Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_da_format.h"
16#include "xfs_da_btree.h"
17#include "xfs_inode.h"
18#include "xfs_trans.h"
19#include "xfs_bmap_btree.h"
20#include "xfs_bmap.h"
21#include "xfs_attr_sf.h"
22#include "xfs_attr.h"
23#include "xfs_attr_remote.h"
24#include "xfs_attr_leaf.h"
25#include "xfs_error.h"
26#include "xfs_trace.h"
27#include "xfs_buf_item.h"
28#include "xfs_dir2.h"
29#include "xfs_log.h"
30#include "xfs_ag.h"
31
32
33/*
34 * xfs_attr_leaf.c
35 *
36 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
37 */
38
39/*========================================================================
40 * Function prototypes for the kernel.
41 *========================================================================*/
42
43/*
44 * Routines used for growing the Btree.
45 */
46STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
47 xfs_dablk_t which_block, struct xfs_buf **bpp);
48STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
49 struct xfs_attr3_icleaf_hdr *ichdr,
50 struct xfs_da_args *args, int freemap_index);
51STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
52 struct xfs_attr3_icleaf_hdr *ichdr,
53 struct xfs_buf *leaf_buffer);
54STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
55 xfs_da_state_blk_t *blk1,
56 xfs_da_state_blk_t *blk2);
57STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
58 xfs_da_state_blk_t *leaf_blk_1,
59 struct xfs_attr3_icleaf_hdr *ichdr1,
60 xfs_da_state_blk_t *leaf_blk_2,
61 struct xfs_attr3_icleaf_hdr *ichdr2,
62 int *number_entries_in_blk1,
63 int *number_usedbytes_in_blk1);
64
65/*
66 * Utility routines.
67 */
68STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
69 struct xfs_attr_leafblock *src_leaf,
70 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
71 struct xfs_attr_leafblock *dst_leaf,
72 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
73 int move_count);
74STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
75
76/*
77 * attr3 block 'firstused' conversion helpers.
78 *
79 * firstused refers to the offset of the first used byte of the nameval region
80 * of an attr leaf block. The region starts at the tail of the block and expands
81 * backwards towards the middle. As such, firstused is initialized to the block
82 * size for an empty leaf block and is reduced from there.
83 *
84 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
85 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
86 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
87 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
88 * the attr block size. The following helpers manage the conversion between the
89 * in-core and on-disk formats.
90 */
91
92static void
93xfs_attr3_leaf_firstused_from_disk(
94 struct xfs_da_geometry *geo,
95 struct xfs_attr3_icleaf_hdr *to,
96 struct xfs_attr_leafblock *from)
97{
98 struct xfs_attr3_leaf_hdr *hdr3;
99
100 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
101 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
102 to->firstused = be16_to_cpu(hdr3->firstused);
103 } else {
104 to->firstused = be16_to_cpu(from->hdr.firstused);
105 }
106
107 /*
108 * Convert from the magic fsb size value to actual blocksize. This
109 * should only occur for empty blocks when the block size overflows
110 * 16-bits.
111 */
112 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
113 ASSERT(!to->count && !to->usedbytes);
114 ASSERT(geo->blksize > USHRT_MAX);
115 to->firstused = geo->blksize;
116 }
117}
118
119static void
120xfs_attr3_leaf_firstused_to_disk(
121 struct xfs_da_geometry *geo,
122 struct xfs_attr_leafblock *to,
123 struct xfs_attr3_icleaf_hdr *from)
124{
125 struct xfs_attr3_leaf_hdr *hdr3;
126 uint32_t firstused;
127
128 /* magic value should only be seen on disk */
129 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
130
131 /*
132 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
133 * value. This only overflows at the max supported value of 64k. Use the
134 * magic on-disk value to represent block size in this case.
135 */
136 firstused = from->firstused;
137 if (firstused > USHRT_MAX) {
138 ASSERT(from->firstused == geo->blksize);
139 firstused = XFS_ATTR3_LEAF_NULLOFF;
140 }
141
142 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
143 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
144 hdr3->firstused = cpu_to_be16(firstused);
145 } else {
146 to->hdr.firstused = cpu_to_be16(firstused);
147 }
148}
149
150void
151xfs_attr3_leaf_hdr_from_disk(
152 struct xfs_da_geometry *geo,
153 struct xfs_attr3_icleaf_hdr *to,
154 struct xfs_attr_leafblock *from)
155{
156 int i;
157
158 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
159 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
160
161 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
162 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
163
164 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
165 to->back = be32_to_cpu(hdr3->info.hdr.back);
166 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
167 to->count = be16_to_cpu(hdr3->count);
168 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
169 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
170 to->holes = hdr3->holes;
171
172 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
173 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
174 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
175 }
176 return;
177 }
178 to->forw = be32_to_cpu(from->hdr.info.forw);
179 to->back = be32_to_cpu(from->hdr.info.back);
180 to->magic = be16_to_cpu(from->hdr.info.magic);
181 to->count = be16_to_cpu(from->hdr.count);
182 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
183 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
184 to->holes = from->hdr.holes;
185
186 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
187 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
188 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
189 }
190}
191
192void
193xfs_attr3_leaf_hdr_to_disk(
194 struct xfs_da_geometry *geo,
195 struct xfs_attr_leafblock *to,
196 struct xfs_attr3_icleaf_hdr *from)
197{
198 int i;
199
200 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
201 from->magic == XFS_ATTR3_LEAF_MAGIC);
202
203 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
204 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
205
206 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
207 hdr3->info.hdr.back = cpu_to_be32(from->back);
208 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
209 hdr3->count = cpu_to_be16(from->count);
210 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
211 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
212 hdr3->holes = from->holes;
213 hdr3->pad1 = 0;
214
215 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
216 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
217 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
218 }
219 return;
220 }
221 to->hdr.info.forw = cpu_to_be32(from->forw);
222 to->hdr.info.back = cpu_to_be32(from->back);
223 to->hdr.info.magic = cpu_to_be16(from->magic);
224 to->hdr.count = cpu_to_be16(from->count);
225 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
226 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
227 to->hdr.holes = from->holes;
228 to->hdr.pad1 = 0;
229
230 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
231 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
232 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
233 }
234}
235
236static xfs_failaddr_t
237xfs_attr3_leaf_verify_entry(
238 struct xfs_mount *mp,
239 char *buf_end,
240 struct xfs_attr_leafblock *leaf,
241 struct xfs_attr3_icleaf_hdr *leafhdr,
242 struct xfs_attr_leaf_entry *ent,
243 int idx,
244 __u32 *last_hashval)
245{
246 struct xfs_attr_leaf_name_local *lentry;
247 struct xfs_attr_leaf_name_remote *rentry;
248 char *name_end;
249 unsigned int nameidx;
250 unsigned int namesize;
251 __u32 hashval;
252
253 /* hash order check */
254 hashval = be32_to_cpu(ent->hashval);
255 if (hashval < *last_hashval)
256 return __this_address;
257 *last_hashval = hashval;
258
259 nameidx = be16_to_cpu(ent->nameidx);
260 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
261 return __this_address;
262
263 /*
264 * Check the name information. The namelen fields are u8 so we can't
265 * possibly exceed the maximum name length of 255 bytes.
266 */
267 if (ent->flags & XFS_ATTR_LOCAL) {
268 lentry = xfs_attr3_leaf_name_local(leaf, idx);
269 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
270 be16_to_cpu(lentry->valuelen));
271 name_end = (char *)lentry + namesize;
272 if (lentry->namelen == 0)
273 return __this_address;
274 } else {
275 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
276 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
277 name_end = (char *)rentry + namesize;
278 if (rentry->namelen == 0)
279 return __this_address;
280 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
281 rentry->valueblk == 0)
282 return __this_address;
283 }
284
285 if (name_end > buf_end)
286 return __this_address;
287
288 return NULL;
289}
290
291static xfs_failaddr_t
292xfs_attr3_leaf_verify(
293 struct xfs_buf *bp)
294{
295 struct xfs_attr3_icleaf_hdr ichdr;
296 struct xfs_mount *mp = bp->b_mount;
297 struct xfs_attr_leafblock *leaf = bp->b_addr;
298 struct xfs_attr_leaf_entry *entries;
299 struct xfs_attr_leaf_entry *ent;
300 char *buf_end;
301 uint32_t end; /* must be 32bit - see below */
302 __u32 last_hashval = 0;
303 int i;
304 xfs_failaddr_t fa;
305
306 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
307
308 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
309 if (fa)
310 return fa;
311
312 /*
313 * firstused is the block offset of the first name info structure.
314 * Make sure it doesn't go off the block or crash into the header.
315 */
316 if (ichdr.firstused > mp->m_attr_geo->blksize)
317 return __this_address;
318 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
319 return __this_address;
320
321 /* Make sure the entries array doesn't crash into the name info. */
322 entries = xfs_attr3_leaf_entryp(bp->b_addr);
323 if ((char *)&entries[ichdr.count] >
324 (char *)bp->b_addr + ichdr.firstused)
325 return __this_address;
326
327 /*
328 * NOTE: This verifier historically failed empty leaf buffers because
329 * we expect the fork to be in another format. Empty attr fork format
330 * conversions are possible during xattr set, however, and format
331 * conversion is not atomic with the xattr set that triggers it. We
332 * cannot assume leaf blocks are non-empty until that is addressed.
333 */
334 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
335 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
336 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
337 ent, i, &last_hashval);
338 if (fa)
339 return fa;
340 }
341
342 /*
343 * Quickly check the freemap information. Attribute data has to be
344 * aligned to 4-byte boundaries, and likewise for the free space.
345 *
346 * Note that for 64k block size filesystems, the freemap entries cannot
347 * overflow as they are only be16 fields. However, when checking end
348 * pointer of the freemap, we have to be careful to detect overflows and
349 * so use uint32_t for those checks.
350 */
351 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
352 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
353 return __this_address;
354 if (ichdr.freemap[i].base & 0x3)
355 return __this_address;
356 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
357 return __this_address;
358 if (ichdr.freemap[i].size & 0x3)
359 return __this_address;
360
361 /* be care of 16 bit overflows here */
362 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
363 if (end < ichdr.freemap[i].base)
364 return __this_address;
365 if (end > mp->m_attr_geo->blksize)
366 return __this_address;
367 }
368
369 return NULL;
370}
371
372static void
373xfs_attr3_leaf_write_verify(
374 struct xfs_buf *bp)
375{
376 struct xfs_mount *mp = bp->b_mount;
377 struct xfs_buf_log_item *bip = bp->b_log_item;
378 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
379 xfs_failaddr_t fa;
380
381 fa = xfs_attr3_leaf_verify(bp);
382 if (fa) {
383 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
384 return;
385 }
386
387 if (!xfs_sb_version_hascrc(&mp->m_sb))
388 return;
389
390 if (bip)
391 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
392
393 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
394}
395
396/*
397 * leaf/node format detection on trees is sketchy, so a node read can be done on
398 * leaf level blocks when detection identifies the tree as a node format tree
399 * incorrectly. In this case, we need to swap the verifier to match the correct
400 * format of the block being read.
401 */
402static void
403xfs_attr3_leaf_read_verify(
404 struct xfs_buf *bp)
405{
406 struct xfs_mount *mp = bp->b_mount;
407 xfs_failaddr_t fa;
408
409 if (xfs_sb_version_hascrc(&mp->m_sb) &&
410 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
411 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
412 else {
413 fa = xfs_attr3_leaf_verify(bp);
414 if (fa)
415 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
416 }
417}
418
419const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
420 .name = "xfs_attr3_leaf",
421 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
422 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
423 .verify_read = xfs_attr3_leaf_read_verify,
424 .verify_write = xfs_attr3_leaf_write_verify,
425 .verify_struct = xfs_attr3_leaf_verify,
426};
427
428int
429xfs_attr3_leaf_read(
430 struct xfs_trans *tp,
431 struct xfs_inode *dp,
432 xfs_dablk_t bno,
433 struct xfs_buf **bpp)
434{
435 int err;
436
437 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
438 &xfs_attr3_leaf_buf_ops);
439 if (!err && tp && *bpp)
440 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
441 return err;
442}
443
444/*========================================================================
445 * Namespace helper routines
446 *========================================================================*/
447
448static bool
449xfs_attr_match(
450 struct xfs_da_args *args,
451 uint8_t namelen,
452 unsigned char *name,
453 int flags)
454{
455 if (args->namelen != namelen)
456 return false;
457 if (memcmp(args->name, name, namelen) != 0)
458 return false;
459 /*
460 * If we are looking for incomplete entries, show only those, else only
461 * show complete entries.
462 */
463 if (args->attr_filter !=
464 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
465 return false;
466 return true;
467}
468
469static int
470xfs_attr_copy_value(
471 struct xfs_da_args *args,
472 unsigned char *value,
473 int valuelen)
474{
475 /*
476 * No copy if all we have to do is get the length
477 */
478 if (!args->valuelen) {
479 args->valuelen = valuelen;
480 return 0;
481 }
482
483 /*
484 * No copy if the length of the existing buffer is too small
485 */
486 if (args->valuelen < valuelen) {
487 args->valuelen = valuelen;
488 return -ERANGE;
489 }
490
491 if (!args->value) {
492 args->value = kmem_alloc_large(valuelen, KM_NOLOCKDEP);
493 if (!args->value)
494 return -ENOMEM;
495 }
496 args->valuelen = valuelen;
497
498 /* remote block xattr requires IO for copy-in */
499 if (args->rmtblkno)
500 return xfs_attr_rmtval_get(args);
501
502 /*
503 * This is to prevent a GCC warning because the remote xattr case
504 * doesn't have a value to pass in. In that case, we never reach here,
505 * but GCC can't work that out and so throws a "passing NULL to
506 * memcpy" warning.
507 */
508 if (!value)
509 return -EINVAL;
510 memcpy(args->value, value, valuelen);
511 return 0;
512}
513
514/*========================================================================
515 * External routines when attribute fork size < XFS_LITINO(mp).
516 *========================================================================*/
517
518/*
519 * Query whether the total requested number of attr fork bytes of extended
520 * attribute space will be able to fit inline.
521 *
522 * Returns zero if not, else the i_forkoff fork offset to be used in the
523 * literal area for attribute data once the new bytes have been added.
524 *
525 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
526 * special case for dev/uuid inodes, they have fixed size data forks.
527 */
528int
529xfs_attr_shortform_bytesfit(
530 struct xfs_inode *dp,
531 int bytes)
532{
533 struct xfs_mount *mp = dp->i_mount;
534 int64_t dsize;
535 int minforkoff;
536 int maxforkoff;
537 int offset;
538
539 /*
540 * Check if the new size could fit at all first:
541 */
542 if (bytes > XFS_LITINO(mp))
543 return 0;
544
545 /* rounded down */
546 offset = (XFS_LITINO(mp) - bytes) >> 3;
547
548 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
549 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
550 return (offset >= minforkoff) ? minforkoff : 0;
551 }
552
553 /*
554 * If the requested numbers of bytes is smaller or equal to the
555 * current attribute fork size we can always proceed.
556 *
557 * Note that if_bytes in the data fork might actually be larger than
558 * the current data fork size is due to delalloc extents. In that
559 * case either the extent count will go down when they are converted
560 * to real extents, or the delalloc conversion will take care of the
561 * literal area rebalancing.
562 */
563 if (bytes <= XFS_IFORK_ASIZE(dp))
564 return dp->i_forkoff;
565
566 /*
567 * For attr2 we can try to move the forkoff if there is space in the
568 * literal area, but for the old format we are done if there is no
569 * space in the fixed attribute fork.
570 */
571 if (!(mp->m_flags & XFS_MOUNT_ATTR2))
572 return 0;
573
574 dsize = dp->i_df.if_bytes;
575
576 switch (dp->i_df.if_format) {
577 case XFS_DINODE_FMT_EXTENTS:
578 /*
579 * If there is no attr fork and the data fork is extents,
580 * determine if creating the default attr fork will result
581 * in the extents form migrating to btree. If so, the
582 * minimum offset only needs to be the space required for
583 * the btree root.
584 */
585 if (!dp->i_forkoff && dp->i_df.if_bytes >
586 xfs_default_attroffset(dp))
587 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
588 break;
589 case XFS_DINODE_FMT_BTREE:
590 /*
591 * If we have a data btree then keep forkoff if we have one,
592 * otherwise we are adding a new attr, so then we set
593 * minforkoff to where the btree root can finish so we have
594 * plenty of room for attrs
595 */
596 if (dp->i_forkoff) {
597 if (offset < dp->i_forkoff)
598 return 0;
599 return dp->i_forkoff;
600 }
601 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
602 break;
603 }
604
605 /*
606 * A data fork btree root must have space for at least
607 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
608 */
609 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
610 minforkoff = roundup(minforkoff, 8) >> 3;
611
612 /* attr fork btree root can have at least this many key/ptr pairs */
613 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
614 maxforkoff = maxforkoff >> 3; /* rounded down */
615
616 if (offset >= maxforkoff)
617 return maxforkoff;
618 if (offset >= minforkoff)
619 return offset;
620 return 0;
621}
622
623/*
624 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
625 */
626STATIC void
627xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
628{
629 if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
630 !(xfs_sb_version_hasattr2(&mp->m_sb))) {
631 spin_lock(&mp->m_sb_lock);
632 if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
633 xfs_sb_version_addattr2(&mp->m_sb);
634 spin_unlock(&mp->m_sb_lock);
635 xfs_log_sb(tp);
636 } else
637 spin_unlock(&mp->m_sb_lock);
638 }
639}
640
641/*
642 * Create the initial contents of a shortform attribute list.
643 */
644void
645xfs_attr_shortform_create(
646 struct xfs_da_args *args)
647{
648 struct xfs_inode *dp = args->dp;
649 struct xfs_ifork *ifp = dp->i_afp;
650 struct xfs_attr_sf_hdr *hdr;
651
652 trace_xfs_attr_sf_create(args);
653
654 ASSERT(ifp->if_bytes == 0);
655 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
656 ifp->if_format = XFS_DINODE_FMT_LOCAL;
657 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
658 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
659 memset(hdr, 0, sizeof(*hdr));
660 hdr->totsize = cpu_to_be16(sizeof(*hdr));
661 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
662}
663
664/*
665 * Return -EEXIST if attr is found, or -ENOATTR if not
666 * args: args containing attribute name and namelen
667 * sfep: If not null, pointer will be set to the last attr entry found on
668 -EEXIST. On -ENOATTR pointer is left at the last entry in the list
669 * basep: If not null, pointer is set to the byte offset of the entry in the
670 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of
671 * the last entry in the list
672 */
673int
674xfs_attr_sf_findname(
675 struct xfs_da_args *args,
676 struct xfs_attr_sf_entry **sfep,
677 unsigned int *basep)
678{
679 struct xfs_attr_shortform *sf;
680 struct xfs_attr_sf_entry *sfe;
681 unsigned int base = sizeof(struct xfs_attr_sf_hdr);
682 int size = 0;
683 int end;
684 int i;
685
686 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
687 sfe = &sf->list[0];
688 end = sf->hdr.count;
689 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
690 base += size, i++) {
691 size = xfs_attr_sf_entsize(sfe);
692 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
693 sfe->flags))
694 continue;
695 break;
696 }
697
698 if (sfep != NULL)
699 *sfep = sfe;
700
701 if (basep != NULL)
702 *basep = base;
703
704 if (i == end)
705 return -ENOATTR;
706 return -EEXIST;
707}
708
709/*
710 * Add a name/value pair to the shortform attribute list.
711 * Overflow from the inode has already been checked for.
712 */
713void
714xfs_attr_shortform_add(
715 struct xfs_da_args *args,
716 int forkoff)
717{
718 struct xfs_attr_shortform *sf;
719 struct xfs_attr_sf_entry *sfe;
720 int offset, size;
721 struct xfs_mount *mp;
722 struct xfs_inode *dp;
723 struct xfs_ifork *ifp;
724
725 trace_xfs_attr_sf_add(args);
726
727 dp = args->dp;
728 mp = dp->i_mount;
729 dp->i_forkoff = forkoff;
730
731 ifp = dp->i_afp;
732 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
733 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
734 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
735 ASSERT(0);
736
737 offset = (char *)sfe - (char *)sf;
738 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
739 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
740 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
741 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
742
743 sfe->namelen = args->namelen;
744 sfe->valuelen = args->valuelen;
745 sfe->flags = args->attr_filter;
746 memcpy(sfe->nameval, args->name, args->namelen);
747 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
748 sf->hdr.count++;
749 be16_add_cpu(&sf->hdr.totsize, size);
750 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
751
752 xfs_sbversion_add_attr2(mp, args->trans);
753}
754
755/*
756 * After the last attribute is removed revert to original inode format,
757 * making all literal area available to the data fork once more.
758 */
759void
760xfs_attr_fork_remove(
761 struct xfs_inode *ip,
762 struct xfs_trans *tp)
763{
764 ASSERT(ip->i_afp->if_nextents == 0);
765
766 xfs_idestroy_fork(ip->i_afp);
767 kmem_cache_free(xfs_ifork_zone, ip->i_afp);
768 ip->i_afp = NULL;
769 ip->i_forkoff = 0;
770 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
771}
772
773/*
774 * Remove an attribute from the shortform attribute list structure.
775 */
776int
777xfs_attr_sf_removename(
778 struct xfs_da_args *args)
779{
780 struct xfs_attr_shortform *sf;
781 struct xfs_attr_sf_entry *sfe;
782 int size = 0, end, totsize;
783 unsigned int base;
784 struct xfs_mount *mp;
785 struct xfs_inode *dp;
786 int error;
787
788 trace_xfs_attr_sf_remove(args);
789
790 dp = args->dp;
791 mp = dp->i_mount;
792 sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
793
794 error = xfs_attr_sf_findname(args, &sfe, &base);
795 if (error != -EEXIST)
796 return error;
797 size = xfs_attr_sf_entsize(sfe);
798
799 /*
800 * Fix up the attribute fork data, covering the hole
801 */
802 end = base + size;
803 totsize = be16_to_cpu(sf->hdr.totsize);
804 if (end != totsize)
805 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
806 sf->hdr.count--;
807 be16_add_cpu(&sf->hdr.totsize, -size);
808
809 /*
810 * Fix up the start offset of the attribute fork
811 */
812 totsize -= size;
813 if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
814 (mp->m_flags & XFS_MOUNT_ATTR2) &&
815 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
816 !(args->op_flags & XFS_DA_OP_ADDNAME)) {
817 xfs_attr_fork_remove(dp, args->trans);
818 } else {
819 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
820 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
821 ASSERT(dp->i_forkoff);
822 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
823 (args->op_flags & XFS_DA_OP_ADDNAME) ||
824 !(mp->m_flags & XFS_MOUNT_ATTR2) ||
825 dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
826 xfs_trans_log_inode(args->trans, dp,
827 XFS_ILOG_CORE | XFS_ILOG_ADATA);
828 }
829
830 xfs_sbversion_add_attr2(mp, args->trans);
831
832 return 0;
833}
834
835/*
836 * Look up a name in a shortform attribute list structure.
837 */
838/*ARGSUSED*/
839int
840xfs_attr_shortform_lookup(xfs_da_args_t *args)
841{
842 struct xfs_attr_shortform *sf;
843 struct xfs_attr_sf_entry *sfe;
844 int i;
845 struct xfs_ifork *ifp;
846
847 trace_xfs_attr_sf_lookup(args);
848
849 ifp = args->dp->i_afp;
850 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
851 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
852 sfe = &sf->list[0];
853 for (i = 0; i < sf->hdr.count;
854 sfe = xfs_attr_sf_nextentry(sfe), i++) {
855 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
856 sfe->flags))
857 return -EEXIST;
858 }
859 return -ENOATTR;
860}
861
862/*
863 * Retrieve the attribute value and length.
864 *
865 * If args->valuelen is zero, only the length needs to be returned. Unlike a
866 * lookup, we only return an error if the attribute does not exist or we can't
867 * retrieve the value.
868 */
869int
870xfs_attr_shortform_getvalue(
871 struct xfs_da_args *args)
872{
873 struct xfs_attr_shortform *sf;
874 struct xfs_attr_sf_entry *sfe;
875 int i;
876
877 ASSERT(args->dp->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
878 sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
879 sfe = &sf->list[0];
880 for (i = 0; i < sf->hdr.count;
881 sfe = xfs_attr_sf_nextentry(sfe), i++) {
882 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
883 sfe->flags))
884 return xfs_attr_copy_value(args,
885 &sfe->nameval[args->namelen], sfe->valuelen);
886 }
887 return -ENOATTR;
888}
889
890/*
891 * Convert from using the shortform to the leaf. On success, return the
892 * buffer so that we can keep it locked until we're totally done with it.
893 */
894int
895xfs_attr_shortform_to_leaf(
896 struct xfs_da_args *args,
897 struct xfs_buf **leaf_bp)
898{
899 struct xfs_inode *dp;
900 struct xfs_attr_shortform *sf;
901 struct xfs_attr_sf_entry *sfe;
902 struct xfs_da_args nargs;
903 char *tmpbuffer;
904 int error, i, size;
905 xfs_dablk_t blkno;
906 struct xfs_buf *bp;
907 struct xfs_ifork *ifp;
908
909 trace_xfs_attr_sf_to_leaf(args);
910
911 dp = args->dp;
912 ifp = dp->i_afp;
913 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
914 size = be16_to_cpu(sf->hdr.totsize);
915 tmpbuffer = kmem_alloc(size, 0);
916 ASSERT(tmpbuffer != NULL);
917 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
918 sf = (struct xfs_attr_shortform *)tmpbuffer;
919
920 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
921 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
922
923 bp = NULL;
924 error = xfs_da_grow_inode(args, &blkno);
925 if (error)
926 goto out;
927
928 ASSERT(blkno == 0);
929 error = xfs_attr3_leaf_create(args, blkno, &bp);
930 if (error)
931 goto out;
932
933 memset((char *)&nargs, 0, sizeof(nargs));
934 nargs.dp = dp;
935 nargs.geo = args->geo;
936 nargs.total = args->total;
937 nargs.whichfork = XFS_ATTR_FORK;
938 nargs.trans = args->trans;
939 nargs.op_flags = XFS_DA_OP_OKNOENT;
940
941 sfe = &sf->list[0];
942 for (i = 0; i < sf->hdr.count; i++) {
943 nargs.name = sfe->nameval;
944 nargs.namelen = sfe->namelen;
945 nargs.value = &sfe->nameval[nargs.namelen];
946 nargs.valuelen = sfe->valuelen;
947 nargs.hashval = xfs_da_hashname(sfe->nameval,
948 sfe->namelen);
949 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
950 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
951 ASSERT(error == -ENOATTR);
952 error = xfs_attr3_leaf_add(bp, &nargs);
953 ASSERT(error != -ENOSPC);
954 if (error)
955 goto out;
956 sfe = xfs_attr_sf_nextentry(sfe);
957 }
958 error = 0;
959 *leaf_bp = bp;
960out:
961 kmem_free(tmpbuffer);
962 return error;
963}
964
965/*
966 * Check a leaf attribute block to see if all the entries would fit into
967 * a shortform attribute list.
968 */
969int
970xfs_attr_shortform_allfit(
971 struct xfs_buf *bp,
972 struct xfs_inode *dp)
973{
974 struct xfs_attr_leafblock *leaf;
975 struct xfs_attr_leaf_entry *entry;
976 xfs_attr_leaf_name_local_t *name_loc;
977 struct xfs_attr3_icleaf_hdr leafhdr;
978 int bytes;
979 int i;
980 struct xfs_mount *mp = bp->b_mount;
981
982 leaf = bp->b_addr;
983 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
984 entry = xfs_attr3_leaf_entryp(leaf);
985
986 bytes = sizeof(struct xfs_attr_sf_hdr);
987 for (i = 0; i < leafhdr.count; entry++, i++) {
988 if (entry->flags & XFS_ATTR_INCOMPLETE)
989 continue; /* don't copy partial entries */
990 if (!(entry->flags & XFS_ATTR_LOCAL))
991 return 0;
992 name_loc = xfs_attr3_leaf_name_local(leaf, i);
993 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
994 return 0;
995 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
996 return 0;
997 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
998 be16_to_cpu(name_loc->valuelen));
999 }
1000 if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
1001 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1002 (bytes == sizeof(struct xfs_attr_sf_hdr)))
1003 return -1;
1004 return xfs_attr_shortform_bytesfit(dp, bytes);
1005}
1006
1007/* Verify the consistency of an inline attribute fork. */
1008xfs_failaddr_t
1009xfs_attr_shortform_verify(
1010 struct xfs_inode *ip)
1011{
1012 struct xfs_attr_shortform *sfp;
1013 struct xfs_attr_sf_entry *sfep;
1014 struct xfs_attr_sf_entry *next_sfep;
1015 char *endp;
1016 struct xfs_ifork *ifp;
1017 int i;
1018 int64_t size;
1019
1020 ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
1021 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
1022 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
1023 size = ifp->if_bytes;
1024
1025 /*
1026 * Give up if the attribute is way too short.
1027 */
1028 if (size < sizeof(struct xfs_attr_sf_hdr))
1029 return __this_address;
1030
1031 endp = (char *)sfp + size;
1032
1033 /* Check all reported entries */
1034 sfep = &sfp->list[0];
1035 for (i = 0; i < sfp->hdr.count; i++) {
1036 /*
1037 * struct xfs_attr_sf_entry has a variable length.
1038 * Check the fixed-offset parts of the structure are
1039 * within the data buffer.
1040 * xfs_attr_sf_entry is defined with a 1-byte variable
1041 * array at the end, so we must subtract that off.
1042 */
1043 if (((char *)sfep + sizeof(*sfep)) >= endp)
1044 return __this_address;
1045
1046 /* Don't allow names with known bad length. */
1047 if (sfep->namelen == 0)
1048 return __this_address;
1049
1050 /*
1051 * Check that the variable-length part of the structure is
1052 * within the data buffer. The next entry starts after the
1053 * name component, so nextentry is an acceptable test.
1054 */
1055 next_sfep = xfs_attr_sf_nextentry(sfep);
1056 if ((char *)next_sfep > endp)
1057 return __this_address;
1058
1059 /*
1060 * Check for unknown flags. Short form doesn't support
1061 * the incomplete or local bits, so we can use the namespace
1062 * mask here.
1063 */
1064 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1065 return __this_address;
1066
1067 /*
1068 * Check for invalid namespace combinations. We only allow
1069 * one namespace flag per xattr, so we can just count the
1070 * bits (i.e. hweight) here.
1071 */
1072 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1073 return __this_address;
1074
1075 sfep = next_sfep;
1076 }
1077 if ((void *)sfep != (void *)endp)
1078 return __this_address;
1079
1080 return NULL;
1081}
1082
1083/*
1084 * Convert a leaf attribute list to shortform attribute list
1085 */
1086int
1087xfs_attr3_leaf_to_shortform(
1088 struct xfs_buf *bp,
1089 struct xfs_da_args *args,
1090 int forkoff)
1091{
1092 struct xfs_attr_leafblock *leaf;
1093 struct xfs_attr3_icleaf_hdr ichdr;
1094 struct xfs_attr_leaf_entry *entry;
1095 struct xfs_attr_leaf_name_local *name_loc;
1096 struct xfs_da_args nargs;
1097 struct xfs_inode *dp = args->dp;
1098 char *tmpbuffer;
1099 int error;
1100 int i;
1101
1102 trace_xfs_attr_leaf_to_sf(args);
1103
1104 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1105 if (!tmpbuffer)
1106 return -ENOMEM;
1107
1108 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1109
1110 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1111 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1112 entry = xfs_attr3_leaf_entryp(leaf);
1113
1114 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1115 memset(bp->b_addr, 0, args->geo->blksize);
1116
1117 /*
1118 * Clean out the prior contents of the attribute list.
1119 */
1120 error = xfs_da_shrink_inode(args, 0, bp);
1121 if (error)
1122 goto out;
1123
1124 if (forkoff == -1) {
1125 ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
1126 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1127 xfs_attr_fork_remove(dp, args->trans);
1128 goto out;
1129 }
1130
1131 xfs_attr_shortform_create(args);
1132
1133 /*
1134 * Copy the attributes
1135 */
1136 memset((char *)&nargs, 0, sizeof(nargs));
1137 nargs.geo = args->geo;
1138 nargs.dp = dp;
1139 nargs.total = args->total;
1140 nargs.whichfork = XFS_ATTR_FORK;
1141 nargs.trans = args->trans;
1142 nargs.op_flags = XFS_DA_OP_OKNOENT;
1143
1144 for (i = 0; i < ichdr.count; entry++, i++) {
1145 if (entry->flags & XFS_ATTR_INCOMPLETE)
1146 continue; /* don't copy partial entries */
1147 if (!entry->nameidx)
1148 continue;
1149 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1150 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1151 nargs.name = name_loc->nameval;
1152 nargs.namelen = name_loc->namelen;
1153 nargs.value = &name_loc->nameval[nargs.namelen];
1154 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1155 nargs.hashval = be32_to_cpu(entry->hashval);
1156 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1157 xfs_attr_shortform_add(&nargs, forkoff);
1158 }
1159 error = 0;
1160
1161out:
1162 kmem_free(tmpbuffer);
1163 return error;
1164}
1165
1166/*
1167 * Convert from using a single leaf to a root node and a leaf.
1168 */
1169int
1170xfs_attr3_leaf_to_node(
1171 struct xfs_da_args *args)
1172{
1173 struct xfs_attr_leafblock *leaf;
1174 struct xfs_attr3_icleaf_hdr icleafhdr;
1175 struct xfs_attr_leaf_entry *entries;
1176 struct xfs_da3_icnode_hdr icnodehdr;
1177 struct xfs_da_intnode *node;
1178 struct xfs_inode *dp = args->dp;
1179 struct xfs_mount *mp = dp->i_mount;
1180 struct xfs_buf *bp1 = NULL;
1181 struct xfs_buf *bp2 = NULL;
1182 xfs_dablk_t blkno;
1183 int error;
1184
1185 trace_xfs_attr_leaf_to_node(args);
1186
1187 error = xfs_da_grow_inode(args, &blkno);
1188 if (error)
1189 goto out;
1190 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1191 if (error)
1192 goto out;
1193
1194 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1195 if (error)
1196 goto out;
1197
1198 /* copy leaf to new buffer, update identifiers */
1199 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1200 bp2->b_ops = bp1->b_ops;
1201 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1202 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1203 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1204 hdr3->blkno = cpu_to_be64(bp2->b_bn);
1205 }
1206 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1207
1208 /*
1209 * Set up the new root node.
1210 */
1211 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1212 if (error)
1213 goto out;
1214 node = bp1->b_addr;
1215 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1216
1217 leaf = bp2->b_addr;
1218 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1219 entries = xfs_attr3_leaf_entryp(leaf);
1220
1221 /* both on-disk, don't endian-flip twice */
1222 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1223 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1224 icnodehdr.count = 1;
1225 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1226 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1227 error = 0;
1228out:
1229 return error;
1230}
1231
1232/*========================================================================
1233 * Routines used for growing the Btree.
1234 *========================================================================*/
1235
1236/*
1237 * Create the initial contents of a leaf attribute list
1238 * or a leaf in a node attribute list.
1239 */
1240STATIC int
1241xfs_attr3_leaf_create(
1242 struct xfs_da_args *args,
1243 xfs_dablk_t blkno,
1244 struct xfs_buf **bpp)
1245{
1246 struct xfs_attr_leafblock *leaf;
1247 struct xfs_attr3_icleaf_hdr ichdr;
1248 struct xfs_inode *dp = args->dp;
1249 struct xfs_mount *mp = dp->i_mount;
1250 struct xfs_buf *bp;
1251 int error;
1252
1253 trace_xfs_attr_leaf_create(args);
1254
1255 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1256 XFS_ATTR_FORK);
1257 if (error)
1258 return error;
1259 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1260 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1261 leaf = bp->b_addr;
1262 memset(leaf, 0, args->geo->blksize);
1263
1264 memset(&ichdr, 0, sizeof(ichdr));
1265 ichdr.firstused = args->geo->blksize;
1266
1267 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1268 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1269
1270 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1271
1272 hdr3->blkno = cpu_to_be64(bp->b_bn);
1273 hdr3->owner = cpu_to_be64(dp->i_ino);
1274 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1275
1276 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1277 } else {
1278 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1279 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1280 }
1281 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1282
1283 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1284 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1285
1286 *bpp = bp;
1287 return 0;
1288}
1289
1290/*
1291 * Split the leaf node, rebalance, then add the new entry.
1292 */
1293int
1294xfs_attr3_leaf_split(
1295 struct xfs_da_state *state,
1296 struct xfs_da_state_blk *oldblk,
1297 struct xfs_da_state_blk *newblk)
1298{
1299 xfs_dablk_t blkno;
1300 int error;
1301
1302 trace_xfs_attr_leaf_split(state->args);
1303
1304 /*
1305 * Allocate space for a new leaf node.
1306 */
1307 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1308 error = xfs_da_grow_inode(state->args, &blkno);
1309 if (error)
1310 return error;
1311 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1312 if (error)
1313 return error;
1314 newblk->blkno = blkno;
1315 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1316
1317 /*
1318 * Rebalance the entries across the two leaves.
1319 * NOTE: rebalance() currently depends on the 2nd block being empty.
1320 */
1321 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1322 error = xfs_da3_blk_link(state, oldblk, newblk);
1323 if (error)
1324 return error;
1325
1326 /*
1327 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1328 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1329 * "new" attrs info. Will need the "old" info to remove it later.
1330 *
1331 * Insert the "new" entry in the correct block.
1332 */
1333 if (state->inleaf) {
1334 trace_xfs_attr_leaf_add_old(state->args);
1335 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1336 } else {
1337 trace_xfs_attr_leaf_add_new(state->args);
1338 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1339 }
1340
1341 /*
1342 * Update last hashval in each block since we added the name.
1343 */
1344 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1345 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1346 return error;
1347}
1348
1349/*
1350 * Add a name to the leaf attribute list structure.
1351 */
1352int
1353xfs_attr3_leaf_add(
1354 struct xfs_buf *bp,
1355 struct xfs_da_args *args)
1356{
1357 struct xfs_attr_leafblock *leaf;
1358 struct xfs_attr3_icleaf_hdr ichdr;
1359 int tablesize;
1360 int entsize;
1361 int sum;
1362 int tmp;
1363 int i;
1364
1365 trace_xfs_attr_leaf_add(args);
1366
1367 leaf = bp->b_addr;
1368 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1369 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1370 entsize = xfs_attr_leaf_newentsize(args, NULL);
1371
1372 /*
1373 * Search through freemap for first-fit on new name length.
1374 * (may need to figure in size of entry struct too)
1375 */
1376 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1377 + xfs_attr3_leaf_hdr_size(leaf);
1378 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1379 if (tablesize > ichdr.firstused) {
1380 sum += ichdr.freemap[i].size;
1381 continue;
1382 }
1383 if (!ichdr.freemap[i].size)
1384 continue; /* no space in this map */
1385 tmp = entsize;
1386 if (ichdr.freemap[i].base < ichdr.firstused)
1387 tmp += sizeof(xfs_attr_leaf_entry_t);
1388 if (ichdr.freemap[i].size >= tmp) {
1389 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1390 goto out_log_hdr;
1391 }
1392 sum += ichdr.freemap[i].size;
1393 }
1394
1395 /*
1396 * If there are no holes in the address space of the block,
1397 * and we don't have enough freespace, then compaction will do us
1398 * no good and we should just give up.
1399 */
1400 if (!ichdr.holes && sum < entsize)
1401 return -ENOSPC;
1402
1403 /*
1404 * Compact the entries to coalesce free space.
1405 * This may change the hdr->count via dropping INCOMPLETE entries.
1406 */
1407 xfs_attr3_leaf_compact(args, &ichdr, bp);
1408
1409 /*
1410 * After compaction, the block is guaranteed to have only one
1411 * free region, in freemap[0]. If it is not big enough, give up.
1412 */
1413 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1414 tmp = -ENOSPC;
1415 goto out_log_hdr;
1416 }
1417
1418 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1419
1420out_log_hdr:
1421 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1422 xfs_trans_log_buf(args->trans, bp,
1423 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1424 xfs_attr3_leaf_hdr_size(leaf)));
1425 return tmp;
1426}
1427
1428/*
1429 * Add a name to a leaf attribute list structure.
1430 */
1431STATIC int
1432xfs_attr3_leaf_add_work(
1433 struct xfs_buf *bp,
1434 struct xfs_attr3_icleaf_hdr *ichdr,
1435 struct xfs_da_args *args,
1436 int mapindex)
1437{
1438 struct xfs_attr_leafblock *leaf;
1439 struct xfs_attr_leaf_entry *entry;
1440 struct xfs_attr_leaf_name_local *name_loc;
1441 struct xfs_attr_leaf_name_remote *name_rmt;
1442 struct xfs_mount *mp;
1443 int tmp;
1444 int i;
1445
1446 trace_xfs_attr_leaf_add_work(args);
1447
1448 leaf = bp->b_addr;
1449 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1450 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1451
1452 /*
1453 * Force open some space in the entry array and fill it in.
1454 */
1455 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1456 if (args->index < ichdr->count) {
1457 tmp = ichdr->count - args->index;
1458 tmp *= sizeof(xfs_attr_leaf_entry_t);
1459 memmove(entry + 1, entry, tmp);
1460 xfs_trans_log_buf(args->trans, bp,
1461 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1462 }
1463 ichdr->count++;
1464
1465 /*
1466 * Allocate space for the new string (at the end of the run).
1467 */
1468 mp = args->trans->t_mountp;
1469 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1470 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1471 ASSERT(ichdr->freemap[mapindex].size >=
1472 xfs_attr_leaf_newentsize(args, NULL));
1473 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1474 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1475
1476 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1477
1478 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1479 ichdr->freemap[mapindex].size);
1480 entry->hashval = cpu_to_be32(args->hashval);
1481 entry->flags = args->attr_filter;
1482 if (tmp)
1483 entry->flags |= XFS_ATTR_LOCAL;
1484 if (args->op_flags & XFS_DA_OP_RENAME) {
1485 entry->flags |= XFS_ATTR_INCOMPLETE;
1486 if ((args->blkno2 == args->blkno) &&
1487 (args->index2 <= args->index)) {
1488 args->index2++;
1489 }
1490 }
1491 xfs_trans_log_buf(args->trans, bp,
1492 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1493 ASSERT((args->index == 0) ||
1494 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1495 ASSERT((args->index == ichdr->count - 1) ||
1496 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1497
1498 /*
1499 * For "remote" attribute values, simply note that we need to
1500 * allocate space for the "remote" value. We can't actually
1501 * allocate the extents in this transaction, and we can't decide
1502 * which blocks they should be as we might allocate more blocks
1503 * as part of this transaction (a split operation for example).
1504 */
1505 if (entry->flags & XFS_ATTR_LOCAL) {
1506 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1507 name_loc->namelen = args->namelen;
1508 name_loc->valuelen = cpu_to_be16(args->valuelen);
1509 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1510 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1511 be16_to_cpu(name_loc->valuelen));
1512 } else {
1513 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1514 name_rmt->namelen = args->namelen;
1515 memcpy((char *)name_rmt->name, args->name, args->namelen);
1516 entry->flags |= XFS_ATTR_INCOMPLETE;
1517 /* just in case */
1518 name_rmt->valuelen = 0;
1519 name_rmt->valueblk = 0;
1520 args->rmtblkno = 1;
1521 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1522 args->rmtvaluelen = args->valuelen;
1523 }
1524 xfs_trans_log_buf(args->trans, bp,
1525 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1526 xfs_attr_leaf_entsize(leaf, args->index)));
1527
1528 /*
1529 * Update the control info for this leaf node
1530 */
1531 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1532 ichdr->firstused = be16_to_cpu(entry->nameidx);
1533
1534 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1535 + xfs_attr3_leaf_hdr_size(leaf));
1536 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1537 + xfs_attr3_leaf_hdr_size(leaf);
1538
1539 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1540 if (ichdr->freemap[i].base == tmp) {
1541 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1542 ichdr->freemap[i].size -=
1543 min_t(uint16_t, ichdr->freemap[i].size,
1544 sizeof(xfs_attr_leaf_entry_t));
1545 }
1546 }
1547 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1548 return 0;
1549}
1550
1551/*
1552 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1553 */
1554STATIC void
1555xfs_attr3_leaf_compact(
1556 struct xfs_da_args *args,
1557 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1558 struct xfs_buf *bp)
1559{
1560 struct xfs_attr_leafblock *leaf_src;
1561 struct xfs_attr_leafblock *leaf_dst;
1562 struct xfs_attr3_icleaf_hdr ichdr_src;
1563 struct xfs_trans *trans = args->trans;
1564 char *tmpbuffer;
1565
1566 trace_xfs_attr_leaf_compact(args);
1567
1568 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1569 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1570 memset(bp->b_addr, 0, args->geo->blksize);
1571 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1572 leaf_dst = bp->b_addr;
1573
1574 /*
1575 * Copy the on-disk header back into the destination buffer to ensure
1576 * all the information in the header that is not part of the incore
1577 * header structure is preserved.
1578 */
1579 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1580
1581 /* Initialise the incore headers */
1582 ichdr_src = *ichdr_dst; /* struct copy */
1583 ichdr_dst->firstused = args->geo->blksize;
1584 ichdr_dst->usedbytes = 0;
1585 ichdr_dst->count = 0;
1586 ichdr_dst->holes = 0;
1587 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1588 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1589 ichdr_dst->freemap[0].base;
1590
1591 /* write the header back to initialise the underlying buffer */
1592 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1593
1594 /*
1595 * Copy all entry's in the same (sorted) order,
1596 * but allocate name/value pairs packed and in sequence.
1597 */
1598 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1599 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1600 /*
1601 * this logs the entire buffer, but the caller must write the header
1602 * back to the buffer when it is finished modifying it.
1603 */
1604 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1605
1606 kmem_free(tmpbuffer);
1607}
1608
1609/*
1610 * Compare two leaf blocks "order".
1611 * Return 0 unless leaf2 should go before leaf1.
1612 */
1613static int
1614xfs_attr3_leaf_order(
1615 struct xfs_buf *leaf1_bp,
1616 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1617 struct xfs_buf *leaf2_bp,
1618 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1619{
1620 struct xfs_attr_leaf_entry *entries1;
1621 struct xfs_attr_leaf_entry *entries2;
1622
1623 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1624 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1625 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1626 ((be32_to_cpu(entries2[0].hashval) <
1627 be32_to_cpu(entries1[0].hashval)) ||
1628 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1629 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1630 return 1;
1631 }
1632 return 0;
1633}
1634
1635int
1636xfs_attr_leaf_order(
1637 struct xfs_buf *leaf1_bp,
1638 struct xfs_buf *leaf2_bp)
1639{
1640 struct xfs_attr3_icleaf_hdr ichdr1;
1641 struct xfs_attr3_icleaf_hdr ichdr2;
1642 struct xfs_mount *mp = leaf1_bp->b_mount;
1643
1644 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1645 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1646 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1647}
1648
1649/*
1650 * Redistribute the attribute list entries between two leaf nodes,
1651 * taking into account the size of the new entry.
1652 *
1653 * NOTE: if new block is empty, then it will get the upper half of the
1654 * old block. At present, all (one) callers pass in an empty second block.
1655 *
1656 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1657 * to match what it is doing in splitting the attribute leaf block. Those
1658 * values are used in "atomic rename" operations on attributes. Note that
1659 * the "new" and "old" values can end up in different blocks.
1660 */
1661STATIC void
1662xfs_attr3_leaf_rebalance(
1663 struct xfs_da_state *state,
1664 struct xfs_da_state_blk *blk1,
1665 struct xfs_da_state_blk *blk2)
1666{
1667 struct xfs_da_args *args;
1668 struct xfs_attr_leafblock *leaf1;
1669 struct xfs_attr_leafblock *leaf2;
1670 struct xfs_attr3_icleaf_hdr ichdr1;
1671 struct xfs_attr3_icleaf_hdr ichdr2;
1672 struct xfs_attr_leaf_entry *entries1;
1673 struct xfs_attr_leaf_entry *entries2;
1674 int count;
1675 int totallen;
1676 int max;
1677 int space;
1678 int swap;
1679
1680 /*
1681 * Set up environment.
1682 */
1683 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1684 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1685 leaf1 = blk1->bp->b_addr;
1686 leaf2 = blk2->bp->b_addr;
1687 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1688 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1689 ASSERT(ichdr2.count == 0);
1690 args = state->args;
1691
1692 trace_xfs_attr_leaf_rebalance(args);
1693
1694 /*
1695 * Check ordering of blocks, reverse if it makes things simpler.
1696 *
1697 * NOTE: Given that all (current) callers pass in an empty
1698 * second block, this code should never set "swap".
1699 */
1700 swap = 0;
1701 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1702 swap(blk1, blk2);
1703
1704 /* swap structures rather than reconverting them */
1705 swap(ichdr1, ichdr2);
1706
1707 leaf1 = blk1->bp->b_addr;
1708 leaf2 = blk2->bp->b_addr;
1709 swap = 1;
1710 }
1711
1712 /*
1713 * Examine entries until we reduce the absolute difference in
1714 * byte usage between the two blocks to a minimum. Then get
1715 * the direction to copy and the number of elements to move.
1716 *
1717 * "inleaf" is true if the new entry should be inserted into blk1.
1718 * If "swap" is also true, then reverse the sense of "inleaf".
1719 */
1720 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1721 blk2, &ichdr2,
1722 &count, &totallen);
1723 if (swap)
1724 state->inleaf = !state->inleaf;
1725
1726 /*
1727 * Move any entries required from leaf to leaf:
1728 */
1729 if (count < ichdr1.count) {
1730 /*
1731 * Figure the total bytes to be added to the destination leaf.
1732 */
1733 /* number entries being moved */
1734 count = ichdr1.count - count;
1735 space = ichdr1.usedbytes - totallen;
1736 space += count * sizeof(xfs_attr_leaf_entry_t);
1737
1738 /*
1739 * leaf2 is the destination, compact it if it looks tight.
1740 */
1741 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1742 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1743 if (space > max)
1744 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1745
1746 /*
1747 * Move high entries from leaf1 to low end of leaf2.
1748 */
1749 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1750 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1751
1752 } else if (count > ichdr1.count) {
1753 /*
1754 * I assert that since all callers pass in an empty
1755 * second buffer, this code should never execute.
1756 */
1757 ASSERT(0);
1758
1759 /*
1760 * Figure the total bytes to be added to the destination leaf.
1761 */
1762 /* number entries being moved */
1763 count -= ichdr1.count;
1764 space = totallen - ichdr1.usedbytes;
1765 space += count * sizeof(xfs_attr_leaf_entry_t);
1766
1767 /*
1768 * leaf1 is the destination, compact it if it looks tight.
1769 */
1770 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1771 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1772 if (space > max)
1773 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1774
1775 /*
1776 * Move low entries from leaf2 to high end of leaf1.
1777 */
1778 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1779 ichdr1.count, count);
1780 }
1781
1782 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1783 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1784 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1785 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1786
1787 /*
1788 * Copy out last hashval in each block for B-tree code.
1789 */
1790 entries1 = xfs_attr3_leaf_entryp(leaf1);
1791 entries2 = xfs_attr3_leaf_entryp(leaf2);
1792 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1793 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1794
1795 /*
1796 * Adjust the expected index for insertion.
1797 * NOTE: this code depends on the (current) situation that the
1798 * second block was originally empty.
1799 *
1800 * If the insertion point moved to the 2nd block, we must adjust
1801 * the index. We must also track the entry just following the
1802 * new entry for use in an "atomic rename" operation, that entry
1803 * is always the "old" entry and the "new" entry is what we are
1804 * inserting. The index/blkno fields refer to the "old" entry,
1805 * while the index2/blkno2 fields refer to the "new" entry.
1806 */
1807 if (blk1->index > ichdr1.count) {
1808 ASSERT(state->inleaf == 0);
1809 blk2->index = blk1->index - ichdr1.count;
1810 args->index = args->index2 = blk2->index;
1811 args->blkno = args->blkno2 = blk2->blkno;
1812 } else if (blk1->index == ichdr1.count) {
1813 if (state->inleaf) {
1814 args->index = blk1->index;
1815 args->blkno = blk1->blkno;
1816 args->index2 = 0;
1817 args->blkno2 = blk2->blkno;
1818 } else {
1819 /*
1820 * On a double leaf split, the original attr location
1821 * is already stored in blkno2/index2, so don't
1822 * overwrite it overwise we corrupt the tree.
1823 */
1824 blk2->index = blk1->index - ichdr1.count;
1825 args->index = blk2->index;
1826 args->blkno = blk2->blkno;
1827 if (!state->extravalid) {
1828 /*
1829 * set the new attr location to match the old
1830 * one and let the higher level split code
1831 * decide where in the leaf to place it.
1832 */
1833 args->index2 = blk2->index;
1834 args->blkno2 = blk2->blkno;
1835 }
1836 }
1837 } else {
1838 ASSERT(state->inleaf == 1);
1839 args->index = args->index2 = blk1->index;
1840 args->blkno = args->blkno2 = blk1->blkno;
1841 }
1842}
1843
1844/*
1845 * Examine entries until we reduce the absolute difference in
1846 * byte usage between the two blocks to a minimum.
1847 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1848 * GROT: there will always be enough room in either block for a new entry.
1849 * GROT: Do a double-split for this case?
1850 */
1851STATIC int
1852xfs_attr3_leaf_figure_balance(
1853 struct xfs_da_state *state,
1854 struct xfs_da_state_blk *blk1,
1855 struct xfs_attr3_icleaf_hdr *ichdr1,
1856 struct xfs_da_state_blk *blk2,
1857 struct xfs_attr3_icleaf_hdr *ichdr2,
1858 int *countarg,
1859 int *usedbytesarg)
1860{
1861 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1862 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1863 struct xfs_attr_leaf_entry *entry;
1864 int count;
1865 int max;
1866 int index;
1867 int totallen = 0;
1868 int half;
1869 int lastdelta;
1870 int foundit = 0;
1871 int tmp;
1872
1873 /*
1874 * Examine entries until we reduce the absolute difference in
1875 * byte usage between the two blocks to a minimum.
1876 */
1877 max = ichdr1->count + ichdr2->count;
1878 half = (max + 1) * sizeof(*entry);
1879 half += ichdr1->usedbytes + ichdr2->usedbytes +
1880 xfs_attr_leaf_newentsize(state->args, NULL);
1881 half /= 2;
1882 lastdelta = state->args->geo->blksize;
1883 entry = xfs_attr3_leaf_entryp(leaf1);
1884 for (count = index = 0; count < max; entry++, index++, count++) {
1885
1886#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1887 /*
1888 * The new entry is in the first block, account for it.
1889 */
1890 if (count == blk1->index) {
1891 tmp = totallen + sizeof(*entry) +
1892 xfs_attr_leaf_newentsize(state->args, NULL);
1893 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1894 break;
1895 lastdelta = XFS_ATTR_ABS(half - tmp);
1896 totallen = tmp;
1897 foundit = 1;
1898 }
1899
1900 /*
1901 * Wrap around into the second block if necessary.
1902 */
1903 if (count == ichdr1->count) {
1904 leaf1 = leaf2;
1905 entry = xfs_attr3_leaf_entryp(leaf1);
1906 index = 0;
1907 }
1908
1909 /*
1910 * Figure out if next leaf entry would be too much.
1911 */
1912 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1913 index);
1914 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1915 break;
1916 lastdelta = XFS_ATTR_ABS(half - tmp);
1917 totallen = tmp;
1918#undef XFS_ATTR_ABS
1919 }
1920
1921 /*
1922 * Calculate the number of usedbytes that will end up in lower block.
1923 * If new entry not in lower block, fix up the count.
1924 */
1925 totallen -= count * sizeof(*entry);
1926 if (foundit) {
1927 totallen -= sizeof(*entry) +
1928 xfs_attr_leaf_newentsize(state->args, NULL);
1929 }
1930
1931 *countarg = count;
1932 *usedbytesarg = totallen;
1933 return foundit;
1934}
1935
1936/*========================================================================
1937 * Routines used for shrinking the Btree.
1938 *========================================================================*/
1939
1940/*
1941 * Check a leaf block and its neighbors to see if the block should be
1942 * collapsed into one or the other neighbor. Always keep the block
1943 * with the smaller block number.
1944 * If the current block is over 50% full, don't try to join it, return 0.
1945 * If the block is empty, fill in the state structure and return 2.
1946 * If it can be collapsed, fill in the state structure and return 1.
1947 * If nothing can be done, return 0.
1948 *
1949 * GROT: allow for INCOMPLETE entries in calculation.
1950 */
1951int
1952xfs_attr3_leaf_toosmall(
1953 struct xfs_da_state *state,
1954 int *action)
1955{
1956 struct xfs_attr_leafblock *leaf;
1957 struct xfs_da_state_blk *blk;
1958 struct xfs_attr3_icleaf_hdr ichdr;
1959 struct xfs_buf *bp;
1960 xfs_dablk_t blkno;
1961 int bytes;
1962 int forward;
1963 int error;
1964 int retval;
1965 int i;
1966
1967 trace_xfs_attr_leaf_toosmall(state->args);
1968
1969 /*
1970 * Check for the degenerate case of the block being over 50% full.
1971 * If so, it's not worth even looking to see if we might be able
1972 * to coalesce with a sibling.
1973 */
1974 blk = &state->path.blk[ state->path.active-1 ];
1975 leaf = blk->bp->b_addr;
1976 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1977 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1978 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1979 ichdr.usedbytes;
1980 if (bytes > (state->args->geo->blksize >> 1)) {
1981 *action = 0; /* blk over 50%, don't try to join */
1982 return 0;
1983 }
1984
1985 /*
1986 * Check for the degenerate case of the block being empty.
1987 * If the block is empty, we'll simply delete it, no need to
1988 * coalesce it with a sibling block. We choose (arbitrarily)
1989 * to merge with the forward block unless it is NULL.
1990 */
1991 if (ichdr.count == 0) {
1992 /*
1993 * Make altpath point to the block we want to keep and
1994 * path point to the block we want to drop (this one).
1995 */
1996 forward = (ichdr.forw != 0);
1997 memcpy(&state->altpath, &state->path, sizeof(state->path));
1998 error = xfs_da3_path_shift(state, &state->altpath, forward,
1999 0, &retval);
2000 if (error)
2001 return error;
2002 if (retval) {
2003 *action = 0;
2004 } else {
2005 *action = 2;
2006 }
2007 return 0;
2008 }
2009
2010 /*
2011 * Examine each sibling block to see if we can coalesce with
2012 * at least 25% free space to spare. We need to figure out
2013 * whether to merge with the forward or the backward block.
2014 * We prefer coalescing with the lower numbered sibling so as
2015 * to shrink an attribute list over time.
2016 */
2017 /* start with smaller blk num */
2018 forward = ichdr.forw < ichdr.back;
2019 for (i = 0; i < 2; forward = !forward, i++) {
2020 struct xfs_attr3_icleaf_hdr ichdr2;
2021 if (forward)
2022 blkno = ichdr.forw;
2023 else
2024 blkno = ichdr.back;
2025 if (blkno == 0)
2026 continue;
2027 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2028 blkno, &bp);
2029 if (error)
2030 return error;
2031
2032 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2033
2034 bytes = state->args->geo->blksize -
2035 (state->args->geo->blksize >> 2) -
2036 ichdr.usedbytes - ichdr2.usedbytes -
2037 ((ichdr.count + ichdr2.count) *
2038 sizeof(xfs_attr_leaf_entry_t)) -
2039 xfs_attr3_leaf_hdr_size(leaf);
2040
2041 xfs_trans_brelse(state->args->trans, bp);
2042 if (bytes >= 0)
2043 break; /* fits with at least 25% to spare */
2044 }
2045 if (i >= 2) {
2046 *action = 0;
2047 return 0;
2048 }
2049
2050 /*
2051 * Make altpath point to the block we want to keep (the lower
2052 * numbered block) and path point to the block we want to drop.
2053 */
2054 memcpy(&state->altpath, &state->path, sizeof(state->path));
2055 if (blkno < blk->blkno) {
2056 error = xfs_da3_path_shift(state, &state->altpath, forward,
2057 0, &retval);
2058 } else {
2059 error = xfs_da3_path_shift(state, &state->path, forward,
2060 0, &retval);
2061 }
2062 if (error)
2063 return error;
2064 if (retval) {
2065 *action = 0;
2066 } else {
2067 *action = 1;
2068 }
2069 return 0;
2070}
2071
2072/*
2073 * Remove a name from the leaf attribute list structure.
2074 *
2075 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2076 * If two leaves are 37% full, when combined they will leave 25% free.
2077 */
2078int
2079xfs_attr3_leaf_remove(
2080 struct xfs_buf *bp,
2081 struct xfs_da_args *args)
2082{
2083 struct xfs_attr_leafblock *leaf;
2084 struct xfs_attr3_icleaf_hdr ichdr;
2085 struct xfs_attr_leaf_entry *entry;
2086 int before;
2087 int after;
2088 int smallest;
2089 int entsize;
2090 int tablesize;
2091 int tmp;
2092 int i;
2093
2094 trace_xfs_attr_leaf_remove(args);
2095
2096 leaf = bp->b_addr;
2097 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2098
2099 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2100 ASSERT(args->index >= 0 && args->index < ichdr.count);
2101 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2102 xfs_attr3_leaf_hdr_size(leaf));
2103
2104 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2105
2106 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2107 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2108
2109 /*
2110 * Scan through free region table:
2111 * check for adjacency of free'd entry with an existing one,
2112 * find smallest free region in case we need to replace it,
2113 * adjust any map that borders the entry table,
2114 */
2115 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2116 + xfs_attr3_leaf_hdr_size(leaf);
2117 tmp = ichdr.freemap[0].size;
2118 before = after = -1;
2119 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2120 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2121 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2122 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2123 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2124 if (ichdr.freemap[i].base == tablesize) {
2125 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2126 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2127 }
2128
2129 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2130 be16_to_cpu(entry->nameidx)) {
2131 before = i;
2132 } else if (ichdr.freemap[i].base ==
2133 (be16_to_cpu(entry->nameidx) + entsize)) {
2134 after = i;
2135 } else if (ichdr.freemap[i].size < tmp) {
2136 tmp = ichdr.freemap[i].size;
2137 smallest = i;
2138 }
2139 }
2140
2141 /*
2142 * Coalesce adjacent freemap regions,
2143 * or replace the smallest region.
2144 */
2145 if ((before >= 0) || (after >= 0)) {
2146 if ((before >= 0) && (after >= 0)) {
2147 ichdr.freemap[before].size += entsize;
2148 ichdr.freemap[before].size += ichdr.freemap[after].size;
2149 ichdr.freemap[after].base = 0;
2150 ichdr.freemap[after].size = 0;
2151 } else if (before >= 0) {
2152 ichdr.freemap[before].size += entsize;
2153 } else {
2154 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2155 ichdr.freemap[after].size += entsize;
2156 }
2157 } else {
2158 /*
2159 * Replace smallest region (if it is smaller than free'd entry)
2160 */
2161 if (ichdr.freemap[smallest].size < entsize) {
2162 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2163 ichdr.freemap[smallest].size = entsize;
2164 }
2165 }
2166
2167 /*
2168 * Did we remove the first entry?
2169 */
2170 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2171 smallest = 1;
2172 else
2173 smallest = 0;
2174
2175 /*
2176 * Compress the remaining entries and zero out the removed stuff.
2177 */
2178 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2179 ichdr.usedbytes -= entsize;
2180 xfs_trans_log_buf(args->trans, bp,
2181 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2182 entsize));
2183
2184 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2185 memmove(entry, entry + 1, tmp);
2186 ichdr.count--;
2187 xfs_trans_log_buf(args->trans, bp,
2188 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2189
2190 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2191 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2192
2193 /*
2194 * If we removed the first entry, re-find the first used byte
2195 * in the name area. Note that if the entry was the "firstused",
2196 * then we don't have a "hole" in our block resulting from
2197 * removing the name.
2198 */
2199 if (smallest) {
2200 tmp = args->geo->blksize;
2201 entry = xfs_attr3_leaf_entryp(leaf);
2202 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2203 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2204 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2205
2206 if (be16_to_cpu(entry->nameidx) < tmp)
2207 tmp = be16_to_cpu(entry->nameidx);
2208 }
2209 ichdr.firstused = tmp;
2210 ASSERT(ichdr.firstused != 0);
2211 } else {
2212 ichdr.holes = 1; /* mark as needing compaction */
2213 }
2214 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2215 xfs_trans_log_buf(args->trans, bp,
2216 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2217 xfs_attr3_leaf_hdr_size(leaf)));
2218
2219 /*
2220 * Check if leaf is less than 50% full, caller may want to
2221 * "join" the leaf with a sibling if so.
2222 */
2223 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2224 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2225
2226 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2227}
2228
2229/*
2230 * Move all the attribute list entries from drop_leaf into save_leaf.
2231 */
2232void
2233xfs_attr3_leaf_unbalance(
2234 struct xfs_da_state *state,
2235 struct xfs_da_state_blk *drop_blk,
2236 struct xfs_da_state_blk *save_blk)
2237{
2238 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2239 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2240 struct xfs_attr3_icleaf_hdr drophdr;
2241 struct xfs_attr3_icleaf_hdr savehdr;
2242 struct xfs_attr_leaf_entry *entry;
2243
2244 trace_xfs_attr_leaf_unbalance(state->args);
2245
2246 drop_leaf = drop_blk->bp->b_addr;
2247 save_leaf = save_blk->bp->b_addr;
2248 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2249 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2250 entry = xfs_attr3_leaf_entryp(drop_leaf);
2251
2252 /*
2253 * Save last hashval from dying block for later Btree fixup.
2254 */
2255 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2256
2257 /*
2258 * Check if we need a temp buffer, or can we do it in place.
2259 * Note that we don't check "leaf" for holes because we will
2260 * always be dropping it, toosmall() decided that for us already.
2261 */
2262 if (savehdr.holes == 0) {
2263 /*
2264 * dest leaf has no holes, so we add there. May need
2265 * to make some room in the entry array.
2266 */
2267 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2268 drop_blk->bp, &drophdr)) {
2269 xfs_attr3_leaf_moveents(state->args,
2270 drop_leaf, &drophdr, 0,
2271 save_leaf, &savehdr, 0,
2272 drophdr.count);
2273 } else {
2274 xfs_attr3_leaf_moveents(state->args,
2275 drop_leaf, &drophdr, 0,
2276 save_leaf, &savehdr,
2277 savehdr.count, drophdr.count);
2278 }
2279 } else {
2280 /*
2281 * Destination has holes, so we make a temporary copy
2282 * of the leaf and add them both to that.
2283 */
2284 struct xfs_attr_leafblock *tmp_leaf;
2285 struct xfs_attr3_icleaf_hdr tmphdr;
2286
2287 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2288
2289 /*
2290 * Copy the header into the temp leaf so that all the stuff
2291 * not in the incore header is present and gets copied back in
2292 * once we've moved all the entries.
2293 */
2294 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2295
2296 memset(&tmphdr, 0, sizeof(tmphdr));
2297 tmphdr.magic = savehdr.magic;
2298 tmphdr.forw = savehdr.forw;
2299 tmphdr.back = savehdr.back;
2300 tmphdr.firstused = state->args->geo->blksize;
2301
2302 /* write the header to the temp buffer to initialise it */
2303 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2304
2305 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2306 drop_blk->bp, &drophdr)) {
2307 xfs_attr3_leaf_moveents(state->args,
2308 drop_leaf, &drophdr, 0,
2309 tmp_leaf, &tmphdr, 0,
2310 drophdr.count);
2311 xfs_attr3_leaf_moveents(state->args,
2312 save_leaf, &savehdr, 0,
2313 tmp_leaf, &tmphdr, tmphdr.count,
2314 savehdr.count);
2315 } else {
2316 xfs_attr3_leaf_moveents(state->args,
2317 save_leaf, &savehdr, 0,
2318 tmp_leaf, &tmphdr, 0,
2319 savehdr.count);
2320 xfs_attr3_leaf_moveents(state->args,
2321 drop_leaf, &drophdr, 0,
2322 tmp_leaf, &tmphdr, tmphdr.count,
2323 drophdr.count);
2324 }
2325 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2326 savehdr = tmphdr; /* struct copy */
2327 kmem_free(tmp_leaf);
2328 }
2329
2330 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2331 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2332 state->args->geo->blksize - 1);
2333
2334 /*
2335 * Copy out last hashval in each block for B-tree code.
2336 */
2337 entry = xfs_attr3_leaf_entryp(save_leaf);
2338 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2339}
2340
2341/*========================================================================
2342 * Routines used for finding things in the Btree.
2343 *========================================================================*/
2344
2345/*
2346 * Look up a name in a leaf attribute list structure.
2347 * This is the internal routine, it uses the caller's buffer.
2348 *
2349 * Note that duplicate keys are allowed, but only check within the
2350 * current leaf node. The Btree code must check in adjacent leaf nodes.
2351 *
2352 * Return in args->index the index into the entry[] array of either
2353 * the found entry, or where the entry should have been (insert before
2354 * that entry).
2355 *
2356 * Don't change the args->value unless we find the attribute.
2357 */
2358int
2359xfs_attr3_leaf_lookup_int(
2360 struct xfs_buf *bp,
2361 struct xfs_da_args *args)
2362{
2363 struct xfs_attr_leafblock *leaf;
2364 struct xfs_attr3_icleaf_hdr ichdr;
2365 struct xfs_attr_leaf_entry *entry;
2366 struct xfs_attr_leaf_entry *entries;
2367 struct xfs_attr_leaf_name_local *name_loc;
2368 struct xfs_attr_leaf_name_remote *name_rmt;
2369 xfs_dahash_t hashval;
2370 int probe;
2371 int span;
2372
2373 trace_xfs_attr_leaf_lookup(args);
2374
2375 leaf = bp->b_addr;
2376 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2377 entries = xfs_attr3_leaf_entryp(leaf);
2378 if (ichdr.count >= args->geo->blksize / 8) {
2379 xfs_buf_mark_corrupt(bp);
2380 return -EFSCORRUPTED;
2381 }
2382
2383 /*
2384 * Binary search. (note: small blocks will skip this loop)
2385 */
2386 hashval = args->hashval;
2387 probe = span = ichdr.count / 2;
2388 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2389 span /= 2;
2390 if (be32_to_cpu(entry->hashval) < hashval)
2391 probe += span;
2392 else if (be32_to_cpu(entry->hashval) > hashval)
2393 probe -= span;
2394 else
2395 break;
2396 }
2397 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2398 xfs_buf_mark_corrupt(bp);
2399 return -EFSCORRUPTED;
2400 }
2401 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2402 xfs_buf_mark_corrupt(bp);
2403 return -EFSCORRUPTED;
2404 }
2405
2406 /*
2407 * Since we may have duplicate hashval's, find the first matching
2408 * hashval in the leaf.
2409 */
2410 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2411 entry--;
2412 probe--;
2413 }
2414 while (probe < ichdr.count &&
2415 be32_to_cpu(entry->hashval) < hashval) {
2416 entry++;
2417 probe++;
2418 }
2419 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2420 args->index = probe;
2421 return -ENOATTR;
2422 }
2423
2424 /*
2425 * Duplicate keys may be present, so search all of them for a match.
2426 */
2427 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2428 entry++, probe++) {
2429/*
2430 * GROT: Add code to remove incomplete entries.
2431 */
2432 if (entry->flags & XFS_ATTR_LOCAL) {
2433 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2434 if (!xfs_attr_match(args, name_loc->namelen,
2435 name_loc->nameval, entry->flags))
2436 continue;
2437 args->index = probe;
2438 return -EEXIST;
2439 } else {
2440 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2441 if (!xfs_attr_match(args, name_rmt->namelen,
2442 name_rmt->name, entry->flags))
2443 continue;
2444 args->index = probe;
2445 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2446 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2447 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2448 args->dp->i_mount,
2449 args->rmtvaluelen);
2450 return -EEXIST;
2451 }
2452 }
2453 args->index = probe;
2454 return -ENOATTR;
2455}
2456
2457/*
2458 * Get the value associated with an attribute name from a leaf attribute
2459 * list structure.
2460 *
2461 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2462 * lookup, we only return an error if the attribute does not exist or we can't
2463 * retrieve the value.
2464 */
2465int
2466xfs_attr3_leaf_getvalue(
2467 struct xfs_buf *bp,
2468 struct xfs_da_args *args)
2469{
2470 struct xfs_attr_leafblock *leaf;
2471 struct xfs_attr3_icleaf_hdr ichdr;
2472 struct xfs_attr_leaf_entry *entry;
2473 struct xfs_attr_leaf_name_local *name_loc;
2474 struct xfs_attr_leaf_name_remote *name_rmt;
2475
2476 leaf = bp->b_addr;
2477 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2478 ASSERT(ichdr.count < args->geo->blksize / 8);
2479 ASSERT(args->index < ichdr.count);
2480
2481 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2482 if (entry->flags & XFS_ATTR_LOCAL) {
2483 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2484 ASSERT(name_loc->namelen == args->namelen);
2485 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2486 return xfs_attr_copy_value(args,
2487 &name_loc->nameval[args->namelen],
2488 be16_to_cpu(name_loc->valuelen));
2489 }
2490
2491 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2492 ASSERT(name_rmt->namelen == args->namelen);
2493 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2494 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2495 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2496 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2497 args->rmtvaluelen);
2498 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2499}
2500
2501/*========================================================================
2502 * Utility routines.
2503 *========================================================================*/
2504
2505/*
2506 * Move the indicated entries from one leaf to another.
2507 * NOTE: this routine modifies both source and destination leaves.
2508 */
2509/*ARGSUSED*/
2510STATIC void
2511xfs_attr3_leaf_moveents(
2512 struct xfs_da_args *args,
2513 struct xfs_attr_leafblock *leaf_s,
2514 struct xfs_attr3_icleaf_hdr *ichdr_s,
2515 int start_s,
2516 struct xfs_attr_leafblock *leaf_d,
2517 struct xfs_attr3_icleaf_hdr *ichdr_d,
2518 int start_d,
2519 int count)
2520{
2521 struct xfs_attr_leaf_entry *entry_s;
2522 struct xfs_attr_leaf_entry *entry_d;
2523 int desti;
2524 int tmp;
2525 int i;
2526
2527 /*
2528 * Check for nothing to do.
2529 */
2530 if (count == 0)
2531 return;
2532
2533 /*
2534 * Set up environment.
2535 */
2536 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2537 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2538 ASSERT(ichdr_s->magic == ichdr_d->magic);
2539 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2540 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2541 + xfs_attr3_leaf_hdr_size(leaf_s));
2542 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2543 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2544 + xfs_attr3_leaf_hdr_size(leaf_d));
2545
2546 ASSERT(start_s < ichdr_s->count);
2547 ASSERT(start_d <= ichdr_d->count);
2548 ASSERT(count <= ichdr_s->count);
2549
2550
2551 /*
2552 * Move the entries in the destination leaf up to make a hole?
2553 */
2554 if (start_d < ichdr_d->count) {
2555 tmp = ichdr_d->count - start_d;
2556 tmp *= sizeof(xfs_attr_leaf_entry_t);
2557 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2558 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2559 memmove(entry_d, entry_s, tmp);
2560 }
2561
2562 /*
2563 * Copy all entry's in the same (sorted) order,
2564 * but allocate attribute info packed and in sequence.
2565 */
2566 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2567 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2568 desti = start_d;
2569 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2570 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2571 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2572#ifdef GROT
2573 /*
2574 * Code to drop INCOMPLETE entries. Difficult to use as we
2575 * may also need to change the insertion index. Code turned
2576 * off for 6.2, should be revisited later.
2577 */
2578 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2579 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2580 ichdr_s->usedbytes -= tmp;
2581 ichdr_s->count -= 1;
2582 entry_d--; /* to compensate for ++ in loop hdr */
2583 desti--;
2584 if ((start_s + i) < offset)
2585 result++; /* insertion index adjustment */
2586 } else {
2587#endif /* GROT */
2588 ichdr_d->firstused -= tmp;
2589 /* both on-disk, don't endian flip twice */
2590 entry_d->hashval = entry_s->hashval;
2591 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2592 entry_d->flags = entry_s->flags;
2593 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2594 <= args->geo->blksize);
2595 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2596 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2597 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2598 <= args->geo->blksize);
2599 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2600 ichdr_s->usedbytes -= tmp;
2601 ichdr_d->usedbytes += tmp;
2602 ichdr_s->count -= 1;
2603 ichdr_d->count += 1;
2604 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2605 + xfs_attr3_leaf_hdr_size(leaf_d);
2606 ASSERT(ichdr_d->firstused >= tmp);
2607#ifdef GROT
2608 }
2609#endif /* GROT */
2610 }
2611
2612 /*
2613 * Zero out the entries we just copied.
2614 */
2615 if (start_s == ichdr_s->count) {
2616 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2617 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2618 ASSERT(((char *)entry_s + tmp) <=
2619 ((char *)leaf_s + args->geo->blksize));
2620 memset(entry_s, 0, tmp);
2621 } else {
2622 /*
2623 * Move the remaining entries down to fill the hole,
2624 * then zero the entries at the top.
2625 */
2626 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2627 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2628 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2629 memmove(entry_d, entry_s, tmp);
2630
2631 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2632 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2633 ASSERT(((char *)entry_s + tmp) <=
2634 ((char *)leaf_s + args->geo->blksize));
2635 memset(entry_s, 0, tmp);
2636 }
2637
2638 /*
2639 * Fill in the freemap information
2640 */
2641 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2642 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2643 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2644 ichdr_d->freemap[1].base = 0;
2645 ichdr_d->freemap[2].base = 0;
2646 ichdr_d->freemap[1].size = 0;
2647 ichdr_d->freemap[2].size = 0;
2648 ichdr_s->holes = 1; /* leaf may not be compact */
2649}
2650
2651/*
2652 * Pick up the last hashvalue from a leaf block.
2653 */
2654xfs_dahash_t
2655xfs_attr_leaf_lasthash(
2656 struct xfs_buf *bp,
2657 int *count)
2658{
2659 struct xfs_attr3_icleaf_hdr ichdr;
2660 struct xfs_attr_leaf_entry *entries;
2661 struct xfs_mount *mp = bp->b_mount;
2662
2663 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2664 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2665 if (count)
2666 *count = ichdr.count;
2667 if (!ichdr.count)
2668 return 0;
2669 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2670}
2671
2672/*
2673 * Calculate the number of bytes used to store the indicated attribute
2674 * (whether local or remote only calculate bytes in this block).
2675 */
2676STATIC int
2677xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2678{
2679 struct xfs_attr_leaf_entry *entries;
2680 xfs_attr_leaf_name_local_t *name_loc;
2681 xfs_attr_leaf_name_remote_t *name_rmt;
2682 int size;
2683
2684 entries = xfs_attr3_leaf_entryp(leaf);
2685 if (entries[index].flags & XFS_ATTR_LOCAL) {
2686 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2687 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2688 be16_to_cpu(name_loc->valuelen));
2689 } else {
2690 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2691 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2692 }
2693 return size;
2694}
2695
2696/*
2697 * Calculate the number of bytes that would be required to store the new
2698 * attribute (whether local or remote only calculate bytes in this block).
2699 * This routine decides as a side effect whether the attribute will be
2700 * a "local" or a "remote" attribute.
2701 */
2702int
2703xfs_attr_leaf_newentsize(
2704 struct xfs_da_args *args,
2705 int *local)
2706{
2707 int size;
2708
2709 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2710 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2711 if (local)
2712 *local = 1;
2713 return size;
2714 }
2715 if (local)
2716 *local = 0;
2717 return xfs_attr_leaf_entsize_remote(args->namelen);
2718}
2719
2720
2721/*========================================================================
2722 * Manage the INCOMPLETE flag in a leaf entry
2723 *========================================================================*/
2724
2725/*
2726 * Clear the INCOMPLETE flag on an entry in a leaf block.
2727 */
2728int
2729xfs_attr3_leaf_clearflag(
2730 struct xfs_da_args *args)
2731{
2732 struct xfs_attr_leafblock *leaf;
2733 struct xfs_attr_leaf_entry *entry;
2734 struct xfs_attr_leaf_name_remote *name_rmt;
2735 struct xfs_buf *bp;
2736 int error;
2737#ifdef DEBUG
2738 struct xfs_attr3_icleaf_hdr ichdr;
2739 xfs_attr_leaf_name_local_t *name_loc;
2740 int namelen;
2741 char *name;
2742#endif /* DEBUG */
2743
2744 trace_xfs_attr_leaf_clearflag(args);
2745 /*
2746 * Set up the operation.
2747 */
2748 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2749 if (error)
2750 return error;
2751
2752 leaf = bp->b_addr;
2753 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2754 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2755
2756#ifdef DEBUG
2757 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2758 ASSERT(args->index < ichdr.count);
2759 ASSERT(args->index >= 0);
2760
2761 if (entry->flags & XFS_ATTR_LOCAL) {
2762 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2763 namelen = name_loc->namelen;
2764 name = (char *)name_loc->nameval;
2765 } else {
2766 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2767 namelen = name_rmt->namelen;
2768 name = (char *)name_rmt->name;
2769 }
2770 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2771 ASSERT(namelen == args->namelen);
2772 ASSERT(memcmp(name, args->name, namelen) == 0);
2773#endif /* DEBUG */
2774
2775 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2776 xfs_trans_log_buf(args->trans, bp,
2777 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2778
2779 if (args->rmtblkno) {
2780 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2781 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2782 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2783 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2784 xfs_trans_log_buf(args->trans, bp,
2785 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2786 }
2787
2788 return 0;
2789}
2790
2791/*
2792 * Set the INCOMPLETE flag on an entry in a leaf block.
2793 */
2794int
2795xfs_attr3_leaf_setflag(
2796 struct xfs_da_args *args)
2797{
2798 struct xfs_attr_leafblock *leaf;
2799 struct xfs_attr_leaf_entry *entry;
2800 struct xfs_attr_leaf_name_remote *name_rmt;
2801 struct xfs_buf *bp;
2802 int error;
2803#ifdef DEBUG
2804 struct xfs_attr3_icleaf_hdr ichdr;
2805#endif
2806
2807 trace_xfs_attr_leaf_setflag(args);
2808
2809 /*
2810 * Set up the operation.
2811 */
2812 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2813 if (error)
2814 return error;
2815
2816 leaf = bp->b_addr;
2817#ifdef DEBUG
2818 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2819 ASSERT(args->index < ichdr.count);
2820 ASSERT(args->index >= 0);
2821#endif
2822 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2823
2824 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2825 entry->flags |= XFS_ATTR_INCOMPLETE;
2826 xfs_trans_log_buf(args->trans, bp,
2827 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2828 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2829 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2830 name_rmt->valueblk = 0;
2831 name_rmt->valuelen = 0;
2832 xfs_trans_log_buf(args->trans, bp,
2833 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2834 }
2835
2836 return 0;
2837}
2838
2839/*
2840 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2841 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2842 * entry given by args->blkno2/index2.
2843 *
2844 * Note that they could be in different blocks, or in the same block.
2845 */
2846int
2847xfs_attr3_leaf_flipflags(
2848 struct xfs_da_args *args)
2849{
2850 struct xfs_attr_leafblock *leaf1;
2851 struct xfs_attr_leafblock *leaf2;
2852 struct xfs_attr_leaf_entry *entry1;
2853 struct xfs_attr_leaf_entry *entry2;
2854 struct xfs_attr_leaf_name_remote *name_rmt;
2855 struct xfs_buf *bp1;
2856 struct xfs_buf *bp2;
2857 int error;
2858#ifdef DEBUG
2859 struct xfs_attr3_icleaf_hdr ichdr1;
2860 struct xfs_attr3_icleaf_hdr ichdr2;
2861 xfs_attr_leaf_name_local_t *name_loc;
2862 int namelen1, namelen2;
2863 char *name1, *name2;
2864#endif /* DEBUG */
2865
2866 trace_xfs_attr_leaf_flipflags(args);
2867
2868 /*
2869 * Read the block containing the "old" attr
2870 */
2871 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2872 if (error)
2873 return error;
2874
2875 /*
2876 * Read the block containing the "new" attr, if it is different
2877 */
2878 if (args->blkno2 != args->blkno) {
2879 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2880 &bp2);
2881 if (error)
2882 return error;
2883 } else {
2884 bp2 = bp1;
2885 }
2886
2887 leaf1 = bp1->b_addr;
2888 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2889
2890 leaf2 = bp2->b_addr;
2891 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2892
2893#ifdef DEBUG
2894 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2895 ASSERT(args->index < ichdr1.count);
2896 ASSERT(args->index >= 0);
2897
2898 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2899 ASSERT(args->index2 < ichdr2.count);
2900 ASSERT(args->index2 >= 0);
2901
2902 if (entry1->flags & XFS_ATTR_LOCAL) {
2903 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2904 namelen1 = name_loc->namelen;
2905 name1 = (char *)name_loc->nameval;
2906 } else {
2907 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2908 namelen1 = name_rmt->namelen;
2909 name1 = (char *)name_rmt->name;
2910 }
2911 if (entry2->flags & XFS_ATTR_LOCAL) {
2912 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2913 namelen2 = name_loc->namelen;
2914 name2 = (char *)name_loc->nameval;
2915 } else {
2916 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2917 namelen2 = name_rmt->namelen;
2918 name2 = (char *)name_rmt->name;
2919 }
2920 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2921 ASSERT(namelen1 == namelen2);
2922 ASSERT(memcmp(name1, name2, namelen1) == 0);
2923#endif /* DEBUG */
2924
2925 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2926 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2927
2928 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2929 xfs_trans_log_buf(args->trans, bp1,
2930 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2931 if (args->rmtblkno) {
2932 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2933 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2934 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2935 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2936 xfs_trans_log_buf(args->trans, bp1,
2937 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2938 }
2939
2940 entry2->flags |= XFS_ATTR_INCOMPLETE;
2941 xfs_trans_log_buf(args->trans, bp2,
2942 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2943 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2944 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2945 name_rmt->valueblk = 0;
2946 name_rmt->valuelen = 0;
2947 xfs_trans_log_buf(args->trans, bp2,
2948 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2949 }
2950
2951 return 0;
2952}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_da_format.h"
16#include "xfs_da_btree.h"
17#include "xfs_inode.h"
18#include "xfs_trans.h"
19#include "xfs_bmap_btree.h"
20#include "xfs_bmap.h"
21#include "xfs_attr_sf.h"
22#include "xfs_attr.h"
23#include "xfs_attr_remote.h"
24#include "xfs_attr_leaf.h"
25#include "xfs_error.h"
26#include "xfs_trace.h"
27#include "xfs_buf_item.h"
28#include "xfs_dir2.h"
29#include "xfs_log.h"
30#include "xfs_ag.h"
31#include "xfs_errortag.h"
32
33
34/*
35 * xfs_attr_leaf.c
36 *
37 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
38 */
39
40/*========================================================================
41 * Function prototypes for the kernel.
42 *========================================================================*/
43
44/*
45 * Routines used for growing the Btree.
46 */
47STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
48 xfs_dablk_t which_block, struct xfs_buf **bpp);
49STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
50 struct xfs_attr3_icleaf_hdr *ichdr,
51 struct xfs_da_args *args, int freemap_index);
52STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
53 struct xfs_attr3_icleaf_hdr *ichdr,
54 struct xfs_buf *leaf_buffer);
55STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
56 xfs_da_state_blk_t *blk1,
57 xfs_da_state_blk_t *blk2);
58STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
59 xfs_da_state_blk_t *leaf_blk_1,
60 struct xfs_attr3_icleaf_hdr *ichdr1,
61 xfs_da_state_blk_t *leaf_blk_2,
62 struct xfs_attr3_icleaf_hdr *ichdr2,
63 int *number_entries_in_blk1,
64 int *number_usedbytes_in_blk1);
65
66/*
67 * Utility routines.
68 */
69STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
70 struct xfs_attr_leafblock *src_leaf,
71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
72 struct xfs_attr_leafblock *dst_leaf,
73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
74 int move_count);
75STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
76
77/*
78 * attr3 block 'firstused' conversion helpers.
79 *
80 * firstused refers to the offset of the first used byte of the nameval region
81 * of an attr leaf block. The region starts at the tail of the block and expands
82 * backwards towards the middle. As such, firstused is initialized to the block
83 * size for an empty leaf block and is reduced from there.
84 *
85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
89 * the attr block size. The following helpers manage the conversion between the
90 * in-core and on-disk formats.
91 */
92
93static void
94xfs_attr3_leaf_firstused_from_disk(
95 struct xfs_da_geometry *geo,
96 struct xfs_attr3_icleaf_hdr *to,
97 struct xfs_attr_leafblock *from)
98{
99 struct xfs_attr3_leaf_hdr *hdr3;
100
101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
102 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
103 to->firstused = be16_to_cpu(hdr3->firstused);
104 } else {
105 to->firstused = be16_to_cpu(from->hdr.firstused);
106 }
107
108 /*
109 * Convert from the magic fsb size value to actual blocksize. This
110 * should only occur for empty blocks when the block size overflows
111 * 16-bits.
112 */
113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
114 ASSERT(!to->count && !to->usedbytes);
115 ASSERT(geo->blksize > USHRT_MAX);
116 to->firstused = geo->blksize;
117 }
118}
119
120static void
121xfs_attr3_leaf_firstused_to_disk(
122 struct xfs_da_geometry *geo,
123 struct xfs_attr_leafblock *to,
124 struct xfs_attr3_icleaf_hdr *from)
125{
126 struct xfs_attr3_leaf_hdr *hdr3;
127 uint32_t firstused;
128
129 /* magic value should only be seen on disk */
130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
131
132 /*
133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
134 * value. This only overflows at the max supported value of 64k. Use the
135 * magic on-disk value to represent block size in this case.
136 */
137 firstused = from->firstused;
138 if (firstused > USHRT_MAX) {
139 ASSERT(from->firstused == geo->blksize);
140 firstused = XFS_ATTR3_LEAF_NULLOFF;
141 }
142
143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
144 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
145 hdr3->firstused = cpu_to_be16(firstused);
146 } else {
147 to->hdr.firstused = cpu_to_be16(firstused);
148 }
149}
150
151void
152xfs_attr3_leaf_hdr_from_disk(
153 struct xfs_da_geometry *geo,
154 struct xfs_attr3_icleaf_hdr *to,
155 struct xfs_attr_leafblock *from)
156{
157 int i;
158
159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
161
162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
164
165 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
166 to->back = be32_to_cpu(hdr3->info.hdr.back);
167 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
168 to->count = be16_to_cpu(hdr3->count);
169 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
170 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
171 to->holes = hdr3->holes;
172
173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
176 }
177 return;
178 }
179 to->forw = be32_to_cpu(from->hdr.info.forw);
180 to->back = be32_to_cpu(from->hdr.info.back);
181 to->magic = be16_to_cpu(from->hdr.info.magic);
182 to->count = be16_to_cpu(from->hdr.count);
183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
184 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
185 to->holes = from->hdr.holes;
186
187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
190 }
191}
192
193void
194xfs_attr3_leaf_hdr_to_disk(
195 struct xfs_da_geometry *geo,
196 struct xfs_attr_leafblock *to,
197 struct xfs_attr3_icleaf_hdr *from)
198{
199 int i;
200
201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
202 from->magic == XFS_ATTR3_LEAF_MAGIC);
203
204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
206
207 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
208 hdr3->info.hdr.back = cpu_to_be32(from->back);
209 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
210 hdr3->count = cpu_to_be16(from->count);
211 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
212 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
213 hdr3->holes = from->holes;
214 hdr3->pad1 = 0;
215
216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
219 }
220 return;
221 }
222 to->hdr.info.forw = cpu_to_be32(from->forw);
223 to->hdr.info.back = cpu_to_be32(from->back);
224 to->hdr.info.magic = cpu_to_be16(from->magic);
225 to->hdr.count = cpu_to_be16(from->count);
226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
227 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
228 to->hdr.holes = from->holes;
229 to->hdr.pad1 = 0;
230
231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
234 }
235}
236
237static xfs_failaddr_t
238xfs_attr3_leaf_verify_entry(
239 struct xfs_mount *mp,
240 char *buf_end,
241 struct xfs_attr_leafblock *leaf,
242 struct xfs_attr3_icleaf_hdr *leafhdr,
243 struct xfs_attr_leaf_entry *ent,
244 int idx,
245 __u32 *last_hashval)
246{
247 struct xfs_attr_leaf_name_local *lentry;
248 struct xfs_attr_leaf_name_remote *rentry;
249 char *name_end;
250 unsigned int nameidx;
251 unsigned int namesize;
252 __u32 hashval;
253
254 /* hash order check */
255 hashval = be32_to_cpu(ent->hashval);
256 if (hashval < *last_hashval)
257 return __this_address;
258 *last_hashval = hashval;
259
260 nameidx = be16_to_cpu(ent->nameidx);
261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
262 return __this_address;
263
264 /*
265 * Check the name information. The namelen fields are u8 so we can't
266 * possibly exceed the maximum name length of 255 bytes.
267 */
268 if (ent->flags & XFS_ATTR_LOCAL) {
269 lentry = xfs_attr3_leaf_name_local(leaf, idx);
270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
271 be16_to_cpu(lentry->valuelen));
272 name_end = (char *)lentry + namesize;
273 if (lentry->namelen == 0)
274 return __this_address;
275 } else {
276 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
278 name_end = (char *)rentry + namesize;
279 if (rentry->namelen == 0)
280 return __this_address;
281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
282 rentry->valueblk == 0)
283 return __this_address;
284 }
285
286 if (name_end > buf_end)
287 return __this_address;
288
289 return NULL;
290}
291
292/*
293 * Validate an attribute leaf block.
294 *
295 * Empty leaf blocks can occur under the following circumstances:
296 *
297 * 1. setxattr adds a new extended attribute to a file;
298 * 2. The file has zero existing attributes;
299 * 3. The attribute is too large to fit in the attribute fork;
300 * 4. The attribute is small enough to fit in a leaf block;
301 * 5. A log flush occurs after committing the transaction that creates
302 * the (empty) leaf block; and
303 * 6. The filesystem goes down after the log flush but before the new
304 * attribute can be committed to the leaf block.
305 *
306 * Hence we need to ensure that we don't fail the validation purely
307 * because the leaf is empty.
308 */
309static xfs_failaddr_t
310xfs_attr3_leaf_verify(
311 struct xfs_buf *bp)
312{
313 struct xfs_attr3_icleaf_hdr ichdr;
314 struct xfs_mount *mp = bp->b_mount;
315 struct xfs_attr_leafblock *leaf = bp->b_addr;
316 struct xfs_attr_leaf_entry *entries;
317 struct xfs_attr_leaf_entry *ent;
318 char *buf_end;
319 uint32_t end; /* must be 32bit - see below */
320 __u32 last_hashval = 0;
321 int i;
322 xfs_failaddr_t fa;
323
324 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
325
326 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
327 if (fa)
328 return fa;
329
330 /*
331 * firstused is the block offset of the first name info structure.
332 * Make sure it doesn't go off the block or crash into the header.
333 */
334 if (ichdr.firstused > mp->m_attr_geo->blksize)
335 return __this_address;
336 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
337 return __this_address;
338
339 /* Make sure the entries array doesn't crash into the name info. */
340 entries = xfs_attr3_leaf_entryp(bp->b_addr);
341 if ((char *)&entries[ichdr.count] >
342 (char *)bp->b_addr + ichdr.firstused)
343 return __this_address;
344
345 /*
346 * NOTE: This verifier historically failed empty leaf buffers because
347 * we expect the fork to be in another format. Empty attr fork format
348 * conversions are possible during xattr set, however, and format
349 * conversion is not atomic with the xattr set that triggers it. We
350 * cannot assume leaf blocks are non-empty until that is addressed.
351 */
352 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
353 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
354 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
355 ent, i, &last_hashval);
356 if (fa)
357 return fa;
358 }
359
360 /*
361 * Quickly check the freemap information. Attribute data has to be
362 * aligned to 4-byte boundaries, and likewise for the free space.
363 *
364 * Note that for 64k block size filesystems, the freemap entries cannot
365 * overflow as they are only be16 fields. However, when checking end
366 * pointer of the freemap, we have to be careful to detect overflows and
367 * so use uint32_t for those checks.
368 */
369 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
370 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
371 return __this_address;
372 if (ichdr.freemap[i].base & 0x3)
373 return __this_address;
374 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
375 return __this_address;
376 if (ichdr.freemap[i].size & 0x3)
377 return __this_address;
378
379 /* be care of 16 bit overflows here */
380 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
381 if (end < ichdr.freemap[i].base)
382 return __this_address;
383 if (end > mp->m_attr_geo->blksize)
384 return __this_address;
385 }
386
387 return NULL;
388}
389
390static void
391xfs_attr3_leaf_write_verify(
392 struct xfs_buf *bp)
393{
394 struct xfs_mount *mp = bp->b_mount;
395 struct xfs_buf_log_item *bip = bp->b_log_item;
396 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
397 xfs_failaddr_t fa;
398
399 fa = xfs_attr3_leaf_verify(bp);
400 if (fa) {
401 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
402 return;
403 }
404
405 if (!xfs_has_crc(mp))
406 return;
407
408 if (bip)
409 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
410
411 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
412}
413
414/*
415 * leaf/node format detection on trees is sketchy, so a node read can be done on
416 * leaf level blocks when detection identifies the tree as a node format tree
417 * incorrectly. In this case, we need to swap the verifier to match the correct
418 * format of the block being read.
419 */
420static void
421xfs_attr3_leaf_read_verify(
422 struct xfs_buf *bp)
423{
424 struct xfs_mount *mp = bp->b_mount;
425 xfs_failaddr_t fa;
426
427 if (xfs_has_crc(mp) &&
428 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
429 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
430 else {
431 fa = xfs_attr3_leaf_verify(bp);
432 if (fa)
433 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
434 }
435}
436
437const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
438 .name = "xfs_attr3_leaf",
439 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
440 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
441 .verify_read = xfs_attr3_leaf_read_verify,
442 .verify_write = xfs_attr3_leaf_write_verify,
443 .verify_struct = xfs_attr3_leaf_verify,
444};
445
446int
447xfs_attr3_leaf_read(
448 struct xfs_trans *tp,
449 struct xfs_inode *dp,
450 xfs_dablk_t bno,
451 struct xfs_buf **bpp)
452{
453 int err;
454
455 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
456 &xfs_attr3_leaf_buf_ops);
457 if (!err && tp && *bpp)
458 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
459 return err;
460}
461
462/*========================================================================
463 * Namespace helper routines
464 *========================================================================*/
465
466/*
467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
468 * flag on disk - if there's an incomplete attr then recovery needs to tear it
469 * down. If there's no incomplete attr, then recovery needs to tear that attr
470 * down to replace it with the attr that has been logged. In this case, the
471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
472 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
473 */
474static bool
475xfs_attr_match(
476 struct xfs_da_args *args,
477 uint8_t namelen,
478 unsigned char *name,
479 int flags)
480{
481
482 if (args->namelen != namelen)
483 return false;
484 if (memcmp(args->name, name, namelen) != 0)
485 return false;
486
487 /* Recovery ignores the INCOMPLETE flag. */
488 if ((args->op_flags & XFS_DA_OP_RECOVERY) &&
489 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK))
490 return true;
491
492 /* All remaining matches need to be filtered by INCOMPLETE state. */
493 if (args->attr_filter !=
494 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
495 return false;
496 return true;
497}
498
499static int
500xfs_attr_copy_value(
501 struct xfs_da_args *args,
502 unsigned char *value,
503 int valuelen)
504{
505 /*
506 * No copy if all we have to do is get the length
507 */
508 if (!args->valuelen) {
509 args->valuelen = valuelen;
510 return 0;
511 }
512
513 /*
514 * No copy if the length of the existing buffer is too small
515 */
516 if (args->valuelen < valuelen) {
517 args->valuelen = valuelen;
518 return -ERANGE;
519 }
520
521 if (!args->value) {
522 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
523 if (!args->value)
524 return -ENOMEM;
525 }
526 args->valuelen = valuelen;
527
528 /* remote block xattr requires IO for copy-in */
529 if (args->rmtblkno)
530 return xfs_attr_rmtval_get(args);
531
532 /*
533 * This is to prevent a GCC warning because the remote xattr case
534 * doesn't have a value to pass in. In that case, we never reach here,
535 * but GCC can't work that out and so throws a "passing NULL to
536 * memcpy" warning.
537 */
538 if (!value)
539 return -EINVAL;
540 memcpy(args->value, value, valuelen);
541 return 0;
542}
543
544/*========================================================================
545 * External routines when attribute fork size < XFS_LITINO(mp).
546 *========================================================================*/
547
548/*
549 * Query whether the total requested number of attr fork bytes of extended
550 * attribute space will be able to fit inline.
551 *
552 * Returns zero if not, else the i_forkoff fork offset to be used in the
553 * literal area for attribute data once the new bytes have been added.
554 *
555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
556 * special case for dev/uuid inodes, they have fixed size data forks.
557 */
558int
559xfs_attr_shortform_bytesfit(
560 struct xfs_inode *dp,
561 int bytes)
562{
563 struct xfs_mount *mp = dp->i_mount;
564 int64_t dsize;
565 int minforkoff;
566 int maxforkoff;
567 int offset;
568
569 /*
570 * Check if the new size could fit at all first:
571 */
572 if (bytes > XFS_LITINO(mp))
573 return 0;
574
575 /* rounded down */
576 offset = (XFS_LITINO(mp) - bytes) >> 3;
577
578 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
579 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
580 return (offset >= minforkoff) ? minforkoff : 0;
581 }
582
583 /*
584 * If the requested numbers of bytes is smaller or equal to the
585 * current attribute fork size we can always proceed.
586 *
587 * Note that if_bytes in the data fork might actually be larger than
588 * the current data fork size is due to delalloc extents. In that
589 * case either the extent count will go down when they are converted
590 * to real extents, or the delalloc conversion will take care of the
591 * literal area rebalancing.
592 */
593 if (bytes <= xfs_inode_attr_fork_size(dp))
594 return dp->i_forkoff;
595
596 /*
597 * For attr2 we can try to move the forkoff if there is space in the
598 * literal area, but for the old format we are done if there is no
599 * space in the fixed attribute fork.
600 */
601 if (!xfs_has_attr2(mp))
602 return 0;
603
604 dsize = dp->i_df.if_bytes;
605
606 switch (dp->i_df.if_format) {
607 case XFS_DINODE_FMT_EXTENTS:
608 /*
609 * If there is no attr fork and the data fork is extents,
610 * determine if creating the default attr fork will result
611 * in the extents form migrating to btree. If so, the
612 * minimum offset only needs to be the space required for
613 * the btree root.
614 */
615 if (!dp->i_forkoff && dp->i_df.if_bytes >
616 xfs_default_attroffset(dp))
617 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
618 break;
619 case XFS_DINODE_FMT_BTREE:
620 /*
621 * If we have a data btree then keep forkoff if we have one,
622 * otherwise we are adding a new attr, so then we set
623 * minforkoff to where the btree root can finish so we have
624 * plenty of room for attrs
625 */
626 if (dp->i_forkoff) {
627 if (offset < dp->i_forkoff)
628 return 0;
629 return dp->i_forkoff;
630 }
631 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
632 break;
633 }
634
635 /*
636 * A data fork btree root must have space for at least
637 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
638 */
639 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
640 minforkoff = roundup(minforkoff, 8) >> 3;
641
642 /* attr fork btree root can have at least this many key/ptr pairs */
643 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
644 maxforkoff = maxforkoff >> 3; /* rounded down */
645
646 if (offset >= maxforkoff)
647 return maxforkoff;
648 if (offset >= minforkoff)
649 return offset;
650 return 0;
651}
652
653/*
654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
655 * - noattr2 mount option is set,
656 * - on-disk version bit says it is already set, or
657 * - the attr2 mount option is not set to enable automatic upgrade from attr1.
658 */
659STATIC void
660xfs_sbversion_add_attr2(
661 struct xfs_mount *mp,
662 struct xfs_trans *tp)
663{
664 if (xfs_has_noattr2(mp))
665 return;
666 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
667 return;
668 if (!xfs_has_attr2(mp))
669 return;
670
671 spin_lock(&mp->m_sb_lock);
672 xfs_add_attr2(mp);
673 spin_unlock(&mp->m_sb_lock);
674 xfs_log_sb(tp);
675}
676
677/*
678 * Create the initial contents of a shortform attribute list.
679 */
680void
681xfs_attr_shortform_create(
682 struct xfs_da_args *args)
683{
684 struct xfs_inode *dp = args->dp;
685 struct xfs_ifork *ifp = &dp->i_af;
686 struct xfs_attr_sf_hdr *hdr;
687
688 trace_xfs_attr_sf_create(args);
689
690 ASSERT(ifp->if_bytes == 0);
691 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
692 ifp->if_format = XFS_DINODE_FMT_LOCAL;
693
694 hdr = xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
695 memset(hdr, 0, sizeof(*hdr));
696 hdr->totsize = cpu_to_be16(sizeof(*hdr));
697 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
698}
699
700/*
701 * Return the entry if the attr in args is found, or NULL if not.
702 */
703struct xfs_attr_sf_entry *
704xfs_attr_sf_findname(
705 struct xfs_da_args *args)
706{
707 struct xfs_attr_sf_hdr *sf = args->dp->i_af.if_data;
708 struct xfs_attr_sf_entry *sfe;
709
710 for (sfe = xfs_attr_sf_firstentry(sf);
711 sfe < xfs_attr_sf_endptr(sf);
712 sfe = xfs_attr_sf_nextentry(sfe)) {
713 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
714 sfe->flags))
715 return sfe;
716 }
717
718 return NULL;
719}
720
721/*
722 * Add a name/value pair to the shortform attribute list.
723 * Overflow from the inode has already been checked for.
724 */
725void
726xfs_attr_shortform_add(
727 struct xfs_da_args *args,
728 int forkoff)
729{
730 struct xfs_inode *dp = args->dp;
731 struct xfs_mount *mp = dp->i_mount;
732 struct xfs_ifork *ifp = &dp->i_af;
733 struct xfs_attr_sf_hdr *sf = ifp->if_data;
734 struct xfs_attr_sf_entry *sfe;
735 int size;
736
737 trace_xfs_attr_sf_add(args);
738
739 dp->i_forkoff = forkoff;
740
741 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
742 ASSERT(!xfs_attr_sf_findname(args));
743
744 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
745 sf = xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
746
747 sfe = xfs_attr_sf_endptr(sf);
748 sfe->namelen = args->namelen;
749 sfe->valuelen = args->valuelen;
750 sfe->flags = args->attr_filter;
751 memcpy(sfe->nameval, args->name, args->namelen);
752 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
753 sf->count++;
754 be16_add_cpu(&sf->totsize, size);
755 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
756
757 xfs_sbversion_add_attr2(mp, args->trans);
758}
759
760/*
761 * After the last attribute is removed revert to original inode format,
762 * making all literal area available to the data fork once more.
763 */
764void
765xfs_attr_fork_remove(
766 struct xfs_inode *ip,
767 struct xfs_trans *tp)
768{
769 ASSERT(ip->i_af.if_nextents == 0);
770
771 xfs_ifork_zap_attr(ip);
772 ip->i_forkoff = 0;
773 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
774}
775
776/*
777 * Remove an attribute from the shortform attribute list structure.
778 */
779int
780xfs_attr_sf_removename(
781 struct xfs_da_args *args)
782{
783 struct xfs_inode *dp = args->dp;
784 struct xfs_mount *mp = dp->i_mount;
785 struct xfs_attr_sf_hdr *sf = dp->i_af.if_data;
786 struct xfs_attr_sf_entry *sfe;
787 uint16_t totsize = be16_to_cpu(sf->totsize);
788 void *next, *end;
789 int size = 0;
790
791 trace_xfs_attr_sf_remove(args);
792
793 sfe = xfs_attr_sf_findname(args);
794 if (!sfe) {
795 /*
796 * If we are recovering an operation, finding nothing to remove
797 * is not an error, it just means there was nothing to clean up.
798 */
799 if (args->op_flags & XFS_DA_OP_RECOVERY)
800 return 0;
801 return -ENOATTR;
802 }
803
804 /*
805 * Fix up the attribute fork data, covering the hole
806 */
807 size = xfs_attr_sf_entsize(sfe);
808 next = xfs_attr_sf_nextentry(sfe);
809 end = xfs_attr_sf_endptr(sf);
810 if (next < end)
811 memmove(sfe, next, end - next);
812 sf->count--;
813 totsize -= size;
814 sf->totsize = cpu_to_be16(totsize);
815
816 /*
817 * Fix up the start offset of the attribute fork
818 */
819 if (totsize == sizeof(struct xfs_attr_sf_hdr) && xfs_has_attr2(mp) &&
820 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
821 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) {
822 xfs_attr_fork_remove(dp, args->trans);
823 } else {
824 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
825 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
826 ASSERT(dp->i_forkoff);
827 ASSERT(totsize > sizeof(struct xfs_attr_sf_hdr) ||
828 (args->op_flags & XFS_DA_OP_ADDNAME) ||
829 !xfs_has_attr2(mp) ||
830 dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
831 xfs_trans_log_inode(args->trans, dp,
832 XFS_ILOG_CORE | XFS_ILOG_ADATA);
833 }
834
835 xfs_sbversion_add_attr2(mp, args->trans);
836
837 return 0;
838}
839
840/*
841 * Retrieve the attribute value and length.
842 *
843 * If args->valuelen is zero, only the length needs to be returned. Unlike a
844 * lookup, we only return an error if the attribute does not exist or we can't
845 * retrieve the value.
846 */
847int
848xfs_attr_shortform_getvalue(
849 struct xfs_da_args *args)
850{
851 struct xfs_attr_sf_entry *sfe;
852
853 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
854
855 trace_xfs_attr_sf_lookup(args);
856
857 sfe = xfs_attr_sf_findname(args);
858 if (!sfe)
859 return -ENOATTR;
860 return xfs_attr_copy_value(args, &sfe->nameval[args->namelen],
861 sfe->valuelen);
862}
863
864/* Convert from using the shortform to the leaf format. */
865int
866xfs_attr_shortform_to_leaf(
867 struct xfs_da_args *args)
868{
869 struct xfs_inode *dp = args->dp;
870 struct xfs_ifork *ifp = &dp->i_af;
871 struct xfs_attr_sf_hdr *sf = ifp->if_data;
872 struct xfs_attr_sf_entry *sfe;
873 int size = be16_to_cpu(sf->totsize);
874 struct xfs_da_args nargs;
875 char *tmpbuffer;
876 int error, i;
877 xfs_dablk_t blkno;
878 struct xfs_buf *bp;
879
880 trace_xfs_attr_sf_to_leaf(args);
881
882 tmpbuffer = kmem_alloc(size, 0);
883 ASSERT(tmpbuffer != NULL);
884 memcpy(tmpbuffer, ifp->if_data, size);
885 sf = (struct xfs_attr_sf_hdr *)tmpbuffer;
886
887 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
888 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
889
890 bp = NULL;
891 error = xfs_da_grow_inode(args, &blkno);
892 if (error)
893 goto out;
894
895 ASSERT(blkno == 0);
896 error = xfs_attr3_leaf_create(args, blkno, &bp);
897 if (error)
898 goto out;
899
900 memset((char *)&nargs, 0, sizeof(nargs));
901 nargs.dp = dp;
902 nargs.geo = args->geo;
903 nargs.total = args->total;
904 nargs.whichfork = XFS_ATTR_FORK;
905 nargs.trans = args->trans;
906 nargs.op_flags = XFS_DA_OP_OKNOENT;
907
908 sfe = xfs_attr_sf_firstentry(sf);
909 for (i = 0; i < sf->count; i++) {
910 nargs.name = sfe->nameval;
911 nargs.namelen = sfe->namelen;
912 nargs.value = &sfe->nameval[nargs.namelen];
913 nargs.valuelen = sfe->valuelen;
914 nargs.hashval = xfs_da_hashname(sfe->nameval,
915 sfe->namelen);
916 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
917 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
918 ASSERT(error == -ENOATTR);
919 error = xfs_attr3_leaf_add(bp, &nargs);
920 ASSERT(error != -ENOSPC);
921 if (error)
922 goto out;
923 sfe = xfs_attr_sf_nextentry(sfe);
924 }
925 error = 0;
926out:
927 kmem_free(tmpbuffer);
928 return error;
929}
930
931/*
932 * Check a leaf attribute block to see if all the entries would fit into
933 * a shortform attribute list.
934 */
935int
936xfs_attr_shortform_allfit(
937 struct xfs_buf *bp,
938 struct xfs_inode *dp)
939{
940 struct xfs_attr_leafblock *leaf;
941 struct xfs_attr_leaf_entry *entry;
942 xfs_attr_leaf_name_local_t *name_loc;
943 struct xfs_attr3_icleaf_hdr leafhdr;
944 int bytes;
945 int i;
946 struct xfs_mount *mp = bp->b_mount;
947
948 leaf = bp->b_addr;
949 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
950 entry = xfs_attr3_leaf_entryp(leaf);
951
952 bytes = sizeof(struct xfs_attr_sf_hdr);
953 for (i = 0; i < leafhdr.count; entry++, i++) {
954 if (entry->flags & XFS_ATTR_INCOMPLETE)
955 continue; /* don't copy partial entries */
956 if (!(entry->flags & XFS_ATTR_LOCAL))
957 return 0;
958 name_loc = xfs_attr3_leaf_name_local(leaf, i);
959 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
960 return 0;
961 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
962 return 0;
963 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
964 be16_to_cpu(name_loc->valuelen));
965 }
966 if (xfs_has_attr2(dp->i_mount) &&
967 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
968 (bytes == sizeof(struct xfs_attr_sf_hdr)))
969 return -1;
970 return xfs_attr_shortform_bytesfit(dp, bytes);
971}
972
973/* Verify the consistency of a raw inline attribute fork. */
974xfs_failaddr_t
975xfs_attr_shortform_verify(
976 struct xfs_attr_sf_hdr *sfp,
977 size_t size)
978{
979 struct xfs_attr_sf_entry *sfep = xfs_attr_sf_firstentry(sfp);
980 struct xfs_attr_sf_entry *next_sfep;
981 char *endp;
982 int i;
983
984 /*
985 * Give up if the attribute is way too short.
986 */
987 if (size < sizeof(struct xfs_attr_sf_hdr))
988 return __this_address;
989
990 endp = (char *)sfp + size;
991
992 /* Check all reported entries */
993 for (i = 0; i < sfp->count; i++) {
994 /*
995 * struct xfs_attr_sf_entry has a variable length.
996 * Check the fixed-offset parts of the structure are
997 * within the data buffer.
998 * xfs_attr_sf_entry is defined with a 1-byte variable
999 * array at the end, so we must subtract that off.
1000 */
1001 if (((char *)sfep + sizeof(*sfep)) >= endp)
1002 return __this_address;
1003
1004 /* Don't allow names with known bad length. */
1005 if (sfep->namelen == 0)
1006 return __this_address;
1007
1008 /*
1009 * Check that the variable-length part of the structure is
1010 * within the data buffer. The next entry starts after the
1011 * name component, so nextentry is an acceptable test.
1012 */
1013 next_sfep = xfs_attr_sf_nextentry(sfep);
1014 if ((char *)next_sfep > endp)
1015 return __this_address;
1016
1017 /*
1018 * Check for unknown flags. Short form doesn't support
1019 * the incomplete or local bits, so we can use the namespace
1020 * mask here.
1021 */
1022 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1023 return __this_address;
1024
1025 /*
1026 * Check for invalid namespace combinations. We only allow
1027 * one namespace flag per xattr, so we can just count the
1028 * bits (i.e. hweight) here.
1029 */
1030 if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
1031 return __this_address;
1032
1033 sfep = next_sfep;
1034 }
1035 if ((void *)sfep != (void *)endp)
1036 return __this_address;
1037
1038 return NULL;
1039}
1040
1041/*
1042 * Convert a leaf attribute list to shortform attribute list
1043 */
1044int
1045xfs_attr3_leaf_to_shortform(
1046 struct xfs_buf *bp,
1047 struct xfs_da_args *args,
1048 int forkoff)
1049{
1050 struct xfs_attr_leafblock *leaf;
1051 struct xfs_attr3_icleaf_hdr ichdr;
1052 struct xfs_attr_leaf_entry *entry;
1053 struct xfs_attr_leaf_name_local *name_loc;
1054 struct xfs_da_args nargs;
1055 struct xfs_inode *dp = args->dp;
1056 char *tmpbuffer;
1057 int error;
1058 int i;
1059
1060 trace_xfs_attr_leaf_to_sf(args);
1061
1062 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1063 if (!tmpbuffer)
1064 return -ENOMEM;
1065
1066 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1067
1068 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1069 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1070 entry = xfs_attr3_leaf_entryp(leaf);
1071
1072 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1073 memset(bp->b_addr, 0, args->geo->blksize);
1074
1075 /*
1076 * Clean out the prior contents of the attribute list.
1077 */
1078 error = xfs_da_shrink_inode(args, 0, bp);
1079 if (error)
1080 goto out;
1081
1082 if (forkoff == -1) {
1083 /*
1084 * Don't remove the attr fork if this operation is the first
1085 * part of a attr replace operations. We're going to add a new
1086 * attr immediately, so we need to keep the attr fork around in
1087 * this case.
1088 */
1089 if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1090 ASSERT(xfs_has_attr2(dp->i_mount));
1091 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1092 xfs_attr_fork_remove(dp, args->trans);
1093 }
1094 goto out;
1095 }
1096
1097 xfs_attr_shortform_create(args);
1098
1099 /*
1100 * Copy the attributes
1101 */
1102 memset((char *)&nargs, 0, sizeof(nargs));
1103 nargs.geo = args->geo;
1104 nargs.dp = dp;
1105 nargs.total = args->total;
1106 nargs.whichfork = XFS_ATTR_FORK;
1107 nargs.trans = args->trans;
1108 nargs.op_flags = XFS_DA_OP_OKNOENT;
1109
1110 for (i = 0; i < ichdr.count; entry++, i++) {
1111 if (entry->flags & XFS_ATTR_INCOMPLETE)
1112 continue; /* don't copy partial entries */
1113 if (!entry->nameidx)
1114 continue;
1115 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1116 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1117 nargs.name = name_loc->nameval;
1118 nargs.namelen = name_loc->namelen;
1119 nargs.value = &name_loc->nameval[nargs.namelen];
1120 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1121 nargs.hashval = be32_to_cpu(entry->hashval);
1122 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1123 xfs_attr_shortform_add(&nargs, forkoff);
1124 }
1125 error = 0;
1126
1127out:
1128 kmem_free(tmpbuffer);
1129 return error;
1130}
1131
1132/*
1133 * Convert from using a single leaf to a root node and a leaf.
1134 */
1135int
1136xfs_attr3_leaf_to_node(
1137 struct xfs_da_args *args)
1138{
1139 struct xfs_attr_leafblock *leaf;
1140 struct xfs_attr3_icleaf_hdr icleafhdr;
1141 struct xfs_attr_leaf_entry *entries;
1142 struct xfs_da3_icnode_hdr icnodehdr;
1143 struct xfs_da_intnode *node;
1144 struct xfs_inode *dp = args->dp;
1145 struct xfs_mount *mp = dp->i_mount;
1146 struct xfs_buf *bp1 = NULL;
1147 struct xfs_buf *bp2 = NULL;
1148 xfs_dablk_t blkno;
1149 int error;
1150
1151 trace_xfs_attr_leaf_to_node(args);
1152
1153 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1154 error = -EIO;
1155 goto out;
1156 }
1157
1158 error = xfs_da_grow_inode(args, &blkno);
1159 if (error)
1160 goto out;
1161 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1162 if (error)
1163 goto out;
1164
1165 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1166 if (error)
1167 goto out;
1168
1169 /*
1170 * Copy leaf to new buffer and log it.
1171 */
1172 xfs_da_buf_copy(bp2, bp1, args->geo->blksize);
1173 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1174
1175 /*
1176 * Set up the new root node.
1177 */
1178 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1179 if (error)
1180 goto out;
1181 node = bp1->b_addr;
1182 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1183
1184 leaf = bp2->b_addr;
1185 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1186 entries = xfs_attr3_leaf_entryp(leaf);
1187
1188 /* both on-disk, don't endian-flip twice */
1189 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1190 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1191 icnodehdr.count = 1;
1192 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1193 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1194 error = 0;
1195out:
1196 return error;
1197}
1198
1199/*========================================================================
1200 * Routines used for growing the Btree.
1201 *========================================================================*/
1202
1203/*
1204 * Create the initial contents of a leaf attribute list
1205 * or a leaf in a node attribute list.
1206 */
1207STATIC int
1208xfs_attr3_leaf_create(
1209 struct xfs_da_args *args,
1210 xfs_dablk_t blkno,
1211 struct xfs_buf **bpp)
1212{
1213 struct xfs_attr_leafblock *leaf;
1214 struct xfs_attr3_icleaf_hdr ichdr;
1215 struct xfs_inode *dp = args->dp;
1216 struct xfs_mount *mp = dp->i_mount;
1217 struct xfs_buf *bp;
1218 int error;
1219
1220 trace_xfs_attr_leaf_create(args);
1221
1222 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1223 XFS_ATTR_FORK);
1224 if (error)
1225 return error;
1226 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1227 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1228 leaf = bp->b_addr;
1229 memset(leaf, 0, args->geo->blksize);
1230
1231 memset(&ichdr, 0, sizeof(ichdr));
1232 ichdr.firstused = args->geo->blksize;
1233
1234 if (xfs_has_crc(mp)) {
1235 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1236
1237 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1238
1239 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1240 hdr3->owner = cpu_to_be64(dp->i_ino);
1241 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1242
1243 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1244 } else {
1245 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1246 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1247 }
1248 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1249
1250 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1251 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1252
1253 *bpp = bp;
1254 return 0;
1255}
1256
1257/*
1258 * Split the leaf node, rebalance, then add the new entry.
1259 */
1260int
1261xfs_attr3_leaf_split(
1262 struct xfs_da_state *state,
1263 struct xfs_da_state_blk *oldblk,
1264 struct xfs_da_state_blk *newblk)
1265{
1266 xfs_dablk_t blkno;
1267 int error;
1268
1269 trace_xfs_attr_leaf_split(state->args);
1270
1271 /*
1272 * Allocate space for a new leaf node.
1273 */
1274 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1275 error = xfs_da_grow_inode(state->args, &blkno);
1276 if (error)
1277 return error;
1278 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1279 if (error)
1280 return error;
1281 newblk->blkno = blkno;
1282 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1283
1284 /*
1285 * Rebalance the entries across the two leaves.
1286 * NOTE: rebalance() currently depends on the 2nd block being empty.
1287 */
1288 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1289 error = xfs_da3_blk_link(state, oldblk, newblk);
1290 if (error)
1291 return error;
1292
1293 /*
1294 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1295 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1296 * "new" attrs info. Will need the "old" info to remove it later.
1297 *
1298 * Insert the "new" entry in the correct block.
1299 */
1300 if (state->inleaf) {
1301 trace_xfs_attr_leaf_add_old(state->args);
1302 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1303 } else {
1304 trace_xfs_attr_leaf_add_new(state->args);
1305 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1306 }
1307
1308 /*
1309 * Update last hashval in each block since we added the name.
1310 */
1311 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1312 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1313 return error;
1314}
1315
1316/*
1317 * Add a name to the leaf attribute list structure.
1318 */
1319int
1320xfs_attr3_leaf_add(
1321 struct xfs_buf *bp,
1322 struct xfs_da_args *args)
1323{
1324 struct xfs_attr_leafblock *leaf;
1325 struct xfs_attr3_icleaf_hdr ichdr;
1326 int tablesize;
1327 int entsize;
1328 int sum;
1329 int tmp;
1330 int i;
1331
1332 trace_xfs_attr_leaf_add(args);
1333
1334 leaf = bp->b_addr;
1335 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1336 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1337 entsize = xfs_attr_leaf_newentsize(args, NULL);
1338
1339 /*
1340 * Search through freemap for first-fit on new name length.
1341 * (may need to figure in size of entry struct too)
1342 */
1343 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1344 + xfs_attr3_leaf_hdr_size(leaf);
1345 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1346 if (tablesize > ichdr.firstused) {
1347 sum += ichdr.freemap[i].size;
1348 continue;
1349 }
1350 if (!ichdr.freemap[i].size)
1351 continue; /* no space in this map */
1352 tmp = entsize;
1353 if (ichdr.freemap[i].base < ichdr.firstused)
1354 tmp += sizeof(xfs_attr_leaf_entry_t);
1355 if (ichdr.freemap[i].size >= tmp) {
1356 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1357 goto out_log_hdr;
1358 }
1359 sum += ichdr.freemap[i].size;
1360 }
1361
1362 /*
1363 * If there are no holes in the address space of the block,
1364 * and we don't have enough freespace, then compaction will do us
1365 * no good and we should just give up.
1366 */
1367 if (!ichdr.holes && sum < entsize)
1368 return -ENOSPC;
1369
1370 /*
1371 * Compact the entries to coalesce free space.
1372 * This may change the hdr->count via dropping INCOMPLETE entries.
1373 */
1374 xfs_attr3_leaf_compact(args, &ichdr, bp);
1375
1376 /*
1377 * After compaction, the block is guaranteed to have only one
1378 * free region, in freemap[0]. If it is not big enough, give up.
1379 */
1380 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1381 tmp = -ENOSPC;
1382 goto out_log_hdr;
1383 }
1384
1385 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1386
1387out_log_hdr:
1388 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1389 xfs_trans_log_buf(args->trans, bp,
1390 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1391 xfs_attr3_leaf_hdr_size(leaf)));
1392 return tmp;
1393}
1394
1395/*
1396 * Add a name to a leaf attribute list structure.
1397 */
1398STATIC int
1399xfs_attr3_leaf_add_work(
1400 struct xfs_buf *bp,
1401 struct xfs_attr3_icleaf_hdr *ichdr,
1402 struct xfs_da_args *args,
1403 int mapindex)
1404{
1405 struct xfs_attr_leafblock *leaf;
1406 struct xfs_attr_leaf_entry *entry;
1407 struct xfs_attr_leaf_name_local *name_loc;
1408 struct xfs_attr_leaf_name_remote *name_rmt;
1409 struct xfs_mount *mp;
1410 int tmp;
1411 int i;
1412
1413 trace_xfs_attr_leaf_add_work(args);
1414
1415 leaf = bp->b_addr;
1416 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1417 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1418
1419 /*
1420 * Force open some space in the entry array and fill it in.
1421 */
1422 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1423 if (args->index < ichdr->count) {
1424 tmp = ichdr->count - args->index;
1425 tmp *= sizeof(xfs_attr_leaf_entry_t);
1426 memmove(entry + 1, entry, tmp);
1427 xfs_trans_log_buf(args->trans, bp,
1428 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1429 }
1430 ichdr->count++;
1431
1432 /*
1433 * Allocate space for the new string (at the end of the run).
1434 */
1435 mp = args->trans->t_mountp;
1436 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1437 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1438 ASSERT(ichdr->freemap[mapindex].size >=
1439 xfs_attr_leaf_newentsize(args, NULL));
1440 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1441 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1442
1443 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1444
1445 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1446 ichdr->freemap[mapindex].size);
1447 entry->hashval = cpu_to_be32(args->hashval);
1448 entry->flags = args->attr_filter;
1449 if (tmp)
1450 entry->flags |= XFS_ATTR_LOCAL;
1451 if (args->op_flags & XFS_DA_OP_REPLACE) {
1452 if (!(args->op_flags & XFS_DA_OP_LOGGED))
1453 entry->flags |= XFS_ATTR_INCOMPLETE;
1454 if ((args->blkno2 == args->blkno) &&
1455 (args->index2 <= args->index)) {
1456 args->index2++;
1457 }
1458 }
1459 xfs_trans_log_buf(args->trans, bp,
1460 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1461 ASSERT((args->index == 0) ||
1462 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1463 ASSERT((args->index == ichdr->count - 1) ||
1464 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1465
1466 /*
1467 * For "remote" attribute values, simply note that we need to
1468 * allocate space for the "remote" value. We can't actually
1469 * allocate the extents in this transaction, and we can't decide
1470 * which blocks they should be as we might allocate more blocks
1471 * as part of this transaction (a split operation for example).
1472 */
1473 if (entry->flags & XFS_ATTR_LOCAL) {
1474 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1475 name_loc->namelen = args->namelen;
1476 name_loc->valuelen = cpu_to_be16(args->valuelen);
1477 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1478 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1479 be16_to_cpu(name_loc->valuelen));
1480 } else {
1481 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1482 name_rmt->namelen = args->namelen;
1483 memcpy((char *)name_rmt->name, args->name, args->namelen);
1484 entry->flags |= XFS_ATTR_INCOMPLETE;
1485 /* just in case */
1486 name_rmt->valuelen = 0;
1487 name_rmt->valueblk = 0;
1488 args->rmtblkno = 1;
1489 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1490 args->rmtvaluelen = args->valuelen;
1491 }
1492 xfs_trans_log_buf(args->trans, bp,
1493 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1494 xfs_attr_leaf_entsize(leaf, args->index)));
1495
1496 /*
1497 * Update the control info for this leaf node
1498 */
1499 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1500 ichdr->firstused = be16_to_cpu(entry->nameidx);
1501
1502 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1503 + xfs_attr3_leaf_hdr_size(leaf));
1504 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1505 + xfs_attr3_leaf_hdr_size(leaf);
1506
1507 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1508 if (ichdr->freemap[i].base == tmp) {
1509 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1510 ichdr->freemap[i].size -=
1511 min_t(uint16_t, ichdr->freemap[i].size,
1512 sizeof(xfs_attr_leaf_entry_t));
1513 }
1514 }
1515 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1516 return 0;
1517}
1518
1519/*
1520 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1521 */
1522STATIC void
1523xfs_attr3_leaf_compact(
1524 struct xfs_da_args *args,
1525 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1526 struct xfs_buf *bp)
1527{
1528 struct xfs_attr_leafblock *leaf_src;
1529 struct xfs_attr_leafblock *leaf_dst;
1530 struct xfs_attr3_icleaf_hdr ichdr_src;
1531 struct xfs_trans *trans = args->trans;
1532 char *tmpbuffer;
1533
1534 trace_xfs_attr_leaf_compact(args);
1535
1536 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1537 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1538 memset(bp->b_addr, 0, args->geo->blksize);
1539 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1540 leaf_dst = bp->b_addr;
1541
1542 /*
1543 * Copy the on-disk header back into the destination buffer to ensure
1544 * all the information in the header that is not part of the incore
1545 * header structure is preserved.
1546 */
1547 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1548
1549 /* Initialise the incore headers */
1550 ichdr_src = *ichdr_dst; /* struct copy */
1551 ichdr_dst->firstused = args->geo->blksize;
1552 ichdr_dst->usedbytes = 0;
1553 ichdr_dst->count = 0;
1554 ichdr_dst->holes = 0;
1555 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1556 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1557 ichdr_dst->freemap[0].base;
1558
1559 /* write the header back to initialise the underlying buffer */
1560 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1561
1562 /*
1563 * Copy all entry's in the same (sorted) order,
1564 * but allocate name/value pairs packed and in sequence.
1565 */
1566 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1567 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1568 /*
1569 * this logs the entire buffer, but the caller must write the header
1570 * back to the buffer when it is finished modifying it.
1571 */
1572 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1573
1574 kmem_free(tmpbuffer);
1575}
1576
1577/*
1578 * Compare two leaf blocks "order".
1579 * Return 0 unless leaf2 should go before leaf1.
1580 */
1581static int
1582xfs_attr3_leaf_order(
1583 struct xfs_buf *leaf1_bp,
1584 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1585 struct xfs_buf *leaf2_bp,
1586 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1587{
1588 struct xfs_attr_leaf_entry *entries1;
1589 struct xfs_attr_leaf_entry *entries2;
1590
1591 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1592 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1593 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1594 ((be32_to_cpu(entries2[0].hashval) <
1595 be32_to_cpu(entries1[0].hashval)) ||
1596 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1597 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1598 return 1;
1599 }
1600 return 0;
1601}
1602
1603int
1604xfs_attr_leaf_order(
1605 struct xfs_buf *leaf1_bp,
1606 struct xfs_buf *leaf2_bp)
1607{
1608 struct xfs_attr3_icleaf_hdr ichdr1;
1609 struct xfs_attr3_icleaf_hdr ichdr2;
1610 struct xfs_mount *mp = leaf1_bp->b_mount;
1611
1612 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1613 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1614 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1615}
1616
1617/*
1618 * Redistribute the attribute list entries between two leaf nodes,
1619 * taking into account the size of the new entry.
1620 *
1621 * NOTE: if new block is empty, then it will get the upper half of the
1622 * old block. At present, all (one) callers pass in an empty second block.
1623 *
1624 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1625 * to match what it is doing in splitting the attribute leaf block. Those
1626 * values are used in "atomic rename" operations on attributes. Note that
1627 * the "new" and "old" values can end up in different blocks.
1628 */
1629STATIC void
1630xfs_attr3_leaf_rebalance(
1631 struct xfs_da_state *state,
1632 struct xfs_da_state_blk *blk1,
1633 struct xfs_da_state_blk *blk2)
1634{
1635 struct xfs_da_args *args;
1636 struct xfs_attr_leafblock *leaf1;
1637 struct xfs_attr_leafblock *leaf2;
1638 struct xfs_attr3_icleaf_hdr ichdr1;
1639 struct xfs_attr3_icleaf_hdr ichdr2;
1640 struct xfs_attr_leaf_entry *entries1;
1641 struct xfs_attr_leaf_entry *entries2;
1642 int count;
1643 int totallen;
1644 int max;
1645 int space;
1646 int swap;
1647
1648 /*
1649 * Set up environment.
1650 */
1651 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1652 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1653 leaf1 = blk1->bp->b_addr;
1654 leaf2 = blk2->bp->b_addr;
1655 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1656 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1657 ASSERT(ichdr2.count == 0);
1658 args = state->args;
1659
1660 trace_xfs_attr_leaf_rebalance(args);
1661
1662 /*
1663 * Check ordering of blocks, reverse if it makes things simpler.
1664 *
1665 * NOTE: Given that all (current) callers pass in an empty
1666 * second block, this code should never set "swap".
1667 */
1668 swap = 0;
1669 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1670 swap(blk1, blk2);
1671
1672 /* swap structures rather than reconverting them */
1673 swap(ichdr1, ichdr2);
1674
1675 leaf1 = blk1->bp->b_addr;
1676 leaf2 = blk2->bp->b_addr;
1677 swap = 1;
1678 }
1679
1680 /*
1681 * Examine entries until we reduce the absolute difference in
1682 * byte usage between the two blocks to a minimum. Then get
1683 * the direction to copy and the number of elements to move.
1684 *
1685 * "inleaf" is true if the new entry should be inserted into blk1.
1686 * If "swap" is also true, then reverse the sense of "inleaf".
1687 */
1688 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1689 blk2, &ichdr2,
1690 &count, &totallen);
1691 if (swap)
1692 state->inleaf = !state->inleaf;
1693
1694 /*
1695 * Move any entries required from leaf to leaf:
1696 */
1697 if (count < ichdr1.count) {
1698 /*
1699 * Figure the total bytes to be added to the destination leaf.
1700 */
1701 /* number entries being moved */
1702 count = ichdr1.count - count;
1703 space = ichdr1.usedbytes - totallen;
1704 space += count * sizeof(xfs_attr_leaf_entry_t);
1705
1706 /*
1707 * leaf2 is the destination, compact it if it looks tight.
1708 */
1709 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1710 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1711 if (space > max)
1712 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1713
1714 /*
1715 * Move high entries from leaf1 to low end of leaf2.
1716 */
1717 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1718 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1719
1720 } else if (count > ichdr1.count) {
1721 /*
1722 * I assert that since all callers pass in an empty
1723 * second buffer, this code should never execute.
1724 */
1725 ASSERT(0);
1726
1727 /*
1728 * Figure the total bytes to be added to the destination leaf.
1729 */
1730 /* number entries being moved */
1731 count -= ichdr1.count;
1732 space = totallen - ichdr1.usedbytes;
1733 space += count * sizeof(xfs_attr_leaf_entry_t);
1734
1735 /*
1736 * leaf1 is the destination, compact it if it looks tight.
1737 */
1738 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1739 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1740 if (space > max)
1741 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1742
1743 /*
1744 * Move low entries from leaf2 to high end of leaf1.
1745 */
1746 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1747 ichdr1.count, count);
1748 }
1749
1750 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1751 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1752 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1753 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1754
1755 /*
1756 * Copy out last hashval in each block for B-tree code.
1757 */
1758 entries1 = xfs_attr3_leaf_entryp(leaf1);
1759 entries2 = xfs_attr3_leaf_entryp(leaf2);
1760 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1761 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1762
1763 /*
1764 * Adjust the expected index for insertion.
1765 * NOTE: this code depends on the (current) situation that the
1766 * second block was originally empty.
1767 *
1768 * If the insertion point moved to the 2nd block, we must adjust
1769 * the index. We must also track the entry just following the
1770 * new entry for use in an "atomic rename" operation, that entry
1771 * is always the "old" entry and the "new" entry is what we are
1772 * inserting. The index/blkno fields refer to the "old" entry,
1773 * while the index2/blkno2 fields refer to the "new" entry.
1774 */
1775 if (blk1->index > ichdr1.count) {
1776 ASSERT(state->inleaf == 0);
1777 blk2->index = blk1->index - ichdr1.count;
1778 args->index = args->index2 = blk2->index;
1779 args->blkno = args->blkno2 = blk2->blkno;
1780 } else if (blk1->index == ichdr1.count) {
1781 if (state->inleaf) {
1782 args->index = blk1->index;
1783 args->blkno = blk1->blkno;
1784 args->index2 = 0;
1785 args->blkno2 = blk2->blkno;
1786 } else {
1787 /*
1788 * On a double leaf split, the original attr location
1789 * is already stored in blkno2/index2, so don't
1790 * overwrite it overwise we corrupt the tree.
1791 */
1792 blk2->index = blk1->index - ichdr1.count;
1793 args->index = blk2->index;
1794 args->blkno = blk2->blkno;
1795 if (!state->extravalid) {
1796 /*
1797 * set the new attr location to match the old
1798 * one and let the higher level split code
1799 * decide where in the leaf to place it.
1800 */
1801 args->index2 = blk2->index;
1802 args->blkno2 = blk2->blkno;
1803 }
1804 }
1805 } else {
1806 ASSERT(state->inleaf == 1);
1807 args->index = args->index2 = blk1->index;
1808 args->blkno = args->blkno2 = blk1->blkno;
1809 }
1810}
1811
1812/*
1813 * Examine entries until we reduce the absolute difference in
1814 * byte usage between the two blocks to a minimum.
1815 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1816 * GROT: there will always be enough room in either block for a new entry.
1817 * GROT: Do a double-split for this case?
1818 */
1819STATIC int
1820xfs_attr3_leaf_figure_balance(
1821 struct xfs_da_state *state,
1822 struct xfs_da_state_blk *blk1,
1823 struct xfs_attr3_icleaf_hdr *ichdr1,
1824 struct xfs_da_state_blk *blk2,
1825 struct xfs_attr3_icleaf_hdr *ichdr2,
1826 int *countarg,
1827 int *usedbytesarg)
1828{
1829 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1830 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1831 struct xfs_attr_leaf_entry *entry;
1832 int count;
1833 int max;
1834 int index;
1835 int totallen = 0;
1836 int half;
1837 int lastdelta;
1838 int foundit = 0;
1839 int tmp;
1840
1841 /*
1842 * Examine entries until we reduce the absolute difference in
1843 * byte usage between the two blocks to a minimum.
1844 */
1845 max = ichdr1->count + ichdr2->count;
1846 half = (max + 1) * sizeof(*entry);
1847 half += ichdr1->usedbytes + ichdr2->usedbytes +
1848 xfs_attr_leaf_newentsize(state->args, NULL);
1849 half /= 2;
1850 lastdelta = state->args->geo->blksize;
1851 entry = xfs_attr3_leaf_entryp(leaf1);
1852 for (count = index = 0; count < max; entry++, index++, count++) {
1853
1854#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1855 /*
1856 * The new entry is in the first block, account for it.
1857 */
1858 if (count == blk1->index) {
1859 tmp = totallen + sizeof(*entry) +
1860 xfs_attr_leaf_newentsize(state->args, NULL);
1861 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1862 break;
1863 lastdelta = XFS_ATTR_ABS(half - tmp);
1864 totallen = tmp;
1865 foundit = 1;
1866 }
1867
1868 /*
1869 * Wrap around into the second block if necessary.
1870 */
1871 if (count == ichdr1->count) {
1872 leaf1 = leaf2;
1873 entry = xfs_attr3_leaf_entryp(leaf1);
1874 index = 0;
1875 }
1876
1877 /*
1878 * Figure out if next leaf entry would be too much.
1879 */
1880 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1881 index);
1882 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1883 break;
1884 lastdelta = XFS_ATTR_ABS(half - tmp);
1885 totallen = tmp;
1886#undef XFS_ATTR_ABS
1887 }
1888
1889 /*
1890 * Calculate the number of usedbytes that will end up in lower block.
1891 * If new entry not in lower block, fix up the count.
1892 */
1893 totallen -= count * sizeof(*entry);
1894 if (foundit) {
1895 totallen -= sizeof(*entry) +
1896 xfs_attr_leaf_newentsize(state->args, NULL);
1897 }
1898
1899 *countarg = count;
1900 *usedbytesarg = totallen;
1901 return foundit;
1902}
1903
1904/*========================================================================
1905 * Routines used for shrinking the Btree.
1906 *========================================================================*/
1907
1908/*
1909 * Check a leaf block and its neighbors to see if the block should be
1910 * collapsed into one or the other neighbor. Always keep the block
1911 * with the smaller block number.
1912 * If the current block is over 50% full, don't try to join it, return 0.
1913 * If the block is empty, fill in the state structure and return 2.
1914 * If it can be collapsed, fill in the state structure and return 1.
1915 * If nothing can be done, return 0.
1916 *
1917 * GROT: allow for INCOMPLETE entries in calculation.
1918 */
1919int
1920xfs_attr3_leaf_toosmall(
1921 struct xfs_da_state *state,
1922 int *action)
1923{
1924 struct xfs_attr_leafblock *leaf;
1925 struct xfs_da_state_blk *blk;
1926 struct xfs_attr3_icleaf_hdr ichdr;
1927 struct xfs_buf *bp;
1928 xfs_dablk_t blkno;
1929 int bytes;
1930 int forward;
1931 int error;
1932 int retval;
1933 int i;
1934
1935 trace_xfs_attr_leaf_toosmall(state->args);
1936
1937 /*
1938 * Check for the degenerate case of the block being over 50% full.
1939 * If so, it's not worth even looking to see if we might be able
1940 * to coalesce with a sibling.
1941 */
1942 blk = &state->path.blk[ state->path.active-1 ];
1943 leaf = blk->bp->b_addr;
1944 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
1945 bytes = xfs_attr3_leaf_hdr_size(leaf) +
1946 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
1947 ichdr.usedbytes;
1948 if (bytes > (state->args->geo->blksize >> 1)) {
1949 *action = 0; /* blk over 50%, don't try to join */
1950 return 0;
1951 }
1952
1953 /*
1954 * Check for the degenerate case of the block being empty.
1955 * If the block is empty, we'll simply delete it, no need to
1956 * coalesce it with a sibling block. We choose (arbitrarily)
1957 * to merge with the forward block unless it is NULL.
1958 */
1959 if (ichdr.count == 0) {
1960 /*
1961 * Make altpath point to the block we want to keep and
1962 * path point to the block we want to drop (this one).
1963 */
1964 forward = (ichdr.forw != 0);
1965 memcpy(&state->altpath, &state->path, sizeof(state->path));
1966 error = xfs_da3_path_shift(state, &state->altpath, forward,
1967 0, &retval);
1968 if (error)
1969 return error;
1970 if (retval) {
1971 *action = 0;
1972 } else {
1973 *action = 2;
1974 }
1975 return 0;
1976 }
1977
1978 /*
1979 * Examine each sibling block to see if we can coalesce with
1980 * at least 25% free space to spare. We need to figure out
1981 * whether to merge with the forward or the backward block.
1982 * We prefer coalescing with the lower numbered sibling so as
1983 * to shrink an attribute list over time.
1984 */
1985 /* start with smaller blk num */
1986 forward = ichdr.forw < ichdr.back;
1987 for (i = 0; i < 2; forward = !forward, i++) {
1988 struct xfs_attr3_icleaf_hdr ichdr2;
1989 if (forward)
1990 blkno = ichdr.forw;
1991 else
1992 blkno = ichdr.back;
1993 if (blkno == 0)
1994 continue;
1995 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
1996 blkno, &bp);
1997 if (error)
1998 return error;
1999
2000 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2001
2002 bytes = state->args->geo->blksize -
2003 (state->args->geo->blksize >> 2) -
2004 ichdr.usedbytes - ichdr2.usedbytes -
2005 ((ichdr.count + ichdr2.count) *
2006 sizeof(xfs_attr_leaf_entry_t)) -
2007 xfs_attr3_leaf_hdr_size(leaf);
2008
2009 xfs_trans_brelse(state->args->trans, bp);
2010 if (bytes >= 0)
2011 break; /* fits with at least 25% to spare */
2012 }
2013 if (i >= 2) {
2014 *action = 0;
2015 return 0;
2016 }
2017
2018 /*
2019 * Make altpath point to the block we want to keep (the lower
2020 * numbered block) and path point to the block we want to drop.
2021 */
2022 memcpy(&state->altpath, &state->path, sizeof(state->path));
2023 if (blkno < blk->blkno) {
2024 error = xfs_da3_path_shift(state, &state->altpath, forward,
2025 0, &retval);
2026 } else {
2027 error = xfs_da3_path_shift(state, &state->path, forward,
2028 0, &retval);
2029 }
2030 if (error)
2031 return error;
2032 if (retval) {
2033 *action = 0;
2034 } else {
2035 *action = 1;
2036 }
2037 return 0;
2038}
2039
2040/*
2041 * Remove a name from the leaf attribute list structure.
2042 *
2043 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2044 * If two leaves are 37% full, when combined they will leave 25% free.
2045 */
2046int
2047xfs_attr3_leaf_remove(
2048 struct xfs_buf *bp,
2049 struct xfs_da_args *args)
2050{
2051 struct xfs_attr_leafblock *leaf;
2052 struct xfs_attr3_icleaf_hdr ichdr;
2053 struct xfs_attr_leaf_entry *entry;
2054 int before;
2055 int after;
2056 int smallest;
2057 int entsize;
2058 int tablesize;
2059 int tmp;
2060 int i;
2061
2062 trace_xfs_attr_leaf_remove(args);
2063
2064 leaf = bp->b_addr;
2065 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2066
2067 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2068 ASSERT(args->index >= 0 && args->index < ichdr.count);
2069 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2070 xfs_attr3_leaf_hdr_size(leaf));
2071
2072 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2073
2074 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2075 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2076
2077 /*
2078 * Scan through free region table:
2079 * check for adjacency of free'd entry with an existing one,
2080 * find smallest free region in case we need to replace it,
2081 * adjust any map that borders the entry table,
2082 */
2083 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2084 + xfs_attr3_leaf_hdr_size(leaf);
2085 tmp = ichdr.freemap[0].size;
2086 before = after = -1;
2087 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2088 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2089 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2090 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2091 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2092 if (ichdr.freemap[i].base == tablesize) {
2093 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2094 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2095 }
2096
2097 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2098 be16_to_cpu(entry->nameidx)) {
2099 before = i;
2100 } else if (ichdr.freemap[i].base ==
2101 (be16_to_cpu(entry->nameidx) + entsize)) {
2102 after = i;
2103 } else if (ichdr.freemap[i].size < tmp) {
2104 tmp = ichdr.freemap[i].size;
2105 smallest = i;
2106 }
2107 }
2108
2109 /*
2110 * Coalesce adjacent freemap regions,
2111 * or replace the smallest region.
2112 */
2113 if ((before >= 0) || (after >= 0)) {
2114 if ((before >= 0) && (after >= 0)) {
2115 ichdr.freemap[before].size += entsize;
2116 ichdr.freemap[before].size += ichdr.freemap[after].size;
2117 ichdr.freemap[after].base = 0;
2118 ichdr.freemap[after].size = 0;
2119 } else if (before >= 0) {
2120 ichdr.freemap[before].size += entsize;
2121 } else {
2122 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2123 ichdr.freemap[after].size += entsize;
2124 }
2125 } else {
2126 /*
2127 * Replace smallest region (if it is smaller than free'd entry)
2128 */
2129 if (ichdr.freemap[smallest].size < entsize) {
2130 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2131 ichdr.freemap[smallest].size = entsize;
2132 }
2133 }
2134
2135 /*
2136 * Did we remove the first entry?
2137 */
2138 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2139 smallest = 1;
2140 else
2141 smallest = 0;
2142
2143 /*
2144 * Compress the remaining entries and zero out the removed stuff.
2145 */
2146 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2147 ichdr.usedbytes -= entsize;
2148 xfs_trans_log_buf(args->trans, bp,
2149 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2150 entsize));
2151
2152 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2153 memmove(entry, entry + 1, tmp);
2154 ichdr.count--;
2155 xfs_trans_log_buf(args->trans, bp,
2156 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2157
2158 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2159 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2160
2161 /*
2162 * If we removed the first entry, re-find the first used byte
2163 * in the name area. Note that if the entry was the "firstused",
2164 * then we don't have a "hole" in our block resulting from
2165 * removing the name.
2166 */
2167 if (smallest) {
2168 tmp = args->geo->blksize;
2169 entry = xfs_attr3_leaf_entryp(leaf);
2170 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2171 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2172 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2173
2174 if (be16_to_cpu(entry->nameidx) < tmp)
2175 tmp = be16_to_cpu(entry->nameidx);
2176 }
2177 ichdr.firstused = tmp;
2178 ASSERT(ichdr.firstused != 0);
2179 } else {
2180 ichdr.holes = 1; /* mark as needing compaction */
2181 }
2182 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2183 xfs_trans_log_buf(args->trans, bp,
2184 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2185 xfs_attr3_leaf_hdr_size(leaf)));
2186
2187 /*
2188 * Check if leaf is less than 50% full, caller may want to
2189 * "join" the leaf with a sibling if so.
2190 */
2191 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2192 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2193
2194 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2195}
2196
2197/*
2198 * Move all the attribute list entries from drop_leaf into save_leaf.
2199 */
2200void
2201xfs_attr3_leaf_unbalance(
2202 struct xfs_da_state *state,
2203 struct xfs_da_state_blk *drop_blk,
2204 struct xfs_da_state_blk *save_blk)
2205{
2206 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2207 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2208 struct xfs_attr3_icleaf_hdr drophdr;
2209 struct xfs_attr3_icleaf_hdr savehdr;
2210 struct xfs_attr_leaf_entry *entry;
2211
2212 trace_xfs_attr_leaf_unbalance(state->args);
2213
2214 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2215 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2216 entry = xfs_attr3_leaf_entryp(drop_leaf);
2217
2218 /*
2219 * Save last hashval from dying block for later Btree fixup.
2220 */
2221 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2222
2223 /*
2224 * Check if we need a temp buffer, or can we do it in place.
2225 * Note that we don't check "leaf" for holes because we will
2226 * always be dropping it, toosmall() decided that for us already.
2227 */
2228 if (savehdr.holes == 0) {
2229 /*
2230 * dest leaf has no holes, so we add there. May need
2231 * to make some room in the entry array.
2232 */
2233 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2234 drop_blk->bp, &drophdr)) {
2235 xfs_attr3_leaf_moveents(state->args,
2236 drop_leaf, &drophdr, 0,
2237 save_leaf, &savehdr, 0,
2238 drophdr.count);
2239 } else {
2240 xfs_attr3_leaf_moveents(state->args,
2241 drop_leaf, &drophdr, 0,
2242 save_leaf, &savehdr,
2243 savehdr.count, drophdr.count);
2244 }
2245 } else {
2246 /*
2247 * Destination has holes, so we make a temporary copy
2248 * of the leaf and add them both to that.
2249 */
2250 struct xfs_attr_leafblock *tmp_leaf;
2251 struct xfs_attr3_icleaf_hdr tmphdr;
2252
2253 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2254
2255 /*
2256 * Copy the header into the temp leaf so that all the stuff
2257 * not in the incore header is present and gets copied back in
2258 * once we've moved all the entries.
2259 */
2260 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2261
2262 memset(&tmphdr, 0, sizeof(tmphdr));
2263 tmphdr.magic = savehdr.magic;
2264 tmphdr.forw = savehdr.forw;
2265 tmphdr.back = savehdr.back;
2266 tmphdr.firstused = state->args->geo->blksize;
2267
2268 /* write the header to the temp buffer to initialise it */
2269 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2270
2271 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2272 drop_blk->bp, &drophdr)) {
2273 xfs_attr3_leaf_moveents(state->args,
2274 drop_leaf, &drophdr, 0,
2275 tmp_leaf, &tmphdr, 0,
2276 drophdr.count);
2277 xfs_attr3_leaf_moveents(state->args,
2278 save_leaf, &savehdr, 0,
2279 tmp_leaf, &tmphdr, tmphdr.count,
2280 savehdr.count);
2281 } else {
2282 xfs_attr3_leaf_moveents(state->args,
2283 save_leaf, &savehdr, 0,
2284 tmp_leaf, &tmphdr, 0,
2285 savehdr.count);
2286 xfs_attr3_leaf_moveents(state->args,
2287 drop_leaf, &drophdr, 0,
2288 tmp_leaf, &tmphdr, tmphdr.count,
2289 drophdr.count);
2290 }
2291 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2292 savehdr = tmphdr; /* struct copy */
2293 kmem_free(tmp_leaf);
2294 }
2295
2296 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2297 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2298 state->args->geo->blksize - 1);
2299
2300 /*
2301 * Copy out last hashval in each block for B-tree code.
2302 */
2303 entry = xfs_attr3_leaf_entryp(save_leaf);
2304 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2305}
2306
2307/*========================================================================
2308 * Routines used for finding things in the Btree.
2309 *========================================================================*/
2310
2311/*
2312 * Look up a name in a leaf attribute list structure.
2313 * This is the internal routine, it uses the caller's buffer.
2314 *
2315 * Note that duplicate keys are allowed, but only check within the
2316 * current leaf node. The Btree code must check in adjacent leaf nodes.
2317 *
2318 * Return in args->index the index into the entry[] array of either
2319 * the found entry, or where the entry should have been (insert before
2320 * that entry).
2321 *
2322 * Don't change the args->value unless we find the attribute.
2323 */
2324int
2325xfs_attr3_leaf_lookup_int(
2326 struct xfs_buf *bp,
2327 struct xfs_da_args *args)
2328{
2329 struct xfs_attr_leafblock *leaf;
2330 struct xfs_attr3_icleaf_hdr ichdr;
2331 struct xfs_attr_leaf_entry *entry;
2332 struct xfs_attr_leaf_entry *entries;
2333 struct xfs_attr_leaf_name_local *name_loc;
2334 struct xfs_attr_leaf_name_remote *name_rmt;
2335 xfs_dahash_t hashval;
2336 int probe;
2337 int span;
2338
2339 trace_xfs_attr_leaf_lookup(args);
2340
2341 leaf = bp->b_addr;
2342 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2343 entries = xfs_attr3_leaf_entryp(leaf);
2344 if (ichdr.count >= args->geo->blksize / 8) {
2345 xfs_buf_mark_corrupt(bp);
2346 return -EFSCORRUPTED;
2347 }
2348
2349 /*
2350 * Binary search. (note: small blocks will skip this loop)
2351 */
2352 hashval = args->hashval;
2353 probe = span = ichdr.count / 2;
2354 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2355 span /= 2;
2356 if (be32_to_cpu(entry->hashval) < hashval)
2357 probe += span;
2358 else if (be32_to_cpu(entry->hashval) > hashval)
2359 probe -= span;
2360 else
2361 break;
2362 }
2363 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2364 xfs_buf_mark_corrupt(bp);
2365 return -EFSCORRUPTED;
2366 }
2367 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2368 xfs_buf_mark_corrupt(bp);
2369 return -EFSCORRUPTED;
2370 }
2371
2372 /*
2373 * Since we may have duplicate hashval's, find the first matching
2374 * hashval in the leaf.
2375 */
2376 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2377 entry--;
2378 probe--;
2379 }
2380 while (probe < ichdr.count &&
2381 be32_to_cpu(entry->hashval) < hashval) {
2382 entry++;
2383 probe++;
2384 }
2385 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2386 args->index = probe;
2387 return -ENOATTR;
2388 }
2389
2390 /*
2391 * Duplicate keys may be present, so search all of them for a match.
2392 */
2393 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2394 entry++, probe++) {
2395/*
2396 * GROT: Add code to remove incomplete entries.
2397 */
2398 if (entry->flags & XFS_ATTR_LOCAL) {
2399 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2400 if (!xfs_attr_match(args, name_loc->namelen,
2401 name_loc->nameval, entry->flags))
2402 continue;
2403 args->index = probe;
2404 return -EEXIST;
2405 } else {
2406 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2407 if (!xfs_attr_match(args, name_rmt->namelen,
2408 name_rmt->name, entry->flags))
2409 continue;
2410 args->index = probe;
2411 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2412 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2413 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2414 args->dp->i_mount,
2415 args->rmtvaluelen);
2416 return -EEXIST;
2417 }
2418 }
2419 args->index = probe;
2420 return -ENOATTR;
2421}
2422
2423/*
2424 * Get the value associated with an attribute name from a leaf attribute
2425 * list structure.
2426 *
2427 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2428 * lookup, we only return an error if the attribute does not exist or we can't
2429 * retrieve the value.
2430 */
2431int
2432xfs_attr3_leaf_getvalue(
2433 struct xfs_buf *bp,
2434 struct xfs_da_args *args)
2435{
2436 struct xfs_attr_leafblock *leaf;
2437 struct xfs_attr3_icleaf_hdr ichdr;
2438 struct xfs_attr_leaf_entry *entry;
2439 struct xfs_attr_leaf_name_local *name_loc;
2440 struct xfs_attr_leaf_name_remote *name_rmt;
2441
2442 leaf = bp->b_addr;
2443 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2444 ASSERT(ichdr.count < args->geo->blksize / 8);
2445 ASSERT(args->index < ichdr.count);
2446
2447 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2448 if (entry->flags & XFS_ATTR_LOCAL) {
2449 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2450 ASSERT(name_loc->namelen == args->namelen);
2451 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2452 return xfs_attr_copy_value(args,
2453 &name_loc->nameval[args->namelen],
2454 be16_to_cpu(name_loc->valuelen));
2455 }
2456
2457 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2458 ASSERT(name_rmt->namelen == args->namelen);
2459 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2460 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2461 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2462 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2463 args->rmtvaluelen);
2464 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2465}
2466
2467/*========================================================================
2468 * Utility routines.
2469 *========================================================================*/
2470
2471/*
2472 * Move the indicated entries from one leaf to another.
2473 * NOTE: this routine modifies both source and destination leaves.
2474 */
2475/*ARGSUSED*/
2476STATIC void
2477xfs_attr3_leaf_moveents(
2478 struct xfs_da_args *args,
2479 struct xfs_attr_leafblock *leaf_s,
2480 struct xfs_attr3_icleaf_hdr *ichdr_s,
2481 int start_s,
2482 struct xfs_attr_leafblock *leaf_d,
2483 struct xfs_attr3_icleaf_hdr *ichdr_d,
2484 int start_d,
2485 int count)
2486{
2487 struct xfs_attr_leaf_entry *entry_s;
2488 struct xfs_attr_leaf_entry *entry_d;
2489 int desti;
2490 int tmp;
2491 int i;
2492
2493 /*
2494 * Check for nothing to do.
2495 */
2496 if (count == 0)
2497 return;
2498
2499 /*
2500 * Set up environment.
2501 */
2502 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2503 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2504 ASSERT(ichdr_s->magic == ichdr_d->magic);
2505 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2506 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2507 + xfs_attr3_leaf_hdr_size(leaf_s));
2508 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2509 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2510 + xfs_attr3_leaf_hdr_size(leaf_d));
2511
2512 ASSERT(start_s < ichdr_s->count);
2513 ASSERT(start_d <= ichdr_d->count);
2514 ASSERT(count <= ichdr_s->count);
2515
2516
2517 /*
2518 * Move the entries in the destination leaf up to make a hole?
2519 */
2520 if (start_d < ichdr_d->count) {
2521 tmp = ichdr_d->count - start_d;
2522 tmp *= sizeof(xfs_attr_leaf_entry_t);
2523 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2524 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2525 memmove(entry_d, entry_s, tmp);
2526 }
2527
2528 /*
2529 * Copy all entry's in the same (sorted) order,
2530 * but allocate attribute info packed and in sequence.
2531 */
2532 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2533 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2534 desti = start_d;
2535 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2536 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2537 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2538#ifdef GROT
2539 /*
2540 * Code to drop INCOMPLETE entries. Difficult to use as we
2541 * may also need to change the insertion index. Code turned
2542 * off for 6.2, should be revisited later.
2543 */
2544 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2545 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2546 ichdr_s->usedbytes -= tmp;
2547 ichdr_s->count -= 1;
2548 entry_d--; /* to compensate for ++ in loop hdr */
2549 desti--;
2550 if ((start_s + i) < offset)
2551 result++; /* insertion index adjustment */
2552 } else {
2553#endif /* GROT */
2554 ichdr_d->firstused -= tmp;
2555 /* both on-disk, don't endian flip twice */
2556 entry_d->hashval = entry_s->hashval;
2557 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2558 entry_d->flags = entry_s->flags;
2559 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2560 <= args->geo->blksize);
2561 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2562 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2563 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2564 <= args->geo->blksize);
2565 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2566 ichdr_s->usedbytes -= tmp;
2567 ichdr_d->usedbytes += tmp;
2568 ichdr_s->count -= 1;
2569 ichdr_d->count += 1;
2570 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2571 + xfs_attr3_leaf_hdr_size(leaf_d);
2572 ASSERT(ichdr_d->firstused >= tmp);
2573#ifdef GROT
2574 }
2575#endif /* GROT */
2576 }
2577
2578 /*
2579 * Zero out the entries we just copied.
2580 */
2581 if (start_s == ichdr_s->count) {
2582 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2583 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2584 ASSERT(((char *)entry_s + tmp) <=
2585 ((char *)leaf_s + args->geo->blksize));
2586 memset(entry_s, 0, tmp);
2587 } else {
2588 /*
2589 * Move the remaining entries down to fill the hole,
2590 * then zero the entries at the top.
2591 */
2592 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2593 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2594 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2595 memmove(entry_d, entry_s, tmp);
2596
2597 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2598 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2599 ASSERT(((char *)entry_s + tmp) <=
2600 ((char *)leaf_s + args->geo->blksize));
2601 memset(entry_s, 0, tmp);
2602 }
2603
2604 /*
2605 * Fill in the freemap information
2606 */
2607 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2608 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2609 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2610 ichdr_d->freemap[1].base = 0;
2611 ichdr_d->freemap[2].base = 0;
2612 ichdr_d->freemap[1].size = 0;
2613 ichdr_d->freemap[2].size = 0;
2614 ichdr_s->holes = 1; /* leaf may not be compact */
2615}
2616
2617/*
2618 * Pick up the last hashvalue from a leaf block.
2619 */
2620xfs_dahash_t
2621xfs_attr_leaf_lasthash(
2622 struct xfs_buf *bp,
2623 int *count)
2624{
2625 struct xfs_attr3_icleaf_hdr ichdr;
2626 struct xfs_attr_leaf_entry *entries;
2627 struct xfs_mount *mp = bp->b_mount;
2628
2629 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2630 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2631 if (count)
2632 *count = ichdr.count;
2633 if (!ichdr.count)
2634 return 0;
2635 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2636}
2637
2638/*
2639 * Calculate the number of bytes used to store the indicated attribute
2640 * (whether local or remote only calculate bytes in this block).
2641 */
2642STATIC int
2643xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2644{
2645 struct xfs_attr_leaf_entry *entries;
2646 xfs_attr_leaf_name_local_t *name_loc;
2647 xfs_attr_leaf_name_remote_t *name_rmt;
2648 int size;
2649
2650 entries = xfs_attr3_leaf_entryp(leaf);
2651 if (entries[index].flags & XFS_ATTR_LOCAL) {
2652 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2653 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2654 be16_to_cpu(name_loc->valuelen));
2655 } else {
2656 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2657 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2658 }
2659 return size;
2660}
2661
2662/*
2663 * Calculate the number of bytes that would be required to store the new
2664 * attribute (whether local or remote only calculate bytes in this block).
2665 * This routine decides as a side effect whether the attribute will be
2666 * a "local" or a "remote" attribute.
2667 */
2668int
2669xfs_attr_leaf_newentsize(
2670 struct xfs_da_args *args,
2671 int *local)
2672{
2673 int size;
2674
2675 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2676 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2677 if (local)
2678 *local = 1;
2679 return size;
2680 }
2681 if (local)
2682 *local = 0;
2683 return xfs_attr_leaf_entsize_remote(args->namelen);
2684}
2685
2686
2687/*========================================================================
2688 * Manage the INCOMPLETE flag in a leaf entry
2689 *========================================================================*/
2690
2691/*
2692 * Clear the INCOMPLETE flag on an entry in a leaf block.
2693 */
2694int
2695xfs_attr3_leaf_clearflag(
2696 struct xfs_da_args *args)
2697{
2698 struct xfs_attr_leafblock *leaf;
2699 struct xfs_attr_leaf_entry *entry;
2700 struct xfs_attr_leaf_name_remote *name_rmt;
2701 struct xfs_buf *bp;
2702 int error;
2703#ifdef DEBUG
2704 struct xfs_attr3_icleaf_hdr ichdr;
2705 xfs_attr_leaf_name_local_t *name_loc;
2706 int namelen;
2707 char *name;
2708#endif /* DEBUG */
2709
2710 trace_xfs_attr_leaf_clearflag(args);
2711 /*
2712 * Set up the operation.
2713 */
2714 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2715 if (error)
2716 return error;
2717
2718 leaf = bp->b_addr;
2719 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2720 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2721
2722#ifdef DEBUG
2723 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2724 ASSERT(args->index < ichdr.count);
2725 ASSERT(args->index >= 0);
2726
2727 if (entry->flags & XFS_ATTR_LOCAL) {
2728 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2729 namelen = name_loc->namelen;
2730 name = (char *)name_loc->nameval;
2731 } else {
2732 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2733 namelen = name_rmt->namelen;
2734 name = (char *)name_rmt->name;
2735 }
2736 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2737 ASSERT(namelen == args->namelen);
2738 ASSERT(memcmp(name, args->name, namelen) == 0);
2739#endif /* DEBUG */
2740
2741 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2742 xfs_trans_log_buf(args->trans, bp,
2743 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2744
2745 if (args->rmtblkno) {
2746 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2747 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2748 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2749 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2750 xfs_trans_log_buf(args->trans, bp,
2751 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2752 }
2753
2754 return 0;
2755}
2756
2757/*
2758 * Set the INCOMPLETE flag on an entry in a leaf block.
2759 */
2760int
2761xfs_attr3_leaf_setflag(
2762 struct xfs_da_args *args)
2763{
2764 struct xfs_attr_leafblock *leaf;
2765 struct xfs_attr_leaf_entry *entry;
2766 struct xfs_attr_leaf_name_remote *name_rmt;
2767 struct xfs_buf *bp;
2768 int error;
2769#ifdef DEBUG
2770 struct xfs_attr3_icleaf_hdr ichdr;
2771#endif
2772
2773 trace_xfs_attr_leaf_setflag(args);
2774
2775 /*
2776 * Set up the operation.
2777 */
2778 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2779 if (error)
2780 return error;
2781
2782 leaf = bp->b_addr;
2783#ifdef DEBUG
2784 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2785 ASSERT(args->index < ichdr.count);
2786 ASSERT(args->index >= 0);
2787#endif
2788 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2789
2790 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2791 entry->flags |= XFS_ATTR_INCOMPLETE;
2792 xfs_trans_log_buf(args->trans, bp,
2793 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2794 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2795 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2796 name_rmt->valueblk = 0;
2797 name_rmt->valuelen = 0;
2798 xfs_trans_log_buf(args->trans, bp,
2799 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2800 }
2801
2802 return 0;
2803}
2804
2805/*
2806 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2807 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2808 * entry given by args->blkno2/index2.
2809 *
2810 * Note that they could be in different blocks, or in the same block.
2811 */
2812int
2813xfs_attr3_leaf_flipflags(
2814 struct xfs_da_args *args)
2815{
2816 struct xfs_attr_leafblock *leaf1;
2817 struct xfs_attr_leafblock *leaf2;
2818 struct xfs_attr_leaf_entry *entry1;
2819 struct xfs_attr_leaf_entry *entry2;
2820 struct xfs_attr_leaf_name_remote *name_rmt;
2821 struct xfs_buf *bp1;
2822 struct xfs_buf *bp2;
2823 int error;
2824#ifdef DEBUG
2825 struct xfs_attr3_icleaf_hdr ichdr1;
2826 struct xfs_attr3_icleaf_hdr ichdr2;
2827 xfs_attr_leaf_name_local_t *name_loc;
2828 int namelen1, namelen2;
2829 char *name1, *name2;
2830#endif /* DEBUG */
2831
2832 trace_xfs_attr_leaf_flipflags(args);
2833
2834 /*
2835 * Read the block containing the "old" attr
2836 */
2837 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2838 if (error)
2839 return error;
2840
2841 /*
2842 * Read the block containing the "new" attr, if it is different
2843 */
2844 if (args->blkno2 != args->blkno) {
2845 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2846 &bp2);
2847 if (error)
2848 return error;
2849 } else {
2850 bp2 = bp1;
2851 }
2852
2853 leaf1 = bp1->b_addr;
2854 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2855
2856 leaf2 = bp2->b_addr;
2857 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2858
2859#ifdef DEBUG
2860 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2861 ASSERT(args->index < ichdr1.count);
2862 ASSERT(args->index >= 0);
2863
2864 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2865 ASSERT(args->index2 < ichdr2.count);
2866 ASSERT(args->index2 >= 0);
2867
2868 if (entry1->flags & XFS_ATTR_LOCAL) {
2869 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2870 namelen1 = name_loc->namelen;
2871 name1 = (char *)name_loc->nameval;
2872 } else {
2873 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2874 namelen1 = name_rmt->namelen;
2875 name1 = (char *)name_rmt->name;
2876 }
2877 if (entry2->flags & XFS_ATTR_LOCAL) {
2878 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2879 namelen2 = name_loc->namelen;
2880 name2 = (char *)name_loc->nameval;
2881 } else {
2882 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2883 namelen2 = name_rmt->namelen;
2884 name2 = (char *)name_rmt->name;
2885 }
2886 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2887 ASSERT(namelen1 == namelen2);
2888 ASSERT(memcmp(name1, name2, namelen1) == 0);
2889#endif /* DEBUG */
2890
2891 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2892 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2893
2894 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2895 xfs_trans_log_buf(args->trans, bp1,
2896 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2897 if (args->rmtblkno) {
2898 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2899 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2900 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2901 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2902 xfs_trans_log_buf(args->trans, bp1,
2903 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2904 }
2905
2906 entry2->flags |= XFS_ATTR_INCOMPLETE;
2907 xfs_trans_log_buf(args->trans, bp2,
2908 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2909 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2910 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2911 name_rmt->valueblk = 0;
2912 name_rmt->valuelen = 0;
2913 xfs_trans_log_buf(args->trans, bp2,
2914 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
2915 }
2916
2917 return 0;
2918}