Linux Audio

Check our new training course

Loading...
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
 
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
 
 
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS		48
  57#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW		32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS		88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS		1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL	600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD	8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS	16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE		14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID	0x0100
  88#define TCP_URG_NOTYET	0x0200
  89#define TCP_URG_READ	0x0400
  90
  91#define TCP_RETR1	3	/*
  92				 * This is how many retries it does before it
  93				 * tries to figure out if the gateway is
  94				 * down. Minimal RFC value is 3; it corresponds
  95				 * to ~3sec-8min depending on RTO.
  96				 */
  97
  98#define TCP_RETR2	15	/*
  99				 * This should take at least
 100				 * 90 minutes to time out.
 101				 * RFC1122 says that the limit is 100 sec.
 102				 * 15 is ~13-30min depending on RTO.
 103				 */
 104
 105#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 106				 * when active opening a connection.
 107				 * RFC1122 says the minimum retry MUST
 108				 * be at least 180secs.  Nevertheless
 109				 * this value is corresponding to
 110				 * 63secs of retransmission with the
 111				 * current initial RTO.
 112				 */
 113
 114#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 115				 * when passive opening a connection.
 116				 * This is corresponding to 31secs of
 117				 * retransmission with the current
 118				 * initial RTO.
 119				 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122				  * state, about 60 seconds	*/
 123#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125				  * It used to be 3min, new value is 60sec,
 126				  * to combine FIN-WAIT-2 timeout with
 127				  * TIME-WAIT timer.
 128				  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 
 
 132#if HZ >= 100
 133#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN	((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN	4U
 137#define TCP_ATO_MIN	4U
 138#endif
 139#define TCP_RTO_MAX	((unsigned)(120*HZ))
 140#define TCP_RTO_MIN	((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 
 
 
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 144						 * used as a fallback RTO for the
 145						 * initial data transmission if no
 146						 * valid RTT sample has been acquired,
 147						 * most likely due to retrans in 3WHS.
 148						 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151					                 * for local resources.
 152					                 */
 153#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 154#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 155#define TCP_KEEPALIVE_INTVL	(75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE	32767
 158#define MAX_TCP_KEEPINTVL	32767
 159#define MAX_TCP_KEEPCNT		127
 160#define MAX_TCP_SYNCNT		127
 161
 162#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 
 
 
 
 163
 164#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 166					 * after this time. It should be equal
 167					 * (or greater than) TCP_TIMEWAIT_LEN
 168					 * to provide reliability equal to one
 169					 * provided by timewait state.
 170					 */
 171#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 172					 * timestamps. It must be less than
 173					 * minimal timewait lifetime.
 174					 */
 175/*
 176 *	TCP option
 177 */
 178
 179#define TCPOPT_NOP		1	/* Padding */
 180#define TCPOPT_EOL		0	/* End of options */
 181#define TCPOPT_MSS		2	/* Segment size negotiating */
 182#define TCPOPT_WINDOW		3	/* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 
 187#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 189#define TCPOPT_EXP		254	/* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC	0xF989
 194#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED		12
 211#define TCPOLEN_WSCALE_ALIGNED		4
 212#define TCPOLEN_SACKPERM_ALIGNED	4
 213#define TCPOLEN_SACK_BASE		2
 214#define TCPOLEN_SACK_BASE_ALIGNED	4
 215#define TCPOLEN_SACK_PERBLOCK		8
 216#define TCPOLEN_MD5SIG_ALIGNED		20
 217#define TCPOLEN_MSS_ALIGNED		4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 223#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND		10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define	TFO_CLIENT_ENABLE	1
 233#define	TFO_SERVER_ENABLE	2
 234#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define	TFO_SERVER_WO_SOCKOPT1	0x400
 243
 244
 245/* sysctl variables for tcp */
 246extern int sysctl_tcp_max_orphans;
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 252
 253extern atomic_long_t tcp_memory_allocated;
 
 
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262		return true;
 263
 264	return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1) 	before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280	return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287		return true;
 288	return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296	int orphans = percpu_counter_read_positive(ocp);
 297
 298	if (orphans << shift > sysctl_tcp_max_orphans) {
 299		orphans = percpu_counter_sum_positive(ocp);
 300		if (orphans << shift > sysctl_tcp_max_orphans)
 301			return true;
 302	}
 303	return false;
 304}
 305
 
 
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
 326int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 327int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 329int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 330		 int flags);
 331int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 332			size_t size, int flags);
 333struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 334			       struct page *page, int offset, size_t *size);
 335ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 336		 size_t size, int flags);
 337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 
 338void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 339	      int size_goal);
 340void tcp_release_cb(struct sock *sk);
 341void tcp_wfree(struct sk_buff *skb);
 342void tcp_write_timer_handler(struct sock *sk);
 343void tcp_delack_timer_handler(struct sock *sk);
 344int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 345int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 346void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_space_adjust(struct sock *sk);
 348int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 349void tcp_twsk_destructor(struct sock *sk);
 
 350ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 351			struct pipe_inode_info *pipe, size_t len,
 352			unsigned int flags);
 
 
 353
 354void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 355static inline void tcp_dec_quickack_mode(struct sock *sk,
 356					 const unsigned int pkts)
 357{
 358	struct inet_connection_sock *icsk = inet_csk(sk);
 359
 360	if (icsk->icsk_ack.quick) {
 
 
 
 361		if (pkts >= icsk->icsk_ack.quick) {
 362			icsk->icsk_ack.quick = 0;
 363			/* Leaving quickack mode we deflate ATO. */
 364			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 365		} else
 366			icsk->icsk_ack.quick -= pkts;
 367	}
 368}
 369
 370#define	TCP_ECN_OK		1
 371#define	TCP_ECN_QUEUE_CWR	2
 372#define	TCP_ECN_DEMAND_CWR	4
 373#define	TCP_ECN_SEEN		8
 374
 375enum tcp_tw_status {
 376	TCP_TW_SUCCESS = 0,
 377	TCP_TW_RST = 1,
 378	TCP_TW_ACK = 2,
 379	TCP_TW_SYN = 3
 380};
 381
 382
 383enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 384					      struct sk_buff *skb,
 385					      const struct tcphdr *th);
 386struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 387			   struct request_sock *req, bool fastopen,
 388			   bool *lost_race);
 389int tcp_child_process(struct sock *parent, struct sock *child,
 390		      struct sk_buff *skb);
 391void tcp_enter_loss(struct sock *sk);
 392void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 393void tcp_clear_retrans(struct tcp_sock *tp);
 394void tcp_update_metrics(struct sock *sk);
 395void tcp_init_metrics(struct sock *sk);
 396void tcp_metrics_init(void);
 397bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 398void __tcp_close(struct sock *sk, long timeout);
 399void tcp_close(struct sock *sk, long timeout);
 400void tcp_init_sock(struct sock *sk);
 401void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 402__poll_t tcp_poll(struct file *file, struct socket *sock,
 403		      struct poll_table_struct *wait);
 
 
 404int tcp_getsockopt(struct sock *sk, int level, int optname,
 405		   char __user *optval, int __user *optlen);
 406bool tcp_bpf_bypass_getsockopt(int level, int optname);
 
 
 407int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 408		   unsigned int optlen);
 409void tcp_set_keepalive(struct sock *sk, int val);
 410void tcp_syn_ack_timeout(const struct request_sock *req);
 411int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 412		int flags, int *addr_len);
 413int tcp_set_rcvlowat(struct sock *sk, int val);
 414int tcp_set_window_clamp(struct sock *sk, int val);
 415void tcp_update_recv_tstamps(struct sk_buff *skb,
 416			     struct scm_timestamping_internal *tss);
 417void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 418			struct scm_timestamping_internal *tss);
 419void tcp_data_ready(struct sock *sk);
 420#ifdef CONFIG_MMU
 421int tcp_mmap(struct file *file, struct socket *sock,
 422	     struct vm_area_struct *vma);
 423#endif
 424void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 425		       struct tcp_options_received *opt_rx,
 426		       int estab, struct tcp_fastopen_cookie *foc);
 427const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 428
 429/*
 430 *	BPF SKB-less helpers
 431 */
 432u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 433			 struct tcphdr *th, u32 *cookie);
 434u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 435			 struct tcphdr *th, u32 *cookie);
 
 436u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 437			  const struct tcp_request_sock_ops *af_ops,
 438			  struct sock *sk, struct tcphdr *th);
 439/*
 440 *	TCP v4 functions exported for the inet6 API
 441 */
 442
 443void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 444void tcp_v4_mtu_reduced(struct sock *sk);
 445void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 446void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 447int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 448struct sock *tcp_create_openreq_child(const struct sock *sk,
 449				      struct request_sock *req,
 450				      struct sk_buff *skb);
 451void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 452struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 453				  struct request_sock *req,
 454				  struct dst_entry *dst,
 455				  struct request_sock *req_unhash,
 456				  bool *own_req);
 457int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 458int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 459int tcp_connect(struct sock *sk);
 460enum tcp_synack_type {
 461	TCP_SYNACK_NORMAL,
 462	TCP_SYNACK_FASTOPEN,
 463	TCP_SYNACK_COOKIE,
 464};
 465struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 466				struct request_sock *req,
 467				struct tcp_fastopen_cookie *foc,
 468				enum tcp_synack_type synack_type,
 469				struct sk_buff *syn_skb);
 470int tcp_disconnect(struct sock *sk, int flags);
 471
 472void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 473int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 474void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 475
 476/* From syncookies.c */
 477struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 478				 struct request_sock *req,
 479				 struct dst_entry *dst, u32 tsoff);
 480int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 481		      u32 cookie);
 482struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 483struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 484					    struct sock *sk, struct sk_buff *skb);
 
 
 
 485#ifdef CONFIG_SYN_COOKIES
 486
 487/* Syncookies use a monotonic timer which increments every 60 seconds.
 488 * This counter is used both as a hash input and partially encoded into
 489 * the cookie value.  A cookie is only validated further if the delta
 490 * between the current counter value and the encoded one is less than this,
 491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 492 * the counter advances immediately after a cookie is generated).
 493 */
 494#define MAX_SYNCOOKIE_AGE	2
 495#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 496#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 497
 498/* syncookies: remember time of last synqueue overflow
 499 * But do not dirty this field too often (once per second is enough)
 500 * It is racy as we do not hold a lock, but race is very minor.
 501 */
 502static inline void tcp_synq_overflow(const struct sock *sk)
 503{
 504	unsigned int last_overflow;
 505	unsigned int now = jiffies;
 506
 507	if (sk->sk_reuseport) {
 508		struct sock_reuseport *reuse;
 509
 510		reuse = rcu_dereference(sk->sk_reuseport_cb);
 511		if (likely(reuse)) {
 512			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 513			if (!time_between32(now, last_overflow,
 514					    last_overflow + HZ))
 515				WRITE_ONCE(reuse->synq_overflow_ts, now);
 516			return;
 517		}
 518	}
 519
 520	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 521	if (!time_between32(now, last_overflow, last_overflow + HZ))
 522		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 523}
 524
 525/* syncookies: no recent synqueue overflow on this listening socket? */
 526static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 527{
 528	unsigned int last_overflow;
 529	unsigned int now = jiffies;
 530
 531	if (sk->sk_reuseport) {
 532		struct sock_reuseport *reuse;
 533
 534		reuse = rcu_dereference(sk->sk_reuseport_cb);
 535		if (likely(reuse)) {
 536			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 537			return !time_between32(now, last_overflow - HZ,
 538					       last_overflow +
 539					       TCP_SYNCOOKIE_VALID);
 540		}
 541	}
 542
 543	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 544
 545	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 546	 * then we're under synflood. However, we have to use
 547	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 548	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 549	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 550	 * which could lead to rejecting a valid syncookie.
 551	 */
 552	return !time_between32(now, last_overflow - HZ,
 553			       last_overflow + TCP_SYNCOOKIE_VALID);
 554}
 555
 556static inline u32 tcp_cookie_time(void)
 557{
 558	u64 val = get_jiffies_64();
 559
 560	do_div(val, TCP_SYNCOOKIE_PERIOD);
 561	return val;
 562}
 563
 564u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 565			      u16 *mssp);
 566__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 567u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 568bool cookie_timestamp_decode(const struct net *net,
 569			     struct tcp_options_received *opt);
 570bool cookie_ecn_ok(const struct tcp_options_received *opt,
 571		   const struct net *net, const struct dst_entry *dst);
 
 
 
 
 572
 573/* From net/ipv6/syncookies.c */
 574int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 575		      u32 cookie);
 576struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 577
 578u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 579			      const struct tcphdr *th, u16 *mssp);
 580__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 581#endif
 582/* tcp_output.c */
 583
 
 
 584void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 585			       int nonagle);
 586int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 587int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 588void tcp_retransmit_timer(struct sock *sk);
 589void tcp_xmit_retransmit_queue(struct sock *);
 590void tcp_simple_retransmit(struct sock *);
 591void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 592int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 593enum tcp_queue {
 594	TCP_FRAG_IN_WRITE_QUEUE,
 595	TCP_FRAG_IN_RTX_QUEUE,
 596};
 597int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 598		 struct sk_buff *skb, u32 len,
 599		 unsigned int mss_now, gfp_t gfp);
 600
 601void tcp_send_probe0(struct sock *);
 602void tcp_send_partial(struct sock *);
 603int tcp_write_wakeup(struct sock *, int mib);
 604void tcp_send_fin(struct sock *sk);
 605void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 606int tcp_send_synack(struct sock *);
 607void tcp_push_one(struct sock *, unsigned int mss_now);
 608void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 609void tcp_send_ack(struct sock *sk);
 610void tcp_send_delayed_ack(struct sock *sk);
 611void tcp_send_loss_probe(struct sock *sk);
 612bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 613void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 614			     const struct sk_buff *next_skb);
 615
 616/* tcp_input.c */
 617void tcp_rearm_rto(struct sock *sk);
 618void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 619void tcp_reset(struct sock *sk, struct sk_buff *skb);
 620void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 621void tcp_fin(struct sock *sk);
 
 
 622
 623/* tcp_timer.c */
 624void tcp_init_xmit_timers(struct sock *);
 625static inline void tcp_clear_xmit_timers(struct sock *sk)
 626{
 627	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 628		__sock_put(sk);
 629
 630	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 631		__sock_put(sk);
 632
 633	inet_csk_clear_xmit_timers(sk);
 634}
 635
 636unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 637unsigned int tcp_current_mss(struct sock *sk);
 638u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 639
 640/* Bound MSS / TSO packet size with the half of the window */
 641static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 642{
 643	int cutoff;
 644
 645	/* When peer uses tiny windows, there is no use in packetizing
 646	 * to sub-MSS pieces for the sake of SWS or making sure there
 647	 * are enough packets in the pipe for fast recovery.
 648	 *
 649	 * On the other hand, for extremely large MSS devices, handling
 650	 * smaller than MSS windows in this way does make sense.
 651	 */
 652	if (tp->max_window > TCP_MSS_DEFAULT)
 653		cutoff = (tp->max_window >> 1);
 654	else
 655		cutoff = tp->max_window;
 656
 657	if (cutoff && pktsize > cutoff)
 658		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 659	else
 660		return pktsize;
 661}
 662
 663/* tcp.c */
 664void tcp_get_info(struct sock *, struct tcp_info *);
 665
 666/* Read 'sendfile()'-style from a TCP socket */
 667int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 668		  sk_read_actor_t recv_actor);
 
 
 
 669
 670void tcp_initialize_rcv_mss(struct sock *sk);
 671
 672int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 673int tcp_mss_to_mtu(struct sock *sk, int mss);
 674void tcp_mtup_init(struct sock *sk);
 675
 676static inline void tcp_bound_rto(const struct sock *sk)
 677{
 678	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 679		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 680}
 681
 682static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 683{
 684	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 685}
 686
 687static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 688{
 689	/* mptcp hooks are only on the slow path */
 690	if (sk_is_mptcp((struct sock *)tp))
 691		return;
 692
 693	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 694			       ntohl(TCP_FLAG_ACK) |
 695			       snd_wnd);
 696}
 697
 698static inline void tcp_fast_path_on(struct tcp_sock *tp)
 699{
 700	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 701}
 702
 703static inline void tcp_fast_path_check(struct sock *sk)
 704{
 705	struct tcp_sock *tp = tcp_sk(sk);
 706
 707	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 708	    tp->rcv_wnd &&
 709	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 710	    !tp->urg_data)
 711		tcp_fast_path_on(tp);
 712}
 713
 
 
 714/* Compute the actual rto_min value */
 715static inline u32 tcp_rto_min(struct sock *sk)
 716{
 717	const struct dst_entry *dst = __sk_dst_get(sk);
 718	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 719
 720	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 721		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 722	return rto_min;
 723}
 724
 725static inline u32 tcp_rto_min_us(struct sock *sk)
 726{
 727	return jiffies_to_usecs(tcp_rto_min(sk));
 728}
 729
 730static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 731{
 732	return dst_metric_locked(dst, RTAX_CC_ALGO);
 733}
 734
 735/* Minimum RTT in usec. ~0 means not available. */
 736static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 737{
 738	return minmax_get(&tp->rtt_min);
 739}
 740
 741/* Compute the actual receive window we are currently advertising.
 742 * Rcv_nxt can be after the window if our peer push more data
 743 * than the offered window.
 744 */
 745static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 746{
 747	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 748
 749	if (win < 0)
 750		win = 0;
 751	return (u32) win;
 752}
 753
 754/* Choose a new window, without checks for shrinking, and without
 755 * scaling applied to the result.  The caller does these things
 756 * if necessary.  This is a "raw" window selection.
 757 */
 758u32 __tcp_select_window(struct sock *sk);
 759
 760void tcp_send_window_probe(struct sock *sk);
 761
 762/* TCP uses 32bit jiffies to save some space.
 763 * Note that this is different from tcp_time_stamp, which
 764 * historically has been the same until linux-4.13.
 765 */
 766#define tcp_jiffies32 ((u32)jiffies)
 767
 768/*
 769 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 770 * It is no longer tied to jiffies, but to 1 ms clock.
 771 * Note: double check if you want to use tcp_jiffies32 instead of this.
 772 */
 773#define TCP_TS_HZ	1000
 774
 775static inline u64 tcp_clock_ns(void)
 776{
 777	return ktime_get_ns();
 778}
 779
 780static inline u64 tcp_clock_us(void)
 781{
 782	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 783}
 784
 785/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 786static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 787{
 788	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 789}
 790
 791/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 792static inline u32 tcp_ns_to_ts(u64 ns)
 
 
 
 
 
 
 
 
 
 793{
 794	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 795}
 796
 797/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 798static inline u32 tcp_time_stamp_raw(void)
 799{
 800	return tcp_ns_to_ts(tcp_clock_ns());
 
 
 801}
 802
 803void tcp_mstamp_refresh(struct tcp_sock *tp);
 804
 805static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 806{
 807	return max_t(s64, t1 - t0, 0);
 808}
 809
 810static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 811{
 812	return tcp_ns_to_ts(skb->skb_mstamp_ns);
 813}
 814
 815/* provide the departure time in us unit */
 816static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 817{
 818	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 819}
 820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 823
 824#define TCPHDR_FIN 0x01
 825#define TCPHDR_SYN 0x02
 826#define TCPHDR_RST 0x04
 827#define TCPHDR_PSH 0x08
 828#define TCPHDR_ACK 0x10
 829#define TCPHDR_URG 0x20
 830#define TCPHDR_ECE 0x40
 831#define TCPHDR_CWR 0x80
 832
 833#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 834
 835/* This is what the send packet queuing engine uses to pass
 836 * TCP per-packet control information to the transmission code.
 837 * We also store the host-order sequence numbers in here too.
 838 * This is 44 bytes if IPV6 is enabled.
 839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 840 */
 841struct tcp_skb_cb {
 842	__u32		seq;		/* Starting sequence number	*/
 843	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 844	union {
 845		/* Note : tcp_tw_isn is used in input path only
 846		 *	  (isn chosen by tcp_timewait_state_process())
 847		 *
 848		 * 	  tcp_gso_segs/size are used in write queue only,
 849		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 850		 */
 851		__u32		tcp_tw_isn;
 852		struct {
 853			u16	tcp_gso_segs;
 854			u16	tcp_gso_size;
 855		};
 856	};
 857	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 858
 859	__u8		sacked;		/* State flags for SACK.	*/
 860#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 861#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 862#define TCPCB_LOST		0x04	/* SKB is lost			*/
 863#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 864#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 865#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 866#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 867				TCPCB_REPAIRED)
 868
 869	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 870	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 871			eor:1,		/* Is skb MSG_EOR marked? */
 872			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 873			unused:5;
 874	__u32		ack_seq;	/* Sequence number ACK'd	*/
 875	union {
 876		struct {
 
 877			/* There is space for up to 24 bytes */
 878			__u32 in_flight:30,/* Bytes in flight at transmit */
 879			      is_app_limited:1, /* cwnd not fully used? */
 880			      unused:1;
 881			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 882			__u32 delivered;
 883			/* start of send pipeline phase */
 884			u64 first_tx_mstamp;
 885			/* when we reached the "delivered" count */
 886			u64 delivered_mstamp;
 887		} tx;   /* only used for outgoing skbs */
 888		union {
 889			struct inet_skb_parm	h4;
 890#if IS_ENABLED(CONFIG_IPV6)
 891			struct inet6_skb_parm	h6;
 892#endif
 893		} header;	/* For incoming skbs */
 894	};
 895};
 896
 897#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 898
 899extern const struct inet_connection_sock_af_ops ipv4_specific;
 900
 901#if IS_ENABLED(CONFIG_IPV6)
 902/* This is the variant of inet6_iif() that must be used by TCP,
 903 * as TCP moves IP6CB into a different location in skb->cb[]
 904 */
 905static inline int tcp_v6_iif(const struct sk_buff *skb)
 906{
 907	return TCP_SKB_CB(skb)->header.h6.iif;
 908}
 909
 910static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 911{
 912	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 913
 914	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 915}
 916
 917/* TCP_SKB_CB reference means this can not be used from early demux */
 918static inline int tcp_v6_sdif(const struct sk_buff *skb)
 919{
 920#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 921	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 922		return TCP_SKB_CB(skb)->header.h6.iif;
 923#endif
 924	return 0;
 925}
 926
 927extern const struct inet_connection_sock_af_ops ipv6_specific;
 928
 929INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 930INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 931INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 932
 933#endif
 934
 935/* TCP_SKB_CB reference means this can not be used from early demux */
 936static inline int tcp_v4_sdif(struct sk_buff *skb)
 937{
 938#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 939	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 940		return TCP_SKB_CB(skb)->header.h4.iif;
 941#endif
 942	return 0;
 943}
 944
 945/* Due to TSO, an SKB can be composed of multiple actual
 946 * packets.  To keep these tracked properly, we use this.
 947 */
 948static inline int tcp_skb_pcount(const struct sk_buff *skb)
 949{
 950	return TCP_SKB_CB(skb)->tcp_gso_segs;
 951}
 952
 953static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 954{
 955	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 956}
 957
 958static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 959{
 960	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 961}
 962
 963/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 964static inline int tcp_skb_mss(const struct sk_buff *skb)
 965{
 966	return TCP_SKB_CB(skb)->tcp_gso_size;
 967}
 968
 969static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 970{
 971	return likely(!TCP_SKB_CB(skb)->eor);
 972}
 973
 974static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 975					const struct sk_buff *from)
 976{
 977	return likely(tcp_skb_can_collapse_to(to) &&
 978		      mptcp_skb_can_collapse(to, from));
 
 979}
 980
 981/* Events passed to congestion control interface */
 982enum tcp_ca_event {
 983	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 984	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 985	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 986	CA_EVENT_LOSS,		/* loss timeout */
 987	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 988	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 989};
 990
 991/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 992enum tcp_ca_ack_event_flags {
 993	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 994	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 995	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 996};
 997
 998/*
 999 * Interface for adding new TCP congestion control handlers
1000 */
1001#define TCP_CA_NAME_MAX	16
1002#define TCP_CA_MAX	128
1003#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1004
1005#define TCP_CA_UNSPEC	0
1006
1007/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008#define TCP_CONG_NON_RESTRICTED 0x1
1009/* Requires ECN/ECT set on all packets */
1010#define TCP_CONG_NEEDS_ECN	0x2
1011#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012
1013union tcp_cc_info;
1014
1015struct ack_sample {
1016	u32 pkts_acked;
1017	s32 rtt_us;
1018	u32 in_flight;
1019};
1020
1021/* A rate sample measures the number of (original/retransmitted) data
1022 * packets delivered "delivered" over an interval of time "interval_us".
1023 * The tcp_rate.c code fills in the rate sample, and congestion
1024 * control modules that define a cong_control function to run at the end
1025 * of ACK processing can optionally chose to consult this sample when
1026 * setting cwnd and pacing rate.
1027 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 */
1029struct rate_sample {
1030	u64  prior_mstamp; /* starting timestamp for interval */
1031	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 
1032	s32  delivered;		/* number of packets delivered over interval */
 
1033	long interval_us;	/* time for tp->delivered to incr "delivered" */
1034	u32 snd_interval_us;	/* snd interval for delivered packets */
1035	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1036	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1037	int  losses;		/* number of packets marked lost upon ACK */
1038	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1039	u32  prior_in_flight;	/* in flight before this ACK */
 
1040	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1041	bool is_retrans;	/* is sample from retransmission? */
1042	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1043};
1044
1045struct tcp_congestion_ops {
1046/* fast path fields are put first to fill one cache line */
1047
1048	/* return slow start threshold (required) */
1049	u32 (*ssthresh)(struct sock *sk);
1050
1051	/* do new cwnd calculation (required) */
1052	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053
1054	/* call before changing ca_state (optional) */
1055	void (*set_state)(struct sock *sk, u8 new_state);
1056
1057	/* call when cwnd event occurs (optional) */
1058	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059
1060	/* call when ack arrives (optional) */
1061	void (*in_ack_event)(struct sock *sk, u32 flags);
1062
1063	/* hook for packet ack accounting (optional) */
1064	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065
1066	/* override sysctl_tcp_min_tso_segs */
1067	u32 (*min_tso_segs)(struct sock *sk);
1068
1069	/* call when packets are delivered to update cwnd and pacing rate,
1070	 * after all the ca_state processing. (optional)
1071	 */
1072	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073
1074
1075	/* new value of cwnd after loss (required) */
1076	u32  (*undo_cwnd)(struct sock *sk);
1077	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078	u32 (*sndbuf_expand)(struct sock *sk);
1079
1080/* control/slow paths put last */
1081	/* get info for inet_diag (optional) */
1082	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083			   union tcp_cc_info *info);
1084
1085	char 			name[TCP_CA_NAME_MAX];
1086	struct module		*owner;
1087	struct list_head	list;
1088	u32			key;
1089	u32			flags;
1090
1091	/* initialize private data (optional) */
1092	void (*init)(struct sock *sk);
1093	/* cleanup private data  (optional) */
1094	void (*release)(struct sock *sk);
1095} ____cacheline_aligned_in_smp;
1096
1097int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
 
 
 
1099
1100void tcp_assign_congestion_control(struct sock *sk);
1101void tcp_init_congestion_control(struct sock *sk);
1102void tcp_cleanup_congestion_control(struct sock *sk);
1103int tcp_set_default_congestion_control(struct net *net, const char *name);
1104void tcp_get_default_congestion_control(struct net *net, char *name);
1105void tcp_get_available_congestion_control(char *buf, size_t len);
1106void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107int tcp_set_allowed_congestion_control(char *allowed);
1108int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109			       bool cap_net_admin);
1110u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113u32 tcp_reno_ssthresh(struct sock *sk);
1114u32 tcp_reno_undo_cwnd(struct sock *sk);
1115void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116extern struct tcp_congestion_ops tcp_reno;
1117
1118struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121#ifdef CONFIG_INET
1122char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123#else
1124static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125{
1126	return NULL;
1127}
1128#endif
1129
1130static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131{
1132	const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135}
1136
1137static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138{
1139	struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141	if (icsk->icsk_ca_ops->set_state)
1142		icsk->icsk_ca_ops->set_state(sk, ca_state);
1143	icsk->icsk_ca_state = ca_state;
1144}
1145
1146static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147{
1148	const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150	if (icsk->icsk_ca_ops->cwnd_event)
1151		icsk->icsk_ca_ops->cwnd_event(sk, event);
1152}
1153
 
 
 
1154/* From tcp_rate.c */
1155void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157			    struct rate_sample *rs);
1158void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159		  bool is_sack_reneg, struct rate_sample *rs);
1160void tcp_rate_check_app_limited(struct sock *sk);
1161
 
 
 
 
 
1162/* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1165 *
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1168 */
1169static inline int tcp_is_sack(const struct tcp_sock *tp)
1170{
1171	return likely(tp->rx_opt.sack_ok);
1172}
1173
1174static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175{
1176	return !tcp_is_sack(tp);
1177}
1178
1179static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180{
1181	return tp->sacked_out + tp->lost_out;
1182}
1183
1184/* This determines how many packets are "in the network" to the best
1185 * of our knowledge.  In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1188 *
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1191 *
1192 * Read this equation as:
1193 *
1194 *	"Packets sent once on transmission queue" MINUS
1195 *	"Packets left network, but not honestly ACKed yet" PLUS
1196 *	"Packets fast retransmitted"
1197 */
1198static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199{
1200	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201}
1202
1203#define TCP_INFINITE_SSTHRESH	0x7fffffff
1204
 
 
 
 
 
 
 
 
 
 
 
1205static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206{
1207	return tp->snd_cwnd < tp->snd_ssthresh;
1208}
1209
1210static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211{
1212	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213}
1214
1215static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216{
1217	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218	       (1 << inet_csk(sk)->icsk_ca_state);
1219}
1220
1221/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223 * ssthresh.
1224 */
1225static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226{
1227	const struct tcp_sock *tp = tcp_sk(sk);
1228
1229	if (tcp_in_cwnd_reduction(sk))
1230		return tp->snd_ssthresh;
1231	else
1232		return max(tp->snd_ssthresh,
1233			   ((tp->snd_cwnd >> 1) +
1234			    (tp->snd_cwnd >> 2)));
1235}
1236
1237/* Use define here intentionally to get WARN_ON location shown at the caller */
1238#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239
1240void tcp_enter_cwr(struct sock *sk);
1241__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242
1243/* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1245 */
1246static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247{
1248	return 3;
1249}
1250
1251/* Returns end sequence number of the receiver's advertised window */
1252static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253{
1254	return tp->snd_una + tp->snd_wnd;
1255}
1256
1257/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1262 * Example :
1263 *    cwnd is 10 (IW10), but application sends 9 frames.
1264 *    We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1269 */
1270static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271{
1272	const struct tcp_sock *tp = tcp_sk(sk);
1273
 
 
 
1274	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275	if (tcp_in_slow_start(tp))
1276		return tp->snd_cwnd < 2 * tp->max_packets_out;
1277
1278	return tp->is_cwnd_limited;
1279}
1280
1281/* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1286 */
1287static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288{
1289	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290}
1291
1292/* Estimates in how many jiffies next packet for this flow can be sent.
1293 * Scheduling a retransmit timer too early would be silly.
1294 */
1295static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296{
1297	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298
1299	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300}
1301
1302static inline void tcp_reset_xmit_timer(struct sock *sk,
1303					const int what,
1304					unsigned long when,
1305					const unsigned long max_when)
1306{
1307	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308				  max_when);
1309}
1310
1311/* Something is really bad, we could not queue an additional packet,
1312 * because qdisc is full or receiver sent a 0 window, or we are paced.
1313 * We do not want to add fuel to the fire, or abort too early,
1314 * so make sure the timer we arm now is at least 200ms in the future,
1315 * regardless of current icsk_rto value (as it could be ~2ms)
1316 */
1317static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318{
1319	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320}
1321
1322/* Variant of inet_csk_rto_backoff() used for zero window probes */
1323static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324					    unsigned long max_when)
1325{
1326	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327			   inet_csk(sk)->icsk_backoff);
1328	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329
1330	return (unsigned long)min_t(u64, when, max_when);
1331}
1332
1333static inline void tcp_check_probe_timer(struct sock *sk)
1334{
1335	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337				     tcp_probe0_base(sk), TCP_RTO_MAX);
1338}
1339
1340static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341{
1342	tp->snd_wl1 = seq;
1343}
1344
1345static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346{
1347	tp->snd_wl1 = seq;
1348}
1349
1350/*
1351 * Calculate(/check) TCP checksum
1352 */
1353static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354				   __be32 daddr, __wsum base)
1355{
1356	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357}
1358
1359static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360{
1361	return !skb_csum_unnecessary(skb) &&
1362		__skb_checksum_complete(skb);
1363}
1364
1365bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
 
 
 
1366int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367void tcp_set_state(struct sock *sk, int state);
1368void tcp_done(struct sock *sk);
1369int tcp_abort(struct sock *sk, int err);
1370
1371static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372{
1373	rx_opt->dsack = 0;
1374	rx_opt->num_sacks = 0;
1375}
1376
1377void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378
1379static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380{
1381	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382	struct tcp_sock *tp = tcp_sk(sk);
1383	s32 delta;
1384
1385	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386	    ca_ops->cong_control)
1387		return;
1388	delta = tcp_jiffies32 - tp->lsndtime;
1389	if (delta > inet_csk(sk)->icsk_rto)
1390		tcp_cwnd_restart(sk, delta);
1391}
1392
1393/* Determine a window scaling and initial window to offer. */
1394void tcp_select_initial_window(const struct sock *sk, int __space,
1395			       __u32 mss, __u32 *rcv_wnd,
1396			       __u32 *window_clamp, int wscale_ok,
1397			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398
 
 
 
 
 
 
 
1399static inline int tcp_win_from_space(const struct sock *sk, int space)
1400{
1401	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402
1403	return tcp_adv_win_scale <= 0 ?
1404		(space>>(-tcp_adv_win_scale)) :
1405		space - (space>>tcp_adv_win_scale);
 
 
 
 
 
 
1406}
1407
1408/* Note: caller must be prepared to deal with negative returns */
1409static inline int tcp_space(const struct sock *sk)
1410{
1411	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412				  READ_ONCE(sk->sk_backlog.len) -
1413				  atomic_read(&sk->sk_rmem_alloc));
1414}
1415
1416static inline int tcp_full_space(const struct sock *sk)
1417{
1418	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421void tcp_cleanup_rbuf(struct sock *sk, int copied);
 
 
1422
1423/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428static inline bool tcp_rmem_pressure(const struct sock *sk)
1429{
1430	int rcvbuf, threshold;
1431
1432	if (tcp_under_memory_pressure(sk))
1433		return true;
1434
1435	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436	threshold = rcvbuf - (rcvbuf >> 3);
1437
1438	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439}
1440
1441static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442{
1443	const struct tcp_sock *tp = tcp_sk(sk);
1444	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445
1446	if (avail <= 0)
1447		return false;
1448
1449	return (avail >= target) || tcp_rmem_pressure(sk) ||
1450	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451}
1452
1453extern void tcp_openreq_init_rwin(struct request_sock *req,
1454				  const struct sock *sk_listener,
1455				  const struct dst_entry *dst);
1456
1457void tcp_enter_memory_pressure(struct sock *sk);
1458void tcp_leave_memory_pressure(struct sock *sk);
1459
1460static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461{
1462	struct net *net = sock_net((struct sock *)tp);
 
1463
1464	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
 
 
 
 
 
1465}
1466
1467static inline int keepalive_time_when(const struct tcp_sock *tp)
1468{
1469	struct net *net = sock_net((struct sock *)tp);
 
 
 
 
1470
1471	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1472}
1473
1474static inline int keepalive_probes(const struct tcp_sock *tp)
1475{
1476	struct net *net = sock_net((struct sock *)tp);
 
1477
1478	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
 
 
 
 
 
1479}
1480
1481static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482{
1483	const struct inet_connection_sock *icsk = &tp->inet_conn;
1484
1485	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486			  tcp_jiffies32 - tp->rcv_tstamp);
1487}
1488
1489static inline int tcp_fin_time(const struct sock *sk)
1490{
1491	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
 
1492	const int rto = inet_csk(sk)->icsk_rto;
1493
1494	if (fin_timeout < (rto << 2) - (rto >> 1))
1495		fin_timeout = (rto << 2) - (rto >> 1);
1496
1497	return fin_timeout;
1498}
1499
1500static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501				  int paws_win)
1502{
1503	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504		return true;
1505	if (unlikely(!time_before32(ktime_get_seconds(),
1506				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507		return true;
1508	/*
1509	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510	 * then following tcp messages have valid values. Ignore 0 value,
1511	 * or else 'negative' tsval might forbid us to accept their packets.
1512	 */
1513	if (!rx_opt->ts_recent)
1514		return true;
1515	return false;
1516}
1517
1518static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519				   int rst)
1520{
1521	if (tcp_paws_check(rx_opt, 0))
1522		return false;
1523
1524	/* RST segments are not recommended to carry timestamp,
1525	   and, if they do, it is recommended to ignore PAWS because
1526	   "their cleanup function should take precedence over timestamps."
1527	   Certainly, it is mistake. It is necessary to understand the reasons
1528	   of this constraint to relax it: if peer reboots, clock may go
1529	   out-of-sync and half-open connections will not be reset.
1530	   Actually, the problem would be not existing if all
1531	   the implementations followed draft about maintaining clock
1532	   via reboots. Linux-2.2 DOES NOT!
1533
1534	   However, we can relax time bounds for RST segments to MSL.
1535	 */
1536	if (rst && !time_before32(ktime_get_seconds(),
1537				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538		return false;
1539	return true;
1540}
1541
1542bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543			  int mib_idx, u32 *last_oow_ack_time);
1544
1545static inline void tcp_mib_init(struct net *net)
1546{
1547	/* See RFC 2012 */
1548	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552}
1553
1554/* from STCP */
1555static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556{
1557	tp->lost_skb_hint = NULL;
1558}
1559
1560static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561{
1562	tcp_clear_retrans_hints_partial(tp);
1563	tp->retransmit_skb_hint = NULL;
1564}
1565
1566union tcp_md5_addr {
1567	struct in_addr  a4;
1568#if IS_ENABLED(CONFIG_IPV6)
1569	struct in6_addr	a6;
1570#endif
1571};
1572
1573/* - key database */
1574struct tcp_md5sig_key {
1575	struct hlist_node	node;
1576	u8			keylen;
1577	u8			family; /* AF_INET or AF_INET6 */
1578	u8			prefixlen;
 
1579	union tcp_md5_addr	addr;
1580	int			l3index; /* set if key added with L3 scope */
1581	u8			key[TCP_MD5SIG_MAXKEYLEN];
1582	struct rcu_head		rcu;
1583};
1584
1585/* - sock block */
1586struct tcp_md5sig_info {
1587	struct hlist_head	head;
1588	struct rcu_head		rcu;
1589};
1590
1591/* - pseudo header */
1592struct tcp4_pseudohdr {
1593	__be32		saddr;
1594	__be32		daddr;
1595	__u8		pad;
1596	__u8		protocol;
1597	__be16		len;
1598};
1599
1600struct tcp6_pseudohdr {
1601	struct in6_addr	saddr;
1602	struct in6_addr daddr;
1603	__be32		len;
1604	__be32		protocol;	/* including padding */
1605};
1606
1607union tcp_md5sum_block {
1608	struct tcp4_pseudohdr ip4;
1609#if IS_ENABLED(CONFIG_IPV6)
1610	struct tcp6_pseudohdr ip6;
1611#endif
1612};
1613
1614/* - pool: digest algorithm, hash description and scratch buffer */
1615struct tcp_md5sig_pool {
1616	struct ahash_request	*md5_req;
1617	void			*scratch;
1618};
 
 
 
 
 
 
 
 
 
 
 
 
 
1619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1620/* - functions */
1621int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1622			const struct sock *sk, const struct sk_buff *skb);
1623int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1624		   int family, u8 prefixlen, int l3index,
1625		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
 
 
 
 
1626int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1627		   int family, u8 prefixlen, int l3index);
 
1628struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1629					 const struct sock *addr_sk);
1630
1631#ifdef CONFIG_TCP_MD5SIG
1632#include <linux/jump_label.h>
1633extern struct static_key_false tcp_md5_needed;
1634struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1635					   const union tcp_md5_addr *addr,
1636					   int family);
1637static inline struct tcp_md5sig_key *
1638tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639		  const union tcp_md5_addr *addr, int family)
1640{
1641	if (!static_branch_unlikely(&tcp_md5_needed))
1642		return NULL;
1643	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1644}
1645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1647#else
1648static inline struct tcp_md5sig_key *
1649tcp_md5_do_lookup(const struct sock *sk, int l3index,
1650		  const union tcp_md5_addr *addr, int family)
1651{
1652	return NULL;
1653}
1654#define tcp_twsk_md5_key(twsk)	NULL
1655#endif
1656
1657bool tcp_alloc_md5sig_pool(void);
 
 
 
 
 
1658
1659struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1660static inline void tcp_put_md5sig_pool(void)
 
 
1661{
1662	local_bh_enable();
1663}
 
 
 
 
 
 
 
1664
1665int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1666			  unsigned int header_len);
1667int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1668		     const struct tcp_md5sig_key *key);
1669
1670/* From tcp_fastopen.c */
1671void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1672			    struct tcp_fastopen_cookie *cookie);
1673void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1674			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1675			    u16 try_exp);
1676struct tcp_fastopen_request {
1677	/* Fast Open cookie. Size 0 means a cookie request */
1678	struct tcp_fastopen_cookie	cookie;
1679	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1680	size_t				size;
1681	int				copied;	/* queued in tcp_connect() */
1682	struct ubuf_info		*uarg;
1683};
1684void tcp_free_fastopen_req(struct tcp_sock *tp);
1685void tcp_fastopen_destroy_cipher(struct sock *sk);
1686void tcp_fastopen_ctx_destroy(struct net *net);
1687int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1688			      void *primary_key, void *backup_key);
1689int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1690			    u64 *key);
1691void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1692struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1693			      struct request_sock *req,
1694			      struct tcp_fastopen_cookie *foc,
1695			      const struct dst_entry *dst);
1696void tcp_fastopen_init_key_once(struct net *net);
1697bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1698			     struct tcp_fastopen_cookie *cookie);
1699bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1700#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1701#define TCP_FASTOPEN_KEY_MAX 2
1702#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1703	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1704
1705/* Fastopen key context */
1706struct tcp_fastopen_context {
1707	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1708	int		num;
1709	struct rcu_head	rcu;
1710};
1711
1712void tcp_fastopen_active_disable(struct sock *sk);
1713bool tcp_fastopen_active_should_disable(struct sock *sk);
1714void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1715void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1716
1717/* Caller needs to wrap with rcu_read_(un)lock() */
1718static inline
1719struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1720{
1721	struct tcp_fastopen_context *ctx;
1722
1723	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1724	if (!ctx)
1725		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1726	return ctx;
1727}
1728
1729static inline
1730bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1731			       const struct tcp_fastopen_cookie *orig)
1732{
1733	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1734	    orig->len == foc->len &&
1735	    !memcmp(orig->val, foc->val, foc->len))
1736		return true;
1737	return false;
1738}
1739
1740static inline
1741int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1742{
1743	return ctx->num;
1744}
1745
1746/* Latencies incurred by various limits for a sender. They are
1747 * chronograph-like stats that are mutually exclusive.
1748 */
1749enum tcp_chrono {
1750	TCP_CHRONO_UNSPEC,
1751	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1752	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1753	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1754	__TCP_CHRONO_MAX,
1755};
1756
1757void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1758void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1759
1760/* This helper is needed, because skb->tcp_tsorted_anchor uses
1761 * the same memory storage than skb->destructor/_skb_refdst
1762 */
1763static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1764{
1765	skb->destructor = NULL;
1766	skb->_skb_refdst = 0UL;
1767}
1768
1769#define tcp_skb_tsorted_save(skb) {		\
1770	unsigned long _save = skb->_skb_refdst;	\
1771	skb->_skb_refdst = 0UL;
1772
1773#define tcp_skb_tsorted_restore(skb)		\
1774	skb->_skb_refdst = _save;		\
1775}
1776
1777void tcp_write_queue_purge(struct sock *sk);
1778
1779static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1780{
1781	return skb_rb_first(&sk->tcp_rtx_queue);
1782}
1783
1784static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1785{
1786	return skb_rb_last(&sk->tcp_rtx_queue);
1787}
1788
1789static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1790{
1791	return skb_peek(&sk->sk_write_queue);
1792}
1793
1794static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1795{
1796	return skb_peek_tail(&sk->sk_write_queue);
1797}
1798
1799#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1800	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1801
1802static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1803{
1804	return skb_peek(&sk->sk_write_queue);
1805}
1806
1807static inline bool tcp_skb_is_last(const struct sock *sk,
1808				   const struct sk_buff *skb)
1809{
1810	return skb_queue_is_last(&sk->sk_write_queue, skb);
1811}
1812
1813/**
1814 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1815 * @sk: socket
1816 *
1817 * Since the write queue can have a temporary empty skb in it,
1818 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1819 */
1820static inline bool tcp_write_queue_empty(const struct sock *sk)
1821{
1822	const struct tcp_sock *tp = tcp_sk(sk);
1823
1824	return tp->write_seq == tp->snd_nxt;
1825}
1826
1827static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1828{
1829	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1830}
1831
1832static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1833{
1834	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1835}
1836
1837static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1838{
1839	__skb_queue_tail(&sk->sk_write_queue, skb);
1840
1841	/* Queue it, remembering where we must start sending. */
1842	if (sk->sk_write_queue.next == skb)
1843		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1844}
1845
1846/* Insert new before skb on the write queue of sk.  */
1847static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1848						  struct sk_buff *skb,
1849						  struct sock *sk)
1850{
1851	__skb_queue_before(&sk->sk_write_queue, skb, new);
1852}
1853
1854static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1855{
1856	tcp_skb_tsorted_anchor_cleanup(skb);
1857	__skb_unlink(skb, &sk->sk_write_queue);
1858}
1859
1860void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1861
1862static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1863{
1864	tcp_skb_tsorted_anchor_cleanup(skb);
1865	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1866}
1867
1868static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1869{
1870	list_del(&skb->tcp_tsorted_anchor);
1871	tcp_rtx_queue_unlink(skb, sk);
1872	sk_wmem_free_skb(sk, skb);
1873}
1874
1875static inline void tcp_push_pending_frames(struct sock *sk)
1876{
1877	if (tcp_send_head(sk)) {
1878		struct tcp_sock *tp = tcp_sk(sk);
1879
1880		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1881	}
1882}
1883
1884/* Start sequence of the skb just after the highest skb with SACKed
1885 * bit, valid only if sacked_out > 0 or when the caller has ensured
1886 * validity by itself.
1887 */
1888static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1889{
1890	if (!tp->sacked_out)
1891		return tp->snd_una;
1892
1893	if (tp->highest_sack == NULL)
1894		return tp->snd_nxt;
1895
1896	return TCP_SKB_CB(tp->highest_sack)->seq;
1897}
1898
1899static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1900{
1901	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1902}
1903
1904static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1905{
1906	return tcp_sk(sk)->highest_sack;
1907}
1908
1909static inline void tcp_highest_sack_reset(struct sock *sk)
1910{
1911	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1912}
1913
1914/* Called when old skb is about to be deleted and replaced by new skb */
1915static inline void tcp_highest_sack_replace(struct sock *sk,
1916					    struct sk_buff *old,
1917					    struct sk_buff *new)
1918{
1919	if (old == tcp_highest_sack(sk))
1920		tcp_sk(sk)->highest_sack = new;
1921}
1922
1923/* This helper checks if socket has IP_TRANSPARENT set */
1924static inline bool inet_sk_transparent(const struct sock *sk)
1925{
1926	switch (sk->sk_state) {
1927	case TCP_TIME_WAIT:
1928		return inet_twsk(sk)->tw_transparent;
1929	case TCP_NEW_SYN_RECV:
1930		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1931	}
1932	return inet_sk(sk)->transparent;
1933}
1934
1935/* Determines whether this is a thin stream (which may suffer from
1936 * increased latency). Used to trigger latency-reducing mechanisms.
1937 */
1938static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1939{
1940	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1941}
1942
1943/* /proc */
1944enum tcp_seq_states {
1945	TCP_SEQ_STATE_LISTENING,
1946	TCP_SEQ_STATE_ESTABLISHED,
1947};
1948
1949void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1950void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1951void tcp_seq_stop(struct seq_file *seq, void *v);
1952
1953struct tcp_seq_afinfo {
1954	sa_family_t			family;
1955};
1956
1957struct tcp_iter_state {
1958	struct seq_net_private	p;
1959	enum tcp_seq_states	state;
1960	struct sock		*syn_wait_sk;
1961	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1962	int			bucket, offset, sbucket, num;
1963	loff_t			last_pos;
1964};
1965
1966extern struct request_sock_ops tcp_request_sock_ops;
1967extern struct request_sock_ops tcp6_request_sock_ops;
1968
1969void tcp_v4_destroy_sock(struct sock *sk);
1970
1971struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1972				netdev_features_t features);
1973struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1974INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1975INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1976INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1977INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1978int tcp_gro_complete(struct sk_buff *skb);
 
 
 
 
1979
1980void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1981
1982static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1983{
1984	struct net *net = sock_net((struct sock *)tp);
1985	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
 
 
 
 
1986}
1987
1988bool tcp_stream_memory_free(const struct sock *sk, int wake);
1989
1990#ifdef CONFIG_PROC_FS
1991int tcp4_proc_init(void);
1992void tcp4_proc_exit(void);
1993#endif
1994
1995int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1996int tcp_conn_request(struct request_sock_ops *rsk_ops,
1997		     const struct tcp_request_sock_ops *af_ops,
1998		     struct sock *sk, struct sk_buff *skb);
1999
2000/* TCP af-specific functions */
2001struct tcp_sock_af_ops {
2002#ifdef CONFIG_TCP_MD5SIG
2003	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2004						const struct sock *addr_sk);
2005	int		(*calc_md5_hash)(char *location,
2006					 const struct tcp_md5sig_key *md5,
2007					 const struct sock *sk,
2008					 const struct sk_buff *skb);
2009	int		(*md5_parse)(struct sock *sk,
2010				     int optname,
2011				     sockptr_t optval,
2012				     int optlen);
2013#endif
 
 
 
 
 
 
 
 
 
 
 
 
2014};
2015
2016struct tcp_request_sock_ops {
2017	u16 mss_clamp;
2018#ifdef CONFIG_TCP_MD5SIG
2019	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2020						 const struct sock *addr_sk);
2021	int		(*calc_md5_hash) (char *location,
2022					  const struct tcp_md5sig_key *md5,
2023					  const struct sock *sk,
2024					  const struct sk_buff *skb);
2025#endif
 
 
 
 
 
 
 
 
 
2026#ifdef CONFIG_SYN_COOKIES
2027	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028				 __u16 *mss);
2029#endif
2030	struct dst_entry *(*route_req)(const struct sock *sk,
2031				       struct sk_buff *skb,
2032				       struct flowi *fl,
2033				       struct request_sock *req);
2034	u32 (*init_seq)(const struct sk_buff *skb);
2035	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2036	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2037			   struct flowi *fl, struct request_sock *req,
2038			   struct tcp_fastopen_cookie *foc,
2039			   enum tcp_synack_type synack_type,
2040			   struct sk_buff *syn_skb);
2041};
2042
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2044#if IS_ENABLED(CONFIG_IPV6)
2045extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2046#endif
2047
2048#ifdef CONFIG_SYN_COOKIES
2049static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050					 const struct sock *sk, struct sk_buff *skb,
2051					 __u16 *mss)
2052{
2053	tcp_synq_overflow(sk);
2054	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2055	return ops->cookie_init_seq(skb, mss);
2056}
2057#else
2058static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2059					 const struct sock *sk, struct sk_buff *skb,
2060					 __u16 *mss)
2061{
2062	return 0;
2063}
2064#endif
2065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066int tcpv4_offload_init(void);
2067
2068void tcp_v4_init(void);
2069void tcp_init(void);
2070
2071/* tcp_recovery.c */
2072void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2073void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2074extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2075				u32 reo_wnd);
2076extern bool tcp_rack_mark_lost(struct sock *sk);
2077extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2078			     u64 xmit_time);
2079extern void tcp_rack_reo_timeout(struct sock *sk);
2080extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082/* At how many usecs into the future should the RTO fire? */
2083static inline s64 tcp_rto_delta_us(const struct sock *sk)
2084{
2085	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2086	u32 rto = inet_csk(sk)->icsk_rto;
2087	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2088
2089	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2090}
2091
2092/*
2093 * Save and compile IPv4 options, return a pointer to it
2094 */
2095static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2096							 struct sk_buff *skb)
2097{
2098	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2099	struct ip_options_rcu *dopt = NULL;
2100
2101	if (opt->optlen) {
2102		int opt_size = sizeof(*dopt) + opt->optlen;
2103
2104		dopt = kmalloc(opt_size, GFP_ATOMIC);
2105		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2106			kfree(dopt);
2107			dopt = NULL;
2108		}
2109	}
2110	return dopt;
2111}
2112
2113/* locally generated TCP pure ACKs have skb->truesize == 2
2114 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2115 * This is much faster than dissecting the packet to find out.
2116 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2117 */
2118static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2119{
2120	return skb->truesize == 2;
2121}
2122
2123static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2124{
2125	skb->truesize = 2;
2126}
2127
2128static inline int tcp_inq(struct sock *sk)
2129{
2130	struct tcp_sock *tp = tcp_sk(sk);
2131	int answ;
2132
2133	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2134		answ = 0;
2135	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2136		   !tp->urg_data ||
2137		   before(tp->urg_seq, tp->copied_seq) ||
2138		   !before(tp->urg_seq, tp->rcv_nxt)) {
2139
2140		answ = tp->rcv_nxt - tp->copied_seq;
2141
2142		/* Subtract 1, if FIN was received */
2143		if (answ && sock_flag(sk, SOCK_DONE))
2144			answ--;
2145	} else {
2146		answ = tp->urg_seq - tp->copied_seq;
2147	}
2148
2149	return answ;
2150}
2151
2152int tcp_peek_len(struct socket *sock);
2153
2154static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2155{
2156	u16 segs_in;
2157
2158	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2159	tp->segs_in += segs_in;
 
 
 
 
2160	if (skb->len > tcp_hdrlen(skb))
2161		tp->data_segs_in += segs_in;
2162}
2163
2164/*
2165 * TCP listen path runs lockless.
2166 * We forced "struct sock" to be const qualified to make sure
2167 * we don't modify one of its field by mistake.
2168 * Here, we increment sk_drops which is an atomic_t, so we can safely
2169 * make sock writable again.
2170 */
2171static inline void tcp_listendrop(const struct sock *sk)
2172{
2173	atomic_inc(&((struct sock *)sk)->sk_drops);
2174	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2175}
2176
2177enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2178
2179/*
2180 * Interface for adding Upper Level Protocols over TCP
2181 */
2182
2183#define TCP_ULP_NAME_MAX	16
2184#define TCP_ULP_MAX		128
2185#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2186
2187struct tcp_ulp_ops {
2188	struct list_head	list;
2189
2190	/* initialize ulp */
2191	int (*init)(struct sock *sk);
2192	/* update ulp */
2193	void (*update)(struct sock *sk, struct proto *p,
2194		       void (*write_space)(struct sock *sk));
2195	/* cleanup ulp */
2196	void (*release)(struct sock *sk);
2197	/* diagnostic */
2198	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2199	size_t (*get_info_size)(const struct sock *sk);
2200	/* clone ulp */
2201	void (*clone)(const struct request_sock *req, struct sock *newsk,
2202		      const gfp_t priority);
2203
2204	char		name[TCP_ULP_NAME_MAX];
2205	struct module	*owner;
2206};
2207int tcp_register_ulp(struct tcp_ulp_ops *type);
2208void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2209int tcp_set_ulp(struct sock *sk, const char *name);
2210void tcp_get_available_ulp(char *buf, size_t len);
2211void tcp_cleanup_ulp(struct sock *sk);
2212void tcp_update_ulp(struct sock *sk, struct proto *p,
2213		    void (*write_space)(struct sock *sk));
2214
2215#define MODULE_ALIAS_TCP_ULP(name)				\
2216	__MODULE_INFO(alias, alias_userspace, name);		\
2217	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2218
2219#ifdef CONFIG_NET_SOCK_MSG
2220struct sk_msg;
2221struct sk_psock;
2222
2223#ifdef CONFIG_BPF_SYSCALL
2224struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2225int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2226void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227#endif /* CONFIG_BPF_SYSCALL */
2228
2229int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2230			  int flags);
 
 
 
 
 
 
 
 
2231#endif /* CONFIG_NET_SOCK_MSG */
2232
2233#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2234static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2235{
2236}
2237#endif
2238
2239#ifdef CONFIG_CGROUP_BPF
2240static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2241				      struct sk_buff *skb,
2242				      unsigned int end_offset)
2243{
2244	skops->skb = skb;
2245	skops->skb_data_end = skb->data + end_offset;
2246}
2247#else
2248static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2249				      struct sk_buff *skb,
2250				      unsigned int end_offset)
2251{
2252}
2253#endif
2254
2255/* Call BPF_SOCK_OPS program that returns an int. If the return value
2256 * is < 0, then the BPF op failed (for example if the loaded BPF
2257 * program does not support the chosen operation or there is no BPF
2258 * program loaded).
2259 */
2260#ifdef CONFIG_BPF
2261static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2262{
2263	struct bpf_sock_ops_kern sock_ops;
2264	int ret;
2265
2266	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2267	if (sk_fullsock(sk)) {
2268		sock_ops.is_fullsock = 1;
2269		sock_owned_by_me(sk);
2270	}
2271
2272	sock_ops.sk = sk;
2273	sock_ops.op = op;
2274	if (nargs > 0)
2275		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2276
2277	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2278	if (ret == 0)
2279		ret = sock_ops.reply;
2280	else
2281		ret = -1;
2282	return ret;
2283}
2284
2285static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2286{
2287	u32 args[2] = {arg1, arg2};
2288
2289	return tcp_call_bpf(sk, op, 2, args);
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293				    u32 arg3)
2294{
2295	u32 args[3] = {arg1, arg2, arg3};
2296
2297	return tcp_call_bpf(sk, op, 3, args);
2298}
2299
2300#else
2301static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2302{
2303	return -EPERM;
2304}
2305
2306static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2307{
2308	return -EPERM;
2309}
2310
2311static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2312				    u32 arg3)
2313{
2314	return -EPERM;
2315}
2316
2317#endif
2318
2319static inline u32 tcp_timeout_init(struct sock *sk)
2320{
2321	int timeout;
2322
2323	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2324
2325	if (timeout <= 0)
2326		timeout = TCP_TIMEOUT_INIT;
2327	return timeout;
2328}
2329
2330static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2331{
2332	int rwnd;
2333
2334	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2335
2336	if (rwnd < 0)
2337		rwnd = 0;
2338	return rwnd;
2339}
2340
2341static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2342{
2343	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2344}
2345
2346static inline void tcp_bpf_rtt(struct sock *sk)
2347{
2348	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2349		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2350}
2351
2352#if IS_ENABLED(CONFIG_SMC)
2353extern struct static_key_false tcp_have_smc;
2354#endif
2355
2356#if IS_ENABLED(CONFIG_TLS_DEVICE)
2357void clean_acked_data_enable(struct inet_connection_sock *icsk,
2358			     void (*cad)(struct sock *sk, u32 ack_seq));
2359void clean_acked_data_disable(struct inet_connection_sock *icsk);
2360void clean_acked_data_flush(void);
2361#endif
2362
2363DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2364static inline void tcp_add_tx_delay(struct sk_buff *skb,
2365				    const struct tcp_sock *tp)
2366{
2367	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2368		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2369}
2370
2371/* Compute Earliest Departure Time for some control packets
2372 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2373 */
2374static inline u64 tcp_transmit_time(const struct sock *sk)
2375{
2376	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2377		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2378			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2379
2380		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2381	}
2382	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383}
2384
2385#endif	/* _TCP_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/tcp_ao.h>
  41#include <net/inet_ecn.h>
  42#include <net/dst.h>
  43#include <net/mptcp.h>
  44
  45#include <linux/seq_file.h>
  46#include <linux/memcontrol.h>
  47#include <linux/bpf-cgroup.h>
  48#include <linux/siphash.h>
  49
  50extern struct inet_hashinfo tcp_hashinfo;
  51
  52DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  53int tcp_orphan_count_sum(void);
  54
  55void tcp_time_wait(struct sock *sk, int state, int timeo);
  56
  57#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  58#define MAX_TCP_OPTION_SPACE 40
  59#define TCP_MIN_SND_MSS		48
  60#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  61
  62/*
  63 * Never offer a window over 32767 without using window scaling. Some
  64 * poor stacks do signed 16bit maths!
  65 */
  66#define MAX_TCP_WINDOW		32767U
  67
  68/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  69#define TCP_MIN_MSS		88U
  70
  71/* The initial MTU to use for probing */
  72#define TCP_BASE_MSS		1024
  73
  74/* probing interval, default to 10 minutes as per RFC4821 */
  75#define TCP_PROBE_INTERVAL	600
  76
  77/* Specify interval when tcp mtu probing will stop */
  78#define TCP_PROBE_THRESHOLD	8
  79
  80/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  81#define TCP_FASTRETRANS_THRESH 3
  82
  83/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  84#define TCP_MAX_QUICKACKS	16U
  85
  86/* Maximal number of window scale according to RFC1323 */
  87#define TCP_MAX_WSCALE		14U
  88
  89/* urg_data states */
  90#define TCP_URG_VALID	0x0100
  91#define TCP_URG_NOTYET	0x0200
  92#define TCP_URG_READ	0x0400
  93
  94#define TCP_RETR1	3	/*
  95				 * This is how many retries it does before it
  96				 * tries to figure out if the gateway is
  97				 * down. Minimal RFC value is 3; it corresponds
  98				 * to ~3sec-8min depending on RTO.
  99				 */
 100
 101#define TCP_RETR2	15	/*
 102				 * This should take at least
 103				 * 90 minutes to time out.
 104				 * RFC1122 says that the limit is 100 sec.
 105				 * 15 is ~13-30min depending on RTO.
 106				 */
 107
 108#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 109				 * when active opening a connection.
 110				 * RFC1122 says the minimum retry MUST
 111				 * be at least 180secs.  Nevertheless
 112				 * this value is corresponding to
 113				 * 63secs of retransmission with the
 114				 * current initial RTO.
 115				 */
 116
 117#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 118				 * when passive opening a connection.
 119				 * This is corresponding to 31secs of
 120				 * retransmission with the current
 121				 * initial RTO.
 122				 */
 123
 124#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 125				  * state, about 60 seconds	*/
 126#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 127                                 /* BSD style FIN_WAIT2 deadlock breaker.
 128				  * It used to be 3min, new value is 60sec,
 129				  * to combine FIN-WAIT-2 timeout with
 130				  * TIME-WAIT timer.
 131				  */
 132#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 133
 134#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 135static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
 136
 137#if HZ >= 100
 138#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 139#define TCP_ATO_MIN	((unsigned)(HZ/25))
 140#else
 141#define TCP_DELACK_MIN	4U
 142#define TCP_ATO_MIN	4U
 143#endif
 144#define TCP_RTO_MAX	((unsigned)(120*HZ))
 145#define TCP_RTO_MIN	((unsigned)(HZ/5))
 146#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 147
 148#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
 149
 150#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 151#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 152						 * used as a fallback RTO for the
 153						 * initial data transmission if no
 154						 * valid RTT sample has been acquired,
 155						 * most likely due to retrans in 3WHS.
 156						 */
 157
 158#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 159					                 * for local resources.
 160					                 */
 161#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 162#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 163#define TCP_KEEPALIVE_INTVL	(75*HZ)
 164
 165#define MAX_TCP_KEEPIDLE	32767
 166#define MAX_TCP_KEEPINTVL	32767
 167#define MAX_TCP_KEEPCNT		127
 168#define MAX_TCP_SYNCNT		127
 169
 170/* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
 171 * to avoid overflows. This assumes a clock smaller than 1 Mhz.
 172 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
 173 */
 174#define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
 175
 
 176#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 177					 * after this time. It should be equal
 178					 * (or greater than) TCP_TIMEWAIT_LEN
 179					 * to provide reliability equal to one
 180					 * provided by timewait state.
 181					 */
 182#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 183					 * timestamps. It must be less than
 184					 * minimal timewait lifetime.
 185					 */
 186/*
 187 *	TCP option
 188 */
 189
 190#define TCPOPT_NOP		1	/* Padding */
 191#define TCPOPT_EOL		0	/* End of options */
 192#define TCPOPT_MSS		2	/* Segment size negotiating */
 193#define TCPOPT_WINDOW		3	/* Window scaling */
 194#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 195#define TCPOPT_SACK             5       /* SACK Block */
 196#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 197#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 198#define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
 199#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 200#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 201#define TCPOPT_EXP		254	/* Experimental */
 202/* Magic number to be after the option value for sharing TCP
 203 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 204 */
 205#define TCPOPT_FASTOPEN_MAGIC	0xF989
 206#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 207
 208/*
 209 *     TCP option lengths
 210 */
 211
 212#define TCPOLEN_MSS            4
 213#define TCPOLEN_WINDOW         3
 214#define TCPOLEN_SACK_PERM      2
 215#define TCPOLEN_TIMESTAMP      10
 216#define TCPOLEN_MD5SIG         18
 217#define TCPOLEN_FASTOPEN_BASE  2
 218#define TCPOLEN_EXP_FASTOPEN_BASE  4
 219#define TCPOLEN_EXP_SMC_BASE   6
 220
 221/* But this is what stacks really send out. */
 222#define TCPOLEN_TSTAMP_ALIGNED		12
 223#define TCPOLEN_WSCALE_ALIGNED		4
 224#define TCPOLEN_SACKPERM_ALIGNED	4
 225#define TCPOLEN_SACK_BASE		2
 226#define TCPOLEN_SACK_BASE_ALIGNED	4
 227#define TCPOLEN_SACK_PERBLOCK		8
 228#define TCPOLEN_MD5SIG_ALIGNED		20
 229#define TCPOLEN_MSS_ALIGNED		4
 230#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 231
 232/* Flags in tp->nonagle */
 233#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 234#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 235#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 236
 237/* TCP thin-stream limits */
 238#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 239
 240/* TCP initial congestion window as per rfc6928 */
 241#define TCP_INIT_CWND		10
 242
 243/* Bit Flags for sysctl_tcp_fastopen */
 244#define	TFO_CLIENT_ENABLE	1
 245#define	TFO_SERVER_ENABLE	2
 246#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 247
 248/* Accept SYN data w/o any cookie option */
 249#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 250
 251/* Force enable TFO on all listeners, i.e., not requiring the
 252 * TCP_FASTOPEN socket option.
 253 */
 254#define	TFO_SERVER_WO_SOCKOPT1	0x400
 255
 256
 257/* sysctl variables for tcp */
 258extern int sysctl_tcp_max_orphans;
 259extern long sysctl_tcp_mem[3];
 260
 261#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 262#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 263#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 264
 265extern atomic_long_t tcp_memory_allocated;
 266DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 267
 268extern struct percpu_counter tcp_sockets_allocated;
 269extern unsigned long tcp_memory_pressure;
 270
 271/* optimized version of sk_under_memory_pressure() for TCP sockets */
 272static inline bool tcp_under_memory_pressure(const struct sock *sk)
 273{
 274	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 275	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 276		return true;
 277
 278	return READ_ONCE(tcp_memory_pressure);
 279}
 280/*
 281 * The next routines deal with comparing 32 bit unsigned ints
 282 * and worry about wraparound (automatic with unsigned arithmetic).
 283 */
 284
 285static inline bool before(__u32 seq1, __u32 seq2)
 286{
 287        return (__s32)(seq1-seq2) < 0;
 288}
 289#define after(seq2, seq1) 	before(seq1, seq2)
 290
 291/* is s2<=s1<=s3 ? */
 292static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 293{
 294	return seq3 - seq2 >= seq1 - seq2;
 295}
 296
 297static inline bool tcp_out_of_memory(struct sock *sk)
 298{
 299	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 300	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 301		return true;
 302	return false;
 303}
 304
 305static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 
 
 306{
 307	sk_wmem_queued_add(sk, -skb->truesize);
 308	if (!skb_zcopy_pure(skb))
 309		sk_mem_uncharge(sk, skb->truesize);
 310	else
 311		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 312	__kfree_skb(skb);
 
 
 
 313}
 314
 315void sk_forced_mem_schedule(struct sock *sk, int size);
 316
 317bool tcp_check_oom(struct sock *sk, int shift);
 318
 319
 320extern struct proto tcp_prot;
 321
 322#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 323#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 324#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 325#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 326
 327void tcp_tasklet_init(void);
 328
 329int tcp_v4_err(struct sk_buff *skb, u32);
 330
 331void tcp_shutdown(struct sock *sk, int how);
 332
 333int tcp_v4_early_demux(struct sk_buff *skb);
 334int tcp_v4_rcv(struct sk_buff *skb);
 335
 336void tcp_remove_empty_skb(struct sock *sk);
 
 337int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 338int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 339int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 340			 size_t size, struct ubuf_info *uarg);
 341void tcp_splice_eof(struct socket *sock);
 
 
 
 
 
 342int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 343int tcp_wmem_schedule(struct sock *sk, int copy);
 344void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 345	      int size_goal);
 346void tcp_release_cb(struct sock *sk);
 347void tcp_wfree(struct sk_buff *skb);
 348void tcp_write_timer_handler(struct sock *sk);
 349void tcp_delack_timer_handler(struct sock *sk);
 350int tcp_ioctl(struct sock *sk, int cmd, int *karg);
 351int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 352void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 353void tcp_rcv_space_adjust(struct sock *sk);
 354int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 355void tcp_twsk_destructor(struct sock *sk);
 356void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 357ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 358			struct pipe_inode_info *pipe, size_t len,
 359			unsigned int flags);
 360struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 361				     bool force_schedule);
 362
 363static inline void tcp_dec_quickack_mode(struct sock *sk)
 
 
 364{
 365	struct inet_connection_sock *icsk = inet_csk(sk);
 366
 367	if (icsk->icsk_ack.quick) {
 368		/* How many ACKs S/ACKing new data have we sent? */
 369		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
 370
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen,
 398			   bool *lost_race);
 399int tcp_child_process(struct sock *parent, struct sock *child,
 400		      struct sk_buff *skb);
 401void tcp_enter_loss(struct sock *sk);
 402void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 403void tcp_clear_retrans(struct tcp_sock *tp);
 404void tcp_update_metrics(struct sock *sk);
 405void tcp_init_metrics(struct sock *sk);
 406void tcp_metrics_init(void);
 407bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 408void __tcp_close(struct sock *sk, long timeout);
 409void tcp_close(struct sock *sk, long timeout);
 410void tcp_init_sock(struct sock *sk);
 411void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 412__poll_t tcp_poll(struct file *file, struct socket *sock,
 413		      struct poll_table_struct *wait);
 414int do_tcp_getsockopt(struct sock *sk, int level,
 415		      int optname, sockptr_t optval, sockptr_t optlen);
 416int tcp_getsockopt(struct sock *sk, int level, int optname,
 417		   char __user *optval, int __user *optlen);
 418bool tcp_bpf_bypass_getsockopt(int level, int optname);
 419int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 420		      sockptr_t optval, unsigned int optlen);
 421int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 422		   unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 426		int flags, int *addr_len);
 427int tcp_set_rcvlowat(struct sock *sk, int val);
 428int tcp_set_window_clamp(struct sock *sk, int val);
 429void tcp_update_recv_tstamps(struct sk_buff *skb,
 430			     struct scm_timestamping_internal *tss);
 431void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 432			struct scm_timestamping_internal *tss);
 433void tcp_data_ready(struct sock *sk);
 434#ifdef CONFIG_MMU
 435int tcp_mmap(struct file *file, struct socket *sock,
 436	     struct vm_area_struct *vma);
 437#endif
 438void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 439		       struct tcp_options_received *opt_rx,
 440		       int estab, struct tcp_fastopen_cookie *foc);
 
 441
 442/*
 443 *	BPF SKB-less helpers
 444 */
 445u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 446			 struct tcphdr *th, u32 *cookie);
 447u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 448			 struct tcphdr *th, u32 *cookie);
 449u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 450u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 451			  const struct tcp_request_sock_ops *af_ops,
 452			  struct sock *sk, struct tcphdr *th);
 453/*
 454 *	TCP v4 functions exported for the inet6 API
 455 */
 456
 457void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 458void tcp_v4_mtu_reduced(struct sock *sk);
 459void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 460void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 461int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 462struct sock *tcp_create_openreq_child(const struct sock *sk,
 463				      struct request_sock *req,
 464				      struct sk_buff *skb);
 465void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 466struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 467				  struct request_sock *req,
 468				  struct dst_entry *dst,
 469				  struct request_sock *req_unhash,
 470				  bool *own_req);
 471int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 472int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 473int tcp_connect(struct sock *sk);
 474enum tcp_synack_type {
 475	TCP_SYNACK_NORMAL,
 476	TCP_SYNACK_FASTOPEN,
 477	TCP_SYNACK_COOKIE,
 478};
 479struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 480				struct request_sock *req,
 481				struct tcp_fastopen_cookie *foc,
 482				enum tcp_synack_type synack_type,
 483				struct sk_buff *syn_skb);
 484int tcp_disconnect(struct sock *sk, int flags);
 485
 486void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 487int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 488void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 489
 490/* From syncookies.c */
 491struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 492				 struct request_sock *req,
 493				 struct dst_entry *dst);
 494int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
 
 495struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 496struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 497					    struct sock *sk, struct sk_buff *skb,
 498					    struct tcp_options_received *tcp_opt,
 499					    int mss, u32 tsoff);
 500
 501#ifdef CONFIG_SYN_COOKIES
 502
 503/* Syncookies use a monotonic timer which increments every 60 seconds.
 504 * This counter is used both as a hash input and partially encoded into
 505 * the cookie value.  A cookie is only validated further if the delta
 506 * between the current counter value and the encoded one is less than this,
 507 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 508 * the counter advances immediately after a cookie is generated).
 509 */
 510#define MAX_SYNCOOKIE_AGE	2
 511#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 512#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 513
 514/* syncookies: remember time of last synqueue overflow
 515 * But do not dirty this field too often (once per second is enough)
 516 * It is racy as we do not hold a lock, but race is very minor.
 517 */
 518static inline void tcp_synq_overflow(const struct sock *sk)
 519{
 520	unsigned int last_overflow;
 521	unsigned int now = jiffies;
 522
 523	if (sk->sk_reuseport) {
 524		struct sock_reuseport *reuse;
 525
 526		reuse = rcu_dereference(sk->sk_reuseport_cb);
 527		if (likely(reuse)) {
 528			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 529			if (!time_between32(now, last_overflow,
 530					    last_overflow + HZ))
 531				WRITE_ONCE(reuse->synq_overflow_ts, now);
 532			return;
 533		}
 534	}
 535
 536	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 537	if (!time_between32(now, last_overflow, last_overflow + HZ))
 538		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
 539}
 540
 541/* syncookies: no recent synqueue overflow on this listening socket? */
 542static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 543{
 544	unsigned int last_overflow;
 545	unsigned int now = jiffies;
 546
 547	if (sk->sk_reuseport) {
 548		struct sock_reuseport *reuse;
 549
 550		reuse = rcu_dereference(sk->sk_reuseport_cb);
 551		if (likely(reuse)) {
 552			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 553			return !time_between32(now, last_overflow - HZ,
 554					       last_overflow +
 555					       TCP_SYNCOOKIE_VALID);
 556		}
 557	}
 558
 559	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 560
 561	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 562	 * then we're under synflood. However, we have to use
 563	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 564	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 565	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 566	 * which could lead to rejecting a valid syncookie.
 567	 */
 568	return !time_between32(now, last_overflow - HZ,
 569			       last_overflow + TCP_SYNCOOKIE_VALID);
 570}
 571
 572static inline u32 tcp_cookie_time(void)
 573{
 574	u64 val = get_jiffies_64();
 575
 576	do_div(val, TCP_SYNCOOKIE_PERIOD);
 577	return val;
 578}
 579
 580u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 581			      u16 *mssp);
 582__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 583u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 584bool cookie_timestamp_decode(const struct net *net,
 585			     struct tcp_options_received *opt);
 586
 587static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
 588{
 589	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
 590		dst_feature(dst, RTAX_FEATURE_ECN);
 591}
 592
 593/* From net/ipv6/syncookies.c */
 594int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
 
 595struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 596
 597u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 598			      const struct tcphdr *th, u16 *mssp);
 599__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 600#endif
 601/* tcp_output.c */
 602
 603void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 604void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 605void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 606			       int nonagle);
 607int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 608int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 609void tcp_retransmit_timer(struct sock *sk);
 610void tcp_xmit_retransmit_queue(struct sock *);
 611void tcp_simple_retransmit(struct sock *);
 612void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 613int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 614enum tcp_queue {
 615	TCP_FRAG_IN_WRITE_QUEUE,
 616	TCP_FRAG_IN_RTX_QUEUE,
 617};
 618int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 619		 struct sk_buff *skb, u32 len,
 620		 unsigned int mss_now, gfp_t gfp);
 621
 622void tcp_send_probe0(struct sock *);
 
 623int tcp_write_wakeup(struct sock *, int mib);
 624void tcp_send_fin(struct sock *sk);
 625void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 626int tcp_send_synack(struct sock *);
 627void tcp_push_one(struct sock *, unsigned int mss_now);
 628void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 629void tcp_send_ack(struct sock *sk);
 630void tcp_send_delayed_ack(struct sock *sk);
 631void tcp_send_loss_probe(struct sock *sk);
 632bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 633void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 634			     const struct sk_buff *next_skb);
 635
 636/* tcp_input.c */
 637void tcp_rearm_rto(struct sock *sk);
 638void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 639void tcp_reset(struct sock *sk, struct sk_buff *skb);
 
 640void tcp_fin(struct sock *sk);
 641void tcp_check_space(struct sock *sk);
 642void tcp_sack_compress_send_ack(struct sock *sk);
 643
 644/* tcp_timer.c */
 645void tcp_init_xmit_timers(struct sock *);
 646static inline void tcp_clear_xmit_timers(struct sock *sk)
 647{
 648	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 649		__sock_put(sk);
 650
 651	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 652		__sock_put(sk);
 653
 654	inet_csk_clear_xmit_timers(sk);
 655}
 656
 657unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 658unsigned int tcp_current_mss(struct sock *sk);
 659u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 660
 661/* Bound MSS / TSO packet size with the half of the window */
 662static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 663{
 664	int cutoff;
 665
 666	/* When peer uses tiny windows, there is no use in packetizing
 667	 * to sub-MSS pieces for the sake of SWS or making sure there
 668	 * are enough packets in the pipe for fast recovery.
 669	 *
 670	 * On the other hand, for extremely large MSS devices, handling
 671	 * smaller than MSS windows in this way does make sense.
 672	 */
 673	if (tp->max_window > TCP_MSS_DEFAULT)
 674		cutoff = (tp->max_window >> 1);
 675	else
 676		cutoff = tp->max_window;
 677
 678	if (cutoff && pktsize > cutoff)
 679		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 680	else
 681		return pktsize;
 682}
 683
 684/* tcp.c */
 685void tcp_get_info(struct sock *, struct tcp_info *);
 686
 687/* Read 'sendfile()'-style from a TCP socket */
 688int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 689		  sk_read_actor_t recv_actor);
 690int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 691struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 692void tcp_read_done(struct sock *sk, size_t len);
 693
 694void tcp_initialize_rcv_mss(struct sock *sk);
 695
 696int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 697int tcp_mss_to_mtu(struct sock *sk, int mss);
 698void tcp_mtup_init(struct sock *sk);
 699
 700static inline void tcp_bound_rto(const struct sock *sk)
 701{
 702	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 703		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 704}
 705
 706static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 707{
 708	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 709}
 710
 711static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 712{
 713	/* mptcp hooks are only on the slow path */
 714	if (sk_is_mptcp((struct sock *)tp))
 715		return;
 716
 717	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 718			       ntohl(TCP_FLAG_ACK) |
 719			       snd_wnd);
 720}
 721
 722static inline void tcp_fast_path_on(struct tcp_sock *tp)
 723{
 724	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 725}
 726
 727static inline void tcp_fast_path_check(struct sock *sk)
 728{
 729	struct tcp_sock *tp = tcp_sk(sk);
 730
 731	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 732	    tp->rcv_wnd &&
 733	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 734	    !tp->urg_data)
 735		tcp_fast_path_on(tp);
 736}
 737
 738u32 tcp_delack_max(const struct sock *sk);
 739
 740/* Compute the actual rto_min value */
 741static inline u32 tcp_rto_min(const struct sock *sk)
 742{
 743	const struct dst_entry *dst = __sk_dst_get(sk);
 744	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 745
 746	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 747		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 748	return rto_min;
 749}
 750
 751static inline u32 tcp_rto_min_us(const struct sock *sk)
 752{
 753	return jiffies_to_usecs(tcp_rto_min(sk));
 754}
 755
 756static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 757{
 758	return dst_metric_locked(dst, RTAX_CC_ALGO);
 759}
 760
 761/* Minimum RTT in usec. ~0 means not available. */
 762static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 763{
 764	return minmax_get(&tp->rtt_min);
 765}
 766
 767/* Compute the actual receive window we are currently advertising.
 768 * Rcv_nxt can be after the window if our peer push more data
 769 * than the offered window.
 770 */
 771static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 772{
 773	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 774
 775	if (win < 0)
 776		win = 0;
 777	return (u32) win;
 778}
 779
 780/* Choose a new window, without checks for shrinking, and without
 781 * scaling applied to the result.  The caller does these things
 782 * if necessary.  This is a "raw" window selection.
 783 */
 784u32 __tcp_select_window(struct sock *sk);
 785
 786void tcp_send_window_probe(struct sock *sk);
 787
 788/* TCP uses 32bit jiffies to save some space.
 789 * Note that this is different from tcp_time_stamp, which
 790 * historically has been the same until linux-4.13.
 791 */
 792#define tcp_jiffies32 ((u32)jiffies)
 793
 794/*
 795 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 796 * It is no longer tied to jiffies, but to 1 ms clock.
 797 * Note: double check if you want to use tcp_jiffies32 instead of this.
 798 */
 799#define TCP_TS_HZ	1000
 800
 801static inline u64 tcp_clock_ns(void)
 802{
 803	return ktime_get_ns();
 804}
 805
 806static inline u64 tcp_clock_us(void)
 807{
 808	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 809}
 810
 811static inline u64 tcp_clock_ms(void)
 
 812{
 813	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
 814}
 815
 816/* TCP Timestamp included in TS option (RFC 1323) can either use ms
 817 * or usec resolution. Each socket carries a flag to select one or other
 818 * resolution, as the route attribute could change anytime.
 819 * Each flow must stick to initial resolution.
 820 */
 821static inline u32 tcp_clock_ts(bool usec_ts)
 822{
 823	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
 824}
 825
 826static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
 827{
 828	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
 829}
 830
 831static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
 
 832{
 833	if (tp->tcp_usec_ts)
 834		return tp->tcp_mstamp;
 835	return tcp_time_stamp_ms(tp);
 836}
 837
 838void tcp_mstamp_refresh(struct tcp_sock *tp);
 839
 840static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 841{
 842	return max_t(s64, t1 - t0, 0);
 843}
 844
 
 
 
 
 
 845/* provide the departure time in us unit */
 846static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 847{
 848	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 849}
 850
 851/* Provide skb TSval in usec or ms unit */
 852static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
 853{
 854	if (usec_ts)
 855		return tcp_skb_timestamp_us(skb);
 856
 857	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
 858}
 859
 860static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
 861{
 862	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
 863}
 864
 865static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
 866{
 867	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
 868}
 869
 870#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 871
 872#define TCPHDR_FIN 0x01
 873#define TCPHDR_SYN 0x02
 874#define TCPHDR_RST 0x04
 875#define TCPHDR_PSH 0x08
 876#define TCPHDR_ACK 0x10
 877#define TCPHDR_URG 0x20
 878#define TCPHDR_ECE 0x40
 879#define TCPHDR_CWR 0x80
 880
 881#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 882
 883/* This is what the send packet queuing engine uses to pass
 884 * TCP per-packet control information to the transmission code.
 885 * We also store the host-order sequence numbers in here too.
 886 * This is 44 bytes if IPV6 is enabled.
 887 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 888 */
 889struct tcp_skb_cb {
 890	__u32		seq;		/* Starting sequence number	*/
 891	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 892	union {
 893		/* Note : tcp_tw_isn is used in input path only
 894		 *	  (isn chosen by tcp_timewait_state_process())
 895		 *
 896		 * 	  tcp_gso_segs/size are used in write queue only,
 897		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 898		 */
 899		__u32		tcp_tw_isn;
 900		struct {
 901			u16	tcp_gso_segs;
 902			u16	tcp_gso_size;
 903		};
 904	};
 905	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 906
 907	__u8		sacked;		/* State flags for SACK.	*/
 908#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 909#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 910#define TCPCB_LOST		0x04	/* SKB is lost			*/
 911#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 912#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 913#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 914#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 915				TCPCB_REPAIRED)
 916
 917	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 918	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 919			eor:1,		/* Is skb MSG_EOR marked? */
 920			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 921			unused:5;
 922	__u32		ack_seq;	/* Sequence number ACK'd	*/
 923	union {
 924		struct {
 925#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 926			/* There is space for up to 24 bytes */
 927			__u32 is_app_limited:1, /* cwnd not fully used? */
 928			      delivered_ce:20,
 929			      unused:11;
 930			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 931			__u32 delivered;
 932			/* start of send pipeline phase */
 933			u64 first_tx_mstamp;
 934			/* when we reached the "delivered" count */
 935			u64 delivered_mstamp;
 936		} tx;   /* only used for outgoing skbs */
 937		union {
 938			struct inet_skb_parm	h4;
 939#if IS_ENABLED(CONFIG_IPV6)
 940			struct inet6_skb_parm	h6;
 941#endif
 942		} header;	/* For incoming skbs */
 943	};
 944};
 945
 946#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 947
 948extern const struct inet_connection_sock_af_ops ipv4_specific;
 949
 950#if IS_ENABLED(CONFIG_IPV6)
 951/* This is the variant of inet6_iif() that must be used by TCP,
 952 * as TCP moves IP6CB into a different location in skb->cb[]
 953 */
 954static inline int tcp_v6_iif(const struct sk_buff *skb)
 955{
 956	return TCP_SKB_CB(skb)->header.h6.iif;
 957}
 958
 959static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 960{
 961	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 962
 963	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 964}
 965
 966/* TCP_SKB_CB reference means this can not be used from early demux */
 967static inline int tcp_v6_sdif(const struct sk_buff *skb)
 968{
 969#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 970	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 971		return TCP_SKB_CB(skb)->header.h6.iif;
 972#endif
 973	return 0;
 974}
 975
 976extern const struct inet_connection_sock_af_ops ipv6_specific;
 977
 978INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 979INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 980void tcp_v6_early_demux(struct sk_buff *skb);
 981
 982#endif
 983
 984/* TCP_SKB_CB reference means this can not be used from early demux */
 985static inline int tcp_v4_sdif(struct sk_buff *skb)
 986{
 987#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 988	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 989		return TCP_SKB_CB(skb)->header.h4.iif;
 990#endif
 991	return 0;
 992}
 993
 994/* Due to TSO, an SKB can be composed of multiple actual
 995 * packets.  To keep these tracked properly, we use this.
 996 */
 997static inline int tcp_skb_pcount(const struct sk_buff *skb)
 998{
 999	return TCP_SKB_CB(skb)->tcp_gso_segs;
1000}
1001
1002static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1003{
1004	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1005}
1006
1007static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1008{
1009	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1010}
1011
1012/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1013static inline int tcp_skb_mss(const struct sk_buff *skb)
1014{
1015	return TCP_SKB_CB(skb)->tcp_gso_size;
1016}
1017
1018static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1019{
1020	return likely(!TCP_SKB_CB(skb)->eor);
1021}
1022
1023static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1024					const struct sk_buff *from)
1025{
1026	return likely(tcp_skb_can_collapse_to(to) &&
1027		      mptcp_skb_can_collapse(to, from) &&
1028		      skb_pure_zcopy_same(to, from));
1029}
1030
1031/* Events passed to congestion control interface */
1032enum tcp_ca_event {
1033	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1034	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1035	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1036	CA_EVENT_LOSS,		/* loss timeout */
1037	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1038	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1039};
1040
1041/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1042enum tcp_ca_ack_event_flags {
1043	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1044	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1045	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1046};
1047
1048/*
1049 * Interface for adding new TCP congestion control handlers
1050 */
1051#define TCP_CA_NAME_MAX	16
1052#define TCP_CA_MAX	128
1053#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1054
1055#define TCP_CA_UNSPEC	0
1056
1057/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1058#define TCP_CONG_NON_RESTRICTED 0x1
1059/* Requires ECN/ECT set on all packets */
1060#define TCP_CONG_NEEDS_ECN	0x2
1061#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1062
1063union tcp_cc_info;
1064
1065struct ack_sample {
1066	u32 pkts_acked;
1067	s32 rtt_us;
1068	u32 in_flight;
1069};
1070
1071/* A rate sample measures the number of (original/retransmitted) data
1072 * packets delivered "delivered" over an interval of time "interval_us".
1073 * The tcp_rate.c code fills in the rate sample, and congestion
1074 * control modules that define a cong_control function to run at the end
1075 * of ACK processing can optionally chose to consult this sample when
1076 * setting cwnd and pacing rate.
1077 * A sample is invalid if "delivered" or "interval_us" is negative.
1078 */
1079struct rate_sample {
1080	u64  prior_mstamp; /* starting timestamp for interval */
1081	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1082	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1083	s32  delivered;		/* number of packets delivered over interval */
1084	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1085	long interval_us;	/* time for tp->delivered to incr "delivered" */
1086	u32 snd_interval_us;	/* snd interval for delivered packets */
1087	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1088	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1089	int  losses;		/* number of packets marked lost upon ACK */
1090	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1091	u32  prior_in_flight;	/* in flight before this ACK */
1092	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1093	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1094	bool is_retrans;	/* is sample from retransmission? */
1095	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1096};
1097
1098struct tcp_congestion_ops {
1099/* fast path fields are put first to fill one cache line */
1100
1101	/* return slow start threshold (required) */
1102	u32 (*ssthresh)(struct sock *sk);
1103
1104	/* do new cwnd calculation (required) */
1105	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1106
1107	/* call before changing ca_state (optional) */
1108	void (*set_state)(struct sock *sk, u8 new_state);
1109
1110	/* call when cwnd event occurs (optional) */
1111	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1112
1113	/* call when ack arrives (optional) */
1114	void (*in_ack_event)(struct sock *sk, u32 flags);
1115
1116	/* hook for packet ack accounting (optional) */
1117	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1118
1119	/* override sysctl_tcp_min_tso_segs */
1120	u32 (*min_tso_segs)(struct sock *sk);
1121
1122	/* call when packets are delivered to update cwnd and pacing rate,
1123	 * after all the ca_state processing. (optional)
1124	 */
1125	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1126
1127
1128	/* new value of cwnd after loss (required) */
1129	u32  (*undo_cwnd)(struct sock *sk);
1130	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1131	u32 (*sndbuf_expand)(struct sock *sk);
1132
1133/* control/slow paths put last */
1134	/* get info for inet_diag (optional) */
1135	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1136			   union tcp_cc_info *info);
1137
1138	char 			name[TCP_CA_NAME_MAX];
1139	struct module		*owner;
1140	struct list_head	list;
1141	u32			key;
1142	u32			flags;
1143
1144	/* initialize private data (optional) */
1145	void (*init)(struct sock *sk);
1146	/* cleanup private data  (optional) */
1147	void (*release)(struct sock *sk);
1148} ____cacheline_aligned_in_smp;
1149
1150int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1151void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1152int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1153				  struct tcp_congestion_ops *old_type);
1154int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1155
1156void tcp_assign_congestion_control(struct sock *sk);
1157void tcp_init_congestion_control(struct sock *sk);
1158void tcp_cleanup_congestion_control(struct sock *sk);
1159int tcp_set_default_congestion_control(struct net *net, const char *name);
1160void tcp_get_default_congestion_control(struct net *net, char *name);
1161void tcp_get_available_congestion_control(char *buf, size_t len);
1162void tcp_get_allowed_congestion_control(char *buf, size_t len);
1163int tcp_set_allowed_congestion_control(char *allowed);
1164int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1165			       bool cap_net_admin);
1166u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1167void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1168
1169u32 tcp_reno_ssthresh(struct sock *sk);
1170u32 tcp_reno_undo_cwnd(struct sock *sk);
1171void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1172extern struct tcp_congestion_ops tcp_reno;
1173
1174struct tcp_congestion_ops *tcp_ca_find(const char *name);
1175struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1176u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1177#ifdef CONFIG_INET
1178char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1179#else
1180static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1181{
1182	return NULL;
1183}
1184#endif
1185
1186static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1187{
1188	const struct inet_connection_sock *icsk = inet_csk(sk);
1189
1190	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1191}
1192
 
 
 
 
 
 
 
 
 
1193static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1194{
1195	const struct inet_connection_sock *icsk = inet_csk(sk);
1196
1197	if (icsk->icsk_ca_ops->cwnd_event)
1198		icsk->icsk_ca_ops->cwnd_event(sk, event);
1199}
1200
1201/* From tcp_cong.c */
1202void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1203
1204/* From tcp_rate.c */
1205void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1206void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1207			    struct rate_sample *rs);
1208void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1209		  bool is_sack_reneg, struct rate_sample *rs);
1210void tcp_rate_check_app_limited(struct sock *sk);
1211
1212static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1213{
1214	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1215}
1216
1217/* These functions determine how the current flow behaves in respect of SACK
1218 * handling. SACK is negotiated with the peer, and therefore it can vary
1219 * between different flows.
1220 *
1221 * tcp_is_sack - SACK enabled
1222 * tcp_is_reno - No SACK
1223 */
1224static inline int tcp_is_sack(const struct tcp_sock *tp)
1225{
1226	return likely(tp->rx_opt.sack_ok);
1227}
1228
1229static inline bool tcp_is_reno(const struct tcp_sock *tp)
1230{
1231	return !tcp_is_sack(tp);
1232}
1233
1234static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1235{
1236	return tp->sacked_out + tp->lost_out;
1237}
1238
1239/* This determines how many packets are "in the network" to the best
1240 * of our knowledge.  In many cases it is conservative, but where
1241 * detailed information is available from the receiver (via SACK
1242 * blocks etc.) we can make more aggressive calculations.
1243 *
1244 * Use this for decisions involving congestion control, use just
1245 * tp->packets_out to determine if the send queue is empty or not.
1246 *
1247 * Read this equation as:
1248 *
1249 *	"Packets sent once on transmission queue" MINUS
1250 *	"Packets left network, but not honestly ACKed yet" PLUS
1251 *	"Packets fast retransmitted"
1252 */
1253static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1254{
1255	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1256}
1257
1258#define TCP_INFINITE_SSTHRESH	0x7fffffff
1259
1260static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1261{
1262	return tp->snd_cwnd;
1263}
1264
1265static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1266{
1267	WARN_ON_ONCE((int)val <= 0);
1268	tp->snd_cwnd = val;
1269}
1270
1271static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1272{
1273	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1274}
1275
1276static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1277{
1278	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1279}
1280
1281static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1282{
1283	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1284	       (1 << inet_csk(sk)->icsk_ca_state);
1285}
1286
1287/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1288 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1289 * ssthresh.
1290 */
1291static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1292{
1293	const struct tcp_sock *tp = tcp_sk(sk);
1294
1295	if (tcp_in_cwnd_reduction(sk))
1296		return tp->snd_ssthresh;
1297	else
1298		return max(tp->snd_ssthresh,
1299			   ((tcp_snd_cwnd(tp) >> 1) +
1300			    (tcp_snd_cwnd(tp) >> 2)));
1301}
1302
1303/* Use define here intentionally to get WARN_ON location shown at the caller */
1304#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1305
1306void tcp_enter_cwr(struct sock *sk);
1307__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1308
1309/* The maximum number of MSS of available cwnd for which TSO defers
1310 * sending if not using sysctl_tcp_tso_win_divisor.
1311 */
1312static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1313{
1314	return 3;
1315}
1316
1317/* Returns end sequence number of the receiver's advertised window */
1318static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1319{
1320	return tp->snd_una + tp->snd_wnd;
1321}
1322
1323/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1324 * flexible approach. The RFC suggests cwnd should not be raised unless
1325 * it was fully used previously. And that's exactly what we do in
1326 * congestion avoidance mode. But in slow start we allow cwnd to grow
1327 * as long as the application has used half the cwnd.
1328 * Example :
1329 *    cwnd is 10 (IW10), but application sends 9 frames.
1330 *    We allow cwnd to reach 18 when all frames are ACKed.
1331 * This check is safe because it's as aggressive as slow start which already
1332 * risks 100% overshoot. The advantage is that we discourage application to
1333 * either send more filler packets or data to artificially blow up the cwnd
1334 * usage, and allow application-limited process to probe bw more aggressively.
1335 */
1336static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1337{
1338	const struct tcp_sock *tp = tcp_sk(sk);
1339
1340	if (tp->is_cwnd_limited)
1341		return true;
1342
1343	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1344	if (tcp_in_slow_start(tp))
1345		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1346
1347	return false;
1348}
1349
1350/* BBR congestion control needs pacing.
1351 * Same remark for SO_MAX_PACING_RATE.
1352 * sch_fq packet scheduler is efficiently handling pacing,
1353 * but is not always installed/used.
1354 * Return true if TCP stack should pace packets itself.
1355 */
1356static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1357{
1358	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1359}
1360
1361/* Estimates in how many jiffies next packet for this flow can be sent.
1362 * Scheduling a retransmit timer too early would be silly.
1363 */
1364static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1365{
1366	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1367
1368	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1369}
1370
1371static inline void tcp_reset_xmit_timer(struct sock *sk,
1372					const int what,
1373					unsigned long when,
1374					const unsigned long max_when)
1375{
1376	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1377				  max_when);
1378}
1379
1380/* Something is really bad, we could not queue an additional packet,
1381 * because qdisc is full or receiver sent a 0 window, or we are paced.
1382 * We do not want to add fuel to the fire, or abort too early,
1383 * so make sure the timer we arm now is at least 200ms in the future,
1384 * regardless of current icsk_rto value (as it could be ~2ms)
1385 */
1386static inline unsigned long tcp_probe0_base(const struct sock *sk)
1387{
1388	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1389}
1390
1391/* Variant of inet_csk_rto_backoff() used for zero window probes */
1392static inline unsigned long tcp_probe0_when(const struct sock *sk,
1393					    unsigned long max_when)
1394{
1395	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1396			   inet_csk(sk)->icsk_backoff);
1397	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1398
1399	return (unsigned long)min_t(u64, when, max_when);
1400}
1401
1402static inline void tcp_check_probe_timer(struct sock *sk)
1403{
1404	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1405		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1406				     tcp_probe0_base(sk), TCP_RTO_MAX);
1407}
1408
1409static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1410{
1411	tp->snd_wl1 = seq;
1412}
1413
1414static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1415{
1416	tp->snd_wl1 = seq;
1417}
1418
1419/*
1420 * Calculate(/check) TCP checksum
1421 */
1422static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1423				   __be32 daddr, __wsum base)
1424{
1425	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1426}
1427
1428static inline bool tcp_checksum_complete(struct sk_buff *skb)
1429{
1430	return !skb_csum_unnecessary(skb) &&
1431		__skb_checksum_complete(skb);
1432}
1433
1434bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1435		     enum skb_drop_reason *reason);
1436
1437
1438int tcp_filter(struct sock *sk, struct sk_buff *skb);
1439void tcp_set_state(struct sock *sk, int state);
1440void tcp_done(struct sock *sk);
1441int tcp_abort(struct sock *sk, int err);
1442
1443static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1444{
1445	rx_opt->dsack = 0;
1446	rx_opt->num_sacks = 0;
1447}
1448
1449void tcp_cwnd_restart(struct sock *sk, s32 delta);
1450
1451static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1452{
1453	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1454	struct tcp_sock *tp = tcp_sk(sk);
1455	s32 delta;
1456
1457	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1458	    tp->packets_out || ca_ops->cong_control)
1459		return;
1460	delta = tcp_jiffies32 - tp->lsndtime;
1461	if (delta > inet_csk(sk)->icsk_rto)
1462		tcp_cwnd_restart(sk, delta);
1463}
1464
1465/* Determine a window scaling and initial window to offer. */
1466void tcp_select_initial_window(const struct sock *sk, int __space,
1467			       __u32 mss, __u32 *rcv_wnd,
1468			       __u32 *window_clamp, int wscale_ok,
1469			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1470
1471static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1472{
1473	s64 scaled_space = (s64)space * scaling_ratio;
1474
1475	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1476}
1477
1478static inline int tcp_win_from_space(const struct sock *sk, int space)
1479{
1480	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1481}
1482
1483/* inverse of __tcp_win_from_space() */
1484static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1485{
1486	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1487
1488	do_div(val, scaling_ratio);
1489	return val;
1490}
1491
1492static inline int tcp_space_from_win(const struct sock *sk, int win)
1493{
1494	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1495}
1496
1497/* Assume a conservative default of 1200 bytes of payload per 4K page.
1498 * This may be adjusted later in tcp_measure_rcv_mss().
1499 */
1500#define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1501				   SKB_TRUESIZE(4096))
1502
1503static inline void tcp_scaling_ratio_init(struct sock *sk)
1504{
1505	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1506}
1507
1508/* Note: caller must be prepared to deal with negative returns */
1509static inline int tcp_space(const struct sock *sk)
1510{
1511	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1512				  READ_ONCE(sk->sk_backlog.len) -
1513				  atomic_read(&sk->sk_rmem_alloc));
1514}
1515
1516static inline int tcp_full_space(const struct sock *sk)
1517{
1518	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1519}
1520
1521static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1522{
1523	int unused_mem = sk_unused_reserved_mem(sk);
1524	struct tcp_sock *tp = tcp_sk(sk);
1525
1526	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1527	if (unused_mem)
1528		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1529					 tcp_win_from_space(sk, unused_mem));
1530}
1531
1532static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1533{
1534	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1535}
1536
1537void tcp_cleanup_rbuf(struct sock *sk, int copied);
1538void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1539
1540
1541/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1542 * If 87.5 % (7/8) of the space has been consumed, we want to override
1543 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1544 * len/truesize ratio.
1545 */
1546static inline bool tcp_rmem_pressure(const struct sock *sk)
1547{
1548	int rcvbuf, threshold;
1549
1550	if (tcp_under_memory_pressure(sk))
1551		return true;
1552
1553	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1554	threshold = rcvbuf - (rcvbuf >> 3);
1555
1556	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1557}
1558
1559static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1560{
1561	const struct tcp_sock *tp = tcp_sk(sk);
1562	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1563
1564	if (avail <= 0)
1565		return false;
1566
1567	return (avail >= target) || tcp_rmem_pressure(sk) ||
1568	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1569}
1570
1571extern void tcp_openreq_init_rwin(struct request_sock *req,
1572				  const struct sock *sk_listener,
1573				  const struct dst_entry *dst);
1574
1575void tcp_enter_memory_pressure(struct sock *sk);
1576void tcp_leave_memory_pressure(struct sock *sk);
1577
1578static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1579{
1580	struct net *net = sock_net((struct sock *)tp);
1581	int val;
1582
1583	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1584	 * and do_tcp_setsockopt().
1585	 */
1586	val = READ_ONCE(tp->keepalive_intvl);
1587
1588	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1589}
1590
1591static inline int keepalive_time_when(const struct tcp_sock *tp)
1592{
1593	struct net *net = sock_net((struct sock *)tp);
1594	int val;
1595
1596	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1597	val = READ_ONCE(tp->keepalive_time);
1598
1599	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1600}
1601
1602static inline int keepalive_probes(const struct tcp_sock *tp)
1603{
1604	struct net *net = sock_net((struct sock *)tp);
1605	int val;
1606
1607	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1608	 * and do_tcp_setsockopt().
1609	 */
1610	val = READ_ONCE(tp->keepalive_probes);
1611
1612	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1613}
1614
1615static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1616{
1617	const struct inet_connection_sock *icsk = &tp->inet_conn;
1618
1619	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1620			  tcp_jiffies32 - tp->rcv_tstamp);
1621}
1622
1623static inline int tcp_fin_time(const struct sock *sk)
1624{
1625	int fin_timeout = tcp_sk(sk)->linger2 ? :
1626		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1627	const int rto = inet_csk(sk)->icsk_rto;
1628
1629	if (fin_timeout < (rto << 2) - (rto >> 1))
1630		fin_timeout = (rto << 2) - (rto >> 1);
1631
1632	return fin_timeout;
1633}
1634
1635static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1636				  int paws_win)
1637{
1638	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1639		return true;
1640	if (unlikely(!time_before32(ktime_get_seconds(),
1641				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1642		return true;
1643	/*
1644	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1645	 * then following tcp messages have valid values. Ignore 0 value,
1646	 * or else 'negative' tsval might forbid us to accept their packets.
1647	 */
1648	if (!rx_opt->ts_recent)
1649		return true;
1650	return false;
1651}
1652
1653static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1654				   int rst)
1655{
1656	if (tcp_paws_check(rx_opt, 0))
1657		return false;
1658
1659	/* RST segments are not recommended to carry timestamp,
1660	   and, if they do, it is recommended to ignore PAWS because
1661	   "their cleanup function should take precedence over timestamps."
1662	   Certainly, it is mistake. It is necessary to understand the reasons
1663	   of this constraint to relax it: if peer reboots, clock may go
1664	   out-of-sync and half-open connections will not be reset.
1665	   Actually, the problem would be not existing if all
1666	   the implementations followed draft about maintaining clock
1667	   via reboots. Linux-2.2 DOES NOT!
1668
1669	   However, we can relax time bounds for RST segments to MSL.
1670	 */
1671	if (rst && !time_before32(ktime_get_seconds(),
1672				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1673		return false;
1674	return true;
1675}
1676
1677bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1678			  int mib_idx, u32 *last_oow_ack_time);
1679
1680static inline void tcp_mib_init(struct net *net)
1681{
1682	/* See RFC 2012 */
1683	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1684	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1685	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1686	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1687}
1688
1689/* from STCP */
1690static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1691{
1692	tp->lost_skb_hint = NULL;
1693}
1694
1695static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1696{
1697	tcp_clear_retrans_hints_partial(tp);
1698	tp->retransmit_skb_hint = NULL;
1699}
1700
1701#define tcp_md5_addr tcp_ao_addr
 
 
 
 
 
1702
1703/* - key database */
1704struct tcp_md5sig_key {
1705	struct hlist_node	node;
1706	u8			keylen;
1707	u8			family; /* AF_INET or AF_INET6 */
1708	u8			prefixlen;
1709	u8			flags;
1710	union tcp_md5_addr	addr;
1711	int			l3index; /* set if key added with L3 scope */
1712	u8			key[TCP_MD5SIG_MAXKEYLEN];
1713	struct rcu_head		rcu;
1714};
1715
1716/* - sock block */
1717struct tcp_md5sig_info {
1718	struct hlist_head	head;
1719	struct rcu_head		rcu;
1720};
1721
1722/* - pseudo header */
1723struct tcp4_pseudohdr {
1724	__be32		saddr;
1725	__be32		daddr;
1726	__u8		pad;
1727	__u8		protocol;
1728	__be16		len;
1729};
1730
1731struct tcp6_pseudohdr {
1732	struct in6_addr	saddr;
1733	struct in6_addr daddr;
1734	__be32		len;
1735	__be32		protocol;	/* including padding */
1736};
1737
1738union tcp_md5sum_block {
1739	struct tcp4_pseudohdr ip4;
1740#if IS_ENABLED(CONFIG_IPV6)
1741	struct tcp6_pseudohdr ip6;
1742#endif
1743};
1744
1745/*
1746 * struct tcp_sigpool - per-CPU pool of ahash_requests
1747 * @scratch: per-CPU temporary area, that can be used between
1748 *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1749 *	     crypto request
1750 * @req: pre-allocated ahash request
1751 */
1752struct tcp_sigpool {
1753	void *scratch;
1754	struct ahash_request *req;
1755};
1756
1757int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1758void tcp_sigpool_get(unsigned int id);
1759void tcp_sigpool_release(unsigned int id);
1760int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1761			      const struct sk_buff *skb,
1762			      unsigned int header_len);
1763
1764/**
1765 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1766 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1767 * @c: returned tcp_sigpool for usage (uninitialized on failure)
1768 *
1769 * Returns 0 on success, error otherwise.
1770 */
1771int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1772/**
1773 * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1774 * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1775 */
1776void tcp_sigpool_end(struct tcp_sigpool *c);
1777size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1778/* - functions */
1779int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1780			const struct sock *sk, const struct sk_buff *skb);
1781int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1782		   int family, u8 prefixlen, int l3index, u8 flags,
1783		   const u8 *newkey, u8 newkeylen);
1784int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1785		     int family, u8 prefixlen, int l3index,
1786		     struct tcp_md5sig_key *key);
1787
1788int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1789		   int family, u8 prefixlen, int l3index, u8 flags);
1790void tcp_clear_md5_list(struct sock *sk);
1791struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1792					 const struct sock *addr_sk);
1793
1794#ifdef CONFIG_TCP_MD5SIG
 
 
1795struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796					   const union tcp_md5_addr *addr,
1797					   int family, bool any_l3index);
1798static inline struct tcp_md5sig_key *
1799tcp_md5_do_lookup(const struct sock *sk, int l3index,
1800		  const union tcp_md5_addr *addr, int family)
1801{
1802	if (!static_branch_unlikely(&tcp_md5_needed.key))
1803		return NULL;
1804	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1805}
1806
1807static inline struct tcp_md5sig_key *
1808tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1809			      const union tcp_md5_addr *addr, int family)
1810{
1811	if (!static_branch_unlikely(&tcp_md5_needed.key))
1812		return NULL;
1813	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1814}
1815
1816enum skb_drop_reason
1817tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1818		     const void *saddr, const void *daddr,
1819		     int family, int l3index, const __u8 *hash_location);
1820
1821
1822#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1823#else
1824static inline struct tcp_md5sig_key *
1825tcp_md5_do_lookup(const struct sock *sk, int l3index,
1826		  const union tcp_md5_addr *addr, int family)
1827{
1828	return NULL;
1829}
 
 
1830
1831static inline struct tcp_md5sig_key *
1832tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1833			      const union tcp_md5_addr *addr, int family)
1834{
1835	return NULL;
1836}
1837
1838static inline enum skb_drop_reason
1839tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1840		     const void *saddr, const void *daddr,
1841		     int family, int l3index, const __u8 *hash_location)
1842{
1843	return SKB_NOT_DROPPED_YET;
1844}
1845#define tcp_twsk_md5_key(twsk)	NULL
1846#endif
1847
1848int tcp_md5_alloc_sigpool(void);
1849void tcp_md5_release_sigpool(void);
1850void tcp_md5_add_sigpool(void);
1851extern int tcp_md5_sigpool_id;
1852
1853int tcp_md5_hash_key(struct tcp_sigpool *hp,
 
 
1854		     const struct tcp_md5sig_key *key);
1855
1856/* From tcp_fastopen.c */
1857void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1858			    struct tcp_fastopen_cookie *cookie);
1859void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1860			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1861			    u16 try_exp);
1862struct tcp_fastopen_request {
1863	/* Fast Open cookie. Size 0 means a cookie request */
1864	struct tcp_fastopen_cookie	cookie;
1865	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1866	size_t				size;
1867	int				copied;	/* queued in tcp_connect() */
1868	struct ubuf_info		*uarg;
1869};
1870void tcp_free_fastopen_req(struct tcp_sock *tp);
1871void tcp_fastopen_destroy_cipher(struct sock *sk);
1872void tcp_fastopen_ctx_destroy(struct net *net);
1873int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1874			      void *primary_key, void *backup_key);
1875int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1876			    u64 *key);
1877void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1878struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1879			      struct request_sock *req,
1880			      struct tcp_fastopen_cookie *foc,
1881			      const struct dst_entry *dst);
1882void tcp_fastopen_init_key_once(struct net *net);
1883bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1884			     struct tcp_fastopen_cookie *cookie);
1885bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1886#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1887#define TCP_FASTOPEN_KEY_MAX 2
1888#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1889	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1890
1891/* Fastopen key context */
1892struct tcp_fastopen_context {
1893	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1894	int		num;
1895	struct rcu_head	rcu;
1896};
1897
1898void tcp_fastopen_active_disable(struct sock *sk);
1899bool tcp_fastopen_active_should_disable(struct sock *sk);
1900void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1901void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1902
1903/* Caller needs to wrap with rcu_read_(un)lock() */
1904static inline
1905struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1906{
1907	struct tcp_fastopen_context *ctx;
1908
1909	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1910	if (!ctx)
1911		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1912	return ctx;
1913}
1914
1915static inline
1916bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1917			       const struct tcp_fastopen_cookie *orig)
1918{
1919	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1920	    orig->len == foc->len &&
1921	    !memcmp(orig->val, foc->val, foc->len))
1922		return true;
1923	return false;
1924}
1925
1926static inline
1927int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1928{
1929	return ctx->num;
1930}
1931
1932/* Latencies incurred by various limits for a sender. They are
1933 * chronograph-like stats that are mutually exclusive.
1934 */
1935enum tcp_chrono {
1936	TCP_CHRONO_UNSPEC,
1937	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1938	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1939	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1940	__TCP_CHRONO_MAX,
1941};
1942
1943void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1944void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1945
1946/* This helper is needed, because skb->tcp_tsorted_anchor uses
1947 * the same memory storage than skb->destructor/_skb_refdst
1948 */
1949static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1950{
1951	skb->destructor = NULL;
1952	skb->_skb_refdst = 0UL;
1953}
1954
1955#define tcp_skb_tsorted_save(skb) {		\
1956	unsigned long _save = skb->_skb_refdst;	\
1957	skb->_skb_refdst = 0UL;
1958
1959#define tcp_skb_tsorted_restore(skb)		\
1960	skb->_skb_refdst = _save;		\
1961}
1962
1963void tcp_write_queue_purge(struct sock *sk);
1964
1965static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1966{
1967	return skb_rb_first(&sk->tcp_rtx_queue);
1968}
1969
1970static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1971{
1972	return skb_rb_last(&sk->tcp_rtx_queue);
1973}
1974
 
 
 
 
 
1975static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1976{
1977	return skb_peek_tail(&sk->sk_write_queue);
1978}
1979
1980#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1981	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1982
1983static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1984{
1985	return skb_peek(&sk->sk_write_queue);
1986}
1987
1988static inline bool tcp_skb_is_last(const struct sock *sk,
1989				   const struct sk_buff *skb)
1990{
1991	return skb_queue_is_last(&sk->sk_write_queue, skb);
1992}
1993
1994/**
1995 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1996 * @sk: socket
1997 *
1998 * Since the write queue can have a temporary empty skb in it,
1999 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2000 */
2001static inline bool tcp_write_queue_empty(const struct sock *sk)
2002{
2003	const struct tcp_sock *tp = tcp_sk(sk);
2004
2005	return tp->write_seq == tp->snd_nxt;
2006}
2007
2008static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2009{
2010	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2011}
2012
2013static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2014{
2015	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2016}
2017
2018static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2019{
2020	__skb_queue_tail(&sk->sk_write_queue, skb);
2021
2022	/* Queue it, remembering where we must start sending. */
2023	if (sk->sk_write_queue.next == skb)
2024		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2025}
2026
2027/* Insert new before skb on the write queue of sk.  */
2028static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2029						  struct sk_buff *skb,
2030						  struct sock *sk)
2031{
2032	__skb_queue_before(&sk->sk_write_queue, skb, new);
2033}
2034
2035static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2036{
2037	tcp_skb_tsorted_anchor_cleanup(skb);
2038	__skb_unlink(skb, &sk->sk_write_queue);
2039}
2040
2041void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2042
2043static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2044{
2045	tcp_skb_tsorted_anchor_cleanup(skb);
2046	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2047}
2048
2049static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2050{
2051	list_del(&skb->tcp_tsorted_anchor);
2052	tcp_rtx_queue_unlink(skb, sk);
2053	tcp_wmem_free_skb(sk, skb);
2054}
2055
2056static inline void tcp_push_pending_frames(struct sock *sk)
2057{
2058	if (tcp_send_head(sk)) {
2059		struct tcp_sock *tp = tcp_sk(sk);
2060
2061		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2062	}
2063}
2064
2065/* Start sequence of the skb just after the highest skb with SACKed
2066 * bit, valid only if sacked_out > 0 or when the caller has ensured
2067 * validity by itself.
2068 */
2069static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2070{
2071	if (!tp->sacked_out)
2072		return tp->snd_una;
2073
2074	if (tp->highest_sack == NULL)
2075		return tp->snd_nxt;
2076
2077	return TCP_SKB_CB(tp->highest_sack)->seq;
2078}
2079
2080static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2081{
2082	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2083}
2084
2085static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2086{
2087	return tcp_sk(sk)->highest_sack;
2088}
2089
2090static inline void tcp_highest_sack_reset(struct sock *sk)
2091{
2092	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2093}
2094
2095/* Called when old skb is about to be deleted and replaced by new skb */
2096static inline void tcp_highest_sack_replace(struct sock *sk,
2097					    struct sk_buff *old,
2098					    struct sk_buff *new)
2099{
2100	if (old == tcp_highest_sack(sk))
2101		tcp_sk(sk)->highest_sack = new;
2102}
2103
2104/* This helper checks if socket has IP_TRANSPARENT set */
2105static inline bool inet_sk_transparent(const struct sock *sk)
2106{
2107	switch (sk->sk_state) {
2108	case TCP_TIME_WAIT:
2109		return inet_twsk(sk)->tw_transparent;
2110	case TCP_NEW_SYN_RECV:
2111		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2112	}
2113	return inet_test_bit(TRANSPARENT, sk);
2114}
2115
2116/* Determines whether this is a thin stream (which may suffer from
2117 * increased latency). Used to trigger latency-reducing mechanisms.
2118 */
2119static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2120{
2121	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2122}
2123
2124/* /proc */
2125enum tcp_seq_states {
2126	TCP_SEQ_STATE_LISTENING,
2127	TCP_SEQ_STATE_ESTABLISHED,
2128};
2129
2130void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2131void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2132void tcp_seq_stop(struct seq_file *seq, void *v);
2133
2134struct tcp_seq_afinfo {
2135	sa_family_t			family;
2136};
2137
2138struct tcp_iter_state {
2139	struct seq_net_private	p;
2140	enum tcp_seq_states	state;
2141	struct sock		*syn_wait_sk;
 
2142	int			bucket, offset, sbucket, num;
2143	loff_t			last_pos;
2144};
2145
2146extern struct request_sock_ops tcp_request_sock_ops;
2147extern struct request_sock_ops tcp6_request_sock_ops;
2148
2149void tcp_v4_destroy_sock(struct sock *sk);
2150
2151struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2152				netdev_features_t features);
2153struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2154INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2155INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2156INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2157INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2158#ifdef CONFIG_INET
2159void tcp_gro_complete(struct sk_buff *skb);
2160#else
2161static inline void tcp_gro_complete(struct sk_buff *skb) { }
2162#endif
2163
2164void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2165
2166static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2167{
2168	struct net *net = sock_net((struct sock *)tp);
2169	u32 val;
2170
2171	val = READ_ONCE(tp->notsent_lowat);
2172
2173	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2174}
2175
2176bool tcp_stream_memory_free(const struct sock *sk, int wake);
2177
2178#ifdef CONFIG_PROC_FS
2179int tcp4_proc_init(void);
2180void tcp4_proc_exit(void);
2181#endif
2182
2183int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2184int tcp_conn_request(struct request_sock_ops *rsk_ops,
2185		     const struct tcp_request_sock_ops *af_ops,
2186		     struct sock *sk, struct sk_buff *skb);
2187
2188/* TCP af-specific functions */
2189struct tcp_sock_af_ops {
2190#ifdef CONFIG_TCP_MD5SIG
2191	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2192						const struct sock *addr_sk);
2193	int		(*calc_md5_hash)(char *location,
2194					 const struct tcp_md5sig_key *md5,
2195					 const struct sock *sk,
2196					 const struct sk_buff *skb);
2197	int		(*md5_parse)(struct sock *sk,
2198				     int optname,
2199				     sockptr_t optval,
2200				     int optlen);
2201#endif
2202#ifdef CONFIG_TCP_AO
2203	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2204	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2205					struct sock *addr_sk,
2206					int sndid, int rcvid);
2207	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2208			      const struct sock *sk,
2209			      __be32 sisn, __be32 disn, bool send);
2210	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2211			    const struct sock *sk, const struct sk_buff *skb,
2212			    const u8 *tkey, int hash_offset, u32 sne);
2213#endif
2214};
2215
2216struct tcp_request_sock_ops {
2217	u16 mss_clamp;
2218#ifdef CONFIG_TCP_MD5SIG
2219	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2220						 const struct sock *addr_sk);
2221	int		(*calc_md5_hash) (char *location,
2222					  const struct tcp_md5sig_key *md5,
2223					  const struct sock *sk,
2224					  const struct sk_buff *skb);
2225#endif
2226#ifdef CONFIG_TCP_AO
2227	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2228					struct request_sock *req,
2229					int sndid, int rcvid);
2230	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2231	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2232			      struct request_sock *req, const struct sk_buff *skb,
2233			      int hash_offset, u32 sne);
2234#endif
2235#ifdef CONFIG_SYN_COOKIES
2236	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2237				 __u16 *mss);
2238#endif
2239	struct dst_entry *(*route_req)(const struct sock *sk,
2240				       struct sk_buff *skb,
2241				       struct flowi *fl,
2242				       struct request_sock *req);
2243	u32 (*init_seq)(const struct sk_buff *skb);
2244	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2245	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2246			   struct flowi *fl, struct request_sock *req,
2247			   struct tcp_fastopen_cookie *foc,
2248			   enum tcp_synack_type synack_type,
2249			   struct sk_buff *syn_skb);
2250};
2251
2252extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2253#if IS_ENABLED(CONFIG_IPV6)
2254extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2255#endif
2256
2257#ifdef CONFIG_SYN_COOKIES
2258static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2259					 const struct sock *sk, struct sk_buff *skb,
2260					 __u16 *mss)
2261{
2262	tcp_synq_overflow(sk);
2263	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2264	return ops->cookie_init_seq(skb, mss);
2265}
2266#else
2267static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2268					 const struct sock *sk, struct sk_buff *skb,
2269					 __u16 *mss)
2270{
2271	return 0;
2272}
2273#endif
2274
2275struct tcp_key {
2276	union {
2277		struct {
2278			struct tcp_ao_key *ao_key;
2279			char *traffic_key;
2280			u32 sne;
2281			u8 rcv_next;
2282		};
2283		struct tcp_md5sig_key *md5_key;
2284	};
2285	enum {
2286		TCP_KEY_NONE = 0,
2287		TCP_KEY_MD5,
2288		TCP_KEY_AO,
2289	} type;
2290};
2291
2292static inline void tcp_get_current_key(const struct sock *sk,
2293				       struct tcp_key *out)
2294{
2295#if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2296	const struct tcp_sock *tp = tcp_sk(sk);
2297#endif
2298
2299#ifdef CONFIG_TCP_AO
2300	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2301		struct tcp_ao_info *ao;
2302
2303		ao = rcu_dereference_protected(tp->ao_info,
2304					       lockdep_sock_is_held(sk));
2305		if (ao) {
2306			out->ao_key = READ_ONCE(ao->current_key);
2307			out->type = TCP_KEY_AO;
2308			return;
2309		}
2310	}
2311#endif
2312#ifdef CONFIG_TCP_MD5SIG
2313	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2314	    rcu_access_pointer(tp->md5sig_info)) {
2315		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2316		if (out->md5_key) {
2317			out->type = TCP_KEY_MD5;
2318			return;
2319		}
2320	}
2321#endif
2322	out->type = TCP_KEY_NONE;
2323}
2324
2325static inline bool tcp_key_is_md5(const struct tcp_key *key)
2326{
2327#ifdef CONFIG_TCP_MD5SIG
2328	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2329	    key->type == TCP_KEY_MD5)
2330		return true;
2331#endif
2332	return false;
2333}
2334
2335static inline bool tcp_key_is_ao(const struct tcp_key *key)
2336{
2337#ifdef CONFIG_TCP_AO
2338	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2339	    key->type == TCP_KEY_AO)
2340		return true;
2341#endif
2342	return false;
2343}
2344
2345int tcpv4_offload_init(void);
2346
2347void tcp_v4_init(void);
2348void tcp_init(void);
2349
2350/* tcp_recovery.c */
2351void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2352void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2353extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2354				u32 reo_wnd);
2355extern bool tcp_rack_mark_lost(struct sock *sk);
2356extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2357			     u64 xmit_time);
2358extern void tcp_rack_reo_timeout(struct sock *sk);
2359extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2360
2361/* tcp_plb.c */
2362
2363/*
2364 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2365 * expects cong_ratio which represents fraction of traffic that experienced
2366 * congestion over a single RTT. In order to avoid floating point operations,
2367 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2368 */
2369#define TCP_PLB_SCALE 8
2370
2371/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2372struct tcp_plb_state {
2373	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2374		unused:3;
2375	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2376};
2377
2378static inline void tcp_plb_init(const struct sock *sk,
2379				struct tcp_plb_state *plb)
2380{
2381	plb->consec_cong_rounds = 0;
2382	plb->pause_until = 0;
2383}
2384void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2385			  const int cong_ratio);
2386void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2387void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2388
2389/* At how many usecs into the future should the RTO fire? */
2390static inline s64 tcp_rto_delta_us(const struct sock *sk)
2391{
2392	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2393	u32 rto = inet_csk(sk)->icsk_rto;
2394	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2395
2396	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2397}
2398
2399/*
2400 * Save and compile IPv4 options, return a pointer to it
2401 */
2402static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2403							 struct sk_buff *skb)
2404{
2405	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2406	struct ip_options_rcu *dopt = NULL;
2407
2408	if (opt->optlen) {
2409		int opt_size = sizeof(*dopt) + opt->optlen;
2410
2411		dopt = kmalloc(opt_size, GFP_ATOMIC);
2412		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2413			kfree(dopt);
2414			dopt = NULL;
2415		}
2416	}
2417	return dopt;
2418}
2419
2420/* locally generated TCP pure ACKs have skb->truesize == 2
2421 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2422 * This is much faster than dissecting the packet to find out.
2423 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2424 */
2425static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2426{
2427	return skb->truesize == 2;
2428}
2429
2430static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2431{
2432	skb->truesize = 2;
2433}
2434
2435static inline int tcp_inq(struct sock *sk)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438	int answ;
2439
2440	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2441		answ = 0;
2442	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2443		   !tp->urg_data ||
2444		   before(tp->urg_seq, tp->copied_seq) ||
2445		   !before(tp->urg_seq, tp->rcv_nxt)) {
2446
2447		answ = tp->rcv_nxt - tp->copied_seq;
2448
2449		/* Subtract 1, if FIN was received */
2450		if (answ && sock_flag(sk, SOCK_DONE))
2451			answ--;
2452	} else {
2453		answ = tp->urg_seq - tp->copied_seq;
2454	}
2455
2456	return answ;
2457}
2458
2459int tcp_peek_len(struct socket *sock);
2460
2461static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2462{
2463	u16 segs_in;
2464
2465	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2466
2467	/* We update these fields while other threads might
2468	 * read them from tcp_get_info()
2469	 */
2470	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2471	if (skb->len > tcp_hdrlen(skb))
2472		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2473}
2474
2475/*
2476 * TCP listen path runs lockless.
2477 * We forced "struct sock" to be const qualified to make sure
2478 * we don't modify one of its field by mistake.
2479 * Here, we increment sk_drops which is an atomic_t, so we can safely
2480 * make sock writable again.
2481 */
2482static inline void tcp_listendrop(const struct sock *sk)
2483{
2484	atomic_inc(&((struct sock *)sk)->sk_drops);
2485	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2486}
2487
2488enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2489
2490/*
2491 * Interface for adding Upper Level Protocols over TCP
2492 */
2493
2494#define TCP_ULP_NAME_MAX	16
2495#define TCP_ULP_MAX		128
2496#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2497
2498struct tcp_ulp_ops {
2499	struct list_head	list;
2500
2501	/* initialize ulp */
2502	int (*init)(struct sock *sk);
2503	/* update ulp */
2504	void (*update)(struct sock *sk, struct proto *p,
2505		       void (*write_space)(struct sock *sk));
2506	/* cleanup ulp */
2507	void (*release)(struct sock *sk);
2508	/* diagnostic */
2509	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2510	size_t (*get_info_size)(const struct sock *sk);
2511	/* clone ulp */
2512	void (*clone)(const struct request_sock *req, struct sock *newsk,
2513		      const gfp_t priority);
2514
2515	char		name[TCP_ULP_NAME_MAX];
2516	struct module	*owner;
2517};
2518int tcp_register_ulp(struct tcp_ulp_ops *type);
2519void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2520int tcp_set_ulp(struct sock *sk, const char *name);
2521void tcp_get_available_ulp(char *buf, size_t len);
2522void tcp_cleanup_ulp(struct sock *sk);
2523void tcp_update_ulp(struct sock *sk, struct proto *p,
2524		    void (*write_space)(struct sock *sk));
2525
2526#define MODULE_ALIAS_TCP_ULP(name)				\
2527	__MODULE_INFO(alias, alias_userspace, name);		\
2528	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2529
2530#ifdef CONFIG_NET_SOCK_MSG
2531struct sk_msg;
2532struct sk_psock;
2533
2534#ifdef CONFIG_BPF_SYSCALL
 
2535int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2536void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2537#endif /* CONFIG_BPF_SYSCALL */
2538
2539#ifdef CONFIG_INET
2540void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2541#else
2542static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2543{
2544}
2545#endif
2546
2547int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2548			  struct sk_msg *msg, u32 bytes, int flags);
2549#endif /* CONFIG_NET_SOCK_MSG */
2550
2551#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2552static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2553{
2554}
2555#endif
2556
2557#ifdef CONFIG_CGROUP_BPF
2558static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2559				      struct sk_buff *skb,
2560				      unsigned int end_offset)
2561{
2562	skops->skb = skb;
2563	skops->skb_data_end = skb->data + end_offset;
2564}
2565#else
2566static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2567				      struct sk_buff *skb,
2568				      unsigned int end_offset)
2569{
2570}
2571#endif
2572
2573/* Call BPF_SOCK_OPS program that returns an int. If the return value
2574 * is < 0, then the BPF op failed (for example if the loaded BPF
2575 * program does not support the chosen operation or there is no BPF
2576 * program loaded).
2577 */
2578#ifdef CONFIG_BPF
2579static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2580{
2581	struct bpf_sock_ops_kern sock_ops;
2582	int ret;
2583
2584	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2585	if (sk_fullsock(sk)) {
2586		sock_ops.is_fullsock = 1;
2587		sock_owned_by_me(sk);
2588	}
2589
2590	sock_ops.sk = sk;
2591	sock_ops.op = op;
2592	if (nargs > 0)
2593		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2594
2595	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2596	if (ret == 0)
2597		ret = sock_ops.reply;
2598	else
2599		ret = -1;
2600	return ret;
2601}
2602
2603static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2604{
2605	u32 args[2] = {arg1, arg2};
2606
2607	return tcp_call_bpf(sk, op, 2, args);
2608}
2609
2610static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2611				    u32 arg3)
2612{
2613	u32 args[3] = {arg1, arg2, arg3};
2614
2615	return tcp_call_bpf(sk, op, 3, args);
2616}
2617
2618#else
2619static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2620{
2621	return -EPERM;
2622}
2623
2624static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2625{
2626	return -EPERM;
2627}
2628
2629static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2630				    u32 arg3)
2631{
2632	return -EPERM;
2633}
2634
2635#endif
2636
2637static inline u32 tcp_timeout_init(struct sock *sk)
2638{
2639	int timeout;
2640
2641	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2642
2643	if (timeout <= 0)
2644		timeout = TCP_TIMEOUT_INIT;
2645	return min_t(int, timeout, TCP_RTO_MAX);
2646}
2647
2648static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2649{
2650	int rwnd;
2651
2652	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2653
2654	if (rwnd < 0)
2655		rwnd = 0;
2656	return rwnd;
2657}
2658
2659static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2660{
2661	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2662}
2663
2664static inline void tcp_bpf_rtt(struct sock *sk)
2665{
2666	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2667		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2668}
2669
2670#if IS_ENABLED(CONFIG_SMC)
2671extern struct static_key_false tcp_have_smc;
2672#endif
2673
2674#if IS_ENABLED(CONFIG_TLS_DEVICE)
2675void clean_acked_data_enable(struct inet_connection_sock *icsk,
2676			     void (*cad)(struct sock *sk, u32 ack_seq));
2677void clean_acked_data_disable(struct inet_connection_sock *icsk);
2678void clean_acked_data_flush(void);
2679#endif
2680
2681DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2682static inline void tcp_add_tx_delay(struct sk_buff *skb,
2683				    const struct tcp_sock *tp)
2684{
2685	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2686		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2687}
2688
2689/* Compute Earliest Departure Time for some control packets
2690 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2691 */
2692static inline u64 tcp_transmit_time(const struct sock *sk)
2693{
2694	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2695		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2696			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2697
2698		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2699	}
2700	return 0;
2701}
2702
2703static inline int tcp_parse_auth_options(const struct tcphdr *th,
2704		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2705{
2706	const u8 *md5_tmp, *ao_tmp;
2707	int ret;
2708
2709	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2710	if (ret)
2711		return ret;
2712
2713	if (md5_hash)
2714		*md5_hash = md5_tmp;
2715
2716	if (aoh) {
2717		if (!ao_tmp)
2718			*aoh = NULL;
2719		else
2720			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2721	}
2722
2723	return 0;
2724}
2725
2726static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2727				   int family, int l3index, bool stat_inc)
2728{
2729#ifdef CONFIG_TCP_AO
2730	struct tcp_ao_info *ao_info;
2731	struct tcp_ao_key *ao_key;
2732
2733	if (!static_branch_unlikely(&tcp_ao_needed.key))
2734		return false;
2735
2736	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2737					lockdep_sock_is_held(sk));
2738	if (!ao_info)
2739		return false;
2740
2741	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2742	if (ao_info->ao_required || ao_key) {
2743		if (stat_inc) {
2744			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2745			atomic64_inc(&ao_info->counters.ao_required);
2746		}
2747		return true;
2748	}
2749#endif
2750	return false;
2751}
2752
2753/* Called with rcu_read_lock() */
2754static inline enum skb_drop_reason
2755tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2756		 const struct sk_buff *skb,
2757		 const void *saddr, const void *daddr,
2758		 int family, int dif, int sdif)
2759{
2760	const struct tcphdr *th = tcp_hdr(skb);
2761	const struct tcp_ao_hdr *aoh;
2762	const __u8 *md5_location;
2763	int l3index;
2764
2765	/* Invalid option or two times meet any of auth options */
2766	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2767		tcp_hash_fail("TCP segment has incorrect auth options set",
2768			      family, skb, "");
2769		return SKB_DROP_REASON_TCP_AUTH_HDR;
2770	}
2771
2772	if (req) {
2773		if (tcp_rsk_used_ao(req) != !!aoh) {
2774			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2775			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2776				      family, skb, "%s",
2777				      !aoh ? "missing AO" : "AO signed");
2778			return SKB_DROP_REASON_TCP_AOFAILURE;
2779		}
2780	}
2781
2782	/* sdif set, means packet ingressed via a device
2783	 * in an L3 domain and dif is set to the l3mdev
2784	 */
2785	l3index = sdif ? dif : 0;
2786
2787	/* Fast path: unsigned segments */
2788	if (likely(!md5_location && !aoh)) {
2789		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2790		 * for the remote peer. On TCP-AO established connection
2791		 * the last key is impossible to remove, so there's
2792		 * always at least one current_key.
2793		 */
2794		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2795			tcp_hash_fail("AO hash is required, but not found",
2796					family, skb, "L3 index %d", l3index);
2797			return SKB_DROP_REASON_TCP_AONOTFOUND;
2798		}
2799		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2800			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2801			tcp_hash_fail("MD5 Hash not found",
2802				      family, skb, "L3 index %d", l3index);
2803			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2804		}
2805		return SKB_NOT_DROPPED_YET;
2806	}
2807
2808	if (aoh)
2809		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2810
2811	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2812				    l3index, md5_location);
2813}
2814
2815#endif	/* _TCP_H */