Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * Copyright (c) 2013 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_da_format.h"
  16#include "xfs_da_btree.h"
  17#include "xfs_inode.h"
  18#include "xfs_trans.h"
  19#include "xfs_bmap_btree.h"
  20#include "xfs_bmap.h"
  21#include "xfs_attr_sf.h"
  22#include "xfs_attr.h"
  23#include "xfs_attr_remote.h"
  24#include "xfs_attr_leaf.h"
  25#include "xfs_error.h"
  26#include "xfs_trace.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_dir2.h"
  29#include "xfs_log.h"
  30#include "xfs_ag.h"
 
  31
  32
  33/*
  34 * xfs_attr_leaf.c
  35 *
  36 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
  37 */
  38
  39/*========================================================================
  40 * Function prototypes for the kernel.
  41 *========================================================================*/
  42
  43/*
  44 * Routines used for growing the Btree.
  45 */
  46STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
  47				 xfs_dablk_t which_block, struct xfs_buf **bpp);
  48STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
  49				   struct xfs_attr3_icleaf_hdr *ichdr,
  50				   struct xfs_da_args *args, int freemap_index);
  51STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
  52				   struct xfs_attr3_icleaf_hdr *ichdr,
  53				   struct xfs_buf *leaf_buffer);
  54STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
  55						   xfs_da_state_blk_t *blk1,
  56						   xfs_da_state_blk_t *blk2);
  57STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
  58			xfs_da_state_blk_t *leaf_blk_1,
  59			struct xfs_attr3_icleaf_hdr *ichdr1,
  60			xfs_da_state_blk_t *leaf_blk_2,
  61			struct xfs_attr3_icleaf_hdr *ichdr2,
  62			int *number_entries_in_blk1,
  63			int *number_usedbytes_in_blk1);
  64
  65/*
  66 * Utility routines.
  67 */
  68STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
  69			struct xfs_attr_leafblock *src_leaf,
  70			struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
  71			struct xfs_attr_leafblock *dst_leaf,
  72			struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
  73			int move_count);
  74STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
  75
  76/*
  77 * attr3 block 'firstused' conversion helpers.
  78 *
  79 * firstused refers to the offset of the first used byte of the nameval region
  80 * of an attr leaf block. The region starts at the tail of the block and expands
  81 * backwards towards the middle. As such, firstused is initialized to the block
  82 * size for an empty leaf block and is reduced from there.
  83 *
  84 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
  85 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
  86 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
  87 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
  88 * the attr block size. The following helpers manage the conversion between the
  89 * in-core and on-disk formats.
  90 */
  91
  92static void
  93xfs_attr3_leaf_firstused_from_disk(
  94	struct xfs_da_geometry		*geo,
  95	struct xfs_attr3_icleaf_hdr	*to,
  96	struct xfs_attr_leafblock	*from)
  97{
  98	struct xfs_attr3_leaf_hdr	*hdr3;
  99
 100	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
 101		hdr3 = (struct xfs_attr3_leaf_hdr *) from;
 102		to->firstused = be16_to_cpu(hdr3->firstused);
 103	} else {
 104		to->firstused = be16_to_cpu(from->hdr.firstused);
 105	}
 106
 107	/*
 108	 * Convert from the magic fsb size value to actual blocksize. This
 109	 * should only occur for empty blocks when the block size overflows
 110	 * 16-bits.
 111	 */
 112	if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
 113		ASSERT(!to->count && !to->usedbytes);
 114		ASSERT(geo->blksize > USHRT_MAX);
 115		to->firstused = geo->blksize;
 116	}
 117}
 118
 119static void
 120xfs_attr3_leaf_firstused_to_disk(
 121	struct xfs_da_geometry		*geo,
 122	struct xfs_attr_leafblock	*to,
 123	struct xfs_attr3_icleaf_hdr	*from)
 124{
 125	struct xfs_attr3_leaf_hdr	*hdr3;
 126	uint32_t			firstused;
 127
 128	/* magic value should only be seen on disk */
 129	ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
 130
 131	/*
 132	 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
 133	 * value. This only overflows at the max supported value of 64k. Use the
 134	 * magic on-disk value to represent block size in this case.
 135	 */
 136	firstused = from->firstused;
 137	if (firstused > USHRT_MAX) {
 138		ASSERT(from->firstused == geo->blksize);
 139		firstused = XFS_ATTR3_LEAF_NULLOFF;
 140	}
 141
 142	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
 143		hdr3 = (struct xfs_attr3_leaf_hdr *) to;
 144		hdr3->firstused = cpu_to_be16(firstused);
 145	} else {
 146		to->hdr.firstused = cpu_to_be16(firstused);
 147	}
 148}
 149
 150void
 151xfs_attr3_leaf_hdr_from_disk(
 152	struct xfs_da_geometry		*geo,
 153	struct xfs_attr3_icleaf_hdr	*to,
 154	struct xfs_attr_leafblock	*from)
 155{
 156	int	i;
 157
 158	ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
 159	       from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
 160
 161	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
 162		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
 163
 164		to->forw = be32_to_cpu(hdr3->info.hdr.forw);
 165		to->back = be32_to_cpu(hdr3->info.hdr.back);
 166		to->magic = be16_to_cpu(hdr3->info.hdr.magic);
 167		to->count = be16_to_cpu(hdr3->count);
 168		to->usedbytes = be16_to_cpu(hdr3->usedbytes);
 169		xfs_attr3_leaf_firstused_from_disk(geo, to, from);
 170		to->holes = hdr3->holes;
 171
 172		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 173			to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
 174			to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
 175		}
 176		return;
 177	}
 178	to->forw = be32_to_cpu(from->hdr.info.forw);
 179	to->back = be32_to_cpu(from->hdr.info.back);
 180	to->magic = be16_to_cpu(from->hdr.info.magic);
 181	to->count = be16_to_cpu(from->hdr.count);
 182	to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
 183	xfs_attr3_leaf_firstused_from_disk(geo, to, from);
 184	to->holes = from->hdr.holes;
 185
 186	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 187		to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
 188		to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
 189	}
 190}
 191
 192void
 193xfs_attr3_leaf_hdr_to_disk(
 194	struct xfs_da_geometry		*geo,
 195	struct xfs_attr_leafblock	*to,
 196	struct xfs_attr3_icleaf_hdr	*from)
 197{
 198	int				i;
 199
 200	ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
 201	       from->magic == XFS_ATTR3_LEAF_MAGIC);
 202
 203	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
 204		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
 205
 206		hdr3->info.hdr.forw = cpu_to_be32(from->forw);
 207		hdr3->info.hdr.back = cpu_to_be32(from->back);
 208		hdr3->info.hdr.magic = cpu_to_be16(from->magic);
 209		hdr3->count = cpu_to_be16(from->count);
 210		hdr3->usedbytes = cpu_to_be16(from->usedbytes);
 211		xfs_attr3_leaf_firstused_to_disk(geo, to, from);
 212		hdr3->holes = from->holes;
 213		hdr3->pad1 = 0;
 214
 215		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 216			hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
 217			hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
 218		}
 219		return;
 220	}
 221	to->hdr.info.forw = cpu_to_be32(from->forw);
 222	to->hdr.info.back = cpu_to_be32(from->back);
 223	to->hdr.info.magic = cpu_to_be16(from->magic);
 224	to->hdr.count = cpu_to_be16(from->count);
 225	to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
 226	xfs_attr3_leaf_firstused_to_disk(geo, to, from);
 227	to->hdr.holes = from->holes;
 228	to->hdr.pad1 = 0;
 229
 230	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 231		to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
 232		to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
 233	}
 234}
 235
 236static xfs_failaddr_t
 237xfs_attr3_leaf_verify_entry(
 238	struct xfs_mount			*mp,
 239	char					*buf_end,
 240	struct xfs_attr_leafblock		*leaf,
 241	struct xfs_attr3_icleaf_hdr		*leafhdr,
 242	struct xfs_attr_leaf_entry		*ent,
 243	int					idx,
 244	__u32					*last_hashval)
 245{
 246	struct xfs_attr_leaf_name_local		*lentry;
 247	struct xfs_attr_leaf_name_remote	*rentry;
 248	char					*name_end;
 249	unsigned int				nameidx;
 250	unsigned int				namesize;
 251	__u32					hashval;
 252
 253	/* hash order check */
 254	hashval = be32_to_cpu(ent->hashval);
 255	if (hashval < *last_hashval)
 256		return __this_address;
 257	*last_hashval = hashval;
 258
 259	nameidx = be16_to_cpu(ent->nameidx);
 260	if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
 261		return __this_address;
 262
 263	/*
 264	 * Check the name information.  The namelen fields are u8 so we can't
 265	 * possibly exceed the maximum name length of 255 bytes.
 266	 */
 267	if (ent->flags & XFS_ATTR_LOCAL) {
 268		lentry = xfs_attr3_leaf_name_local(leaf, idx);
 269		namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
 270				be16_to_cpu(lentry->valuelen));
 271		name_end = (char *)lentry + namesize;
 272		if (lentry->namelen == 0)
 273			return __this_address;
 274	} else {
 275		rentry = xfs_attr3_leaf_name_remote(leaf, idx);
 276		namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
 277		name_end = (char *)rentry + namesize;
 278		if (rentry->namelen == 0)
 279			return __this_address;
 280		if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
 281		    rentry->valueblk == 0)
 282			return __this_address;
 283	}
 284
 285	if (name_end > buf_end)
 286		return __this_address;
 287
 288	return NULL;
 289}
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291static xfs_failaddr_t
 292xfs_attr3_leaf_verify(
 293	struct xfs_buf			*bp)
 294{
 295	struct xfs_attr3_icleaf_hdr	ichdr;
 296	struct xfs_mount		*mp = bp->b_mount;
 297	struct xfs_attr_leafblock	*leaf = bp->b_addr;
 298	struct xfs_attr_leaf_entry	*entries;
 299	struct xfs_attr_leaf_entry	*ent;
 300	char				*buf_end;
 301	uint32_t			end;	/* must be 32bit - see below */
 302	__u32				last_hashval = 0;
 303	int				i;
 304	xfs_failaddr_t			fa;
 305
 306	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
 307
 308	fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
 309	if (fa)
 310		return fa;
 311
 312	/*
 313	 * firstused is the block offset of the first name info structure.
 314	 * Make sure it doesn't go off the block or crash into the header.
 315	 */
 316	if (ichdr.firstused > mp->m_attr_geo->blksize)
 317		return __this_address;
 318	if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
 319		return __this_address;
 320
 321	/* Make sure the entries array doesn't crash into the name info. */
 322	entries = xfs_attr3_leaf_entryp(bp->b_addr);
 323	if ((char *)&entries[ichdr.count] >
 324	    (char *)bp->b_addr + ichdr.firstused)
 325		return __this_address;
 326
 327	/*
 328	 * NOTE: This verifier historically failed empty leaf buffers because
 329	 * we expect the fork to be in another format. Empty attr fork format
 330	 * conversions are possible during xattr set, however, and format
 331	 * conversion is not atomic with the xattr set that triggers it. We
 332	 * cannot assume leaf blocks are non-empty until that is addressed.
 333	*/
 334	buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
 335	for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
 336		fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
 337				ent, i, &last_hashval);
 338		if (fa)
 339			return fa;
 340	}
 341
 342	/*
 343	 * Quickly check the freemap information.  Attribute data has to be
 344	 * aligned to 4-byte boundaries, and likewise for the free space.
 345	 *
 346	 * Note that for 64k block size filesystems, the freemap entries cannot
 347	 * overflow as they are only be16 fields. However, when checking end
 348	 * pointer of the freemap, we have to be careful to detect overflows and
 349	 * so use uint32_t for those checks.
 350	 */
 351	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 352		if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
 353			return __this_address;
 354		if (ichdr.freemap[i].base & 0x3)
 355			return __this_address;
 356		if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
 357			return __this_address;
 358		if (ichdr.freemap[i].size & 0x3)
 359			return __this_address;
 360
 361		/* be care of 16 bit overflows here */
 362		end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
 363		if (end < ichdr.freemap[i].base)
 364			return __this_address;
 365		if (end > mp->m_attr_geo->blksize)
 366			return __this_address;
 367	}
 368
 369	return NULL;
 370}
 371
 372static void
 373xfs_attr3_leaf_write_verify(
 374	struct xfs_buf	*bp)
 375{
 376	struct xfs_mount	*mp = bp->b_mount;
 377	struct xfs_buf_log_item	*bip = bp->b_log_item;
 378	struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
 379	xfs_failaddr_t		fa;
 380
 381	fa = xfs_attr3_leaf_verify(bp);
 382	if (fa) {
 383		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 384		return;
 385	}
 386
 387	if (!xfs_sb_version_hascrc(&mp->m_sb))
 388		return;
 389
 390	if (bip)
 391		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
 392
 393	xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
 394}
 395
 396/*
 397 * leaf/node format detection on trees is sketchy, so a node read can be done on
 398 * leaf level blocks when detection identifies the tree as a node format tree
 399 * incorrectly. In this case, we need to swap the verifier to match the correct
 400 * format of the block being read.
 401 */
 402static void
 403xfs_attr3_leaf_read_verify(
 404	struct xfs_buf		*bp)
 405{
 406	struct xfs_mount	*mp = bp->b_mount;
 407	xfs_failaddr_t		fa;
 408
 409	if (xfs_sb_version_hascrc(&mp->m_sb) &&
 410	     !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
 411		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 412	else {
 413		fa = xfs_attr3_leaf_verify(bp);
 414		if (fa)
 415			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 416	}
 417}
 418
 419const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
 420	.name = "xfs_attr3_leaf",
 421	.magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
 422		     cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
 423	.verify_read = xfs_attr3_leaf_read_verify,
 424	.verify_write = xfs_attr3_leaf_write_verify,
 425	.verify_struct = xfs_attr3_leaf_verify,
 426};
 427
 428int
 429xfs_attr3_leaf_read(
 430	struct xfs_trans	*tp,
 431	struct xfs_inode	*dp,
 432	xfs_dablk_t		bno,
 433	struct xfs_buf		**bpp)
 434{
 435	int			err;
 436
 437	err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
 438			&xfs_attr3_leaf_buf_ops);
 439	if (!err && tp && *bpp)
 440		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
 441	return err;
 442}
 443
 444/*========================================================================
 445 * Namespace helper routines
 446 *========================================================================*/
 447
 
 
 
 
 
 
 
 
 448static bool
 449xfs_attr_match(
 450	struct xfs_da_args	*args,
 451	uint8_t			namelen,
 452	unsigned char		*name,
 453	int			flags)
 454{
 
 455	if (args->namelen != namelen)
 456		return false;
 457	if (memcmp(args->name, name, namelen) != 0)
 458		return false;
 459	/*
 460	 * If we are looking for incomplete entries, show only those, else only
 461	 * show complete entries.
 462	 */
 
 
 
 463	if (args->attr_filter !=
 464	    (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
 465		return false;
 466	return true;
 467}
 468
 469static int
 470xfs_attr_copy_value(
 471	struct xfs_da_args	*args,
 472	unsigned char		*value,
 473	int			valuelen)
 474{
 475	/*
 476	 * No copy if all we have to do is get the length
 477	 */
 478	if (!args->valuelen) {
 479		args->valuelen = valuelen;
 480		return 0;
 481	}
 482
 483	/*
 484	 * No copy if the length of the existing buffer is too small
 485	 */
 486	if (args->valuelen < valuelen) {
 487		args->valuelen = valuelen;
 488		return -ERANGE;
 489	}
 490
 491	if (!args->value) {
 492		args->value = kmem_alloc_large(valuelen, KM_NOLOCKDEP);
 493		if (!args->value)
 494			return -ENOMEM;
 495	}
 496	args->valuelen = valuelen;
 497
 498	/* remote block xattr requires IO for copy-in */
 499	if (args->rmtblkno)
 500		return xfs_attr_rmtval_get(args);
 501
 502	/*
 503	 * This is to prevent a GCC warning because the remote xattr case
 504	 * doesn't have a value to pass in. In that case, we never reach here,
 505	 * but GCC can't work that out and so throws a "passing NULL to
 506	 * memcpy" warning.
 507	 */
 508	if (!value)
 509		return -EINVAL;
 510	memcpy(args->value, value, valuelen);
 511	return 0;
 512}
 513
 514/*========================================================================
 515 * External routines when attribute fork size < XFS_LITINO(mp).
 516 *========================================================================*/
 517
 518/*
 519 * Query whether the total requested number of attr fork bytes of extended
 520 * attribute space will be able to fit inline.
 521 *
 522 * Returns zero if not, else the i_forkoff fork offset to be used in the
 523 * literal area for attribute data once the new bytes have been added.
 524 *
 525 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
 526 * special case for dev/uuid inodes, they have fixed size data forks.
 527 */
 528int
 529xfs_attr_shortform_bytesfit(
 530	struct xfs_inode	*dp,
 531	int			bytes)
 532{
 533	struct xfs_mount	*mp = dp->i_mount;
 534	int64_t			dsize;
 535	int			minforkoff;
 536	int			maxforkoff;
 537	int			offset;
 538
 539	/*
 540	 * Check if the new size could fit at all first:
 541	 */
 542	if (bytes > XFS_LITINO(mp))
 543		return 0;
 544
 545	/* rounded down */
 546	offset = (XFS_LITINO(mp) - bytes) >> 3;
 547
 548	if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
 549		minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
 550		return (offset >= minforkoff) ? minforkoff : 0;
 551	}
 552
 553	/*
 554	 * If the requested numbers of bytes is smaller or equal to the
 555	 * current attribute fork size we can always proceed.
 556	 *
 557	 * Note that if_bytes in the data fork might actually be larger than
 558	 * the current data fork size is due to delalloc extents. In that
 559	 * case either the extent count will go down when they are converted
 560	 * to real extents, or the delalloc conversion will take care of the
 561	 * literal area rebalancing.
 562	 */
 563	if (bytes <= XFS_IFORK_ASIZE(dp))
 564		return dp->i_forkoff;
 565
 566	/*
 567	 * For attr2 we can try to move the forkoff if there is space in the
 568	 * literal area, but for the old format we are done if there is no
 569	 * space in the fixed attribute fork.
 570	 */
 571	if (!(mp->m_flags & XFS_MOUNT_ATTR2))
 572		return 0;
 573
 574	dsize = dp->i_df.if_bytes;
 575
 576	switch (dp->i_df.if_format) {
 577	case XFS_DINODE_FMT_EXTENTS:
 578		/*
 579		 * If there is no attr fork and the data fork is extents, 
 580		 * determine if creating the default attr fork will result
 581		 * in the extents form migrating to btree. If so, the
 582		 * minimum offset only needs to be the space required for
 583		 * the btree root.
 584		 */
 585		if (!dp->i_forkoff && dp->i_df.if_bytes >
 586		    xfs_default_attroffset(dp))
 587			dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
 588		break;
 589	case XFS_DINODE_FMT_BTREE:
 590		/*
 591		 * If we have a data btree then keep forkoff if we have one,
 592		 * otherwise we are adding a new attr, so then we set
 593		 * minforkoff to where the btree root can finish so we have
 594		 * plenty of room for attrs
 595		 */
 596		if (dp->i_forkoff) {
 597			if (offset < dp->i_forkoff)
 598				return 0;
 599			return dp->i_forkoff;
 600		}
 601		dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
 602		break;
 603	}
 604
 605	/*
 606	 * A data fork btree root must have space for at least
 607	 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
 608	 */
 609	minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
 610	minforkoff = roundup(minforkoff, 8) >> 3;
 611
 612	/* attr fork btree root can have at least this many key/ptr pairs */
 613	maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
 614	maxforkoff = maxforkoff >> 3;	/* rounded down */
 615
 616	if (offset >= maxforkoff)
 617		return maxforkoff;
 618	if (offset >= minforkoff)
 619		return offset;
 620	return 0;
 621}
 622
 623/*
 624 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
 
 
 
 625 */
 626STATIC void
 627xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
 
 
 628{
 629	if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
 630	    !(xfs_sb_version_hasattr2(&mp->m_sb))) {
 631		spin_lock(&mp->m_sb_lock);
 632		if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
 633			xfs_sb_version_addattr2(&mp->m_sb);
 634			spin_unlock(&mp->m_sb_lock);
 635			xfs_log_sb(tp);
 636		} else
 637			spin_unlock(&mp->m_sb_lock);
 638	}
 
 639}
 640
 641/*
 642 * Create the initial contents of a shortform attribute list.
 643 */
 644void
 645xfs_attr_shortform_create(
 646	struct xfs_da_args	*args)
 647{
 648	struct xfs_inode	*dp = args->dp;
 649	struct xfs_ifork	*ifp = dp->i_afp;
 650	struct xfs_attr_sf_hdr	*hdr;
 651
 652	trace_xfs_attr_sf_create(args);
 653
 654	ASSERT(ifp->if_bytes == 0);
 655	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
 656		ifp->if_format = XFS_DINODE_FMT_LOCAL;
 657	xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
 658	hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
 659	memset(hdr, 0, sizeof(*hdr));
 660	hdr->totsize = cpu_to_be16(sizeof(*hdr));
 661	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
 662}
 663
 664/*
 665 * Return -EEXIST if attr is found, or -ENOATTR if not
 666 * args:  args containing attribute name and namelen
 667 * sfep:  If not null, pointer will be set to the last attr entry found on
 668	  -EEXIST.  On -ENOATTR pointer is left at the last entry in the list
 669 * basep: If not null, pointer is set to the byte offset of the entry in the
 670 *	  list on -EEXIST.  On -ENOATTR, pointer is left at the byte offset of
 671 *	  the last entry in the list
 672 */
 673int
 674xfs_attr_sf_findname(
 675	struct xfs_da_args	 *args,
 676	struct xfs_attr_sf_entry **sfep,
 677	unsigned int		 *basep)
 678{
 679	struct xfs_attr_shortform *sf;
 680	struct xfs_attr_sf_entry *sfe;
 681	unsigned int		base = sizeof(struct xfs_attr_sf_hdr);
 682	int			size = 0;
 683	int			end;
 684	int			i;
 685
 686	sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
 687	sfe = &sf->list[0];
 688	end = sf->hdr.count;
 689	for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
 690			     base += size, i++) {
 691		size = xfs_attr_sf_entsize(sfe);
 692		if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
 693				    sfe->flags))
 694			continue;
 695		break;
 696	}
 697
 698	if (sfep != NULL)
 699		*sfep = sfe;
 700
 701	if (basep != NULL)
 702		*basep = base;
 703
 704	if (i == end)
 705		return -ENOATTR;
 706	return -EEXIST;
 707}
 708
 709/*
 710 * Add a name/value pair to the shortform attribute list.
 711 * Overflow from the inode has already been checked for.
 712 */
 713void
 714xfs_attr_shortform_add(
 715	struct xfs_da_args		*args,
 716	int				forkoff)
 717{
 718	struct xfs_attr_shortform	*sf;
 
 
 
 719	struct xfs_attr_sf_entry	*sfe;
 720	int				offset, size;
 721	struct xfs_mount		*mp;
 722	struct xfs_inode		*dp;
 723	struct xfs_ifork		*ifp;
 724
 725	trace_xfs_attr_sf_add(args);
 726
 727	dp = args->dp;
 728	mp = dp->i_mount;
 729	dp->i_forkoff = forkoff;
 730
 731	ifp = dp->i_afp;
 732	ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
 733	sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
 734	if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
 735		ASSERT(0);
 736
 737	offset = (char *)sfe - (char *)sf;
 738	size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
 739	xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
 740	sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
 741	sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
 742
 
 743	sfe->namelen = args->namelen;
 744	sfe->valuelen = args->valuelen;
 745	sfe->flags = args->attr_filter;
 746	memcpy(sfe->nameval, args->name, args->namelen);
 747	memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
 748	sf->hdr.count++;
 749	be16_add_cpu(&sf->hdr.totsize, size);
 750	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
 751
 752	xfs_sbversion_add_attr2(mp, args->trans);
 753}
 754
 755/*
 756 * After the last attribute is removed revert to original inode format,
 757 * making all literal area available to the data fork once more.
 758 */
 759void
 760xfs_attr_fork_remove(
 761	struct xfs_inode	*ip,
 762	struct xfs_trans	*tp)
 763{
 764	ASSERT(ip->i_afp->if_nextents == 0);
 765
 766	xfs_idestroy_fork(ip->i_afp);
 767	kmem_cache_free(xfs_ifork_zone, ip->i_afp);
 768	ip->i_afp = NULL;
 769	ip->i_forkoff = 0;
 770	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 771}
 772
 773/*
 774 * Remove an attribute from the shortform attribute list structure.
 775 */
 776int
 777xfs_attr_sf_removename(
 778	struct xfs_da_args		*args)
 779{
 780	struct xfs_attr_shortform	*sf;
 
 
 781	struct xfs_attr_sf_entry	*sfe;
 782	int				size = 0, end, totsize;
 783	unsigned int			base;
 784	struct xfs_mount		*mp;
 785	struct xfs_inode		*dp;
 786	int				error;
 787
 788	trace_xfs_attr_sf_remove(args);
 789
 790	dp = args->dp;
 791	mp = dp->i_mount;
 792	sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
 793
 794	error = xfs_attr_sf_findname(args, &sfe, &base);
 795	if (error != -EEXIST)
 796		return error;
 797	size = xfs_attr_sf_entsize(sfe);
 
 
 798
 799	/*
 800	 * Fix up the attribute fork data, covering the hole
 801	 */
 802	end = base + size;
 803	totsize = be16_to_cpu(sf->hdr.totsize);
 804	if (end != totsize)
 805		memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
 806	sf->hdr.count--;
 807	be16_add_cpu(&sf->hdr.totsize, -size);
 
 
 808
 809	/*
 810	 * Fix up the start offset of the attribute fork
 811	 */
 812	totsize -= size;
 813	if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
 814	    (mp->m_flags & XFS_MOUNT_ATTR2) &&
 815	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
 816	    !(args->op_flags & XFS_DA_OP_ADDNAME)) {
 817		xfs_attr_fork_remove(dp, args->trans);
 818	} else {
 819		xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
 820		dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
 821		ASSERT(dp->i_forkoff);
 822		ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
 823				(args->op_flags & XFS_DA_OP_ADDNAME) ||
 824				!(mp->m_flags & XFS_MOUNT_ATTR2) ||
 825				dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
 826		xfs_trans_log_inode(args->trans, dp,
 827					XFS_ILOG_CORE | XFS_ILOG_ADATA);
 828	}
 829
 830	xfs_sbversion_add_attr2(mp, args->trans);
 831
 832	return 0;
 833}
 834
 835/*
 836 * Look up a name in a shortform attribute list structure.
 837 */
 838/*ARGSUSED*/
 839int
 840xfs_attr_shortform_lookup(xfs_da_args_t *args)
 841{
 842	struct xfs_attr_shortform *sf;
 843	struct xfs_attr_sf_entry *sfe;
 844	int i;
 845	struct xfs_ifork *ifp;
 846
 847	trace_xfs_attr_sf_lookup(args);
 848
 849	ifp = args->dp->i_afp;
 850	ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
 851	sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
 852	sfe = &sf->list[0];
 853	for (i = 0; i < sf->hdr.count;
 854				sfe = xfs_attr_sf_nextentry(sfe), i++) {
 855		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
 856				sfe->flags))
 857			return -EEXIST;
 858	}
 859	return -ENOATTR;
 860}
 861
 862/*
 863 * Retrieve the attribute value and length.
 864 *
 865 * If args->valuelen is zero, only the length needs to be returned.  Unlike a
 866 * lookup, we only return an error if the attribute does not exist or we can't
 867 * retrieve the value.
 868 */
 869int
 870xfs_attr_shortform_getvalue(
 871	struct xfs_da_args	*args)
 872{
 873	struct xfs_attr_shortform *sf;
 874	struct xfs_attr_sf_entry *sfe;
 875	int			i;
 876
 877	ASSERT(args->dp->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
 878	sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
 879	sfe = &sf->list[0];
 880	for (i = 0; i < sf->hdr.count;
 881				sfe = xfs_attr_sf_nextentry(sfe), i++) {
 882		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
 883				sfe->flags))
 884			return xfs_attr_copy_value(args,
 885				&sfe->nameval[args->namelen], sfe->valuelen);
 886	}
 887	return -ENOATTR;
 888}
 889
 890/*
 891 * Convert from using the shortform to the leaf.  On success, return the
 892 * buffer so that we can keep it locked until we're totally done with it.
 893 */
 894int
 895xfs_attr_shortform_to_leaf(
 896	struct xfs_da_args		*args,
 897	struct xfs_buf			**leaf_bp)
 898{
 899	struct xfs_inode		*dp;
 900	struct xfs_attr_shortform	*sf;
 
 901	struct xfs_attr_sf_entry	*sfe;
 
 902	struct xfs_da_args		nargs;
 903	char				*tmpbuffer;
 904	int				error, i, size;
 905	xfs_dablk_t			blkno;
 906	struct xfs_buf			*bp;
 907	struct xfs_ifork		*ifp;
 908
 909	trace_xfs_attr_sf_to_leaf(args);
 910
 911	dp = args->dp;
 912	ifp = dp->i_afp;
 913	sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
 914	size = be16_to_cpu(sf->hdr.totsize);
 915	tmpbuffer = kmem_alloc(size, 0);
 916	ASSERT(tmpbuffer != NULL);
 917	memcpy(tmpbuffer, ifp->if_u1.if_data, size);
 918	sf = (struct xfs_attr_shortform *)tmpbuffer;
 919
 920	xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
 921	xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
 922
 923	bp = NULL;
 924	error = xfs_da_grow_inode(args, &blkno);
 925	if (error)
 926		goto out;
 927
 928	ASSERT(blkno == 0);
 929	error = xfs_attr3_leaf_create(args, blkno, &bp);
 930	if (error)
 931		goto out;
 932
 933	memset((char *)&nargs, 0, sizeof(nargs));
 934	nargs.dp = dp;
 935	nargs.geo = args->geo;
 936	nargs.total = args->total;
 937	nargs.whichfork = XFS_ATTR_FORK;
 938	nargs.trans = args->trans;
 939	nargs.op_flags = XFS_DA_OP_OKNOENT;
 940
 941	sfe = &sf->list[0];
 942	for (i = 0; i < sf->hdr.count; i++) {
 943		nargs.name = sfe->nameval;
 944		nargs.namelen = sfe->namelen;
 945		nargs.value = &sfe->nameval[nargs.namelen];
 946		nargs.valuelen = sfe->valuelen;
 947		nargs.hashval = xfs_da_hashname(sfe->nameval,
 948						sfe->namelen);
 949		nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
 950		error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
 951		ASSERT(error == -ENOATTR);
 952		error = xfs_attr3_leaf_add(bp, &nargs);
 953		ASSERT(error != -ENOSPC);
 954		if (error)
 955			goto out;
 956		sfe = xfs_attr_sf_nextentry(sfe);
 957	}
 958	error = 0;
 959	*leaf_bp = bp;
 960out:
 961	kmem_free(tmpbuffer);
 962	return error;
 963}
 964
 965/*
 966 * Check a leaf attribute block to see if all the entries would fit into
 967 * a shortform attribute list.
 968 */
 969int
 970xfs_attr_shortform_allfit(
 971	struct xfs_buf		*bp,
 972	struct xfs_inode	*dp)
 973{
 974	struct xfs_attr_leafblock *leaf;
 975	struct xfs_attr_leaf_entry *entry;
 976	xfs_attr_leaf_name_local_t *name_loc;
 977	struct xfs_attr3_icleaf_hdr leafhdr;
 978	int			bytes;
 979	int			i;
 980	struct xfs_mount	*mp = bp->b_mount;
 981
 982	leaf = bp->b_addr;
 983	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
 984	entry = xfs_attr3_leaf_entryp(leaf);
 985
 986	bytes = sizeof(struct xfs_attr_sf_hdr);
 987	for (i = 0; i < leafhdr.count; entry++, i++) {
 988		if (entry->flags & XFS_ATTR_INCOMPLETE)
 989			continue;		/* don't copy partial entries */
 990		if (!(entry->flags & XFS_ATTR_LOCAL))
 991			return 0;
 992		name_loc = xfs_attr3_leaf_name_local(leaf, i);
 993		if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
 994			return 0;
 995		if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
 996			return 0;
 997		bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
 998					be16_to_cpu(name_loc->valuelen));
 999	}
1000	if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
1001	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1002	    (bytes == sizeof(struct xfs_attr_sf_hdr)))
1003		return -1;
1004	return xfs_attr_shortform_bytesfit(dp, bytes);
1005}
1006
1007/* Verify the consistency of an inline attribute fork. */
1008xfs_failaddr_t
1009xfs_attr_shortform_verify(
1010	struct xfs_inode		*ip)
 
1011{
1012	struct xfs_attr_shortform	*sfp;
1013	struct xfs_attr_sf_entry	*sfep;
1014	struct xfs_attr_sf_entry	*next_sfep;
1015	char				*endp;
1016	struct xfs_ifork		*ifp;
1017	int				i;
1018	int64_t				size;
1019
1020	ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
1021	ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
1022	sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
1023	size = ifp->if_bytes;
1024
1025	/*
1026	 * Give up if the attribute is way too short.
1027	 */
1028	if (size < sizeof(struct xfs_attr_sf_hdr))
1029		return __this_address;
1030
1031	endp = (char *)sfp + size;
1032
1033	/* Check all reported entries */
1034	sfep = &sfp->list[0];
1035	for (i = 0; i < sfp->hdr.count; i++) {
1036		/*
1037		 * struct xfs_attr_sf_entry has a variable length.
1038		 * Check the fixed-offset parts of the structure are
1039		 * within the data buffer.
1040		 * xfs_attr_sf_entry is defined with a 1-byte variable
1041		 * array at the end, so we must subtract that off.
1042		 */
1043		if (((char *)sfep + sizeof(*sfep)) >= endp)
1044			return __this_address;
1045
1046		/* Don't allow names with known bad length. */
1047		if (sfep->namelen == 0)
1048			return __this_address;
1049
1050		/*
1051		 * Check that the variable-length part of the structure is
1052		 * within the data buffer.  The next entry starts after the
1053		 * name component, so nextentry is an acceptable test.
1054		 */
1055		next_sfep = xfs_attr_sf_nextentry(sfep);
1056		if ((char *)next_sfep > endp)
1057			return __this_address;
1058
1059		/*
1060		 * Check for unknown flags.  Short form doesn't support
1061		 * the incomplete or local bits, so we can use the namespace
1062		 * mask here.
1063		 */
1064		if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1065			return __this_address;
1066
1067		/*
1068		 * Check for invalid namespace combinations.  We only allow
1069		 * one namespace flag per xattr, so we can just count the
1070		 * bits (i.e. hweight) here.
1071		 */
1072		if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1073			return __this_address;
1074
1075		sfep = next_sfep;
1076	}
1077	if ((void *)sfep != (void *)endp)
1078		return __this_address;
1079
1080	return NULL;
1081}
1082
1083/*
1084 * Convert a leaf attribute list to shortform attribute list
1085 */
1086int
1087xfs_attr3_leaf_to_shortform(
1088	struct xfs_buf		*bp,
1089	struct xfs_da_args	*args,
1090	int			forkoff)
1091{
1092	struct xfs_attr_leafblock *leaf;
1093	struct xfs_attr3_icleaf_hdr ichdr;
1094	struct xfs_attr_leaf_entry *entry;
1095	struct xfs_attr_leaf_name_local *name_loc;
1096	struct xfs_da_args	nargs;
1097	struct xfs_inode	*dp = args->dp;
1098	char			*tmpbuffer;
1099	int			error;
1100	int			i;
1101
1102	trace_xfs_attr_leaf_to_sf(args);
1103
1104	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1105	if (!tmpbuffer)
1106		return -ENOMEM;
1107
1108	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1109
1110	leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1111	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1112	entry = xfs_attr3_leaf_entryp(leaf);
1113
1114	/* XXX (dgc): buffer is about to be marked stale - why zero it? */
1115	memset(bp->b_addr, 0, args->geo->blksize);
1116
1117	/*
1118	 * Clean out the prior contents of the attribute list.
1119	 */
1120	error = xfs_da_shrink_inode(args, 0, bp);
1121	if (error)
1122		goto out;
1123
1124	if (forkoff == -1) {
1125		ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
1126		ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1127		xfs_attr_fork_remove(dp, args->trans);
 
 
 
 
 
 
 
 
1128		goto out;
1129	}
1130
1131	xfs_attr_shortform_create(args);
1132
1133	/*
1134	 * Copy the attributes
1135	 */
1136	memset((char *)&nargs, 0, sizeof(nargs));
1137	nargs.geo = args->geo;
1138	nargs.dp = dp;
1139	nargs.total = args->total;
1140	nargs.whichfork = XFS_ATTR_FORK;
1141	nargs.trans = args->trans;
1142	nargs.op_flags = XFS_DA_OP_OKNOENT;
1143
1144	for (i = 0; i < ichdr.count; entry++, i++) {
1145		if (entry->flags & XFS_ATTR_INCOMPLETE)
1146			continue;	/* don't copy partial entries */
1147		if (!entry->nameidx)
1148			continue;
1149		ASSERT(entry->flags & XFS_ATTR_LOCAL);
1150		name_loc = xfs_attr3_leaf_name_local(leaf, i);
1151		nargs.name = name_loc->nameval;
1152		nargs.namelen = name_loc->namelen;
1153		nargs.value = &name_loc->nameval[nargs.namelen];
1154		nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1155		nargs.hashval = be32_to_cpu(entry->hashval);
1156		nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1157		xfs_attr_shortform_add(&nargs, forkoff);
1158	}
1159	error = 0;
1160
1161out:
1162	kmem_free(tmpbuffer);
1163	return error;
1164}
1165
1166/*
1167 * Convert from using a single leaf to a root node and a leaf.
1168 */
1169int
1170xfs_attr3_leaf_to_node(
1171	struct xfs_da_args	*args)
1172{
1173	struct xfs_attr_leafblock *leaf;
1174	struct xfs_attr3_icleaf_hdr icleafhdr;
1175	struct xfs_attr_leaf_entry *entries;
1176	struct xfs_da3_icnode_hdr icnodehdr;
1177	struct xfs_da_intnode	*node;
1178	struct xfs_inode	*dp = args->dp;
1179	struct xfs_mount	*mp = dp->i_mount;
1180	struct xfs_buf		*bp1 = NULL;
1181	struct xfs_buf		*bp2 = NULL;
1182	xfs_dablk_t		blkno;
1183	int			error;
1184
1185	trace_xfs_attr_leaf_to_node(args);
1186
 
 
 
 
 
1187	error = xfs_da_grow_inode(args, &blkno);
1188	if (error)
1189		goto out;
1190	error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1191	if (error)
1192		goto out;
1193
1194	error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1195	if (error)
1196		goto out;
1197
1198	/* copy leaf to new buffer, update identifiers */
1199	xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1200	bp2->b_ops = bp1->b_ops;
1201	memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1202	if (xfs_sb_version_hascrc(&mp->m_sb)) {
1203		struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1204		hdr3->blkno = cpu_to_be64(bp2->b_bn);
1205	}
1206	xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1207
1208	/*
1209	 * Set up the new root node.
1210	 */
1211	error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1212	if (error)
1213		goto out;
1214	node = bp1->b_addr;
1215	xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1216
1217	leaf = bp2->b_addr;
1218	xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1219	entries = xfs_attr3_leaf_entryp(leaf);
1220
1221	/* both on-disk, don't endian-flip twice */
1222	icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1223	icnodehdr.btree[0].before = cpu_to_be32(blkno);
1224	icnodehdr.count = 1;
1225	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1226	xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1227	error = 0;
1228out:
1229	return error;
1230}
1231
1232/*========================================================================
1233 * Routines used for growing the Btree.
1234 *========================================================================*/
1235
1236/*
1237 * Create the initial contents of a leaf attribute list
1238 * or a leaf in a node attribute list.
1239 */
1240STATIC int
1241xfs_attr3_leaf_create(
1242	struct xfs_da_args	*args,
1243	xfs_dablk_t		blkno,
1244	struct xfs_buf		**bpp)
1245{
1246	struct xfs_attr_leafblock *leaf;
1247	struct xfs_attr3_icleaf_hdr ichdr;
1248	struct xfs_inode	*dp = args->dp;
1249	struct xfs_mount	*mp = dp->i_mount;
1250	struct xfs_buf		*bp;
1251	int			error;
1252
1253	trace_xfs_attr_leaf_create(args);
1254
1255	error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1256					    XFS_ATTR_FORK);
1257	if (error)
1258		return error;
1259	bp->b_ops = &xfs_attr3_leaf_buf_ops;
1260	xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1261	leaf = bp->b_addr;
1262	memset(leaf, 0, args->geo->blksize);
1263
1264	memset(&ichdr, 0, sizeof(ichdr));
1265	ichdr.firstused = args->geo->blksize;
1266
1267	if (xfs_sb_version_hascrc(&mp->m_sb)) {
1268		struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1269
1270		ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1271
1272		hdr3->blkno = cpu_to_be64(bp->b_bn);
1273		hdr3->owner = cpu_to_be64(dp->i_ino);
1274		uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1275
1276		ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1277	} else {
1278		ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1279		ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1280	}
1281	ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1282
1283	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1284	xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1285
1286	*bpp = bp;
1287	return 0;
1288}
1289
1290/*
1291 * Split the leaf node, rebalance, then add the new entry.
1292 */
1293int
1294xfs_attr3_leaf_split(
1295	struct xfs_da_state	*state,
1296	struct xfs_da_state_blk	*oldblk,
1297	struct xfs_da_state_blk	*newblk)
1298{
1299	xfs_dablk_t blkno;
1300	int error;
1301
1302	trace_xfs_attr_leaf_split(state->args);
1303
1304	/*
1305	 * Allocate space for a new leaf node.
1306	 */
1307	ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1308	error = xfs_da_grow_inode(state->args, &blkno);
1309	if (error)
1310		return error;
1311	error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1312	if (error)
1313		return error;
1314	newblk->blkno = blkno;
1315	newblk->magic = XFS_ATTR_LEAF_MAGIC;
1316
1317	/*
1318	 * Rebalance the entries across the two leaves.
1319	 * NOTE: rebalance() currently depends on the 2nd block being empty.
1320	 */
1321	xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1322	error = xfs_da3_blk_link(state, oldblk, newblk);
1323	if (error)
1324		return error;
1325
1326	/*
1327	 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1328	 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1329	 * "new" attrs info.  Will need the "old" info to remove it later.
1330	 *
1331	 * Insert the "new" entry in the correct block.
1332	 */
1333	if (state->inleaf) {
1334		trace_xfs_attr_leaf_add_old(state->args);
1335		error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1336	} else {
1337		trace_xfs_attr_leaf_add_new(state->args);
1338		error = xfs_attr3_leaf_add(newblk->bp, state->args);
1339	}
1340
1341	/*
1342	 * Update last hashval in each block since we added the name.
1343	 */
1344	oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1345	newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1346	return error;
1347}
1348
1349/*
1350 * Add a name to the leaf attribute list structure.
1351 */
1352int
1353xfs_attr3_leaf_add(
1354	struct xfs_buf		*bp,
1355	struct xfs_da_args	*args)
1356{
1357	struct xfs_attr_leafblock *leaf;
1358	struct xfs_attr3_icleaf_hdr ichdr;
1359	int			tablesize;
1360	int			entsize;
1361	int			sum;
1362	int			tmp;
1363	int			i;
1364
1365	trace_xfs_attr_leaf_add(args);
1366
1367	leaf = bp->b_addr;
1368	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1369	ASSERT(args->index >= 0 && args->index <= ichdr.count);
1370	entsize = xfs_attr_leaf_newentsize(args, NULL);
1371
1372	/*
1373	 * Search through freemap for first-fit on new name length.
1374	 * (may need to figure in size of entry struct too)
1375	 */
1376	tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1377					+ xfs_attr3_leaf_hdr_size(leaf);
1378	for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1379		if (tablesize > ichdr.firstused) {
1380			sum += ichdr.freemap[i].size;
1381			continue;
1382		}
1383		if (!ichdr.freemap[i].size)
1384			continue;	/* no space in this map */
1385		tmp = entsize;
1386		if (ichdr.freemap[i].base < ichdr.firstused)
1387			tmp += sizeof(xfs_attr_leaf_entry_t);
1388		if (ichdr.freemap[i].size >= tmp) {
1389			tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1390			goto out_log_hdr;
1391		}
1392		sum += ichdr.freemap[i].size;
1393	}
1394
1395	/*
1396	 * If there are no holes in the address space of the block,
1397	 * and we don't have enough freespace, then compaction will do us
1398	 * no good and we should just give up.
1399	 */
1400	if (!ichdr.holes && sum < entsize)
1401		return -ENOSPC;
1402
1403	/*
1404	 * Compact the entries to coalesce free space.
1405	 * This may change the hdr->count via dropping INCOMPLETE entries.
1406	 */
1407	xfs_attr3_leaf_compact(args, &ichdr, bp);
1408
1409	/*
1410	 * After compaction, the block is guaranteed to have only one
1411	 * free region, in freemap[0].  If it is not big enough, give up.
1412	 */
1413	if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1414		tmp = -ENOSPC;
1415		goto out_log_hdr;
1416	}
1417
1418	tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1419
1420out_log_hdr:
1421	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1422	xfs_trans_log_buf(args->trans, bp,
1423		XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1424				xfs_attr3_leaf_hdr_size(leaf)));
1425	return tmp;
1426}
1427
1428/*
1429 * Add a name to a leaf attribute list structure.
1430 */
1431STATIC int
1432xfs_attr3_leaf_add_work(
1433	struct xfs_buf		*bp,
1434	struct xfs_attr3_icleaf_hdr *ichdr,
1435	struct xfs_da_args	*args,
1436	int			mapindex)
1437{
1438	struct xfs_attr_leafblock *leaf;
1439	struct xfs_attr_leaf_entry *entry;
1440	struct xfs_attr_leaf_name_local *name_loc;
1441	struct xfs_attr_leaf_name_remote *name_rmt;
1442	struct xfs_mount	*mp;
1443	int			tmp;
1444	int			i;
1445
1446	trace_xfs_attr_leaf_add_work(args);
1447
1448	leaf = bp->b_addr;
1449	ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1450	ASSERT(args->index >= 0 && args->index <= ichdr->count);
1451
1452	/*
1453	 * Force open some space in the entry array and fill it in.
1454	 */
1455	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1456	if (args->index < ichdr->count) {
1457		tmp  = ichdr->count - args->index;
1458		tmp *= sizeof(xfs_attr_leaf_entry_t);
1459		memmove(entry + 1, entry, tmp);
1460		xfs_trans_log_buf(args->trans, bp,
1461		    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1462	}
1463	ichdr->count++;
1464
1465	/*
1466	 * Allocate space for the new string (at the end of the run).
1467	 */
1468	mp = args->trans->t_mountp;
1469	ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1470	ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1471	ASSERT(ichdr->freemap[mapindex].size >=
1472		xfs_attr_leaf_newentsize(args, NULL));
1473	ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1474	ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1475
1476	ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1477
1478	entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1479				     ichdr->freemap[mapindex].size);
1480	entry->hashval = cpu_to_be32(args->hashval);
1481	entry->flags = args->attr_filter;
1482	if (tmp)
1483		entry->flags |= XFS_ATTR_LOCAL;
1484	if (args->op_flags & XFS_DA_OP_RENAME) {
1485		entry->flags |= XFS_ATTR_INCOMPLETE;
 
1486		if ((args->blkno2 == args->blkno) &&
1487		    (args->index2 <= args->index)) {
1488			args->index2++;
1489		}
1490	}
1491	xfs_trans_log_buf(args->trans, bp,
1492			  XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1493	ASSERT((args->index == 0) ||
1494	       (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1495	ASSERT((args->index == ichdr->count - 1) ||
1496	       (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1497
1498	/*
1499	 * For "remote" attribute values, simply note that we need to
1500	 * allocate space for the "remote" value.  We can't actually
1501	 * allocate the extents in this transaction, and we can't decide
1502	 * which blocks they should be as we might allocate more blocks
1503	 * as part of this transaction (a split operation for example).
1504	 */
1505	if (entry->flags & XFS_ATTR_LOCAL) {
1506		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1507		name_loc->namelen = args->namelen;
1508		name_loc->valuelen = cpu_to_be16(args->valuelen);
1509		memcpy((char *)name_loc->nameval, args->name, args->namelen);
1510		memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1511				   be16_to_cpu(name_loc->valuelen));
1512	} else {
1513		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1514		name_rmt->namelen = args->namelen;
1515		memcpy((char *)name_rmt->name, args->name, args->namelen);
1516		entry->flags |= XFS_ATTR_INCOMPLETE;
1517		/* just in case */
1518		name_rmt->valuelen = 0;
1519		name_rmt->valueblk = 0;
1520		args->rmtblkno = 1;
1521		args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1522		args->rmtvaluelen = args->valuelen;
1523	}
1524	xfs_trans_log_buf(args->trans, bp,
1525	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1526				   xfs_attr_leaf_entsize(leaf, args->index)));
1527
1528	/*
1529	 * Update the control info for this leaf node
1530	 */
1531	if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1532		ichdr->firstused = be16_to_cpu(entry->nameidx);
1533
1534	ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1535					+ xfs_attr3_leaf_hdr_size(leaf));
1536	tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1537					+ xfs_attr3_leaf_hdr_size(leaf);
1538
1539	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1540		if (ichdr->freemap[i].base == tmp) {
1541			ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1542			ichdr->freemap[i].size -=
1543				min_t(uint16_t, ichdr->freemap[i].size,
1544						sizeof(xfs_attr_leaf_entry_t));
1545		}
1546	}
1547	ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1548	return 0;
1549}
1550
1551/*
1552 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1553 */
1554STATIC void
1555xfs_attr3_leaf_compact(
1556	struct xfs_da_args	*args,
1557	struct xfs_attr3_icleaf_hdr *ichdr_dst,
1558	struct xfs_buf		*bp)
1559{
1560	struct xfs_attr_leafblock *leaf_src;
1561	struct xfs_attr_leafblock *leaf_dst;
1562	struct xfs_attr3_icleaf_hdr ichdr_src;
1563	struct xfs_trans	*trans = args->trans;
1564	char			*tmpbuffer;
1565
1566	trace_xfs_attr_leaf_compact(args);
1567
1568	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1569	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1570	memset(bp->b_addr, 0, args->geo->blksize);
1571	leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1572	leaf_dst = bp->b_addr;
1573
1574	/*
1575	 * Copy the on-disk header back into the destination buffer to ensure
1576	 * all the information in the header that is not part of the incore
1577	 * header structure is preserved.
1578	 */
1579	memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1580
1581	/* Initialise the incore headers */
1582	ichdr_src = *ichdr_dst;	/* struct copy */
1583	ichdr_dst->firstused = args->geo->blksize;
1584	ichdr_dst->usedbytes = 0;
1585	ichdr_dst->count = 0;
1586	ichdr_dst->holes = 0;
1587	ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1588	ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1589						ichdr_dst->freemap[0].base;
1590
1591	/* write the header back to initialise the underlying buffer */
1592	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1593
1594	/*
1595	 * Copy all entry's in the same (sorted) order,
1596	 * but allocate name/value pairs packed and in sequence.
1597	 */
1598	xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1599				leaf_dst, ichdr_dst, 0, ichdr_src.count);
1600	/*
1601	 * this logs the entire buffer, but the caller must write the header
1602	 * back to the buffer when it is finished modifying it.
1603	 */
1604	xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1605
1606	kmem_free(tmpbuffer);
1607}
1608
1609/*
1610 * Compare two leaf blocks "order".
1611 * Return 0 unless leaf2 should go before leaf1.
1612 */
1613static int
1614xfs_attr3_leaf_order(
1615	struct xfs_buf	*leaf1_bp,
1616	struct xfs_attr3_icleaf_hdr *leaf1hdr,
1617	struct xfs_buf	*leaf2_bp,
1618	struct xfs_attr3_icleaf_hdr *leaf2hdr)
1619{
1620	struct xfs_attr_leaf_entry *entries1;
1621	struct xfs_attr_leaf_entry *entries2;
1622
1623	entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1624	entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1625	if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1626	    ((be32_to_cpu(entries2[0].hashval) <
1627	      be32_to_cpu(entries1[0].hashval)) ||
1628	     (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1629	      be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1630		return 1;
1631	}
1632	return 0;
1633}
1634
1635int
1636xfs_attr_leaf_order(
1637	struct xfs_buf	*leaf1_bp,
1638	struct xfs_buf	*leaf2_bp)
1639{
1640	struct xfs_attr3_icleaf_hdr ichdr1;
1641	struct xfs_attr3_icleaf_hdr ichdr2;
1642	struct xfs_mount *mp = leaf1_bp->b_mount;
1643
1644	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1645	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1646	return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1647}
1648
1649/*
1650 * Redistribute the attribute list entries between two leaf nodes,
1651 * taking into account the size of the new entry.
1652 *
1653 * NOTE: if new block is empty, then it will get the upper half of the
1654 * old block.  At present, all (one) callers pass in an empty second block.
1655 *
1656 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1657 * to match what it is doing in splitting the attribute leaf block.  Those
1658 * values are used in "atomic rename" operations on attributes.  Note that
1659 * the "new" and "old" values can end up in different blocks.
1660 */
1661STATIC void
1662xfs_attr3_leaf_rebalance(
1663	struct xfs_da_state	*state,
1664	struct xfs_da_state_blk	*blk1,
1665	struct xfs_da_state_blk	*blk2)
1666{
1667	struct xfs_da_args	*args;
1668	struct xfs_attr_leafblock *leaf1;
1669	struct xfs_attr_leafblock *leaf2;
1670	struct xfs_attr3_icleaf_hdr ichdr1;
1671	struct xfs_attr3_icleaf_hdr ichdr2;
1672	struct xfs_attr_leaf_entry *entries1;
1673	struct xfs_attr_leaf_entry *entries2;
1674	int			count;
1675	int			totallen;
1676	int			max;
1677	int			space;
1678	int			swap;
1679
1680	/*
1681	 * Set up environment.
1682	 */
1683	ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1684	ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1685	leaf1 = blk1->bp->b_addr;
1686	leaf2 = blk2->bp->b_addr;
1687	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1688	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1689	ASSERT(ichdr2.count == 0);
1690	args = state->args;
1691
1692	trace_xfs_attr_leaf_rebalance(args);
1693
1694	/*
1695	 * Check ordering of blocks, reverse if it makes things simpler.
1696	 *
1697	 * NOTE: Given that all (current) callers pass in an empty
1698	 * second block, this code should never set "swap".
1699	 */
1700	swap = 0;
1701	if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1702		swap(blk1, blk2);
1703
1704		/* swap structures rather than reconverting them */
1705		swap(ichdr1, ichdr2);
1706
1707		leaf1 = blk1->bp->b_addr;
1708		leaf2 = blk2->bp->b_addr;
1709		swap = 1;
1710	}
1711
1712	/*
1713	 * Examine entries until we reduce the absolute difference in
1714	 * byte usage between the two blocks to a minimum.  Then get
1715	 * the direction to copy and the number of elements to move.
1716	 *
1717	 * "inleaf" is true if the new entry should be inserted into blk1.
1718	 * If "swap" is also true, then reverse the sense of "inleaf".
1719	 */
1720	state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1721						      blk2, &ichdr2,
1722						      &count, &totallen);
1723	if (swap)
1724		state->inleaf = !state->inleaf;
1725
1726	/*
1727	 * Move any entries required from leaf to leaf:
1728	 */
1729	if (count < ichdr1.count) {
1730		/*
1731		 * Figure the total bytes to be added to the destination leaf.
1732		 */
1733		/* number entries being moved */
1734		count = ichdr1.count - count;
1735		space  = ichdr1.usedbytes - totallen;
1736		space += count * sizeof(xfs_attr_leaf_entry_t);
1737
1738		/*
1739		 * leaf2 is the destination, compact it if it looks tight.
1740		 */
1741		max  = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1742		max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1743		if (space > max)
1744			xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1745
1746		/*
1747		 * Move high entries from leaf1 to low end of leaf2.
1748		 */
1749		xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1750				ichdr1.count - count, leaf2, &ichdr2, 0, count);
1751
1752	} else if (count > ichdr1.count) {
1753		/*
1754		 * I assert that since all callers pass in an empty
1755		 * second buffer, this code should never execute.
1756		 */
1757		ASSERT(0);
1758
1759		/*
1760		 * Figure the total bytes to be added to the destination leaf.
1761		 */
1762		/* number entries being moved */
1763		count -= ichdr1.count;
1764		space  = totallen - ichdr1.usedbytes;
1765		space += count * sizeof(xfs_attr_leaf_entry_t);
1766
1767		/*
1768		 * leaf1 is the destination, compact it if it looks tight.
1769		 */
1770		max  = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1771		max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1772		if (space > max)
1773			xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1774
1775		/*
1776		 * Move low entries from leaf2 to high end of leaf1.
1777		 */
1778		xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1779					ichdr1.count, count);
1780	}
1781
1782	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1783	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1784	xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1785	xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1786
1787	/*
1788	 * Copy out last hashval in each block for B-tree code.
1789	 */
1790	entries1 = xfs_attr3_leaf_entryp(leaf1);
1791	entries2 = xfs_attr3_leaf_entryp(leaf2);
1792	blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1793	blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1794
1795	/*
1796	 * Adjust the expected index for insertion.
1797	 * NOTE: this code depends on the (current) situation that the
1798	 * second block was originally empty.
1799	 *
1800	 * If the insertion point moved to the 2nd block, we must adjust
1801	 * the index.  We must also track the entry just following the
1802	 * new entry for use in an "atomic rename" operation, that entry
1803	 * is always the "old" entry and the "new" entry is what we are
1804	 * inserting.  The index/blkno fields refer to the "old" entry,
1805	 * while the index2/blkno2 fields refer to the "new" entry.
1806	 */
1807	if (blk1->index > ichdr1.count) {
1808		ASSERT(state->inleaf == 0);
1809		blk2->index = blk1->index - ichdr1.count;
1810		args->index = args->index2 = blk2->index;
1811		args->blkno = args->blkno2 = blk2->blkno;
1812	} else if (blk1->index == ichdr1.count) {
1813		if (state->inleaf) {
1814			args->index = blk1->index;
1815			args->blkno = blk1->blkno;
1816			args->index2 = 0;
1817			args->blkno2 = blk2->blkno;
1818		} else {
1819			/*
1820			 * On a double leaf split, the original attr location
1821			 * is already stored in blkno2/index2, so don't
1822			 * overwrite it overwise we corrupt the tree.
1823			 */
1824			blk2->index = blk1->index - ichdr1.count;
1825			args->index = blk2->index;
1826			args->blkno = blk2->blkno;
1827			if (!state->extravalid) {
1828				/*
1829				 * set the new attr location to match the old
1830				 * one and let the higher level split code
1831				 * decide where in the leaf to place it.
1832				 */
1833				args->index2 = blk2->index;
1834				args->blkno2 = blk2->blkno;
1835			}
1836		}
1837	} else {
1838		ASSERT(state->inleaf == 1);
1839		args->index = args->index2 = blk1->index;
1840		args->blkno = args->blkno2 = blk1->blkno;
1841	}
1842}
1843
1844/*
1845 * Examine entries until we reduce the absolute difference in
1846 * byte usage between the two blocks to a minimum.
1847 * GROT: Is this really necessary?  With other than a 512 byte blocksize,
1848 * GROT: there will always be enough room in either block for a new entry.
1849 * GROT: Do a double-split for this case?
1850 */
1851STATIC int
1852xfs_attr3_leaf_figure_balance(
1853	struct xfs_da_state		*state,
1854	struct xfs_da_state_blk		*blk1,
1855	struct xfs_attr3_icleaf_hdr	*ichdr1,
1856	struct xfs_da_state_blk		*blk2,
1857	struct xfs_attr3_icleaf_hdr	*ichdr2,
1858	int				*countarg,
1859	int				*usedbytesarg)
1860{
1861	struct xfs_attr_leafblock	*leaf1 = blk1->bp->b_addr;
1862	struct xfs_attr_leafblock	*leaf2 = blk2->bp->b_addr;
1863	struct xfs_attr_leaf_entry	*entry;
1864	int				count;
1865	int				max;
1866	int				index;
1867	int				totallen = 0;
1868	int				half;
1869	int				lastdelta;
1870	int				foundit = 0;
1871	int				tmp;
1872
1873	/*
1874	 * Examine entries until we reduce the absolute difference in
1875	 * byte usage between the two blocks to a minimum.
1876	 */
1877	max = ichdr1->count + ichdr2->count;
1878	half = (max + 1) * sizeof(*entry);
1879	half += ichdr1->usedbytes + ichdr2->usedbytes +
1880			xfs_attr_leaf_newentsize(state->args, NULL);
1881	half /= 2;
1882	lastdelta = state->args->geo->blksize;
1883	entry = xfs_attr3_leaf_entryp(leaf1);
1884	for (count = index = 0; count < max; entry++, index++, count++) {
1885
1886#define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A))
1887		/*
1888		 * The new entry is in the first block, account for it.
1889		 */
1890		if (count == blk1->index) {
1891			tmp = totallen + sizeof(*entry) +
1892				xfs_attr_leaf_newentsize(state->args, NULL);
1893			if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1894				break;
1895			lastdelta = XFS_ATTR_ABS(half - tmp);
1896			totallen = tmp;
1897			foundit = 1;
1898		}
1899
1900		/*
1901		 * Wrap around into the second block if necessary.
1902		 */
1903		if (count == ichdr1->count) {
1904			leaf1 = leaf2;
1905			entry = xfs_attr3_leaf_entryp(leaf1);
1906			index = 0;
1907		}
1908
1909		/*
1910		 * Figure out if next leaf entry would be too much.
1911		 */
1912		tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1913									index);
1914		if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1915			break;
1916		lastdelta = XFS_ATTR_ABS(half - tmp);
1917		totallen = tmp;
1918#undef XFS_ATTR_ABS
1919	}
1920
1921	/*
1922	 * Calculate the number of usedbytes that will end up in lower block.
1923	 * If new entry not in lower block, fix up the count.
1924	 */
1925	totallen -= count * sizeof(*entry);
1926	if (foundit) {
1927		totallen -= sizeof(*entry) +
1928				xfs_attr_leaf_newentsize(state->args, NULL);
1929	}
1930
1931	*countarg = count;
1932	*usedbytesarg = totallen;
1933	return foundit;
1934}
1935
1936/*========================================================================
1937 * Routines used for shrinking the Btree.
1938 *========================================================================*/
1939
1940/*
1941 * Check a leaf block and its neighbors to see if the block should be
1942 * collapsed into one or the other neighbor.  Always keep the block
1943 * with the smaller block number.
1944 * If the current block is over 50% full, don't try to join it, return 0.
1945 * If the block is empty, fill in the state structure and return 2.
1946 * If it can be collapsed, fill in the state structure and return 1.
1947 * If nothing can be done, return 0.
1948 *
1949 * GROT: allow for INCOMPLETE entries in calculation.
1950 */
1951int
1952xfs_attr3_leaf_toosmall(
1953	struct xfs_da_state	*state,
1954	int			*action)
1955{
1956	struct xfs_attr_leafblock *leaf;
1957	struct xfs_da_state_blk	*blk;
1958	struct xfs_attr3_icleaf_hdr ichdr;
1959	struct xfs_buf		*bp;
1960	xfs_dablk_t		blkno;
1961	int			bytes;
1962	int			forward;
1963	int			error;
1964	int			retval;
1965	int			i;
1966
1967	trace_xfs_attr_leaf_toosmall(state->args);
1968
1969	/*
1970	 * Check for the degenerate case of the block being over 50% full.
1971	 * If so, it's not worth even looking to see if we might be able
1972	 * to coalesce with a sibling.
1973	 */
1974	blk = &state->path.blk[ state->path.active-1 ];
1975	leaf = blk->bp->b_addr;
1976	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1977	bytes = xfs_attr3_leaf_hdr_size(leaf) +
1978		ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1979		ichdr.usedbytes;
1980	if (bytes > (state->args->geo->blksize >> 1)) {
1981		*action = 0;	/* blk over 50%, don't try to join */
1982		return 0;
1983	}
1984
1985	/*
1986	 * Check for the degenerate case of the block being empty.
1987	 * If the block is empty, we'll simply delete it, no need to
1988	 * coalesce it with a sibling block.  We choose (arbitrarily)
1989	 * to merge with the forward block unless it is NULL.
1990	 */
1991	if (ichdr.count == 0) {
1992		/*
1993		 * Make altpath point to the block we want to keep and
1994		 * path point to the block we want to drop (this one).
1995		 */
1996		forward = (ichdr.forw != 0);
1997		memcpy(&state->altpath, &state->path, sizeof(state->path));
1998		error = xfs_da3_path_shift(state, &state->altpath, forward,
1999						 0, &retval);
2000		if (error)
2001			return error;
2002		if (retval) {
2003			*action = 0;
2004		} else {
2005			*action = 2;
2006		}
2007		return 0;
2008	}
2009
2010	/*
2011	 * Examine each sibling block to see if we can coalesce with
2012	 * at least 25% free space to spare.  We need to figure out
2013	 * whether to merge with the forward or the backward block.
2014	 * We prefer coalescing with the lower numbered sibling so as
2015	 * to shrink an attribute list over time.
2016	 */
2017	/* start with smaller blk num */
2018	forward = ichdr.forw < ichdr.back;
2019	for (i = 0; i < 2; forward = !forward, i++) {
2020		struct xfs_attr3_icleaf_hdr ichdr2;
2021		if (forward)
2022			blkno = ichdr.forw;
2023		else
2024			blkno = ichdr.back;
2025		if (blkno == 0)
2026			continue;
2027		error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2028					blkno, &bp);
2029		if (error)
2030			return error;
2031
2032		xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2033
2034		bytes = state->args->geo->blksize -
2035			(state->args->geo->blksize >> 2) -
2036			ichdr.usedbytes - ichdr2.usedbytes -
2037			((ichdr.count + ichdr2.count) *
2038					sizeof(xfs_attr_leaf_entry_t)) -
2039			xfs_attr3_leaf_hdr_size(leaf);
2040
2041		xfs_trans_brelse(state->args->trans, bp);
2042		if (bytes >= 0)
2043			break;	/* fits with at least 25% to spare */
2044	}
2045	if (i >= 2) {
2046		*action = 0;
2047		return 0;
2048	}
2049
2050	/*
2051	 * Make altpath point to the block we want to keep (the lower
2052	 * numbered block) and path point to the block we want to drop.
2053	 */
2054	memcpy(&state->altpath, &state->path, sizeof(state->path));
2055	if (blkno < blk->blkno) {
2056		error = xfs_da3_path_shift(state, &state->altpath, forward,
2057						 0, &retval);
2058	} else {
2059		error = xfs_da3_path_shift(state, &state->path, forward,
2060						 0, &retval);
2061	}
2062	if (error)
2063		return error;
2064	if (retval) {
2065		*action = 0;
2066	} else {
2067		*action = 1;
2068	}
2069	return 0;
2070}
2071
2072/*
2073 * Remove a name from the leaf attribute list structure.
2074 *
2075 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2076 * If two leaves are 37% full, when combined they will leave 25% free.
2077 */
2078int
2079xfs_attr3_leaf_remove(
2080	struct xfs_buf		*bp,
2081	struct xfs_da_args	*args)
2082{
2083	struct xfs_attr_leafblock *leaf;
2084	struct xfs_attr3_icleaf_hdr ichdr;
2085	struct xfs_attr_leaf_entry *entry;
2086	int			before;
2087	int			after;
2088	int			smallest;
2089	int			entsize;
2090	int			tablesize;
2091	int			tmp;
2092	int			i;
2093
2094	trace_xfs_attr_leaf_remove(args);
2095
2096	leaf = bp->b_addr;
2097	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2098
2099	ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2100	ASSERT(args->index >= 0 && args->index < ichdr.count);
2101	ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2102					xfs_attr3_leaf_hdr_size(leaf));
2103
2104	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2105
2106	ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2107	ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2108
2109	/*
2110	 * Scan through free region table:
2111	 *    check for adjacency of free'd entry with an existing one,
2112	 *    find smallest free region in case we need to replace it,
2113	 *    adjust any map that borders the entry table,
2114	 */
2115	tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2116					+ xfs_attr3_leaf_hdr_size(leaf);
2117	tmp = ichdr.freemap[0].size;
2118	before = after = -1;
2119	smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2120	entsize = xfs_attr_leaf_entsize(leaf, args->index);
2121	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2122		ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2123		ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2124		if (ichdr.freemap[i].base == tablesize) {
2125			ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2126			ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2127		}
2128
2129		if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2130				be16_to_cpu(entry->nameidx)) {
2131			before = i;
2132		} else if (ichdr.freemap[i].base ==
2133				(be16_to_cpu(entry->nameidx) + entsize)) {
2134			after = i;
2135		} else if (ichdr.freemap[i].size < tmp) {
2136			tmp = ichdr.freemap[i].size;
2137			smallest = i;
2138		}
2139	}
2140
2141	/*
2142	 * Coalesce adjacent freemap regions,
2143	 * or replace the smallest region.
2144	 */
2145	if ((before >= 0) || (after >= 0)) {
2146		if ((before >= 0) && (after >= 0)) {
2147			ichdr.freemap[before].size += entsize;
2148			ichdr.freemap[before].size += ichdr.freemap[after].size;
2149			ichdr.freemap[after].base = 0;
2150			ichdr.freemap[after].size = 0;
2151		} else if (before >= 0) {
2152			ichdr.freemap[before].size += entsize;
2153		} else {
2154			ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2155			ichdr.freemap[after].size += entsize;
2156		}
2157	} else {
2158		/*
2159		 * Replace smallest region (if it is smaller than free'd entry)
2160		 */
2161		if (ichdr.freemap[smallest].size < entsize) {
2162			ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2163			ichdr.freemap[smallest].size = entsize;
2164		}
2165	}
2166
2167	/*
2168	 * Did we remove the first entry?
2169	 */
2170	if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2171		smallest = 1;
2172	else
2173		smallest = 0;
2174
2175	/*
2176	 * Compress the remaining entries and zero out the removed stuff.
2177	 */
2178	memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2179	ichdr.usedbytes -= entsize;
2180	xfs_trans_log_buf(args->trans, bp,
2181	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2182				   entsize));
2183
2184	tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2185	memmove(entry, entry + 1, tmp);
2186	ichdr.count--;
2187	xfs_trans_log_buf(args->trans, bp,
2188	    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2189
2190	entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2191	memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2192
2193	/*
2194	 * If we removed the first entry, re-find the first used byte
2195	 * in the name area.  Note that if the entry was the "firstused",
2196	 * then we don't have a "hole" in our block resulting from
2197	 * removing the name.
2198	 */
2199	if (smallest) {
2200		tmp = args->geo->blksize;
2201		entry = xfs_attr3_leaf_entryp(leaf);
2202		for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2203			ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2204			ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2205
2206			if (be16_to_cpu(entry->nameidx) < tmp)
2207				tmp = be16_to_cpu(entry->nameidx);
2208		}
2209		ichdr.firstused = tmp;
2210		ASSERT(ichdr.firstused != 0);
2211	} else {
2212		ichdr.holes = 1;	/* mark as needing compaction */
2213	}
2214	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2215	xfs_trans_log_buf(args->trans, bp,
2216			  XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2217					  xfs_attr3_leaf_hdr_size(leaf)));
2218
2219	/*
2220	 * Check if leaf is less than 50% full, caller may want to
2221	 * "join" the leaf with a sibling if so.
2222	 */
2223	tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2224	      ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2225
2226	return tmp < args->geo->magicpct; /* leaf is < 37% full */
2227}
2228
2229/*
2230 * Move all the attribute list entries from drop_leaf into save_leaf.
2231 */
2232void
2233xfs_attr3_leaf_unbalance(
2234	struct xfs_da_state	*state,
2235	struct xfs_da_state_blk	*drop_blk,
2236	struct xfs_da_state_blk	*save_blk)
2237{
2238	struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2239	struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2240	struct xfs_attr3_icleaf_hdr drophdr;
2241	struct xfs_attr3_icleaf_hdr savehdr;
2242	struct xfs_attr_leaf_entry *entry;
2243
2244	trace_xfs_attr_leaf_unbalance(state->args);
2245
2246	drop_leaf = drop_blk->bp->b_addr;
2247	save_leaf = save_blk->bp->b_addr;
2248	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2249	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2250	entry = xfs_attr3_leaf_entryp(drop_leaf);
2251
2252	/*
2253	 * Save last hashval from dying block for later Btree fixup.
2254	 */
2255	drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2256
2257	/*
2258	 * Check if we need a temp buffer, or can we do it in place.
2259	 * Note that we don't check "leaf" for holes because we will
2260	 * always be dropping it, toosmall() decided that for us already.
2261	 */
2262	if (savehdr.holes == 0) {
2263		/*
2264		 * dest leaf has no holes, so we add there.  May need
2265		 * to make some room in the entry array.
2266		 */
2267		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2268					 drop_blk->bp, &drophdr)) {
2269			xfs_attr3_leaf_moveents(state->args,
2270						drop_leaf, &drophdr, 0,
2271						save_leaf, &savehdr, 0,
2272						drophdr.count);
2273		} else {
2274			xfs_attr3_leaf_moveents(state->args,
2275						drop_leaf, &drophdr, 0,
2276						save_leaf, &savehdr,
2277						savehdr.count, drophdr.count);
2278		}
2279	} else {
2280		/*
2281		 * Destination has holes, so we make a temporary copy
2282		 * of the leaf and add them both to that.
2283		 */
2284		struct xfs_attr_leafblock *tmp_leaf;
2285		struct xfs_attr3_icleaf_hdr tmphdr;
2286
2287		tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2288
2289		/*
2290		 * Copy the header into the temp leaf so that all the stuff
2291		 * not in the incore header is present and gets copied back in
2292		 * once we've moved all the entries.
2293		 */
2294		memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2295
2296		memset(&tmphdr, 0, sizeof(tmphdr));
2297		tmphdr.magic = savehdr.magic;
2298		tmphdr.forw = savehdr.forw;
2299		tmphdr.back = savehdr.back;
2300		tmphdr.firstused = state->args->geo->blksize;
2301
2302		/* write the header to the temp buffer to initialise it */
2303		xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2304
2305		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2306					 drop_blk->bp, &drophdr)) {
2307			xfs_attr3_leaf_moveents(state->args,
2308						drop_leaf, &drophdr, 0,
2309						tmp_leaf, &tmphdr, 0,
2310						drophdr.count);
2311			xfs_attr3_leaf_moveents(state->args,
2312						save_leaf, &savehdr, 0,
2313						tmp_leaf, &tmphdr, tmphdr.count,
2314						savehdr.count);
2315		} else {
2316			xfs_attr3_leaf_moveents(state->args,
2317						save_leaf, &savehdr, 0,
2318						tmp_leaf, &tmphdr, 0,
2319						savehdr.count);
2320			xfs_attr3_leaf_moveents(state->args,
2321						drop_leaf, &drophdr, 0,
2322						tmp_leaf, &tmphdr, tmphdr.count,
2323						drophdr.count);
2324		}
2325		memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2326		savehdr = tmphdr; /* struct copy */
2327		kmem_free(tmp_leaf);
2328	}
2329
2330	xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2331	xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2332					   state->args->geo->blksize - 1);
2333
2334	/*
2335	 * Copy out last hashval in each block for B-tree code.
2336	 */
2337	entry = xfs_attr3_leaf_entryp(save_leaf);
2338	save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2339}
2340
2341/*========================================================================
2342 * Routines used for finding things in the Btree.
2343 *========================================================================*/
2344
2345/*
2346 * Look up a name in a leaf attribute list structure.
2347 * This is the internal routine, it uses the caller's buffer.
2348 *
2349 * Note that duplicate keys are allowed, but only check within the
2350 * current leaf node.  The Btree code must check in adjacent leaf nodes.
2351 *
2352 * Return in args->index the index into the entry[] array of either
2353 * the found entry, or where the entry should have been (insert before
2354 * that entry).
2355 *
2356 * Don't change the args->value unless we find the attribute.
2357 */
2358int
2359xfs_attr3_leaf_lookup_int(
2360	struct xfs_buf		*bp,
2361	struct xfs_da_args	*args)
2362{
2363	struct xfs_attr_leafblock *leaf;
2364	struct xfs_attr3_icleaf_hdr ichdr;
2365	struct xfs_attr_leaf_entry *entry;
2366	struct xfs_attr_leaf_entry *entries;
2367	struct xfs_attr_leaf_name_local *name_loc;
2368	struct xfs_attr_leaf_name_remote *name_rmt;
2369	xfs_dahash_t		hashval;
2370	int			probe;
2371	int			span;
2372
2373	trace_xfs_attr_leaf_lookup(args);
2374
2375	leaf = bp->b_addr;
2376	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2377	entries = xfs_attr3_leaf_entryp(leaf);
2378	if (ichdr.count >= args->geo->blksize / 8) {
2379		xfs_buf_mark_corrupt(bp);
2380		return -EFSCORRUPTED;
2381	}
2382
2383	/*
2384	 * Binary search.  (note: small blocks will skip this loop)
2385	 */
2386	hashval = args->hashval;
2387	probe = span = ichdr.count / 2;
2388	for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2389		span /= 2;
2390		if (be32_to_cpu(entry->hashval) < hashval)
2391			probe += span;
2392		else if (be32_to_cpu(entry->hashval) > hashval)
2393			probe -= span;
2394		else
2395			break;
2396	}
2397	if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2398		xfs_buf_mark_corrupt(bp);
2399		return -EFSCORRUPTED;
2400	}
2401	if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2402		xfs_buf_mark_corrupt(bp);
2403		return -EFSCORRUPTED;
2404	}
2405
2406	/*
2407	 * Since we may have duplicate hashval's, find the first matching
2408	 * hashval in the leaf.
2409	 */
2410	while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2411		entry--;
2412		probe--;
2413	}
2414	while (probe < ichdr.count &&
2415	       be32_to_cpu(entry->hashval) < hashval) {
2416		entry++;
2417		probe++;
2418	}
2419	if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2420		args->index = probe;
2421		return -ENOATTR;
2422	}
2423
2424	/*
2425	 * Duplicate keys may be present, so search all of them for a match.
2426	 */
2427	for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2428			entry++, probe++) {
2429/*
2430 * GROT: Add code to remove incomplete entries.
2431 */
2432		if (entry->flags & XFS_ATTR_LOCAL) {
2433			name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2434			if (!xfs_attr_match(args, name_loc->namelen,
2435					name_loc->nameval, entry->flags))
2436				continue;
2437			args->index = probe;
2438			return -EEXIST;
2439		} else {
2440			name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2441			if (!xfs_attr_match(args, name_rmt->namelen,
2442					name_rmt->name, entry->flags))
2443				continue;
2444			args->index = probe;
2445			args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2446			args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2447			args->rmtblkcnt = xfs_attr3_rmt_blocks(
2448							args->dp->i_mount,
2449							args->rmtvaluelen);
2450			return -EEXIST;
2451		}
2452	}
2453	args->index = probe;
2454	return -ENOATTR;
2455}
2456
2457/*
2458 * Get the value associated with an attribute name from a leaf attribute
2459 * list structure.
2460 *
2461 * If args->valuelen is zero, only the length needs to be returned.  Unlike a
2462 * lookup, we only return an error if the attribute does not exist or we can't
2463 * retrieve the value.
2464 */
2465int
2466xfs_attr3_leaf_getvalue(
2467	struct xfs_buf		*bp,
2468	struct xfs_da_args	*args)
2469{
2470	struct xfs_attr_leafblock *leaf;
2471	struct xfs_attr3_icleaf_hdr ichdr;
2472	struct xfs_attr_leaf_entry *entry;
2473	struct xfs_attr_leaf_name_local *name_loc;
2474	struct xfs_attr_leaf_name_remote *name_rmt;
2475
2476	leaf = bp->b_addr;
2477	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2478	ASSERT(ichdr.count < args->geo->blksize / 8);
2479	ASSERT(args->index < ichdr.count);
2480
2481	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2482	if (entry->flags & XFS_ATTR_LOCAL) {
2483		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2484		ASSERT(name_loc->namelen == args->namelen);
2485		ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2486		return xfs_attr_copy_value(args,
2487					&name_loc->nameval[args->namelen],
2488					be16_to_cpu(name_loc->valuelen));
2489	}
2490
2491	name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2492	ASSERT(name_rmt->namelen == args->namelen);
2493	ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2494	args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2495	args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2496	args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2497					       args->rmtvaluelen);
2498	return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2499}
2500
2501/*========================================================================
2502 * Utility routines.
2503 *========================================================================*/
2504
2505/*
2506 * Move the indicated entries from one leaf to another.
2507 * NOTE: this routine modifies both source and destination leaves.
2508 */
2509/*ARGSUSED*/
2510STATIC void
2511xfs_attr3_leaf_moveents(
2512	struct xfs_da_args		*args,
2513	struct xfs_attr_leafblock	*leaf_s,
2514	struct xfs_attr3_icleaf_hdr	*ichdr_s,
2515	int				start_s,
2516	struct xfs_attr_leafblock	*leaf_d,
2517	struct xfs_attr3_icleaf_hdr	*ichdr_d,
2518	int				start_d,
2519	int				count)
2520{
2521	struct xfs_attr_leaf_entry	*entry_s;
2522	struct xfs_attr_leaf_entry	*entry_d;
2523	int				desti;
2524	int				tmp;
2525	int				i;
2526
2527	/*
2528	 * Check for nothing to do.
2529	 */
2530	if (count == 0)
2531		return;
2532
2533	/*
2534	 * Set up environment.
2535	 */
2536	ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2537	       ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2538	ASSERT(ichdr_s->magic == ichdr_d->magic);
2539	ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2540	ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2541					+ xfs_attr3_leaf_hdr_size(leaf_s));
2542	ASSERT(ichdr_d->count < args->geo->blksize / 8);
2543	ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2544					+ xfs_attr3_leaf_hdr_size(leaf_d));
2545
2546	ASSERT(start_s < ichdr_s->count);
2547	ASSERT(start_d <= ichdr_d->count);
2548	ASSERT(count <= ichdr_s->count);
2549
2550
2551	/*
2552	 * Move the entries in the destination leaf up to make a hole?
2553	 */
2554	if (start_d < ichdr_d->count) {
2555		tmp  = ichdr_d->count - start_d;
2556		tmp *= sizeof(xfs_attr_leaf_entry_t);
2557		entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2558		entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2559		memmove(entry_d, entry_s, tmp);
2560	}
2561
2562	/*
2563	 * Copy all entry's in the same (sorted) order,
2564	 * but allocate attribute info packed and in sequence.
2565	 */
2566	entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2567	entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2568	desti = start_d;
2569	for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2570		ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2571		tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2572#ifdef GROT
2573		/*
2574		 * Code to drop INCOMPLETE entries.  Difficult to use as we
2575		 * may also need to change the insertion index.  Code turned
2576		 * off for 6.2, should be revisited later.
2577		 */
2578		if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2579			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2580			ichdr_s->usedbytes -= tmp;
2581			ichdr_s->count -= 1;
2582			entry_d--;	/* to compensate for ++ in loop hdr */
2583			desti--;
2584			if ((start_s + i) < offset)
2585				result++;	/* insertion index adjustment */
2586		} else {
2587#endif /* GROT */
2588			ichdr_d->firstused -= tmp;
2589			/* both on-disk, don't endian flip twice */
2590			entry_d->hashval = entry_s->hashval;
2591			entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2592			entry_d->flags = entry_s->flags;
2593			ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2594							<= args->geo->blksize);
2595			memmove(xfs_attr3_leaf_name(leaf_d, desti),
2596				xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2597			ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2598							<= args->geo->blksize);
2599			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2600			ichdr_s->usedbytes -= tmp;
2601			ichdr_d->usedbytes += tmp;
2602			ichdr_s->count -= 1;
2603			ichdr_d->count += 1;
2604			tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2605					+ xfs_attr3_leaf_hdr_size(leaf_d);
2606			ASSERT(ichdr_d->firstused >= tmp);
2607#ifdef GROT
2608		}
2609#endif /* GROT */
2610	}
2611
2612	/*
2613	 * Zero out the entries we just copied.
2614	 */
2615	if (start_s == ichdr_s->count) {
2616		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2617		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2618		ASSERT(((char *)entry_s + tmp) <=
2619		       ((char *)leaf_s + args->geo->blksize));
2620		memset(entry_s, 0, tmp);
2621	} else {
2622		/*
2623		 * Move the remaining entries down to fill the hole,
2624		 * then zero the entries at the top.
2625		 */
2626		tmp  = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2627		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2628		entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2629		memmove(entry_d, entry_s, tmp);
2630
2631		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2632		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2633		ASSERT(((char *)entry_s + tmp) <=
2634		       ((char *)leaf_s + args->geo->blksize));
2635		memset(entry_s, 0, tmp);
2636	}
2637
2638	/*
2639	 * Fill in the freemap information
2640	 */
2641	ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2642	ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2643	ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2644	ichdr_d->freemap[1].base = 0;
2645	ichdr_d->freemap[2].base = 0;
2646	ichdr_d->freemap[1].size = 0;
2647	ichdr_d->freemap[2].size = 0;
2648	ichdr_s->holes = 1;	/* leaf may not be compact */
2649}
2650
2651/*
2652 * Pick up the last hashvalue from a leaf block.
2653 */
2654xfs_dahash_t
2655xfs_attr_leaf_lasthash(
2656	struct xfs_buf	*bp,
2657	int		*count)
2658{
2659	struct xfs_attr3_icleaf_hdr ichdr;
2660	struct xfs_attr_leaf_entry *entries;
2661	struct xfs_mount *mp = bp->b_mount;
2662
2663	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2664	entries = xfs_attr3_leaf_entryp(bp->b_addr);
2665	if (count)
2666		*count = ichdr.count;
2667	if (!ichdr.count)
2668		return 0;
2669	return be32_to_cpu(entries[ichdr.count - 1].hashval);
2670}
2671
2672/*
2673 * Calculate the number of bytes used to store the indicated attribute
2674 * (whether local or remote only calculate bytes in this block).
2675 */
2676STATIC int
2677xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2678{
2679	struct xfs_attr_leaf_entry *entries;
2680	xfs_attr_leaf_name_local_t *name_loc;
2681	xfs_attr_leaf_name_remote_t *name_rmt;
2682	int size;
2683
2684	entries = xfs_attr3_leaf_entryp(leaf);
2685	if (entries[index].flags & XFS_ATTR_LOCAL) {
2686		name_loc = xfs_attr3_leaf_name_local(leaf, index);
2687		size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2688						   be16_to_cpu(name_loc->valuelen));
2689	} else {
2690		name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2691		size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2692	}
2693	return size;
2694}
2695
2696/*
2697 * Calculate the number of bytes that would be required to store the new
2698 * attribute (whether local or remote only calculate bytes in this block).
2699 * This routine decides as a side effect whether the attribute will be
2700 * a "local" or a "remote" attribute.
2701 */
2702int
2703xfs_attr_leaf_newentsize(
2704	struct xfs_da_args	*args,
2705	int			*local)
2706{
2707	int			size;
2708
2709	size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2710	if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2711		if (local)
2712			*local = 1;
2713		return size;
2714	}
2715	if (local)
2716		*local = 0;
2717	return xfs_attr_leaf_entsize_remote(args->namelen);
2718}
2719
2720
2721/*========================================================================
2722 * Manage the INCOMPLETE flag in a leaf entry
2723 *========================================================================*/
2724
2725/*
2726 * Clear the INCOMPLETE flag on an entry in a leaf block.
2727 */
2728int
2729xfs_attr3_leaf_clearflag(
2730	struct xfs_da_args	*args)
2731{
2732	struct xfs_attr_leafblock *leaf;
2733	struct xfs_attr_leaf_entry *entry;
2734	struct xfs_attr_leaf_name_remote *name_rmt;
2735	struct xfs_buf		*bp;
2736	int			error;
2737#ifdef DEBUG
2738	struct xfs_attr3_icleaf_hdr ichdr;
2739	xfs_attr_leaf_name_local_t *name_loc;
2740	int namelen;
2741	char *name;
2742#endif /* DEBUG */
2743
2744	trace_xfs_attr_leaf_clearflag(args);
2745	/*
2746	 * Set up the operation.
2747	 */
2748	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2749	if (error)
2750		return error;
2751
2752	leaf = bp->b_addr;
2753	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2754	ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2755
2756#ifdef DEBUG
2757	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2758	ASSERT(args->index < ichdr.count);
2759	ASSERT(args->index >= 0);
2760
2761	if (entry->flags & XFS_ATTR_LOCAL) {
2762		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2763		namelen = name_loc->namelen;
2764		name = (char *)name_loc->nameval;
2765	} else {
2766		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2767		namelen = name_rmt->namelen;
2768		name = (char *)name_rmt->name;
2769	}
2770	ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2771	ASSERT(namelen == args->namelen);
2772	ASSERT(memcmp(name, args->name, namelen) == 0);
2773#endif /* DEBUG */
2774
2775	entry->flags &= ~XFS_ATTR_INCOMPLETE;
2776	xfs_trans_log_buf(args->trans, bp,
2777			 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2778
2779	if (args->rmtblkno) {
2780		ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2781		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2782		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2783		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2784		xfs_trans_log_buf(args->trans, bp,
2785			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2786	}
2787
2788	return 0;
2789}
2790
2791/*
2792 * Set the INCOMPLETE flag on an entry in a leaf block.
2793 */
2794int
2795xfs_attr3_leaf_setflag(
2796	struct xfs_da_args	*args)
2797{
2798	struct xfs_attr_leafblock *leaf;
2799	struct xfs_attr_leaf_entry *entry;
2800	struct xfs_attr_leaf_name_remote *name_rmt;
2801	struct xfs_buf		*bp;
2802	int error;
2803#ifdef DEBUG
2804	struct xfs_attr3_icleaf_hdr ichdr;
2805#endif
2806
2807	trace_xfs_attr_leaf_setflag(args);
2808
2809	/*
2810	 * Set up the operation.
2811	 */
2812	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2813	if (error)
2814		return error;
2815
2816	leaf = bp->b_addr;
2817#ifdef DEBUG
2818	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2819	ASSERT(args->index < ichdr.count);
2820	ASSERT(args->index >= 0);
2821#endif
2822	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2823
2824	ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2825	entry->flags |= XFS_ATTR_INCOMPLETE;
2826	xfs_trans_log_buf(args->trans, bp,
2827			XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2828	if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2829		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2830		name_rmt->valueblk = 0;
2831		name_rmt->valuelen = 0;
2832		xfs_trans_log_buf(args->trans, bp,
2833			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2834	}
2835
2836	return 0;
2837}
2838
2839/*
2840 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2841 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2842 * entry given by args->blkno2/index2.
2843 *
2844 * Note that they could be in different blocks, or in the same block.
2845 */
2846int
2847xfs_attr3_leaf_flipflags(
2848	struct xfs_da_args	*args)
2849{
2850	struct xfs_attr_leafblock *leaf1;
2851	struct xfs_attr_leafblock *leaf2;
2852	struct xfs_attr_leaf_entry *entry1;
2853	struct xfs_attr_leaf_entry *entry2;
2854	struct xfs_attr_leaf_name_remote *name_rmt;
2855	struct xfs_buf		*bp1;
2856	struct xfs_buf		*bp2;
2857	int error;
2858#ifdef DEBUG
2859	struct xfs_attr3_icleaf_hdr ichdr1;
2860	struct xfs_attr3_icleaf_hdr ichdr2;
2861	xfs_attr_leaf_name_local_t *name_loc;
2862	int namelen1, namelen2;
2863	char *name1, *name2;
2864#endif /* DEBUG */
2865
2866	trace_xfs_attr_leaf_flipflags(args);
2867
2868	/*
2869	 * Read the block containing the "old" attr
2870	 */
2871	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2872	if (error)
2873		return error;
2874
2875	/*
2876	 * Read the block containing the "new" attr, if it is different
2877	 */
2878	if (args->blkno2 != args->blkno) {
2879		error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2880					   &bp2);
2881		if (error)
2882			return error;
2883	} else {
2884		bp2 = bp1;
2885	}
2886
2887	leaf1 = bp1->b_addr;
2888	entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2889
2890	leaf2 = bp2->b_addr;
2891	entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2892
2893#ifdef DEBUG
2894	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2895	ASSERT(args->index < ichdr1.count);
2896	ASSERT(args->index >= 0);
2897
2898	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2899	ASSERT(args->index2 < ichdr2.count);
2900	ASSERT(args->index2 >= 0);
2901
2902	if (entry1->flags & XFS_ATTR_LOCAL) {
2903		name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2904		namelen1 = name_loc->namelen;
2905		name1 = (char *)name_loc->nameval;
2906	} else {
2907		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2908		namelen1 = name_rmt->namelen;
2909		name1 = (char *)name_rmt->name;
2910	}
2911	if (entry2->flags & XFS_ATTR_LOCAL) {
2912		name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2913		namelen2 = name_loc->namelen;
2914		name2 = (char *)name_loc->nameval;
2915	} else {
2916		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2917		namelen2 = name_rmt->namelen;
2918		name2 = (char *)name_rmt->name;
2919	}
2920	ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2921	ASSERT(namelen1 == namelen2);
2922	ASSERT(memcmp(name1, name2, namelen1) == 0);
2923#endif /* DEBUG */
2924
2925	ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2926	ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2927
2928	entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2929	xfs_trans_log_buf(args->trans, bp1,
2930			  XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2931	if (args->rmtblkno) {
2932		ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2933		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2934		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2935		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2936		xfs_trans_log_buf(args->trans, bp1,
2937			 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2938	}
2939
2940	entry2->flags |= XFS_ATTR_INCOMPLETE;
2941	xfs_trans_log_buf(args->trans, bp2,
2942			  XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2943	if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2944		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2945		name_rmt->valueblk = 0;
2946		name_rmt->valuelen = 0;
2947		xfs_trans_log_buf(args->trans, bp2,
2948			 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2949	}
2950
2951	return 0;
2952}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * Copyright (c) 2013 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_da_format.h"
  16#include "xfs_da_btree.h"
  17#include "xfs_inode.h"
  18#include "xfs_trans.h"
  19#include "xfs_bmap_btree.h"
  20#include "xfs_bmap.h"
  21#include "xfs_attr_sf.h"
  22#include "xfs_attr.h"
  23#include "xfs_attr_remote.h"
  24#include "xfs_attr_leaf.h"
  25#include "xfs_error.h"
  26#include "xfs_trace.h"
  27#include "xfs_buf_item.h"
  28#include "xfs_dir2.h"
  29#include "xfs_log.h"
  30#include "xfs_ag.h"
  31#include "xfs_errortag.h"
  32
  33
  34/*
  35 * xfs_attr_leaf.c
  36 *
  37 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
  38 */
  39
  40/*========================================================================
  41 * Function prototypes for the kernel.
  42 *========================================================================*/
  43
  44/*
  45 * Routines used for growing the Btree.
  46 */
  47STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
  48				 xfs_dablk_t which_block, struct xfs_buf **bpp);
  49STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
  50				   struct xfs_attr3_icleaf_hdr *ichdr,
  51				   struct xfs_da_args *args, int freemap_index);
  52STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
  53				   struct xfs_attr3_icleaf_hdr *ichdr,
  54				   struct xfs_buf *leaf_buffer);
  55STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
  56						   xfs_da_state_blk_t *blk1,
  57						   xfs_da_state_blk_t *blk2);
  58STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
  59			xfs_da_state_blk_t *leaf_blk_1,
  60			struct xfs_attr3_icleaf_hdr *ichdr1,
  61			xfs_da_state_blk_t *leaf_blk_2,
  62			struct xfs_attr3_icleaf_hdr *ichdr2,
  63			int *number_entries_in_blk1,
  64			int *number_usedbytes_in_blk1);
  65
  66/*
  67 * Utility routines.
  68 */
  69STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
  70			struct xfs_attr_leafblock *src_leaf,
  71			struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
  72			struct xfs_attr_leafblock *dst_leaf,
  73			struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
  74			int move_count);
  75STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
  76
  77/*
  78 * attr3 block 'firstused' conversion helpers.
  79 *
  80 * firstused refers to the offset of the first used byte of the nameval region
  81 * of an attr leaf block. The region starts at the tail of the block and expands
  82 * backwards towards the middle. As such, firstused is initialized to the block
  83 * size for an empty leaf block and is reduced from there.
  84 *
  85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
  86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
  87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
  88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
  89 * the attr block size. The following helpers manage the conversion between the
  90 * in-core and on-disk formats.
  91 */
  92
  93static void
  94xfs_attr3_leaf_firstused_from_disk(
  95	struct xfs_da_geometry		*geo,
  96	struct xfs_attr3_icleaf_hdr	*to,
  97	struct xfs_attr_leafblock	*from)
  98{
  99	struct xfs_attr3_leaf_hdr	*hdr3;
 100
 101	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
 102		hdr3 = (struct xfs_attr3_leaf_hdr *) from;
 103		to->firstused = be16_to_cpu(hdr3->firstused);
 104	} else {
 105		to->firstused = be16_to_cpu(from->hdr.firstused);
 106	}
 107
 108	/*
 109	 * Convert from the magic fsb size value to actual blocksize. This
 110	 * should only occur for empty blocks when the block size overflows
 111	 * 16-bits.
 112	 */
 113	if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
 114		ASSERT(!to->count && !to->usedbytes);
 115		ASSERT(geo->blksize > USHRT_MAX);
 116		to->firstused = geo->blksize;
 117	}
 118}
 119
 120static void
 121xfs_attr3_leaf_firstused_to_disk(
 122	struct xfs_da_geometry		*geo,
 123	struct xfs_attr_leafblock	*to,
 124	struct xfs_attr3_icleaf_hdr	*from)
 125{
 126	struct xfs_attr3_leaf_hdr	*hdr3;
 127	uint32_t			firstused;
 128
 129	/* magic value should only be seen on disk */
 130	ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
 131
 132	/*
 133	 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
 134	 * value. This only overflows at the max supported value of 64k. Use the
 135	 * magic on-disk value to represent block size in this case.
 136	 */
 137	firstused = from->firstused;
 138	if (firstused > USHRT_MAX) {
 139		ASSERT(from->firstused == geo->blksize);
 140		firstused = XFS_ATTR3_LEAF_NULLOFF;
 141	}
 142
 143	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
 144		hdr3 = (struct xfs_attr3_leaf_hdr *) to;
 145		hdr3->firstused = cpu_to_be16(firstused);
 146	} else {
 147		to->hdr.firstused = cpu_to_be16(firstused);
 148	}
 149}
 150
 151void
 152xfs_attr3_leaf_hdr_from_disk(
 153	struct xfs_da_geometry		*geo,
 154	struct xfs_attr3_icleaf_hdr	*to,
 155	struct xfs_attr_leafblock	*from)
 156{
 157	int	i;
 158
 159	ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
 160	       from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
 161
 162	if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
 163		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
 164
 165		to->forw = be32_to_cpu(hdr3->info.hdr.forw);
 166		to->back = be32_to_cpu(hdr3->info.hdr.back);
 167		to->magic = be16_to_cpu(hdr3->info.hdr.magic);
 168		to->count = be16_to_cpu(hdr3->count);
 169		to->usedbytes = be16_to_cpu(hdr3->usedbytes);
 170		xfs_attr3_leaf_firstused_from_disk(geo, to, from);
 171		to->holes = hdr3->holes;
 172
 173		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 174			to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
 175			to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
 176		}
 177		return;
 178	}
 179	to->forw = be32_to_cpu(from->hdr.info.forw);
 180	to->back = be32_to_cpu(from->hdr.info.back);
 181	to->magic = be16_to_cpu(from->hdr.info.magic);
 182	to->count = be16_to_cpu(from->hdr.count);
 183	to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
 184	xfs_attr3_leaf_firstused_from_disk(geo, to, from);
 185	to->holes = from->hdr.holes;
 186
 187	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 188		to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
 189		to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
 190	}
 191}
 192
 193void
 194xfs_attr3_leaf_hdr_to_disk(
 195	struct xfs_da_geometry		*geo,
 196	struct xfs_attr_leafblock	*to,
 197	struct xfs_attr3_icleaf_hdr	*from)
 198{
 199	int				i;
 200
 201	ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
 202	       from->magic == XFS_ATTR3_LEAF_MAGIC);
 203
 204	if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
 205		struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
 206
 207		hdr3->info.hdr.forw = cpu_to_be32(from->forw);
 208		hdr3->info.hdr.back = cpu_to_be32(from->back);
 209		hdr3->info.hdr.magic = cpu_to_be16(from->magic);
 210		hdr3->count = cpu_to_be16(from->count);
 211		hdr3->usedbytes = cpu_to_be16(from->usedbytes);
 212		xfs_attr3_leaf_firstused_to_disk(geo, to, from);
 213		hdr3->holes = from->holes;
 214		hdr3->pad1 = 0;
 215
 216		for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 217			hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
 218			hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
 219		}
 220		return;
 221	}
 222	to->hdr.info.forw = cpu_to_be32(from->forw);
 223	to->hdr.info.back = cpu_to_be32(from->back);
 224	to->hdr.info.magic = cpu_to_be16(from->magic);
 225	to->hdr.count = cpu_to_be16(from->count);
 226	to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
 227	xfs_attr3_leaf_firstused_to_disk(geo, to, from);
 228	to->hdr.holes = from->holes;
 229	to->hdr.pad1 = 0;
 230
 231	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 232		to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
 233		to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
 234	}
 235}
 236
 237static xfs_failaddr_t
 238xfs_attr3_leaf_verify_entry(
 239	struct xfs_mount			*mp,
 240	char					*buf_end,
 241	struct xfs_attr_leafblock		*leaf,
 242	struct xfs_attr3_icleaf_hdr		*leafhdr,
 243	struct xfs_attr_leaf_entry		*ent,
 244	int					idx,
 245	__u32					*last_hashval)
 246{
 247	struct xfs_attr_leaf_name_local		*lentry;
 248	struct xfs_attr_leaf_name_remote	*rentry;
 249	char					*name_end;
 250	unsigned int				nameidx;
 251	unsigned int				namesize;
 252	__u32					hashval;
 253
 254	/* hash order check */
 255	hashval = be32_to_cpu(ent->hashval);
 256	if (hashval < *last_hashval)
 257		return __this_address;
 258	*last_hashval = hashval;
 259
 260	nameidx = be16_to_cpu(ent->nameidx);
 261	if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
 262		return __this_address;
 263
 264	/*
 265	 * Check the name information.  The namelen fields are u8 so we can't
 266	 * possibly exceed the maximum name length of 255 bytes.
 267	 */
 268	if (ent->flags & XFS_ATTR_LOCAL) {
 269		lentry = xfs_attr3_leaf_name_local(leaf, idx);
 270		namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
 271				be16_to_cpu(lentry->valuelen));
 272		name_end = (char *)lentry + namesize;
 273		if (lentry->namelen == 0)
 274			return __this_address;
 275	} else {
 276		rentry = xfs_attr3_leaf_name_remote(leaf, idx);
 277		namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
 278		name_end = (char *)rentry + namesize;
 279		if (rentry->namelen == 0)
 280			return __this_address;
 281		if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
 282		    rentry->valueblk == 0)
 283			return __this_address;
 284	}
 285
 286	if (name_end > buf_end)
 287		return __this_address;
 288
 289	return NULL;
 290}
 291
 292/*
 293 * Validate an attribute leaf block.
 294 *
 295 * Empty leaf blocks can occur under the following circumstances:
 296 *
 297 * 1. setxattr adds a new extended attribute to a file;
 298 * 2. The file has zero existing attributes;
 299 * 3. The attribute is too large to fit in the attribute fork;
 300 * 4. The attribute is small enough to fit in a leaf block;
 301 * 5. A log flush occurs after committing the transaction that creates
 302 *    the (empty) leaf block; and
 303 * 6. The filesystem goes down after the log flush but before the new
 304 *    attribute can be committed to the leaf block.
 305 *
 306 * Hence we need to ensure that we don't fail the validation purely
 307 * because the leaf is empty.
 308 */
 309static xfs_failaddr_t
 310xfs_attr3_leaf_verify(
 311	struct xfs_buf			*bp)
 312{
 313	struct xfs_attr3_icleaf_hdr	ichdr;
 314	struct xfs_mount		*mp = bp->b_mount;
 315	struct xfs_attr_leafblock	*leaf = bp->b_addr;
 316	struct xfs_attr_leaf_entry	*entries;
 317	struct xfs_attr_leaf_entry	*ent;
 318	char				*buf_end;
 319	uint32_t			end;	/* must be 32bit - see below */
 320	__u32				last_hashval = 0;
 321	int				i;
 322	xfs_failaddr_t			fa;
 323
 324	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
 325
 326	fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
 327	if (fa)
 328		return fa;
 329
 330	/*
 331	 * firstused is the block offset of the first name info structure.
 332	 * Make sure it doesn't go off the block or crash into the header.
 333	 */
 334	if (ichdr.firstused > mp->m_attr_geo->blksize)
 335		return __this_address;
 336	if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
 337		return __this_address;
 338
 339	/* Make sure the entries array doesn't crash into the name info. */
 340	entries = xfs_attr3_leaf_entryp(bp->b_addr);
 341	if ((char *)&entries[ichdr.count] >
 342	    (char *)bp->b_addr + ichdr.firstused)
 343		return __this_address;
 344
 345	/*
 346	 * NOTE: This verifier historically failed empty leaf buffers because
 347	 * we expect the fork to be in another format. Empty attr fork format
 348	 * conversions are possible during xattr set, however, and format
 349	 * conversion is not atomic with the xattr set that triggers it. We
 350	 * cannot assume leaf blocks are non-empty until that is addressed.
 351	*/
 352	buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
 353	for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
 354		fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
 355				ent, i, &last_hashval);
 356		if (fa)
 357			return fa;
 358	}
 359
 360	/*
 361	 * Quickly check the freemap information.  Attribute data has to be
 362	 * aligned to 4-byte boundaries, and likewise for the free space.
 363	 *
 364	 * Note that for 64k block size filesystems, the freemap entries cannot
 365	 * overflow as they are only be16 fields. However, when checking end
 366	 * pointer of the freemap, we have to be careful to detect overflows and
 367	 * so use uint32_t for those checks.
 368	 */
 369	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
 370		if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
 371			return __this_address;
 372		if (ichdr.freemap[i].base & 0x3)
 373			return __this_address;
 374		if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
 375			return __this_address;
 376		if (ichdr.freemap[i].size & 0x3)
 377			return __this_address;
 378
 379		/* be care of 16 bit overflows here */
 380		end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
 381		if (end < ichdr.freemap[i].base)
 382			return __this_address;
 383		if (end > mp->m_attr_geo->blksize)
 384			return __this_address;
 385	}
 386
 387	return NULL;
 388}
 389
 390static void
 391xfs_attr3_leaf_write_verify(
 392	struct xfs_buf	*bp)
 393{
 394	struct xfs_mount	*mp = bp->b_mount;
 395	struct xfs_buf_log_item	*bip = bp->b_log_item;
 396	struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
 397	xfs_failaddr_t		fa;
 398
 399	fa = xfs_attr3_leaf_verify(bp);
 400	if (fa) {
 401		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 402		return;
 403	}
 404
 405	if (!xfs_has_crc(mp))
 406		return;
 407
 408	if (bip)
 409		hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
 410
 411	xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
 412}
 413
 414/*
 415 * leaf/node format detection on trees is sketchy, so a node read can be done on
 416 * leaf level blocks when detection identifies the tree as a node format tree
 417 * incorrectly. In this case, we need to swap the verifier to match the correct
 418 * format of the block being read.
 419 */
 420static void
 421xfs_attr3_leaf_read_verify(
 422	struct xfs_buf		*bp)
 423{
 424	struct xfs_mount	*mp = bp->b_mount;
 425	xfs_failaddr_t		fa;
 426
 427	if (xfs_has_crc(mp) &&
 428	     !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
 429		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
 430	else {
 431		fa = xfs_attr3_leaf_verify(bp);
 432		if (fa)
 433			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
 434	}
 435}
 436
 437const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
 438	.name = "xfs_attr3_leaf",
 439	.magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
 440		     cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
 441	.verify_read = xfs_attr3_leaf_read_verify,
 442	.verify_write = xfs_attr3_leaf_write_verify,
 443	.verify_struct = xfs_attr3_leaf_verify,
 444};
 445
 446int
 447xfs_attr3_leaf_read(
 448	struct xfs_trans	*tp,
 449	struct xfs_inode	*dp,
 450	xfs_dablk_t		bno,
 451	struct xfs_buf		**bpp)
 452{
 453	int			err;
 454
 455	err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
 456			&xfs_attr3_leaf_buf_ops);
 457	if (!err && tp && *bpp)
 458		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
 459	return err;
 460}
 461
 462/*========================================================================
 463 * Namespace helper routines
 464 *========================================================================*/
 465
 466/*
 467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
 468 * flag on disk - if there's an incomplete attr then recovery needs to tear it
 469 * down. If there's no incomplete attr, then recovery needs to tear that attr
 470 * down to replace it with the attr that has been logged. In this case, the
 471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
 472 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
 473 */
 474static bool
 475xfs_attr_match(
 476	struct xfs_da_args	*args,
 477	uint8_t			namelen,
 478	unsigned char		*name,
 479	int			flags)
 480{
 481
 482	if (args->namelen != namelen)
 483		return false;
 484	if (memcmp(args->name, name, namelen) != 0)
 485		return false;
 486
 487	/* Recovery ignores the INCOMPLETE flag. */
 488	if ((args->op_flags & XFS_DA_OP_RECOVERY) &&
 489	    args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK))
 490		return true;
 491
 492	/* All remaining matches need to be filtered by INCOMPLETE state. */
 493	if (args->attr_filter !=
 494	    (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
 495		return false;
 496	return true;
 497}
 498
 499static int
 500xfs_attr_copy_value(
 501	struct xfs_da_args	*args,
 502	unsigned char		*value,
 503	int			valuelen)
 504{
 505	/*
 506	 * No copy if all we have to do is get the length
 507	 */
 508	if (!args->valuelen) {
 509		args->valuelen = valuelen;
 510		return 0;
 511	}
 512
 513	/*
 514	 * No copy if the length of the existing buffer is too small
 515	 */
 516	if (args->valuelen < valuelen) {
 517		args->valuelen = valuelen;
 518		return -ERANGE;
 519	}
 520
 521	if (!args->value) {
 522		args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
 523		if (!args->value)
 524			return -ENOMEM;
 525	}
 526	args->valuelen = valuelen;
 527
 528	/* remote block xattr requires IO for copy-in */
 529	if (args->rmtblkno)
 530		return xfs_attr_rmtval_get(args);
 531
 532	/*
 533	 * This is to prevent a GCC warning because the remote xattr case
 534	 * doesn't have a value to pass in. In that case, we never reach here,
 535	 * but GCC can't work that out and so throws a "passing NULL to
 536	 * memcpy" warning.
 537	 */
 538	if (!value)
 539		return -EINVAL;
 540	memcpy(args->value, value, valuelen);
 541	return 0;
 542}
 543
 544/*========================================================================
 545 * External routines when attribute fork size < XFS_LITINO(mp).
 546 *========================================================================*/
 547
 548/*
 549 * Query whether the total requested number of attr fork bytes of extended
 550 * attribute space will be able to fit inline.
 551 *
 552 * Returns zero if not, else the i_forkoff fork offset to be used in the
 553 * literal area for attribute data once the new bytes have been added.
 554 *
 555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
 556 * special case for dev/uuid inodes, they have fixed size data forks.
 557 */
 558int
 559xfs_attr_shortform_bytesfit(
 560	struct xfs_inode	*dp,
 561	int			bytes)
 562{
 563	struct xfs_mount	*mp = dp->i_mount;
 564	int64_t			dsize;
 565	int			minforkoff;
 566	int			maxforkoff;
 567	int			offset;
 568
 569	/*
 570	 * Check if the new size could fit at all first:
 571	 */
 572	if (bytes > XFS_LITINO(mp))
 573		return 0;
 574
 575	/* rounded down */
 576	offset = (XFS_LITINO(mp) - bytes) >> 3;
 577
 578	if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
 579		minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
 580		return (offset >= minforkoff) ? minforkoff : 0;
 581	}
 582
 583	/*
 584	 * If the requested numbers of bytes is smaller or equal to the
 585	 * current attribute fork size we can always proceed.
 586	 *
 587	 * Note that if_bytes in the data fork might actually be larger than
 588	 * the current data fork size is due to delalloc extents. In that
 589	 * case either the extent count will go down when they are converted
 590	 * to real extents, or the delalloc conversion will take care of the
 591	 * literal area rebalancing.
 592	 */
 593	if (bytes <= xfs_inode_attr_fork_size(dp))
 594		return dp->i_forkoff;
 595
 596	/*
 597	 * For attr2 we can try to move the forkoff if there is space in the
 598	 * literal area, but for the old format we are done if there is no
 599	 * space in the fixed attribute fork.
 600	 */
 601	if (!xfs_has_attr2(mp))
 602		return 0;
 603
 604	dsize = dp->i_df.if_bytes;
 605
 606	switch (dp->i_df.if_format) {
 607	case XFS_DINODE_FMT_EXTENTS:
 608		/*
 609		 * If there is no attr fork and the data fork is extents,
 610		 * determine if creating the default attr fork will result
 611		 * in the extents form migrating to btree. If so, the
 612		 * minimum offset only needs to be the space required for
 613		 * the btree root.
 614		 */
 615		if (!dp->i_forkoff && dp->i_df.if_bytes >
 616		    xfs_default_attroffset(dp))
 617			dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
 618		break;
 619	case XFS_DINODE_FMT_BTREE:
 620		/*
 621		 * If we have a data btree then keep forkoff if we have one,
 622		 * otherwise we are adding a new attr, so then we set
 623		 * minforkoff to where the btree root can finish so we have
 624		 * plenty of room for attrs
 625		 */
 626		if (dp->i_forkoff) {
 627			if (offset < dp->i_forkoff)
 628				return 0;
 629			return dp->i_forkoff;
 630		}
 631		dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
 632		break;
 633	}
 634
 635	/*
 636	 * A data fork btree root must have space for at least
 637	 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
 638	 */
 639	minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
 640	minforkoff = roundup(minforkoff, 8) >> 3;
 641
 642	/* attr fork btree root can have at least this many key/ptr pairs */
 643	maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
 644	maxforkoff = maxforkoff >> 3;	/* rounded down */
 645
 646	if (offset >= maxforkoff)
 647		return maxforkoff;
 648	if (offset >= minforkoff)
 649		return offset;
 650	return 0;
 651}
 652
 653/*
 654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
 655 * - noattr2 mount option is set,
 656 * - on-disk version bit says it is already set, or
 657 * - the attr2 mount option is not set to enable automatic upgrade from attr1.
 658 */
 659STATIC void
 660xfs_sbversion_add_attr2(
 661	struct xfs_mount	*mp,
 662	struct xfs_trans	*tp)
 663{
 664	if (xfs_has_noattr2(mp))
 665		return;
 666	if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
 667		return;
 668	if (!xfs_has_attr2(mp))
 669		return;
 670
 671	spin_lock(&mp->m_sb_lock);
 672	xfs_add_attr2(mp);
 673	spin_unlock(&mp->m_sb_lock);
 674	xfs_log_sb(tp);
 675}
 676
 677/*
 678 * Create the initial contents of a shortform attribute list.
 679 */
 680void
 681xfs_attr_shortform_create(
 682	struct xfs_da_args	*args)
 683{
 684	struct xfs_inode	*dp = args->dp;
 685	struct xfs_ifork	*ifp = &dp->i_af;
 686	struct xfs_attr_sf_hdr	*hdr;
 687
 688	trace_xfs_attr_sf_create(args);
 689
 690	ASSERT(ifp->if_bytes == 0);
 691	if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
 692		ifp->if_format = XFS_DINODE_FMT_LOCAL;
 693
 694	hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
 695	memset(hdr, 0, sizeof(*hdr));
 696	hdr->totsize = cpu_to_be16(sizeof(*hdr));
 697	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
 698}
 699
 700/*
 701 * Return the entry if the attr in args is found, or NULL if not.
 
 
 
 
 
 
 702 */
 703struct xfs_attr_sf_entry *
 704xfs_attr_sf_findname(
 705	struct xfs_da_args		*args)
 706{
 707	struct xfs_attr_sf_hdr		*sf = args->dp->i_af.if_data;
 708	struct xfs_attr_sf_entry	*sfe;
 
 
 
 
 
 
 709
 710	for (sfe = xfs_attr_sf_firstentry(sf);
 711	     sfe < xfs_attr_sf_endptr(sf);
 712	     sfe = xfs_attr_sf_nextentry(sfe)) {
 713		if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
 714				sfe->flags))
 715			return sfe;
 
 
 
 
 716	}
 717
 718	return NULL;
 
 
 
 
 
 
 
 
 719}
 720
 721/*
 722 * Add a name/value pair to the shortform attribute list.
 723 * Overflow from the inode has already been checked for.
 724 */
 725void
 726xfs_attr_shortform_add(
 727	struct xfs_da_args		*args,
 728	int				forkoff)
 729{
 730	struct xfs_inode		*dp = args->dp;
 731	struct xfs_mount		*mp = dp->i_mount;
 732	struct xfs_ifork		*ifp = &dp->i_af;
 733	struct xfs_attr_sf_hdr		*sf = ifp->if_data;
 734	struct xfs_attr_sf_entry	*sfe;
 735	int				size;
 
 
 
 736
 737	trace_xfs_attr_sf_add(args);
 738
 
 
 739	dp->i_forkoff = forkoff;
 740
 
 741	ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
 742	ASSERT(!xfs_attr_sf_findname(args));
 
 
 743
 
 744	size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
 745	sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
 
 
 746
 747	sfe = xfs_attr_sf_endptr(sf);
 748	sfe->namelen = args->namelen;
 749	sfe->valuelen = args->valuelen;
 750	sfe->flags = args->attr_filter;
 751	memcpy(sfe->nameval, args->name, args->namelen);
 752	memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
 753	sf->count++;
 754	be16_add_cpu(&sf->totsize, size);
 755	xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
 756
 757	xfs_sbversion_add_attr2(mp, args->trans);
 758}
 759
 760/*
 761 * After the last attribute is removed revert to original inode format,
 762 * making all literal area available to the data fork once more.
 763 */
 764void
 765xfs_attr_fork_remove(
 766	struct xfs_inode	*ip,
 767	struct xfs_trans	*tp)
 768{
 769	ASSERT(ip->i_af.if_nextents == 0);
 770
 771	xfs_ifork_zap_attr(ip);
 
 
 772	ip->i_forkoff = 0;
 773	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 774}
 775
 776/*
 777 * Remove an attribute from the shortform attribute list structure.
 778 */
 779int
 780xfs_attr_sf_removename(
 781	struct xfs_da_args		*args)
 782{
 783	struct xfs_inode		*dp = args->dp;
 784	struct xfs_mount		*mp = dp->i_mount;
 785	struct xfs_attr_sf_hdr		*sf = dp->i_af.if_data;
 786	struct xfs_attr_sf_entry	*sfe;
 787	uint16_t			totsize = be16_to_cpu(sf->totsize);
 788	void				*next, *end;
 789	int				size = 0;
 
 
 790
 791	trace_xfs_attr_sf_remove(args);
 792
 793	sfe = xfs_attr_sf_findname(args);
 794	if (!sfe) {
 795		/*
 796		 * If we are recovering an operation, finding nothing to remove
 797		 * is not an error, it just means there was nothing to clean up.
 798		 */
 799		if (args->op_flags & XFS_DA_OP_RECOVERY)
 800			return 0;
 801		return -ENOATTR;
 802	}
 803
 804	/*
 805	 * Fix up the attribute fork data, covering the hole
 806	 */
 807	size = xfs_attr_sf_entsize(sfe);
 808	next = xfs_attr_sf_nextentry(sfe);
 809	end = xfs_attr_sf_endptr(sf);
 810	if (next < end)
 811		memmove(sfe, next, end - next);
 812	sf->count--;
 813	totsize -= size;
 814	sf->totsize = cpu_to_be16(totsize);
 815
 816	/*
 817	 * Fix up the start offset of the attribute fork
 818	 */
 819	if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) &&
 
 
 820	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
 821	    !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) {
 822		xfs_attr_fork_remove(dp, args->trans);
 823	} else {
 824		xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
 825		dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
 826		ASSERT(dp->i_forkoff);
 827		ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) ||
 828				(args->op_flags & XFS_DA_OP_ADDNAME) ||
 829				!xfs_has_attr2(mp) ||
 830				dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
 831		xfs_trans_log_inode(args->trans, dp,
 832					XFS_ILOG_CORE | XFS_ILOG_ADATA);
 833	}
 834
 835	xfs_sbversion_add_attr2(mp, args->trans);
 836
 837	return 0;
 838}
 839
 840/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841 * Retrieve the attribute value and length.
 842 *
 843 * If args->valuelen is zero, only the length needs to be returned.  Unlike a
 844 * lookup, we only return an error if the attribute does not exist or we can't
 845 * retrieve the value.
 846 */
 847int
 848xfs_attr_shortform_getvalue(
 849	struct xfs_da_args		*args)
 850{
 851	struct xfs_attr_sf_entry	*sfe;
 
 
 852
 853	ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
 854
 855	trace_xfs_attr_sf_lookup(args);
 856
 857	sfe = xfs_attr_sf_findname(args);
 858	if (!sfe)
 859		return -ENOATTR;
 860	return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
 861			sfe->valuelen);
 
 
 862}
 863
 864/* Convert from using the shortform to the leaf format. */
 
 
 
 865int
 866xfs_attr_shortform_to_leaf(
 867	struct xfs_da_args		*args)
 
 868{
 869	struct xfs_inode		*dp = args->dp;
 870	struct xfs_ifork		*ifp = &dp->i_af;
 871	struct xfs_attr_sf_hdr		*sf = ifp->if_data;
 872	struct xfs_attr_sf_entry	*sfe;
 873	int				size = be16_to_cpu(sf->totsize);
 874	struct xfs_da_args		nargs;
 875	char				*tmpbuffer;
 876	int				error, i;
 877	xfs_dablk_t			blkno;
 878	struct xfs_buf			*bp;
 
 879
 880	trace_xfs_attr_sf_to_leaf(args);
 881
 
 
 
 
 882	tmpbuffer = kmem_alloc(size, 0);
 883	ASSERT(tmpbuffer != NULL);
 884	memcpy(tmpbuffer, ifp->if_data, size);
 885	sf = (struct xfs_attr_sf_hdr *)tmpbuffer;
 886
 887	xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
 888	xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
 889
 890	bp = NULL;
 891	error = xfs_da_grow_inode(args, &blkno);
 892	if (error)
 893		goto out;
 894
 895	ASSERT(blkno == 0);
 896	error = xfs_attr3_leaf_create(args, blkno, &bp);
 897	if (error)
 898		goto out;
 899
 900	memset((char *)&nargs, 0, sizeof(nargs));
 901	nargs.dp = dp;
 902	nargs.geo = args->geo;
 903	nargs.total = args->total;
 904	nargs.whichfork = XFS_ATTR_FORK;
 905	nargs.trans = args->trans;
 906	nargs.op_flags = XFS_DA_OP_OKNOENT;
 907
 908	sfe = xfs_attr_sf_firstentry(sf);
 909	for (i = 0; i < sf->count; i++) {
 910		nargs.name = sfe->nameval;
 911		nargs.namelen = sfe->namelen;
 912		nargs.value = &sfe->nameval[nargs.namelen];
 913		nargs.valuelen = sfe->valuelen;
 914		nargs.hashval = xfs_da_hashname(sfe->nameval,
 915						sfe->namelen);
 916		nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
 917		error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
 918		ASSERT(error == -ENOATTR);
 919		error = xfs_attr3_leaf_add(bp, &nargs);
 920		ASSERT(error != -ENOSPC);
 921		if (error)
 922			goto out;
 923		sfe = xfs_attr_sf_nextentry(sfe);
 924	}
 925	error = 0;
 
 926out:
 927	kmem_free(tmpbuffer);
 928	return error;
 929}
 930
 931/*
 932 * Check a leaf attribute block to see if all the entries would fit into
 933 * a shortform attribute list.
 934 */
 935int
 936xfs_attr_shortform_allfit(
 937	struct xfs_buf		*bp,
 938	struct xfs_inode	*dp)
 939{
 940	struct xfs_attr_leafblock *leaf;
 941	struct xfs_attr_leaf_entry *entry;
 942	xfs_attr_leaf_name_local_t *name_loc;
 943	struct xfs_attr3_icleaf_hdr leafhdr;
 944	int			bytes;
 945	int			i;
 946	struct xfs_mount	*mp = bp->b_mount;
 947
 948	leaf = bp->b_addr;
 949	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
 950	entry = xfs_attr3_leaf_entryp(leaf);
 951
 952	bytes = sizeof(struct xfs_attr_sf_hdr);
 953	for (i = 0; i < leafhdr.count; entry++, i++) {
 954		if (entry->flags & XFS_ATTR_INCOMPLETE)
 955			continue;		/* don't copy partial entries */
 956		if (!(entry->flags & XFS_ATTR_LOCAL))
 957			return 0;
 958		name_loc = xfs_attr3_leaf_name_local(leaf, i);
 959		if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
 960			return 0;
 961		if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
 962			return 0;
 963		bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
 964					be16_to_cpu(name_loc->valuelen));
 965	}
 966	if (xfs_has_attr2(dp->i_mount) &&
 967	    (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
 968	    (bytes == sizeof(struct xfs_attr_sf_hdr)))
 969		return -1;
 970	return xfs_attr_shortform_bytesfit(dp, bytes);
 971}
 972
 973/* Verify the consistency of a raw inline attribute fork. */
 974xfs_failaddr_t
 975xfs_attr_shortform_verify(
 976	struct xfs_attr_sf_hdr		*sfp,
 977	size_t				size)
 978{
 979	struct xfs_attr_sf_entry	*sfep = xfs_attr_sf_firstentry(sfp);
 
 980	struct xfs_attr_sf_entry	*next_sfep;
 981	char				*endp;
 
 982	int				i;
 
 
 
 
 
 
 983
 984	/*
 985	 * Give up if the attribute is way too short.
 986	 */
 987	if (size < sizeof(struct xfs_attr_sf_hdr))
 988		return __this_address;
 989
 990	endp = (char *)sfp + size;
 991
 992	/* Check all reported entries */
 993	for (i = 0; i < sfp->count; i++) {
 
 994		/*
 995		 * struct xfs_attr_sf_entry has a variable length.
 996		 * Check the fixed-offset parts of the structure are
 997		 * within the data buffer.
 998		 * xfs_attr_sf_entry is defined with a 1-byte variable
 999		 * array at the end, so we must subtract that off.
1000		 */
1001		if (((char *)sfep + sizeof(*sfep)) >= endp)
1002			return __this_address;
1003
1004		/* Don't allow names with known bad length. */
1005		if (sfep->namelen == 0)
1006			return __this_address;
1007
1008		/*
1009		 * Check that the variable-length part of the structure is
1010		 * within the data buffer.  The next entry starts after the
1011		 * name component, so nextentry is an acceptable test.
1012		 */
1013		next_sfep = xfs_attr_sf_nextentry(sfep);
1014		if ((char *)next_sfep > endp)
1015			return __this_address;
1016
1017		/*
1018		 * Check for unknown flags.  Short form doesn't support
1019		 * the incomplete or local bits, so we can use the namespace
1020		 * mask here.
1021		 */
1022		if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1023			return __this_address;
1024
1025		/*
1026		 * Check for invalid namespace combinations.  We only allow
1027		 * one namespace flag per xattr, so we can just count the
1028		 * bits (i.e. hweight) here.
1029		 */
1030		if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1031			return __this_address;
1032
1033		sfep = next_sfep;
1034	}
1035	if ((void *)sfep != (void *)endp)
1036		return __this_address;
1037
1038	return NULL;
1039}
1040
1041/*
1042 * Convert a leaf attribute list to shortform attribute list
1043 */
1044int
1045xfs_attr3_leaf_to_shortform(
1046	struct xfs_buf		*bp,
1047	struct xfs_da_args	*args,
1048	int			forkoff)
1049{
1050	struct xfs_attr_leafblock *leaf;
1051	struct xfs_attr3_icleaf_hdr ichdr;
1052	struct xfs_attr_leaf_entry *entry;
1053	struct xfs_attr_leaf_name_local *name_loc;
1054	struct xfs_da_args	nargs;
1055	struct xfs_inode	*dp = args->dp;
1056	char			*tmpbuffer;
1057	int			error;
1058	int			i;
1059
1060	trace_xfs_attr_leaf_to_sf(args);
1061
1062	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1063	if (!tmpbuffer)
1064		return -ENOMEM;
1065
1066	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1067
1068	leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1069	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1070	entry = xfs_attr3_leaf_entryp(leaf);
1071
1072	/* XXX (dgc): buffer is about to be marked stale - why zero it? */
1073	memset(bp->b_addr, 0, args->geo->blksize);
1074
1075	/*
1076	 * Clean out the prior contents of the attribute list.
1077	 */
1078	error = xfs_da_shrink_inode(args, 0, bp);
1079	if (error)
1080		goto out;
1081
1082	if (forkoff == -1) {
1083		/*
1084		 * Don't remove the attr fork if this operation is the first
1085		 * part of a attr replace operations. We're going to add a new
1086		 * attr immediately, so we need to keep the attr fork around in
1087		 * this case.
1088		 */
1089		if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1090			ASSERT(xfs_has_attr2(dp->i_mount));
1091			ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1092			xfs_attr_fork_remove(dp, args->trans);
1093		}
1094		goto out;
1095	}
1096
1097	xfs_attr_shortform_create(args);
1098
1099	/*
1100	 * Copy the attributes
1101	 */
1102	memset((char *)&nargs, 0, sizeof(nargs));
1103	nargs.geo = args->geo;
1104	nargs.dp = dp;
1105	nargs.total = args->total;
1106	nargs.whichfork = XFS_ATTR_FORK;
1107	nargs.trans = args->trans;
1108	nargs.op_flags = XFS_DA_OP_OKNOENT;
1109
1110	for (i = 0; i < ichdr.count; entry++, i++) {
1111		if (entry->flags & XFS_ATTR_INCOMPLETE)
1112			continue;	/* don't copy partial entries */
1113		if (!entry->nameidx)
1114			continue;
1115		ASSERT(entry->flags & XFS_ATTR_LOCAL);
1116		name_loc = xfs_attr3_leaf_name_local(leaf, i);
1117		nargs.name = name_loc->nameval;
1118		nargs.namelen = name_loc->namelen;
1119		nargs.value = &name_loc->nameval[nargs.namelen];
1120		nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1121		nargs.hashval = be32_to_cpu(entry->hashval);
1122		nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1123		xfs_attr_shortform_add(&nargs, forkoff);
1124	}
1125	error = 0;
1126
1127out:
1128	kmem_free(tmpbuffer);
1129	return error;
1130}
1131
1132/*
1133 * Convert from using a single leaf to a root node and a leaf.
1134 */
1135int
1136xfs_attr3_leaf_to_node(
1137	struct xfs_da_args	*args)
1138{
1139	struct xfs_attr_leafblock *leaf;
1140	struct xfs_attr3_icleaf_hdr icleafhdr;
1141	struct xfs_attr_leaf_entry *entries;
1142	struct xfs_da3_icnode_hdr icnodehdr;
1143	struct xfs_da_intnode	*node;
1144	struct xfs_inode	*dp = args->dp;
1145	struct xfs_mount	*mp = dp->i_mount;
1146	struct xfs_buf		*bp1 = NULL;
1147	struct xfs_buf		*bp2 = NULL;
1148	xfs_dablk_t		blkno;
1149	int			error;
1150
1151	trace_xfs_attr_leaf_to_node(args);
1152
1153	if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1154		error = -EIO;
1155		goto out;
1156	}
1157
1158	error = xfs_da_grow_inode(args, &blkno);
1159	if (error)
1160		goto out;
1161	error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1162	if (error)
1163		goto out;
1164
1165	error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1166	if (error)
1167		goto out;
1168
1169	/*
1170	 * Copy leaf to new buffer and log it.
1171	 */
1172	xfs_da_buf_copy(bp2, bp1, args->geo->blksize);
 
 
 
 
1173	xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1174
1175	/*
1176	 * Set up the new root node.
1177	 */
1178	error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1179	if (error)
1180		goto out;
1181	node = bp1->b_addr;
1182	xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1183
1184	leaf = bp2->b_addr;
1185	xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1186	entries = xfs_attr3_leaf_entryp(leaf);
1187
1188	/* both on-disk, don't endian-flip twice */
1189	icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1190	icnodehdr.btree[0].before = cpu_to_be32(blkno);
1191	icnodehdr.count = 1;
1192	xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1193	xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1194	error = 0;
1195out:
1196	return error;
1197}
1198
1199/*========================================================================
1200 * Routines used for growing the Btree.
1201 *========================================================================*/
1202
1203/*
1204 * Create the initial contents of a leaf attribute list
1205 * or a leaf in a node attribute list.
1206 */
1207STATIC int
1208xfs_attr3_leaf_create(
1209	struct xfs_da_args	*args,
1210	xfs_dablk_t		blkno,
1211	struct xfs_buf		**bpp)
1212{
1213	struct xfs_attr_leafblock *leaf;
1214	struct xfs_attr3_icleaf_hdr ichdr;
1215	struct xfs_inode	*dp = args->dp;
1216	struct xfs_mount	*mp = dp->i_mount;
1217	struct xfs_buf		*bp;
1218	int			error;
1219
1220	trace_xfs_attr_leaf_create(args);
1221
1222	error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1223					    XFS_ATTR_FORK);
1224	if (error)
1225		return error;
1226	bp->b_ops = &xfs_attr3_leaf_buf_ops;
1227	xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1228	leaf = bp->b_addr;
1229	memset(leaf, 0, args->geo->blksize);
1230
1231	memset(&ichdr, 0, sizeof(ichdr));
1232	ichdr.firstused = args->geo->blksize;
1233
1234	if (xfs_has_crc(mp)) {
1235		struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1236
1237		ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1238
1239		hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1240		hdr3->owner = cpu_to_be64(dp->i_ino);
1241		uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1242
1243		ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1244	} else {
1245		ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1246		ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1247	}
1248	ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1249
1250	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1251	xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1252
1253	*bpp = bp;
1254	return 0;
1255}
1256
1257/*
1258 * Split the leaf node, rebalance, then add the new entry.
1259 */
1260int
1261xfs_attr3_leaf_split(
1262	struct xfs_da_state	*state,
1263	struct xfs_da_state_blk	*oldblk,
1264	struct xfs_da_state_blk	*newblk)
1265{
1266	xfs_dablk_t blkno;
1267	int error;
1268
1269	trace_xfs_attr_leaf_split(state->args);
1270
1271	/*
1272	 * Allocate space for a new leaf node.
1273	 */
1274	ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1275	error = xfs_da_grow_inode(state->args, &blkno);
1276	if (error)
1277		return error;
1278	error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1279	if (error)
1280		return error;
1281	newblk->blkno = blkno;
1282	newblk->magic = XFS_ATTR_LEAF_MAGIC;
1283
1284	/*
1285	 * Rebalance the entries across the two leaves.
1286	 * NOTE: rebalance() currently depends on the 2nd block being empty.
1287	 */
1288	xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1289	error = xfs_da3_blk_link(state, oldblk, newblk);
1290	if (error)
1291		return error;
1292
1293	/*
1294	 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1295	 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1296	 * "new" attrs info.  Will need the "old" info to remove it later.
1297	 *
1298	 * Insert the "new" entry in the correct block.
1299	 */
1300	if (state->inleaf) {
1301		trace_xfs_attr_leaf_add_old(state->args);
1302		error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1303	} else {
1304		trace_xfs_attr_leaf_add_new(state->args);
1305		error = xfs_attr3_leaf_add(newblk->bp, state->args);
1306	}
1307
1308	/*
1309	 * Update last hashval in each block since we added the name.
1310	 */
1311	oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1312	newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1313	return error;
1314}
1315
1316/*
1317 * Add a name to the leaf attribute list structure.
1318 */
1319int
1320xfs_attr3_leaf_add(
1321	struct xfs_buf		*bp,
1322	struct xfs_da_args	*args)
1323{
1324	struct xfs_attr_leafblock *leaf;
1325	struct xfs_attr3_icleaf_hdr ichdr;
1326	int			tablesize;
1327	int			entsize;
1328	int			sum;
1329	int			tmp;
1330	int			i;
1331
1332	trace_xfs_attr_leaf_add(args);
1333
1334	leaf = bp->b_addr;
1335	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1336	ASSERT(args->index >= 0 && args->index <= ichdr.count);
1337	entsize = xfs_attr_leaf_newentsize(args, NULL);
1338
1339	/*
1340	 * Search through freemap for first-fit on new name length.
1341	 * (may need to figure in size of entry struct too)
1342	 */
1343	tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1344					+ xfs_attr3_leaf_hdr_size(leaf);
1345	for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1346		if (tablesize > ichdr.firstused) {
1347			sum += ichdr.freemap[i].size;
1348			continue;
1349		}
1350		if (!ichdr.freemap[i].size)
1351			continue;	/* no space in this map */
1352		tmp = entsize;
1353		if (ichdr.freemap[i].base < ichdr.firstused)
1354			tmp += sizeof(xfs_attr_leaf_entry_t);
1355		if (ichdr.freemap[i].size >= tmp) {
1356			tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1357			goto out_log_hdr;
1358		}
1359		sum += ichdr.freemap[i].size;
1360	}
1361
1362	/*
1363	 * If there are no holes in the address space of the block,
1364	 * and we don't have enough freespace, then compaction will do us
1365	 * no good and we should just give up.
1366	 */
1367	if (!ichdr.holes && sum < entsize)
1368		return -ENOSPC;
1369
1370	/*
1371	 * Compact the entries to coalesce free space.
1372	 * This may change the hdr->count via dropping INCOMPLETE entries.
1373	 */
1374	xfs_attr3_leaf_compact(args, &ichdr, bp);
1375
1376	/*
1377	 * After compaction, the block is guaranteed to have only one
1378	 * free region, in freemap[0].  If it is not big enough, give up.
1379	 */
1380	if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1381		tmp = -ENOSPC;
1382		goto out_log_hdr;
1383	}
1384
1385	tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1386
1387out_log_hdr:
1388	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1389	xfs_trans_log_buf(args->trans, bp,
1390		XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1391				xfs_attr3_leaf_hdr_size(leaf)));
1392	return tmp;
1393}
1394
1395/*
1396 * Add a name to a leaf attribute list structure.
1397 */
1398STATIC int
1399xfs_attr3_leaf_add_work(
1400	struct xfs_buf		*bp,
1401	struct xfs_attr3_icleaf_hdr *ichdr,
1402	struct xfs_da_args	*args,
1403	int			mapindex)
1404{
1405	struct xfs_attr_leafblock *leaf;
1406	struct xfs_attr_leaf_entry *entry;
1407	struct xfs_attr_leaf_name_local *name_loc;
1408	struct xfs_attr_leaf_name_remote *name_rmt;
1409	struct xfs_mount	*mp;
1410	int			tmp;
1411	int			i;
1412
1413	trace_xfs_attr_leaf_add_work(args);
1414
1415	leaf = bp->b_addr;
1416	ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1417	ASSERT(args->index >= 0 && args->index <= ichdr->count);
1418
1419	/*
1420	 * Force open some space in the entry array and fill it in.
1421	 */
1422	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1423	if (args->index < ichdr->count) {
1424		tmp  = ichdr->count - args->index;
1425		tmp *= sizeof(xfs_attr_leaf_entry_t);
1426		memmove(entry + 1, entry, tmp);
1427		xfs_trans_log_buf(args->trans, bp,
1428		    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1429	}
1430	ichdr->count++;
1431
1432	/*
1433	 * Allocate space for the new string (at the end of the run).
1434	 */
1435	mp = args->trans->t_mountp;
1436	ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1437	ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1438	ASSERT(ichdr->freemap[mapindex].size >=
1439		xfs_attr_leaf_newentsize(args, NULL));
1440	ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1441	ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1442
1443	ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1444
1445	entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1446				     ichdr->freemap[mapindex].size);
1447	entry->hashval = cpu_to_be32(args->hashval);
1448	entry->flags = args->attr_filter;
1449	if (tmp)
1450		entry->flags |= XFS_ATTR_LOCAL;
1451	if (args->op_flags & XFS_DA_OP_REPLACE) {
1452		if (!(args->op_flags & XFS_DA_OP_LOGGED))
1453			entry->flags |= XFS_ATTR_INCOMPLETE;
1454		if ((args->blkno2 == args->blkno) &&
1455		    (args->index2 <= args->index)) {
1456			args->index2++;
1457		}
1458	}
1459	xfs_trans_log_buf(args->trans, bp,
1460			  XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1461	ASSERT((args->index == 0) ||
1462	       (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1463	ASSERT((args->index == ichdr->count - 1) ||
1464	       (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1465
1466	/*
1467	 * For "remote" attribute values, simply note that we need to
1468	 * allocate space for the "remote" value.  We can't actually
1469	 * allocate the extents in this transaction, and we can't decide
1470	 * which blocks they should be as we might allocate more blocks
1471	 * as part of this transaction (a split operation for example).
1472	 */
1473	if (entry->flags & XFS_ATTR_LOCAL) {
1474		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1475		name_loc->namelen = args->namelen;
1476		name_loc->valuelen = cpu_to_be16(args->valuelen);
1477		memcpy((char *)name_loc->nameval, args->name, args->namelen);
1478		memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1479				   be16_to_cpu(name_loc->valuelen));
1480	} else {
1481		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1482		name_rmt->namelen = args->namelen;
1483		memcpy((char *)name_rmt->name, args->name, args->namelen);
1484		entry->flags |= XFS_ATTR_INCOMPLETE;
1485		/* just in case */
1486		name_rmt->valuelen = 0;
1487		name_rmt->valueblk = 0;
1488		args->rmtblkno = 1;
1489		args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1490		args->rmtvaluelen = args->valuelen;
1491	}
1492	xfs_trans_log_buf(args->trans, bp,
1493	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1494				   xfs_attr_leaf_entsize(leaf, args->index)));
1495
1496	/*
1497	 * Update the control info for this leaf node
1498	 */
1499	if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1500		ichdr->firstused = be16_to_cpu(entry->nameidx);
1501
1502	ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1503					+ xfs_attr3_leaf_hdr_size(leaf));
1504	tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1505					+ xfs_attr3_leaf_hdr_size(leaf);
1506
1507	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1508		if (ichdr->freemap[i].base == tmp) {
1509			ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1510			ichdr->freemap[i].size -=
1511				min_t(uint16_t, ichdr->freemap[i].size,
1512						sizeof(xfs_attr_leaf_entry_t));
1513		}
1514	}
1515	ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1516	return 0;
1517}
1518
1519/*
1520 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1521 */
1522STATIC void
1523xfs_attr3_leaf_compact(
1524	struct xfs_da_args	*args,
1525	struct xfs_attr3_icleaf_hdr *ichdr_dst,
1526	struct xfs_buf		*bp)
1527{
1528	struct xfs_attr_leafblock *leaf_src;
1529	struct xfs_attr_leafblock *leaf_dst;
1530	struct xfs_attr3_icleaf_hdr ichdr_src;
1531	struct xfs_trans	*trans = args->trans;
1532	char			*tmpbuffer;
1533
1534	trace_xfs_attr_leaf_compact(args);
1535
1536	tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1537	memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1538	memset(bp->b_addr, 0, args->geo->blksize);
1539	leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1540	leaf_dst = bp->b_addr;
1541
1542	/*
1543	 * Copy the on-disk header back into the destination buffer to ensure
1544	 * all the information in the header that is not part of the incore
1545	 * header structure is preserved.
1546	 */
1547	memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1548
1549	/* Initialise the incore headers */
1550	ichdr_src = *ichdr_dst;	/* struct copy */
1551	ichdr_dst->firstused = args->geo->blksize;
1552	ichdr_dst->usedbytes = 0;
1553	ichdr_dst->count = 0;
1554	ichdr_dst->holes = 0;
1555	ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1556	ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1557						ichdr_dst->freemap[0].base;
1558
1559	/* write the header back to initialise the underlying buffer */
1560	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1561
1562	/*
1563	 * Copy all entry's in the same (sorted) order,
1564	 * but allocate name/value pairs packed and in sequence.
1565	 */
1566	xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1567				leaf_dst, ichdr_dst, 0, ichdr_src.count);
1568	/*
1569	 * this logs the entire buffer, but the caller must write the header
1570	 * back to the buffer when it is finished modifying it.
1571	 */
1572	xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1573
1574	kmem_free(tmpbuffer);
1575}
1576
1577/*
1578 * Compare two leaf blocks "order".
1579 * Return 0 unless leaf2 should go before leaf1.
1580 */
1581static int
1582xfs_attr3_leaf_order(
1583	struct xfs_buf	*leaf1_bp,
1584	struct xfs_attr3_icleaf_hdr *leaf1hdr,
1585	struct xfs_buf	*leaf2_bp,
1586	struct xfs_attr3_icleaf_hdr *leaf2hdr)
1587{
1588	struct xfs_attr_leaf_entry *entries1;
1589	struct xfs_attr_leaf_entry *entries2;
1590
1591	entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1592	entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1593	if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1594	    ((be32_to_cpu(entries2[0].hashval) <
1595	      be32_to_cpu(entries1[0].hashval)) ||
1596	     (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1597	      be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1598		return 1;
1599	}
1600	return 0;
1601}
1602
1603int
1604xfs_attr_leaf_order(
1605	struct xfs_buf	*leaf1_bp,
1606	struct xfs_buf	*leaf2_bp)
1607{
1608	struct xfs_attr3_icleaf_hdr ichdr1;
1609	struct xfs_attr3_icleaf_hdr ichdr2;
1610	struct xfs_mount *mp = leaf1_bp->b_mount;
1611
1612	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1613	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1614	return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1615}
1616
1617/*
1618 * Redistribute the attribute list entries between two leaf nodes,
1619 * taking into account the size of the new entry.
1620 *
1621 * NOTE: if new block is empty, then it will get the upper half of the
1622 * old block.  At present, all (one) callers pass in an empty second block.
1623 *
1624 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1625 * to match what it is doing in splitting the attribute leaf block.  Those
1626 * values are used in "atomic rename" operations on attributes.  Note that
1627 * the "new" and "old" values can end up in different blocks.
1628 */
1629STATIC void
1630xfs_attr3_leaf_rebalance(
1631	struct xfs_da_state	*state,
1632	struct xfs_da_state_blk	*blk1,
1633	struct xfs_da_state_blk	*blk2)
1634{
1635	struct xfs_da_args	*args;
1636	struct xfs_attr_leafblock *leaf1;
1637	struct xfs_attr_leafblock *leaf2;
1638	struct xfs_attr3_icleaf_hdr ichdr1;
1639	struct xfs_attr3_icleaf_hdr ichdr2;
1640	struct xfs_attr_leaf_entry *entries1;
1641	struct xfs_attr_leaf_entry *entries2;
1642	int			count;
1643	int			totallen;
1644	int			max;
1645	int			space;
1646	int			swap;
1647
1648	/*
1649	 * Set up environment.
1650	 */
1651	ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1652	ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1653	leaf1 = blk1->bp->b_addr;
1654	leaf2 = blk2->bp->b_addr;
1655	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1656	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1657	ASSERT(ichdr2.count == 0);
1658	args = state->args;
1659
1660	trace_xfs_attr_leaf_rebalance(args);
1661
1662	/*
1663	 * Check ordering of blocks, reverse if it makes things simpler.
1664	 *
1665	 * NOTE: Given that all (current) callers pass in an empty
1666	 * second block, this code should never set "swap".
1667	 */
1668	swap = 0;
1669	if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1670		swap(blk1, blk2);
1671
1672		/* swap structures rather than reconverting them */
1673		swap(ichdr1, ichdr2);
1674
1675		leaf1 = blk1->bp->b_addr;
1676		leaf2 = blk2->bp->b_addr;
1677		swap = 1;
1678	}
1679
1680	/*
1681	 * Examine entries until we reduce the absolute difference in
1682	 * byte usage between the two blocks to a minimum.  Then get
1683	 * the direction to copy and the number of elements to move.
1684	 *
1685	 * "inleaf" is true if the new entry should be inserted into blk1.
1686	 * If "swap" is also true, then reverse the sense of "inleaf".
1687	 */
1688	state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1689						      blk2, &ichdr2,
1690						      &count, &totallen);
1691	if (swap)
1692		state->inleaf = !state->inleaf;
1693
1694	/*
1695	 * Move any entries required from leaf to leaf:
1696	 */
1697	if (count < ichdr1.count) {
1698		/*
1699		 * Figure the total bytes to be added to the destination leaf.
1700		 */
1701		/* number entries being moved */
1702		count = ichdr1.count - count;
1703		space  = ichdr1.usedbytes - totallen;
1704		space += count * sizeof(xfs_attr_leaf_entry_t);
1705
1706		/*
1707		 * leaf2 is the destination, compact it if it looks tight.
1708		 */
1709		max  = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1710		max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1711		if (space > max)
1712			xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1713
1714		/*
1715		 * Move high entries from leaf1 to low end of leaf2.
1716		 */
1717		xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1718				ichdr1.count - count, leaf2, &ichdr2, 0, count);
1719
1720	} else if (count > ichdr1.count) {
1721		/*
1722		 * I assert that since all callers pass in an empty
1723		 * second buffer, this code should never execute.
1724		 */
1725		ASSERT(0);
1726
1727		/*
1728		 * Figure the total bytes to be added to the destination leaf.
1729		 */
1730		/* number entries being moved */
1731		count -= ichdr1.count;
1732		space  = totallen - ichdr1.usedbytes;
1733		space += count * sizeof(xfs_attr_leaf_entry_t);
1734
1735		/*
1736		 * leaf1 is the destination, compact it if it looks tight.
1737		 */
1738		max  = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1739		max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1740		if (space > max)
1741			xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1742
1743		/*
1744		 * Move low entries from leaf2 to high end of leaf1.
1745		 */
1746		xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1747					ichdr1.count, count);
1748	}
1749
1750	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1751	xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1752	xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1753	xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1754
1755	/*
1756	 * Copy out last hashval in each block for B-tree code.
1757	 */
1758	entries1 = xfs_attr3_leaf_entryp(leaf1);
1759	entries2 = xfs_attr3_leaf_entryp(leaf2);
1760	blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1761	blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1762
1763	/*
1764	 * Adjust the expected index for insertion.
1765	 * NOTE: this code depends on the (current) situation that the
1766	 * second block was originally empty.
1767	 *
1768	 * If the insertion point moved to the 2nd block, we must adjust
1769	 * the index.  We must also track the entry just following the
1770	 * new entry for use in an "atomic rename" operation, that entry
1771	 * is always the "old" entry and the "new" entry is what we are
1772	 * inserting.  The index/blkno fields refer to the "old" entry,
1773	 * while the index2/blkno2 fields refer to the "new" entry.
1774	 */
1775	if (blk1->index > ichdr1.count) {
1776		ASSERT(state->inleaf == 0);
1777		blk2->index = blk1->index - ichdr1.count;
1778		args->index = args->index2 = blk2->index;
1779		args->blkno = args->blkno2 = blk2->blkno;
1780	} else if (blk1->index == ichdr1.count) {
1781		if (state->inleaf) {
1782			args->index = blk1->index;
1783			args->blkno = blk1->blkno;
1784			args->index2 = 0;
1785			args->blkno2 = blk2->blkno;
1786		} else {
1787			/*
1788			 * On a double leaf split, the original attr location
1789			 * is already stored in blkno2/index2, so don't
1790			 * overwrite it overwise we corrupt the tree.
1791			 */
1792			blk2->index = blk1->index - ichdr1.count;
1793			args->index = blk2->index;
1794			args->blkno = blk2->blkno;
1795			if (!state->extravalid) {
1796				/*
1797				 * set the new attr location to match the old
1798				 * one and let the higher level split code
1799				 * decide where in the leaf to place it.
1800				 */
1801				args->index2 = blk2->index;
1802				args->blkno2 = blk2->blkno;
1803			}
1804		}
1805	} else {
1806		ASSERT(state->inleaf == 1);
1807		args->index = args->index2 = blk1->index;
1808		args->blkno = args->blkno2 = blk1->blkno;
1809	}
1810}
1811
1812/*
1813 * Examine entries until we reduce the absolute difference in
1814 * byte usage between the two blocks to a minimum.
1815 * GROT: Is this really necessary?  With other than a 512 byte blocksize,
1816 * GROT: there will always be enough room in either block for a new entry.
1817 * GROT: Do a double-split for this case?
1818 */
1819STATIC int
1820xfs_attr3_leaf_figure_balance(
1821	struct xfs_da_state		*state,
1822	struct xfs_da_state_blk		*blk1,
1823	struct xfs_attr3_icleaf_hdr	*ichdr1,
1824	struct xfs_da_state_blk		*blk2,
1825	struct xfs_attr3_icleaf_hdr	*ichdr2,
1826	int				*countarg,
1827	int				*usedbytesarg)
1828{
1829	struct xfs_attr_leafblock	*leaf1 = blk1->bp->b_addr;
1830	struct xfs_attr_leafblock	*leaf2 = blk2->bp->b_addr;
1831	struct xfs_attr_leaf_entry	*entry;
1832	int				count;
1833	int				max;
1834	int				index;
1835	int				totallen = 0;
1836	int				half;
1837	int				lastdelta;
1838	int				foundit = 0;
1839	int				tmp;
1840
1841	/*
1842	 * Examine entries until we reduce the absolute difference in
1843	 * byte usage between the two blocks to a minimum.
1844	 */
1845	max = ichdr1->count + ichdr2->count;
1846	half = (max + 1) * sizeof(*entry);
1847	half += ichdr1->usedbytes + ichdr2->usedbytes +
1848			xfs_attr_leaf_newentsize(state->args, NULL);
1849	half /= 2;
1850	lastdelta = state->args->geo->blksize;
1851	entry = xfs_attr3_leaf_entryp(leaf1);
1852	for (count = index = 0; count < max; entry++, index++, count++) {
1853
1854#define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A))
1855		/*
1856		 * The new entry is in the first block, account for it.
1857		 */
1858		if (count == blk1->index) {
1859			tmp = totallen + sizeof(*entry) +
1860				xfs_attr_leaf_newentsize(state->args, NULL);
1861			if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1862				break;
1863			lastdelta = XFS_ATTR_ABS(half - tmp);
1864			totallen = tmp;
1865			foundit = 1;
1866		}
1867
1868		/*
1869		 * Wrap around into the second block if necessary.
1870		 */
1871		if (count == ichdr1->count) {
1872			leaf1 = leaf2;
1873			entry = xfs_attr3_leaf_entryp(leaf1);
1874			index = 0;
1875		}
1876
1877		/*
1878		 * Figure out if next leaf entry would be too much.
1879		 */
1880		tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1881									index);
1882		if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1883			break;
1884		lastdelta = XFS_ATTR_ABS(half - tmp);
1885		totallen = tmp;
1886#undef XFS_ATTR_ABS
1887	}
1888
1889	/*
1890	 * Calculate the number of usedbytes that will end up in lower block.
1891	 * If new entry not in lower block, fix up the count.
1892	 */
1893	totallen -= count * sizeof(*entry);
1894	if (foundit) {
1895		totallen -= sizeof(*entry) +
1896				xfs_attr_leaf_newentsize(state->args, NULL);
1897	}
1898
1899	*countarg = count;
1900	*usedbytesarg = totallen;
1901	return foundit;
1902}
1903
1904/*========================================================================
1905 * Routines used for shrinking the Btree.
1906 *========================================================================*/
1907
1908/*
1909 * Check a leaf block and its neighbors to see if the block should be
1910 * collapsed into one or the other neighbor.  Always keep the block
1911 * with the smaller block number.
1912 * If the current block is over 50% full, don't try to join it, return 0.
1913 * If the block is empty, fill in the state structure and return 2.
1914 * If it can be collapsed, fill in the state structure and return 1.
1915 * If nothing can be done, return 0.
1916 *
1917 * GROT: allow for INCOMPLETE entries in calculation.
1918 */
1919int
1920xfs_attr3_leaf_toosmall(
1921	struct xfs_da_state	*state,
1922	int			*action)
1923{
1924	struct xfs_attr_leafblock *leaf;
1925	struct xfs_da_state_blk	*blk;
1926	struct xfs_attr3_icleaf_hdr ichdr;
1927	struct xfs_buf		*bp;
1928	xfs_dablk_t		blkno;
1929	int			bytes;
1930	int			forward;
1931	int			error;
1932	int			retval;
1933	int			i;
1934
1935	trace_xfs_attr_leaf_toosmall(state->args);
1936
1937	/*
1938	 * Check for the degenerate case of the block being over 50% full.
1939	 * If so, it's not worth even looking to see if we might be able
1940	 * to coalesce with a sibling.
1941	 */
1942	blk = &state->path.blk[ state->path.active-1 ];
1943	leaf = blk->bp->b_addr;
1944	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1945	bytes = xfs_attr3_leaf_hdr_size(leaf) +
1946		ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1947		ichdr.usedbytes;
1948	if (bytes > (state->args->geo->blksize >> 1)) {
1949		*action = 0;	/* blk over 50%, don't try to join */
1950		return 0;
1951	}
1952
1953	/*
1954	 * Check for the degenerate case of the block being empty.
1955	 * If the block is empty, we'll simply delete it, no need to
1956	 * coalesce it with a sibling block.  We choose (arbitrarily)
1957	 * to merge with the forward block unless it is NULL.
1958	 */
1959	if (ichdr.count == 0) {
1960		/*
1961		 * Make altpath point to the block we want to keep and
1962		 * path point to the block we want to drop (this one).
1963		 */
1964		forward = (ichdr.forw != 0);
1965		memcpy(&state->altpath, &state->path, sizeof(state->path));
1966		error = xfs_da3_path_shift(state, &state->altpath, forward,
1967						 0, &retval);
1968		if (error)
1969			return error;
1970		if (retval) {
1971			*action = 0;
1972		} else {
1973			*action = 2;
1974		}
1975		return 0;
1976	}
1977
1978	/*
1979	 * Examine each sibling block to see if we can coalesce with
1980	 * at least 25% free space to spare.  We need to figure out
1981	 * whether to merge with the forward or the backward block.
1982	 * We prefer coalescing with the lower numbered sibling so as
1983	 * to shrink an attribute list over time.
1984	 */
1985	/* start with smaller blk num */
1986	forward = ichdr.forw < ichdr.back;
1987	for (i = 0; i < 2; forward = !forward, i++) {
1988		struct xfs_attr3_icleaf_hdr ichdr2;
1989		if (forward)
1990			blkno = ichdr.forw;
1991		else
1992			blkno = ichdr.back;
1993		if (blkno == 0)
1994			continue;
1995		error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1996					blkno, &bp);
1997		if (error)
1998			return error;
1999
2000		xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2001
2002		bytes = state->args->geo->blksize -
2003			(state->args->geo->blksize >> 2) -
2004			ichdr.usedbytes - ichdr2.usedbytes -
2005			((ichdr.count + ichdr2.count) *
2006					sizeof(xfs_attr_leaf_entry_t)) -
2007			xfs_attr3_leaf_hdr_size(leaf);
2008
2009		xfs_trans_brelse(state->args->trans, bp);
2010		if (bytes >= 0)
2011			break;	/* fits with at least 25% to spare */
2012	}
2013	if (i >= 2) {
2014		*action = 0;
2015		return 0;
2016	}
2017
2018	/*
2019	 * Make altpath point to the block we want to keep (the lower
2020	 * numbered block) and path point to the block we want to drop.
2021	 */
2022	memcpy(&state->altpath, &state->path, sizeof(state->path));
2023	if (blkno < blk->blkno) {
2024		error = xfs_da3_path_shift(state, &state->altpath, forward,
2025						 0, &retval);
2026	} else {
2027		error = xfs_da3_path_shift(state, &state->path, forward,
2028						 0, &retval);
2029	}
2030	if (error)
2031		return error;
2032	if (retval) {
2033		*action = 0;
2034	} else {
2035		*action = 1;
2036	}
2037	return 0;
2038}
2039
2040/*
2041 * Remove a name from the leaf attribute list structure.
2042 *
2043 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2044 * If two leaves are 37% full, when combined they will leave 25% free.
2045 */
2046int
2047xfs_attr3_leaf_remove(
2048	struct xfs_buf		*bp,
2049	struct xfs_da_args	*args)
2050{
2051	struct xfs_attr_leafblock *leaf;
2052	struct xfs_attr3_icleaf_hdr ichdr;
2053	struct xfs_attr_leaf_entry *entry;
2054	int			before;
2055	int			after;
2056	int			smallest;
2057	int			entsize;
2058	int			tablesize;
2059	int			tmp;
2060	int			i;
2061
2062	trace_xfs_attr_leaf_remove(args);
2063
2064	leaf = bp->b_addr;
2065	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2066
2067	ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2068	ASSERT(args->index >= 0 && args->index < ichdr.count);
2069	ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2070					xfs_attr3_leaf_hdr_size(leaf));
2071
2072	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2073
2074	ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2075	ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2076
2077	/*
2078	 * Scan through free region table:
2079	 *    check for adjacency of free'd entry with an existing one,
2080	 *    find smallest free region in case we need to replace it,
2081	 *    adjust any map that borders the entry table,
2082	 */
2083	tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2084					+ xfs_attr3_leaf_hdr_size(leaf);
2085	tmp = ichdr.freemap[0].size;
2086	before = after = -1;
2087	smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2088	entsize = xfs_attr_leaf_entsize(leaf, args->index);
2089	for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2090		ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2091		ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2092		if (ichdr.freemap[i].base == tablesize) {
2093			ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2094			ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2095		}
2096
2097		if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2098				be16_to_cpu(entry->nameidx)) {
2099			before = i;
2100		} else if (ichdr.freemap[i].base ==
2101				(be16_to_cpu(entry->nameidx) + entsize)) {
2102			after = i;
2103		} else if (ichdr.freemap[i].size < tmp) {
2104			tmp = ichdr.freemap[i].size;
2105			smallest = i;
2106		}
2107	}
2108
2109	/*
2110	 * Coalesce adjacent freemap regions,
2111	 * or replace the smallest region.
2112	 */
2113	if ((before >= 0) || (after >= 0)) {
2114		if ((before >= 0) && (after >= 0)) {
2115			ichdr.freemap[before].size += entsize;
2116			ichdr.freemap[before].size += ichdr.freemap[after].size;
2117			ichdr.freemap[after].base = 0;
2118			ichdr.freemap[after].size = 0;
2119		} else if (before >= 0) {
2120			ichdr.freemap[before].size += entsize;
2121		} else {
2122			ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2123			ichdr.freemap[after].size += entsize;
2124		}
2125	} else {
2126		/*
2127		 * Replace smallest region (if it is smaller than free'd entry)
2128		 */
2129		if (ichdr.freemap[smallest].size < entsize) {
2130			ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2131			ichdr.freemap[smallest].size = entsize;
2132		}
2133	}
2134
2135	/*
2136	 * Did we remove the first entry?
2137	 */
2138	if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2139		smallest = 1;
2140	else
2141		smallest = 0;
2142
2143	/*
2144	 * Compress the remaining entries and zero out the removed stuff.
2145	 */
2146	memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2147	ichdr.usedbytes -= entsize;
2148	xfs_trans_log_buf(args->trans, bp,
2149	     XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2150				   entsize));
2151
2152	tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2153	memmove(entry, entry + 1, tmp);
2154	ichdr.count--;
2155	xfs_trans_log_buf(args->trans, bp,
2156	    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2157
2158	entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2159	memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2160
2161	/*
2162	 * If we removed the first entry, re-find the first used byte
2163	 * in the name area.  Note that if the entry was the "firstused",
2164	 * then we don't have a "hole" in our block resulting from
2165	 * removing the name.
2166	 */
2167	if (smallest) {
2168		tmp = args->geo->blksize;
2169		entry = xfs_attr3_leaf_entryp(leaf);
2170		for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2171			ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2172			ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2173
2174			if (be16_to_cpu(entry->nameidx) < tmp)
2175				tmp = be16_to_cpu(entry->nameidx);
2176		}
2177		ichdr.firstused = tmp;
2178		ASSERT(ichdr.firstused != 0);
2179	} else {
2180		ichdr.holes = 1;	/* mark as needing compaction */
2181	}
2182	xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2183	xfs_trans_log_buf(args->trans, bp,
2184			  XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2185					  xfs_attr3_leaf_hdr_size(leaf)));
2186
2187	/*
2188	 * Check if leaf is less than 50% full, caller may want to
2189	 * "join" the leaf with a sibling if so.
2190	 */
2191	tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2192	      ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2193
2194	return tmp < args->geo->magicpct; /* leaf is < 37% full */
2195}
2196
2197/*
2198 * Move all the attribute list entries from drop_leaf into save_leaf.
2199 */
2200void
2201xfs_attr3_leaf_unbalance(
2202	struct xfs_da_state	*state,
2203	struct xfs_da_state_blk	*drop_blk,
2204	struct xfs_da_state_blk	*save_blk)
2205{
2206	struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2207	struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2208	struct xfs_attr3_icleaf_hdr drophdr;
2209	struct xfs_attr3_icleaf_hdr savehdr;
2210	struct xfs_attr_leaf_entry *entry;
2211
2212	trace_xfs_attr_leaf_unbalance(state->args);
2213
 
 
2214	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2215	xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2216	entry = xfs_attr3_leaf_entryp(drop_leaf);
2217
2218	/*
2219	 * Save last hashval from dying block for later Btree fixup.
2220	 */
2221	drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2222
2223	/*
2224	 * Check if we need a temp buffer, or can we do it in place.
2225	 * Note that we don't check "leaf" for holes because we will
2226	 * always be dropping it, toosmall() decided that for us already.
2227	 */
2228	if (savehdr.holes == 0) {
2229		/*
2230		 * dest leaf has no holes, so we add there.  May need
2231		 * to make some room in the entry array.
2232		 */
2233		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2234					 drop_blk->bp, &drophdr)) {
2235			xfs_attr3_leaf_moveents(state->args,
2236						drop_leaf, &drophdr, 0,
2237						save_leaf, &savehdr, 0,
2238						drophdr.count);
2239		} else {
2240			xfs_attr3_leaf_moveents(state->args,
2241						drop_leaf, &drophdr, 0,
2242						save_leaf, &savehdr,
2243						savehdr.count, drophdr.count);
2244		}
2245	} else {
2246		/*
2247		 * Destination has holes, so we make a temporary copy
2248		 * of the leaf and add them both to that.
2249		 */
2250		struct xfs_attr_leafblock *tmp_leaf;
2251		struct xfs_attr3_icleaf_hdr tmphdr;
2252
2253		tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2254
2255		/*
2256		 * Copy the header into the temp leaf so that all the stuff
2257		 * not in the incore header is present and gets copied back in
2258		 * once we've moved all the entries.
2259		 */
2260		memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2261
2262		memset(&tmphdr, 0, sizeof(tmphdr));
2263		tmphdr.magic = savehdr.magic;
2264		tmphdr.forw = savehdr.forw;
2265		tmphdr.back = savehdr.back;
2266		tmphdr.firstused = state->args->geo->blksize;
2267
2268		/* write the header to the temp buffer to initialise it */
2269		xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2270
2271		if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2272					 drop_blk->bp, &drophdr)) {
2273			xfs_attr3_leaf_moveents(state->args,
2274						drop_leaf, &drophdr, 0,
2275						tmp_leaf, &tmphdr, 0,
2276						drophdr.count);
2277			xfs_attr3_leaf_moveents(state->args,
2278						save_leaf, &savehdr, 0,
2279						tmp_leaf, &tmphdr, tmphdr.count,
2280						savehdr.count);
2281		} else {
2282			xfs_attr3_leaf_moveents(state->args,
2283						save_leaf, &savehdr, 0,
2284						tmp_leaf, &tmphdr, 0,
2285						savehdr.count);
2286			xfs_attr3_leaf_moveents(state->args,
2287						drop_leaf, &drophdr, 0,
2288						tmp_leaf, &tmphdr, tmphdr.count,
2289						drophdr.count);
2290		}
2291		memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2292		savehdr = tmphdr; /* struct copy */
2293		kmem_free(tmp_leaf);
2294	}
2295
2296	xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2297	xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2298					   state->args->geo->blksize - 1);
2299
2300	/*
2301	 * Copy out last hashval in each block for B-tree code.
2302	 */
2303	entry = xfs_attr3_leaf_entryp(save_leaf);
2304	save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2305}
2306
2307/*========================================================================
2308 * Routines used for finding things in the Btree.
2309 *========================================================================*/
2310
2311/*
2312 * Look up a name in a leaf attribute list structure.
2313 * This is the internal routine, it uses the caller's buffer.
2314 *
2315 * Note that duplicate keys are allowed, but only check within the
2316 * current leaf node.  The Btree code must check in adjacent leaf nodes.
2317 *
2318 * Return in args->index the index into the entry[] array of either
2319 * the found entry, or where the entry should have been (insert before
2320 * that entry).
2321 *
2322 * Don't change the args->value unless we find the attribute.
2323 */
2324int
2325xfs_attr3_leaf_lookup_int(
2326	struct xfs_buf		*bp,
2327	struct xfs_da_args	*args)
2328{
2329	struct xfs_attr_leafblock *leaf;
2330	struct xfs_attr3_icleaf_hdr ichdr;
2331	struct xfs_attr_leaf_entry *entry;
2332	struct xfs_attr_leaf_entry *entries;
2333	struct xfs_attr_leaf_name_local *name_loc;
2334	struct xfs_attr_leaf_name_remote *name_rmt;
2335	xfs_dahash_t		hashval;
2336	int			probe;
2337	int			span;
2338
2339	trace_xfs_attr_leaf_lookup(args);
2340
2341	leaf = bp->b_addr;
2342	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2343	entries = xfs_attr3_leaf_entryp(leaf);
2344	if (ichdr.count >= args->geo->blksize / 8) {
2345		xfs_buf_mark_corrupt(bp);
2346		return -EFSCORRUPTED;
2347	}
2348
2349	/*
2350	 * Binary search.  (note: small blocks will skip this loop)
2351	 */
2352	hashval = args->hashval;
2353	probe = span = ichdr.count / 2;
2354	for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2355		span /= 2;
2356		if (be32_to_cpu(entry->hashval) < hashval)
2357			probe += span;
2358		else if (be32_to_cpu(entry->hashval) > hashval)
2359			probe -= span;
2360		else
2361			break;
2362	}
2363	if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2364		xfs_buf_mark_corrupt(bp);
2365		return -EFSCORRUPTED;
2366	}
2367	if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2368		xfs_buf_mark_corrupt(bp);
2369		return -EFSCORRUPTED;
2370	}
2371
2372	/*
2373	 * Since we may have duplicate hashval's, find the first matching
2374	 * hashval in the leaf.
2375	 */
2376	while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2377		entry--;
2378		probe--;
2379	}
2380	while (probe < ichdr.count &&
2381	       be32_to_cpu(entry->hashval) < hashval) {
2382		entry++;
2383		probe++;
2384	}
2385	if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2386		args->index = probe;
2387		return -ENOATTR;
2388	}
2389
2390	/*
2391	 * Duplicate keys may be present, so search all of them for a match.
2392	 */
2393	for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2394			entry++, probe++) {
2395/*
2396 * GROT: Add code to remove incomplete entries.
2397 */
2398		if (entry->flags & XFS_ATTR_LOCAL) {
2399			name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2400			if (!xfs_attr_match(args, name_loc->namelen,
2401					name_loc->nameval, entry->flags))
2402				continue;
2403			args->index = probe;
2404			return -EEXIST;
2405		} else {
2406			name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2407			if (!xfs_attr_match(args, name_rmt->namelen,
2408					name_rmt->name, entry->flags))
2409				continue;
2410			args->index = probe;
2411			args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2412			args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2413			args->rmtblkcnt = xfs_attr3_rmt_blocks(
2414							args->dp->i_mount,
2415							args->rmtvaluelen);
2416			return -EEXIST;
2417		}
2418	}
2419	args->index = probe;
2420	return -ENOATTR;
2421}
2422
2423/*
2424 * Get the value associated with an attribute name from a leaf attribute
2425 * list structure.
2426 *
2427 * If args->valuelen is zero, only the length needs to be returned.  Unlike a
2428 * lookup, we only return an error if the attribute does not exist or we can't
2429 * retrieve the value.
2430 */
2431int
2432xfs_attr3_leaf_getvalue(
2433	struct xfs_buf		*bp,
2434	struct xfs_da_args	*args)
2435{
2436	struct xfs_attr_leafblock *leaf;
2437	struct xfs_attr3_icleaf_hdr ichdr;
2438	struct xfs_attr_leaf_entry *entry;
2439	struct xfs_attr_leaf_name_local *name_loc;
2440	struct xfs_attr_leaf_name_remote *name_rmt;
2441
2442	leaf = bp->b_addr;
2443	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2444	ASSERT(ichdr.count < args->geo->blksize / 8);
2445	ASSERT(args->index < ichdr.count);
2446
2447	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2448	if (entry->flags & XFS_ATTR_LOCAL) {
2449		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2450		ASSERT(name_loc->namelen == args->namelen);
2451		ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2452		return xfs_attr_copy_value(args,
2453					&name_loc->nameval[args->namelen],
2454					be16_to_cpu(name_loc->valuelen));
2455	}
2456
2457	name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2458	ASSERT(name_rmt->namelen == args->namelen);
2459	ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2460	args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2461	args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2462	args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2463					       args->rmtvaluelen);
2464	return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2465}
2466
2467/*========================================================================
2468 * Utility routines.
2469 *========================================================================*/
2470
2471/*
2472 * Move the indicated entries from one leaf to another.
2473 * NOTE: this routine modifies both source and destination leaves.
2474 */
2475/*ARGSUSED*/
2476STATIC void
2477xfs_attr3_leaf_moveents(
2478	struct xfs_da_args		*args,
2479	struct xfs_attr_leafblock	*leaf_s,
2480	struct xfs_attr3_icleaf_hdr	*ichdr_s,
2481	int				start_s,
2482	struct xfs_attr_leafblock	*leaf_d,
2483	struct xfs_attr3_icleaf_hdr	*ichdr_d,
2484	int				start_d,
2485	int				count)
2486{
2487	struct xfs_attr_leaf_entry	*entry_s;
2488	struct xfs_attr_leaf_entry	*entry_d;
2489	int				desti;
2490	int				tmp;
2491	int				i;
2492
2493	/*
2494	 * Check for nothing to do.
2495	 */
2496	if (count == 0)
2497		return;
2498
2499	/*
2500	 * Set up environment.
2501	 */
2502	ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2503	       ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2504	ASSERT(ichdr_s->magic == ichdr_d->magic);
2505	ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2506	ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2507					+ xfs_attr3_leaf_hdr_size(leaf_s));
2508	ASSERT(ichdr_d->count < args->geo->blksize / 8);
2509	ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2510					+ xfs_attr3_leaf_hdr_size(leaf_d));
2511
2512	ASSERT(start_s < ichdr_s->count);
2513	ASSERT(start_d <= ichdr_d->count);
2514	ASSERT(count <= ichdr_s->count);
2515
2516
2517	/*
2518	 * Move the entries in the destination leaf up to make a hole?
2519	 */
2520	if (start_d < ichdr_d->count) {
2521		tmp  = ichdr_d->count - start_d;
2522		tmp *= sizeof(xfs_attr_leaf_entry_t);
2523		entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2524		entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2525		memmove(entry_d, entry_s, tmp);
2526	}
2527
2528	/*
2529	 * Copy all entry's in the same (sorted) order,
2530	 * but allocate attribute info packed and in sequence.
2531	 */
2532	entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2533	entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2534	desti = start_d;
2535	for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2536		ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2537		tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2538#ifdef GROT
2539		/*
2540		 * Code to drop INCOMPLETE entries.  Difficult to use as we
2541		 * may also need to change the insertion index.  Code turned
2542		 * off for 6.2, should be revisited later.
2543		 */
2544		if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2545			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2546			ichdr_s->usedbytes -= tmp;
2547			ichdr_s->count -= 1;
2548			entry_d--;	/* to compensate for ++ in loop hdr */
2549			desti--;
2550			if ((start_s + i) < offset)
2551				result++;	/* insertion index adjustment */
2552		} else {
2553#endif /* GROT */
2554			ichdr_d->firstused -= tmp;
2555			/* both on-disk, don't endian flip twice */
2556			entry_d->hashval = entry_s->hashval;
2557			entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2558			entry_d->flags = entry_s->flags;
2559			ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2560							<= args->geo->blksize);
2561			memmove(xfs_attr3_leaf_name(leaf_d, desti),
2562				xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2563			ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2564							<= args->geo->blksize);
2565			memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2566			ichdr_s->usedbytes -= tmp;
2567			ichdr_d->usedbytes += tmp;
2568			ichdr_s->count -= 1;
2569			ichdr_d->count += 1;
2570			tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2571					+ xfs_attr3_leaf_hdr_size(leaf_d);
2572			ASSERT(ichdr_d->firstused >= tmp);
2573#ifdef GROT
2574		}
2575#endif /* GROT */
2576	}
2577
2578	/*
2579	 * Zero out the entries we just copied.
2580	 */
2581	if (start_s == ichdr_s->count) {
2582		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2583		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2584		ASSERT(((char *)entry_s + tmp) <=
2585		       ((char *)leaf_s + args->geo->blksize));
2586		memset(entry_s, 0, tmp);
2587	} else {
2588		/*
2589		 * Move the remaining entries down to fill the hole,
2590		 * then zero the entries at the top.
2591		 */
2592		tmp  = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2593		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2594		entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2595		memmove(entry_d, entry_s, tmp);
2596
2597		tmp = count * sizeof(xfs_attr_leaf_entry_t);
2598		entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2599		ASSERT(((char *)entry_s + tmp) <=
2600		       ((char *)leaf_s + args->geo->blksize));
2601		memset(entry_s, 0, tmp);
2602	}
2603
2604	/*
2605	 * Fill in the freemap information
2606	 */
2607	ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2608	ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2609	ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2610	ichdr_d->freemap[1].base = 0;
2611	ichdr_d->freemap[2].base = 0;
2612	ichdr_d->freemap[1].size = 0;
2613	ichdr_d->freemap[2].size = 0;
2614	ichdr_s->holes = 1;	/* leaf may not be compact */
2615}
2616
2617/*
2618 * Pick up the last hashvalue from a leaf block.
2619 */
2620xfs_dahash_t
2621xfs_attr_leaf_lasthash(
2622	struct xfs_buf	*bp,
2623	int		*count)
2624{
2625	struct xfs_attr3_icleaf_hdr ichdr;
2626	struct xfs_attr_leaf_entry *entries;
2627	struct xfs_mount *mp = bp->b_mount;
2628
2629	xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2630	entries = xfs_attr3_leaf_entryp(bp->b_addr);
2631	if (count)
2632		*count = ichdr.count;
2633	if (!ichdr.count)
2634		return 0;
2635	return be32_to_cpu(entries[ichdr.count - 1].hashval);
2636}
2637
2638/*
2639 * Calculate the number of bytes used to store the indicated attribute
2640 * (whether local or remote only calculate bytes in this block).
2641 */
2642STATIC int
2643xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2644{
2645	struct xfs_attr_leaf_entry *entries;
2646	xfs_attr_leaf_name_local_t *name_loc;
2647	xfs_attr_leaf_name_remote_t *name_rmt;
2648	int size;
2649
2650	entries = xfs_attr3_leaf_entryp(leaf);
2651	if (entries[index].flags & XFS_ATTR_LOCAL) {
2652		name_loc = xfs_attr3_leaf_name_local(leaf, index);
2653		size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2654						   be16_to_cpu(name_loc->valuelen));
2655	} else {
2656		name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2657		size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2658	}
2659	return size;
2660}
2661
2662/*
2663 * Calculate the number of bytes that would be required to store the new
2664 * attribute (whether local or remote only calculate bytes in this block).
2665 * This routine decides as a side effect whether the attribute will be
2666 * a "local" or a "remote" attribute.
2667 */
2668int
2669xfs_attr_leaf_newentsize(
2670	struct xfs_da_args	*args,
2671	int			*local)
2672{
2673	int			size;
2674
2675	size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2676	if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2677		if (local)
2678			*local = 1;
2679		return size;
2680	}
2681	if (local)
2682		*local = 0;
2683	return xfs_attr_leaf_entsize_remote(args->namelen);
2684}
2685
2686
2687/*========================================================================
2688 * Manage the INCOMPLETE flag in a leaf entry
2689 *========================================================================*/
2690
2691/*
2692 * Clear the INCOMPLETE flag on an entry in a leaf block.
2693 */
2694int
2695xfs_attr3_leaf_clearflag(
2696	struct xfs_da_args	*args)
2697{
2698	struct xfs_attr_leafblock *leaf;
2699	struct xfs_attr_leaf_entry *entry;
2700	struct xfs_attr_leaf_name_remote *name_rmt;
2701	struct xfs_buf		*bp;
2702	int			error;
2703#ifdef DEBUG
2704	struct xfs_attr3_icleaf_hdr ichdr;
2705	xfs_attr_leaf_name_local_t *name_loc;
2706	int namelen;
2707	char *name;
2708#endif /* DEBUG */
2709
2710	trace_xfs_attr_leaf_clearflag(args);
2711	/*
2712	 * Set up the operation.
2713	 */
2714	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2715	if (error)
2716		return error;
2717
2718	leaf = bp->b_addr;
2719	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2720	ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2721
2722#ifdef DEBUG
2723	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2724	ASSERT(args->index < ichdr.count);
2725	ASSERT(args->index >= 0);
2726
2727	if (entry->flags & XFS_ATTR_LOCAL) {
2728		name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2729		namelen = name_loc->namelen;
2730		name = (char *)name_loc->nameval;
2731	} else {
2732		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2733		namelen = name_rmt->namelen;
2734		name = (char *)name_rmt->name;
2735	}
2736	ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2737	ASSERT(namelen == args->namelen);
2738	ASSERT(memcmp(name, args->name, namelen) == 0);
2739#endif /* DEBUG */
2740
2741	entry->flags &= ~XFS_ATTR_INCOMPLETE;
2742	xfs_trans_log_buf(args->trans, bp,
2743			 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2744
2745	if (args->rmtblkno) {
2746		ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2747		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2748		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2749		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2750		xfs_trans_log_buf(args->trans, bp,
2751			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2752	}
2753
2754	return 0;
2755}
2756
2757/*
2758 * Set the INCOMPLETE flag on an entry in a leaf block.
2759 */
2760int
2761xfs_attr3_leaf_setflag(
2762	struct xfs_da_args	*args)
2763{
2764	struct xfs_attr_leafblock *leaf;
2765	struct xfs_attr_leaf_entry *entry;
2766	struct xfs_attr_leaf_name_remote *name_rmt;
2767	struct xfs_buf		*bp;
2768	int error;
2769#ifdef DEBUG
2770	struct xfs_attr3_icleaf_hdr ichdr;
2771#endif
2772
2773	trace_xfs_attr_leaf_setflag(args);
2774
2775	/*
2776	 * Set up the operation.
2777	 */
2778	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2779	if (error)
2780		return error;
2781
2782	leaf = bp->b_addr;
2783#ifdef DEBUG
2784	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2785	ASSERT(args->index < ichdr.count);
2786	ASSERT(args->index >= 0);
2787#endif
2788	entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2789
2790	ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2791	entry->flags |= XFS_ATTR_INCOMPLETE;
2792	xfs_trans_log_buf(args->trans, bp,
2793			XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2794	if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2795		name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2796		name_rmt->valueblk = 0;
2797		name_rmt->valuelen = 0;
2798		xfs_trans_log_buf(args->trans, bp,
2799			 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2800	}
2801
2802	return 0;
2803}
2804
2805/*
2806 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2807 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2808 * entry given by args->blkno2/index2.
2809 *
2810 * Note that they could be in different blocks, or in the same block.
2811 */
2812int
2813xfs_attr3_leaf_flipflags(
2814	struct xfs_da_args	*args)
2815{
2816	struct xfs_attr_leafblock *leaf1;
2817	struct xfs_attr_leafblock *leaf2;
2818	struct xfs_attr_leaf_entry *entry1;
2819	struct xfs_attr_leaf_entry *entry2;
2820	struct xfs_attr_leaf_name_remote *name_rmt;
2821	struct xfs_buf		*bp1;
2822	struct xfs_buf		*bp2;
2823	int error;
2824#ifdef DEBUG
2825	struct xfs_attr3_icleaf_hdr ichdr1;
2826	struct xfs_attr3_icleaf_hdr ichdr2;
2827	xfs_attr_leaf_name_local_t *name_loc;
2828	int namelen1, namelen2;
2829	char *name1, *name2;
2830#endif /* DEBUG */
2831
2832	trace_xfs_attr_leaf_flipflags(args);
2833
2834	/*
2835	 * Read the block containing the "old" attr
2836	 */
2837	error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2838	if (error)
2839		return error;
2840
2841	/*
2842	 * Read the block containing the "new" attr, if it is different
2843	 */
2844	if (args->blkno2 != args->blkno) {
2845		error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2846					   &bp2);
2847		if (error)
2848			return error;
2849	} else {
2850		bp2 = bp1;
2851	}
2852
2853	leaf1 = bp1->b_addr;
2854	entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2855
2856	leaf2 = bp2->b_addr;
2857	entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2858
2859#ifdef DEBUG
2860	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2861	ASSERT(args->index < ichdr1.count);
2862	ASSERT(args->index >= 0);
2863
2864	xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2865	ASSERT(args->index2 < ichdr2.count);
2866	ASSERT(args->index2 >= 0);
2867
2868	if (entry1->flags & XFS_ATTR_LOCAL) {
2869		name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2870		namelen1 = name_loc->namelen;
2871		name1 = (char *)name_loc->nameval;
2872	} else {
2873		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2874		namelen1 = name_rmt->namelen;
2875		name1 = (char *)name_rmt->name;
2876	}
2877	if (entry2->flags & XFS_ATTR_LOCAL) {
2878		name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2879		namelen2 = name_loc->namelen;
2880		name2 = (char *)name_loc->nameval;
2881	} else {
2882		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2883		namelen2 = name_rmt->namelen;
2884		name2 = (char *)name_rmt->name;
2885	}
2886	ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2887	ASSERT(namelen1 == namelen2);
2888	ASSERT(memcmp(name1, name2, namelen1) == 0);
2889#endif /* DEBUG */
2890
2891	ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2892	ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2893
2894	entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2895	xfs_trans_log_buf(args->trans, bp1,
2896			  XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2897	if (args->rmtblkno) {
2898		ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2899		name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2900		name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2901		name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2902		xfs_trans_log_buf(args->trans, bp1,
2903			 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2904	}
2905
2906	entry2->flags |= XFS_ATTR_INCOMPLETE;
2907	xfs_trans_log_buf(args->trans, bp2,
2908			  XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2909	if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2910		name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2911		name_rmt->valueblk = 0;
2912		name_rmt->valuelen = 0;
2913		xfs_trans_log_buf(args->trans, bp2,
2914			 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2915	}
2916
2917	return 0;
2918}