Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Definitions for the UDP module.
  8 *
  9 * Version:	@(#)udp.h	1.0.2	05/07/93
 10 *
 11 * Authors:	Ross Biro
 12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 13 *
 14 * Fixes:
 15 *		Alan Cox	: Turned on udp checksums. I don't want to
 16 *				  chase 'memory corruption' bugs that aren't!
 17 */
 18#ifndef _UDP_H
 19#define _UDP_H
 20
 21#include <linux/list.h>
 22#include <linux/bug.h>
 23#include <net/inet_sock.h>
 
 24#include <net/sock.h>
 25#include <net/snmp.h>
 26#include <net/ip.h>
 27#include <linux/ipv6.h>
 28#include <linux/seq_file.h>
 29#include <linux/poll.h>
 30#include <linux/indirect_call_wrapper.h>
 31
 32/**
 33 *	struct udp_skb_cb  -  UDP(-Lite) private variables
 34 *
 35 *	@header:      private variables used by IPv4/IPv6
 36 *	@cscov:       checksum coverage length (UDP-Lite only)
 37 *	@partial_cov: if set indicates partial csum coverage
 38 */
 39struct udp_skb_cb {
 40	union {
 41		struct inet_skb_parm	h4;
 42#if IS_ENABLED(CONFIG_IPV6)
 43		struct inet6_skb_parm	h6;
 44#endif
 45	} header;
 46	__u16		cscov;
 47	__u8		partial_cov;
 48};
 49#define UDP_SKB_CB(__skb)	((struct udp_skb_cb *)((__skb)->cb))
 50
 51/**
 52 *	struct udp_hslot - UDP hash slot
 53 *
 54 *	@head:	head of list of sockets
 55 *	@count:	number of sockets in 'head' list
 56 *	@lock:	spinlock protecting changes to head/count
 57 */
 58struct udp_hslot {
 59	struct hlist_head	head;
 60	int			count;
 61	spinlock_t		lock;
 62} __attribute__((aligned(2 * sizeof(long))));
 63
 64/**
 65 *	struct udp_table - UDP table
 66 *
 67 *	@hash:	hash table, sockets are hashed on (local port)
 68 *	@hash2:	hash table, sockets are hashed on (local port, local address)
 69 *	@mask:	number of slots in hash tables, minus 1
 70 *	@log:	log2(number of slots in hash table)
 71 */
 72struct udp_table {
 73	struct udp_hslot	*hash;
 74	struct udp_hslot	*hash2;
 75	unsigned int		mask;
 76	unsigned int		log;
 77};
 78extern struct udp_table udp_table;
 79void udp_table_init(struct udp_table *, const char *);
 80static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
 81					     struct net *net, unsigned int num)
 82{
 83	return &table->hash[udp_hashfn(net, num, table->mask)];
 84}
 85/*
 86 * For secondary hash, net_hash_mix() is performed before calling
 87 * udp_hashslot2(), this explains difference with udp_hashslot()
 88 */
 89static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
 90					      unsigned int hash)
 91{
 92	return &table->hash2[hash & table->mask];
 93}
 94
 95extern struct proto udp_prot;
 96
 97extern atomic_long_t udp_memory_allocated;
 
 98
 99/* sysctl variables for udp */
100extern long sysctl_udp_mem[3];
101extern int sysctl_udp_rmem_min;
102extern int sysctl_udp_wmem_min;
103
104struct sk_buff;
105
106/*
107 *	Generic checksumming routines for UDP(-Lite) v4 and v6
108 */
109static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
110{
111	return (UDP_SKB_CB(skb)->cscov == skb->len ?
112		__skb_checksum_complete(skb) :
113		__skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
114}
115
116static inline int udp_lib_checksum_complete(struct sk_buff *skb)
117{
118	return !skb_csum_unnecessary(skb) &&
119		__udp_lib_checksum_complete(skb);
120}
121
122/**
123 * 	udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
124 * 	@sk: 	socket we are writing to
125 * 	@skb: 	sk_buff containing the filled-in UDP header
126 * 	        (checksum field must be zeroed out)
127 */
128static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
129{
130	__wsum csum = csum_partial(skb_transport_header(skb),
131				   sizeof(struct udphdr), 0);
132	skb_queue_walk(&sk->sk_write_queue, skb) {
133		csum = csum_add(csum, skb->csum);
134	}
135	return csum;
136}
137
138static inline __wsum udp_csum(struct sk_buff *skb)
139{
140	__wsum csum = csum_partial(skb_transport_header(skb),
141				   sizeof(struct udphdr), skb->csum);
142
143	for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
144		csum = csum_add(csum, skb->csum);
145	}
146	return csum;
147}
148
149static inline __sum16 udp_v4_check(int len, __be32 saddr,
150				   __be32 daddr, __wsum base)
151{
152	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
153}
154
155void udp_set_csum(bool nocheck, struct sk_buff *skb,
156		  __be32 saddr, __be32 daddr, int len);
157
158static inline void udp_csum_pull_header(struct sk_buff *skb)
159{
160	if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
161		skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
162					 skb->csum);
163	skb_pull_rcsum(skb, sizeof(struct udphdr));
164	UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
165}
166
167typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
168				     __be16 dport);
169
170INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *,
171							   struct sk_buff *));
172INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int));
173INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp6_gro_receive(struct list_head *,
174							   struct sk_buff *));
175INDIRECT_CALLABLE_DECLARE(int udp6_gro_complete(struct sk_buff *, int));
176INDIRECT_CALLABLE_DECLARE(void udp_v6_early_demux(struct sk_buff *));
177INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
178
179struct sk_buff *udp_gro_receive(struct list_head *head, struct sk_buff *skb,
180				struct udphdr *uh, struct sock *sk);
181int udp_gro_complete(struct sk_buff *skb, int nhoff, udp_lookup_t lookup);
182
183struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
184				  netdev_features_t features, bool is_ipv6);
185
186static inline struct udphdr *udp_gro_udphdr(struct sk_buff *skb)
187{
188	struct udphdr *uh;
189	unsigned int hlen, off;
190
191	off  = skb_gro_offset(skb);
192	hlen = off + sizeof(*uh);
193	uh   = skb_gro_header_fast(skb, off);
194	if (skb_gro_header_hard(skb, hlen))
195		uh = skb_gro_header_slow(skb, hlen, off);
196
197	return uh;
 
 
198}
199
200/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
201static inline int udp_lib_hash(struct sock *sk)
202{
203	BUG();
204	return 0;
205}
206
207void udp_lib_unhash(struct sock *sk);
208void udp_lib_rehash(struct sock *sk, u16 new_hash);
209
210static inline void udp_lib_close(struct sock *sk, long timeout)
211{
212	sk_common_release(sk);
213}
214
215int udp_lib_get_port(struct sock *sk, unsigned short snum,
216		     unsigned int hash2_nulladdr);
217
218u32 udp_flow_hashrnd(void);
219
220static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
221				       int min, int max, bool use_eth)
222{
223	u32 hash;
224
225	if (min >= max) {
226		/* Use default range */
227		inet_get_local_port_range(net, &min, &max);
228	}
229
230	hash = skb_get_hash(skb);
231	if (unlikely(!hash)) {
232		if (use_eth) {
233			/* Can't find a normal hash, caller has indicated an
234			 * Ethernet packet so use that to compute a hash.
235			 */
236			hash = jhash(skb->data, 2 * ETH_ALEN,
237				     (__force u32) skb->protocol);
238		} else {
239			/* Can't derive any sort of hash for the packet, set
240			 * to some consistent random value.
241			 */
242			hash = udp_flow_hashrnd();
243		}
244	}
245
246	/* Since this is being sent on the wire obfuscate hash a bit
247	 * to minimize possbility that any useful information to an
248	 * attacker is leaked. Only upper 16 bits are relevant in the
249	 * computation for 16 bit port value.
250	 */
251	hash ^= hash << 16;
252
253	return htons((((u64) hash * (max - min)) >> 32) + min);
254}
255
256static inline int udp_rqueue_get(struct sock *sk)
257{
258	return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
259}
260
261static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
262				       int dif, int sdif)
263{
264#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
265	return inet_bound_dev_eq(!!net->ipv4.sysctl_udp_l3mdev_accept,
266				 bound_dev_if, dif, sdif);
267#else
268	return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
269#endif
270}
271
272/* net/ipv4/udp.c */
273void udp_destruct_sock(struct sock *sk);
274void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
275int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
276void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
277struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
278			       int noblock, int *off, int *err);
279static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
280					   int noblock, int *err)
281{
282	int off = 0;
283
284	return __skb_recv_udp(sk, flags, noblock, &off, err);
285}
286
287int udp_v4_early_demux(struct sk_buff *skb);
288bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
289int udp_get_port(struct sock *sk, unsigned short snum,
290		 int (*saddr_cmp)(const struct sock *,
291				  const struct sock *));
292int udp_err(struct sk_buff *, u32);
293int udp_abort(struct sock *sk, int err);
294int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
 
295int udp_push_pending_frames(struct sock *sk);
296void udp_flush_pending_frames(struct sock *sk);
297int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
298void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
299int udp_rcv(struct sk_buff *skb);
300int udp_ioctl(struct sock *sk, int cmd, unsigned long arg);
301int udp_init_sock(struct sock *sk);
302int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
303int __udp_disconnect(struct sock *sk, int flags);
304int udp_disconnect(struct sock *sk, int flags);
305__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
306struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
307				       netdev_features_t features,
308				       bool is_ipv6);
309int udp_lib_getsockopt(struct sock *sk, int level, int optname,
310		       char __user *optval, int __user *optlen);
311int udp_lib_setsockopt(struct sock *sk, int level, int optname,
312		       sockptr_t optval, unsigned int optlen,
313		       int (*push_pending_frames)(struct sock *));
314struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
315			     __be32 daddr, __be16 dport, int dif);
316struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
317			       __be32 daddr, __be16 dport, int dif, int sdif,
318			       struct udp_table *tbl, struct sk_buff *skb);
319struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
320				 __be16 sport, __be16 dport);
321struct sock *udp6_lib_lookup(struct net *net,
322			     const struct in6_addr *saddr, __be16 sport,
323			     const struct in6_addr *daddr, __be16 dport,
324			     int dif);
325struct sock *__udp6_lib_lookup(struct net *net,
326			       const struct in6_addr *saddr, __be16 sport,
327			       const struct in6_addr *daddr, __be16 dport,
328			       int dif, int sdif, struct udp_table *tbl,
329			       struct sk_buff *skb);
330struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
331				 __be16 sport, __be16 dport);
332int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
333		  sk_read_actor_t recv_actor);
334
335/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
336 * possibly multiple cache miss on dequeue()
337 */
338struct udp_dev_scratch {
339	/* skb->truesize and the stateless bit are embedded in a single field;
340	 * do not use a bitfield since the compiler emits better/smaller code
341	 * this way
342	 */
343	u32 _tsize_state;
344
345#if BITS_PER_LONG == 64
346	/* len and the bit needed to compute skb_csum_unnecessary
347	 * will be on cold cache lines at recvmsg time.
348	 * skb->len can be stored on 16 bits since the udp header has been
349	 * already validated and pulled.
350	 */
351	u16 len;
352	bool is_linear;
353	bool csum_unnecessary;
354#endif
355};
356
357static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
358{
359	return (struct udp_dev_scratch *)&skb->dev_scratch;
360}
361
362#if BITS_PER_LONG == 64
363static inline unsigned int udp_skb_len(struct sk_buff *skb)
364{
365	return udp_skb_scratch(skb)->len;
366}
367
368static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
369{
370	return udp_skb_scratch(skb)->csum_unnecessary;
371}
372
373static inline bool udp_skb_is_linear(struct sk_buff *skb)
374{
375	return udp_skb_scratch(skb)->is_linear;
376}
377
378#else
379static inline unsigned int udp_skb_len(struct sk_buff *skb)
380{
381	return skb->len;
382}
383
384static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
385{
386	return skb_csum_unnecessary(skb);
387}
388
389static inline bool udp_skb_is_linear(struct sk_buff *skb)
390{
391	return !skb_is_nonlinear(skb);
392}
393#endif
394
395static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
396				  struct iov_iter *to)
397{
398	int n;
399
400	n = copy_to_iter(skb->data + off, len, to);
401	if (n == len)
402		return 0;
403
404	iov_iter_revert(to, n);
405	return -EFAULT;
406}
407
408/*
409 * 	SNMP statistics for UDP and UDP-Lite
410 */
411#define UDP_INC_STATS(net, field, is_udplite)		      do { \
412	if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
413	else		SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
414#define __UDP_INC_STATS(net, field, is_udplite) 	      do { \
415	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
416	else		__SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
417
418#define __UDP6_INC_STATS(net, field, is_udplite)	    do { \
419	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
420	else		__SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
421} while(0)
422#define UDP6_INC_STATS(net, field, __lite)		    do { \
423	if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
424	else	    SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
425} while(0)
426
427#if IS_ENABLED(CONFIG_IPV6)
428#define __UDPX_MIB(sk, ipv4)						\
429({									\
430	ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :	\
431				 sock_net(sk)->mib.udp_statistics) :	\
432		(IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 :	\
433				 sock_net(sk)->mib.udp_stats_in6);	\
434})
435#else
436#define __UDPX_MIB(sk, ipv4)						\
437({									\
438	IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :		\
439			 sock_net(sk)->mib.udp_statistics;		\
440})
441#endif
442
443#define __UDPX_INC_STATS(sk, field) \
444	__SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
445
446#ifdef CONFIG_PROC_FS
447struct udp_seq_afinfo {
448	sa_family_t			family;
449	struct udp_table		*udp_table;
450};
451
452struct udp_iter_state {
453	struct seq_net_private  p;
454	int			bucket;
455	struct udp_seq_afinfo	*bpf_seq_afinfo;
456};
457
458void *udp_seq_start(struct seq_file *seq, loff_t *pos);
459void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
460void udp_seq_stop(struct seq_file *seq, void *v);
461
462extern const struct seq_operations udp_seq_ops;
463extern const struct seq_operations udp6_seq_ops;
464
465int udp4_proc_init(void);
466void udp4_proc_exit(void);
467#endif /* CONFIG_PROC_FS */
468
469int udpv4_offload_init(void);
470
471void udp_init(void);
472
473DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
474void udp_encap_enable(void);
475void udp_encap_disable(void);
476#if IS_ENABLED(CONFIG_IPV6)
477DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
478void udpv6_encap_enable(void);
479#endif
480
481static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
482					      struct sk_buff *skb, bool ipv4)
483{
484	netdev_features_t features = NETIF_F_SG;
485	struct sk_buff *segs;
486
487	/* Avoid csum recalculation by skb_segment unless userspace explicitly
488	 * asks for the final checksum values
489	 */
490	if (!inet_get_convert_csum(sk))
491		features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
492
493	/* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
494	 * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
495	 * packets in udp_gro_complete_segment. As does UDP GSO, verified by
496	 * udp_send_skb. But when those packets are looped in dev_loopback_xmit
497	 * their ip_summed is set to CHECKSUM_UNNECESSARY. Reset in this
498	 * specific case, where PARTIAL is both correct and required.
 
499	 */
500	if (skb->pkt_type == PACKET_LOOPBACK)
501		skb->ip_summed = CHECKSUM_PARTIAL;
502
503	/* the GSO CB lays after the UDP one, no need to save and restore any
504	 * CB fragment
505	 */
506	segs = __skb_gso_segment(skb, features, false);
507	if (IS_ERR_OR_NULL(segs)) {
508		int segs_nr = skb_shinfo(skb)->gso_segs;
509
510		atomic_add(segs_nr, &sk->sk_drops);
511		SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
512		kfree_skb(skb);
513		return NULL;
514	}
515
516	consume_skb(skb);
517	return segs;
518}
519
520static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
521{
522	/* UDP-lite can't land here - no GRO */
523	WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
524
525	/* UDP packets generated with UDP_SEGMENT and traversing:
526	 *
527	 * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
528	 *
529	 * can reach an UDP socket with CHECKSUM_NONE, because
530	 * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
531	 * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
532	 * have a valid checksum, as the GRO engine validates the UDP csum
533	 * before the aggregation and nobody strips such info in between.
534	 * Instead of adding another check in the tunnel fastpath, we can force
535	 * a valid csum after the segmentation.
536	 * Additionally fixup the UDP CB.
537	 */
538	UDP_SKB_CB(skb)->cscov = skb->len;
539	if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
540		skb->csum_valid = 1;
541}
542
543#ifdef CONFIG_BPF_SYSCALL
544struct sk_psock;
545struct proto *udp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
546int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
547#endif
548
549#endif	/* _UDP_H */
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Definitions for the UDP module.
  8 *
  9 * Version:	@(#)udp.h	1.0.2	05/07/93
 10 *
 11 * Authors:	Ross Biro
 12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 13 *
 14 * Fixes:
 15 *		Alan Cox	: Turned on udp checksums. I don't want to
 16 *				  chase 'memory corruption' bugs that aren't!
 17 */
 18#ifndef _UDP_H
 19#define _UDP_H
 20
 21#include <linux/list.h>
 22#include <linux/bug.h>
 23#include <net/inet_sock.h>
 24#include <net/gso.h>
 25#include <net/sock.h>
 26#include <net/snmp.h>
 27#include <net/ip.h>
 28#include <linux/ipv6.h>
 29#include <linux/seq_file.h>
 30#include <linux/poll.h>
 31#include <linux/indirect_call_wrapper.h>
 32
 33/**
 34 *	struct udp_skb_cb  -  UDP(-Lite) private variables
 35 *
 36 *	@header:      private variables used by IPv4/IPv6
 37 *	@cscov:       checksum coverage length (UDP-Lite only)
 38 *	@partial_cov: if set indicates partial csum coverage
 39 */
 40struct udp_skb_cb {
 41	union {
 42		struct inet_skb_parm	h4;
 43#if IS_ENABLED(CONFIG_IPV6)
 44		struct inet6_skb_parm	h6;
 45#endif
 46	} header;
 47	__u16		cscov;
 48	__u8		partial_cov;
 49};
 50#define UDP_SKB_CB(__skb)	((struct udp_skb_cb *)((__skb)->cb))
 51
 52/**
 53 *	struct udp_hslot - UDP hash slot
 54 *
 55 *	@head:	head of list of sockets
 56 *	@count:	number of sockets in 'head' list
 57 *	@lock:	spinlock protecting changes to head/count
 58 */
 59struct udp_hslot {
 60	struct hlist_head	head;
 61	int			count;
 62	spinlock_t		lock;
 63} __attribute__((aligned(2 * sizeof(long))));
 64
 65/**
 66 *	struct udp_table - UDP table
 67 *
 68 *	@hash:	hash table, sockets are hashed on (local port)
 69 *	@hash2:	hash table, sockets are hashed on (local port, local address)
 70 *	@mask:	number of slots in hash tables, minus 1
 71 *	@log:	log2(number of slots in hash table)
 72 */
 73struct udp_table {
 74	struct udp_hslot	*hash;
 75	struct udp_hslot	*hash2;
 76	unsigned int		mask;
 77	unsigned int		log;
 78};
 79extern struct udp_table udp_table;
 80void udp_table_init(struct udp_table *, const char *);
 81static inline struct udp_hslot *udp_hashslot(struct udp_table *table,
 82					     struct net *net, unsigned int num)
 83{
 84	return &table->hash[udp_hashfn(net, num, table->mask)];
 85}
 86/*
 87 * For secondary hash, net_hash_mix() is performed before calling
 88 * udp_hashslot2(), this explains difference with udp_hashslot()
 89 */
 90static inline struct udp_hslot *udp_hashslot2(struct udp_table *table,
 91					      unsigned int hash)
 92{
 93	return &table->hash2[hash & table->mask];
 94}
 95
 96extern struct proto udp_prot;
 97
 98extern atomic_long_t udp_memory_allocated;
 99DECLARE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
100
101/* sysctl variables for udp */
102extern long sysctl_udp_mem[3];
103extern int sysctl_udp_rmem_min;
104extern int sysctl_udp_wmem_min;
105
106struct sk_buff;
107
108/*
109 *	Generic checksumming routines for UDP(-Lite) v4 and v6
110 */
111static inline __sum16 __udp_lib_checksum_complete(struct sk_buff *skb)
112{
113	return (UDP_SKB_CB(skb)->cscov == skb->len ?
114		__skb_checksum_complete(skb) :
115		__skb_checksum_complete_head(skb, UDP_SKB_CB(skb)->cscov));
116}
117
118static inline int udp_lib_checksum_complete(struct sk_buff *skb)
119{
120	return !skb_csum_unnecessary(skb) &&
121		__udp_lib_checksum_complete(skb);
122}
123
124/**
125 * 	udp_csum_outgoing  -  compute UDPv4/v6 checksum over fragments
126 * 	@sk: 	socket we are writing to
127 * 	@skb: 	sk_buff containing the filled-in UDP header
128 * 	        (checksum field must be zeroed out)
129 */
130static inline __wsum udp_csum_outgoing(struct sock *sk, struct sk_buff *skb)
131{
132	__wsum csum = csum_partial(skb_transport_header(skb),
133				   sizeof(struct udphdr), 0);
134	skb_queue_walk(&sk->sk_write_queue, skb) {
135		csum = csum_add(csum, skb->csum);
136	}
137	return csum;
138}
139
140static inline __wsum udp_csum(struct sk_buff *skb)
141{
142	__wsum csum = csum_partial(skb_transport_header(skb),
143				   sizeof(struct udphdr), skb->csum);
144
145	for (skb = skb_shinfo(skb)->frag_list; skb; skb = skb->next) {
146		csum = csum_add(csum, skb->csum);
147	}
148	return csum;
149}
150
151static inline __sum16 udp_v4_check(int len, __be32 saddr,
152				   __be32 daddr, __wsum base)
153{
154	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base);
155}
156
157void udp_set_csum(bool nocheck, struct sk_buff *skb,
158		  __be32 saddr, __be32 daddr, int len);
159
160static inline void udp_csum_pull_header(struct sk_buff *skb)
161{
162	if (!skb->csum_valid && skb->ip_summed == CHECKSUM_NONE)
163		skb->csum = csum_partial(skb->data, sizeof(struct udphdr),
164					 skb->csum);
165	skb_pull_rcsum(skb, sizeof(struct udphdr));
166	UDP_SKB_CB(skb)->cscov -= sizeof(struct udphdr);
167}
168
169typedef struct sock *(*udp_lookup_t)(const struct sk_buff *skb, __be16 sport,
170				     __be16 dport);
171
172void udp_v6_early_demux(struct sk_buff *skb);
 
 
 
 
 
 
173INDIRECT_CALLABLE_DECLARE(int udpv6_rcv(struct sk_buff *));
174
 
 
 
 
175struct sk_buff *__udp_gso_segment(struct sk_buff *gso_skb,
176				  netdev_features_t features, bool is_ipv6);
177
178static inline void udp_lib_init_sock(struct sock *sk)
179{
180	struct udp_sock *up = udp_sk(sk);
 
 
 
 
 
 
 
181
182	skb_queue_head_init(&up->reader_queue);
183	up->forward_threshold = sk->sk_rcvbuf >> 2;
184	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
185}
186
187/* hash routines shared between UDPv4/6 and UDP-Litev4/6 */
188static inline int udp_lib_hash(struct sock *sk)
189{
190	BUG();
191	return 0;
192}
193
194void udp_lib_unhash(struct sock *sk);
195void udp_lib_rehash(struct sock *sk, u16 new_hash);
196
197static inline void udp_lib_close(struct sock *sk, long timeout)
198{
199	sk_common_release(sk);
200}
201
202int udp_lib_get_port(struct sock *sk, unsigned short snum,
203		     unsigned int hash2_nulladdr);
204
205u32 udp_flow_hashrnd(void);
206
207static inline __be16 udp_flow_src_port(struct net *net, struct sk_buff *skb,
208				       int min, int max, bool use_eth)
209{
210	u32 hash;
211
212	if (min >= max) {
213		/* Use default range */
214		inet_get_local_port_range(net, &min, &max);
215	}
216
217	hash = skb_get_hash(skb);
218	if (unlikely(!hash)) {
219		if (use_eth) {
220			/* Can't find a normal hash, caller has indicated an
221			 * Ethernet packet so use that to compute a hash.
222			 */
223			hash = jhash(skb->data, 2 * ETH_ALEN,
224				     (__force u32) skb->protocol);
225		} else {
226			/* Can't derive any sort of hash for the packet, set
227			 * to some consistent random value.
228			 */
229			hash = udp_flow_hashrnd();
230		}
231	}
232
233	/* Since this is being sent on the wire obfuscate hash a bit
234	 * to minimize possbility that any useful information to an
235	 * attacker is leaked. Only upper 16 bits are relevant in the
236	 * computation for 16 bit port value.
237	 */
238	hash ^= hash << 16;
239
240	return htons((((u64) hash * (max - min)) >> 32) + min);
241}
242
243static inline int udp_rqueue_get(struct sock *sk)
244{
245	return sk_rmem_alloc_get(sk) - READ_ONCE(udp_sk(sk)->forward_deficit);
246}
247
248static inline bool udp_sk_bound_dev_eq(struct net *net, int bound_dev_if,
249				       int dif, int sdif)
250{
251#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
252	return inet_bound_dev_eq(!!READ_ONCE(net->ipv4.sysctl_udp_l3mdev_accept),
253				 bound_dev_if, dif, sdif);
254#else
255	return inet_bound_dev_eq(true, bound_dev_if, dif, sdif);
256#endif
257}
258
259/* net/ipv4/udp.c */
260void udp_destruct_common(struct sock *sk);
261void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len);
262int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb);
263void udp_skb_destructor(struct sock *sk, struct sk_buff *skb);
264struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, int *off,
265			       int *err);
266static inline struct sk_buff *skb_recv_udp(struct sock *sk, unsigned int flags,
267					   int *err)
268{
269	int off = 0;
270
271	return __skb_recv_udp(sk, flags, &off, err);
272}
273
274int udp_v4_early_demux(struct sk_buff *skb);
275bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst);
 
 
 
276int udp_err(struct sk_buff *, u32);
277int udp_abort(struct sock *sk, int err);
278int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len);
279void udp_splice_eof(struct socket *sock);
280int udp_push_pending_frames(struct sock *sk);
281void udp_flush_pending_frames(struct sock *sk);
282int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size);
283void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst);
284int udp_rcv(struct sk_buff *skb);
285int udp_ioctl(struct sock *sk, int cmd, int *karg);
286int udp_init_sock(struct sock *sk);
287int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
288int __udp_disconnect(struct sock *sk, int flags);
289int udp_disconnect(struct sock *sk, int flags);
290__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait);
291struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
292				       netdev_features_t features,
293				       bool is_ipv6);
294int udp_lib_getsockopt(struct sock *sk, int level, int optname,
295		       char __user *optval, int __user *optlen);
296int udp_lib_setsockopt(struct sock *sk, int level, int optname,
297		       sockptr_t optval, unsigned int optlen,
298		       int (*push_pending_frames)(struct sock *));
299struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
300			     __be32 daddr, __be16 dport, int dif);
301struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
302			       __be32 daddr, __be16 dport, int dif, int sdif,
303			       struct udp_table *tbl, struct sk_buff *skb);
304struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
305				 __be16 sport, __be16 dport);
306struct sock *udp6_lib_lookup(struct net *net,
307			     const struct in6_addr *saddr, __be16 sport,
308			     const struct in6_addr *daddr, __be16 dport,
309			     int dif);
310struct sock *__udp6_lib_lookup(struct net *net,
311			       const struct in6_addr *saddr, __be16 sport,
312			       const struct in6_addr *daddr, __be16 dport,
313			       int dif, int sdif, struct udp_table *tbl,
314			       struct sk_buff *skb);
315struct sock *udp6_lib_lookup_skb(const struct sk_buff *skb,
316				 __be16 sport, __be16 dport);
317int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 
318
319/* UDP uses skb->dev_scratch to cache as much information as possible and avoid
320 * possibly multiple cache miss on dequeue()
321 */
322struct udp_dev_scratch {
323	/* skb->truesize and the stateless bit are embedded in a single field;
324	 * do not use a bitfield since the compiler emits better/smaller code
325	 * this way
326	 */
327	u32 _tsize_state;
328
329#if BITS_PER_LONG == 64
330	/* len and the bit needed to compute skb_csum_unnecessary
331	 * will be on cold cache lines at recvmsg time.
332	 * skb->len can be stored on 16 bits since the udp header has been
333	 * already validated and pulled.
334	 */
335	u16 len;
336	bool is_linear;
337	bool csum_unnecessary;
338#endif
339};
340
341static inline struct udp_dev_scratch *udp_skb_scratch(struct sk_buff *skb)
342{
343	return (struct udp_dev_scratch *)&skb->dev_scratch;
344}
345
346#if BITS_PER_LONG == 64
347static inline unsigned int udp_skb_len(struct sk_buff *skb)
348{
349	return udp_skb_scratch(skb)->len;
350}
351
352static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
353{
354	return udp_skb_scratch(skb)->csum_unnecessary;
355}
356
357static inline bool udp_skb_is_linear(struct sk_buff *skb)
358{
359	return udp_skb_scratch(skb)->is_linear;
360}
361
362#else
363static inline unsigned int udp_skb_len(struct sk_buff *skb)
364{
365	return skb->len;
366}
367
368static inline bool udp_skb_csum_unnecessary(struct sk_buff *skb)
369{
370	return skb_csum_unnecessary(skb);
371}
372
373static inline bool udp_skb_is_linear(struct sk_buff *skb)
374{
375	return !skb_is_nonlinear(skb);
376}
377#endif
378
379static inline int copy_linear_skb(struct sk_buff *skb, int len, int off,
380				  struct iov_iter *to)
381{
382	int n;
383
384	n = copy_to_iter(skb->data + off, len, to);
385	if (n == len)
386		return 0;
387
388	iov_iter_revert(to, n);
389	return -EFAULT;
390}
391
392/*
393 * 	SNMP statistics for UDP and UDP-Lite
394 */
395#define UDP_INC_STATS(net, field, is_udplite)		      do { \
396	if (is_udplite) SNMP_INC_STATS((net)->mib.udplite_statistics, field);       \
397	else		SNMP_INC_STATS((net)->mib.udp_statistics, field);  }  while(0)
398#define __UDP_INC_STATS(net, field, is_udplite) 	      do { \
399	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_statistics, field);         \
400	else		__SNMP_INC_STATS((net)->mib.udp_statistics, field);    }  while(0)
401
402#define __UDP6_INC_STATS(net, field, is_udplite)	    do { \
403	if (is_udplite) __SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);\
404	else		__SNMP_INC_STATS((net)->mib.udp_stats_in6, field);  \
405} while(0)
406#define UDP6_INC_STATS(net, field, __lite)		    do { \
407	if (__lite) SNMP_INC_STATS((net)->mib.udplite_stats_in6, field);  \
408	else	    SNMP_INC_STATS((net)->mib.udp_stats_in6, field);      \
409} while(0)
410
411#if IS_ENABLED(CONFIG_IPV6)
412#define __UDPX_MIB(sk, ipv4)						\
413({									\
414	ipv4 ? (IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :	\
415				 sock_net(sk)->mib.udp_statistics) :	\
416		(IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_stats_in6 :	\
417				 sock_net(sk)->mib.udp_stats_in6);	\
418})
419#else
420#define __UDPX_MIB(sk, ipv4)						\
421({									\
422	IS_UDPLITE(sk) ? sock_net(sk)->mib.udplite_statistics :		\
423			 sock_net(sk)->mib.udp_statistics;		\
424})
425#endif
426
427#define __UDPX_INC_STATS(sk, field) \
428	__SNMP_INC_STATS(__UDPX_MIB(sk, (sk)->sk_family == AF_INET), field)
429
430#ifdef CONFIG_PROC_FS
431struct udp_seq_afinfo {
432	sa_family_t			family;
433	struct udp_table		*udp_table;
434};
435
436struct udp_iter_state {
437	struct seq_net_private  p;
438	int			bucket;
 
439};
440
441void *udp_seq_start(struct seq_file *seq, loff_t *pos);
442void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
443void udp_seq_stop(struct seq_file *seq, void *v);
444
445extern const struct seq_operations udp_seq_ops;
446extern const struct seq_operations udp6_seq_ops;
447
448int udp4_proc_init(void);
449void udp4_proc_exit(void);
450#endif /* CONFIG_PROC_FS */
451
452int udpv4_offload_init(void);
453
454void udp_init(void);
455
456DECLARE_STATIC_KEY_FALSE(udp_encap_needed_key);
457void udp_encap_enable(void);
458void udp_encap_disable(void);
459#if IS_ENABLED(CONFIG_IPV6)
460DECLARE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
461void udpv6_encap_enable(void);
462#endif
463
464static inline struct sk_buff *udp_rcv_segment(struct sock *sk,
465					      struct sk_buff *skb, bool ipv4)
466{
467	netdev_features_t features = NETIF_F_SG;
468	struct sk_buff *segs;
469
470	/* Avoid csum recalculation by skb_segment unless userspace explicitly
471	 * asks for the final checksum values
472	 */
473	if (!inet_get_convert_csum(sk))
474		features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
475
476	/* UDP segmentation expects packets of type CHECKSUM_PARTIAL or
477	 * CHECKSUM_NONE in __udp_gso_segment. UDP GRO indeed builds partial
478	 * packets in udp_gro_complete_segment. As does UDP GSO, verified by
479	 * udp_send_skb. But when those packets are looped in dev_loopback_xmit
480	 * their ip_summed CHECKSUM_NONE is changed to CHECKSUM_UNNECESSARY.
481	 * Reset in this specific case, where PARTIAL is both correct and
482	 * required.
483	 */
484	if (skb->pkt_type == PACKET_LOOPBACK)
485		skb->ip_summed = CHECKSUM_PARTIAL;
486
487	/* the GSO CB lays after the UDP one, no need to save and restore any
488	 * CB fragment
489	 */
490	segs = __skb_gso_segment(skb, features, false);
491	if (IS_ERR_OR_NULL(segs)) {
492		int segs_nr = skb_shinfo(skb)->gso_segs;
493
494		atomic_add(segs_nr, &sk->sk_drops);
495		SNMP_ADD_STATS(__UDPX_MIB(sk, ipv4), UDP_MIB_INERRORS, segs_nr);
496		kfree_skb(skb);
497		return NULL;
498	}
499
500	consume_skb(skb);
501	return segs;
502}
503
504static inline void udp_post_segment_fix_csum(struct sk_buff *skb)
505{
506	/* UDP-lite can't land here - no GRO */
507	WARN_ON_ONCE(UDP_SKB_CB(skb)->partial_cov);
508
509	/* UDP packets generated with UDP_SEGMENT and traversing:
510	 *
511	 * UDP tunnel(xmit) -> veth (segmentation) -> veth (gro) -> UDP tunnel (rx)
512	 *
513	 * can reach an UDP socket with CHECKSUM_NONE, because
514	 * __iptunnel_pull_header() converts CHECKSUM_PARTIAL into NONE.
515	 * SKB_GSO_UDP_L4 or SKB_GSO_FRAGLIST packets with no UDP tunnel will
516	 * have a valid checksum, as the GRO engine validates the UDP csum
517	 * before the aggregation and nobody strips such info in between.
518	 * Instead of adding another check in the tunnel fastpath, we can force
519	 * a valid csum after the segmentation.
520	 * Additionally fixup the UDP CB.
521	 */
522	UDP_SKB_CB(skb)->cscov = skb->len;
523	if (skb->ip_summed == CHECKSUM_NONE && !skb->csum_valid)
524		skb->csum_valid = 1;
525}
526
527#ifdef CONFIG_BPF_SYSCALL
528struct sk_psock;
 
529int udp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
530#endif
531
532#endif	/* _UDP_H */