Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/ceph/ceph_debug.h>
   4
   5#include <linux/module.h>
   6#include <linux/slab.h>
   7
   8#include <linux/ceph/libceph.h>
   9#include <linux/ceph/osdmap.h>
  10#include <linux/ceph/decode.h>
  11#include <linux/crush/hash.h>
  12#include <linux/crush/mapper.h>
  13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14char *ceph_osdmap_state_str(char *str, int len, u32 state)
  15{
  16	if (!len)
  17		return str;
  18
  19	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
  20		snprintf(str, len, "exists, up");
  21	else if (state & CEPH_OSD_EXISTS)
  22		snprintf(str, len, "exists");
  23	else if (state & CEPH_OSD_UP)
  24		snprintf(str, len, "up");
  25	else
  26		snprintf(str, len, "doesn't exist");
  27
  28	return str;
  29}
  30
  31/* maps */
  32
  33static int calc_bits_of(unsigned int t)
  34{
  35	int b = 0;
  36	while (t) {
  37		t = t >> 1;
  38		b++;
  39	}
  40	return b;
  41}
  42
  43/*
  44 * the foo_mask is the smallest value 2^n-1 that is >= foo.
  45 */
  46static void calc_pg_masks(struct ceph_pg_pool_info *pi)
  47{
  48	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
  49	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
  50}
  51
  52/*
  53 * decode crush map
  54 */
  55static int crush_decode_uniform_bucket(void **p, void *end,
  56				       struct crush_bucket_uniform *b)
  57{
  58	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
  59	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
  60	b->item_weight = ceph_decode_32(p);
  61	return 0;
  62bad:
  63	return -EINVAL;
  64}
  65
  66static int crush_decode_list_bucket(void **p, void *end,
  67				    struct crush_bucket_list *b)
  68{
  69	int j;
  70	dout("crush_decode_list_bucket %p to %p\n", *p, end);
  71	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
  72	if (b->item_weights == NULL)
  73		return -ENOMEM;
  74	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
  75	if (b->sum_weights == NULL)
  76		return -ENOMEM;
  77	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
  78	for (j = 0; j < b->h.size; j++) {
  79		b->item_weights[j] = ceph_decode_32(p);
  80		b->sum_weights[j] = ceph_decode_32(p);
  81	}
  82	return 0;
  83bad:
  84	return -EINVAL;
  85}
  86
  87static int crush_decode_tree_bucket(void **p, void *end,
  88				    struct crush_bucket_tree *b)
  89{
  90	int j;
  91	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
  92	ceph_decode_8_safe(p, end, b->num_nodes, bad);
  93	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
  94	if (b->node_weights == NULL)
  95		return -ENOMEM;
  96	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
  97	for (j = 0; j < b->num_nodes; j++)
  98		b->node_weights[j] = ceph_decode_32(p);
  99	return 0;
 100bad:
 101	return -EINVAL;
 102}
 103
 104static int crush_decode_straw_bucket(void **p, void *end,
 105				     struct crush_bucket_straw *b)
 106{
 107	int j;
 108	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
 109	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 110	if (b->item_weights == NULL)
 111		return -ENOMEM;
 112	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 113	if (b->straws == NULL)
 114		return -ENOMEM;
 115	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
 116	for (j = 0; j < b->h.size; j++) {
 117		b->item_weights[j] = ceph_decode_32(p);
 118		b->straws[j] = ceph_decode_32(p);
 119	}
 120	return 0;
 121bad:
 122	return -EINVAL;
 123}
 124
 125static int crush_decode_straw2_bucket(void **p, void *end,
 126				      struct crush_bucket_straw2 *b)
 127{
 128	int j;
 129	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
 130	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 131	if (b->item_weights == NULL)
 132		return -ENOMEM;
 133	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
 134	for (j = 0; j < b->h.size; j++)
 135		b->item_weights[j] = ceph_decode_32(p);
 136	return 0;
 137bad:
 138	return -EINVAL;
 139}
 140
 141struct crush_name_node {
 142	struct rb_node cn_node;
 143	int cn_id;
 144	char cn_name[];
 145};
 146
 147static struct crush_name_node *alloc_crush_name(size_t name_len)
 148{
 149	struct crush_name_node *cn;
 150
 151	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
 152	if (!cn)
 153		return NULL;
 154
 155	RB_CLEAR_NODE(&cn->cn_node);
 156	return cn;
 157}
 158
 159static void free_crush_name(struct crush_name_node *cn)
 160{
 161	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
 162
 163	kfree(cn);
 164}
 165
 166DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
 167
 168static int decode_crush_names(void **p, void *end, struct rb_root *root)
 169{
 170	u32 n;
 171
 172	ceph_decode_32_safe(p, end, n, e_inval);
 173	while (n--) {
 174		struct crush_name_node *cn;
 175		int id;
 176		u32 name_len;
 177
 178		ceph_decode_32_safe(p, end, id, e_inval);
 179		ceph_decode_32_safe(p, end, name_len, e_inval);
 180		ceph_decode_need(p, end, name_len, e_inval);
 181
 182		cn = alloc_crush_name(name_len);
 183		if (!cn)
 184			return -ENOMEM;
 185
 186		cn->cn_id = id;
 187		memcpy(cn->cn_name, *p, name_len);
 188		cn->cn_name[name_len] = '\0';
 189		*p += name_len;
 190
 191		if (!__insert_crush_name(root, cn)) {
 192			free_crush_name(cn);
 193			return -EEXIST;
 194		}
 195	}
 196
 197	return 0;
 198
 199e_inval:
 200	return -EINVAL;
 201}
 202
 203void clear_crush_names(struct rb_root *root)
 204{
 205	while (!RB_EMPTY_ROOT(root)) {
 206		struct crush_name_node *cn =
 207		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
 208
 209		erase_crush_name(root, cn);
 210		free_crush_name(cn);
 211	}
 212}
 213
 214static struct crush_choose_arg_map *alloc_choose_arg_map(void)
 215{
 216	struct crush_choose_arg_map *arg_map;
 217
 218	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
 219	if (!arg_map)
 220		return NULL;
 221
 222	RB_CLEAR_NODE(&arg_map->node);
 223	return arg_map;
 224}
 225
 226static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
 227{
 228	if (arg_map) {
 229		int i, j;
 230
 231		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
 232
 233		for (i = 0; i < arg_map->size; i++) {
 234			struct crush_choose_arg *arg = &arg_map->args[i];
 235
 236			for (j = 0; j < arg->weight_set_size; j++)
 237				kfree(arg->weight_set[j].weights);
 238			kfree(arg->weight_set);
 239			kfree(arg->ids);
 240		}
 241		kfree(arg_map->args);
 242		kfree(arg_map);
 243	}
 244}
 245
 246DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
 247		node);
 248
 249void clear_choose_args(struct crush_map *c)
 250{
 251	while (!RB_EMPTY_ROOT(&c->choose_args)) {
 252		struct crush_choose_arg_map *arg_map =
 253		    rb_entry(rb_first(&c->choose_args),
 254			     struct crush_choose_arg_map, node);
 255
 256		erase_choose_arg_map(&c->choose_args, arg_map);
 257		free_choose_arg_map(arg_map);
 258	}
 259}
 260
 261static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
 262{
 263	u32 *a = NULL;
 264	u32 len;
 265	int ret;
 266
 267	ceph_decode_32_safe(p, end, len, e_inval);
 268	if (len) {
 269		u32 i;
 270
 271		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
 272		if (!a) {
 273			ret = -ENOMEM;
 274			goto fail;
 275		}
 276
 277		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
 278		for (i = 0; i < len; i++)
 279			a[i] = ceph_decode_32(p);
 280	}
 281
 282	*plen = len;
 283	return a;
 284
 285e_inval:
 286	ret = -EINVAL;
 287fail:
 288	kfree(a);
 289	return ERR_PTR(ret);
 290}
 291
 292/*
 293 * Assumes @arg is zero-initialized.
 294 */
 295static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
 296{
 297	int ret;
 298
 299	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
 300	if (arg->weight_set_size) {
 301		u32 i;
 302
 303		arg->weight_set = kmalloc_array(arg->weight_set_size,
 304						sizeof(*arg->weight_set),
 305						GFP_NOIO);
 306		if (!arg->weight_set)
 307			return -ENOMEM;
 308
 309		for (i = 0; i < arg->weight_set_size; i++) {
 310			struct crush_weight_set *w = &arg->weight_set[i];
 311
 312			w->weights = decode_array_32_alloc(p, end, &w->size);
 313			if (IS_ERR(w->weights)) {
 314				ret = PTR_ERR(w->weights);
 315				w->weights = NULL;
 316				return ret;
 317			}
 318		}
 319	}
 320
 321	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
 322	if (IS_ERR(arg->ids)) {
 323		ret = PTR_ERR(arg->ids);
 324		arg->ids = NULL;
 325		return ret;
 326	}
 327
 328	return 0;
 329
 330e_inval:
 331	return -EINVAL;
 332}
 333
 334static int decode_choose_args(void **p, void *end, struct crush_map *c)
 335{
 336	struct crush_choose_arg_map *arg_map = NULL;
 337	u32 num_choose_arg_maps, num_buckets;
 338	int ret;
 339
 340	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
 341	while (num_choose_arg_maps--) {
 342		arg_map = alloc_choose_arg_map();
 343		if (!arg_map) {
 344			ret = -ENOMEM;
 345			goto fail;
 346		}
 347
 348		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
 349				    e_inval);
 350		arg_map->size = c->max_buckets;
 351		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
 352					GFP_NOIO);
 353		if (!arg_map->args) {
 354			ret = -ENOMEM;
 355			goto fail;
 356		}
 357
 358		ceph_decode_32_safe(p, end, num_buckets, e_inval);
 359		while (num_buckets--) {
 360			struct crush_choose_arg *arg;
 361			u32 bucket_index;
 362
 363			ceph_decode_32_safe(p, end, bucket_index, e_inval);
 364			if (bucket_index >= arg_map->size)
 365				goto e_inval;
 366
 367			arg = &arg_map->args[bucket_index];
 368			ret = decode_choose_arg(p, end, arg);
 369			if (ret)
 370				goto fail;
 371
 372			if (arg->ids_size &&
 373			    arg->ids_size != c->buckets[bucket_index]->size)
 374				goto e_inval;
 375		}
 376
 377		insert_choose_arg_map(&c->choose_args, arg_map);
 378	}
 379
 380	return 0;
 381
 382e_inval:
 383	ret = -EINVAL;
 384fail:
 385	free_choose_arg_map(arg_map);
 386	return ret;
 387}
 388
 389static void crush_finalize(struct crush_map *c)
 390{
 391	__s32 b;
 392
 393	/* Space for the array of pointers to per-bucket workspace */
 394	c->working_size = sizeof(struct crush_work) +
 395	    c->max_buckets * sizeof(struct crush_work_bucket *);
 396
 397	for (b = 0; b < c->max_buckets; b++) {
 398		if (!c->buckets[b])
 399			continue;
 400
 401		switch (c->buckets[b]->alg) {
 402		default:
 403			/*
 404			 * The base case, permutation variables and
 405			 * the pointer to the permutation array.
 406			 */
 407			c->working_size += sizeof(struct crush_work_bucket);
 408			break;
 409		}
 410		/* Every bucket has a permutation array. */
 411		c->working_size += c->buckets[b]->size * sizeof(__u32);
 412	}
 413}
 414
 415static struct crush_map *crush_decode(void *pbyval, void *end)
 416{
 417	struct crush_map *c;
 418	int err;
 419	int i, j;
 420	void **p = &pbyval;
 421	void *start = pbyval;
 422	u32 magic;
 423
 424	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
 425
 426	c = kzalloc(sizeof(*c), GFP_NOFS);
 427	if (c == NULL)
 428		return ERR_PTR(-ENOMEM);
 429
 430	c->type_names = RB_ROOT;
 431	c->names = RB_ROOT;
 432	c->choose_args = RB_ROOT;
 433
 434        /* set tunables to default values */
 435        c->choose_local_tries = 2;
 436        c->choose_local_fallback_tries = 5;
 437        c->choose_total_tries = 19;
 438	c->chooseleaf_descend_once = 0;
 439
 440	ceph_decode_need(p, end, 4*sizeof(u32), bad);
 441	magic = ceph_decode_32(p);
 442	if (magic != CRUSH_MAGIC) {
 443		pr_err("crush_decode magic %x != current %x\n",
 444		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
 445		goto bad;
 446	}
 447	c->max_buckets = ceph_decode_32(p);
 448	c->max_rules = ceph_decode_32(p);
 449	c->max_devices = ceph_decode_32(p);
 450
 451	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
 452	if (c->buckets == NULL)
 453		goto badmem;
 454	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
 455	if (c->rules == NULL)
 456		goto badmem;
 457
 458	/* buckets */
 459	for (i = 0; i < c->max_buckets; i++) {
 460		int size = 0;
 461		u32 alg;
 462		struct crush_bucket *b;
 463
 464		ceph_decode_32_safe(p, end, alg, bad);
 465		if (alg == 0) {
 466			c->buckets[i] = NULL;
 467			continue;
 468		}
 469		dout("crush_decode bucket %d off %x %p to %p\n",
 470		     i, (int)(*p-start), *p, end);
 471
 472		switch (alg) {
 473		case CRUSH_BUCKET_UNIFORM:
 474			size = sizeof(struct crush_bucket_uniform);
 475			break;
 476		case CRUSH_BUCKET_LIST:
 477			size = sizeof(struct crush_bucket_list);
 478			break;
 479		case CRUSH_BUCKET_TREE:
 480			size = sizeof(struct crush_bucket_tree);
 481			break;
 482		case CRUSH_BUCKET_STRAW:
 483			size = sizeof(struct crush_bucket_straw);
 484			break;
 485		case CRUSH_BUCKET_STRAW2:
 486			size = sizeof(struct crush_bucket_straw2);
 487			break;
 488		default:
 489			goto bad;
 490		}
 491		BUG_ON(size == 0);
 492		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
 493		if (b == NULL)
 494			goto badmem;
 495
 496		ceph_decode_need(p, end, 4*sizeof(u32), bad);
 497		b->id = ceph_decode_32(p);
 498		b->type = ceph_decode_16(p);
 499		b->alg = ceph_decode_8(p);
 500		b->hash = ceph_decode_8(p);
 501		b->weight = ceph_decode_32(p);
 502		b->size = ceph_decode_32(p);
 503
 504		dout("crush_decode bucket size %d off %x %p to %p\n",
 505		     b->size, (int)(*p-start), *p, end);
 506
 507		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
 508		if (b->items == NULL)
 509			goto badmem;
 510
 511		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
 512		for (j = 0; j < b->size; j++)
 513			b->items[j] = ceph_decode_32(p);
 514
 515		switch (b->alg) {
 516		case CRUSH_BUCKET_UNIFORM:
 517			err = crush_decode_uniform_bucket(p, end,
 518				  (struct crush_bucket_uniform *)b);
 519			if (err < 0)
 520				goto fail;
 521			break;
 522		case CRUSH_BUCKET_LIST:
 523			err = crush_decode_list_bucket(p, end,
 524			       (struct crush_bucket_list *)b);
 525			if (err < 0)
 526				goto fail;
 527			break;
 528		case CRUSH_BUCKET_TREE:
 529			err = crush_decode_tree_bucket(p, end,
 530				(struct crush_bucket_tree *)b);
 531			if (err < 0)
 532				goto fail;
 533			break;
 534		case CRUSH_BUCKET_STRAW:
 535			err = crush_decode_straw_bucket(p, end,
 536				(struct crush_bucket_straw *)b);
 537			if (err < 0)
 538				goto fail;
 539			break;
 540		case CRUSH_BUCKET_STRAW2:
 541			err = crush_decode_straw2_bucket(p, end,
 542				(struct crush_bucket_straw2 *)b);
 543			if (err < 0)
 544				goto fail;
 545			break;
 546		}
 547	}
 548
 549	/* rules */
 550	dout("rule vec is %p\n", c->rules);
 551	for (i = 0; i < c->max_rules; i++) {
 552		u32 yes;
 553		struct crush_rule *r;
 554
 555		ceph_decode_32_safe(p, end, yes, bad);
 556		if (!yes) {
 557			dout("crush_decode NO rule %d off %x %p to %p\n",
 558			     i, (int)(*p-start), *p, end);
 559			c->rules[i] = NULL;
 560			continue;
 561		}
 562
 563		dout("crush_decode rule %d off %x %p to %p\n",
 564		     i, (int)(*p-start), *p, end);
 565
 566		/* len */
 567		ceph_decode_32_safe(p, end, yes, bad);
 568#if BITS_PER_LONG == 32
 569		if (yes > (ULONG_MAX - sizeof(*r))
 570			  / sizeof(struct crush_rule_step))
 571			goto bad;
 572#endif
 573		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
 574		c->rules[i] = r;
 575		if (r == NULL)
 576			goto badmem;
 577		dout(" rule %d is at %p\n", i, r);
 
 578		r->len = yes;
 579		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
 580		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
 581		for (j = 0; j < r->len; j++) {
 582			r->steps[j].op = ceph_decode_32(p);
 583			r->steps[j].arg1 = ceph_decode_32(p);
 584			r->steps[j].arg2 = ceph_decode_32(p);
 585		}
 586	}
 587
 588	err = decode_crush_names(p, end, &c->type_names);
 589	if (err)
 590		goto fail;
 591
 592	err = decode_crush_names(p, end, &c->names);
 593	if (err)
 594		goto fail;
 595
 596	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
 597
 598        /* tunables */
 599        ceph_decode_need(p, end, 3*sizeof(u32), done);
 600        c->choose_local_tries = ceph_decode_32(p);
 601        c->choose_local_fallback_tries =  ceph_decode_32(p);
 602        c->choose_total_tries = ceph_decode_32(p);
 603        dout("crush decode tunable choose_local_tries = %d\n",
 604             c->choose_local_tries);
 605        dout("crush decode tunable choose_local_fallback_tries = %d\n",
 606             c->choose_local_fallback_tries);
 607        dout("crush decode tunable choose_total_tries = %d\n",
 608             c->choose_total_tries);
 609
 610	ceph_decode_need(p, end, sizeof(u32), done);
 611	c->chooseleaf_descend_once = ceph_decode_32(p);
 612	dout("crush decode tunable chooseleaf_descend_once = %d\n",
 613	     c->chooseleaf_descend_once);
 614
 615	ceph_decode_need(p, end, sizeof(u8), done);
 616	c->chooseleaf_vary_r = ceph_decode_8(p);
 617	dout("crush decode tunable chooseleaf_vary_r = %d\n",
 618	     c->chooseleaf_vary_r);
 619
 620	/* skip straw_calc_version, allowed_bucket_algs */
 621	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
 622	*p += sizeof(u8) + sizeof(u32);
 623
 624	ceph_decode_need(p, end, sizeof(u8), done);
 625	c->chooseleaf_stable = ceph_decode_8(p);
 626	dout("crush decode tunable chooseleaf_stable = %d\n",
 627	     c->chooseleaf_stable);
 628
 629	if (*p != end) {
 630		/* class_map */
 631		ceph_decode_skip_map(p, end, 32, 32, bad);
 632		/* class_name */
 633		ceph_decode_skip_map(p, end, 32, string, bad);
 634		/* class_bucket */
 635		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
 636	}
 637
 638	if (*p != end) {
 639		err = decode_choose_args(p, end, c);
 640		if (err)
 641			goto fail;
 642	}
 643
 644done:
 645	crush_finalize(c);
 646	dout("crush_decode success\n");
 647	return c;
 648
 649badmem:
 650	err = -ENOMEM;
 651fail:
 652	dout("crush_decode fail %d\n", err);
 653	crush_destroy(c);
 654	return ERR_PTR(err);
 655
 656bad:
 657	err = -EINVAL;
 658	goto fail;
 659}
 660
 661int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
 662{
 663	if (lhs->pool < rhs->pool)
 664		return -1;
 665	if (lhs->pool > rhs->pool)
 666		return 1;
 667	if (lhs->seed < rhs->seed)
 668		return -1;
 669	if (lhs->seed > rhs->seed)
 670		return 1;
 671
 672	return 0;
 673}
 674
 675int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
 676{
 677	int ret;
 678
 679	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
 680	if (ret)
 681		return ret;
 682
 683	if (lhs->shard < rhs->shard)
 684		return -1;
 685	if (lhs->shard > rhs->shard)
 686		return 1;
 687
 688	return 0;
 689}
 690
 691static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
 692{
 693	struct ceph_pg_mapping *pg;
 694
 695	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
 696	if (!pg)
 697		return NULL;
 698
 699	RB_CLEAR_NODE(&pg->node);
 700	return pg;
 701}
 702
 703static void free_pg_mapping(struct ceph_pg_mapping *pg)
 704{
 705	WARN_ON(!RB_EMPTY_NODE(&pg->node));
 706
 707	kfree(pg);
 708}
 709
 710/*
 711 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
 712 * to a set of osds) and primary_temp (explicit primary setting)
 713 */
 714DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
 715		 RB_BYPTR, const struct ceph_pg *, node)
 716
 717/*
 718 * rbtree of pg pool info
 719 */
 720DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
 721
 722struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
 723{
 724	return lookup_pg_pool(&map->pg_pools, id);
 725}
 726
 727const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
 728{
 729	struct ceph_pg_pool_info *pi;
 730
 731	if (id == CEPH_NOPOOL)
 732		return NULL;
 733
 734	if (WARN_ON_ONCE(id > (u64) INT_MAX))
 735		return NULL;
 736
 737	pi = lookup_pg_pool(&map->pg_pools, id);
 738	return pi ? pi->name : NULL;
 739}
 740EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
 741
 742int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
 743{
 744	struct rb_node *rbp;
 745
 746	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
 747		struct ceph_pg_pool_info *pi =
 748			rb_entry(rbp, struct ceph_pg_pool_info, node);
 749		if (pi->name && strcmp(pi->name, name) == 0)
 750			return pi->id;
 751	}
 752	return -ENOENT;
 753}
 754EXPORT_SYMBOL(ceph_pg_poolid_by_name);
 755
 756u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
 757{
 758	struct ceph_pg_pool_info *pi;
 759
 760	pi = lookup_pg_pool(&map->pg_pools, id);
 761	return pi ? pi->flags : 0;
 762}
 763EXPORT_SYMBOL(ceph_pg_pool_flags);
 764
 765static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
 766{
 767	erase_pg_pool(root, pi);
 768	kfree(pi->name);
 769	kfree(pi);
 770}
 771
 772static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
 773{
 774	u8 ev, cv;
 775	unsigned len, num;
 776	void *pool_end;
 777
 778	ceph_decode_need(p, end, 2 + 4, bad);
 779	ev = ceph_decode_8(p);  /* encoding version */
 780	cv = ceph_decode_8(p); /* compat version */
 781	if (ev < 5) {
 782		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
 783		return -EINVAL;
 784	}
 785	if (cv > 9) {
 786		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
 787		return -EINVAL;
 788	}
 789	len = ceph_decode_32(p);
 790	ceph_decode_need(p, end, len, bad);
 791	pool_end = *p + len;
 792
 793	pi->type = ceph_decode_8(p);
 794	pi->size = ceph_decode_8(p);
 795	pi->crush_ruleset = ceph_decode_8(p);
 796	pi->object_hash = ceph_decode_8(p);
 797
 798	pi->pg_num = ceph_decode_32(p);
 799	pi->pgp_num = ceph_decode_32(p);
 800
 801	*p += 4 + 4;  /* skip lpg* */
 802	*p += 4;      /* skip last_change */
 803	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
 804
 805	/* skip snaps */
 806	num = ceph_decode_32(p);
 807	while (num--) {
 808		*p += 8;  /* snapid key */
 809		*p += 1 + 1; /* versions */
 810		len = ceph_decode_32(p);
 811		*p += len;
 812	}
 813
 814	/* skip removed_snaps */
 815	num = ceph_decode_32(p);
 816	*p += num * (8 + 8);
 817
 818	*p += 8;  /* skip auid */
 819	pi->flags = ceph_decode_64(p);
 820	*p += 4;  /* skip crash_replay_interval */
 821
 822	if (ev >= 7)
 823		pi->min_size = ceph_decode_8(p);
 824	else
 825		pi->min_size = pi->size - pi->size / 2;
 826
 827	if (ev >= 8)
 828		*p += 8 + 8;  /* skip quota_max_* */
 829
 830	if (ev >= 9) {
 831		/* skip tiers */
 832		num = ceph_decode_32(p);
 833		*p += num * 8;
 834
 835		*p += 8;  /* skip tier_of */
 836		*p += 1;  /* skip cache_mode */
 837
 838		pi->read_tier = ceph_decode_64(p);
 839		pi->write_tier = ceph_decode_64(p);
 840	} else {
 841		pi->read_tier = -1;
 842		pi->write_tier = -1;
 843	}
 844
 845	if (ev >= 10) {
 846		/* skip properties */
 847		num = ceph_decode_32(p);
 848		while (num--) {
 849			len = ceph_decode_32(p);
 850			*p += len; /* key */
 851			len = ceph_decode_32(p);
 852			*p += len; /* val */
 853		}
 854	}
 855
 856	if (ev >= 11) {
 857		/* skip hit_set_params */
 858		*p += 1 + 1; /* versions */
 859		len = ceph_decode_32(p);
 860		*p += len;
 861
 862		*p += 4; /* skip hit_set_period */
 863		*p += 4; /* skip hit_set_count */
 864	}
 865
 866	if (ev >= 12)
 867		*p += 4; /* skip stripe_width */
 868
 869	if (ev >= 13) {
 870		*p += 8; /* skip target_max_bytes */
 871		*p += 8; /* skip target_max_objects */
 872		*p += 4; /* skip cache_target_dirty_ratio_micro */
 873		*p += 4; /* skip cache_target_full_ratio_micro */
 874		*p += 4; /* skip cache_min_flush_age */
 875		*p += 4; /* skip cache_min_evict_age */
 876	}
 877
 878	if (ev >=  14) {
 879		/* skip erasure_code_profile */
 880		len = ceph_decode_32(p);
 881		*p += len;
 882	}
 883
 884	/*
 885	 * last_force_op_resend_preluminous, will be overridden if the
 886	 * map was encoded with RESEND_ON_SPLIT
 887	 */
 888	if (ev >= 15)
 889		pi->last_force_request_resend = ceph_decode_32(p);
 890	else
 891		pi->last_force_request_resend = 0;
 892
 893	if (ev >= 16)
 894		*p += 4; /* skip min_read_recency_for_promote */
 895
 896	if (ev >= 17)
 897		*p += 8; /* skip expected_num_objects */
 898
 899	if (ev >= 19)
 900		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
 901
 902	if (ev >= 20)
 903		*p += 4; /* skip min_write_recency_for_promote */
 904
 905	if (ev >= 21)
 906		*p += 1; /* skip use_gmt_hitset */
 907
 908	if (ev >= 22)
 909		*p += 1; /* skip fast_read */
 910
 911	if (ev >= 23) {
 912		*p += 4; /* skip hit_set_grade_decay_rate */
 913		*p += 4; /* skip hit_set_search_last_n */
 914	}
 915
 916	if (ev >= 24) {
 917		/* skip opts */
 918		*p += 1 + 1; /* versions */
 919		len = ceph_decode_32(p);
 920		*p += len;
 921	}
 922
 923	if (ev >= 25)
 924		pi->last_force_request_resend = ceph_decode_32(p);
 925
 926	/* ignore the rest */
 927
 928	*p = pool_end;
 929	calc_pg_masks(pi);
 930	return 0;
 931
 932bad:
 933	return -EINVAL;
 934}
 935
 936static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
 937{
 938	struct ceph_pg_pool_info *pi;
 939	u32 num, len;
 940	u64 pool;
 941
 942	ceph_decode_32_safe(p, end, num, bad);
 943	dout(" %d pool names\n", num);
 944	while (num--) {
 945		ceph_decode_64_safe(p, end, pool, bad);
 946		ceph_decode_32_safe(p, end, len, bad);
 947		dout("  pool %llu len %d\n", pool, len);
 948		ceph_decode_need(p, end, len, bad);
 949		pi = lookup_pg_pool(&map->pg_pools, pool);
 950		if (pi) {
 951			char *name = kstrndup(*p, len, GFP_NOFS);
 952
 953			if (!name)
 954				return -ENOMEM;
 955			kfree(pi->name);
 956			pi->name = name;
 957			dout("  name is %s\n", pi->name);
 958		}
 959		*p += len;
 960	}
 961	return 0;
 962
 963bad:
 964	return -EINVAL;
 965}
 966
 967/*
 968 * CRUSH workspaces
 969 *
 970 * workspace_manager framework borrowed from fs/btrfs/compression.c.
 971 * Two simplifications: there is only one type of workspace and there
 972 * is always at least one workspace.
 973 */
 974static struct crush_work *alloc_workspace(const struct crush_map *c)
 975{
 976	struct crush_work *work;
 977	size_t work_size;
 978
 979	WARN_ON(!c->working_size);
 980	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
 981	dout("%s work_size %zu bytes\n", __func__, work_size);
 982
 983	work = ceph_kvmalloc(work_size, GFP_NOIO);
 984	if (!work)
 985		return NULL;
 986
 987	INIT_LIST_HEAD(&work->item);
 988	crush_init_workspace(c, work);
 989	return work;
 990}
 991
 992static void free_workspace(struct crush_work *work)
 993{
 994	WARN_ON(!list_empty(&work->item));
 995	kvfree(work);
 996}
 997
 998static void init_workspace_manager(struct workspace_manager *wsm)
 999{
1000	INIT_LIST_HEAD(&wsm->idle_ws);
1001	spin_lock_init(&wsm->ws_lock);
1002	atomic_set(&wsm->total_ws, 0);
1003	wsm->free_ws = 0;
1004	init_waitqueue_head(&wsm->ws_wait);
1005}
1006
1007static void add_initial_workspace(struct workspace_manager *wsm,
1008				  struct crush_work *work)
1009{
1010	WARN_ON(!list_empty(&wsm->idle_ws));
1011
1012	list_add(&work->item, &wsm->idle_ws);
1013	atomic_set(&wsm->total_ws, 1);
1014	wsm->free_ws = 1;
1015}
1016
1017static void cleanup_workspace_manager(struct workspace_manager *wsm)
1018{
1019	struct crush_work *work;
1020
1021	while (!list_empty(&wsm->idle_ws)) {
1022		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1023					item);
1024		list_del_init(&work->item);
1025		free_workspace(work);
1026	}
1027	atomic_set(&wsm->total_ws, 0);
1028	wsm->free_ws = 0;
1029}
1030
1031/*
1032 * Finds an available workspace or allocates a new one.  If it's not
1033 * possible to allocate a new one, waits until there is one.
1034 */
1035static struct crush_work *get_workspace(struct workspace_manager *wsm,
1036					const struct crush_map *c)
1037{
1038	struct crush_work *work;
1039	int cpus = num_online_cpus();
1040
1041again:
1042	spin_lock(&wsm->ws_lock);
1043	if (!list_empty(&wsm->idle_ws)) {
1044		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1045					item);
1046		list_del_init(&work->item);
1047		wsm->free_ws--;
1048		spin_unlock(&wsm->ws_lock);
1049		return work;
1050
1051	}
1052	if (atomic_read(&wsm->total_ws) > cpus) {
1053		DEFINE_WAIT(wait);
1054
1055		spin_unlock(&wsm->ws_lock);
1056		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1057		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1058			schedule();
1059		finish_wait(&wsm->ws_wait, &wait);
1060		goto again;
1061	}
1062	atomic_inc(&wsm->total_ws);
1063	spin_unlock(&wsm->ws_lock);
1064
1065	work = alloc_workspace(c);
1066	if (!work) {
1067		atomic_dec(&wsm->total_ws);
1068		wake_up(&wsm->ws_wait);
1069
1070		/*
1071		 * Do not return the error but go back to waiting.  We
1072		 * have the initial workspace and the CRUSH computation
1073		 * time is bounded so we will get it eventually.
1074		 */
1075		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1076		goto again;
1077	}
1078	return work;
1079}
1080
1081/*
1082 * Puts a workspace back on the list or frees it if we have enough
1083 * idle ones sitting around.
1084 */
1085static void put_workspace(struct workspace_manager *wsm,
1086			  struct crush_work *work)
1087{
1088	spin_lock(&wsm->ws_lock);
1089	if (wsm->free_ws <= num_online_cpus()) {
1090		list_add(&work->item, &wsm->idle_ws);
1091		wsm->free_ws++;
1092		spin_unlock(&wsm->ws_lock);
1093		goto wake;
1094	}
1095	spin_unlock(&wsm->ws_lock);
1096
1097	free_workspace(work);
1098	atomic_dec(&wsm->total_ws);
1099wake:
1100	if (wq_has_sleeper(&wsm->ws_wait))
1101		wake_up(&wsm->ws_wait);
1102}
1103
1104/*
1105 * osd map
1106 */
1107struct ceph_osdmap *ceph_osdmap_alloc(void)
1108{
1109	struct ceph_osdmap *map;
1110
1111	map = kzalloc(sizeof(*map), GFP_NOIO);
1112	if (!map)
1113		return NULL;
1114
1115	map->pg_pools = RB_ROOT;
1116	map->pool_max = -1;
1117	map->pg_temp = RB_ROOT;
1118	map->primary_temp = RB_ROOT;
1119	map->pg_upmap = RB_ROOT;
1120	map->pg_upmap_items = RB_ROOT;
1121
1122	init_workspace_manager(&map->crush_wsm);
1123
1124	return map;
1125}
1126
1127void ceph_osdmap_destroy(struct ceph_osdmap *map)
1128{
1129	dout("osdmap_destroy %p\n", map);
1130
1131	if (map->crush)
1132		crush_destroy(map->crush);
1133	cleanup_workspace_manager(&map->crush_wsm);
1134
1135	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1136		struct ceph_pg_mapping *pg =
1137			rb_entry(rb_first(&map->pg_temp),
1138				 struct ceph_pg_mapping, node);
1139		erase_pg_mapping(&map->pg_temp, pg);
1140		free_pg_mapping(pg);
1141	}
1142	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1143		struct ceph_pg_mapping *pg =
1144			rb_entry(rb_first(&map->primary_temp),
1145				 struct ceph_pg_mapping, node);
1146		erase_pg_mapping(&map->primary_temp, pg);
1147		free_pg_mapping(pg);
1148	}
1149	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1150		struct ceph_pg_mapping *pg =
1151			rb_entry(rb_first(&map->pg_upmap),
1152				 struct ceph_pg_mapping, node);
1153		rb_erase(&pg->node, &map->pg_upmap);
1154		kfree(pg);
1155	}
1156	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1157		struct ceph_pg_mapping *pg =
1158			rb_entry(rb_first(&map->pg_upmap_items),
1159				 struct ceph_pg_mapping, node);
1160		rb_erase(&pg->node, &map->pg_upmap_items);
1161		kfree(pg);
1162	}
1163	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1164		struct ceph_pg_pool_info *pi =
1165			rb_entry(rb_first(&map->pg_pools),
1166				 struct ceph_pg_pool_info, node);
1167		__remove_pg_pool(&map->pg_pools, pi);
1168	}
1169	kvfree(map->osd_state);
1170	kvfree(map->osd_weight);
1171	kvfree(map->osd_addr);
1172	kvfree(map->osd_primary_affinity);
1173	kfree(map);
1174}
1175
1176/*
1177 * Adjust max_osd value, (re)allocate arrays.
1178 *
1179 * The new elements are properly initialized.
1180 */
1181static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1182{
1183	u32 *state;
1184	u32 *weight;
1185	struct ceph_entity_addr *addr;
1186	u32 to_copy;
1187	int i;
1188
1189	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1190	if (max == map->max_osd)
1191		return 0;
1192
1193	state = ceph_kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1194	weight = ceph_kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1195	addr = ceph_kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1196	if (!state || !weight || !addr) {
1197		kvfree(state);
1198		kvfree(weight);
1199		kvfree(addr);
1200		return -ENOMEM;
1201	}
1202
1203	to_copy = min(map->max_osd, max);
1204	if (map->osd_state) {
1205		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1206		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1207		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1208		kvfree(map->osd_state);
1209		kvfree(map->osd_weight);
1210		kvfree(map->osd_addr);
1211	}
1212
1213	map->osd_state = state;
1214	map->osd_weight = weight;
1215	map->osd_addr = addr;
1216	for (i = map->max_osd; i < max; i++) {
1217		map->osd_state[i] = 0;
1218		map->osd_weight[i] = CEPH_OSD_OUT;
1219		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1220	}
1221
1222	if (map->osd_primary_affinity) {
1223		u32 *affinity;
1224
1225		affinity = ceph_kvmalloc(array_size(max, sizeof(*affinity)),
1226					 GFP_NOFS);
1227		if (!affinity)
1228			return -ENOMEM;
1229
1230		memcpy(affinity, map->osd_primary_affinity,
1231		       to_copy * sizeof(*affinity));
1232		kvfree(map->osd_primary_affinity);
1233
1234		map->osd_primary_affinity = affinity;
1235		for (i = map->max_osd; i < max; i++)
1236			map->osd_primary_affinity[i] =
1237			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1238	}
1239
1240	map->max_osd = max;
1241
1242	return 0;
1243}
1244
1245static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1246{
1247	struct crush_work *work;
1248
1249	if (IS_ERR(crush))
1250		return PTR_ERR(crush);
1251
1252	work = alloc_workspace(crush);
1253	if (!work) {
1254		crush_destroy(crush);
1255		return -ENOMEM;
1256	}
1257
1258	if (map->crush)
1259		crush_destroy(map->crush);
1260	cleanup_workspace_manager(&map->crush_wsm);
1261	map->crush = crush;
1262	add_initial_workspace(&map->crush_wsm, work);
1263	return 0;
1264}
1265
1266#define OSDMAP_WRAPPER_COMPAT_VER	7
1267#define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1268
1269/*
1270 * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1271 * to struct_v of the client_data section for new (v7 and above)
1272 * osdmaps.
1273 */
1274static int get_osdmap_client_data_v(void **p, void *end,
1275				    const char *prefix, u8 *v)
1276{
1277	u8 struct_v;
1278
1279	ceph_decode_8_safe(p, end, struct_v, e_inval);
1280	if (struct_v >= 7) {
1281		u8 struct_compat;
1282
1283		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1284		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1285			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1286				struct_v, struct_compat,
1287				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1288			return -EINVAL;
1289		}
1290		*p += 4; /* ignore wrapper struct_len */
1291
1292		ceph_decode_8_safe(p, end, struct_v, e_inval);
1293		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1294		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1295			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1296				struct_v, struct_compat,
1297				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1298			return -EINVAL;
1299		}
1300		*p += 4; /* ignore client data struct_len */
1301	} else {
1302		u16 version;
1303
1304		*p -= 1;
1305		ceph_decode_16_safe(p, end, version, e_inval);
1306		if (version < 6) {
1307			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1308				version, prefix);
1309			return -EINVAL;
1310		}
1311
1312		/* old osdmap encoding */
1313		struct_v = 0;
1314	}
1315
1316	*v = struct_v;
1317	return 0;
1318
1319e_inval:
1320	return -EINVAL;
1321}
1322
1323static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1324			  bool incremental)
1325{
1326	u32 n;
1327
1328	ceph_decode_32_safe(p, end, n, e_inval);
1329	while (n--) {
1330		struct ceph_pg_pool_info *pi;
1331		u64 pool;
1332		int ret;
1333
1334		ceph_decode_64_safe(p, end, pool, e_inval);
1335
1336		pi = lookup_pg_pool(&map->pg_pools, pool);
1337		if (!incremental || !pi) {
1338			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1339			if (!pi)
1340				return -ENOMEM;
1341
1342			RB_CLEAR_NODE(&pi->node);
1343			pi->id = pool;
1344
1345			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1346				kfree(pi);
1347				return -EEXIST;
1348			}
1349		}
1350
1351		ret = decode_pool(p, end, pi);
1352		if (ret)
1353			return ret;
1354	}
1355
1356	return 0;
1357
1358e_inval:
1359	return -EINVAL;
1360}
1361
1362static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1363{
1364	return __decode_pools(p, end, map, false);
1365}
1366
1367static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1368{
1369	return __decode_pools(p, end, map, true);
1370}
1371
1372typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1373
1374static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1375			     decode_mapping_fn_t fn, bool incremental)
1376{
1377	u32 n;
1378
1379	WARN_ON(!incremental && !fn);
1380
1381	ceph_decode_32_safe(p, end, n, e_inval);
1382	while (n--) {
1383		struct ceph_pg_mapping *pg;
1384		struct ceph_pg pgid;
1385		int ret;
1386
1387		ret = ceph_decode_pgid(p, end, &pgid);
1388		if (ret)
1389			return ret;
1390
1391		pg = lookup_pg_mapping(mapping_root, &pgid);
1392		if (pg) {
1393			WARN_ON(!incremental);
1394			erase_pg_mapping(mapping_root, pg);
1395			free_pg_mapping(pg);
1396		}
1397
1398		if (fn) {
1399			pg = fn(p, end, incremental);
1400			if (IS_ERR(pg))
1401				return PTR_ERR(pg);
1402
1403			if (pg) {
1404				pg->pgid = pgid; /* struct */
1405				insert_pg_mapping(mapping_root, pg);
1406			}
1407		}
1408	}
1409
1410	return 0;
1411
1412e_inval:
1413	return -EINVAL;
1414}
1415
1416static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1417						bool incremental)
1418{
1419	struct ceph_pg_mapping *pg;
1420	u32 len, i;
1421
1422	ceph_decode_32_safe(p, end, len, e_inval);
1423	if (len == 0 && incremental)
1424		return NULL;	/* new_pg_temp: [] to remove */
1425	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1426		return ERR_PTR(-EINVAL);
1427
1428	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1429	pg = alloc_pg_mapping(len * sizeof(u32));
1430	if (!pg)
1431		return ERR_PTR(-ENOMEM);
1432
1433	pg->pg_temp.len = len;
1434	for (i = 0; i < len; i++)
1435		pg->pg_temp.osds[i] = ceph_decode_32(p);
1436
1437	return pg;
1438
1439e_inval:
1440	return ERR_PTR(-EINVAL);
1441}
1442
1443static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1444{
1445	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1446				 false);
1447}
1448
1449static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1450{
1451	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1452				 true);
1453}
1454
1455static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1456						     bool incremental)
1457{
1458	struct ceph_pg_mapping *pg;
1459	u32 osd;
1460
1461	ceph_decode_32_safe(p, end, osd, e_inval);
1462	if (osd == (u32)-1 && incremental)
1463		return NULL;	/* new_primary_temp: -1 to remove */
1464
1465	pg = alloc_pg_mapping(0);
1466	if (!pg)
1467		return ERR_PTR(-ENOMEM);
1468
1469	pg->primary_temp.osd = osd;
1470	return pg;
1471
1472e_inval:
1473	return ERR_PTR(-EINVAL);
1474}
1475
1476static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1477{
1478	return decode_pg_mapping(p, end, &map->primary_temp,
1479				 __decode_primary_temp, false);
1480}
1481
1482static int decode_new_primary_temp(void **p, void *end,
1483				   struct ceph_osdmap *map)
1484{
1485	return decode_pg_mapping(p, end, &map->primary_temp,
1486				 __decode_primary_temp, true);
1487}
1488
1489u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1490{
1491	BUG_ON(osd >= map->max_osd);
1492
1493	if (!map->osd_primary_affinity)
1494		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1495
1496	return map->osd_primary_affinity[osd];
1497}
1498
1499static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1500{
1501	BUG_ON(osd >= map->max_osd);
1502
1503	if (!map->osd_primary_affinity) {
1504		int i;
1505
1506		map->osd_primary_affinity = ceph_kvmalloc(
1507		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1508		    GFP_NOFS);
1509		if (!map->osd_primary_affinity)
1510			return -ENOMEM;
1511
1512		for (i = 0; i < map->max_osd; i++)
1513			map->osd_primary_affinity[i] =
1514			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1515	}
1516
1517	map->osd_primary_affinity[osd] = aff;
1518
1519	return 0;
1520}
1521
1522static int decode_primary_affinity(void **p, void *end,
1523				   struct ceph_osdmap *map)
1524{
1525	u32 len, i;
1526
1527	ceph_decode_32_safe(p, end, len, e_inval);
1528	if (len == 0) {
1529		kvfree(map->osd_primary_affinity);
1530		map->osd_primary_affinity = NULL;
1531		return 0;
1532	}
1533	if (len != map->max_osd)
1534		goto e_inval;
1535
1536	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1537
1538	for (i = 0; i < map->max_osd; i++) {
1539		int ret;
1540
1541		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1542		if (ret)
1543			return ret;
1544	}
1545
1546	return 0;
1547
1548e_inval:
1549	return -EINVAL;
1550}
1551
1552static int decode_new_primary_affinity(void **p, void *end,
1553				       struct ceph_osdmap *map)
1554{
1555	u32 n;
1556
1557	ceph_decode_32_safe(p, end, n, e_inval);
1558	while (n--) {
1559		u32 osd, aff;
1560		int ret;
1561
1562		ceph_decode_32_safe(p, end, osd, e_inval);
1563		ceph_decode_32_safe(p, end, aff, e_inval);
1564
1565		ret = set_primary_affinity(map, osd, aff);
1566		if (ret)
1567			return ret;
1568
1569		pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
1570	}
1571
1572	return 0;
1573
1574e_inval:
1575	return -EINVAL;
1576}
1577
1578static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1579						 bool __unused)
1580{
1581	return __decode_pg_temp(p, end, false);
1582}
1583
1584static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1585{
1586	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1587				 false);
1588}
1589
1590static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1591{
1592	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1593				 true);
1594}
1595
1596static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1597{
1598	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1599}
1600
1601static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1602						       bool __unused)
1603{
1604	struct ceph_pg_mapping *pg;
1605	u32 len, i;
1606
1607	ceph_decode_32_safe(p, end, len, e_inval);
1608	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1609		return ERR_PTR(-EINVAL);
1610
1611	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1612	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1613	if (!pg)
1614		return ERR_PTR(-ENOMEM);
1615
1616	pg->pg_upmap_items.len = len;
1617	for (i = 0; i < len; i++) {
1618		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1619		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1620	}
1621
1622	return pg;
1623
1624e_inval:
1625	return ERR_PTR(-EINVAL);
1626}
1627
1628static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1629{
1630	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1631				 __decode_pg_upmap_items, false);
1632}
1633
1634static int decode_new_pg_upmap_items(void **p, void *end,
1635				     struct ceph_osdmap *map)
1636{
1637	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1638				 __decode_pg_upmap_items, true);
1639}
1640
1641static int decode_old_pg_upmap_items(void **p, void *end,
1642				     struct ceph_osdmap *map)
1643{
1644	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1645}
1646
1647/*
1648 * decode a full map.
1649 */
1650static int osdmap_decode(void **p, void *end, bool msgr2,
1651			 struct ceph_osdmap *map)
1652{
1653	u8 struct_v;
1654	u32 epoch = 0;
1655	void *start = *p;
1656	u32 max;
1657	u32 len, i;
1658	int err;
1659
1660	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1661
1662	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1663	if (err)
1664		goto bad;
1665
1666	/* fsid, epoch, created, modified */
1667	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1668			 sizeof(map->created) + sizeof(map->modified), e_inval);
1669	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1670	epoch = map->epoch = ceph_decode_32(p);
1671	ceph_decode_copy(p, &map->created, sizeof(map->created));
1672	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1673
1674	/* pools */
1675	err = decode_pools(p, end, map);
1676	if (err)
1677		goto bad;
1678
1679	/* pool_name */
1680	err = decode_pool_names(p, end, map);
1681	if (err)
1682		goto bad;
1683
1684	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1685
1686	ceph_decode_32_safe(p, end, map->flags, e_inval);
1687
1688	/* max_osd */
1689	ceph_decode_32_safe(p, end, max, e_inval);
1690
1691	/* (re)alloc osd arrays */
1692	err = osdmap_set_max_osd(map, max);
1693	if (err)
1694		goto bad;
1695
1696	/* osd_state, osd_weight, osd_addrs->client_addr */
1697	ceph_decode_need(p, end, 3*sizeof(u32) +
1698			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1699						       sizeof(u8)) +
1700				       sizeof(*map->osd_weight), e_inval);
1701	if (ceph_decode_32(p) != map->max_osd)
1702		goto e_inval;
1703
1704	if (struct_v >= 5) {
1705		for (i = 0; i < map->max_osd; i++)
1706			map->osd_state[i] = ceph_decode_32(p);
1707	} else {
1708		for (i = 0; i < map->max_osd; i++)
1709			map->osd_state[i] = ceph_decode_8(p);
1710	}
1711
1712	if (ceph_decode_32(p) != map->max_osd)
1713		goto e_inval;
1714
1715	for (i = 0; i < map->max_osd; i++)
1716		map->osd_weight[i] = ceph_decode_32(p);
1717
1718	if (ceph_decode_32(p) != map->max_osd)
1719		goto e_inval;
1720
1721	for (i = 0; i < map->max_osd; i++) {
1722		struct ceph_entity_addr *addr = &map->osd_addr[i];
1723
1724		if (struct_v >= 8)
1725			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1726		else
1727			err = ceph_decode_entity_addr(p, end, addr);
1728		if (err)
1729			goto bad;
1730
1731		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1732	}
1733
1734	/* pg_temp */
1735	err = decode_pg_temp(p, end, map);
1736	if (err)
1737		goto bad;
1738
1739	/* primary_temp */
1740	if (struct_v >= 1) {
1741		err = decode_primary_temp(p, end, map);
1742		if (err)
1743			goto bad;
1744	}
1745
1746	/* primary_affinity */
1747	if (struct_v >= 2) {
1748		err = decode_primary_affinity(p, end, map);
1749		if (err)
1750			goto bad;
1751	} else {
1752		WARN_ON(map->osd_primary_affinity);
1753	}
1754
1755	/* crush */
1756	ceph_decode_32_safe(p, end, len, e_inval);
1757	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1758	if (err)
1759		goto bad;
1760
1761	*p += len;
1762	if (struct_v >= 3) {
1763		/* erasure_code_profiles */
1764		ceph_decode_skip_map_of_map(p, end, string, string, string,
1765					    e_inval);
1766	}
1767
1768	if (struct_v >= 4) {
1769		err = decode_pg_upmap(p, end, map);
1770		if (err)
1771			goto bad;
1772
1773		err = decode_pg_upmap_items(p, end, map);
1774		if (err)
1775			goto bad;
1776	} else {
1777		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1778		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1779	}
1780
1781	/* ignore the rest */
1782	*p = end;
1783
1784	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1785	return 0;
1786
1787e_inval:
1788	err = -EINVAL;
1789bad:
1790	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1791	       err, epoch, (int)(*p - start), *p, start, end);
1792	print_hex_dump(KERN_DEBUG, "osdmap: ",
1793		       DUMP_PREFIX_OFFSET, 16, 1,
1794		       start, end - start, true);
1795	return err;
1796}
1797
1798/*
1799 * Allocate and decode a full map.
1800 */
1801struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1802{
1803	struct ceph_osdmap *map;
1804	int ret;
1805
1806	map = ceph_osdmap_alloc();
1807	if (!map)
1808		return ERR_PTR(-ENOMEM);
1809
1810	ret = osdmap_decode(p, end, msgr2, map);
1811	if (ret) {
1812		ceph_osdmap_destroy(map);
1813		return ERR_PTR(ret);
1814	}
1815
1816	return map;
1817}
1818
1819/*
1820 * Encoding order is (new_up_client, new_state, new_weight).  Need to
1821 * apply in the (new_weight, new_state, new_up_client) order, because
1822 * an incremental map may look like e.g.
1823 *
1824 *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1825 *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1826 */
1827static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1828				      bool msgr2, struct ceph_osdmap *map)
1829{
1830	void *new_up_client;
1831	void *new_state;
1832	void *new_weight_end;
1833	u32 len;
1834	int ret;
1835	int i;
1836
1837	new_up_client = *p;
1838	ceph_decode_32_safe(p, end, len, e_inval);
1839	for (i = 0; i < len; ++i) {
1840		struct ceph_entity_addr addr;
1841
1842		ceph_decode_skip_32(p, end, e_inval);
1843		if (struct_v >= 7)
1844			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1845		else
1846			ret = ceph_decode_entity_addr(p, end, &addr);
1847		if (ret)
1848			return ret;
1849	}
1850
1851	new_state = *p;
1852	ceph_decode_32_safe(p, end, len, e_inval);
1853	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1854	ceph_decode_need(p, end, len, e_inval);
1855	*p += len;
1856
1857	/* new_weight */
1858	ceph_decode_32_safe(p, end, len, e_inval);
1859	while (len--) {
1860		s32 osd;
1861		u32 w;
1862
1863		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1864		osd = ceph_decode_32(p);
1865		w = ceph_decode_32(p);
1866		BUG_ON(osd >= map->max_osd);
1867		pr_info("osd%d weight 0x%x %s\n", osd, w,
1868		     w == CEPH_OSD_IN ? "(in)" :
1869		     (w == CEPH_OSD_OUT ? "(out)" : ""));
1870		map->osd_weight[osd] = w;
1871
1872		/*
1873		 * If we are marking in, set the EXISTS, and clear the
1874		 * AUTOOUT and NEW bits.
1875		 */
1876		if (w) {
1877			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1878			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1879						 CEPH_OSD_NEW);
1880		}
1881	}
1882	new_weight_end = *p;
1883
1884	/* new_state (up/down) */
1885	*p = new_state;
1886	len = ceph_decode_32(p);
1887	while (len--) {
1888		s32 osd;
1889		u32 xorstate;
1890
1891		osd = ceph_decode_32(p);
1892		if (struct_v >= 5)
1893			xorstate = ceph_decode_32(p);
1894		else
1895			xorstate = ceph_decode_8(p);
1896		if (xorstate == 0)
1897			xorstate = CEPH_OSD_UP;
1898		BUG_ON(osd >= map->max_osd);
1899		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1900		    (xorstate & CEPH_OSD_UP))
1901			pr_info("osd%d down\n", osd);
1902		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1903		    (xorstate & CEPH_OSD_EXISTS)) {
1904			pr_info("osd%d does not exist\n", osd);
1905			ret = set_primary_affinity(map, osd,
1906						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1907			if (ret)
1908				return ret;
1909			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1910			map->osd_state[osd] = 0;
1911		} else {
1912			map->osd_state[osd] ^= xorstate;
1913		}
1914	}
1915
1916	/* new_up_client */
1917	*p = new_up_client;
1918	len = ceph_decode_32(p);
1919	while (len--) {
1920		s32 osd;
1921		struct ceph_entity_addr addr;
1922
1923		osd = ceph_decode_32(p);
1924		BUG_ON(osd >= map->max_osd);
1925		if (struct_v >= 7)
1926			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1927		else
1928			ret = ceph_decode_entity_addr(p, end, &addr);
1929		if (ret)
1930			return ret;
1931
1932		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1933
1934		pr_info("osd%d up\n", osd);
1935		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1936		map->osd_addr[osd] = addr;
1937	}
1938
1939	*p = new_weight_end;
1940	return 0;
1941
1942e_inval:
1943	return -EINVAL;
1944}
1945
1946/*
1947 * decode and apply an incremental map update.
1948 */
1949struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1950					     struct ceph_osdmap *map)
1951{
1952	struct ceph_fsid fsid;
1953	u32 epoch = 0;
1954	struct ceph_timespec modified;
1955	s32 len;
1956	u64 pool;
1957	__s64 new_pool_max;
1958	__s32 new_flags, max;
1959	void *start = *p;
1960	int err;
1961	u8 struct_v;
1962
1963	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1964
1965	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1966	if (err)
1967		goto bad;
1968
1969	/* fsid, epoch, modified, new_pool_max, new_flags */
1970	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1971			 sizeof(u64) + sizeof(u32), e_inval);
1972	ceph_decode_copy(p, &fsid, sizeof(fsid));
1973	epoch = ceph_decode_32(p);
1974	BUG_ON(epoch != map->epoch+1);
1975	ceph_decode_copy(p, &modified, sizeof(modified));
1976	new_pool_max = ceph_decode_64(p);
1977	new_flags = ceph_decode_32(p);
1978
1979	/* full map? */
1980	ceph_decode_32_safe(p, end, len, e_inval);
1981	if (len > 0) {
1982		dout("apply_incremental full map len %d, %p to %p\n",
1983		     len, *p, end);
1984		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
1985	}
1986
1987	/* new crush? */
1988	ceph_decode_32_safe(p, end, len, e_inval);
1989	if (len > 0) {
1990		err = osdmap_set_crush(map,
1991				       crush_decode(*p, min(*p + len, end)));
1992		if (err)
1993			goto bad;
1994		*p += len;
1995	}
1996
1997	/* new flags? */
1998	if (new_flags >= 0)
1999		map->flags = new_flags;
2000	if (new_pool_max >= 0)
2001		map->pool_max = new_pool_max;
2002
2003	/* new max? */
2004	ceph_decode_32_safe(p, end, max, e_inval);
2005	if (max >= 0) {
2006		err = osdmap_set_max_osd(map, max);
2007		if (err)
2008			goto bad;
2009	}
2010
2011	map->epoch++;
2012	map->modified = modified;
2013
2014	/* new_pools */
2015	err = decode_new_pools(p, end, map);
2016	if (err)
2017		goto bad;
2018
2019	/* new_pool_names */
2020	err = decode_pool_names(p, end, map);
2021	if (err)
2022		goto bad;
2023
2024	/* old_pool */
2025	ceph_decode_32_safe(p, end, len, e_inval);
2026	while (len--) {
2027		struct ceph_pg_pool_info *pi;
2028
2029		ceph_decode_64_safe(p, end, pool, e_inval);
2030		pi = lookup_pg_pool(&map->pg_pools, pool);
2031		if (pi)
2032			__remove_pg_pool(&map->pg_pools, pi);
2033	}
2034
2035	/* new_up_client, new_state, new_weight */
2036	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2037	if (err)
2038		goto bad;
2039
2040	/* new_pg_temp */
2041	err = decode_new_pg_temp(p, end, map);
2042	if (err)
2043		goto bad;
2044
2045	/* new_primary_temp */
2046	if (struct_v >= 1) {
2047		err = decode_new_primary_temp(p, end, map);
2048		if (err)
2049			goto bad;
2050	}
2051
2052	/* new_primary_affinity */
2053	if (struct_v >= 2) {
2054		err = decode_new_primary_affinity(p, end, map);
2055		if (err)
2056			goto bad;
2057	}
2058
2059	if (struct_v >= 3) {
2060		/* new_erasure_code_profiles */
2061		ceph_decode_skip_map_of_map(p, end, string, string, string,
2062					    e_inval);
2063		/* old_erasure_code_profiles */
2064		ceph_decode_skip_set(p, end, string, e_inval);
2065	}
2066
2067	if (struct_v >= 4) {
2068		err = decode_new_pg_upmap(p, end, map);
2069		if (err)
2070			goto bad;
2071
2072		err = decode_old_pg_upmap(p, end, map);
2073		if (err)
2074			goto bad;
2075
2076		err = decode_new_pg_upmap_items(p, end, map);
2077		if (err)
2078			goto bad;
2079
2080		err = decode_old_pg_upmap_items(p, end, map);
2081		if (err)
2082			goto bad;
2083	}
2084
2085	/* ignore the rest */
2086	*p = end;
2087
2088	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2089	return map;
2090
2091e_inval:
2092	err = -EINVAL;
2093bad:
2094	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2095	       err, epoch, (int)(*p - start), *p, start, end);
2096	print_hex_dump(KERN_DEBUG, "osdmap: ",
2097		       DUMP_PREFIX_OFFSET, 16, 1,
2098		       start, end - start, true);
2099	return ERR_PTR(err);
2100}
2101
2102void ceph_oloc_copy(struct ceph_object_locator *dest,
2103		    const struct ceph_object_locator *src)
2104{
2105	ceph_oloc_destroy(dest);
2106
2107	dest->pool = src->pool;
2108	if (src->pool_ns)
2109		dest->pool_ns = ceph_get_string(src->pool_ns);
2110	else
2111		dest->pool_ns = NULL;
2112}
2113EXPORT_SYMBOL(ceph_oloc_copy);
2114
2115void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2116{
2117	ceph_put_string(oloc->pool_ns);
2118}
2119EXPORT_SYMBOL(ceph_oloc_destroy);
2120
2121void ceph_oid_copy(struct ceph_object_id *dest,
2122		   const struct ceph_object_id *src)
2123{
2124	ceph_oid_destroy(dest);
2125
2126	if (src->name != src->inline_name) {
2127		/* very rare, see ceph_object_id definition */
2128		dest->name = kmalloc(src->name_len + 1,
2129				     GFP_NOIO | __GFP_NOFAIL);
2130	} else {
2131		dest->name = dest->inline_name;
2132	}
2133	memcpy(dest->name, src->name, src->name_len + 1);
2134	dest->name_len = src->name_len;
2135}
2136EXPORT_SYMBOL(ceph_oid_copy);
2137
2138static __printf(2, 0)
2139int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2140{
2141	int len;
2142
2143	WARN_ON(!ceph_oid_empty(oid));
2144
2145	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2146	if (len >= sizeof(oid->inline_name))
2147		return len;
2148
2149	oid->name_len = len;
2150	return 0;
2151}
2152
2153/*
2154 * If oid doesn't fit into inline buffer, BUG.
2155 */
2156void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2157{
2158	va_list ap;
2159
2160	va_start(ap, fmt);
2161	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2162	va_end(ap);
2163}
2164EXPORT_SYMBOL(ceph_oid_printf);
2165
2166static __printf(3, 0)
2167int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2168		      const char *fmt, va_list ap)
2169{
2170	va_list aq;
2171	int len;
2172
2173	va_copy(aq, ap);
2174	len = oid_printf_vargs(oid, fmt, aq);
2175	va_end(aq);
2176
2177	if (len) {
2178		char *external_name;
2179
2180		external_name = kmalloc(len + 1, gfp);
2181		if (!external_name)
2182			return -ENOMEM;
2183
2184		oid->name = external_name;
2185		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2186		oid->name_len = len;
2187	}
2188
2189	return 0;
2190}
2191
2192/*
2193 * If oid doesn't fit into inline buffer, allocate.
2194 */
2195int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2196		     const char *fmt, ...)
2197{
2198	va_list ap;
2199	int ret;
2200
2201	va_start(ap, fmt);
2202	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2203	va_end(ap);
2204
2205	return ret;
2206}
2207EXPORT_SYMBOL(ceph_oid_aprintf);
2208
2209void ceph_oid_destroy(struct ceph_object_id *oid)
2210{
2211	if (oid->name != oid->inline_name)
2212		kfree(oid->name);
2213}
2214EXPORT_SYMBOL(ceph_oid_destroy);
2215
2216/*
2217 * osds only
2218 */
2219static bool __osds_equal(const struct ceph_osds *lhs,
2220			 const struct ceph_osds *rhs)
2221{
2222	if (lhs->size == rhs->size &&
2223	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2224		return true;
2225
2226	return false;
2227}
2228
2229/*
2230 * osds + primary
2231 */
2232static bool osds_equal(const struct ceph_osds *lhs,
2233		       const struct ceph_osds *rhs)
2234{
2235	if (__osds_equal(lhs, rhs) &&
2236	    lhs->primary == rhs->primary)
2237		return true;
2238
2239	return false;
2240}
2241
2242static bool osds_valid(const struct ceph_osds *set)
2243{
2244	/* non-empty set */
2245	if (set->size > 0 && set->primary >= 0)
2246		return true;
2247
2248	/* empty can_shift_osds set */
2249	if (!set->size && set->primary == -1)
2250		return true;
2251
2252	/* empty !can_shift_osds set - all NONE */
2253	if (set->size > 0 && set->primary == -1) {
2254		int i;
2255
2256		for (i = 0; i < set->size; i++) {
2257			if (set->osds[i] != CRUSH_ITEM_NONE)
2258				break;
2259		}
2260		if (i == set->size)
2261			return true;
2262	}
2263
2264	return false;
2265}
2266
2267void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2268{
2269	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2270	dest->size = src->size;
2271	dest->primary = src->primary;
2272}
2273
2274bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2275		      u32 new_pg_num)
2276{
2277	int old_bits = calc_bits_of(old_pg_num);
2278	int old_mask = (1 << old_bits) - 1;
2279	int n;
2280
2281	WARN_ON(pgid->seed >= old_pg_num);
2282	if (new_pg_num <= old_pg_num)
2283		return false;
2284
2285	for (n = 1; ; n++) {
2286		int next_bit = n << (old_bits - 1);
2287		u32 s = next_bit | pgid->seed;
2288
2289		if (s < old_pg_num || s == pgid->seed)
2290			continue;
2291		if (s >= new_pg_num)
2292			break;
2293
2294		s = ceph_stable_mod(s, old_pg_num, old_mask);
2295		if (s == pgid->seed)
2296			return true;
2297	}
2298
2299	return false;
2300}
2301
2302bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2303			  const struct ceph_osds *new_acting,
2304			  const struct ceph_osds *old_up,
2305			  const struct ceph_osds *new_up,
2306			  int old_size,
2307			  int new_size,
2308			  int old_min_size,
2309			  int new_min_size,
2310			  u32 old_pg_num,
2311			  u32 new_pg_num,
2312			  bool old_sort_bitwise,
2313			  bool new_sort_bitwise,
2314			  bool old_recovery_deletes,
2315			  bool new_recovery_deletes,
2316			  const struct ceph_pg *pgid)
2317{
2318	return !osds_equal(old_acting, new_acting) ||
2319	       !osds_equal(old_up, new_up) ||
2320	       old_size != new_size ||
2321	       old_min_size != new_min_size ||
2322	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2323	       old_sort_bitwise != new_sort_bitwise ||
2324	       old_recovery_deletes != new_recovery_deletes;
2325}
2326
2327static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2328{
2329	int i;
2330
2331	for (i = 0; i < acting->size; i++) {
2332		if (acting->osds[i] == osd)
2333			return i;
2334	}
2335
2336	return -1;
2337}
2338
2339static bool primary_changed(const struct ceph_osds *old_acting,
2340			    const struct ceph_osds *new_acting)
2341{
2342	if (!old_acting->size && !new_acting->size)
2343		return false; /* both still empty */
2344
2345	if (!old_acting->size ^ !new_acting->size)
2346		return true; /* was empty, now not, or vice versa */
2347
2348	if (old_acting->primary != new_acting->primary)
2349		return true; /* primary changed */
2350
2351	if (calc_pg_rank(old_acting->primary, old_acting) !=
2352	    calc_pg_rank(new_acting->primary, new_acting))
2353		return true;
2354
2355	return false; /* same primary (tho replicas may have changed) */
2356}
2357
2358bool ceph_osds_changed(const struct ceph_osds *old_acting,
2359		       const struct ceph_osds *new_acting,
2360		       bool any_change)
2361{
2362	if (primary_changed(old_acting, new_acting))
2363		return true;
2364
2365	if (any_change && !__osds_equal(old_acting, new_acting))
2366		return true;
2367
2368	return false;
2369}
2370
2371/*
2372 * Map an object into a PG.
2373 *
2374 * Should only be called with target_oid and target_oloc (as opposed to
2375 * base_oid and base_oloc), since tiering isn't taken into account.
2376 */
2377void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2378				 const struct ceph_object_id *oid,
2379				 const struct ceph_object_locator *oloc,
2380				 struct ceph_pg *raw_pgid)
2381{
2382	WARN_ON(pi->id != oloc->pool);
2383
2384	if (!oloc->pool_ns) {
2385		raw_pgid->pool = oloc->pool;
2386		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2387					     oid->name_len);
2388		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2389		     raw_pgid->pool, raw_pgid->seed);
2390	} else {
2391		char stack_buf[256];
2392		char *buf = stack_buf;
2393		int nsl = oloc->pool_ns->len;
2394		size_t total = nsl + 1 + oid->name_len;
2395
2396		if (total > sizeof(stack_buf))
2397			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2398		memcpy(buf, oloc->pool_ns->str, nsl);
2399		buf[nsl] = '\037';
2400		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2401		raw_pgid->pool = oloc->pool;
2402		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2403		if (buf != stack_buf)
2404			kfree(buf);
2405		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2406		     oid->name, nsl, oloc->pool_ns->str,
2407		     raw_pgid->pool, raw_pgid->seed);
2408	}
2409}
2410
2411int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2412			      const struct ceph_object_id *oid,
2413			      const struct ceph_object_locator *oloc,
2414			      struct ceph_pg *raw_pgid)
2415{
2416	struct ceph_pg_pool_info *pi;
2417
2418	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2419	if (!pi)
2420		return -ENOENT;
2421
2422	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2423	return 0;
2424}
2425EXPORT_SYMBOL(ceph_object_locator_to_pg);
2426
2427/*
2428 * Map a raw PG (full precision ps) into an actual PG.
2429 */
2430static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2431			 const struct ceph_pg *raw_pgid,
2432			 struct ceph_pg *pgid)
2433{
2434	pgid->pool = raw_pgid->pool;
2435	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2436				     pi->pg_num_mask);
2437}
2438
2439/*
2440 * Map a raw PG (full precision ps) into a placement ps (placement
2441 * seed).  Include pool id in that value so that different pools don't
2442 * use the same seeds.
2443 */
2444static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2445			 const struct ceph_pg *raw_pgid)
2446{
2447	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2448		/* hash pool id and seed so that pool PGs do not overlap */
2449		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2450				      ceph_stable_mod(raw_pgid->seed,
2451						      pi->pgp_num,
2452						      pi->pgp_num_mask),
2453				      raw_pgid->pool);
2454	} else {
2455		/*
2456		 * legacy behavior: add ps and pool together.  this is
2457		 * not a great approach because the PGs from each pool
2458		 * will overlap on top of each other: 0.5 == 1.4 ==
2459		 * 2.3 == ...
2460		 */
2461		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2462				       pi->pgp_num_mask) +
2463		       (unsigned)raw_pgid->pool;
2464	}
2465}
2466
2467/*
2468 * Magic value used for a "default" fallback choose_args, used if the
2469 * crush_choose_arg_map passed to do_crush() does not exist.  If this
2470 * also doesn't exist, fall back to canonical weights.
2471 */
2472#define CEPH_DEFAULT_CHOOSE_ARGS	-1
2473
2474static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2475		    int *result, int result_max,
2476		    const __u32 *weight, int weight_max,
2477		    s64 choose_args_index)
2478{
2479	struct crush_choose_arg_map *arg_map;
2480	struct crush_work *work;
2481	int r;
2482
2483	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2484
2485	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2486					choose_args_index);
2487	if (!arg_map)
2488		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2489						CEPH_DEFAULT_CHOOSE_ARGS);
2490
2491	work = get_workspace(&map->crush_wsm, map->crush);
2492	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2493			  weight, weight_max, work,
2494			  arg_map ? arg_map->args : NULL);
2495	put_workspace(&map->crush_wsm, work);
2496	return r;
2497}
2498
2499static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2500				    struct ceph_pg_pool_info *pi,
2501				    struct ceph_osds *set)
2502{
2503	int i;
2504
2505	if (ceph_can_shift_osds(pi)) {
2506		int removed = 0;
2507
2508		/* shift left */
2509		for (i = 0; i < set->size; i++) {
2510			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2511				removed++;
2512				continue;
2513			}
2514			if (removed)
2515				set->osds[i - removed] = set->osds[i];
2516		}
2517		set->size -= removed;
2518	} else {
2519		/* set dne devices to NONE */
2520		for (i = 0; i < set->size; i++) {
2521			if (!ceph_osd_exists(osdmap, set->osds[i]))
2522				set->osds[i] = CRUSH_ITEM_NONE;
2523		}
2524	}
2525}
2526
2527/*
2528 * Calculate raw set (CRUSH output) for given PG and filter out
2529 * nonexistent OSDs.  ->primary is undefined for a raw set.
2530 *
2531 * Placement seed (CRUSH input) is returned through @ppps.
2532 */
2533static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2534			   struct ceph_pg_pool_info *pi,
2535			   const struct ceph_pg *raw_pgid,
2536			   struct ceph_osds *raw,
2537			   u32 *ppps)
2538{
2539	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2540	int ruleno;
2541	int len;
2542
2543	ceph_osds_init(raw);
2544	if (ppps)
2545		*ppps = pps;
2546
2547	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2548				 pi->size);
2549	if (ruleno < 0) {
2550		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2551		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2552		return;
2553	}
2554
2555	if (pi->size > ARRAY_SIZE(raw->osds)) {
2556		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2557		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2558		       ARRAY_SIZE(raw->osds));
2559		return;
2560	}
2561
2562	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2563		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2564	if (len < 0) {
2565		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2566		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2567		       pi->size);
2568		return;
2569	}
2570
2571	raw->size = len;
2572	remove_nonexistent_osds(osdmap, pi, raw);
2573}
2574
2575/* apply pg_upmap[_items] mappings */
2576static void apply_upmap(struct ceph_osdmap *osdmap,
2577			const struct ceph_pg *pgid,
2578			struct ceph_osds *raw)
2579{
2580	struct ceph_pg_mapping *pg;
2581	int i, j;
2582
2583	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2584	if (pg) {
2585		/* make sure targets aren't marked out */
2586		for (i = 0; i < pg->pg_upmap.len; i++) {
2587			int osd = pg->pg_upmap.osds[i];
2588
2589			if (osd != CRUSH_ITEM_NONE &&
2590			    osd < osdmap->max_osd &&
2591			    osdmap->osd_weight[osd] == 0) {
2592				/* reject/ignore explicit mapping */
2593				return;
2594			}
2595		}
2596		for (i = 0; i < pg->pg_upmap.len; i++)
2597			raw->osds[i] = pg->pg_upmap.osds[i];
2598		raw->size = pg->pg_upmap.len;
2599		/* check and apply pg_upmap_items, if any */
2600	}
2601
2602	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2603	if (pg) {
2604		/*
2605		 * Note: this approach does not allow a bidirectional swap,
2606		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2607		 */
2608		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2609			int from = pg->pg_upmap_items.from_to[i][0];
2610			int to = pg->pg_upmap_items.from_to[i][1];
2611			int pos = -1;
2612			bool exists = false;
2613
2614			/* make sure replacement doesn't already appear */
2615			for (j = 0; j < raw->size; j++) {
2616				int osd = raw->osds[j];
2617
2618				if (osd == to) {
2619					exists = true;
2620					break;
2621				}
2622				/* ignore mapping if target is marked out */
2623				if (osd == from && pos < 0 &&
2624				    !(to != CRUSH_ITEM_NONE &&
2625				      to < osdmap->max_osd &&
2626				      osdmap->osd_weight[to] == 0)) {
2627					pos = j;
2628				}
2629			}
2630			if (!exists && pos >= 0)
2631				raw->osds[pos] = to;
2632		}
2633	}
2634}
2635
2636/*
2637 * Given raw set, calculate up set and up primary.  By definition of an
2638 * up set, the result won't contain nonexistent or down OSDs.
2639 *
2640 * This is done in-place - on return @set is the up set.  If it's
2641 * empty, ->primary will remain undefined.
2642 */
2643static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2644			   struct ceph_pg_pool_info *pi,
2645			   struct ceph_osds *set)
2646{
2647	int i;
2648
2649	/* ->primary is undefined for a raw set */
2650	BUG_ON(set->primary != -1);
2651
2652	if (ceph_can_shift_osds(pi)) {
2653		int removed = 0;
2654
2655		/* shift left */
2656		for (i = 0; i < set->size; i++) {
2657			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2658				removed++;
2659				continue;
2660			}
2661			if (removed)
2662				set->osds[i - removed] = set->osds[i];
2663		}
2664		set->size -= removed;
2665		if (set->size > 0)
2666			set->primary = set->osds[0];
2667	} else {
2668		/* set down/dne devices to NONE */
2669		for (i = set->size - 1; i >= 0; i--) {
2670			if (ceph_osd_is_down(osdmap, set->osds[i]))
2671				set->osds[i] = CRUSH_ITEM_NONE;
2672			else
2673				set->primary = set->osds[i];
2674		}
2675	}
2676}
2677
2678static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2679				   struct ceph_pg_pool_info *pi,
2680				   u32 pps,
2681				   struct ceph_osds *up)
2682{
2683	int i;
2684	int pos = -1;
2685
2686	/*
2687	 * Do we have any non-default primary_affinity values for these
2688	 * osds?
2689	 */
2690	if (!osdmap->osd_primary_affinity)
2691		return;
2692
2693	for (i = 0; i < up->size; i++) {
2694		int osd = up->osds[i];
2695
2696		if (osd != CRUSH_ITEM_NONE &&
2697		    osdmap->osd_primary_affinity[osd] !=
2698					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2699			break;
2700		}
2701	}
2702	if (i == up->size)
2703		return;
2704
2705	/*
2706	 * Pick the primary.  Feed both the seed (for the pg) and the
2707	 * osd into the hash/rng so that a proportional fraction of an
2708	 * osd's pgs get rejected as primary.
2709	 */
2710	for (i = 0; i < up->size; i++) {
2711		int osd = up->osds[i];
2712		u32 aff;
2713
2714		if (osd == CRUSH_ITEM_NONE)
2715			continue;
2716
2717		aff = osdmap->osd_primary_affinity[osd];
2718		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2719		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2720				    pps, osd) >> 16) >= aff) {
2721			/*
2722			 * We chose not to use this primary.  Note it
2723			 * anyway as a fallback in case we don't pick
2724			 * anyone else, but keep looking.
2725			 */
2726			if (pos < 0)
2727				pos = i;
2728		} else {
2729			pos = i;
2730			break;
2731		}
2732	}
2733	if (pos < 0)
2734		return;
2735
2736	up->primary = up->osds[pos];
2737
2738	if (ceph_can_shift_osds(pi) && pos > 0) {
2739		/* move the new primary to the front */
2740		for (i = pos; i > 0; i--)
2741			up->osds[i] = up->osds[i - 1];
2742		up->osds[0] = up->primary;
2743	}
2744}
2745
2746/*
2747 * Get pg_temp and primary_temp mappings for given PG.
2748 *
2749 * Note that a PG may have none, only pg_temp, only primary_temp or
2750 * both pg_temp and primary_temp mappings.  This means @temp isn't
2751 * always a valid OSD set on return: in the "only primary_temp" case,
2752 * @temp will have its ->primary >= 0 but ->size == 0.
2753 */
2754static void get_temp_osds(struct ceph_osdmap *osdmap,
2755			  struct ceph_pg_pool_info *pi,
2756			  const struct ceph_pg *pgid,
2757			  struct ceph_osds *temp)
2758{
2759	struct ceph_pg_mapping *pg;
2760	int i;
2761
2762	ceph_osds_init(temp);
2763
2764	/* pg_temp? */
2765	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2766	if (pg) {
2767		for (i = 0; i < pg->pg_temp.len; i++) {
2768			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2769				if (ceph_can_shift_osds(pi))
2770					continue;
2771
2772				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2773			} else {
2774				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2775			}
2776		}
2777
2778		/* apply pg_temp's primary */
2779		for (i = 0; i < temp->size; i++) {
2780			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2781				temp->primary = temp->osds[i];
2782				break;
2783			}
2784		}
2785	}
2786
2787	/* primary_temp? */
2788	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2789	if (pg)
2790		temp->primary = pg->primary_temp.osd;
2791}
2792
2793/*
2794 * Map a PG to its acting set as well as its up set.
2795 *
2796 * Acting set is used for data mapping purposes, while up set can be
2797 * recorded for detecting interval changes and deciding whether to
2798 * resend a request.
2799 */
2800void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2801			       struct ceph_pg_pool_info *pi,
2802			       const struct ceph_pg *raw_pgid,
2803			       struct ceph_osds *up,
2804			       struct ceph_osds *acting)
2805{
2806	struct ceph_pg pgid;
2807	u32 pps;
2808
2809	WARN_ON(pi->id != raw_pgid->pool);
2810	raw_pg_to_pg(pi, raw_pgid, &pgid);
2811
2812	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2813	apply_upmap(osdmap, &pgid, up);
2814	raw_to_up_osds(osdmap, pi, up);
2815	apply_primary_affinity(osdmap, pi, pps, up);
2816	get_temp_osds(osdmap, pi, &pgid, acting);
2817	if (!acting->size) {
2818		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2819		acting->size = up->size;
2820		if (acting->primary == -1)
2821			acting->primary = up->primary;
2822	}
2823	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2824}
2825
2826bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2827			      struct ceph_pg_pool_info *pi,
2828			      const struct ceph_pg *raw_pgid,
2829			      struct ceph_spg *spgid)
2830{
2831	struct ceph_pg pgid;
2832	struct ceph_osds up, acting;
2833	int i;
2834
2835	WARN_ON(pi->id != raw_pgid->pool);
2836	raw_pg_to_pg(pi, raw_pgid, &pgid);
2837
2838	if (ceph_can_shift_osds(pi)) {
2839		spgid->pgid = pgid; /* struct */
2840		spgid->shard = CEPH_SPG_NOSHARD;
2841		return true;
2842	}
2843
2844	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2845	for (i = 0; i < acting.size; i++) {
2846		if (acting.osds[i] == acting.primary) {
2847			spgid->pgid = pgid; /* struct */
2848			spgid->shard = i;
2849			return true;
2850		}
2851	}
2852
2853	return false;
2854}
2855
2856/*
2857 * Return acting primary for given PG, or -1 if none.
2858 */
2859int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2860			      const struct ceph_pg *raw_pgid)
2861{
2862	struct ceph_pg_pool_info *pi;
2863	struct ceph_osds up, acting;
2864
2865	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2866	if (!pi)
2867		return -1;
2868
2869	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2870	return acting.primary;
2871}
2872EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2873
2874static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2875					      size_t name_len)
2876{
2877	struct crush_loc_node *loc;
2878
2879	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2880	if (!loc)
2881		return NULL;
2882
2883	RB_CLEAR_NODE(&loc->cl_node);
2884	return loc;
2885}
2886
2887static void free_crush_loc(struct crush_loc_node *loc)
2888{
2889	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2890
2891	kfree(loc);
2892}
2893
2894static int crush_loc_compare(const struct crush_loc *loc1,
2895			     const struct crush_loc *loc2)
2896{
2897	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2898	       strcmp(loc1->cl_name, loc2->cl_name);
2899}
2900
2901DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2902		 RB_BYPTR, const struct crush_loc *, cl_node)
2903
2904/*
2905 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2906 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2907 *
2908 * Note that @crush_location is modified by strsep().
2909 */
2910int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2911{
2912	struct crush_loc_node *loc;
2913	const char *type_name, *name, *colon;
2914	size_t type_name_len, name_len;
2915
2916	dout("%s '%s'\n", __func__, crush_location);
2917	while ((type_name = strsep(&crush_location, "|"))) {
2918		colon = strchr(type_name, ':');
2919		if (!colon)
2920			return -EINVAL;
2921
2922		type_name_len = colon - type_name;
2923		if (type_name_len == 0)
2924			return -EINVAL;
2925
2926		name = colon + 1;
2927		name_len = strlen(name);
2928		if (name_len == 0)
2929			return -EINVAL;
2930
2931		loc = alloc_crush_loc(type_name_len, name_len);
2932		if (!loc)
2933			return -ENOMEM;
2934
2935		loc->cl_loc.cl_type_name = loc->cl_data;
2936		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2937		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2938
2939		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2940		memcpy(loc->cl_loc.cl_name, name, name_len);
2941		loc->cl_loc.cl_name[name_len] = '\0';
2942
2943		if (!__insert_crush_loc(locs, loc)) {
2944			free_crush_loc(loc);
2945			return -EEXIST;
2946		}
2947
2948		dout("%s type_name '%s' name '%s'\n", __func__,
2949		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2950	}
2951
2952	return 0;
2953}
2954
2955int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2956{
2957	struct rb_node *n1 = rb_first(locs1);
2958	struct rb_node *n2 = rb_first(locs2);
2959	int ret;
2960
2961	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2962		struct crush_loc_node *loc1 =
2963		    rb_entry(n1, struct crush_loc_node, cl_node);
2964		struct crush_loc_node *loc2 =
2965		    rb_entry(n2, struct crush_loc_node, cl_node);
2966
2967		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2968		if (ret)
2969			return ret;
2970	}
2971
2972	if (!n1 && n2)
2973		return -1;
2974	if (n1 && !n2)
2975		return 1;
2976	return 0;
2977}
2978
2979void ceph_clear_crush_locs(struct rb_root *locs)
2980{
2981	while (!RB_EMPTY_ROOT(locs)) {
2982		struct crush_loc_node *loc =
2983		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2984
2985		erase_crush_loc(locs, loc);
2986		free_crush_loc(loc);
2987	}
2988}
2989
2990/*
2991 * [a-zA-Z0-9-_.]+
2992 */
2993static bool is_valid_crush_name(const char *name)
2994{
2995	do {
2996		if (!('a' <= *name && *name <= 'z') &&
2997		    !('A' <= *name && *name <= 'Z') &&
2998		    !('0' <= *name && *name <= '9') &&
2999		    *name != '-' && *name != '_' && *name != '.')
3000			return false;
3001	} while (*++name != '\0');
3002
3003	return true;
3004}
3005
3006/*
3007 * Gets the parent of an item.  Returns its id (<0 because the
3008 * parent is always a bucket), type id (>0 for the same reason,
3009 * via @parent_type_id) and location (via @parent_loc).  If no
3010 * parent, returns 0.
3011 *
3012 * Does a linear search, as there are no parent pointers of any
3013 * kind.  Note that the result is ambiguous for items that occur
3014 * multiple times in the map.
3015 */
3016static int get_immediate_parent(struct crush_map *c, int id,
3017				u16 *parent_type_id,
3018				struct crush_loc *parent_loc)
3019{
3020	struct crush_bucket *b;
3021	struct crush_name_node *type_cn, *cn;
3022	int i, j;
3023
3024	for (i = 0; i < c->max_buckets; i++) {
3025		b = c->buckets[i];
3026		if (!b)
3027			continue;
3028
3029		/* ignore per-class shadow hierarchy */
3030		cn = lookup_crush_name(&c->names, b->id);
3031		if (!cn || !is_valid_crush_name(cn->cn_name))
3032			continue;
3033
3034		for (j = 0; j < b->size; j++) {
3035			if (b->items[j] != id)
3036				continue;
3037
3038			*parent_type_id = b->type;
3039			type_cn = lookup_crush_name(&c->type_names, b->type);
3040			parent_loc->cl_type_name = type_cn->cn_name;
3041			parent_loc->cl_name = cn->cn_name;
3042			return b->id;
3043		}
3044	}
3045
3046	return 0;  /* no parent */
3047}
3048
3049/*
3050 * Calculates the locality/distance from an item to a client
3051 * location expressed in terms of CRUSH hierarchy as a set of
3052 * (bucket type name, bucket name) pairs.  Specifically, looks
3053 * for the lowest-valued bucket type for which the location of
3054 * @id matches one of the locations in @locs, so for standard
3055 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3056 * a matching host is closer than a matching rack and a matching
3057 * data center is closer than a matching zone.
3058 *
3059 * Specifying multiple locations (a "multipath" location) such
3060 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3061 * is a multimap.  The locality will be:
3062 *
3063 * - 3 for OSDs in racks foo1 and foo2
3064 * - 8 for OSDs in data center bar
3065 * - -1 for all other OSDs
3066 *
3067 * The lowest possible bucket type is 1, so the best locality
3068 * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3069 * the OSD itself.
3070 */
3071int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3072			    struct rb_root *locs)
3073{
3074	struct crush_loc loc;
3075	u16 type_id;
3076
3077	/*
3078	 * Instead of repeated get_immediate_parent() calls,
3079	 * the location of @id could be obtained with a single
3080	 * depth-first traversal.
3081	 */
3082	for (;;) {
3083		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3084		if (id >= 0)
3085			return -1;  /* not local */
3086
3087		if (lookup_crush_loc(locs, &loc))
3088			return type_id;
3089	}
3090}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/ceph/ceph_debug.h>
   4
   5#include <linux/module.h>
   6#include <linux/slab.h>
   7
   8#include <linux/ceph/libceph.h>
   9#include <linux/ceph/osdmap.h>
  10#include <linux/ceph/decode.h>
  11#include <linux/crush/hash.h>
  12#include <linux/crush/mapper.h>
  13
  14static __printf(2, 3)
  15void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
  16{
  17	struct va_format vaf;
  18	va_list args;
  19
  20	va_start(args, fmt);
  21	vaf.fmt = fmt;
  22	vaf.va = &args;
  23
  24	printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
  25	       map->epoch, &vaf);
  26
  27	va_end(args);
  28}
  29
  30char *ceph_osdmap_state_str(char *str, int len, u32 state)
  31{
  32	if (!len)
  33		return str;
  34
  35	if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
  36		snprintf(str, len, "exists, up");
  37	else if (state & CEPH_OSD_EXISTS)
  38		snprintf(str, len, "exists");
  39	else if (state & CEPH_OSD_UP)
  40		snprintf(str, len, "up");
  41	else
  42		snprintf(str, len, "doesn't exist");
  43
  44	return str;
  45}
  46
  47/* maps */
  48
  49static int calc_bits_of(unsigned int t)
  50{
  51	int b = 0;
  52	while (t) {
  53		t = t >> 1;
  54		b++;
  55	}
  56	return b;
  57}
  58
  59/*
  60 * the foo_mask is the smallest value 2^n-1 that is >= foo.
  61 */
  62static void calc_pg_masks(struct ceph_pg_pool_info *pi)
  63{
  64	pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
  65	pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
  66}
  67
  68/*
  69 * decode crush map
  70 */
  71static int crush_decode_uniform_bucket(void **p, void *end,
  72				       struct crush_bucket_uniform *b)
  73{
  74	dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
  75	ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
  76	b->item_weight = ceph_decode_32(p);
  77	return 0;
  78bad:
  79	return -EINVAL;
  80}
  81
  82static int crush_decode_list_bucket(void **p, void *end,
  83				    struct crush_bucket_list *b)
  84{
  85	int j;
  86	dout("crush_decode_list_bucket %p to %p\n", *p, end);
  87	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
  88	if (b->item_weights == NULL)
  89		return -ENOMEM;
  90	b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
  91	if (b->sum_weights == NULL)
  92		return -ENOMEM;
  93	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
  94	for (j = 0; j < b->h.size; j++) {
  95		b->item_weights[j] = ceph_decode_32(p);
  96		b->sum_weights[j] = ceph_decode_32(p);
  97	}
  98	return 0;
  99bad:
 100	return -EINVAL;
 101}
 102
 103static int crush_decode_tree_bucket(void **p, void *end,
 104				    struct crush_bucket_tree *b)
 105{
 106	int j;
 107	dout("crush_decode_tree_bucket %p to %p\n", *p, end);
 108	ceph_decode_8_safe(p, end, b->num_nodes, bad);
 109	b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
 110	if (b->node_weights == NULL)
 111		return -ENOMEM;
 112	ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
 113	for (j = 0; j < b->num_nodes; j++)
 114		b->node_weights[j] = ceph_decode_32(p);
 115	return 0;
 116bad:
 117	return -EINVAL;
 118}
 119
 120static int crush_decode_straw_bucket(void **p, void *end,
 121				     struct crush_bucket_straw *b)
 122{
 123	int j;
 124	dout("crush_decode_straw_bucket %p to %p\n", *p, end);
 125	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 126	if (b->item_weights == NULL)
 127		return -ENOMEM;
 128	b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 129	if (b->straws == NULL)
 130		return -ENOMEM;
 131	ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
 132	for (j = 0; j < b->h.size; j++) {
 133		b->item_weights[j] = ceph_decode_32(p);
 134		b->straws[j] = ceph_decode_32(p);
 135	}
 136	return 0;
 137bad:
 138	return -EINVAL;
 139}
 140
 141static int crush_decode_straw2_bucket(void **p, void *end,
 142				      struct crush_bucket_straw2 *b)
 143{
 144	int j;
 145	dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
 146	b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
 147	if (b->item_weights == NULL)
 148		return -ENOMEM;
 149	ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
 150	for (j = 0; j < b->h.size; j++)
 151		b->item_weights[j] = ceph_decode_32(p);
 152	return 0;
 153bad:
 154	return -EINVAL;
 155}
 156
 157struct crush_name_node {
 158	struct rb_node cn_node;
 159	int cn_id;
 160	char cn_name[];
 161};
 162
 163static struct crush_name_node *alloc_crush_name(size_t name_len)
 164{
 165	struct crush_name_node *cn;
 166
 167	cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
 168	if (!cn)
 169		return NULL;
 170
 171	RB_CLEAR_NODE(&cn->cn_node);
 172	return cn;
 173}
 174
 175static void free_crush_name(struct crush_name_node *cn)
 176{
 177	WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
 178
 179	kfree(cn);
 180}
 181
 182DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
 183
 184static int decode_crush_names(void **p, void *end, struct rb_root *root)
 185{
 186	u32 n;
 187
 188	ceph_decode_32_safe(p, end, n, e_inval);
 189	while (n--) {
 190		struct crush_name_node *cn;
 191		int id;
 192		u32 name_len;
 193
 194		ceph_decode_32_safe(p, end, id, e_inval);
 195		ceph_decode_32_safe(p, end, name_len, e_inval);
 196		ceph_decode_need(p, end, name_len, e_inval);
 197
 198		cn = alloc_crush_name(name_len);
 199		if (!cn)
 200			return -ENOMEM;
 201
 202		cn->cn_id = id;
 203		memcpy(cn->cn_name, *p, name_len);
 204		cn->cn_name[name_len] = '\0';
 205		*p += name_len;
 206
 207		if (!__insert_crush_name(root, cn)) {
 208			free_crush_name(cn);
 209			return -EEXIST;
 210		}
 211	}
 212
 213	return 0;
 214
 215e_inval:
 216	return -EINVAL;
 217}
 218
 219void clear_crush_names(struct rb_root *root)
 220{
 221	while (!RB_EMPTY_ROOT(root)) {
 222		struct crush_name_node *cn =
 223		    rb_entry(rb_first(root), struct crush_name_node, cn_node);
 224
 225		erase_crush_name(root, cn);
 226		free_crush_name(cn);
 227	}
 228}
 229
 230static struct crush_choose_arg_map *alloc_choose_arg_map(void)
 231{
 232	struct crush_choose_arg_map *arg_map;
 233
 234	arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
 235	if (!arg_map)
 236		return NULL;
 237
 238	RB_CLEAR_NODE(&arg_map->node);
 239	return arg_map;
 240}
 241
 242static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
 243{
 244	if (arg_map) {
 245		int i, j;
 246
 247		WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
 248
 249		for (i = 0; i < arg_map->size; i++) {
 250			struct crush_choose_arg *arg = &arg_map->args[i];
 251
 252			for (j = 0; j < arg->weight_set_size; j++)
 253				kfree(arg->weight_set[j].weights);
 254			kfree(arg->weight_set);
 255			kfree(arg->ids);
 256		}
 257		kfree(arg_map->args);
 258		kfree(arg_map);
 259	}
 260}
 261
 262DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
 263		node);
 264
 265void clear_choose_args(struct crush_map *c)
 266{
 267	while (!RB_EMPTY_ROOT(&c->choose_args)) {
 268		struct crush_choose_arg_map *arg_map =
 269		    rb_entry(rb_first(&c->choose_args),
 270			     struct crush_choose_arg_map, node);
 271
 272		erase_choose_arg_map(&c->choose_args, arg_map);
 273		free_choose_arg_map(arg_map);
 274	}
 275}
 276
 277static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
 278{
 279	u32 *a = NULL;
 280	u32 len;
 281	int ret;
 282
 283	ceph_decode_32_safe(p, end, len, e_inval);
 284	if (len) {
 285		u32 i;
 286
 287		a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
 288		if (!a) {
 289			ret = -ENOMEM;
 290			goto fail;
 291		}
 292
 293		ceph_decode_need(p, end, len * sizeof(u32), e_inval);
 294		for (i = 0; i < len; i++)
 295			a[i] = ceph_decode_32(p);
 296	}
 297
 298	*plen = len;
 299	return a;
 300
 301e_inval:
 302	ret = -EINVAL;
 303fail:
 304	kfree(a);
 305	return ERR_PTR(ret);
 306}
 307
 308/*
 309 * Assumes @arg is zero-initialized.
 310 */
 311static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
 312{
 313	int ret;
 314
 315	ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
 316	if (arg->weight_set_size) {
 317		u32 i;
 318
 319		arg->weight_set = kmalloc_array(arg->weight_set_size,
 320						sizeof(*arg->weight_set),
 321						GFP_NOIO);
 322		if (!arg->weight_set)
 323			return -ENOMEM;
 324
 325		for (i = 0; i < arg->weight_set_size; i++) {
 326			struct crush_weight_set *w = &arg->weight_set[i];
 327
 328			w->weights = decode_array_32_alloc(p, end, &w->size);
 329			if (IS_ERR(w->weights)) {
 330				ret = PTR_ERR(w->weights);
 331				w->weights = NULL;
 332				return ret;
 333			}
 334		}
 335	}
 336
 337	arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
 338	if (IS_ERR(arg->ids)) {
 339		ret = PTR_ERR(arg->ids);
 340		arg->ids = NULL;
 341		return ret;
 342	}
 343
 344	return 0;
 345
 346e_inval:
 347	return -EINVAL;
 348}
 349
 350static int decode_choose_args(void **p, void *end, struct crush_map *c)
 351{
 352	struct crush_choose_arg_map *arg_map = NULL;
 353	u32 num_choose_arg_maps, num_buckets;
 354	int ret;
 355
 356	ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
 357	while (num_choose_arg_maps--) {
 358		arg_map = alloc_choose_arg_map();
 359		if (!arg_map) {
 360			ret = -ENOMEM;
 361			goto fail;
 362		}
 363
 364		ceph_decode_64_safe(p, end, arg_map->choose_args_index,
 365				    e_inval);
 366		arg_map->size = c->max_buckets;
 367		arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
 368					GFP_NOIO);
 369		if (!arg_map->args) {
 370			ret = -ENOMEM;
 371			goto fail;
 372		}
 373
 374		ceph_decode_32_safe(p, end, num_buckets, e_inval);
 375		while (num_buckets--) {
 376			struct crush_choose_arg *arg;
 377			u32 bucket_index;
 378
 379			ceph_decode_32_safe(p, end, bucket_index, e_inval);
 380			if (bucket_index >= arg_map->size)
 381				goto e_inval;
 382
 383			arg = &arg_map->args[bucket_index];
 384			ret = decode_choose_arg(p, end, arg);
 385			if (ret)
 386				goto fail;
 387
 388			if (arg->ids_size &&
 389			    arg->ids_size != c->buckets[bucket_index]->size)
 390				goto e_inval;
 391		}
 392
 393		insert_choose_arg_map(&c->choose_args, arg_map);
 394	}
 395
 396	return 0;
 397
 398e_inval:
 399	ret = -EINVAL;
 400fail:
 401	free_choose_arg_map(arg_map);
 402	return ret;
 403}
 404
 405static void crush_finalize(struct crush_map *c)
 406{
 407	__s32 b;
 408
 409	/* Space for the array of pointers to per-bucket workspace */
 410	c->working_size = sizeof(struct crush_work) +
 411	    c->max_buckets * sizeof(struct crush_work_bucket *);
 412
 413	for (b = 0; b < c->max_buckets; b++) {
 414		if (!c->buckets[b])
 415			continue;
 416
 417		switch (c->buckets[b]->alg) {
 418		default:
 419			/*
 420			 * The base case, permutation variables and
 421			 * the pointer to the permutation array.
 422			 */
 423			c->working_size += sizeof(struct crush_work_bucket);
 424			break;
 425		}
 426		/* Every bucket has a permutation array. */
 427		c->working_size += c->buckets[b]->size * sizeof(__u32);
 428	}
 429}
 430
 431static struct crush_map *crush_decode(void *pbyval, void *end)
 432{
 433	struct crush_map *c;
 434	int err;
 435	int i, j;
 436	void **p = &pbyval;
 437	void *start = pbyval;
 438	u32 magic;
 439
 440	dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
 441
 442	c = kzalloc(sizeof(*c), GFP_NOFS);
 443	if (c == NULL)
 444		return ERR_PTR(-ENOMEM);
 445
 446	c->type_names = RB_ROOT;
 447	c->names = RB_ROOT;
 448	c->choose_args = RB_ROOT;
 449
 450        /* set tunables to default values */
 451        c->choose_local_tries = 2;
 452        c->choose_local_fallback_tries = 5;
 453        c->choose_total_tries = 19;
 454	c->chooseleaf_descend_once = 0;
 455
 456	ceph_decode_need(p, end, 4*sizeof(u32), bad);
 457	magic = ceph_decode_32(p);
 458	if (magic != CRUSH_MAGIC) {
 459		pr_err("crush_decode magic %x != current %x\n",
 460		       (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
 461		goto bad;
 462	}
 463	c->max_buckets = ceph_decode_32(p);
 464	c->max_rules = ceph_decode_32(p);
 465	c->max_devices = ceph_decode_32(p);
 466
 467	c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
 468	if (c->buckets == NULL)
 469		goto badmem;
 470	c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
 471	if (c->rules == NULL)
 472		goto badmem;
 473
 474	/* buckets */
 475	for (i = 0; i < c->max_buckets; i++) {
 476		int size = 0;
 477		u32 alg;
 478		struct crush_bucket *b;
 479
 480		ceph_decode_32_safe(p, end, alg, bad);
 481		if (alg == 0) {
 482			c->buckets[i] = NULL;
 483			continue;
 484		}
 485		dout("crush_decode bucket %d off %x %p to %p\n",
 486		     i, (int)(*p-start), *p, end);
 487
 488		switch (alg) {
 489		case CRUSH_BUCKET_UNIFORM:
 490			size = sizeof(struct crush_bucket_uniform);
 491			break;
 492		case CRUSH_BUCKET_LIST:
 493			size = sizeof(struct crush_bucket_list);
 494			break;
 495		case CRUSH_BUCKET_TREE:
 496			size = sizeof(struct crush_bucket_tree);
 497			break;
 498		case CRUSH_BUCKET_STRAW:
 499			size = sizeof(struct crush_bucket_straw);
 500			break;
 501		case CRUSH_BUCKET_STRAW2:
 502			size = sizeof(struct crush_bucket_straw2);
 503			break;
 504		default:
 505			goto bad;
 506		}
 507		BUG_ON(size == 0);
 508		b = c->buckets[i] = kzalloc(size, GFP_NOFS);
 509		if (b == NULL)
 510			goto badmem;
 511
 512		ceph_decode_need(p, end, 4*sizeof(u32), bad);
 513		b->id = ceph_decode_32(p);
 514		b->type = ceph_decode_16(p);
 515		b->alg = ceph_decode_8(p);
 516		b->hash = ceph_decode_8(p);
 517		b->weight = ceph_decode_32(p);
 518		b->size = ceph_decode_32(p);
 519
 520		dout("crush_decode bucket size %d off %x %p to %p\n",
 521		     b->size, (int)(*p-start), *p, end);
 522
 523		b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
 524		if (b->items == NULL)
 525			goto badmem;
 526
 527		ceph_decode_need(p, end, b->size*sizeof(u32), bad);
 528		for (j = 0; j < b->size; j++)
 529			b->items[j] = ceph_decode_32(p);
 530
 531		switch (b->alg) {
 532		case CRUSH_BUCKET_UNIFORM:
 533			err = crush_decode_uniform_bucket(p, end,
 534				  (struct crush_bucket_uniform *)b);
 535			if (err < 0)
 536				goto fail;
 537			break;
 538		case CRUSH_BUCKET_LIST:
 539			err = crush_decode_list_bucket(p, end,
 540			       (struct crush_bucket_list *)b);
 541			if (err < 0)
 542				goto fail;
 543			break;
 544		case CRUSH_BUCKET_TREE:
 545			err = crush_decode_tree_bucket(p, end,
 546				(struct crush_bucket_tree *)b);
 547			if (err < 0)
 548				goto fail;
 549			break;
 550		case CRUSH_BUCKET_STRAW:
 551			err = crush_decode_straw_bucket(p, end,
 552				(struct crush_bucket_straw *)b);
 553			if (err < 0)
 554				goto fail;
 555			break;
 556		case CRUSH_BUCKET_STRAW2:
 557			err = crush_decode_straw2_bucket(p, end,
 558				(struct crush_bucket_straw2 *)b);
 559			if (err < 0)
 560				goto fail;
 561			break;
 562		}
 563	}
 564
 565	/* rules */
 566	dout("rule vec is %p\n", c->rules);
 567	for (i = 0; i < c->max_rules; i++) {
 568		u32 yes;
 569		struct crush_rule *r;
 570
 571		ceph_decode_32_safe(p, end, yes, bad);
 572		if (!yes) {
 573			dout("crush_decode NO rule %d off %x %p to %p\n",
 574			     i, (int)(*p-start), *p, end);
 575			c->rules[i] = NULL;
 576			continue;
 577		}
 578
 579		dout("crush_decode rule %d off %x %p to %p\n",
 580		     i, (int)(*p-start), *p, end);
 581
 582		/* len */
 583		ceph_decode_32_safe(p, end, yes, bad);
 584#if BITS_PER_LONG == 32
 585		if (yes > (ULONG_MAX - sizeof(*r))
 586			  / sizeof(struct crush_rule_step))
 587			goto bad;
 588#endif
 589		r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
 
 590		if (r == NULL)
 591			goto badmem;
 592		dout(" rule %d is at %p\n", i, r);
 593		c->rules[i] = r;
 594		r->len = yes;
 595		ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
 596		ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
 597		for (j = 0; j < r->len; j++) {
 598			r->steps[j].op = ceph_decode_32(p);
 599			r->steps[j].arg1 = ceph_decode_32(p);
 600			r->steps[j].arg2 = ceph_decode_32(p);
 601		}
 602	}
 603
 604	err = decode_crush_names(p, end, &c->type_names);
 605	if (err)
 606		goto fail;
 607
 608	err = decode_crush_names(p, end, &c->names);
 609	if (err)
 610		goto fail;
 611
 612	ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
 613
 614        /* tunables */
 615        ceph_decode_need(p, end, 3*sizeof(u32), done);
 616        c->choose_local_tries = ceph_decode_32(p);
 617        c->choose_local_fallback_tries =  ceph_decode_32(p);
 618        c->choose_total_tries = ceph_decode_32(p);
 619        dout("crush decode tunable choose_local_tries = %d\n",
 620             c->choose_local_tries);
 621        dout("crush decode tunable choose_local_fallback_tries = %d\n",
 622             c->choose_local_fallback_tries);
 623        dout("crush decode tunable choose_total_tries = %d\n",
 624             c->choose_total_tries);
 625
 626	ceph_decode_need(p, end, sizeof(u32), done);
 627	c->chooseleaf_descend_once = ceph_decode_32(p);
 628	dout("crush decode tunable chooseleaf_descend_once = %d\n",
 629	     c->chooseleaf_descend_once);
 630
 631	ceph_decode_need(p, end, sizeof(u8), done);
 632	c->chooseleaf_vary_r = ceph_decode_8(p);
 633	dout("crush decode tunable chooseleaf_vary_r = %d\n",
 634	     c->chooseleaf_vary_r);
 635
 636	/* skip straw_calc_version, allowed_bucket_algs */
 637	ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
 638	*p += sizeof(u8) + sizeof(u32);
 639
 640	ceph_decode_need(p, end, sizeof(u8), done);
 641	c->chooseleaf_stable = ceph_decode_8(p);
 642	dout("crush decode tunable chooseleaf_stable = %d\n",
 643	     c->chooseleaf_stable);
 644
 645	if (*p != end) {
 646		/* class_map */
 647		ceph_decode_skip_map(p, end, 32, 32, bad);
 648		/* class_name */
 649		ceph_decode_skip_map(p, end, 32, string, bad);
 650		/* class_bucket */
 651		ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
 652	}
 653
 654	if (*p != end) {
 655		err = decode_choose_args(p, end, c);
 656		if (err)
 657			goto fail;
 658	}
 659
 660done:
 661	crush_finalize(c);
 662	dout("crush_decode success\n");
 663	return c;
 664
 665badmem:
 666	err = -ENOMEM;
 667fail:
 668	dout("crush_decode fail %d\n", err);
 669	crush_destroy(c);
 670	return ERR_PTR(err);
 671
 672bad:
 673	err = -EINVAL;
 674	goto fail;
 675}
 676
 677int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
 678{
 679	if (lhs->pool < rhs->pool)
 680		return -1;
 681	if (lhs->pool > rhs->pool)
 682		return 1;
 683	if (lhs->seed < rhs->seed)
 684		return -1;
 685	if (lhs->seed > rhs->seed)
 686		return 1;
 687
 688	return 0;
 689}
 690
 691int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
 692{
 693	int ret;
 694
 695	ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
 696	if (ret)
 697		return ret;
 698
 699	if (lhs->shard < rhs->shard)
 700		return -1;
 701	if (lhs->shard > rhs->shard)
 702		return 1;
 703
 704	return 0;
 705}
 706
 707static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
 708{
 709	struct ceph_pg_mapping *pg;
 710
 711	pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
 712	if (!pg)
 713		return NULL;
 714
 715	RB_CLEAR_NODE(&pg->node);
 716	return pg;
 717}
 718
 719static void free_pg_mapping(struct ceph_pg_mapping *pg)
 720{
 721	WARN_ON(!RB_EMPTY_NODE(&pg->node));
 722
 723	kfree(pg);
 724}
 725
 726/*
 727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
 728 * to a set of osds) and primary_temp (explicit primary setting)
 729 */
 730DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
 731		 RB_BYPTR, const struct ceph_pg *, node)
 732
 733/*
 734 * rbtree of pg pool info
 735 */
 736DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
 737
 738struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
 739{
 740	return lookup_pg_pool(&map->pg_pools, id);
 741}
 742
 743const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
 744{
 745	struct ceph_pg_pool_info *pi;
 746
 747	if (id == CEPH_NOPOOL)
 748		return NULL;
 749
 750	if (WARN_ON_ONCE(id > (u64) INT_MAX))
 751		return NULL;
 752
 753	pi = lookup_pg_pool(&map->pg_pools, id);
 754	return pi ? pi->name : NULL;
 755}
 756EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
 757
 758int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
 759{
 760	struct rb_node *rbp;
 761
 762	for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
 763		struct ceph_pg_pool_info *pi =
 764			rb_entry(rbp, struct ceph_pg_pool_info, node);
 765		if (pi->name && strcmp(pi->name, name) == 0)
 766			return pi->id;
 767	}
 768	return -ENOENT;
 769}
 770EXPORT_SYMBOL(ceph_pg_poolid_by_name);
 771
 772u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
 773{
 774	struct ceph_pg_pool_info *pi;
 775
 776	pi = lookup_pg_pool(&map->pg_pools, id);
 777	return pi ? pi->flags : 0;
 778}
 779EXPORT_SYMBOL(ceph_pg_pool_flags);
 780
 781static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
 782{
 783	erase_pg_pool(root, pi);
 784	kfree(pi->name);
 785	kfree(pi);
 786}
 787
 788static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
 789{
 790	u8 ev, cv;
 791	unsigned len, num;
 792	void *pool_end;
 793
 794	ceph_decode_need(p, end, 2 + 4, bad);
 795	ev = ceph_decode_8(p);  /* encoding version */
 796	cv = ceph_decode_8(p); /* compat version */
 797	if (ev < 5) {
 798		pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
 799		return -EINVAL;
 800	}
 801	if (cv > 9) {
 802		pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
 803		return -EINVAL;
 804	}
 805	len = ceph_decode_32(p);
 806	ceph_decode_need(p, end, len, bad);
 807	pool_end = *p + len;
 808
 809	pi->type = ceph_decode_8(p);
 810	pi->size = ceph_decode_8(p);
 811	pi->crush_ruleset = ceph_decode_8(p);
 812	pi->object_hash = ceph_decode_8(p);
 813
 814	pi->pg_num = ceph_decode_32(p);
 815	pi->pgp_num = ceph_decode_32(p);
 816
 817	*p += 4 + 4;  /* skip lpg* */
 818	*p += 4;      /* skip last_change */
 819	*p += 8 + 4;  /* skip snap_seq, snap_epoch */
 820
 821	/* skip snaps */
 822	num = ceph_decode_32(p);
 823	while (num--) {
 824		*p += 8;  /* snapid key */
 825		*p += 1 + 1; /* versions */
 826		len = ceph_decode_32(p);
 827		*p += len;
 828	}
 829
 830	/* skip removed_snaps */
 831	num = ceph_decode_32(p);
 832	*p += num * (8 + 8);
 833
 834	*p += 8;  /* skip auid */
 835	pi->flags = ceph_decode_64(p);
 836	*p += 4;  /* skip crash_replay_interval */
 837
 838	if (ev >= 7)
 839		pi->min_size = ceph_decode_8(p);
 840	else
 841		pi->min_size = pi->size - pi->size / 2;
 842
 843	if (ev >= 8)
 844		*p += 8 + 8;  /* skip quota_max_* */
 845
 846	if (ev >= 9) {
 847		/* skip tiers */
 848		num = ceph_decode_32(p);
 849		*p += num * 8;
 850
 851		*p += 8;  /* skip tier_of */
 852		*p += 1;  /* skip cache_mode */
 853
 854		pi->read_tier = ceph_decode_64(p);
 855		pi->write_tier = ceph_decode_64(p);
 856	} else {
 857		pi->read_tier = -1;
 858		pi->write_tier = -1;
 859	}
 860
 861	if (ev >= 10) {
 862		/* skip properties */
 863		num = ceph_decode_32(p);
 864		while (num--) {
 865			len = ceph_decode_32(p);
 866			*p += len; /* key */
 867			len = ceph_decode_32(p);
 868			*p += len; /* val */
 869		}
 870	}
 871
 872	if (ev >= 11) {
 873		/* skip hit_set_params */
 874		*p += 1 + 1; /* versions */
 875		len = ceph_decode_32(p);
 876		*p += len;
 877
 878		*p += 4; /* skip hit_set_period */
 879		*p += 4; /* skip hit_set_count */
 880	}
 881
 882	if (ev >= 12)
 883		*p += 4; /* skip stripe_width */
 884
 885	if (ev >= 13) {
 886		*p += 8; /* skip target_max_bytes */
 887		*p += 8; /* skip target_max_objects */
 888		*p += 4; /* skip cache_target_dirty_ratio_micro */
 889		*p += 4; /* skip cache_target_full_ratio_micro */
 890		*p += 4; /* skip cache_min_flush_age */
 891		*p += 4; /* skip cache_min_evict_age */
 892	}
 893
 894	if (ev >=  14) {
 895		/* skip erasure_code_profile */
 896		len = ceph_decode_32(p);
 897		*p += len;
 898	}
 899
 900	/*
 901	 * last_force_op_resend_preluminous, will be overridden if the
 902	 * map was encoded with RESEND_ON_SPLIT
 903	 */
 904	if (ev >= 15)
 905		pi->last_force_request_resend = ceph_decode_32(p);
 906	else
 907		pi->last_force_request_resend = 0;
 908
 909	if (ev >= 16)
 910		*p += 4; /* skip min_read_recency_for_promote */
 911
 912	if (ev >= 17)
 913		*p += 8; /* skip expected_num_objects */
 914
 915	if (ev >= 19)
 916		*p += 4; /* skip cache_target_dirty_high_ratio_micro */
 917
 918	if (ev >= 20)
 919		*p += 4; /* skip min_write_recency_for_promote */
 920
 921	if (ev >= 21)
 922		*p += 1; /* skip use_gmt_hitset */
 923
 924	if (ev >= 22)
 925		*p += 1; /* skip fast_read */
 926
 927	if (ev >= 23) {
 928		*p += 4; /* skip hit_set_grade_decay_rate */
 929		*p += 4; /* skip hit_set_search_last_n */
 930	}
 931
 932	if (ev >= 24) {
 933		/* skip opts */
 934		*p += 1 + 1; /* versions */
 935		len = ceph_decode_32(p);
 936		*p += len;
 937	}
 938
 939	if (ev >= 25)
 940		pi->last_force_request_resend = ceph_decode_32(p);
 941
 942	/* ignore the rest */
 943
 944	*p = pool_end;
 945	calc_pg_masks(pi);
 946	return 0;
 947
 948bad:
 949	return -EINVAL;
 950}
 951
 952static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
 953{
 954	struct ceph_pg_pool_info *pi;
 955	u32 num, len;
 956	u64 pool;
 957
 958	ceph_decode_32_safe(p, end, num, bad);
 959	dout(" %d pool names\n", num);
 960	while (num--) {
 961		ceph_decode_64_safe(p, end, pool, bad);
 962		ceph_decode_32_safe(p, end, len, bad);
 963		dout("  pool %llu len %d\n", pool, len);
 964		ceph_decode_need(p, end, len, bad);
 965		pi = lookup_pg_pool(&map->pg_pools, pool);
 966		if (pi) {
 967			char *name = kstrndup(*p, len, GFP_NOFS);
 968
 969			if (!name)
 970				return -ENOMEM;
 971			kfree(pi->name);
 972			pi->name = name;
 973			dout("  name is %s\n", pi->name);
 974		}
 975		*p += len;
 976	}
 977	return 0;
 978
 979bad:
 980	return -EINVAL;
 981}
 982
 983/*
 984 * CRUSH workspaces
 985 *
 986 * workspace_manager framework borrowed from fs/btrfs/compression.c.
 987 * Two simplifications: there is only one type of workspace and there
 988 * is always at least one workspace.
 989 */
 990static struct crush_work *alloc_workspace(const struct crush_map *c)
 991{
 992	struct crush_work *work;
 993	size_t work_size;
 994
 995	WARN_ON(!c->working_size);
 996	work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
 997	dout("%s work_size %zu bytes\n", __func__, work_size);
 998
 999	work = kvmalloc(work_size, GFP_NOIO);
1000	if (!work)
1001		return NULL;
1002
1003	INIT_LIST_HEAD(&work->item);
1004	crush_init_workspace(c, work);
1005	return work;
1006}
1007
1008static void free_workspace(struct crush_work *work)
1009{
1010	WARN_ON(!list_empty(&work->item));
1011	kvfree(work);
1012}
1013
1014static void init_workspace_manager(struct workspace_manager *wsm)
1015{
1016	INIT_LIST_HEAD(&wsm->idle_ws);
1017	spin_lock_init(&wsm->ws_lock);
1018	atomic_set(&wsm->total_ws, 0);
1019	wsm->free_ws = 0;
1020	init_waitqueue_head(&wsm->ws_wait);
1021}
1022
1023static void add_initial_workspace(struct workspace_manager *wsm,
1024				  struct crush_work *work)
1025{
1026	WARN_ON(!list_empty(&wsm->idle_ws));
1027
1028	list_add(&work->item, &wsm->idle_ws);
1029	atomic_set(&wsm->total_ws, 1);
1030	wsm->free_ws = 1;
1031}
1032
1033static void cleanup_workspace_manager(struct workspace_manager *wsm)
1034{
1035	struct crush_work *work;
1036
1037	while (!list_empty(&wsm->idle_ws)) {
1038		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1039					item);
1040		list_del_init(&work->item);
1041		free_workspace(work);
1042	}
1043	atomic_set(&wsm->total_ws, 0);
1044	wsm->free_ws = 0;
1045}
1046
1047/*
1048 * Finds an available workspace or allocates a new one.  If it's not
1049 * possible to allocate a new one, waits until there is one.
1050 */
1051static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052					const struct crush_map *c)
1053{
1054	struct crush_work *work;
1055	int cpus = num_online_cpus();
1056
1057again:
1058	spin_lock(&wsm->ws_lock);
1059	if (!list_empty(&wsm->idle_ws)) {
1060		work = list_first_entry(&wsm->idle_ws, struct crush_work,
1061					item);
1062		list_del_init(&work->item);
1063		wsm->free_ws--;
1064		spin_unlock(&wsm->ws_lock);
1065		return work;
1066
1067	}
1068	if (atomic_read(&wsm->total_ws) > cpus) {
1069		DEFINE_WAIT(wait);
1070
1071		spin_unlock(&wsm->ws_lock);
1072		prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1073		if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1074			schedule();
1075		finish_wait(&wsm->ws_wait, &wait);
1076		goto again;
1077	}
1078	atomic_inc(&wsm->total_ws);
1079	spin_unlock(&wsm->ws_lock);
1080
1081	work = alloc_workspace(c);
1082	if (!work) {
1083		atomic_dec(&wsm->total_ws);
1084		wake_up(&wsm->ws_wait);
1085
1086		/*
1087		 * Do not return the error but go back to waiting.  We
1088		 * have the initial workspace and the CRUSH computation
1089		 * time is bounded so we will get it eventually.
1090		 */
1091		WARN_ON(atomic_read(&wsm->total_ws) < 1);
1092		goto again;
1093	}
1094	return work;
1095}
1096
1097/*
1098 * Puts a workspace back on the list or frees it if we have enough
1099 * idle ones sitting around.
1100 */
1101static void put_workspace(struct workspace_manager *wsm,
1102			  struct crush_work *work)
1103{
1104	spin_lock(&wsm->ws_lock);
1105	if (wsm->free_ws <= num_online_cpus()) {
1106		list_add(&work->item, &wsm->idle_ws);
1107		wsm->free_ws++;
1108		spin_unlock(&wsm->ws_lock);
1109		goto wake;
1110	}
1111	spin_unlock(&wsm->ws_lock);
1112
1113	free_workspace(work);
1114	atomic_dec(&wsm->total_ws);
1115wake:
1116	if (wq_has_sleeper(&wsm->ws_wait))
1117		wake_up(&wsm->ws_wait);
1118}
1119
1120/*
1121 * osd map
1122 */
1123struct ceph_osdmap *ceph_osdmap_alloc(void)
1124{
1125	struct ceph_osdmap *map;
1126
1127	map = kzalloc(sizeof(*map), GFP_NOIO);
1128	if (!map)
1129		return NULL;
1130
1131	map->pg_pools = RB_ROOT;
1132	map->pool_max = -1;
1133	map->pg_temp = RB_ROOT;
1134	map->primary_temp = RB_ROOT;
1135	map->pg_upmap = RB_ROOT;
1136	map->pg_upmap_items = RB_ROOT;
1137
1138	init_workspace_manager(&map->crush_wsm);
1139
1140	return map;
1141}
1142
1143void ceph_osdmap_destroy(struct ceph_osdmap *map)
1144{
1145	dout("osdmap_destroy %p\n", map);
1146
1147	if (map->crush)
1148		crush_destroy(map->crush);
1149	cleanup_workspace_manager(&map->crush_wsm);
1150
1151	while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152		struct ceph_pg_mapping *pg =
1153			rb_entry(rb_first(&map->pg_temp),
1154				 struct ceph_pg_mapping, node);
1155		erase_pg_mapping(&map->pg_temp, pg);
1156		free_pg_mapping(pg);
1157	}
1158	while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159		struct ceph_pg_mapping *pg =
1160			rb_entry(rb_first(&map->primary_temp),
1161				 struct ceph_pg_mapping, node);
1162		erase_pg_mapping(&map->primary_temp, pg);
1163		free_pg_mapping(pg);
1164	}
1165	while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166		struct ceph_pg_mapping *pg =
1167			rb_entry(rb_first(&map->pg_upmap),
1168				 struct ceph_pg_mapping, node);
1169		rb_erase(&pg->node, &map->pg_upmap);
1170		kfree(pg);
1171	}
1172	while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173		struct ceph_pg_mapping *pg =
1174			rb_entry(rb_first(&map->pg_upmap_items),
1175				 struct ceph_pg_mapping, node);
1176		rb_erase(&pg->node, &map->pg_upmap_items);
1177		kfree(pg);
1178	}
1179	while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180		struct ceph_pg_pool_info *pi =
1181			rb_entry(rb_first(&map->pg_pools),
1182				 struct ceph_pg_pool_info, node);
1183		__remove_pg_pool(&map->pg_pools, pi);
1184	}
1185	kvfree(map->osd_state);
1186	kvfree(map->osd_weight);
1187	kvfree(map->osd_addr);
1188	kvfree(map->osd_primary_affinity);
1189	kfree(map);
1190}
1191
1192/*
1193 * Adjust max_osd value, (re)allocate arrays.
1194 *
1195 * The new elements are properly initialized.
1196 */
1197static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1198{
1199	u32 *state;
1200	u32 *weight;
1201	struct ceph_entity_addr *addr;
1202	u32 to_copy;
1203	int i;
1204
1205	dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206	if (max == map->max_osd)
1207		return 0;
1208
1209	state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210	weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211	addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212	if (!state || !weight || !addr) {
1213		kvfree(state);
1214		kvfree(weight);
1215		kvfree(addr);
1216		return -ENOMEM;
1217	}
1218
1219	to_copy = min(map->max_osd, max);
1220	if (map->osd_state) {
1221		memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222		memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223		memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224		kvfree(map->osd_state);
1225		kvfree(map->osd_weight);
1226		kvfree(map->osd_addr);
1227	}
1228
1229	map->osd_state = state;
1230	map->osd_weight = weight;
1231	map->osd_addr = addr;
1232	for (i = map->max_osd; i < max; i++) {
1233		map->osd_state[i] = 0;
1234		map->osd_weight[i] = CEPH_OSD_OUT;
1235		memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1236	}
1237
1238	if (map->osd_primary_affinity) {
1239		u32 *affinity;
1240
1241		affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1242					 GFP_NOFS);
1243		if (!affinity)
1244			return -ENOMEM;
1245
1246		memcpy(affinity, map->osd_primary_affinity,
1247		       to_copy * sizeof(*affinity));
1248		kvfree(map->osd_primary_affinity);
1249
1250		map->osd_primary_affinity = affinity;
1251		for (i = map->max_osd; i < max; i++)
1252			map->osd_primary_affinity[i] =
1253			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1254	}
1255
1256	map->max_osd = max;
1257
1258	return 0;
1259}
1260
1261static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1262{
1263	struct crush_work *work;
1264
1265	if (IS_ERR(crush))
1266		return PTR_ERR(crush);
1267
1268	work = alloc_workspace(crush);
1269	if (!work) {
1270		crush_destroy(crush);
1271		return -ENOMEM;
1272	}
1273
1274	if (map->crush)
1275		crush_destroy(map->crush);
1276	cleanup_workspace_manager(&map->crush_wsm);
1277	map->crush = crush;
1278	add_initial_workspace(&map->crush_wsm, work);
1279	return 0;
1280}
1281
1282#define OSDMAP_WRAPPER_COMPAT_VER	7
1283#define OSDMAP_CLIENT_DATA_COMPAT_VER	1
1284
1285/*
1286 * Return 0 or error.  On success, *v is set to 0 for old (v6) osdmaps,
1287 * to struct_v of the client_data section for new (v7 and above)
1288 * osdmaps.
1289 */
1290static int get_osdmap_client_data_v(void **p, void *end,
1291				    const char *prefix, u8 *v)
1292{
1293	u8 struct_v;
1294
1295	ceph_decode_8_safe(p, end, struct_v, e_inval);
1296	if (struct_v >= 7) {
1297		u8 struct_compat;
1298
1299		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300		if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301			pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302				struct_v, struct_compat,
1303				OSDMAP_WRAPPER_COMPAT_VER, prefix);
1304			return -EINVAL;
1305		}
1306		*p += 4; /* ignore wrapper struct_len */
1307
1308		ceph_decode_8_safe(p, end, struct_v, e_inval);
1309		ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310		if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311			pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312				struct_v, struct_compat,
1313				OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1314			return -EINVAL;
1315		}
1316		*p += 4; /* ignore client data struct_len */
1317	} else {
1318		u16 version;
1319
1320		*p -= 1;
1321		ceph_decode_16_safe(p, end, version, e_inval);
1322		if (version < 6) {
1323			pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1324				version, prefix);
1325			return -EINVAL;
1326		}
1327
1328		/* old osdmap encoding */
1329		struct_v = 0;
1330	}
1331
1332	*v = struct_v;
1333	return 0;
1334
1335e_inval:
1336	return -EINVAL;
1337}
1338
1339static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1340			  bool incremental)
1341{
1342	u32 n;
1343
1344	ceph_decode_32_safe(p, end, n, e_inval);
1345	while (n--) {
1346		struct ceph_pg_pool_info *pi;
1347		u64 pool;
1348		int ret;
1349
1350		ceph_decode_64_safe(p, end, pool, e_inval);
1351
1352		pi = lookup_pg_pool(&map->pg_pools, pool);
1353		if (!incremental || !pi) {
1354			pi = kzalloc(sizeof(*pi), GFP_NOFS);
1355			if (!pi)
1356				return -ENOMEM;
1357
1358			RB_CLEAR_NODE(&pi->node);
1359			pi->id = pool;
1360
1361			if (!__insert_pg_pool(&map->pg_pools, pi)) {
1362				kfree(pi);
1363				return -EEXIST;
1364			}
1365		}
1366
1367		ret = decode_pool(p, end, pi);
1368		if (ret)
1369			return ret;
1370	}
1371
1372	return 0;
1373
1374e_inval:
1375	return -EINVAL;
1376}
1377
1378static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1379{
1380	return __decode_pools(p, end, map, false);
1381}
1382
1383static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1384{
1385	return __decode_pools(p, end, map, true);
1386}
1387
1388typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1389
1390static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391			     decode_mapping_fn_t fn, bool incremental)
1392{
1393	u32 n;
1394
1395	WARN_ON(!incremental && !fn);
1396
1397	ceph_decode_32_safe(p, end, n, e_inval);
1398	while (n--) {
1399		struct ceph_pg_mapping *pg;
1400		struct ceph_pg pgid;
1401		int ret;
1402
1403		ret = ceph_decode_pgid(p, end, &pgid);
1404		if (ret)
1405			return ret;
1406
1407		pg = lookup_pg_mapping(mapping_root, &pgid);
1408		if (pg) {
1409			WARN_ON(!incremental);
1410			erase_pg_mapping(mapping_root, pg);
1411			free_pg_mapping(pg);
1412		}
1413
1414		if (fn) {
1415			pg = fn(p, end, incremental);
1416			if (IS_ERR(pg))
1417				return PTR_ERR(pg);
1418
1419			if (pg) {
1420				pg->pgid = pgid; /* struct */
1421				insert_pg_mapping(mapping_root, pg);
1422			}
1423		}
1424	}
1425
1426	return 0;
1427
1428e_inval:
1429	return -EINVAL;
1430}
1431
1432static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1433						bool incremental)
1434{
1435	struct ceph_pg_mapping *pg;
1436	u32 len, i;
1437
1438	ceph_decode_32_safe(p, end, len, e_inval);
1439	if (len == 0 && incremental)
1440		return NULL;	/* new_pg_temp: [] to remove */
1441	if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442		return ERR_PTR(-EINVAL);
1443
1444	ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445	pg = alloc_pg_mapping(len * sizeof(u32));
1446	if (!pg)
1447		return ERR_PTR(-ENOMEM);
1448
1449	pg->pg_temp.len = len;
1450	for (i = 0; i < len; i++)
1451		pg->pg_temp.osds[i] = ceph_decode_32(p);
1452
1453	return pg;
1454
1455e_inval:
1456	return ERR_PTR(-EINVAL);
1457}
1458
1459static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1460{
1461	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1462				 false);
1463}
1464
1465static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1466{
1467	return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1468				 true);
1469}
1470
1471static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1472						     bool incremental)
1473{
1474	struct ceph_pg_mapping *pg;
1475	u32 osd;
1476
1477	ceph_decode_32_safe(p, end, osd, e_inval);
1478	if (osd == (u32)-1 && incremental)
1479		return NULL;	/* new_primary_temp: -1 to remove */
1480
1481	pg = alloc_pg_mapping(0);
1482	if (!pg)
1483		return ERR_PTR(-ENOMEM);
1484
1485	pg->primary_temp.osd = osd;
1486	return pg;
1487
1488e_inval:
1489	return ERR_PTR(-EINVAL);
1490}
1491
1492static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1493{
1494	return decode_pg_mapping(p, end, &map->primary_temp,
1495				 __decode_primary_temp, false);
1496}
1497
1498static int decode_new_primary_temp(void **p, void *end,
1499				   struct ceph_osdmap *map)
1500{
1501	return decode_pg_mapping(p, end, &map->primary_temp,
1502				 __decode_primary_temp, true);
1503}
1504
1505u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1506{
1507	BUG_ON(osd >= map->max_osd);
1508
1509	if (!map->osd_primary_affinity)
1510		return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1511
1512	return map->osd_primary_affinity[osd];
1513}
1514
1515static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1516{
1517	BUG_ON(osd >= map->max_osd);
1518
1519	if (!map->osd_primary_affinity) {
1520		int i;
1521
1522		map->osd_primary_affinity = kvmalloc(
1523		    array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1524		    GFP_NOFS);
1525		if (!map->osd_primary_affinity)
1526			return -ENOMEM;
1527
1528		for (i = 0; i < map->max_osd; i++)
1529			map->osd_primary_affinity[i] =
1530			    CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1531	}
1532
1533	map->osd_primary_affinity[osd] = aff;
1534
1535	return 0;
1536}
1537
1538static int decode_primary_affinity(void **p, void *end,
1539				   struct ceph_osdmap *map)
1540{
1541	u32 len, i;
1542
1543	ceph_decode_32_safe(p, end, len, e_inval);
1544	if (len == 0) {
1545		kvfree(map->osd_primary_affinity);
1546		map->osd_primary_affinity = NULL;
1547		return 0;
1548	}
1549	if (len != map->max_osd)
1550		goto e_inval;
1551
1552	ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1553
1554	for (i = 0; i < map->max_osd; i++) {
1555		int ret;
1556
1557		ret = set_primary_affinity(map, i, ceph_decode_32(p));
1558		if (ret)
1559			return ret;
1560	}
1561
1562	return 0;
1563
1564e_inval:
1565	return -EINVAL;
1566}
1567
1568static int decode_new_primary_affinity(void **p, void *end,
1569				       struct ceph_osdmap *map)
1570{
1571	u32 n;
1572
1573	ceph_decode_32_safe(p, end, n, e_inval);
1574	while (n--) {
1575		u32 osd, aff;
1576		int ret;
1577
1578		ceph_decode_32_safe(p, end, osd, e_inval);
1579		ceph_decode_32_safe(p, end, aff, e_inval);
1580
1581		ret = set_primary_affinity(map, osd, aff);
1582		if (ret)
1583			return ret;
1584
1585		osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1586	}
1587
1588	return 0;
1589
1590e_inval:
1591	return -EINVAL;
1592}
1593
1594static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1595						 bool __unused)
1596{
1597	return __decode_pg_temp(p, end, false);
1598}
1599
1600static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1601{
1602	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1603				 false);
1604}
1605
1606static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1607{
1608	return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1609				 true);
1610}
1611
1612static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1613{
1614	return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1615}
1616
1617static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1618						       bool __unused)
1619{
1620	struct ceph_pg_mapping *pg;
1621	u32 len, i;
1622
1623	ceph_decode_32_safe(p, end, len, e_inval);
1624	if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625		return ERR_PTR(-EINVAL);
1626
1627	ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628	pg = alloc_pg_mapping(2 * len * sizeof(u32));
1629	if (!pg)
1630		return ERR_PTR(-ENOMEM);
1631
1632	pg->pg_upmap_items.len = len;
1633	for (i = 0; i < len; i++) {
1634		pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635		pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1636	}
1637
1638	return pg;
1639
1640e_inval:
1641	return ERR_PTR(-EINVAL);
1642}
1643
1644static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1645{
1646	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1647				 __decode_pg_upmap_items, false);
1648}
1649
1650static int decode_new_pg_upmap_items(void **p, void *end,
1651				     struct ceph_osdmap *map)
1652{
1653	return decode_pg_mapping(p, end, &map->pg_upmap_items,
1654				 __decode_pg_upmap_items, true);
1655}
1656
1657static int decode_old_pg_upmap_items(void **p, void *end,
1658				     struct ceph_osdmap *map)
1659{
1660	return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1661}
1662
1663/*
1664 * decode a full map.
1665 */
1666static int osdmap_decode(void **p, void *end, bool msgr2,
1667			 struct ceph_osdmap *map)
1668{
1669	u8 struct_v;
1670	u32 epoch = 0;
1671	void *start = *p;
1672	u32 max;
1673	u32 len, i;
1674	int err;
1675
1676	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1677
1678	err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1679	if (err)
1680		goto bad;
1681
1682	/* fsid, epoch, created, modified */
1683	ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684			 sizeof(map->created) + sizeof(map->modified), e_inval);
1685	ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1686	epoch = map->epoch = ceph_decode_32(p);
1687	ceph_decode_copy(p, &map->created, sizeof(map->created));
1688	ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1689
1690	/* pools */
1691	err = decode_pools(p, end, map);
1692	if (err)
1693		goto bad;
1694
1695	/* pool_name */
1696	err = decode_pool_names(p, end, map);
1697	if (err)
1698		goto bad;
1699
1700	ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1701
1702	ceph_decode_32_safe(p, end, map->flags, e_inval);
1703
1704	/* max_osd */
1705	ceph_decode_32_safe(p, end, max, e_inval);
1706
1707	/* (re)alloc osd arrays */
1708	err = osdmap_set_max_osd(map, max);
1709	if (err)
1710		goto bad;
1711
1712	/* osd_state, osd_weight, osd_addrs->client_addr */
1713	ceph_decode_need(p, end, 3*sizeof(u32) +
1714			 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1715						       sizeof(u8)) +
1716				       sizeof(*map->osd_weight), e_inval);
1717	if (ceph_decode_32(p) != map->max_osd)
1718		goto e_inval;
1719
1720	if (struct_v >= 5) {
1721		for (i = 0; i < map->max_osd; i++)
1722			map->osd_state[i] = ceph_decode_32(p);
1723	} else {
1724		for (i = 0; i < map->max_osd; i++)
1725			map->osd_state[i] = ceph_decode_8(p);
1726	}
1727
1728	if (ceph_decode_32(p) != map->max_osd)
1729		goto e_inval;
1730
1731	for (i = 0; i < map->max_osd; i++)
1732		map->osd_weight[i] = ceph_decode_32(p);
1733
1734	if (ceph_decode_32(p) != map->max_osd)
1735		goto e_inval;
1736
1737	for (i = 0; i < map->max_osd; i++) {
1738		struct ceph_entity_addr *addr = &map->osd_addr[i];
1739
1740		if (struct_v >= 8)
1741			err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1742		else
1743			err = ceph_decode_entity_addr(p, end, addr);
1744		if (err)
1745			goto bad;
1746
1747		dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1748	}
1749
1750	/* pg_temp */
1751	err = decode_pg_temp(p, end, map);
1752	if (err)
1753		goto bad;
1754
1755	/* primary_temp */
1756	if (struct_v >= 1) {
1757		err = decode_primary_temp(p, end, map);
1758		if (err)
1759			goto bad;
1760	}
1761
1762	/* primary_affinity */
1763	if (struct_v >= 2) {
1764		err = decode_primary_affinity(p, end, map);
1765		if (err)
1766			goto bad;
1767	} else {
1768		WARN_ON(map->osd_primary_affinity);
1769	}
1770
1771	/* crush */
1772	ceph_decode_32_safe(p, end, len, e_inval);
1773	err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1774	if (err)
1775		goto bad;
1776
1777	*p += len;
1778	if (struct_v >= 3) {
1779		/* erasure_code_profiles */
1780		ceph_decode_skip_map_of_map(p, end, string, string, string,
1781					    e_inval);
1782	}
1783
1784	if (struct_v >= 4) {
1785		err = decode_pg_upmap(p, end, map);
1786		if (err)
1787			goto bad;
1788
1789		err = decode_pg_upmap_items(p, end, map);
1790		if (err)
1791			goto bad;
1792	} else {
1793		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794		WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1795	}
1796
1797	/* ignore the rest */
1798	*p = end;
1799
1800	dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1801	return 0;
1802
1803e_inval:
1804	err = -EINVAL;
1805bad:
1806	pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807	       err, epoch, (int)(*p - start), *p, start, end);
1808	print_hex_dump(KERN_DEBUG, "osdmap: ",
1809		       DUMP_PREFIX_OFFSET, 16, 1,
1810		       start, end - start, true);
1811	return err;
1812}
1813
1814/*
1815 * Allocate and decode a full map.
1816 */
1817struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1818{
1819	struct ceph_osdmap *map;
1820	int ret;
1821
1822	map = ceph_osdmap_alloc();
1823	if (!map)
1824		return ERR_PTR(-ENOMEM);
1825
1826	ret = osdmap_decode(p, end, msgr2, map);
1827	if (ret) {
1828		ceph_osdmap_destroy(map);
1829		return ERR_PTR(ret);
1830	}
1831
1832	return map;
1833}
1834
1835/*
1836 * Encoding order is (new_up_client, new_state, new_weight).  Need to
1837 * apply in the (new_weight, new_state, new_up_client) order, because
1838 * an incremental map may look like e.g.
1839 *
1840 *     new_up_client: { osd=6, addr=... } # set osd_state and addr
1841 *     new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1842 */
1843static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844				      bool msgr2, struct ceph_osdmap *map)
1845{
1846	void *new_up_client;
1847	void *new_state;
1848	void *new_weight_end;
1849	u32 len;
1850	int ret;
1851	int i;
1852
1853	new_up_client = *p;
1854	ceph_decode_32_safe(p, end, len, e_inval);
1855	for (i = 0; i < len; ++i) {
1856		struct ceph_entity_addr addr;
1857
1858		ceph_decode_skip_32(p, end, e_inval);
1859		if (struct_v >= 7)
1860			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1861		else
1862			ret = ceph_decode_entity_addr(p, end, &addr);
1863		if (ret)
1864			return ret;
1865	}
1866
1867	new_state = *p;
1868	ceph_decode_32_safe(p, end, len, e_inval);
1869	len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870	ceph_decode_need(p, end, len, e_inval);
1871	*p += len;
1872
1873	/* new_weight */
1874	ceph_decode_32_safe(p, end, len, e_inval);
1875	while (len--) {
1876		s32 osd;
1877		u32 w;
1878
1879		ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880		osd = ceph_decode_32(p);
1881		w = ceph_decode_32(p);
1882		BUG_ON(osd >= map->max_osd);
1883		osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1884			    w == CEPH_OSD_IN ? "(in)" :
1885			    (w == CEPH_OSD_OUT ? "(out)" : ""));
1886		map->osd_weight[osd] = w;
1887
1888		/*
1889		 * If we are marking in, set the EXISTS, and clear the
1890		 * AUTOOUT and NEW bits.
1891		 */
1892		if (w) {
1893			map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894			map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1895						 CEPH_OSD_NEW);
1896		}
1897	}
1898	new_weight_end = *p;
1899
1900	/* new_state (up/down) */
1901	*p = new_state;
1902	len = ceph_decode_32(p);
1903	while (len--) {
1904		s32 osd;
1905		u32 xorstate;
1906
1907		osd = ceph_decode_32(p);
1908		if (struct_v >= 5)
1909			xorstate = ceph_decode_32(p);
1910		else
1911			xorstate = ceph_decode_8(p);
1912		if (xorstate == 0)
1913			xorstate = CEPH_OSD_UP;
1914		BUG_ON(osd >= map->max_osd);
1915		if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916		    (xorstate & CEPH_OSD_UP))
1917			osdmap_info(map, "osd%d down\n", osd);
1918		if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919		    (xorstate & CEPH_OSD_EXISTS)) {
1920			osdmap_info(map, "osd%d does not exist\n", osd);
1921			ret = set_primary_affinity(map, osd,
1922						   CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1923			if (ret)
1924				return ret;
1925			memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926			map->osd_state[osd] = 0;
1927		} else {
1928			map->osd_state[osd] ^= xorstate;
1929		}
1930	}
1931
1932	/* new_up_client */
1933	*p = new_up_client;
1934	len = ceph_decode_32(p);
1935	while (len--) {
1936		s32 osd;
1937		struct ceph_entity_addr addr;
1938
1939		osd = ceph_decode_32(p);
1940		BUG_ON(osd >= map->max_osd);
1941		if (struct_v >= 7)
1942			ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1943		else
1944			ret = ceph_decode_entity_addr(p, end, &addr);
1945		if (ret)
1946			return ret;
1947
1948		dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1949
1950		osdmap_info(map, "osd%d up\n", osd);
1951		map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952		map->osd_addr[osd] = addr;
1953	}
1954
1955	*p = new_weight_end;
1956	return 0;
1957
1958e_inval:
1959	return -EINVAL;
1960}
1961
1962/*
1963 * decode and apply an incremental map update.
1964 */
1965struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966					     struct ceph_osdmap *map)
1967{
1968	struct ceph_fsid fsid;
1969	u32 epoch = 0;
1970	struct ceph_timespec modified;
1971	s32 len;
1972	u64 pool;
1973	__s64 new_pool_max;
1974	__s32 new_flags, max;
1975	void *start = *p;
1976	int err;
1977	u8 struct_v;
1978
1979	dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1980
1981	err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1982	if (err)
1983		goto bad;
1984
1985	/* fsid, epoch, modified, new_pool_max, new_flags */
1986	ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987			 sizeof(u64) + sizeof(u32), e_inval);
1988	ceph_decode_copy(p, &fsid, sizeof(fsid));
1989	epoch = ceph_decode_32(p);
1990	BUG_ON(epoch != map->epoch+1);
1991	ceph_decode_copy(p, &modified, sizeof(modified));
1992	new_pool_max = ceph_decode_64(p);
1993	new_flags = ceph_decode_32(p);
1994
1995	/* full map? */
1996	ceph_decode_32_safe(p, end, len, e_inval);
1997	if (len > 0) {
1998		dout("apply_incremental full map len %d, %p to %p\n",
1999		     len, *p, end);
2000		return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2001	}
2002
2003	/* new crush? */
2004	ceph_decode_32_safe(p, end, len, e_inval);
2005	if (len > 0) {
2006		err = osdmap_set_crush(map,
2007				       crush_decode(*p, min(*p + len, end)));
2008		if (err)
2009			goto bad;
2010		*p += len;
2011	}
2012
2013	/* new flags? */
2014	if (new_flags >= 0)
2015		map->flags = new_flags;
2016	if (new_pool_max >= 0)
2017		map->pool_max = new_pool_max;
2018
2019	/* new max? */
2020	ceph_decode_32_safe(p, end, max, e_inval);
2021	if (max >= 0) {
2022		err = osdmap_set_max_osd(map, max);
2023		if (err)
2024			goto bad;
2025	}
2026
2027	map->epoch++;
2028	map->modified = modified;
2029
2030	/* new_pools */
2031	err = decode_new_pools(p, end, map);
2032	if (err)
2033		goto bad;
2034
2035	/* new_pool_names */
2036	err = decode_pool_names(p, end, map);
2037	if (err)
2038		goto bad;
2039
2040	/* old_pool */
2041	ceph_decode_32_safe(p, end, len, e_inval);
2042	while (len--) {
2043		struct ceph_pg_pool_info *pi;
2044
2045		ceph_decode_64_safe(p, end, pool, e_inval);
2046		pi = lookup_pg_pool(&map->pg_pools, pool);
2047		if (pi)
2048			__remove_pg_pool(&map->pg_pools, pi);
2049	}
2050
2051	/* new_up_client, new_state, new_weight */
2052	err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2053	if (err)
2054		goto bad;
2055
2056	/* new_pg_temp */
2057	err = decode_new_pg_temp(p, end, map);
2058	if (err)
2059		goto bad;
2060
2061	/* new_primary_temp */
2062	if (struct_v >= 1) {
2063		err = decode_new_primary_temp(p, end, map);
2064		if (err)
2065			goto bad;
2066	}
2067
2068	/* new_primary_affinity */
2069	if (struct_v >= 2) {
2070		err = decode_new_primary_affinity(p, end, map);
2071		if (err)
2072			goto bad;
2073	}
2074
2075	if (struct_v >= 3) {
2076		/* new_erasure_code_profiles */
2077		ceph_decode_skip_map_of_map(p, end, string, string, string,
2078					    e_inval);
2079		/* old_erasure_code_profiles */
2080		ceph_decode_skip_set(p, end, string, e_inval);
2081	}
2082
2083	if (struct_v >= 4) {
2084		err = decode_new_pg_upmap(p, end, map);
2085		if (err)
2086			goto bad;
2087
2088		err = decode_old_pg_upmap(p, end, map);
2089		if (err)
2090			goto bad;
2091
2092		err = decode_new_pg_upmap_items(p, end, map);
2093		if (err)
2094			goto bad;
2095
2096		err = decode_old_pg_upmap_items(p, end, map);
2097		if (err)
2098			goto bad;
2099	}
2100
2101	/* ignore the rest */
2102	*p = end;
2103
2104	dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2105	return map;
2106
2107e_inval:
2108	err = -EINVAL;
2109bad:
2110	pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111	       err, epoch, (int)(*p - start), *p, start, end);
2112	print_hex_dump(KERN_DEBUG, "osdmap: ",
2113		       DUMP_PREFIX_OFFSET, 16, 1,
2114		       start, end - start, true);
2115	return ERR_PTR(err);
2116}
2117
2118void ceph_oloc_copy(struct ceph_object_locator *dest,
2119		    const struct ceph_object_locator *src)
2120{
2121	ceph_oloc_destroy(dest);
2122
2123	dest->pool = src->pool;
2124	if (src->pool_ns)
2125		dest->pool_ns = ceph_get_string(src->pool_ns);
2126	else
2127		dest->pool_ns = NULL;
2128}
2129EXPORT_SYMBOL(ceph_oloc_copy);
2130
2131void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2132{
2133	ceph_put_string(oloc->pool_ns);
2134}
2135EXPORT_SYMBOL(ceph_oloc_destroy);
2136
2137void ceph_oid_copy(struct ceph_object_id *dest,
2138		   const struct ceph_object_id *src)
2139{
2140	ceph_oid_destroy(dest);
2141
2142	if (src->name != src->inline_name) {
2143		/* very rare, see ceph_object_id definition */
2144		dest->name = kmalloc(src->name_len + 1,
2145				     GFP_NOIO | __GFP_NOFAIL);
2146	} else {
2147		dest->name = dest->inline_name;
2148	}
2149	memcpy(dest->name, src->name, src->name_len + 1);
2150	dest->name_len = src->name_len;
2151}
2152EXPORT_SYMBOL(ceph_oid_copy);
2153
2154static __printf(2, 0)
2155int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2156{
2157	int len;
2158
2159	WARN_ON(!ceph_oid_empty(oid));
2160
2161	len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2162	if (len >= sizeof(oid->inline_name))
2163		return len;
2164
2165	oid->name_len = len;
2166	return 0;
2167}
2168
2169/*
2170 * If oid doesn't fit into inline buffer, BUG.
2171 */
2172void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2173{
2174	va_list ap;
2175
2176	va_start(ap, fmt);
2177	BUG_ON(oid_printf_vargs(oid, fmt, ap));
2178	va_end(ap);
2179}
2180EXPORT_SYMBOL(ceph_oid_printf);
2181
2182static __printf(3, 0)
2183int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184		      const char *fmt, va_list ap)
2185{
2186	va_list aq;
2187	int len;
2188
2189	va_copy(aq, ap);
2190	len = oid_printf_vargs(oid, fmt, aq);
2191	va_end(aq);
2192
2193	if (len) {
2194		char *external_name;
2195
2196		external_name = kmalloc(len + 1, gfp);
2197		if (!external_name)
2198			return -ENOMEM;
2199
2200		oid->name = external_name;
2201		WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202		oid->name_len = len;
2203	}
2204
2205	return 0;
2206}
2207
2208/*
2209 * If oid doesn't fit into inline buffer, allocate.
2210 */
2211int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212		     const char *fmt, ...)
2213{
2214	va_list ap;
2215	int ret;
2216
2217	va_start(ap, fmt);
2218	ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2219	va_end(ap);
2220
2221	return ret;
2222}
2223EXPORT_SYMBOL(ceph_oid_aprintf);
2224
2225void ceph_oid_destroy(struct ceph_object_id *oid)
2226{
2227	if (oid->name != oid->inline_name)
2228		kfree(oid->name);
2229}
2230EXPORT_SYMBOL(ceph_oid_destroy);
2231
2232/*
2233 * osds only
2234 */
2235static bool __osds_equal(const struct ceph_osds *lhs,
2236			 const struct ceph_osds *rhs)
2237{
2238	if (lhs->size == rhs->size &&
2239	    !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2240		return true;
2241
2242	return false;
2243}
2244
2245/*
2246 * osds + primary
2247 */
2248static bool osds_equal(const struct ceph_osds *lhs,
2249		       const struct ceph_osds *rhs)
2250{
2251	if (__osds_equal(lhs, rhs) &&
2252	    lhs->primary == rhs->primary)
2253		return true;
2254
2255	return false;
2256}
2257
2258static bool osds_valid(const struct ceph_osds *set)
2259{
2260	/* non-empty set */
2261	if (set->size > 0 && set->primary >= 0)
2262		return true;
2263
2264	/* empty can_shift_osds set */
2265	if (!set->size && set->primary == -1)
2266		return true;
2267
2268	/* empty !can_shift_osds set - all NONE */
2269	if (set->size > 0 && set->primary == -1) {
2270		int i;
2271
2272		for (i = 0; i < set->size; i++) {
2273			if (set->osds[i] != CRUSH_ITEM_NONE)
2274				break;
2275		}
2276		if (i == set->size)
2277			return true;
2278	}
2279
2280	return false;
2281}
2282
2283void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2284{
2285	memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286	dest->size = src->size;
2287	dest->primary = src->primary;
2288}
2289
2290bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2291		      u32 new_pg_num)
2292{
2293	int old_bits = calc_bits_of(old_pg_num);
2294	int old_mask = (1 << old_bits) - 1;
2295	int n;
2296
2297	WARN_ON(pgid->seed >= old_pg_num);
2298	if (new_pg_num <= old_pg_num)
2299		return false;
2300
2301	for (n = 1; ; n++) {
2302		int next_bit = n << (old_bits - 1);
2303		u32 s = next_bit | pgid->seed;
2304
2305		if (s < old_pg_num || s == pgid->seed)
2306			continue;
2307		if (s >= new_pg_num)
2308			break;
2309
2310		s = ceph_stable_mod(s, old_pg_num, old_mask);
2311		if (s == pgid->seed)
2312			return true;
2313	}
2314
2315	return false;
2316}
2317
2318bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319			  const struct ceph_osds *new_acting,
2320			  const struct ceph_osds *old_up,
2321			  const struct ceph_osds *new_up,
2322			  int old_size,
2323			  int new_size,
2324			  int old_min_size,
2325			  int new_min_size,
2326			  u32 old_pg_num,
2327			  u32 new_pg_num,
2328			  bool old_sort_bitwise,
2329			  bool new_sort_bitwise,
2330			  bool old_recovery_deletes,
2331			  bool new_recovery_deletes,
2332			  const struct ceph_pg *pgid)
2333{
2334	return !osds_equal(old_acting, new_acting) ||
2335	       !osds_equal(old_up, new_up) ||
2336	       old_size != new_size ||
2337	       old_min_size != new_min_size ||
2338	       ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339	       old_sort_bitwise != new_sort_bitwise ||
2340	       old_recovery_deletes != new_recovery_deletes;
2341}
2342
2343static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2344{
2345	int i;
2346
2347	for (i = 0; i < acting->size; i++) {
2348		if (acting->osds[i] == osd)
2349			return i;
2350	}
2351
2352	return -1;
2353}
2354
2355static bool primary_changed(const struct ceph_osds *old_acting,
2356			    const struct ceph_osds *new_acting)
2357{
2358	if (!old_acting->size && !new_acting->size)
2359		return false; /* both still empty */
2360
2361	if (!old_acting->size ^ !new_acting->size)
2362		return true; /* was empty, now not, or vice versa */
2363
2364	if (old_acting->primary != new_acting->primary)
2365		return true; /* primary changed */
2366
2367	if (calc_pg_rank(old_acting->primary, old_acting) !=
2368	    calc_pg_rank(new_acting->primary, new_acting))
2369		return true;
2370
2371	return false; /* same primary (tho replicas may have changed) */
2372}
2373
2374bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375		       const struct ceph_osds *new_acting,
2376		       bool any_change)
2377{
2378	if (primary_changed(old_acting, new_acting))
2379		return true;
2380
2381	if (any_change && !__osds_equal(old_acting, new_acting))
2382		return true;
2383
2384	return false;
2385}
2386
2387/*
2388 * Map an object into a PG.
2389 *
2390 * Should only be called with target_oid and target_oloc (as opposed to
2391 * base_oid and base_oloc), since tiering isn't taken into account.
2392 */
2393void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394				 const struct ceph_object_id *oid,
2395				 const struct ceph_object_locator *oloc,
2396				 struct ceph_pg *raw_pgid)
2397{
2398	WARN_ON(pi->id != oloc->pool);
2399
2400	if (!oloc->pool_ns) {
2401		raw_pgid->pool = oloc->pool;
2402		raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2403					     oid->name_len);
2404		dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405		     raw_pgid->pool, raw_pgid->seed);
2406	} else {
2407		char stack_buf[256];
2408		char *buf = stack_buf;
2409		int nsl = oloc->pool_ns->len;
2410		size_t total = nsl + 1 + oid->name_len;
2411
2412		if (total > sizeof(stack_buf))
2413			buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2414		memcpy(buf, oloc->pool_ns->str, nsl);
2415		buf[nsl] = '\037';
2416		memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417		raw_pgid->pool = oloc->pool;
2418		raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2419		if (buf != stack_buf)
2420			kfree(buf);
2421		dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422		     oid->name, nsl, oloc->pool_ns->str,
2423		     raw_pgid->pool, raw_pgid->seed);
2424	}
2425}
2426
2427int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428			      const struct ceph_object_id *oid,
2429			      const struct ceph_object_locator *oloc,
2430			      struct ceph_pg *raw_pgid)
2431{
2432	struct ceph_pg_pool_info *pi;
2433
2434	pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2435	if (!pi)
2436		return -ENOENT;
2437
2438	__ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2439	return 0;
2440}
2441EXPORT_SYMBOL(ceph_object_locator_to_pg);
2442
2443/*
2444 * Map a raw PG (full precision ps) into an actual PG.
2445 */
2446static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447			 const struct ceph_pg *raw_pgid,
2448			 struct ceph_pg *pgid)
2449{
2450	pgid->pool = raw_pgid->pool;
2451	pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2452				     pi->pg_num_mask);
2453}
2454
2455/*
2456 * Map a raw PG (full precision ps) into a placement ps (placement
2457 * seed).  Include pool id in that value so that different pools don't
2458 * use the same seeds.
2459 */
2460static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461			 const struct ceph_pg *raw_pgid)
2462{
2463	if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464		/* hash pool id and seed so that pool PGs do not overlap */
2465		return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466				      ceph_stable_mod(raw_pgid->seed,
2467						      pi->pgp_num,
2468						      pi->pgp_num_mask),
2469				      raw_pgid->pool);
2470	} else {
2471		/*
2472		 * legacy behavior: add ps and pool together.  this is
2473		 * not a great approach because the PGs from each pool
2474		 * will overlap on top of each other: 0.5 == 1.4 ==
2475		 * 2.3 == ...
2476		 */
2477		return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2478				       pi->pgp_num_mask) +
2479		       (unsigned)raw_pgid->pool;
2480	}
2481}
2482
2483/*
2484 * Magic value used for a "default" fallback choose_args, used if the
2485 * crush_choose_arg_map passed to do_crush() does not exist.  If this
2486 * also doesn't exist, fall back to canonical weights.
2487 */
2488#define CEPH_DEFAULT_CHOOSE_ARGS	-1
2489
2490static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491		    int *result, int result_max,
2492		    const __u32 *weight, int weight_max,
2493		    s64 choose_args_index)
2494{
2495	struct crush_choose_arg_map *arg_map;
2496	struct crush_work *work;
2497	int r;
2498
2499	BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2500
2501	arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2502					choose_args_index);
2503	if (!arg_map)
2504		arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2505						CEPH_DEFAULT_CHOOSE_ARGS);
2506
2507	work = get_workspace(&map->crush_wsm, map->crush);
2508	r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2509			  weight, weight_max, work,
2510			  arg_map ? arg_map->args : NULL);
2511	put_workspace(&map->crush_wsm, work);
2512	return r;
2513}
2514
2515static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516				    struct ceph_pg_pool_info *pi,
2517				    struct ceph_osds *set)
2518{
2519	int i;
2520
2521	if (ceph_can_shift_osds(pi)) {
2522		int removed = 0;
2523
2524		/* shift left */
2525		for (i = 0; i < set->size; i++) {
2526			if (!ceph_osd_exists(osdmap, set->osds[i])) {
2527				removed++;
2528				continue;
2529			}
2530			if (removed)
2531				set->osds[i - removed] = set->osds[i];
2532		}
2533		set->size -= removed;
2534	} else {
2535		/* set dne devices to NONE */
2536		for (i = 0; i < set->size; i++) {
2537			if (!ceph_osd_exists(osdmap, set->osds[i]))
2538				set->osds[i] = CRUSH_ITEM_NONE;
2539		}
2540	}
2541}
2542
2543/*
2544 * Calculate raw set (CRUSH output) for given PG and filter out
2545 * nonexistent OSDs.  ->primary is undefined for a raw set.
2546 *
2547 * Placement seed (CRUSH input) is returned through @ppps.
2548 */
2549static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550			   struct ceph_pg_pool_info *pi,
2551			   const struct ceph_pg *raw_pgid,
2552			   struct ceph_osds *raw,
2553			   u32 *ppps)
2554{
2555	u32 pps = raw_pg_to_pps(pi, raw_pgid);
2556	int ruleno;
2557	int len;
2558
2559	ceph_osds_init(raw);
2560	if (ppps)
2561		*ppps = pps;
2562
2563	ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2564				 pi->size);
2565	if (ruleno < 0) {
2566		pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567		       pi->id, pi->crush_ruleset, pi->type, pi->size);
2568		return;
2569	}
2570
2571	if (pi->size > ARRAY_SIZE(raw->osds)) {
2572		pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573		       pi->id, pi->crush_ruleset, pi->type, pi->size,
2574		       ARRAY_SIZE(raw->osds));
2575		return;
2576	}
2577
2578	len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2579		       osdmap->osd_weight, osdmap->max_osd, pi->id);
2580	if (len < 0) {
2581		pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582		       len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2583		       pi->size);
2584		return;
2585	}
2586
2587	raw->size = len;
2588	remove_nonexistent_osds(osdmap, pi, raw);
2589}
2590
2591/* apply pg_upmap[_items] mappings */
2592static void apply_upmap(struct ceph_osdmap *osdmap,
2593			const struct ceph_pg *pgid,
2594			struct ceph_osds *raw)
2595{
2596	struct ceph_pg_mapping *pg;
2597	int i, j;
2598
2599	pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2600	if (pg) {
2601		/* make sure targets aren't marked out */
2602		for (i = 0; i < pg->pg_upmap.len; i++) {
2603			int osd = pg->pg_upmap.osds[i];
2604
2605			if (osd != CRUSH_ITEM_NONE &&
2606			    osd < osdmap->max_osd &&
2607			    osdmap->osd_weight[osd] == 0) {
2608				/* reject/ignore explicit mapping */
2609				return;
2610			}
2611		}
2612		for (i = 0; i < pg->pg_upmap.len; i++)
2613			raw->osds[i] = pg->pg_upmap.osds[i];
2614		raw->size = pg->pg_upmap.len;
2615		/* check and apply pg_upmap_items, if any */
2616	}
2617
2618	pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2619	if (pg) {
2620		/*
2621		 * Note: this approach does not allow a bidirectional swap,
2622		 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2623		 */
2624		for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625			int from = pg->pg_upmap_items.from_to[i][0];
2626			int to = pg->pg_upmap_items.from_to[i][1];
2627			int pos = -1;
2628			bool exists = false;
2629
2630			/* make sure replacement doesn't already appear */
2631			for (j = 0; j < raw->size; j++) {
2632				int osd = raw->osds[j];
2633
2634				if (osd == to) {
2635					exists = true;
2636					break;
2637				}
2638				/* ignore mapping if target is marked out */
2639				if (osd == from && pos < 0 &&
2640				    !(to != CRUSH_ITEM_NONE &&
2641				      to < osdmap->max_osd &&
2642				      osdmap->osd_weight[to] == 0)) {
2643					pos = j;
2644				}
2645			}
2646			if (!exists && pos >= 0)
2647				raw->osds[pos] = to;
2648		}
2649	}
2650}
2651
2652/*
2653 * Given raw set, calculate up set and up primary.  By definition of an
2654 * up set, the result won't contain nonexistent or down OSDs.
2655 *
2656 * This is done in-place - on return @set is the up set.  If it's
2657 * empty, ->primary will remain undefined.
2658 */
2659static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660			   struct ceph_pg_pool_info *pi,
2661			   struct ceph_osds *set)
2662{
2663	int i;
2664
2665	/* ->primary is undefined for a raw set */
2666	BUG_ON(set->primary != -1);
2667
2668	if (ceph_can_shift_osds(pi)) {
2669		int removed = 0;
2670
2671		/* shift left */
2672		for (i = 0; i < set->size; i++) {
2673			if (ceph_osd_is_down(osdmap, set->osds[i])) {
2674				removed++;
2675				continue;
2676			}
2677			if (removed)
2678				set->osds[i - removed] = set->osds[i];
2679		}
2680		set->size -= removed;
2681		if (set->size > 0)
2682			set->primary = set->osds[0];
2683	} else {
2684		/* set down/dne devices to NONE */
2685		for (i = set->size - 1; i >= 0; i--) {
2686			if (ceph_osd_is_down(osdmap, set->osds[i]))
2687				set->osds[i] = CRUSH_ITEM_NONE;
2688			else
2689				set->primary = set->osds[i];
2690		}
2691	}
2692}
2693
2694static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695				   struct ceph_pg_pool_info *pi,
2696				   u32 pps,
2697				   struct ceph_osds *up)
2698{
2699	int i;
2700	int pos = -1;
2701
2702	/*
2703	 * Do we have any non-default primary_affinity values for these
2704	 * osds?
2705	 */
2706	if (!osdmap->osd_primary_affinity)
2707		return;
2708
2709	for (i = 0; i < up->size; i++) {
2710		int osd = up->osds[i];
2711
2712		if (osd != CRUSH_ITEM_NONE &&
2713		    osdmap->osd_primary_affinity[osd] !=
2714					CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2715			break;
2716		}
2717	}
2718	if (i == up->size)
2719		return;
2720
2721	/*
2722	 * Pick the primary.  Feed both the seed (for the pg) and the
2723	 * osd into the hash/rng so that a proportional fraction of an
2724	 * osd's pgs get rejected as primary.
2725	 */
2726	for (i = 0; i < up->size; i++) {
2727		int osd = up->osds[i];
2728		u32 aff;
2729
2730		if (osd == CRUSH_ITEM_NONE)
2731			continue;
2732
2733		aff = osdmap->osd_primary_affinity[osd];
2734		if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735		    (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736				    pps, osd) >> 16) >= aff) {
2737			/*
2738			 * We chose not to use this primary.  Note it
2739			 * anyway as a fallback in case we don't pick
2740			 * anyone else, but keep looking.
2741			 */
2742			if (pos < 0)
2743				pos = i;
2744		} else {
2745			pos = i;
2746			break;
2747		}
2748	}
2749	if (pos < 0)
2750		return;
2751
2752	up->primary = up->osds[pos];
2753
2754	if (ceph_can_shift_osds(pi) && pos > 0) {
2755		/* move the new primary to the front */
2756		for (i = pos; i > 0; i--)
2757			up->osds[i] = up->osds[i - 1];
2758		up->osds[0] = up->primary;
2759	}
2760}
2761
2762/*
2763 * Get pg_temp and primary_temp mappings for given PG.
2764 *
2765 * Note that a PG may have none, only pg_temp, only primary_temp or
2766 * both pg_temp and primary_temp mappings.  This means @temp isn't
2767 * always a valid OSD set on return: in the "only primary_temp" case,
2768 * @temp will have its ->primary >= 0 but ->size == 0.
2769 */
2770static void get_temp_osds(struct ceph_osdmap *osdmap,
2771			  struct ceph_pg_pool_info *pi,
2772			  const struct ceph_pg *pgid,
2773			  struct ceph_osds *temp)
2774{
2775	struct ceph_pg_mapping *pg;
2776	int i;
2777
2778	ceph_osds_init(temp);
2779
2780	/* pg_temp? */
2781	pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2782	if (pg) {
2783		for (i = 0; i < pg->pg_temp.len; i++) {
2784			if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2785				if (ceph_can_shift_osds(pi))
2786					continue;
2787
2788				temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2789			} else {
2790				temp->osds[temp->size++] = pg->pg_temp.osds[i];
2791			}
2792		}
2793
2794		/* apply pg_temp's primary */
2795		for (i = 0; i < temp->size; i++) {
2796			if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797				temp->primary = temp->osds[i];
2798				break;
2799			}
2800		}
2801	}
2802
2803	/* primary_temp? */
2804	pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2805	if (pg)
2806		temp->primary = pg->primary_temp.osd;
2807}
2808
2809/*
2810 * Map a PG to its acting set as well as its up set.
2811 *
2812 * Acting set is used for data mapping purposes, while up set can be
2813 * recorded for detecting interval changes and deciding whether to
2814 * resend a request.
2815 */
2816void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817			       struct ceph_pg_pool_info *pi,
2818			       const struct ceph_pg *raw_pgid,
2819			       struct ceph_osds *up,
2820			       struct ceph_osds *acting)
2821{
2822	struct ceph_pg pgid;
2823	u32 pps;
2824
2825	WARN_ON(pi->id != raw_pgid->pool);
2826	raw_pg_to_pg(pi, raw_pgid, &pgid);
2827
2828	pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2829	apply_upmap(osdmap, &pgid, up);
2830	raw_to_up_osds(osdmap, pi, up);
2831	apply_primary_affinity(osdmap, pi, pps, up);
2832	get_temp_osds(osdmap, pi, &pgid, acting);
2833	if (!acting->size) {
2834		memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835		acting->size = up->size;
2836		if (acting->primary == -1)
2837			acting->primary = up->primary;
2838	}
2839	WARN_ON(!osds_valid(up) || !osds_valid(acting));
2840}
2841
2842bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843			      struct ceph_pg_pool_info *pi,
2844			      const struct ceph_pg *raw_pgid,
2845			      struct ceph_spg *spgid)
2846{
2847	struct ceph_pg pgid;
2848	struct ceph_osds up, acting;
2849	int i;
2850
2851	WARN_ON(pi->id != raw_pgid->pool);
2852	raw_pg_to_pg(pi, raw_pgid, &pgid);
2853
2854	if (ceph_can_shift_osds(pi)) {
2855		spgid->pgid = pgid; /* struct */
2856		spgid->shard = CEPH_SPG_NOSHARD;
2857		return true;
2858	}
2859
2860	ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2861	for (i = 0; i < acting.size; i++) {
2862		if (acting.osds[i] == acting.primary) {
2863			spgid->pgid = pgid; /* struct */
2864			spgid->shard = i;
2865			return true;
2866		}
2867	}
2868
2869	return false;
2870}
2871
2872/*
2873 * Return acting primary for given PG, or -1 if none.
2874 */
2875int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876			      const struct ceph_pg *raw_pgid)
2877{
2878	struct ceph_pg_pool_info *pi;
2879	struct ceph_osds up, acting;
2880
2881	pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2882	if (!pi)
2883		return -1;
2884
2885	ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2886	return acting.primary;
2887}
2888EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2889
2890static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2891					      size_t name_len)
2892{
2893	struct crush_loc_node *loc;
2894
2895	loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2896	if (!loc)
2897		return NULL;
2898
2899	RB_CLEAR_NODE(&loc->cl_node);
2900	return loc;
2901}
2902
2903static void free_crush_loc(struct crush_loc_node *loc)
2904{
2905	WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2906
2907	kfree(loc);
2908}
2909
2910static int crush_loc_compare(const struct crush_loc *loc1,
2911			     const struct crush_loc *loc2)
2912{
2913	return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914	       strcmp(loc1->cl_name, loc2->cl_name);
2915}
2916
2917DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918		 RB_BYPTR, const struct crush_loc *, cl_node)
2919
2920/*
2921 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2922 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2923 *
2924 * Note that @crush_location is modified by strsep().
2925 */
2926int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2927{
2928	struct crush_loc_node *loc;
2929	const char *type_name, *name, *colon;
2930	size_t type_name_len, name_len;
2931
2932	dout("%s '%s'\n", __func__, crush_location);
2933	while ((type_name = strsep(&crush_location, "|"))) {
2934		colon = strchr(type_name, ':');
2935		if (!colon)
2936			return -EINVAL;
2937
2938		type_name_len = colon - type_name;
2939		if (type_name_len == 0)
2940			return -EINVAL;
2941
2942		name = colon + 1;
2943		name_len = strlen(name);
2944		if (name_len == 0)
2945			return -EINVAL;
2946
2947		loc = alloc_crush_loc(type_name_len, name_len);
2948		if (!loc)
2949			return -ENOMEM;
2950
2951		loc->cl_loc.cl_type_name = loc->cl_data;
2952		memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953		loc->cl_loc.cl_type_name[type_name_len] = '\0';
2954
2955		loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956		memcpy(loc->cl_loc.cl_name, name, name_len);
2957		loc->cl_loc.cl_name[name_len] = '\0';
2958
2959		if (!__insert_crush_loc(locs, loc)) {
2960			free_crush_loc(loc);
2961			return -EEXIST;
2962		}
2963
2964		dout("%s type_name '%s' name '%s'\n", __func__,
2965		     loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2966	}
2967
2968	return 0;
2969}
2970
2971int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2972{
2973	struct rb_node *n1 = rb_first(locs1);
2974	struct rb_node *n2 = rb_first(locs2);
2975	int ret;
2976
2977	for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978		struct crush_loc_node *loc1 =
2979		    rb_entry(n1, struct crush_loc_node, cl_node);
2980		struct crush_loc_node *loc2 =
2981		    rb_entry(n2, struct crush_loc_node, cl_node);
2982
2983		ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2984		if (ret)
2985			return ret;
2986	}
2987
2988	if (!n1 && n2)
2989		return -1;
2990	if (n1 && !n2)
2991		return 1;
2992	return 0;
2993}
2994
2995void ceph_clear_crush_locs(struct rb_root *locs)
2996{
2997	while (!RB_EMPTY_ROOT(locs)) {
2998		struct crush_loc_node *loc =
2999		    rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3000
3001		erase_crush_loc(locs, loc);
3002		free_crush_loc(loc);
3003	}
3004}
3005
3006/*
3007 * [a-zA-Z0-9-_.]+
3008 */
3009static bool is_valid_crush_name(const char *name)
3010{
3011	do {
3012		if (!('a' <= *name && *name <= 'z') &&
3013		    !('A' <= *name && *name <= 'Z') &&
3014		    !('0' <= *name && *name <= '9') &&
3015		    *name != '-' && *name != '_' && *name != '.')
3016			return false;
3017	} while (*++name != '\0');
3018
3019	return true;
3020}
3021
3022/*
3023 * Gets the parent of an item.  Returns its id (<0 because the
3024 * parent is always a bucket), type id (>0 for the same reason,
3025 * via @parent_type_id) and location (via @parent_loc).  If no
3026 * parent, returns 0.
3027 *
3028 * Does a linear search, as there are no parent pointers of any
3029 * kind.  Note that the result is ambiguous for items that occur
3030 * multiple times in the map.
3031 */
3032static int get_immediate_parent(struct crush_map *c, int id,
3033				u16 *parent_type_id,
3034				struct crush_loc *parent_loc)
3035{
3036	struct crush_bucket *b;
3037	struct crush_name_node *type_cn, *cn;
3038	int i, j;
3039
3040	for (i = 0; i < c->max_buckets; i++) {
3041		b = c->buckets[i];
3042		if (!b)
3043			continue;
3044
3045		/* ignore per-class shadow hierarchy */
3046		cn = lookup_crush_name(&c->names, b->id);
3047		if (!cn || !is_valid_crush_name(cn->cn_name))
3048			continue;
3049
3050		for (j = 0; j < b->size; j++) {
3051			if (b->items[j] != id)
3052				continue;
3053
3054			*parent_type_id = b->type;
3055			type_cn = lookup_crush_name(&c->type_names, b->type);
3056			parent_loc->cl_type_name = type_cn->cn_name;
3057			parent_loc->cl_name = cn->cn_name;
3058			return b->id;
3059		}
3060	}
3061
3062	return 0;  /* no parent */
3063}
3064
3065/*
3066 * Calculates the locality/distance from an item to a client
3067 * location expressed in terms of CRUSH hierarchy as a set of
3068 * (bucket type name, bucket name) pairs.  Specifically, looks
3069 * for the lowest-valued bucket type for which the location of
3070 * @id matches one of the locations in @locs, so for standard
3071 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072 * a matching host is closer than a matching rack and a matching
3073 * data center is closer than a matching zone.
3074 *
3075 * Specifying multiple locations (a "multipath" location) such
3076 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077 * is a multimap.  The locality will be:
3078 *
3079 * - 3 for OSDs in racks foo1 and foo2
3080 * - 8 for OSDs in data center bar
3081 * - -1 for all other OSDs
3082 *
3083 * The lowest possible bucket type is 1, so the best locality
3084 * for an OSD is 1 (i.e. a matching host).  Locality 0 would be
3085 * the OSD itself.
3086 */
3087int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088			    struct rb_root *locs)
3089{
3090	struct crush_loc loc;
3091	u16 type_id;
3092
3093	/*
3094	 * Instead of repeated get_immediate_parent() calls,
3095	 * the location of @id could be obtained with a single
3096	 * depth-first traversal.
3097	 */
3098	for (;;) {
3099		id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3100		if (id >= 0)
3101			return -1;  /* not local */
3102
3103		if (lookup_crush_loc(locs, &loc))
3104			return type_id;
3105	}
3106}