Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/kernel_read_file.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/initrd.h>
19#include <linux/timer.h>
20#include <linux/vmalloc.h>
21#include <linux/interrupt.h>
22#include <linux/bitops.h>
23#include <linux/mutex.h>
24#include <linux/workqueue.h>
25#include <linux/highmem.h>
26#include <linux/firmware.h>
27#include <linux/slab.h>
28#include <linux/sched.h>
29#include <linux/file.h>
30#include <linux/list.h>
31#include <linux/fs.h>
32#include <linux/async.h>
33#include <linux/pm.h>
34#include <linux/suspend.h>
35#include <linux/syscore_ops.h>
36#include <linux/reboot.h>
37#include <linux/security.h>
38#include <linux/xz.h>
39
40#include <generated/utsrelease.h>
41
42#include "../base.h"
43#include "firmware.h"
44#include "fallback.h"
45
46MODULE_AUTHOR("Manuel Estrada Sainz");
47MODULE_DESCRIPTION("Multi purpose firmware loading support");
48MODULE_LICENSE("GPL");
49
50struct firmware_cache {
51 /* firmware_buf instance will be added into the below list */
52 spinlock_t lock;
53 struct list_head head;
54 int state;
55
56#ifdef CONFIG_FW_CACHE
57 /*
58 * Names of firmware images which have been cached successfully
59 * will be added into the below list so that device uncache
60 * helper can trace which firmware images have been cached
61 * before.
62 */
63 spinlock_t name_lock;
64 struct list_head fw_names;
65
66 struct delayed_work work;
67
68 struct notifier_block pm_notify;
69#endif
70};
71
72struct fw_cache_entry {
73 struct list_head list;
74 const char *name;
75};
76
77struct fw_name_devm {
78 unsigned long magic;
79 const char *name;
80};
81
82static inline struct fw_priv *to_fw_priv(struct kref *ref)
83{
84 return container_of(ref, struct fw_priv, ref);
85}
86
87#define FW_LOADER_NO_CACHE 0
88#define FW_LOADER_START_CACHE 1
89
90/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
91 * guarding for corner cases a global lock should be OK */
92DEFINE_MUTEX(fw_lock);
93
94static struct firmware_cache fw_cache;
95
96/* Builtin firmware support */
97
98#ifdef CONFIG_FW_LOADER
99
100extern struct builtin_fw __start_builtin_fw[];
101extern struct builtin_fw __end_builtin_fw[];
102
103static void fw_copy_to_prealloc_buf(struct firmware *fw,
104 void *buf, size_t size)
105{
106 if (!buf || size < fw->size)
107 return;
108 memcpy(buf, fw->data, fw->size);
109}
110
111static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
112 void *buf, size_t size)
113{
114 struct builtin_fw *b_fw;
115
116 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
117 if (strcmp(name, b_fw->name) == 0) {
118 fw->size = b_fw->size;
119 fw->data = b_fw->data;
120 fw_copy_to_prealloc_buf(fw, buf, size);
121
122 return true;
123 }
124 }
125
126 return false;
127}
128
129static bool fw_is_builtin_firmware(const struct firmware *fw)
130{
131 struct builtin_fw *b_fw;
132
133 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
134 if (fw->data == b_fw->data)
135 return true;
136
137 return false;
138}
139
140#else /* Module case - no builtin firmware support */
141
142static inline bool fw_get_builtin_firmware(struct firmware *fw,
143 const char *name, void *buf,
144 size_t size)
145{
146 return false;
147}
148
149static inline bool fw_is_builtin_firmware(const struct firmware *fw)
150{
151 return false;
152}
153#endif
154
155static void fw_state_init(struct fw_priv *fw_priv)
156{
157 struct fw_state *fw_st = &fw_priv->fw_st;
158
159 init_completion(&fw_st->completion);
160 fw_st->status = FW_STATUS_UNKNOWN;
161}
162
163static inline int fw_state_wait(struct fw_priv *fw_priv)
164{
165 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
166}
167
168static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
169
170static struct fw_priv *__allocate_fw_priv(const char *fw_name,
171 struct firmware_cache *fwc,
172 void *dbuf,
173 size_t size,
174 size_t offset,
175 u32 opt_flags)
176{
177 struct fw_priv *fw_priv;
178
179 /* For a partial read, the buffer must be preallocated. */
180 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
181 return NULL;
182
183 /* Only partial reads are allowed to use an offset. */
184 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
185 return NULL;
186
187 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
188 if (!fw_priv)
189 return NULL;
190
191 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
192 if (!fw_priv->fw_name) {
193 kfree(fw_priv);
194 return NULL;
195 }
196
197 kref_init(&fw_priv->ref);
198 fw_priv->fwc = fwc;
199 fw_priv->data = dbuf;
200 fw_priv->allocated_size = size;
201 fw_priv->offset = offset;
202 fw_priv->opt_flags = opt_flags;
203 fw_state_init(fw_priv);
204#ifdef CONFIG_FW_LOADER_USER_HELPER
205 INIT_LIST_HEAD(&fw_priv->pending_list);
206#endif
207
208 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
209
210 return fw_priv;
211}
212
213static struct fw_priv *__lookup_fw_priv(const char *fw_name)
214{
215 struct fw_priv *tmp;
216 struct firmware_cache *fwc = &fw_cache;
217
218 list_for_each_entry(tmp, &fwc->head, list)
219 if (!strcmp(tmp->fw_name, fw_name))
220 return tmp;
221 return NULL;
222}
223
224/* Returns 1 for batching firmware requests with the same name */
225static int alloc_lookup_fw_priv(const char *fw_name,
226 struct firmware_cache *fwc,
227 struct fw_priv **fw_priv,
228 void *dbuf,
229 size_t size,
230 size_t offset,
231 u32 opt_flags)
232{
233 struct fw_priv *tmp;
234
235 spin_lock(&fwc->lock);
236 /*
237 * Do not merge requests that are marked to be non-cached or
238 * are performing partial reads.
239 */
240 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
241 tmp = __lookup_fw_priv(fw_name);
242 if (tmp) {
243 kref_get(&tmp->ref);
244 spin_unlock(&fwc->lock);
245 *fw_priv = tmp;
246 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
247 return 1;
248 }
249 }
250
251 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
252 if (tmp) {
253 INIT_LIST_HEAD(&tmp->list);
254 if (!(opt_flags & FW_OPT_NOCACHE))
255 list_add(&tmp->list, &fwc->head);
256 }
257 spin_unlock(&fwc->lock);
258
259 *fw_priv = tmp;
260
261 return tmp ? 0 : -ENOMEM;
262}
263
264static void __free_fw_priv(struct kref *ref)
265 __releases(&fwc->lock)
266{
267 struct fw_priv *fw_priv = to_fw_priv(ref);
268 struct firmware_cache *fwc = fw_priv->fwc;
269
270 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
271 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
272 (unsigned int)fw_priv->size);
273
274 list_del(&fw_priv->list);
275 spin_unlock(&fwc->lock);
276
277 if (fw_is_paged_buf(fw_priv))
278 fw_free_paged_buf(fw_priv);
279 else if (!fw_priv->allocated_size)
280 vfree(fw_priv->data);
281
282 kfree_const(fw_priv->fw_name);
283 kfree(fw_priv);
284}
285
286static void free_fw_priv(struct fw_priv *fw_priv)
287{
288 struct firmware_cache *fwc = fw_priv->fwc;
289 spin_lock(&fwc->lock);
290 if (!kref_put(&fw_priv->ref, __free_fw_priv))
291 spin_unlock(&fwc->lock);
292}
293
294#ifdef CONFIG_FW_LOADER_PAGED_BUF
295bool fw_is_paged_buf(struct fw_priv *fw_priv)
296{
297 return fw_priv->is_paged_buf;
298}
299
300void fw_free_paged_buf(struct fw_priv *fw_priv)
301{
302 int i;
303
304 if (!fw_priv->pages)
305 return;
306
307 vunmap(fw_priv->data);
308
309 for (i = 0; i < fw_priv->nr_pages; i++)
310 __free_page(fw_priv->pages[i]);
311 kvfree(fw_priv->pages);
312 fw_priv->pages = NULL;
313 fw_priv->page_array_size = 0;
314 fw_priv->nr_pages = 0;
315}
316
317int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
318{
319 /* If the array of pages is too small, grow it */
320 if (fw_priv->page_array_size < pages_needed) {
321 int new_array_size = max(pages_needed,
322 fw_priv->page_array_size * 2);
323 struct page **new_pages;
324
325 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
326 GFP_KERNEL);
327 if (!new_pages)
328 return -ENOMEM;
329 memcpy(new_pages, fw_priv->pages,
330 fw_priv->page_array_size * sizeof(void *));
331 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
332 (new_array_size - fw_priv->page_array_size));
333 kvfree(fw_priv->pages);
334 fw_priv->pages = new_pages;
335 fw_priv->page_array_size = new_array_size;
336 }
337
338 while (fw_priv->nr_pages < pages_needed) {
339 fw_priv->pages[fw_priv->nr_pages] =
340 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
341
342 if (!fw_priv->pages[fw_priv->nr_pages])
343 return -ENOMEM;
344 fw_priv->nr_pages++;
345 }
346
347 return 0;
348}
349
350int fw_map_paged_buf(struct fw_priv *fw_priv)
351{
352 /* one pages buffer should be mapped/unmapped only once */
353 if (!fw_priv->pages)
354 return 0;
355
356 vunmap(fw_priv->data);
357 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
358 PAGE_KERNEL_RO);
359 if (!fw_priv->data)
360 return -ENOMEM;
361
362 return 0;
363}
364#endif
365
366/*
367 * XZ-compressed firmware support
368 */
369#ifdef CONFIG_FW_LOADER_COMPRESS
370/* show an error and return the standard error code */
371static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
372{
373 if (xz_ret != XZ_STREAM_END) {
374 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
375 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
376 }
377 return 0;
378}
379
380/* single-shot decompression onto the pre-allocated buffer */
381static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
382 size_t in_size, const void *in_buffer)
383{
384 struct xz_dec *xz_dec;
385 struct xz_buf xz_buf;
386 enum xz_ret xz_ret;
387
388 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
389 if (!xz_dec)
390 return -ENOMEM;
391
392 xz_buf.in_size = in_size;
393 xz_buf.in = in_buffer;
394 xz_buf.in_pos = 0;
395 xz_buf.out_size = fw_priv->allocated_size;
396 xz_buf.out = fw_priv->data;
397 xz_buf.out_pos = 0;
398
399 xz_ret = xz_dec_run(xz_dec, &xz_buf);
400 xz_dec_end(xz_dec);
401
402 fw_priv->size = xz_buf.out_pos;
403 return fw_decompress_xz_error(dev, xz_ret);
404}
405
406/* decompression on paged buffer and map it */
407static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
408 size_t in_size, const void *in_buffer)
409{
410 struct xz_dec *xz_dec;
411 struct xz_buf xz_buf;
412 enum xz_ret xz_ret;
413 struct page *page;
414 int err = 0;
415
416 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
417 if (!xz_dec)
418 return -ENOMEM;
419
420 xz_buf.in_size = in_size;
421 xz_buf.in = in_buffer;
422 xz_buf.in_pos = 0;
423
424 fw_priv->is_paged_buf = true;
425 fw_priv->size = 0;
426 do {
427 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
428 err = -ENOMEM;
429 goto out;
430 }
431
432 /* decompress onto the new allocated page */
433 page = fw_priv->pages[fw_priv->nr_pages - 1];
434 xz_buf.out = kmap(page);
435 xz_buf.out_pos = 0;
436 xz_buf.out_size = PAGE_SIZE;
437 xz_ret = xz_dec_run(xz_dec, &xz_buf);
438 kunmap(page);
439 fw_priv->size += xz_buf.out_pos;
440 /* partial decompression means either end or error */
441 if (xz_buf.out_pos != PAGE_SIZE)
442 break;
443 } while (xz_ret == XZ_OK);
444
445 err = fw_decompress_xz_error(dev, xz_ret);
446 if (!err)
447 err = fw_map_paged_buf(fw_priv);
448
449 out:
450 xz_dec_end(xz_dec);
451 return err;
452}
453
454static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
455 size_t in_size, const void *in_buffer)
456{
457 /* if the buffer is pre-allocated, we can perform in single-shot mode */
458 if (fw_priv->data)
459 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
460 else
461 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
462}
463#endif /* CONFIG_FW_LOADER_COMPRESS */
464
465/* direct firmware loading support */
466static char fw_path_para[256];
467static const char * const fw_path[] = {
468 fw_path_para,
469 "/lib/firmware/updates/" UTS_RELEASE,
470 "/lib/firmware/updates",
471 "/lib/firmware/" UTS_RELEASE,
472 "/lib/firmware"
473};
474
475/*
476 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
477 * from kernel command line because firmware_class is generally built in
478 * kernel instead of module.
479 */
480module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
481MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
482
483static int
484fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
485 const char *suffix,
486 int (*decompress)(struct device *dev,
487 struct fw_priv *fw_priv,
488 size_t in_size,
489 const void *in_buffer))
490{
491 size_t size;
492 int i, len;
493 int rc = -ENOENT;
494 char *path;
495 size_t msize = INT_MAX;
496 void *buffer = NULL;
497
498 /* Already populated data member means we're loading into a buffer */
499 if (!decompress && fw_priv->data) {
500 buffer = fw_priv->data;
501 msize = fw_priv->allocated_size;
502 }
503
504 path = __getname();
505 if (!path)
506 return -ENOMEM;
507
508 wait_for_initramfs();
509 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
510 size_t file_size = 0;
511 size_t *file_size_ptr = NULL;
512
513 /* skip the unset customized path */
514 if (!fw_path[i][0])
515 continue;
516
517 len = snprintf(path, PATH_MAX, "%s/%s%s",
518 fw_path[i], fw_priv->fw_name, suffix);
519 if (len >= PATH_MAX) {
520 rc = -ENAMETOOLONG;
521 break;
522 }
523
524 fw_priv->size = 0;
525
526 /*
527 * The total file size is only examined when doing a partial
528 * read; the "full read" case needs to fail if the whole
529 * firmware was not completely loaded.
530 */
531 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
532 file_size_ptr = &file_size;
533
534 /* load firmware files from the mount namespace of init */
535 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
536 &buffer, msize,
537 file_size_ptr,
538 READING_FIRMWARE);
539 if (rc < 0) {
540 if (rc != -ENOENT)
541 dev_warn(device, "loading %s failed with error %d\n",
542 path, rc);
543 else
544 dev_dbg(device, "loading %s failed for no such file or directory.\n",
545 path);
546 continue;
547 }
548 size = rc;
549 rc = 0;
550
551 dev_dbg(device, "Loading firmware from %s\n", path);
552 if (decompress) {
553 dev_dbg(device, "f/w decompressing %s\n",
554 fw_priv->fw_name);
555 rc = decompress(device, fw_priv, size, buffer);
556 /* discard the superfluous original content */
557 vfree(buffer);
558 buffer = NULL;
559 if (rc) {
560 fw_free_paged_buf(fw_priv);
561 continue;
562 }
563 } else {
564 dev_dbg(device, "direct-loading %s\n",
565 fw_priv->fw_name);
566 if (!fw_priv->data)
567 fw_priv->data = buffer;
568 fw_priv->size = size;
569 }
570 fw_state_done(fw_priv);
571 break;
572 }
573 __putname(path);
574
575 return rc;
576}
577
578/* firmware holds the ownership of pages */
579static void firmware_free_data(const struct firmware *fw)
580{
581 /* Loaded directly? */
582 if (!fw->priv) {
583 vfree(fw->data);
584 return;
585 }
586 free_fw_priv(fw->priv);
587}
588
589/* store the pages buffer info firmware from buf */
590static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
591{
592 fw->priv = fw_priv;
593 fw->size = fw_priv->size;
594 fw->data = fw_priv->data;
595
596 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
597 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
598 (unsigned int)fw_priv->size);
599}
600
601#ifdef CONFIG_FW_CACHE
602static void fw_name_devm_release(struct device *dev, void *res)
603{
604 struct fw_name_devm *fwn = res;
605
606 if (fwn->magic == (unsigned long)&fw_cache)
607 pr_debug("%s: fw_name-%s devm-%p released\n",
608 __func__, fwn->name, res);
609 kfree_const(fwn->name);
610}
611
612static int fw_devm_match(struct device *dev, void *res,
613 void *match_data)
614{
615 struct fw_name_devm *fwn = res;
616
617 return (fwn->magic == (unsigned long)&fw_cache) &&
618 !strcmp(fwn->name, match_data);
619}
620
621static struct fw_name_devm *fw_find_devm_name(struct device *dev,
622 const char *name)
623{
624 struct fw_name_devm *fwn;
625
626 fwn = devres_find(dev, fw_name_devm_release,
627 fw_devm_match, (void *)name);
628 return fwn;
629}
630
631static bool fw_cache_is_setup(struct device *dev, const char *name)
632{
633 struct fw_name_devm *fwn;
634
635 fwn = fw_find_devm_name(dev, name);
636 if (fwn)
637 return true;
638
639 return false;
640}
641
642/* add firmware name into devres list */
643static int fw_add_devm_name(struct device *dev, const char *name)
644{
645 struct fw_name_devm *fwn;
646
647 if (fw_cache_is_setup(dev, name))
648 return 0;
649
650 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
651 GFP_KERNEL);
652 if (!fwn)
653 return -ENOMEM;
654 fwn->name = kstrdup_const(name, GFP_KERNEL);
655 if (!fwn->name) {
656 devres_free(fwn);
657 return -ENOMEM;
658 }
659
660 fwn->magic = (unsigned long)&fw_cache;
661 devres_add(dev, fwn);
662
663 return 0;
664}
665#else
666static bool fw_cache_is_setup(struct device *dev, const char *name)
667{
668 return false;
669}
670
671static int fw_add_devm_name(struct device *dev, const char *name)
672{
673 return 0;
674}
675#endif
676
677int assign_fw(struct firmware *fw, struct device *device)
678{
679 struct fw_priv *fw_priv = fw->priv;
680 int ret;
681
682 mutex_lock(&fw_lock);
683 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
684 mutex_unlock(&fw_lock);
685 return -ENOENT;
686 }
687
688 /*
689 * add firmware name into devres list so that we can auto cache
690 * and uncache firmware for device.
691 *
692 * device may has been deleted already, but the problem
693 * should be fixed in devres or driver core.
694 */
695 /* don't cache firmware handled without uevent */
696 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
697 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
698 ret = fw_add_devm_name(device, fw_priv->fw_name);
699 if (ret) {
700 mutex_unlock(&fw_lock);
701 return ret;
702 }
703 }
704
705 /*
706 * After caching firmware image is started, let it piggyback
707 * on request firmware.
708 */
709 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
710 fw_priv->fwc->state == FW_LOADER_START_CACHE)
711 fw_cache_piggyback_on_request(fw_priv);
712
713 /* pass the pages buffer to driver at the last minute */
714 fw_set_page_data(fw_priv, fw);
715 mutex_unlock(&fw_lock);
716 return 0;
717}
718
719/* prepare firmware and firmware_buf structs;
720 * return 0 if a firmware is already assigned, 1 if need to load one,
721 * or a negative error code
722 */
723static int
724_request_firmware_prepare(struct firmware **firmware_p, const char *name,
725 struct device *device, void *dbuf, size_t size,
726 size_t offset, u32 opt_flags)
727{
728 struct firmware *firmware;
729 struct fw_priv *fw_priv;
730 int ret;
731
732 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
733 if (!firmware) {
734 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
735 __func__);
736 return -ENOMEM;
737 }
738
739 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
740 dev_dbg(device, "using built-in %s\n", name);
741 return 0; /* assigned */
742 }
743
744 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
745 offset, opt_flags);
746
747 /*
748 * bind with 'priv' now to avoid warning in failure path
749 * of requesting firmware.
750 */
751 firmware->priv = fw_priv;
752
753 if (ret > 0) {
754 ret = fw_state_wait(fw_priv);
755 if (!ret) {
756 fw_set_page_data(fw_priv, firmware);
757 return 0; /* assigned */
758 }
759 }
760
761 if (ret < 0)
762 return ret;
763 return 1; /* need to load */
764}
765
766/*
767 * Batched requests need only one wake, we need to do this step last due to the
768 * fallback mechanism. The buf is protected with kref_get(), and it won't be
769 * released until the last user calls release_firmware().
770 *
771 * Failed batched requests are possible as well, in such cases we just share
772 * the struct fw_priv and won't release it until all requests are woken
773 * and have gone through this same path.
774 */
775static void fw_abort_batch_reqs(struct firmware *fw)
776{
777 struct fw_priv *fw_priv;
778
779 /* Loaded directly? */
780 if (!fw || !fw->priv)
781 return;
782
783 fw_priv = fw->priv;
784 mutex_lock(&fw_lock);
785 if (!fw_state_is_aborted(fw_priv))
786 fw_state_aborted(fw_priv);
787 mutex_unlock(&fw_lock);
788}
789
790/* called from request_firmware() and request_firmware_work_func() */
791static int
792_request_firmware(const struct firmware **firmware_p, const char *name,
793 struct device *device, void *buf, size_t size,
794 size_t offset, u32 opt_flags)
795{
796 struct firmware *fw = NULL;
797 bool nondirect = false;
798 int ret;
799
800 if (!firmware_p)
801 return -EINVAL;
802
803 if (!name || name[0] == '\0') {
804 ret = -EINVAL;
805 goto out;
806 }
807
808 ret = _request_firmware_prepare(&fw, name, device, buf, size,
809 offset, opt_flags);
810 if (ret <= 0) /* error or already assigned */
811 goto out;
812
813 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
814
815 /* Only full reads can support decompression, platform, and sysfs. */
816 if (!(opt_flags & FW_OPT_PARTIAL))
817 nondirect = true;
818
819#ifdef CONFIG_FW_LOADER_COMPRESS
820 if (ret == -ENOENT && nondirect)
821 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
822 fw_decompress_xz);
823#endif
824 if (ret == -ENOENT && nondirect)
825 ret = firmware_fallback_platform(fw->priv);
826
827 if (ret) {
828 if (!(opt_flags & FW_OPT_NO_WARN))
829 dev_warn(device,
830 "Direct firmware load for %s failed with error %d\n",
831 name, ret);
832 if (nondirect)
833 ret = firmware_fallback_sysfs(fw, name, device,
834 opt_flags, ret);
835 } else
836 ret = assign_fw(fw, device);
837
838 out:
839 if (ret < 0) {
840 fw_abort_batch_reqs(fw);
841 release_firmware(fw);
842 fw = NULL;
843 }
844
845 *firmware_p = fw;
846 return ret;
847}
848
849/**
850 * request_firmware() - send firmware request and wait for it
851 * @firmware_p: pointer to firmware image
852 * @name: name of firmware file
853 * @device: device for which firmware is being loaded
854 *
855 * @firmware_p will be used to return a firmware image by the name
856 * of @name for device @device.
857 *
858 * Should be called from user context where sleeping is allowed.
859 *
860 * @name will be used as $FIRMWARE in the uevent environment and
861 * should be distinctive enough not to be confused with any other
862 * firmware image for this or any other device.
863 *
864 * Caller must hold the reference count of @device.
865 *
866 * The function can be called safely inside device's suspend and
867 * resume callback.
868 **/
869int
870request_firmware(const struct firmware **firmware_p, const char *name,
871 struct device *device)
872{
873 int ret;
874
875 /* Need to pin this module until return */
876 __module_get(THIS_MODULE);
877 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
878 FW_OPT_UEVENT);
879 module_put(THIS_MODULE);
880 return ret;
881}
882EXPORT_SYMBOL(request_firmware);
883
884/**
885 * firmware_request_nowarn() - request for an optional fw module
886 * @firmware: pointer to firmware image
887 * @name: name of firmware file
888 * @device: device for which firmware is being loaded
889 *
890 * This function is similar in behaviour to request_firmware(), except it
891 * doesn't produce warning messages when the file is not found. The sysfs
892 * fallback mechanism is enabled if direct filesystem lookup fails. However,
893 * failures to find the firmware file with it are still suppressed. It is
894 * therefore up to the driver to check for the return value of this call and to
895 * decide when to inform the users of errors.
896 **/
897int firmware_request_nowarn(const struct firmware **firmware, const char *name,
898 struct device *device)
899{
900 int ret;
901
902 /* Need to pin this module until return */
903 __module_get(THIS_MODULE);
904 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
905 FW_OPT_UEVENT | FW_OPT_NO_WARN);
906 module_put(THIS_MODULE);
907 return ret;
908}
909EXPORT_SYMBOL_GPL(firmware_request_nowarn);
910
911/**
912 * request_firmware_direct() - load firmware directly without usermode helper
913 * @firmware_p: pointer to firmware image
914 * @name: name of firmware file
915 * @device: device for which firmware is being loaded
916 *
917 * This function works pretty much like request_firmware(), but this doesn't
918 * fall back to usermode helper even if the firmware couldn't be loaded
919 * directly from fs. Hence it's useful for loading optional firmwares, which
920 * aren't always present, without extra long timeouts of udev.
921 **/
922int request_firmware_direct(const struct firmware **firmware_p,
923 const char *name, struct device *device)
924{
925 int ret;
926
927 __module_get(THIS_MODULE);
928 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
929 FW_OPT_UEVENT | FW_OPT_NO_WARN |
930 FW_OPT_NOFALLBACK_SYSFS);
931 module_put(THIS_MODULE);
932 return ret;
933}
934EXPORT_SYMBOL_GPL(request_firmware_direct);
935
936/**
937 * firmware_request_platform() - request firmware with platform-fw fallback
938 * @firmware: pointer to firmware image
939 * @name: name of firmware file
940 * @device: device for which firmware is being loaded
941 *
942 * This function is similar in behaviour to request_firmware, except that if
943 * direct filesystem lookup fails, it will fallback to looking for a copy of the
944 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
945 **/
946int firmware_request_platform(const struct firmware **firmware,
947 const char *name, struct device *device)
948{
949 int ret;
950
951 /* Need to pin this module until return */
952 __module_get(THIS_MODULE);
953 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
954 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
955 module_put(THIS_MODULE);
956 return ret;
957}
958EXPORT_SYMBOL_GPL(firmware_request_platform);
959
960/**
961 * firmware_request_cache() - cache firmware for suspend so resume can use it
962 * @name: name of firmware file
963 * @device: device for which firmware should be cached for
964 *
965 * There are some devices with an optimization that enables the device to not
966 * require loading firmware on system reboot. This optimization may still
967 * require the firmware present on resume from suspend. This routine can be
968 * used to ensure the firmware is present on resume from suspend in these
969 * situations. This helper is not compatible with drivers which use
970 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
971 **/
972int firmware_request_cache(struct device *device, const char *name)
973{
974 int ret;
975
976 mutex_lock(&fw_lock);
977 ret = fw_add_devm_name(device, name);
978 mutex_unlock(&fw_lock);
979
980 return ret;
981}
982EXPORT_SYMBOL_GPL(firmware_request_cache);
983
984/**
985 * request_firmware_into_buf() - load firmware into a previously allocated buffer
986 * @firmware_p: pointer to firmware image
987 * @name: name of firmware file
988 * @device: device for which firmware is being loaded and DMA region allocated
989 * @buf: address of buffer to load firmware into
990 * @size: size of buffer
991 *
992 * This function works pretty much like request_firmware(), but it doesn't
993 * allocate a buffer to hold the firmware data. Instead, the firmware
994 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
995 * data member is pointed at @buf.
996 *
997 * This function doesn't cache firmware either.
998 */
999int
1000request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1001 struct device *device, void *buf, size_t size)
1002{
1003 int ret;
1004
1005 if (fw_cache_is_setup(device, name))
1006 return -EOPNOTSUPP;
1007
1008 __module_get(THIS_MODULE);
1009 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1010 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1011 module_put(THIS_MODULE);
1012 return ret;
1013}
1014EXPORT_SYMBOL(request_firmware_into_buf);
1015
1016/**
1017 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1018 * @firmware_p: pointer to firmware image
1019 * @name: name of firmware file
1020 * @device: device for which firmware is being loaded and DMA region allocated
1021 * @buf: address of buffer to load firmware into
1022 * @size: size of buffer
1023 * @offset: offset into file to read
1024 *
1025 * This function works pretty much like request_firmware_into_buf except
1026 * it allows a partial read of the file.
1027 */
1028int
1029request_partial_firmware_into_buf(const struct firmware **firmware_p,
1030 const char *name, struct device *device,
1031 void *buf, size_t size, size_t offset)
1032{
1033 int ret;
1034
1035 if (fw_cache_is_setup(device, name))
1036 return -EOPNOTSUPP;
1037
1038 __module_get(THIS_MODULE);
1039 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1040 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1041 FW_OPT_PARTIAL);
1042 module_put(THIS_MODULE);
1043 return ret;
1044}
1045EXPORT_SYMBOL(request_partial_firmware_into_buf);
1046
1047/**
1048 * release_firmware() - release the resource associated with a firmware image
1049 * @fw: firmware resource to release
1050 **/
1051void release_firmware(const struct firmware *fw)
1052{
1053 if (fw) {
1054 if (!fw_is_builtin_firmware(fw))
1055 firmware_free_data(fw);
1056 kfree(fw);
1057 }
1058}
1059EXPORT_SYMBOL(release_firmware);
1060
1061/* Async support */
1062struct firmware_work {
1063 struct work_struct work;
1064 struct module *module;
1065 const char *name;
1066 struct device *device;
1067 void *context;
1068 void (*cont)(const struct firmware *fw, void *context);
1069 u32 opt_flags;
1070};
1071
1072static void request_firmware_work_func(struct work_struct *work)
1073{
1074 struct firmware_work *fw_work;
1075 const struct firmware *fw;
1076
1077 fw_work = container_of(work, struct firmware_work, work);
1078
1079 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1080 fw_work->opt_flags);
1081 fw_work->cont(fw, fw_work->context);
1082 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1083
1084 module_put(fw_work->module);
1085 kfree_const(fw_work->name);
1086 kfree(fw_work);
1087}
1088
1089/**
1090 * request_firmware_nowait() - asynchronous version of request_firmware
1091 * @module: module requesting the firmware
1092 * @uevent: sends uevent to copy the firmware image if this flag
1093 * is non-zero else the firmware copy must be done manually.
1094 * @name: name of firmware file
1095 * @device: device for which firmware is being loaded
1096 * @gfp: allocation flags
1097 * @context: will be passed over to @cont, and
1098 * @fw may be %NULL if firmware request fails.
1099 * @cont: function will be called asynchronously when the firmware
1100 * request is over.
1101 *
1102 * Caller must hold the reference count of @device.
1103 *
1104 * Asynchronous variant of request_firmware() for user contexts:
1105 * - sleep for as small periods as possible since it may
1106 * increase kernel boot time of built-in device drivers
1107 * requesting firmware in their ->probe() methods, if
1108 * @gfp is GFP_KERNEL.
1109 *
1110 * - can't sleep at all if @gfp is GFP_ATOMIC.
1111 **/
1112int
1113request_firmware_nowait(
1114 struct module *module, bool uevent,
1115 const char *name, struct device *device, gfp_t gfp, void *context,
1116 void (*cont)(const struct firmware *fw, void *context))
1117{
1118 struct firmware_work *fw_work;
1119
1120 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1121 if (!fw_work)
1122 return -ENOMEM;
1123
1124 fw_work->module = module;
1125 fw_work->name = kstrdup_const(name, gfp);
1126 if (!fw_work->name) {
1127 kfree(fw_work);
1128 return -ENOMEM;
1129 }
1130 fw_work->device = device;
1131 fw_work->context = context;
1132 fw_work->cont = cont;
1133 fw_work->opt_flags = FW_OPT_NOWAIT |
1134 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1135
1136 if (!uevent && fw_cache_is_setup(device, name)) {
1137 kfree_const(fw_work->name);
1138 kfree(fw_work);
1139 return -EOPNOTSUPP;
1140 }
1141
1142 if (!try_module_get(module)) {
1143 kfree_const(fw_work->name);
1144 kfree(fw_work);
1145 return -EFAULT;
1146 }
1147
1148 get_device(fw_work->device);
1149 INIT_WORK(&fw_work->work, request_firmware_work_func);
1150 schedule_work(&fw_work->work);
1151 return 0;
1152}
1153EXPORT_SYMBOL(request_firmware_nowait);
1154
1155#ifdef CONFIG_FW_CACHE
1156static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1157
1158/**
1159 * cache_firmware() - cache one firmware image in kernel memory space
1160 * @fw_name: the firmware image name
1161 *
1162 * Cache firmware in kernel memory so that drivers can use it when
1163 * system isn't ready for them to request firmware image from userspace.
1164 * Once it returns successfully, driver can use request_firmware or its
1165 * nowait version to get the cached firmware without any interacting
1166 * with userspace
1167 *
1168 * Return 0 if the firmware image has been cached successfully
1169 * Return !0 otherwise
1170 *
1171 */
1172static int cache_firmware(const char *fw_name)
1173{
1174 int ret;
1175 const struct firmware *fw;
1176
1177 pr_debug("%s: %s\n", __func__, fw_name);
1178
1179 ret = request_firmware(&fw, fw_name, NULL);
1180 if (!ret)
1181 kfree(fw);
1182
1183 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1184
1185 return ret;
1186}
1187
1188static struct fw_priv *lookup_fw_priv(const char *fw_name)
1189{
1190 struct fw_priv *tmp;
1191 struct firmware_cache *fwc = &fw_cache;
1192
1193 spin_lock(&fwc->lock);
1194 tmp = __lookup_fw_priv(fw_name);
1195 spin_unlock(&fwc->lock);
1196
1197 return tmp;
1198}
1199
1200/**
1201 * uncache_firmware() - remove one cached firmware image
1202 * @fw_name: the firmware image name
1203 *
1204 * Uncache one firmware image which has been cached successfully
1205 * before.
1206 *
1207 * Return 0 if the firmware cache has been removed successfully
1208 * Return !0 otherwise
1209 *
1210 */
1211static int uncache_firmware(const char *fw_name)
1212{
1213 struct fw_priv *fw_priv;
1214 struct firmware fw;
1215
1216 pr_debug("%s: %s\n", __func__, fw_name);
1217
1218 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1219 return 0;
1220
1221 fw_priv = lookup_fw_priv(fw_name);
1222 if (fw_priv) {
1223 free_fw_priv(fw_priv);
1224 return 0;
1225 }
1226
1227 return -EINVAL;
1228}
1229
1230static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1231{
1232 struct fw_cache_entry *fce;
1233
1234 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1235 if (!fce)
1236 goto exit;
1237
1238 fce->name = kstrdup_const(name, GFP_ATOMIC);
1239 if (!fce->name) {
1240 kfree(fce);
1241 fce = NULL;
1242 goto exit;
1243 }
1244exit:
1245 return fce;
1246}
1247
1248static int __fw_entry_found(const char *name)
1249{
1250 struct firmware_cache *fwc = &fw_cache;
1251 struct fw_cache_entry *fce;
1252
1253 list_for_each_entry(fce, &fwc->fw_names, list) {
1254 if (!strcmp(fce->name, name))
1255 return 1;
1256 }
1257 return 0;
1258}
1259
1260static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1261{
1262 const char *name = fw_priv->fw_name;
1263 struct firmware_cache *fwc = fw_priv->fwc;
1264 struct fw_cache_entry *fce;
1265
1266 spin_lock(&fwc->name_lock);
1267 if (__fw_entry_found(name))
1268 goto found;
1269
1270 fce = alloc_fw_cache_entry(name);
1271 if (fce) {
1272 list_add(&fce->list, &fwc->fw_names);
1273 kref_get(&fw_priv->ref);
1274 pr_debug("%s: fw: %s\n", __func__, name);
1275 }
1276found:
1277 spin_unlock(&fwc->name_lock);
1278}
1279
1280static void free_fw_cache_entry(struct fw_cache_entry *fce)
1281{
1282 kfree_const(fce->name);
1283 kfree(fce);
1284}
1285
1286static void __async_dev_cache_fw_image(void *fw_entry,
1287 async_cookie_t cookie)
1288{
1289 struct fw_cache_entry *fce = fw_entry;
1290 struct firmware_cache *fwc = &fw_cache;
1291 int ret;
1292
1293 ret = cache_firmware(fce->name);
1294 if (ret) {
1295 spin_lock(&fwc->name_lock);
1296 list_del(&fce->list);
1297 spin_unlock(&fwc->name_lock);
1298
1299 free_fw_cache_entry(fce);
1300 }
1301}
1302
1303/* called with dev->devres_lock held */
1304static void dev_create_fw_entry(struct device *dev, void *res,
1305 void *data)
1306{
1307 struct fw_name_devm *fwn = res;
1308 const char *fw_name = fwn->name;
1309 struct list_head *head = data;
1310 struct fw_cache_entry *fce;
1311
1312 fce = alloc_fw_cache_entry(fw_name);
1313 if (fce)
1314 list_add(&fce->list, head);
1315}
1316
1317static int devm_name_match(struct device *dev, void *res,
1318 void *match_data)
1319{
1320 struct fw_name_devm *fwn = res;
1321 return (fwn->magic == (unsigned long)match_data);
1322}
1323
1324static void dev_cache_fw_image(struct device *dev, void *data)
1325{
1326 LIST_HEAD(todo);
1327 struct fw_cache_entry *fce;
1328 struct fw_cache_entry *fce_next;
1329 struct firmware_cache *fwc = &fw_cache;
1330
1331 devres_for_each_res(dev, fw_name_devm_release,
1332 devm_name_match, &fw_cache,
1333 dev_create_fw_entry, &todo);
1334
1335 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1336 list_del(&fce->list);
1337
1338 spin_lock(&fwc->name_lock);
1339 /* only one cache entry for one firmware */
1340 if (!__fw_entry_found(fce->name)) {
1341 list_add(&fce->list, &fwc->fw_names);
1342 } else {
1343 free_fw_cache_entry(fce);
1344 fce = NULL;
1345 }
1346 spin_unlock(&fwc->name_lock);
1347
1348 if (fce)
1349 async_schedule_domain(__async_dev_cache_fw_image,
1350 (void *)fce,
1351 &fw_cache_domain);
1352 }
1353}
1354
1355static void __device_uncache_fw_images(void)
1356{
1357 struct firmware_cache *fwc = &fw_cache;
1358 struct fw_cache_entry *fce;
1359
1360 spin_lock(&fwc->name_lock);
1361 while (!list_empty(&fwc->fw_names)) {
1362 fce = list_entry(fwc->fw_names.next,
1363 struct fw_cache_entry, list);
1364 list_del(&fce->list);
1365 spin_unlock(&fwc->name_lock);
1366
1367 uncache_firmware(fce->name);
1368 free_fw_cache_entry(fce);
1369
1370 spin_lock(&fwc->name_lock);
1371 }
1372 spin_unlock(&fwc->name_lock);
1373}
1374
1375/**
1376 * device_cache_fw_images() - cache devices' firmware
1377 *
1378 * If one device called request_firmware or its nowait version
1379 * successfully before, the firmware names are recored into the
1380 * device's devres link list, so device_cache_fw_images can call
1381 * cache_firmware() to cache these firmwares for the device,
1382 * then the device driver can load its firmwares easily at
1383 * time when system is not ready to complete loading firmware.
1384 */
1385static void device_cache_fw_images(void)
1386{
1387 struct firmware_cache *fwc = &fw_cache;
1388 DEFINE_WAIT(wait);
1389
1390 pr_debug("%s\n", __func__);
1391
1392 /* cancel uncache work */
1393 cancel_delayed_work_sync(&fwc->work);
1394
1395 fw_fallback_set_cache_timeout();
1396
1397 mutex_lock(&fw_lock);
1398 fwc->state = FW_LOADER_START_CACHE;
1399 dpm_for_each_dev(NULL, dev_cache_fw_image);
1400 mutex_unlock(&fw_lock);
1401
1402 /* wait for completion of caching firmware for all devices */
1403 async_synchronize_full_domain(&fw_cache_domain);
1404
1405 fw_fallback_set_default_timeout();
1406}
1407
1408/**
1409 * device_uncache_fw_images() - uncache devices' firmware
1410 *
1411 * uncache all firmwares which have been cached successfully
1412 * by device_uncache_fw_images earlier
1413 */
1414static void device_uncache_fw_images(void)
1415{
1416 pr_debug("%s\n", __func__);
1417 __device_uncache_fw_images();
1418}
1419
1420static void device_uncache_fw_images_work(struct work_struct *work)
1421{
1422 device_uncache_fw_images();
1423}
1424
1425/**
1426 * device_uncache_fw_images_delay() - uncache devices firmwares
1427 * @delay: number of milliseconds to delay uncache device firmwares
1428 *
1429 * uncache all devices's firmwares which has been cached successfully
1430 * by device_cache_fw_images after @delay milliseconds.
1431 */
1432static void device_uncache_fw_images_delay(unsigned long delay)
1433{
1434 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1435 msecs_to_jiffies(delay));
1436}
1437
1438static int fw_pm_notify(struct notifier_block *notify_block,
1439 unsigned long mode, void *unused)
1440{
1441 switch (mode) {
1442 case PM_HIBERNATION_PREPARE:
1443 case PM_SUSPEND_PREPARE:
1444 case PM_RESTORE_PREPARE:
1445 /*
1446 * kill pending fallback requests with a custom fallback
1447 * to avoid stalling suspend.
1448 */
1449 kill_pending_fw_fallback_reqs(true);
1450 device_cache_fw_images();
1451 break;
1452
1453 case PM_POST_SUSPEND:
1454 case PM_POST_HIBERNATION:
1455 case PM_POST_RESTORE:
1456 /*
1457 * In case that system sleep failed and syscore_suspend is
1458 * not called.
1459 */
1460 mutex_lock(&fw_lock);
1461 fw_cache.state = FW_LOADER_NO_CACHE;
1462 mutex_unlock(&fw_lock);
1463
1464 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1465 break;
1466 }
1467
1468 return 0;
1469}
1470
1471/* stop caching firmware once syscore_suspend is reached */
1472static int fw_suspend(void)
1473{
1474 fw_cache.state = FW_LOADER_NO_CACHE;
1475 return 0;
1476}
1477
1478static struct syscore_ops fw_syscore_ops = {
1479 .suspend = fw_suspend,
1480};
1481
1482static int __init register_fw_pm_ops(void)
1483{
1484 int ret;
1485
1486 spin_lock_init(&fw_cache.name_lock);
1487 INIT_LIST_HEAD(&fw_cache.fw_names);
1488
1489 INIT_DELAYED_WORK(&fw_cache.work,
1490 device_uncache_fw_images_work);
1491
1492 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1493 ret = register_pm_notifier(&fw_cache.pm_notify);
1494 if (ret)
1495 return ret;
1496
1497 register_syscore_ops(&fw_syscore_ops);
1498
1499 return ret;
1500}
1501
1502static inline void unregister_fw_pm_ops(void)
1503{
1504 unregister_syscore_ops(&fw_syscore_ops);
1505 unregister_pm_notifier(&fw_cache.pm_notify);
1506}
1507#else
1508static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1509{
1510}
1511static inline int register_fw_pm_ops(void)
1512{
1513 return 0;
1514}
1515static inline void unregister_fw_pm_ops(void)
1516{
1517}
1518#endif
1519
1520static void __init fw_cache_init(void)
1521{
1522 spin_lock_init(&fw_cache.lock);
1523 INIT_LIST_HEAD(&fw_cache.head);
1524 fw_cache.state = FW_LOADER_NO_CACHE;
1525}
1526
1527static int fw_shutdown_notify(struct notifier_block *unused1,
1528 unsigned long unused2, void *unused3)
1529{
1530 /*
1531 * Kill all pending fallback requests to avoid both stalling shutdown,
1532 * and avoid a deadlock with the usermode_lock.
1533 */
1534 kill_pending_fw_fallback_reqs(false);
1535
1536 return NOTIFY_DONE;
1537}
1538
1539static struct notifier_block fw_shutdown_nb = {
1540 .notifier_call = fw_shutdown_notify,
1541};
1542
1543static int __init firmware_class_init(void)
1544{
1545 int ret;
1546
1547 /* No need to unfold these on exit */
1548 fw_cache_init();
1549
1550 ret = register_fw_pm_ops();
1551 if (ret)
1552 return ret;
1553
1554 ret = register_reboot_notifier(&fw_shutdown_nb);
1555 if (ret)
1556 goto out;
1557
1558 return register_sysfs_loader();
1559
1560out:
1561 unregister_fw_pm_ops();
1562 return ret;
1563}
1564
1565static void __exit firmware_class_exit(void)
1566{
1567 unregister_fw_pm_ops();
1568 unregister_reboot_notifier(&fw_shutdown_nb);
1569 unregister_sysfs_loader();
1570}
1571
1572fs_initcall(firmware_class_init);
1573module_exit(firmware_class_exit);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/kernel_read_file.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/initrd.h>
19#include <linux/timer.h>
20#include <linux/vmalloc.h>
21#include <linux/interrupt.h>
22#include <linux/bitops.h>
23#include <linux/mutex.h>
24#include <linux/workqueue.h>
25#include <linux/highmem.h>
26#include <linux/firmware.h>
27#include <linux/slab.h>
28#include <linux/sched.h>
29#include <linux/file.h>
30#include <linux/list.h>
31#include <linux/fs.h>
32#include <linux/async.h>
33#include <linux/pm.h>
34#include <linux/suspend.h>
35#include <linux/syscore_ops.h>
36#include <linux/reboot.h>
37#include <linux/security.h>
38#include <linux/zstd.h>
39#include <linux/xz.h>
40
41#include <generated/utsrelease.h>
42
43#include "../base.h"
44#include "firmware.h"
45#include "fallback.h"
46
47MODULE_AUTHOR("Manuel Estrada Sainz");
48MODULE_DESCRIPTION("Multi purpose firmware loading support");
49MODULE_LICENSE("GPL");
50
51struct firmware_cache {
52 /* firmware_buf instance will be added into the below list */
53 spinlock_t lock;
54 struct list_head head;
55 int state;
56
57#ifdef CONFIG_FW_CACHE
58 /*
59 * Names of firmware images which have been cached successfully
60 * will be added into the below list so that device uncache
61 * helper can trace which firmware images have been cached
62 * before.
63 */
64 spinlock_t name_lock;
65 struct list_head fw_names;
66
67 struct delayed_work work;
68
69 struct notifier_block pm_notify;
70#endif
71};
72
73struct fw_cache_entry {
74 struct list_head list;
75 const char *name;
76};
77
78struct fw_name_devm {
79 unsigned long magic;
80 const char *name;
81};
82
83static inline struct fw_priv *to_fw_priv(struct kref *ref)
84{
85 return container_of(ref, struct fw_priv, ref);
86}
87
88#define FW_LOADER_NO_CACHE 0
89#define FW_LOADER_START_CACHE 1
90
91/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93DEFINE_MUTEX(fw_lock);
94
95struct firmware_cache fw_cache;
96bool fw_load_abort_all;
97
98void fw_state_init(struct fw_priv *fw_priv)
99{
100 struct fw_state *fw_st = &fw_priv->fw_st;
101
102 init_completion(&fw_st->completion);
103 fw_st->status = FW_STATUS_UNKNOWN;
104}
105
106static inline int fw_state_wait(struct fw_priv *fw_priv)
107{
108 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109}
110
111static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
113static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114 struct firmware_cache *fwc,
115 void *dbuf,
116 size_t size,
117 size_t offset,
118 u32 opt_flags)
119{
120 struct fw_priv *fw_priv;
121
122 /* For a partial read, the buffer must be preallocated. */
123 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124 return NULL;
125
126 /* Only partial reads are allowed to use an offset. */
127 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128 return NULL;
129
130 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131 if (!fw_priv)
132 return NULL;
133
134 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135 if (!fw_priv->fw_name) {
136 kfree(fw_priv);
137 return NULL;
138 }
139
140 kref_init(&fw_priv->ref);
141 fw_priv->fwc = fwc;
142 fw_priv->data = dbuf;
143 fw_priv->allocated_size = size;
144 fw_priv->offset = offset;
145 fw_priv->opt_flags = opt_flags;
146 fw_state_init(fw_priv);
147#ifdef CONFIG_FW_LOADER_USER_HELPER
148 INIT_LIST_HEAD(&fw_priv->pending_list);
149#endif
150
151 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153 return fw_priv;
154}
155
156static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157{
158 struct fw_priv *tmp;
159 struct firmware_cache *fwc = &fw_cache;
160
161 list_for_each_entry(tmp, &fwc->head, list)
162 if (!strcmp(tmp->fw_name, fw_name))
163 return tmp;
164 return NULL;
165}
166
167/* Returns 1 for batching firmware requests with the same name */
168int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169 struct fw_priv **fw_priv, void *dbuf, size_t size,
170 size_t offset, u32 opt_flags)
171{
172 struct fw_priv *tmp;
173
174 spin_lock(&fwc->lock);
175 /*
176 * Do not merge requests that are marked to be non-cached or
177 * are performing partial reads.
178 */
179 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180 tmp = __lookup_fw_priv(fw_name);
181 if (tmp) {
182 kref_get(&tmp->ref);
183 spin_unlock(&fwc->lock);
184 *fw_priv = tmp;
185 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186 return 1;
187 }
188 }
189
190 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191 if (tmp) {
192 INIT_LIST_HEAD(&tmp->list);
193 if (!(opt_flags & FW_OPT_NOCACHE))
194 list_add(&tmp->list, &fwc->head);
195 }
196 spin_unlock(&fwc->lock);
197
198 *fw_priv = tmp;
199
200 return tmp ? 0 : -ENOMEM;
201}
202
203static void __free_fw_priv(struct kref *ref)
204 __releases(&fwc->lock)
205{
206 struct fw_priv *fw_priv = to_fw_priv(ref);
207 struct firmware_cache *fwc = fw_priv->fwc;
208
209 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211 (unsigned int)fw_priv->size);
212
213 list_del(&fw_priv->list);
214 spin_unlock(&fwc->lock);
215
216 if (fw_is_paged_buf(fw_priv))
217 fw_free_paged_buf(fw_priv);
218 else if (!fw_priv->allocated_size)
219 vfree(fw_priv->data);
220
221 kfree_const(fw_priv->fw_name);
222 kfree(fw_priv);
223}
224
225void free_fw_priv(struct fw_priv *fw_priv)
226{
227 struct firmware_cache *fwc = fw_priv->fwc;
228 spin_lock(&fwc->lock);
229 if (!kref_put(&fw_priv->ref, __free_fw_priv))
230 spin_unlock(&fwc->lock);
231}
232
233#ifdef CONFIG_FW_LOADER_PAGED_BUF
234bool fw_is_paged_buf(struct fw_priv *fw_priv)
235{
236 return fw_priv->is_paged_buf;
237}
238
239void fw_free_paged_buf(struct fw_priv *fw_priv)
240{
241 int i;
242
243 if (!fw_priv->pages)
244 return;
245
246 vunmap(fw_priv->data);
247
248 for (i = 0; i < fw_priv->nr_pages; i++)
249 __free_page(fw_priv->pages[i]);
250 kvfree(fw_priv->pages);
251 fw_priv->pages = NULL;
252 fw_priv->page_array_size = 0;
253 fw_priv->nr_pages = 0;
254 fw_priv->data = NULL;
255 fw_priv->size = 0;
256}
257
258int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259{
260 /* If the array of pages is too small, grow it */
261 if (fw_priv->page_array_size < pages_needed) {
262 int new_array_size = max(pages_needed,
263 fw_priv->page_array_size * 2);
264 struct page **new_pages;
265
266 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267 GFP_KERNEL);
268 if (!new_pages)
269 return -ENOMEM;
270 memcpy(new_pages, fw_priv->pages,
271 fw_priv->page_array_size * sizeof(void *));
272 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273 (new_array_size - fw_priv->page_array_size));
274 kvfree(fw_priv->pages);
275 fw_priv->pages = new_pages;
276 fw_priv->page_array_size = new_array_size;
277 }
278
279 while (fw_priv->nr_pages < pages_needed) {
280 fw_priv->pages[fw_priv->nr_pages] =
281 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283 if (!fw_priv->pages[fw_priv->nr_pages])
284 return -ENOMEM;
285 fw_priv->nr_pages++;
286 }
287
288 return 0;
289}
290
291int fw_map_paged_buf(struct fw_priv *fw_priv)
292{
293 /* one pages buffer should be mapped/unmapped only once */
294 if (!fw_priv->pages)
295 return 0;
296
297 vunmap(fw_priv->data);
298 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299 PAGE_KERNEL_RO);
300 if (!fw_priv->data)
301 return -ENOMEM;
302
303 return 0;
304}
305#endif
306
307/*
308 * ZSTD-compressed firmware support
309 */
310#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312 size_t in_size, const void *in_buffer)
313{
314 size_t len, out_size, workspace_size;
315 void *workspace, *out_buf;
316 zstd_dctx *ctx;
317 int err;
318
319 if (fw_priv->allocated_size) {
320 out_size = fw_priv->allocated_size;
321 out_buf = fw_priv->data;
322 } else {
323 zstd_frame_header params;
324
325 if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
326 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327 dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328 return -EINVAL;
329 }
330 out_size = params.frameContentSize;
331 out_buf = vzalloc(out_size);
332 if (!out_buf)
333 return -ENOMEM;
334 }
335
336 workspace_size = zstd_dctx_workspace_bound();
337 workspace = kvzalloc(workspace_size, GFP_KERNEL);
338 if (!workspace) {
339 err = -ENOMEM;
340 goto error;
341 }
342
343 ctx = zstd_init_dctx(workspace, workspace_size);
344 if (!ctx) {
345 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346 err = -EINVAL;
347 goto error;
348 }
349
350 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351 if (zstd_is_error(len)) {
352 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353 zstd_get_error_code(len));
354 err = -EINVAL;
355 goto error;
356 }
357
358 if (!fw_priv->allocated_size)
359 fw_priv->data = out_buf;
360 fw_priv->size = len;
361 err = 0;
362
363 error:
364 kvfree(workspace);
365 if (err && !fw_priv->allocated_size)
366 vfree(out_buf);
367 return err;
368}
369#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371/*
372 * XZ-compressed firmware support
373 */
374#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375/* show an error and return the standard error code */
376static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377{
378 if (xz_ret != XZ_STREAM_END) {
379 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381 }
382 return 0;
383}
384
385/* single-shot decompression onto the pre-allocated buffer */
386static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387 size_t in_size, const void *in_buffer)
388{
389 struct xz_dec *xz_dec;
390 struct xz_buf xz_buf;
391 enum xz_ret xz_ret;
392
393 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394 if (!xz_dec)
395 return -ENOMEM;
396
397 xz_buf.in_size = in_size;
398 xz_buf.in = in_buffer;
399 xz_buf.in_pos = 0;
400 xz_buf.out_size = fw_priv->allocated_size;
401 xz_buf.out = fw_priv->data;
402 xz_buf.out_pos = 0;
403
404 xz_ret = xz_dec_run(xz_dec, &xz_buf);
405 xz_dec_end(xz_dec);
406
407 fw_priv->size = xz_buf.out_pos;
408 return fw_decompress_xz_error(dev, xz_ret);
409}
410
411/* decompression on paged buffer and map it */
412static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413 size_t in_size, const void *in_buffer)
414{
415 struct xz_dec *xz_dec;
416 struct xz_buf xz_buf;
417 enum xz_ret xz_ret;
418 struct page *page;
419 int err = 0;
420
421 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422 if (!xz_dec)
423 return -ENOMEM;
424
425 xz_buf.in_size = in_size;
426 xz_buf.in = in_buffer;
427 xz_buf.in_pos = 0;
428
429 fw_priv->is_paged_buf = true;
430 fw_priv->size = 0;
431 do {
432 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433 err = -ENOMEM;
434 goto out;
435 }
436
437 /* decompress onto the new allocated page */
438 page = fw_priv->pages[fw_priv->nr_pages - 1];
439 xz_buf.out = kmap_local_page(page);
440 xz_buf.out_pos = 0;
441 xz_buf.out_size = PAGE_SIZE;
442 xz_ret = xz_dec_run(xz_dec, &xz_buf);
443 kunmap_local(xz_buf.out);
444 fw_priv->size += xz_buf.out_pos;
445 /* partial decompression means either end or error */
446 if (xz_buf.out_pos != PAGE_SIZE)
447 break;
448 } while (xz_ret == XZ_OK);
449
450 err = fw_decompress_xz_error(dev, xz_ret);
451 if (!err)
452 err = fw_map_paged_buf(fw_priv);
453
454 out:
455 xz_dec_end(xz_dec);
456 return err;
457}
458
459static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460 size_t in_size, const void *in_buffer)
461{
462 /* if the buffer is pre-allocated, we can perform in single-shot mode */
463 if (fw_priv->data)
464 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465 else
466 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467}
468#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470/* direct firmware loading support */
471static char fw_path_para[256];
472static const char * const fw_path[] = {
473 fw_path_para,
474 "/lib/firmware/updates/" UTS_RELEASE,
475 "/lib/firmware/updates",
476 "/lib/firmware/" UTS_RELEASE,
477 "/lib/firmware"
478};
479
480/*
481 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482 * from kernel command line because firmware_class is generally built in
483 * kernel instead of module.
484 */
485module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488static int
489fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490 const char *suffix,
491 int (*decompress)(struct device *dev,
492 struct fw_priv *fw_priv,
493 size_t in_size,
494 const void *in_buffer))
495{
496 size_t size;
497 int i, len, maxlen = 0;
498 int rc = -ENOENT;
499 char *path, *nt = NULL;
500 size_t msize = INT_MAX;
501 void *buffer = NULL;
502
503 /* Already populated data member means we're loading into a buffer */
504 if (!decompress && fw_priv->data) {
505 buffer = fw_priv->data;
506 msize = fw_priv->allocated_size;
507 }
508
509 path = __getname();
510 if (!path)
511 return -ENOMEM;
512
513 wait_for_initramfs();
514 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515 size_t file_size = 0;
516 size_t *file_size_ptr = NULL;
517
518 /* skip the unset customized path */
519 if (!fw_path[i][0])
520 continue;
521
522 /* strip off \n from customized path */
523 maxlen = strlen(fw_path[i]);
524 if (i == 0) {
525 nt = strchr(fw_path[i], '\n');
526 if (nt)
527 maxlen = nt - fw_path[i];
528 }
529
530 len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531 maxlen, fw_path[i],
532 fw_priv->fw_name, suffix);
533 if (len >= PATH_MAX) {
534 rc = -ENAMETOOLONG;
535 break;
536 }
537
538 fw_priv->size = 0;
539
540 /*
541 * The total file size is only examined when doing a partial
542 * read; the "full read" case needs to fail if the whole
543 * firmware was not completely loaded.
544 */
545 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546 file_size_ptr = &file_size;
547
548 /* load firmware files from the mount namespace of init */
549 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550 &buffer, msize,
551 file_size_ptr,
552 READING_FIRMWARE);
553 if (rc < 0) {
554 if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555 if (rc != -ENOENT)
556 dev_warn(device,
557 "loading %s failed with error %d\n",
558 path, rc);
559 else
560 dev_dbg(device,
561 "loading %s failed for no such file or directory.\n",
562 path);
563 }
564 continue;
565 }
566 size = rc;
567 rc = 0;
568
569 dev_dbg(device, "Loading firmware from %s\n", path);
570 if (decompress) {
571 dev_dbg(device, "f/w decompressing %s\n",
572 fw_priv->fw_name);
573 rc = decompress(device, fw_priv, size, buffer);
574 /* discard the superfluous original content */
575 vfree(buffer);
576 buffer = NULL;
577 if (rc) {
578 fw_free_paged_buf(fw_priv);
579 continue;
580 }
581 } else {
582 dev_dbg(device, "direct-loading %s\n",
583 fw_priv->fw_name);
584 if (!fw_priv->data)
585 fw_priv->data = buffer;
586 fw_priv->size = size;
587 }
588 fw_state_done(fw_priv);
589 break;
590 }
591 __putname(path);
592
593 return rc;
594}
595
596/* firmware holds the ownership of pages */
597static void firmware_free_data(const struct firmware *fw)
598{
599 /* Loaded directly? */
600 if (!fw->priv) {
601 vfree(fw->data);
602 return;
603 }
604 free_fw_priv(fw->priv);
605}
606
607/* store the pages buffer info firmware from buf */
608static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609{
610 fw->priv = fw_priv;
611 fw->size = fw_priv->size;
612 fw->data = fw_priv->data;
613
614 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616 (unsigned int)fw_priv->size);
617}
618
619#ifdef CONFIG_FW_CACHE
620static void fw_name_devm_release(struct device *dev, void *res)
621{
622 struct fw_name_devm *fwn = res;
623
624 if (fwn->magic == (unsigned long)&fw_cache)
625 pr_debug("%s: fw_name-%s devm-%p released\n",
626 __func__, fwn->name, res);
627 kfree_const(fwn->name);
628}
629
630static int fw_devm_match(struct device *dev, void *res,
631 void *match_data)
632{
633 struct fw_name_devm *fwn = res;
634
635 return (fwn->magic == (unsigned long)&fw_cache) &&
636 !strcmp(fwn->name, match_data);
637}
638
639static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640 const char *name)
641{
642 struct fw_name_devm *fwn;
643
644 fwn = devres_find(dev, fw_name_devm_release,
645 fw_devm_match, (void *)name);
646 return fwn;
647}
648
649static bool fw_cache_is_setup(struct device *dev, const char *name)
650{
651 struct fw_name_devm *fwn;
652
653 fwn = fw_find_devm_name(dev, name);
654 if (fwn)
655 return true;
656
657 return false;
658}
659
660/* add firmware name into devres list */
661static int fw_add_devm_name(struct device *dev, const char *name)
662{
663 struct fw_name_devm *fwn;
664
665 if (fw_cache_is_setup(dev, name))
666 return 0;
667
668 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669 GFP_KERNEL);
670 if (!fwn)
671 return -ENOMEM;
672 fwn->name = kstrdup_const(name, GFP_KERNEL);
673 if (!fwn->name) {
674 devres_free(fwn);
675 return -ENOMEM;
676 }
677
678 fwn->magic = (unsigned long)&fw_cache;
679 devres_add(dev, fwn);
680
681 return 0;
682}
683#else
684static bool fw_cache_is_setup(struct device *dev, const char *name)
685{
686 return false;
687}
688
689static int fw_add_devm_name(struct device *dev, const char *name)
690{
691 return 0;
692}
693#endif
694
695int assign_fw(struct firmware *fw, struct device *device)
696{
697 struct fw_priv *fw_priv = fw->priv;
698 int ret;
699
700 mutex_lock(&fw_lock);
701 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702 mutex_unlock(&fw_lock);
703 return -ENOENT;
704 }
705
706 /*
707 * add firmware name into devres list so that we can auto cache
708 * and uncache firmware for device.
709 *
710 * device may has been deleted already, but the problem
711 * should be fixed in devres or driver core.
712 */
713 /* don't cache firmware handled without uevent */
714 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716 ret = fw_add_devm_name(device, fw_priv->fw_name);
717 if (ret) {
718 mutex_unlock(&fw_lock);
719 return ret;
720 }
721 }
722
723 /*
724 * After caching firmware image is started, let it piggyback
725 * on request firmware.
726 */
727 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728 fw_priv->fwc->state == FW_LOADER_START_CACHE)
729 fw_cache_piggyback_on_request(fw_priv);
730
731 /* pass the pages buffer to driver at the last minute */
732 fw_set_page_data(fw_priv, fw);
733 mutex_unlock(&fw_lock);
734 return 0;
735}
736
737/* prepare firmware and firmware_buf structs;
738 * return 0 if a firmware is already assigned, 1 if need to load one,
739 * or a negative error code
740 */
741static int
742_request_firmware_prepare(struct firmware **firmware_p, const char *name,
743 struct device *device, void *dbuf, size_t size,
744 size_t offset, u32 opt_flags)
745{
746 struct firmware *firmware;
747 struct fw_priv *fw_priv;
748 int ret;
749
750 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751 if (!firmware) {
752 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753 __func__);
754 return -ENOMEM;
755 }
756
757 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758 dev_dbg(device, "using built-in %s\n", name);
759 return 0; /* assigned */
760 }
761
762 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763 offset, opt_flags);
764
765 /*
766 * bind with 'priv' now to avoid warning in failure path
767 * of requesting firmware.
768 */
769 firmware->priv = fw_priv;
770
771 if (ret > 0) {
772 ret = fw_state_wait(fw_priv);
773 if (!ret) {
774 fw_set_page_data(fw_priv, firmware);
775 return 0; /* assigned */
776 }
777 }
778
779 if (ret < 0)
780 return ret;
781 return 1; /* need to load */
782}
783
784/*
785 * Batched requests need only one wake, we need to do this step last due to the
786 * fallback mechanism. The buf is protected with kref_get(), and it won't be
787 * released until the last user calls release_firmware().
788 *
789 * Failed batched requests are possible as well, in such cases we just share
790 * the struct fw_priv and won't release it until all requests are woken
791 * and have gone through this same path.
792 */
793static void fw_abort_batch_reqs(struct firmware *fw)
794{
795 struct fw_priv *fw_priv;
796
797 /* Loaded directly? */
798 if (!fw || !fw->priv)
799 return;
800
801 fw_priv = fw->priv;
802 mutex_lock(&fw_lock);
803 if (!fw_state_is_aborted(fw_priv))
804 fw_state_aborted(fw_priv);
805 mutex_unlock(&fw_lock);
806}
807
808#if defined(CONFIG_FW_LOADER_DEBUG)
809#include <crypto/hash.h>
810#include <crypto/sha2.h>
811
812static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
813{
814 struct shash_desc *shash;
815 struct crypto_shash *alg;
816 u8 *sha256buf;
817 char *outbuf;
818
819 alg = crypto_alloc_shash("sha256", 0, 0);
820 if (IS_ERR(alg))
821 return;
822
823 sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
824 outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
825 shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
826 if (!sha256buf || !outbuf || !shash)
827 goto out_free;
828
829 shash->tfm = alg;
830
831 if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
832 goto out_shash;
833
834 for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
835 sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
836 outbuf[SHA256_BLOCK_SIZE] = 0;
837 dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
838
839out_shash:
840 crypto_free_shash(alg);
841out_free:
842 kfree(shash);
843 kfree(outbuf);
844 kfree(sha256buf);
845}
846#else
847static void fw_log_firmware_info(const struct firmware *fw, const char *name,
848 struct device *device)
849{}
850#endif
851
852/* called from request_firmware() and request_firmware_work_func() */
853static int
854_request_firmware(const struct firmware **firmware_p, const char *name,
855 struct device *device, void *buf, size_t size,
856 size_t offset, u32 opt_flags)
857{
858 struct firmware *fw = NULL;
859 struct cred *kern_cred = NULL;
860 const struct cred *old_cred;
861 bool nondirect = false;
862 int ret;
863
864 if (!firmware_p)
865 return -EINVAL;
866
867 if (!name || name[0] == '\0') {
868 ret = -EINVAL;
869 goto out;
870 }
871
872 ret = _request_firmware_prepare(&fw, name, device, buf, size,
873 offset, opt_flags);
874 if (ret <= 0) /* error or already assigned */
875 goto out;
876
877 /*
878 * We are about to try to access the firmware file. Because we may have been
879 * called by a driver when serving an unrelated request from userland, we use
880 * the kernel credentials to read the file.
881 */
882 kern_cred = prepare_kernel_cred(&init_task);
883 if (!kern_cred) {
884 ret = -ENOMEM;
885 goto out;
886 }
887 old_cred = override_creds(kern_cred);
888
889 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
890
891 /* Only full reads can support decompression, platform, and sysfs. */
892 if (!(opt_flags & FW_OPT_PARTIAL))
893 nondirect = true;
894
895#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
896 if (ret == -ENOENT && nondirect)
897 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
898 fw_decompress_zstd);
899#endif
900#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
901 if (ret == -ENOENT && nondirect)
902 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
903 fw_decompress_xz);
904#endif
905 if (ret == -ENOENT && nondirect)
906 ret = firmware_fallback_platform(fw->priv);
907
908 if (ret) {
909 if (!(opt_flags & FW_OPT_NO_WARN))
910 dev_warn(device,
911 "Direct firmware load for %s failed with error %d\n",
912 name, ret);
913 if (nondirect)
914 ret = firmware_fallback_sysfs(fw, name, device,
915 opt_flags, ret);
916 } else
917 ret = assign_fw(fw, device);
918
919 revert_creds(old_cred);
920 put_cred(kern_cred);
921
922out:
923 if (ret < 0) {
924 fw_abort_batch_reqs(fw);
925 release_firmware(fw);
926 fw = NULL;
927 } else {
928 fw_log_firmware_info(fw, name, device);
929 }
930
931 *firmware_p = fw;
932 return ret;
933}
934
935/**
936 * request_firmware() - send firmware request and wait for it
937 * @firmware_p: pointer to firmware image
938 * @name: name of firmware file
939 * @device: device for which firmware is being loaded
940 *
941 * @firmware_p will be used to return a firmware image by the name
942 * of @name for device @device.
943 *
944 * Should be called from user context where sleeping is allowed.
945 *
946 * @name will be used as $FIRMWARE in the uevent environment and
947 * should be distinctive enough not to be confused with any other
948 * firmware image for this or any other device.
949 *
950 * Caller must hold the reference count of @device.
951 *
952 * The function can be called safely inside device's suspend and
953 * resume callback.
954 **/
955int
956request_firmware(const struct firmware **firmware_p, const char *name,
957 struct device *device)
958{
959 int ret;
960
961 /* Need to pin this module until return */
962 __module_get(THIS_MODULE);
963 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
964 FW_OPT_UEVENT);
965 module_put(THIS_MODULE);
966 return ret;
967}
968EXPORT_SYMBOL(request_firmware);
969
970/**
971 * firmware_request_nowarn() - request for an optional fw module
972 * @firmware: pointer to firmware image
973 * @name: name of firmware file
974 * @device: device for which firmware is being loaded
975 *
976 * This function is similar in behaviour to request_firmware(), except it
977 * doesn't produce warning messages when the file is not found. The sysfs
978 * fallback mechanism is enabled if direct filesystem lookup fails. However,
979 * failures to find the firmware file with it are still suppressed. It is
980 * therefore up to the driver to check for the return value of this call and to
981 * decide when to inform the users of errors.
982 **/
983int firmware_request_nowarn(const struct firmware **firmware, const char *name,
984 struct device *device)
985{
986 int ret;
987
988 /* Need to pin this module until return */
989 __module_get(THIS_MODULE);
990 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
991 FW_OPT_UEVENT | FW_OPT_NO_WARN);
992 module_put(THIS_MODULE);
993 return ret;
994}
995EXPORT_SYMBOL_GPL(firmware_request_nowarn);
996
997/**
998 * request_firmware_direct() - load firmware directly without usermode helper
999 * @firmware_p: pointer to firmware image
1000 * @name: name of firmware file
1001 * @device: device for which firmware is being loaded
1002 *
1003 * This function works pretty much like request_firmware(), but this doesn't
1004 * fall back to usermode helper even if the firmware couldn't be loaded
1005 * directly from fs. Hence it's useful for loading optional firmwares, which
1006 * aren't always present, without extra long timeouts of udev.
1007 **/
1008int request_firmware_direct(const struct firmware **firmware_p,
1009 const char *name, struct device *device)
1010{
1011 int ret;
1012
1013 __module_get(THIS_MODULE);
1014 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1015 FW_OPT_UEVENT | FW_OPT_NO_WARN |
1016 FW_OPT_NOFALLBACK_SYSFS);
1017 module_put(THIS_MODULE);
1018 return ret;
1019}
1020EXPORT_SYMBOL_GPL(request_firmware_direct);
1021
1022/**
1023 * firmware_request_platform() - request firmware with platform-fw fallback
1024 * @firmware: pointer to firmware image
1025 * @name: name of firmware file
1026 * @device: device for which firmware is being loaded
1027 *
1028 * This function is similar in behaviour to request_firmware, except that if
1029 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1030 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1031 **/
1032int firmware_request_platform(const struct firmware **firmware,
1033 const char *name, struct device *device)
1034{
1035 int ret;
1036
1037 /* Need to pin this module until return */
1038 __module_get(THIS_MODULE);
1039 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1040 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1041 module_put(THIS_MODULE);
1042 return ret;
1043}
1044EXPORT_SYMBOL_GPL(firmware_request_platform);
1045
1046/**
1047 * firmware_request_cache() - cache firmware for suspend so resume can use it
1048 * @name: name of firmware file
1049 * @device: device for which firmware should be cached for
1050 *
1051 * There are some devices with an optimization that enables the device to not
1052 * require loading firmware on system reboot. This optimization may still
1053 * require the firmware present on resume from suspend. This routine can be
1054 * used to ensure the firmware is present on resume from suspend in these
1055 * situations. This helper is not compatible with drivers which use
1056 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1057 **/
1058int firmware_request_cache(struct device *device, const char *name)
1059{
1060 int ret;
1061
1062 mutex_lock(&fw_lock);
1063 ret = fw_add_devm_name(device, name);
1064 mutex_unlock(&fw_lock);
1065
1066 return ret;
1067}
1068EXPORT_SYMBOL_GPL(firmware_request_cache);
1069
1070/**
1071 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1072 * @firmware_p: pointer to firmware image
1073 * @name: name of firmware file
1074 * @device: device for which firmware is being loaded and DMA region allocated
1075 * @buf: address of buffer to load firmware into
1076 * @size: size of buffer
1077 *
1078 * This function works pretty much like request_firmware(), but it doesn't
1079 * allocate a buffer to hold the firmware data. Instead, the firmware
1080 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1081 * data member is pointed at @buf.
1082 *
1083 * This function doesn't cache firmware either.
1084 */
1085int
1086request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1087 struct device *device, void *buf, size_t size)
1088{
1089 int ret;
1090
1091 if (fw_cache_is_setup(device, name))
1092 return -EOPNOTSUPP;
1093
1094 __module_get(THIS_MODULE);
1095 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1096 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1097 module_put(THIS_MODULE);
1098 return ret;
1099}
1100EXPORT_SYMBOL(request_firmware_into_buf);
1101
1102/**
1103 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1104 * @firmware_p: pointer to firmware image
1105 * @name: name of firmware file
1106 * @device: device for which firmware is being loaded and DMA region allocated
1107 * @buf: address of buffer to load firmware into
1108 * @size: size of buffer
1109 * @offset: offset into file to read
1110 *
1111 * This function works pretty much like request_firmware_into_buf except
1112 * it allows a partial read of the file.
1113 */
1114int
1115request_partial_firmware_into_buf(const struct firmware **firmware_p,
1116 const char *name, struct device *device,
1117 void *buf, size_t size, size_t offset)
1118{
1119 int ret;
1120
1121 if (fw_cache_is_setup(device, name))
1122 return -EOPNOTSUPP;
1123
1124 __module_get(THIS_MODULE);
1125 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1126 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1127 FW_OPT_PARTIAL);
1128 module_put(THIS_MODULE);
1129 return ret;
1130}
1131EXPORT_SYMBOL(request_partial_firmware_into_buf);
1132
1133/**
1134 * release_firmware() - release the resource associated with a firmware image
1135 * @fw: firmware resource to release
1136 **/
1137void release_firmware(const struct firmware *fw)
1138{
1139 if (fw) {
1140 if (!firmware_is_builtin(fw))
1141 firmware_free_data(fw);
1142 kfree(fw);
1143 }
1144}
1145EXPORT_SYMBOL(release_firmware);
1146
1147/* Async support */
1148struct firmware_work {
1149 struct work_struct work;
1150 struct module *module;
1151 const char *name;
1152 struct device *device;
1153 void *context;
1154 void (*cont)(const struct firmware *fw, void *context);
1155 u32 opt_flags;
1156};
1157
1158static void request_firmware_work_func(struct work_struct *work)
1159{
1160 struct firmware_work *fw_work;
1161 const struct firmware *fw;
1162
1163 fw_work = container_of(work, struct firmware_work, work);
1164
1165 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1166 fw_work->opt_flags);
1167 fw_work->cont(fw, fw_work->context);
1168 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1169
1170 module_put(fw_work->module);
1171 kfree_const(fw_work->name);
1172 kfree(fw_work);
1173}
1174
1175/**
1176 * request_firmware_nowait() - asynchronous version of request_firmware
1177 * @module: module requesting the firmware
1178 * @uevent: sends uevent to copy the firmware image if this flag
1179 * is non-zero else the firmware copy must be done manually.
1180 * @name: name of firmware file
1181 * @device: device for which firmware is being loaded
1182 * @gfp: allocation flags
1183 * @context: will be passed over to @cont, and
1184 * @fw may be %NULL if firmware request fails.
1185 * @cont: function will be called asynchronously when the firmware
1186 * request is over.
1187 *
1188 * Caller must hold the reference count of @device.
1189 *
1190 * Asynchronous variant of request_firmware() for user contexts:
1191 * - sleep for as small periods as possible since it may
1192 * increase kernel boot time of built-in device drivers
1193 * requesting firmware in their ->probe() methods, if
1194 * @gfp is GFP_KERNEL.
1195 *
1196 * - can't sleep at all if @gfp is GFP_ATOMIC.
1197 **/
1198int
1199request_firmware_nowait(
1200 struct module *module, bool uevent,
1201 const char *name, struct device *device, gfp_t gfp, void *context,
1202 void (*cont)(const struct firmware *fw, void *context))
1203{
1204 struct firmware_work *fw_work;
1205
1206 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1207 if (!fw_work)
1208 return -ENOMEM;
1209
1210 fw_work->module = module;
1211 fw_work->name = kstrdup_const(name, gfp);
1212 if (!fw_work->name) {
1213 kfree(fw_work);
1214 return -ENOMEM;
1215 }
1216 fw_work->device = device;
1217 fw_work->context = context;
1218 fw_work->cont = cont;
1219 fw_work->opt_flags = FW_OPT_NOWAIT |
1220 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1221
1222 if (!uevent && fw_cache_is_setup(device, name)) {
1223 kfree_const(fw_work->name);
1224 kfree(fw_work);
1225 return -EOPNOTSUPP;
1226 }
1227
1228 if (!try_module_get(module)) {
1229 kfree_const(fw_work->name);
1230 kfree(fw_work);
1231 return -EFAULT;
1232 }
1233
1234 get_device(fw_work->device);
1235 INIT_WORK(&fw_work->work, request_firmware_work_func);
1236 schedule_work(&fw_work->work);
1237 return 0;
1238}
1239EXPORT_SYMBOL(request_firmware_nowait);
1240
1241#ifdef CONFIG_FW_CACHE
1242static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1243
1244/**
1245 * cache_firmware() - cache one firmware image in kernel memory space
1246 * @fw_name: the firmware image name
1247 *
1248 * Cache firmware in kernel memory so that drivers can use it when
1249 * system isn't ready for them to request firmware image from userspace.
1250 * Once it returns successfully, driver can use request_firmware or its
1251 * nowait version to get the cached firmware without any interacting
1252 * with userspace
1253 *
1254 * Return 0 if the firmware image has been cached successfully
1255 * Return !0 otherwise
1256 *
1257 */
1258static int cache_firmware(const char *fw_name)
1259{
1260 int ret;
1261 const struct firmware *fw;
1262
1263 pr_debug("%s: %s\n", __func__, fw_name);
1264
1265 ret = request_firmware(&fw, fw_name, NULL);
1266 if (!ret)
1267 kfree(fw);
1268
1269 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1270
1271 return ret;
1272}
1273
1274static struct fw_priv *lookup_fw_priv(const char *fw_name)
1275{
1276 struct fw_priv *tmp;
1277 struct firmware_cache *fwc = &fw_cache;
1278
1279 spin_lock(&fwc->lock);
1280 tmp = __lookup_fw_priv(fw_name);
1281 spin_unlock(&fwc->lock);
1282
1283 return tmp;
1284}
1285
1286/**
1287 * uncache_firmware() - remove one cached firmware image
1288 * @fw_name: the firmware image name
1289 *
1290 * Uncache one firmware image which has been cached successfully
1291 * before.
1292 *
1293 * Return 0 if the firmware cache has been removed successfully
1294 * Return !0 otherwise
1295 *
1296 */
1297static int uncache_firmware(const char *fw_name)
1298{
1299 struct fw_priv *fw_priv;
1300 struct firmware fw;
1301
1302 pr_debug("%s: %s\n", __func__, fw_name);
1303
1304 if (firmware_request_builtin(&fw, fw_name))
1305 return 0;
1306
1307 fw_priv = lookup_fw_priv(fw_name);
1308 if (fw_priv) {
1309 free_fw_priv(fw_priv);
1310 return 0;
1311 }
1312
1313 return -EINVAL;
1314}
1315
1316static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1317{
1318 struct fw_cache_entry *fce;
1319
1320 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1321 if (!fce)
1322 goto exit;
1323
1324 fce->name = kstrdup_const(name, GFP_ATOMIC);
1325 if (!fce->name) {
1326 kfree(fce);
1327 fce = NULL;
1328 goto exit;
1329 }
1330exit:
1331 return fce;
1332}
1333
1334static int __fw_entry_found(const char *name)
1335{
1336 struct firmware_cache *fwc = &fw_cache;
1337 struct fw_cache_entry *fce;
1338
1339 list_for_each_entry(fce, &fwc->fw_names, list) {
1340 if (!strcmp(fce->name, name))
1341 return 1;
1342 }
1343 return 0;
1344}
1345
1346static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1347{
1348 const char *name = fw_priv->fw_name;
1349 struct firmware_cache *fwc = fw_priv->fwc;
1350 struct fw_cache_entry *fce;
1351
1352 spin_lock(&fwc->name_lock);
1353 if (__fw_entry_found(name))
1354 goto found;
1355
1356 fce = alloc_fw_cache_entry(name);
1357 if (fce) {
1358 list_add(&fce->list, &fwc->fw_names);
1359 kref_get(&fw_priv->ref);
1360 pr_debug("%s: fw: %s\n", __func__, name);
1361 }
1362found:
1363 spin_unlock(&fwc->name_lock);
1364}
1365
1366static void free_fw_cache_entry(struct fw_cache_entry *fce)
1367{
1368 kfree_const(fce->name);
1369 kfree(fce);
1370}
1371
1372static void __async_dev_cache_fw_image(void *fw_entry,
1373 async_cookie_t cookie)
1374{
1375 struct fw_cache_entry *fce = fw_entry;
1376 struct firmware_cache *fwc = &fw_cache;
1377 int ret;
1378
1379 ret = cache_firmware(fce->name);
1380 if (ret) {
1381 spin_lock(&fwc->name_lock);
1382 list_del(&fce->list);
1383 spin_unlock(&fwc->name_lock);
1384
1385 free_fw_cache_entry(fce);
1386 }
1387}
1388
1389/* called with dev->devres_lock held */
1390static void dev_create_fw_entry(struct device *dev, void *res,
1391 void *data)
1392{
1393 struct fw_name_devm *fwn = res;
1394 const char *fw_name = fwn->name;
1395 struct list_head *head = data;
1396 struct fw_cache_entry *fce;
1397
1398 fce = alloc_fw_cache_entry(fw_name);
1399 if (fce)
1400 list_add(&fce->list, head);
1401}
1402
1403static int devm_name_match(struct device *dev, void *res,
1404 void *match_data)
1405{
1406 struct fw_name_devm *fwn = res;
1407 return (fwn->magic == (unsigned long)match_data);
1408}
1409
1410static void dev_cache_fw_image(struct device *dev, void *data)
1411{
1412 LIST_HEAD(todo);
1413 struct fw_cache_entry *fce;
1414 struct fw_cache_entry *fce_next;
1415 struct firmware_cache *fwc = &fw_cache;
1416
1417 devres_for_each_res(dev, fw_name_devm_release,
1418 devm_name_match, &fw_cache,
1419 dev_create_fw_entry, &todo);
1420
1421 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1422 list_del(&fce->list);
1423
1424 spin_lock(&fwc->name_lock);
1425 /* only one cache entry for one firmware */
1426 if (!__fw_entry_found(fce->name)) {
1427 list_add(&fce->list, &fwc->fw_names);
1428 } else {
1429 free_fw_cache_entry(fce);
1430 fce = NULL;
1431 }
1432 spin_unlock(&fwc->name_lock);
1433
1434 if (fce)
1435 async_schedule_domain(__async_dev_cache_fw_image,
1436 (void *)fce,
1437 &fw_cache_domain);
1438 }
1439}
1440
1441static void __device_uncache_fw_images(void)
1442{
1443 struct firmware_cache *fwc = &fw_cache;
1444 struct fw_cache_entry *fce;
1445
1446 spin_lock(&fwc->name_lock);
1447 while (!list_empty(&fwc->fw_names)) {
1448 fce = list_entry(fwc->fw_names.next,
1449 struct fw_cache_entry, list);
1450 list_del(&fce->list);
1451 spin_unlock(&fwc->name_lock);
1452
1453 uncache_firmware(fce->name);
1454 free_fw_cache_entry(fce);
1455
1456 spin_lock(&fwc->name_lock);
1457 }
1458 spin_unlock(&fwc->name_lock);
1459}
1460
1461/**
1462 * device_cache_fw_images() - cache devices' firmware
1463 *
1464 * If one device called request_firmware or its nowait version
1465 * successfully before, the firmware names are recored into the
1466 * device's devres link list, so device_cache_fw_images can call
1467 * cache_firmware() to cache these firmwares for the device,
1468 * then the device driver can load its firmwares easily at
1469 * time when system is not ready to complete loading firmware.
1470 */
1471static void device_cache_fw_images(void)
1472{
1473 struct firmware_cache *fwc = &fw_cache;
1474 DEFINE_WAIT(wait);
1475
1476 pr_debug("%s\n", __func__);
1477
1478 /* cancel uncache work */
1479 cancel_delayed_work_sync(&fwc->work);
1480
1481 fw_fallback_set_cache_timeout();
1482
1483 mutex_lock(&fw_lock);
1484 fwc->state = FW_LOADER_START_CACHE;
1485 dpm_for_each_dev(NULL, dev_cache_fw_image);
1486 mutex_unlock(&fw_lock);
1487
1488 /* wait for completion of caching firmware for all devices */
1489 async_synchronize_full_domain(&fw_cache_domain);
1490
1491 fw_fallback_set_default_timeout();
1492}
1493
1494/**
1495 * device_uncache_fw_images() - uncache devices' firmware
1496 *
1497 * uncache all firmwares which have been cached successfully
1498 * by device_uncache_fw_images earlier
1499 */
1500static void device_uncache_fw_images(void)
1501{
1502 pr_debug("%s\n", __func__);
1503 __device_uncache_fw_images();
1504}
1505
1506static void device_uncache_fw_images_work(struct work_struct *work)
1507{
1508 device_uncache_fw_images();
1509}
1510
1511/**
1512 * device_uncache_fw_images_delay() - uncache devices firmwares
1513 * @delay: number of milliseconds to delay uncache device firmwares
1514 *
1515 * uncache all devices's firmwares which has been cached successfully
1516 * by device_cache_fw_images after @delay milliseconds.
1517 */
1518static void device_uncache_fw_images_delay(unsigned long delay)
1519{
1520 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1521 msecs_to_jiffies(delay));
1522}
1523
1524static int fw_pm_notify(struct notifier_block *notify_block,
1525 unsigned long mode, void *unused)
1526{
1527 switch (mode) {
1528 case PM_HIBERNATION_PREPARE:
1529 case PM_SUSPEND_PREPARE:
1530 case PM_RESTORE_PREPARE:
1531 /*
1532 * Here, kill pending fallback requests will only kill
1533 * non-uevent firmware request to avoid stalling suspend.
1534 */
1535 kill_pending_fw_fallback_reqs(false);
1536 device_cache_fw_images();
1537 break;
1538
1539 case PM_POST_SUSPEND:
1540 case PM_POST_HIBERNATION:
1541 case PM_POST_RESTORE:
1542 /*
1543 * In case that system sleep failed and syscore_suspend is
1544 * not called.
1545 */
1546 mutex_lock(&fw_lock);
1547 fw_cache.state = FW_LOADER_NO_CACHE;
1548 mutex_unlock(&fw_lock);
1549
1550 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1551 break;
1552 }
1553
1554 return 0;
1555}
1556
1557/* stop caching firmware once syscore_suspend is reached */
1558static int fw_suspend(void)
1559{
1560 fw_cache.state = FW_LOADER_NO_CACHE;
1561 return 0;
1562}
1563
1564static struct syscore_ops fw_syscore_ops = {
1565 .suspend = fw_suspend,
1566};
1567
1568static int __init register_fw_pm_ops(void)
1569{
1570 int ret;
1571
1572 spin_lock_init(&fw_cache.name_lock);
1573 INIT_LIST_HEAD(&fw_cache.fw_names);
1574
1575 INIT_DELAYED_WORK(&fw_cache.work,
1576 device_uncache_fw_images_work);
1577
1578 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1579 ret = register_pm_notifier(&fw_cache.pm_notify);
1580 if (ret)
1581 return ret;
1582
1583 register_syscore_ops(&fw_syscore_ops);
1584
1585 return ret;
1586}
1587
1588static inline void unregister_fw_pm_ops(void)
1589{
1590 unregister_syscore_ops(&fw_syscore_ops);
1591 unregister_pm_notifier(&fw_cache.pm_notify);
1592}
1593#else
1594static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1595{
1596}
1597static inline int register_fw_pm_ops(void)
1598{
1599 return 0;
1600}
1601static inline void unregister_fw_pm_ops(void)
1602{
1603}
1604#endif
1605
1606static void __init fw_cache_init(void)
1607{
1608 spin_lock_init(&fw_cache.lock);
1609 INIT_LIST_HEAD(&fw_cache.head);
1610 fw_cache.state = FW_LOADER_NO_CACHE;
1611}
1612
1613static int fw_shutdown_notify(struct notifier_block *unused1,
1614 unsigned long unused2, void *unused3)
1615{
1616 /*
1617 * Kill all pending fallback requests to avoid both stalling shutdown,
1618 * and avoid a deadlock with the usermode_lock.
1619 */
1620 kill_pending_fw_fallback_reqs(true);
1621
1622 return NOTIFY_DONE;
1623}
1624
1625static struct notifier_block fw_shutdown_nb = {
1626 .notifier_call = fw_shutdown_notify,
1627};
1628
1629static int __init firmware_class_init(void)
1630{
1631 int ret;
1632
1633 /* No need to unfold these on exit */
1634 fw_cache_init();
1635
1636 ret = register_fw_pm_ops();
1637 if (ret)
1638 return ret;
1639
1640 ret = register_reboot_notifier(&fw_shutdown_nb);
1641 if (ret)
1642 goto out;
1643
1644 return register_sysfs_loader();
1645
1646out:
1647 unregister_fw_pm_ops();
1648 return ret;
1649}
1650
1651static void __exit firmware_class_exit(void)
1652{
1653 unregister_fw_pm_ops();
1654 unregister_reboot_notifier(&fw_shutdown_nb);
1655 unregister_sysfs_loader();
1656}
1657
1658fs_initcall(firmware_class_init);
1659module_exit(firmware_class_exit);