identical.
3353 *
3354 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3355 * see Documentation/core-api/pin_user_pages.rst for details.
3356 *
3357 * Note that if a zero_page is amongst the returned pages, it will not have
3358 * pins in it and unpin_user_page*() will not remove pins from it.
3359 */
3360long pin_user_pages_remote(struct mm_struct *mm,
3361 unsigned long start, unsigned long nr_pages,
3362 unsigned int gup_flags, struct page **pages,
3363 int *locked)
3364{
3365 int local_locked = 1;
3366
3367 if (!is_valid_gup_args(pages, locked, &gup_flags,
3368 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3369 return 0;
3370 return __gup_longterm_locked(mm, start, nr_pages, pages,
3371 locked ? locked : &local_locked,
3372 gup_flags);
3373}
3374EXPORT_SYMBOL(pin_user_pages_remote);
3375
3376/**
3377 * pin_user_pages() - pin user pages in memory for use by other devices
3378 *
3379 * @start: starting user address
3380 * @nr_pages: number of pages from start to pin
3381 * @gup_flags: flags modifying lookup behaviour
3382 * @pages: array that receives pointers to the pages pinned.
3383 * Should be at least nr_pages long.
3384 *
3385 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3386 * FOLL_PIN is set.
3387 *
3388 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3389 * see Documentation/core-api/pin_user_pages.rst for details.
3390 *
3391 * Note that if a zero_page is amongst the returned pages, it will not have
3392 * pins in it and unpin_user_page*() will not remove pins from it.
3393 */
3394long pin_user_pages(unsigned long start, unsigned long nr_pages,
3395 unsigned int gup_flags, struct page **pages)
3396{
3397 int locked = 1;
3398
3399 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3400 return 0;
3401 return __gup_longterm_locked(current->mm, start, nr_pages,
3402 pages, &locked, gup_flags);
3403}
3404EXPORT_SYMBOL(pin_user_pages);
3405
3406/*
3407 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3408 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3409 * FOLL_PIN and rejects FOLL_GET.
3410 *
3411 * Note that if a zero_page is amongst the returned pages, it will not have
3412 * pins in it and unpin_user_page*() will not remove pins from it.
3413 */
3414long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3415 struct page **pages, unsigned int gup_flags)
3416{
3417 int locked = 0;
3418
3419 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3420 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3421 return 0;
3422
3423 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3424 &locked, gup_flags);
3425}
3426EXPORT_SYMBOL(pin_user_pages_unlocked);