Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
 
  21#include <linux/module.h>
  22#include <linux/time.h>
  23#include <linux/errno.h>
  24#include <linux/stat.h>
  25#include <linux/fcntl.h>
  26#include <linux/string.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/sunrpc/clnt.h>
  31#include <linux/nfs_fs.h>
  32#include <linux/nfs_mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/pagevec.h>
  35#include <linux/namei.h>
  36#include <linux/mount.h>
  37#include <linux/swap.h>
  38#include <linux/sched.h>
  39#include <linux/kmemleak.h>
  40#include <linux/xattr.h>
 
  41
  42#include "delegation.h"
  43#include "iostat.h"
  44#include "internal.h"
  45#include "fscache.h"
  46
  47#include "nfstrace.h"
  48
  49/* #define NFS_DEBUG_VERBOSE 1 */
  50
  51static int nfs_opendir(struct inode *, struct file *);
  52static int nfs_closedir(struct inode *, struct file *);
  53static int nfs_readdir(struct file *, struct dir_context *);
  54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  56static void nfs_readdir_clear_array(struct page*);
  57
  58const struct file_operations nfs_dir_operations = {
  59	.llseek		= nfs_llseek_dir,
  60	.read		= generic_read_dir,
  61	.iterate_shared	= nfs_readdir,
  62	.open		= nfs_opendir,
  63	.release	= nfs_closedir,
  64	.fsync		= nfs_fsync_dir,
  65};
  66
  67const struct address_space_operations nfs_dir_aops = {
  68	.freepage = nfs_readdir_clear_array,
  69};
  70
  71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
 
 
 
  72{
  73	struct nfs_inode *nfsi = NFS_I(dir);
  74	struct nfs_open_dir_context *ctx;
  75	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
 
  76	if (ctx != NULL) {
  77		ctx->duped = 0;
  78		ctx->attr_gencount = nfsi->attr_gencount;
  79		ctx->dir_cookie = 0;
  80		ctx->dup_cookie = 0;
  81		spin_lock(&dir->i_lock);
  82		if (list_empty(&nfsi->open_files) &&
  83		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  84			nfs_set_cache_invalid(dir,
  85					      NFS_INO_INVALID_DATA |
  86						      NFS_INO_REVAL_FORCED);
  87		list_add(&ctx->list, &nfsi->open_files);
 
  88		spin_unlock(&dir->i_lock);
  89		return ctx;
  90	}
  91	return  ERR_PTR(-ENOMEM);
  92}
  93
  94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  95{
  96	spin_lock(&dir->i_lock);
  97	list_del(&ctx->list);
  98	spin_unlock(&dir->i_lock);
  99	kfree(ctx);
 100}
 101
 102/*
 103 * Open file
 104 */
 105static int
 106nfs_opendir(struct inode *inode, struct file *filp)
 107{
 108	int res = 0;
 109	struct nfs_open_dir_context *ctx;
 110
 111	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 112
 113	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 114
 115	ctx = alloc_nfs_open_dir_context(inode);
 116	if (IS_ERR(ctx)) {
 117		res = PTR_ERR(ctx);
 118		goto out;
 119	}
 120	filp->private_data = ctx;
 121out:
 122	return res;
 123}
 124
 125static int
 126nfs_closedir(struct inode *inode, struct file *filp)
 127{
 128	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 129	return 0;
 130}
 131
 132struct nfs_cache_array_entry {
 133	u64 cookie;
 134	u64 ino;
 135	const char *name;
 136	unsigned int name_len;
 137	unsigned char d_type;
 138};
 139
 140struct nfs_cache_array {
 
 141	u64 last_cookie;
 142	unsigned int size;
 143	unsigned char page_full : 1,
 144		      page_is_eof : 1,
 145		      cookies_are_ordered : 1;
 146	struct nfs_cache_array_entry array[];
 147};
 148
 149struct nfs_readdir_descriptor {
 150	struct file	*file;
 151	struct page	*page;
 152	struct dir_context *ctx;
 153	pgoff_t		page_index;
 
 154	u64		dir_cookie;
 155	u64		last_cookie;
 156	u64		dup_cookie;
 157	loff_t		current_index;
 158	loff_t		prev_index;
 159
 160	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 161	unsigned long	dir_verifier;
 162	unsigned long	timestamp;
 163	unsigned long	gencount;
 164	unsigned long	attr_gencount;
 165	unsigned int	cache_entry_index;
 166	signed char duped;
 
 
 167	bool plus;
 
 168	bool eof;
 169};
 170
 171static void nfs_readdir_array_init(struct nfs_cache_array *array)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172{
 173	memset(array, 0, sizeof(struct nfs_cache_array));
 174}
 175
 176static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
 
 177{
 178	struct nfs_cache_array *array;
 179
 180	array = kmap_atomic(page);
 181	nfs_readdir_array_init(array);
 182	array->last_cookie = last_cookie;
 
 
 
 183	array->cookies_are_ordered = 1;
 184	kunmap_atomic(array);
 185}
 186
 187/*
 188 * we are freeing strings created by nfs_add_to_readdir_array()
 189 */
 190static
 191void nfs_readdir_clear_array(struct page *page)
 192{
 193	struct nfs_cache_array *array;
 194	int i;
 195
 196	array = kmap_atomic(page);
 197	for (i = 0; i < array->size; i++)
 198		kfree(array->array[i].name);
 199	nfs_readdir_array_init(array);
 200	kunmap_atomic(array);
 
 
 
 
 
 
 
 201}
 202
 203static struct page *
 204nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 205{
 206	struct page *page = alloc_page(gfp_flags);
 207	if (page)
 208		nfs_readdir_page_init_array(page, last_cookie);
 209	return page;
 210}
 211
 212static void nfs_readdir_page_array_free(struct page *page)
 213{
 214	if (page) {
 215		nfs_readdir_clear_array(page);
 216		put_page(page);
 217	}
 218}
 219
 
 
 
 
 
 220static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 221{
 222	array->page_is_eof = 1;
 223	array->page_full = 1;
 224}
 225
 226static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 227{
 228	return array->page_full;
 229}
 230
 231/*
 232 * the caller is responsible for freeing qstr.name
 233 * when called by nfs_readdir_add_to_array, the strings will be freed in
 234 * nfs_clear_readdir_array()
 235 */
 236static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 237{
 238	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 239
 240	/*
 241	 * Avoid a kmemleak false positive. The pointer to the name is stored
 242	 * in a page cache page which kmemleak does not scan.
 243	 */
 244	if (ret != NULL)
 245		kmemleak_not_leak(ret);
 246	return ret;
 247}
 248
 
 
 
 
 
 
 249/*
 250 * Check that the next array entry lies entirely within the page bounds
 251 */
 252static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 253{
 254	struct nfs_cache_array_entry *cache_entry;
 255
 256	if (array->page_full)
 257		return -ENOSPC;
 258	cache_entry = &array->array[array->size + 1];
 259	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
 260		array->page_full = 1;
 261		return -ENOSPC;
 262	}
 263	return 0;
 264}
 265
 266static
 267int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 
 268{
 269	struct nfs_cache_array *array;
 270	struct nfs_cache_array_entry *cache_entry;
 271	const char *name;
 272	int ret;
 273
 274	name = nfs_readdir_copy_name(entry->name, entry->len);
 275	if (!name)
 276		return -ENOMEM;
 277
 278	array = kmap_atomic(page);
 
 
 279	ret = nfs_readdir_array_can_expand(array);
 280	if (ret) {
 281		kfree(name);
 282		goto out;
 283	}
 284
 285	cache_entry = &array->array[array->size];
 286	cache_entry->cookie = entry->prev_cookie;
 287	cache_entry->ino = entry->ino;
 288	cache_entry->d_type = entry->d_type;
 289	cache_entry->name_len = entry->len;
 290	cache_entry->name = name;
 291	array->last_cookie = entry->cookie;
 292	if (array->last_cookie <= cache_entry->cookie)
 293		array->cookies_are_ordered = 0;
 294	array->size++;
 295	if (entry->eof != 0)
 296		nfs_readdir_array_set_eof(array);
 297out:
 298	kunmap_atomic(array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299	return ret;
 300}
 301
 302static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
 303						pgoff_t index, u64 last_cookie)
 304{
 305	struct page *page;
 
 
 306
 307	page = grab_cache_page(mapping, index);
 308	if (page && !PageUptodate(page)) {
 309		nfs_readdir_page_init_array(page, last_cookie);
 310		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
 311			nfs_zap_mapping(mapping->host, mapping);
 312		SetPageUptodate(page);
 
 313	}
 
 
 
 314
 315	return page;
 
 
 
 
 
 
 
 
 
 
 316}
 317
 318static u64 nfs_readdir_page_last_cookie(struct page *page)
 319{
 320	struct nfs_cache_array *array;
 321	u64 ret;
 322
 323	array = kmap_atomic(page);
 324	ret = array->last_cookie;
 325	kunmap_atomic(array);
 326	return ret;
 327}
 328
 329static bool nfs_readdir_page_needs_filling(struct page *page)
 330{
 331	struct nfs_cache_array *array;
 332	bool ret;
 333
 334	array = kmap_atomic(page);
 335	ret = !nfs_readdir_array_is_full(array);
 336	kunmap_atomic(array);
 337	return ret;
 338}
 339
 340static void nfs_readdir_page_set_eof(struct page *page)
 341{
 342	struct nfs_cache_array *array;
 343
 344	array = kmap_atomic(page);
 345	nfs_readdir_array_set_eof(array);
 346	kunmap_atomic(array);
 347}
 348
 349static void nfs_readdir_page_unlock_and_put(struct page *page)
 350{
 351	unlock_page(page);
 352	put_page(page);
 353}
 354
 355static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
 356					      pgoff_t index, u64 cookie)
 357{
 358	struct page *page;
 
 359
 360	page = nfs_readdir_page_get_locked(mapping, index, cookie);
 361	if (page) {
 362		if (nfs_readdir_page_last_cookie(page) == cookie)
 363			return page;
 364		nfs_readdir_page_unlock_and_put(page);
 365	}
 366	return NULL;
 
 
 367}
 368
 369static inline
 370int is_32bit_api(void)
 371{
 372#ifdef CONFIG_COMPAT
 373	return in_compat_syscall();
 374#else
 375	return (BITS_PER_LONG == 32);
 376#endif
 377}
 378
 379static
 380bool nfs_readdir_use_cookie(const struct file *filp)
 381{
 382	if ((filp->f_mode & FMODE_32BITHASH) ||
 383	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 384		return false;
 385	return true;
 386}
 387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 389				      struct nfs_readdir_descriptor *desc)
 390{
 391	loff_t diff = desc->ctx->pos - desc->current_index;
 392	unsigned int index;
 393
 394	if (diff < 0)
 395		goto out_eof;
 396	if (diff >= array->size) {
 397		if (array->page_is_eof)
 398			goto out_eof;
 
 399		return -EAGAIN;
 400	}
 401
 402	index = (unsigned int)diff;
 403	desc->dir_cookie = array->array[index].cookie;
 404	desc->cache_entry_index = index;
 405	return 0;
 406out_eof:
 407	desc->eof = true;
 408	return -EBADCOOKIE;
 409}
 410
 411static bool
 412nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 413{
 414	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 415		return false;
 416	smp_rmb();
 417	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 418}
 419
 420static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 421					      u64 cookie)
 422{
 423	if (!array->cookies_are_ordered)
 424		return true;
 425	/* Optimisation for monotonically increasing cookies */
 426	if (cookie >= array->last_cookie)
 427		return false;
 428	if (array->size && cookie < array->array[0].cookie)
 429		return false;
 430	return true;
 431}
 432
 433static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 434					 struct nfs_readdir_descriptor *desc)
 435{
 436	int i;
 437	loff_t new_pos;
 438	int status = -EAGAIN;
 439
 440	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 441		goto check_eof;
 442
 443	for (i = 0; i < array->size; i++) {
 444		if (array->array[i].cookie == desc->dir_cookie) {
 445			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 446
 447			new_pos = desc->current_index + i;
 448			if (desc->attr_gencount != nfsi->attr_gencount ||
 449			    !nfs_readdir_inode_mapping_valid(nfsi)) {
 450				desc->duped = 0;
 451				desc->attr_gencount = nfsi->attr_gencount;
 452			} else if (new_pos < desc->prev_index) {
 453				if (desc->duped > 0
 454				    && desc->dup_cookie == desc->dir_cookie) {
 455					if (printk_ratelimit()) {
 456						pr_notice("NFS: directory %pD2 contains a readdir loop."
 457								"Please contact your server vendor.  "
 458								"The file: %s has duplicate cookie %llu\n",
 459								desc->file, array->array[i].name, desc->dir_cookie);
 460					}
 461					status = -ELOOP;
 462					goto out;
 463				}
 464				desc->dup_cookie = desc->dir_cookie;
 465				desc->duped = -1;
 466			}
 467			if (nfs_readdir_use_cookie(desc->file))
 468				desc->ctx->pos = desc->dir_cookie;
 469			else
 470				desc->ctx->pos = new_pos;
 471			desc->prev_index = new_pos;
 472			desc->cache_entry_index = i;
 473			return 0;
 474		}
 475	}
 476check_eof:
 477	if (array->page_is_eof) {
 478		status = -EBADCOOKIE;
 479		if (desc->dir_cookie == array->last_cookie)
 480			desc->eof = true;
 481	}
 482out:
 483	return status;
 484}
 485
 486static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 487{
 488	struct nfs_cache_array *array;
 489	int status;
 490
 491	array = kmap_atomic(desc->page);
 492
 493	if (desc->dir_cookie == 0)
 494		status = nfs_readdir_search_for_pos(array, desc);
 495	else
 496		status = nfs_readdir_search_for_cookie(array, desc);
 497
 498	if (status == -EAGAIN) {
 499		desc->last_cookie = array->last_cookie;
 500		desc->current_index += array->size;
 501		desc->page_index++;
 502	}
 503	kunmap_atomic(array);
 504	return status;
 505}
 506
 507/* Fill a page with xdr information before transferring to the cache page */
 508static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 509				  __be32 *verf, u64 cookie,
 510				  struct page **pages, size_t bufsize,
 511				  __be32 *verf_res)
 512{
 513	struct inode *inode = file_inode(desc->file);
 514	struct nfs_readdir_arg arg = {
 515		.dentry = file_dentry(desc->file),
 516		.cred = desc->file->f_cred,
 517		.verf = verf,
 518		.cookie = cookie,
 519		.pages = pages,
 520		.page_len = bufsize,
 521		.plus = desc->plus,
 522	};
 523	struct nfs_readdir_res res = {
 524		.verf = verf_res,
 525	};
 526	unsigned long	timestamp, gencount;
 527	int		error;
 528
 529 again:
 530	timestamp = jiffies;
 531	gencount = nfs_inc_attr_generation_counter();
 532	desc->dir_verifier = nfs_save_change_attribute(inode);
 533	error = NFS_PROTO(inode)->readdir(&arg, &res);
 534	if (error < 0) {
 535		/* We requested READDIRPLUS, but the server doesn't grok it */
 536		if (error == -ENOTSUPP && desc->plus) {
 537			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 538			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 539			desc->plus = arg.plus = false;
 540			goto again;
 541		}
 542		goto error;
 543	}
 544	desc->timestamp = timestamp;
 545	desc->gencount = gencount;
 546error:
 547	return error;
 548}
 549
 550static int xdr_decode(struct nfs_readdir_descriptor *desc,
 551		      struct nfs_entry *entry, struct xdr_stream *xdr)
 552{
 553	struct inode *inode = file_inode(desc->file);
 554	int error;
 555
 556	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 557	if (error)
 558		return error;
 559	entry->fattr->time_start = desc->timestamp;
 560	entry->fattr->gencount = desc->gencount;
 561	return 0;
 562}
 563
 564/* Match file and dirent using either filehandle or fileid
 565 * Note: caller is responsible for checking the fsid
 566 */
 567static
 568int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 569{
 570	struct inode *inode;
 571	struct nfs_inode *nfsi;
 572
 573	if (d_really_is_negative(dentry))
 574		return 0;
 575
 576	inode = d_inode(dentry);
 577	if (is_bad_inode(inode) || NFS_STALE(inode))
 578		return 0;
 579
 580	nfsi = NFS_I(inode);
 581	if (entry->fattr->fileid != nfsi->fileid)
 582		return 0;
 583	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 584		return 0;
 585	return 1;
 586}
 587
 588static
 589bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 
 
 
 590{
 591	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 592		return false;
 593	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 594		return true;
 595	if (ctx->pos == 0)
 596		return true;
 597	return false;
 598}
 599
 600/*
 601 * This function is called by the lookup and getattr code to request the
 602 * use of readdirplus to accelerate any future lookups in the same
 603 * directory.
 604 */
 605void nfs_advise_use_readdirplus(struct inode *dir)
 606{
 607	struct nfs_inode *nfsi = NFS_I(dir);
 
 608
 609	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 610	    !list_empty(&nfsi->open_files))
 611		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 
 
 
 
 612}
 613
 614/*
 615 * This function is mainly for use by nfs_getattr().
 616 *
 617 * If this is an 'ls -l', we want to force use of readdirplus.
 618 * Do this by checking if there is an active file descriptor
 619 * and calling nfs_advise_use_readdirplus, then forcing a
 620 * cache flush.
 621 */
 622void nfs_force_use_readdirplus(struct inode *dir)
 623{
 624	struct nfs_inode *nfsi = NFS_I(dir);
 
 625
 626	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 627	    !list_empty(&nfsi->open_files)) {
 628		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
 629		invalidate_mapping_pages(dir->i_mapping,
 630			nfsi->page_index + 1, -1);
 
 631	}
 632}
 633
 
 
 
 
 
 
 
 
 
 
 634static
 635void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 636		unsigned long dir_verifier)
 637{
 638	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 639	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 640	struct dentry *dentry;
 641	struct dentry *alias;
 642	struct inode *inode;
 643	int status;
 644
 645	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 646		return;
 647	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 648		return;
 649	if (filename.len == 0)
 650		return;
 651	/* Validate that the name doesn't contain any illegal '\0' */
 652	if (strnlen(filename.name, filename.len) != filename.len)
 653		return;
 654	/* ...or '/' */
 655	if (strnchr(filename.name, filename.len, '/'))
 656		return;
 657	if (filename.name[0] == '.') {
 658		if (filename.len == 1)
 659			return;
 660		if (filename.len == 2 && filename.name[1] == '.')
 661			return;
 662	}
 663	filename.hash = full_name_hash(parent, filename.name, filename.len);
 664
 665	dentry = d_lookup(parent, &filename);
 666again:
 667	if (!dentry) {
 668		dentry = d_alloc_parallel(parent, &filename, &wq);
 669		if (IS_ERR(dentry))
 670			return;
 671	}
 672	if (!d_in_lookup(dentry)) {
 673		/* Is there a mountpoint here? If so, just exit */
 674		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 675					&entry->fattr->fsid))
 676			goto out;
 677		if (nfs_same_file(dentry, entry)) {
 678			if (!entry->fh->size)
 679				goto out;
 680			nfs_set_verifier(dentry, dir_verifier);
 681			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 682			if (!status)
 683				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 
 
 684			goto out;
 685		} else {
 
 
 686			d_invalidate(dentry);
 687			dput(dentry);
 688			dentry = NULL;
 689			goto again;
 690		}
 691	}
 692	if (!entry->fh->size) {
 693		d_lookup_done(dentry);
 694		goto out;
 695	}
 696
 697	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 698	alias = d_splice_alias(inode, dentry);
 699	d_lookup_done(dentry);
 700	if (alias) {
 701		if (IS_ERR(alias))
 702			goto out;
 703		dput(dentry);
 704		dentry = alias;
 705	}
 706	nfs_set_verifier(dentry, dir_verifier);
 
 707out:
 708	dput(dentry);
 709}
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711/* Perform conversion from xdr to cache array */
 712static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
 713				   struct nfs_entry *entry,
 714				   struct page **xdr_pages,
 715				   unsigned int buflen,
 716				   struct page **arrays,
 717				   size_t narrays)
 718{
 719	struct address_space *mapping = desc->file->f_mapping;
 
 720	struct xdr_stream stream;
 
 721	struct xdr_buf buf;
 722	struct page *scratch, *new, *page = *arrays;
 723	int status;
 724
 725	scratch = alloc_page(GFP_KERNEL);
 726	if (scratch == NULL)
 727		return -ENOMEM;
 728
 729	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 730	xdr_set_scratch_page(&stream, scratch);
 731
 732	do {
 733		if (entry->label)
 734			entry->label->len = NFS4_MAXLABELLEN;
 735
 736		status = xdr_decode(desc, entry, &stream);
 737		if (status != 0)
 738			break;
 739
 740		if (desc->plus)
 741			nfs_prime_dcache(file_dentry(desc->file), entry,
 742					desc->dir_verifier);
 743
 744		status = nfs_readdir_add_to_array(entry, page);
 745		if (status != -ENOSPC)
 746			continue;
 747
 748		if (page->mapping != mapping) {
 749			if (!--narrays)
 750				break;
 751			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
 752							   GFP_KERNEL);
 753			if (!new)
 754				break;
 755			arrays++;
 756			*arrays = page = new;
 757		} else {
 758			new = nfs_readdir_page_get_next(mapping,
 759							page->index + 1,
 760							entry->prev_cookie);
 761			if (!new)
 762				break;
 763			if (page != *arrays)
 764				nfs_readdir_page_unlock_and_put(page);
 765			page = new;
 766		}
 767		status = nfs_readdir_add_to_array(entry, page);
 
 768	} while (!status && !entry->eof);
 769
 770	switch (status) {
 771	case -EBADCOOKIE:
 772		if (entry->eof) {
 773			nfs_readdir_page_set_eof(page);
 774			status = 0;
 775		}
 776		break;
 777	case -ENOSPC:
 778	case -EAGAIN:
 779		status = 0;
 780		break;
 
 
 
 
 
 
 781	}
 782
 783	if (page != *arrays)
 784		nfs_readdir_page_unlock_and_put(page);
 785
 786	put_page(scratch);
 787	return status;
 788}
 789
 790static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 791{
 792	while (npages--)
 793		put_page(pages[npages]);
 794	kfree(pages);
 795}
 796
 797/*
 798 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 799 * to nfs_readdir_free_pages()
 800 */
 801static struct page **nfs_readdir_alloc_pages(size_t npages)
 802{
 803	struct page **pages;
 804	size_t i;
 805
 806	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 807	if (!pages)
 808		return NULL;
 809	for (i = 0; i < npages; i++) {
 810		struct page *page = alloc_page(GFP_KERNEL);
 811		if (page == NULL)
 812			goto out_freepages;
 813		pages[i] = page;
 814	}
 815	return pages;
 816
 817out_freepages:
 818	nfs_readdir_free_pages(pages, i);
 819	return NULL;
 820}
 821
 822static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 823				    __be32 *verf_arg, __be32 *verf_res,
 824				    struct page **arrays, size_t narrays)
 825{
 
 826	struct page **pages;
 827	struct page *page = *arrays;
 828	struct nfs_entry *entry;
 829	size_t array_size;
 830	struct inode *inode = file_inode(desc->file);
 831	size_t dtsize = NFS_SERVER(inode)->dtsize;
 
 832	int status = -ENOMEM;
 833
 834	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 835	if (!entry)
 836		return -ENOMEM;
 837	entry->cookie = nfs_readdir_page_last_cookie(page);
 838	entry->fh = nfs_alloc_fhandle();
 839	entry->fattr = nfs_alloc_fattr();
 840	entry->server = NFS_SERVER(inode);
 841	if (entry->fh == NULL || entry->fattr == NULL)
 842		goto out;
 843
 844	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 845	if (IS_ERR(entry->label)) {
 846		status = PTR_ERR(entry->label);
 847		goto out;
 848	}
 849
 850	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 851	pages = nfs_readdir_alloc_pages(array_size);
 852	if (!pages)
 853		goto out_release_label;
 854
 855	do {
 856		unsigned int pglen;
 857		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
 858						pages, dtsize,
 859						verf_res);
 860		if (status < 0)
 861			break;
 862
 863		pglen = status;
 864		if (pglen == 0) {
 865			nfs_readdir_page_set_eof(page);
 866			break;
 867		}
 868
 869		verf_arg = verf_res;
 870
 871		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
 872						 arrays, narrays);
 873	} while (!status && nfs_readdir_page_needs_filling(page));
 
 
 
 
 
 
 
 
 
 
 874
 
 875	nfs_readdir_free_pages(pages, array_size);
 876out_release_label:
 877	nfs4_label_free(entry->label);
 878out:
 879	nfs_free_fattr(entry->fattr);
 880	nfs_free_fhandle(entry->fh);
 881	kfree(entry);
 882	return status;
 883}
 884
 885static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
 886{
 887	put_page(desc->page);
 888	desc->page = NULL;
 889}
 890
 891static void
 892nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 893{
 894	unlock_page(desc->page);
 895	nfs_readdir_page_put(desc);
 896}
 897
 898static struct page *
 899nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
 900{
 901	return nfs_readdir_page_get_locked(desc->file->f_mapping,
 902					   desc->page_index,
 903					   desc->last_cookie);
 
 
 
 
 
 
 
 
 904}
 905
 906/*
 907 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 908 * and locks the page to prevent removal from the page cache.
 909 */
 910static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
 911{
 912	struct inode *inode = file_inode(desc->file);
 913	struct nfs_inode *nfsi = NFS_I(inode);
 914	__be32 verf[NFS_DIR_VERIFIER_SIZE];
 915	int res;
 916
 917	desc->page = nfs_readdir_page_get_cached(desc);
 918	if (!desc->page)
 919		return -ENOMEM;
 920	if (nfs_readdir_page_needs_filling(desc->page)) {
 
 
 
 
 
 
 
 921		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
 922					       &desc->page, 1);
 923		if (res < 0) {
 924			nfs_readdir_page_unlock_and_put_cached(desc);
 
 925			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
 926				invalidate_inode_pages2(desc->file->f_mapping);
 927				desc->page_index = 0;
 
 
 928				return -EAGAIN;
 929			}
 930			return res;
 931		}
 932		/*
 933		 * Set the cookie verifier if the page cache was empty
 934		 */
 935		if (desc->page_index == 0)
 
 936			memcpy(nfsi->cookieverf, verf,
 937			       sizeof(nfsi->cookieverf));
 
 
 
 
 
 
 938	}
 939	res = nfs_readdir_search_array(desc);
 940	if (res == 0) {
 941		nfsi->page_index = desc->page_index;
 942		return 0;
 943	}
 944	nfs_readdir_page_unlock_and_put_cached(desc);
 945	return res;
 946}
 947
 948static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
 949{
 950	struct address_space *mapping = desc->file->f_mapping;
 951	struct inode *dir = file_inode(desc->file);
 952	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
 953	loff_t size = i_size_read(dir);
 954
 955	/*
 956	 * Default to uncached readdir if the page cache is empty, and
 957	 * we're looking for a non-zero cookie in a large directory.
 958	 */
 959	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
 960}
 961
 962/* Search for desc->dir_cookie from the beginning of the page cache */
 963static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
 964{
 965	int res;
 966
 967	if (nfs_readdir_dont_search_cache(desc))
 968		return -EBADCOOKIE;
 969
 970	do {
 971		if (desc->page_index == 0) {
 972			desc->current_index = 0;
 973			desc->prev_index = 0;
 974			desc->last_cookie = 0;
 975		}
 976		res = find_and_lock_cache_page(desc);
 977	} while (res == -EAGAIN);
 978	return res;
 979}
 980
 
 
 981/*
 982 * Once we've found the start of the dirent within a page: fill 'er up...
 983 */
 984static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
 985			   const __be32 *verf)
 986{
 987	struct file	*file = desc->file;
 988	struct nfs_cache_array *array;
 989	unsigned int i = 0;
 
 990
 991	array = kmap(desc->page);
 992	for (i = desc->cache_entry_index; i < array->size; i++) {
 993		struct nfs_cache_array_entry *ent;
 994
 
 
 
 
 
 
 
 
 
 
 
 995		ent = &array->array[i];
 996		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
 997		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 998			desc->eof = true;
 999			break;
1000		}
1001		memcpy(desc->verf, verf, sizeof(desc->verf));
1002		if (i < (array->size-1))
1003			desc->dir_cookie = array->array[i+1].cookie;
1004		else
1005			desc->dir_cookie = array->last_cookie;
 
 
 
 
 
1006		if (nfs_readdir_use_cookie(file))
1007			desc->ctx->pos = desc->dir_cookie;
1008		else
1009			desc->ctx->pos++;
1010		if (desc->duped != 0)
1011			desc->duped = 1;
1012	}
1013	if (array->page_is_eof)
1014		desc->eof = true;
1015
1016	kunmap(desc->page);
1017	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1018			(unsigned long long)desc->dir_cookie);
1019}
1020
1021/*
1022 * If we cannot find a cookie in our cache, we suspect that this is
1023 * because it points to a deleted file, so we ask the server to return
1024 * whatever it thinks is the next entry. We then feed this to filldir.
1025 * If all goes well, we should then be able to find our way round the
1026 * cache on the next call to readdir_search_pagecache();
1027 *
1028 * NOTE: we cannot add the anonymous page to the pagecache because
1029 *	 the data it contains might not be page aligned. Besides,
1030 *	 we should already have a complete representation of the
1031 *	 directory in the page cache by the time we get here.
1032 */
1033static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1034{
1035	struct page	**arrays;
1036	size_t		i, sz = 512;
1037	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1038	int		status = -ENOMEM;
1039
1040	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1041			(unsigned long long)desc->dir_cookie);
1042
1043	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1044	if (!arrays)
1045		goto out;
1046	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1047	if (!arrays[0])
1048		goto out;
1049
1050	desc->page_index = 0;
 
1051	desc->last_cookie = desc->dir_cookie;
1052	desc->duped = 0;
 
 
 
1053
1054	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
 
 
 
 
1055
1056	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1057		desc->page = arrays[i];
1058		nfs_do_filldir(desc, verf);
1059	}
1060	desc->page = NULL;
1061
1062
 
 
 
 
 
 
 
 
 
 
 
 
1063	for (i = 0; i < sz && arrays[i]; i++)
1064		nfs_readdir_page_array_free(arrays[i]);
1065out:
 
 
 
1066	kfree(arrays);
1067	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1068	return status;
1069}
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
1071/* The file offset position represents the dirent entry number.  A
1072   last cookie cache takes care of the common case of reading the
1073   whole directory.
1074 */
1075static int nfs_readdir(struct file *file, struct dir_context *ctx)
1076{
1077	struct dentry	*dentry = file_dentry(file);
1078	struct inode	*inode = d_inode(dentry);
1079	struct nfs_inode *nfsi = NFS_I(inode);
1080	struct nfs_open_dir_context *dir_ctx = file->private_data;
1081	struct nfs_readdir_descriptor *desc;
 
 
1082	int res;
1083
1084	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1085			file, (long long)ctx->pos);
1086	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1087
1088	/*
1089	 * ctx->pos points to the dirent entry number.
1090	 * *desc->dir_cookie has the cookie for the next entry. We have
1091	 * to either find the entry with the appropriate number or
1092	 * revalidate the cookie.
1093	 */
1094	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1095		res = nfs_revalidate_mapping(inode, file->f_mapping);
1096		if (res < 0)
1097			goto out;
1098	}
1099
1100	res = -ENOMEM;
1101	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1102	if (!desc)
1103		goto out;
1104	desc->file = file;
1105	desc->ctx = ctx;
1106	desc->plus = nfs_use_readdirplus(inode, ctx);
1107
1108	spin_lock(&file->f_lock);
1109	desc->dir_cookie = dir_ctx->dir_cookie;
1110	desc->dup_cookie = dir_ctx->dup_cookie;
1111	desc->duped = dir_ctx->duped;
1112	desc->attr_gencount = dir_ctx->attr_gencount;
 
 
1113	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
 
 
 
1114	spin_unlock(&file->f_lock);
1115
 
 
 
 
 
 
 
 
 
 
1116	do {
1117		res = readdir_search_pagecache(desc);
1118
1119		if (res == -EBADCOOKIE) {
1120			res = 0;
1121			/* This means either end of directory */
1122			if (desc->dir_cookie && !desc->eof) {
1123				/* Or that the server has 'lost' a cookie */
1124				res = uncached_readdir(desc);
1125				if (res == 0)
1126					continue;
1127				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1128					res = 0;
1129			}
1130			break;
1131		}
1132		if (res == -ETOOSMALL && desc->plus) {
1133			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1134			nfs_zap_caches(inode);
1135			desc->page_index = 0;
1136			desc->plus = false;
1137			desc->eof = false;
1138			continue;
1139		}
1140		if (res < 0)
1141			break;
1142
1143		nfs_do_filldir(desc, nfsi->cookieverf);
1144		nfs_readdir_page_unlock_and_put_cached(desc);
1145	} while (!desc->eof);
 
 
1146
1147	spin_lock(&file->f_lock);
1148	dir_ctx->dir_cookie = desc->dir_cookie;
1149	dir_ctx->dup_cookie = desc->dup_cookie;
1150	dir_ctx->duped = desc->duped;
1151	dir_ctx->attr_gencount = desc->attr_gencount;
 
 
 
 
1152	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153	spin_unlock(&file->f_lock);
1154
1155	kfree(desc);
1156
1157out:
1158	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159	return res;
1160}
1161
1162static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163{
1164	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165
1166	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167			filp, offset, whence);
1168
1169	switch (whence) {
1170	default:
1171		return -EINVAL;
1172	case SEEK_SET:
1173		if (offset < 0)
1174			return -EINVAL;
1175		spin_lock(&filp->f_lock);
1176		break;
1177	case SEEK_CUR:
1178		if (offset == 0)
1179			return filp->f_pos;
1180		spin_lock(&filp->f_lock);
1181		offset += filp->f_pos;
1182		if (offset < 0) {
1183			spin_unlock(&filp->f_lock);
1184			return -EINVAL;
1185		}
1186	}
1187	if (offset != filp->f_pos) {
1188		filp->f_pos = offset;
1189		if (nfs_readdir_use_cookie(filp))
1190			dir_ctx->dir_cookie = offset;
1191		else
1192			dir_ctx->dir_cookie = 0;
1193		if (offset == 0)
1194			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195		dir_ctx->duped = 0;
 
 
 
1196	}
1197	spin_unlock(&filp->f_lock);
1198	return offset;
1199}
1200
1201/*
1202 * All directory operations under NFS are synchronous, so fsync()
1203 * is a dummy operation.
1204 */
1205static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206			 int datasync)
1207{
1208	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209
1210	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211	return 0;
1212}
1213
1214/**
1215 * nfs_force_lookup_revalidate - Mark the directory as having changed
1216 * @dir: pointer to directory inode
1217 *
1218 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219 * full lookup on all child dentries of 'dir' whenever a change occurs
1220 * on the server that might have invalidated our dcache.
1221 *
1222 * Note that we reserve bit '0' as a tag to let us know when a dentry
1223 * was revalidated while holding a delegation on its inode.
1224 *
1225 * The caller should be holding dir->i_lock
1226 */
1227void nfs_force_lookup_revalidate(struct inode *dir)
1228{
1229	NFS_I(dir)->cache_change_attribute += 2;
1230}
1231EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232
1233/**
1234 * nfs_verify_change_attribute - Detects NFS remote directory changes
1235 * @dir: pointer to parent directory inode
1236 * @verf: previously saved change attribute
1237 *
1238 * Return "false" if the verifiers doesn't match the change attribute.
1239 * This would usually indicate that the directory contents have changed on
1240 * the server, and that any dentries need revalidating.
1241 */
1242static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243{
1244	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245}
1246
1247static void nfs_set_verifier_delegated(unsigned long *verf)
1248{
1249	*verf |= 1UL;
1250}
1251
1252#if IS_ENABLED(CONFIG_NFS_V4)
1253static void nfs_unset_verifier_delegated(unsigned long *verf)
1254{
1255	*verf &= ~1UL;
1256}
1257#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258
1259static bool nfs_test_verifier_delegated(unsigned long verf)
1260{
1261	return verf & 1;
1262}
1263
1264static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265{
1266	return nfs_test_verifier_delegated(dentry->d_time);
1267}
1268
1269static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270{
1271	struct inode *inode = d_inode(dentry);
 
1272
1273	if (!nfs_verifier_is_delegated(dentry) &&
1274	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1275		goto out;
1276	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277		nfs_set_verifier_delegated(&verf);
1278out:
1279	dentry->d_time = verf;
1280}
1281
1282/**
1283 * nfs_set_verifier - save a parent directory verifier in the dentry
1284 * @dentry: pointer to dentry
1285 * @verf: verifier to save
1286 *
1287 * Saves the parent directory verifier in @dentry. If the inode has
1288 * a delegation, we also tag the dentry as having been revalidated
1289 * while holding a delegation so that we know we don't have to
1290 * look it up again after a directory change.
1291 */
1292void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1293{
1294
1295	spin_lock(&dentry->d_lock);
1296	nfs_set_verifier_locked(dentry, verf);
1297	spin_unlock(&dentry->d_lock);
1298}
1299EXPORT_SYMBOL_GPL(nfs_set_verifier);
1300
1301#if IS_ENABLED(CONFIG_NFS_V4)
1302/**
1303 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1304 * @inode: pointer to inode
1305 *
1306 * Iterates through the dentries in the inode alias list and clears
1307 * the tag used to indicate that the dentry has been revalidated
1308 * while holding a delegation.
1309 * This function is intended for use when the delegation is being
1310 * returned or revoked.
1311 */
1312void nfs_clear_verifier_delegated(struct inode *inode)
1313{
1314	struct dentry *alias;
1315
1316	if (!inode)
1317		return;
1318	spin_lock(&inode->i_lock);
1319	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1320		spin_lock(&alias->d_lock);
1321		nfs_unset_verifier_delegated(&alias->d_time);
1322		spin_unlock(&alias->d_lock);
1323	}
1324	spin_unlock(&inode->i_lock);
1325}
1326EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1327#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1328
 
 
 
 
 
 
 
 
1329/*
1330 * A check for whether or not the parent directory has changed.
1331 * In the case it has, we assume that the dentries are untrustworthy
1332 * and may need to be looked up again.
1333 * If rcu_walk prevents us from performing a full check, return 0.
1334 */
1335static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1336			      int rcu_walk)
1337{
1338	if (IS_ROOT(dentry))
1339		return 1;
1340	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1341		return 0;
1342	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343		return 0;
1344	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1345	if (nfs_mapping_need_revalidate_inode(dir)) {
1346		if (rcu_walk)
1347			return 0;
1348		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1349			return 0;
1350	}
1351	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1352		return 0;
1353	return 1;
1354}
1355
1356/*
1357 * Use intent information to check whether or not we're going to do
1358 * an O_EXCL create using this path component.
1359 */
1360static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1361{
1362	if (NFS_PROTO(dir)->version == 2)
1363		return 0;
1364	return flags & LOOKUP_EXCL;
1365}
1366
1367/*
1368 * Inode and filehandle revalidation for lookups.
1369 *
1370 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1371 * or if the intent information indicates that we're about to open this
1372 * particular file and the "nocto" mount flag is not set.
1373 *
1374 */
1375static
1376int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1377{
1378	struct nfs_server *server = NFS_SERVER(inode);
1379	int ret;
1380
1381	if (IS_AUTOMOUNT(inode))
1382		return 0;
1383
1384	if (flags & LOOKUP_OPEN) {
1385		switch (inode->i_mode & S_IFMT) {
1386		case S_IFREG:
1387			/* A NFSv4 OPEN will revalidate later */
1388			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1389				goto out;
1390			fallthrough;
1391		case S_IFDIR:
1392			if (server->flags & NFS_MOUNT_NOCTO)
1393				break;
1394			/* NFS close-to-open cache consistency validation */
1395			goto out_force;
1396		}
1397	}
1398
1399	/* VFS wants an on-the-wire revalidation */
1400	if (flags & LOOKUP_REVAL)
1401		goto out_force;
1402out:
1403	return (inode->i_nlink == 0) ? -ESTALE : 0;
 
 
 
 
 
1404out_force:
1405	if (flags & LOOKUP_RCU)
1406		return -ECHILD;
1407	ret = __nfs_revalidate_inode(server, inode);
1408	if (ret != 0)
1409		return ret;
1410	goto out;
1411}
1412
1413static void nfs_mark_dir_for_revalidate(struct inode *inode)
1414{
1415	spin_lock(&inode->i_lock);
1416	nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1417	spin_unlock(&inode->i_lock);
1418}
1419
1420/*
1421 * We judge how long we want to trust negative
1422 * dentries by looking at the parent inode mtime.
1423 *
1424 * If parent mtime has changed, we revalidate, else we wait for a
1425 * period corresponding to the parent's attribute cache timeout value.
1426 *
1427 * If LOOKUP_RCU prevents us from performing a full check, return 1
1428 * suggesting a reval is needed.
1429 *
1430 * Note that when creating a new file, or looking up a rename target,
1431 * then it shouldn't be necessary to revalidate a negative dentry.
1432 */
1433static inline
1434int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1435		       unsigned int flags)
1436{
1437	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1438		return 0;
1439	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1440		return 1;
 
 
 
1441	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1442}
1443
1444static int
1445nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1446			   struct inode *inode, int error)
1447{
1448	switch (error) {
1449	case 1:
1450		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1451			__func__, dentry);
1452		return 1;
1453	case 0:
1454		/*
1455		 * We can't d_drop the root of a disconnected tree:
1456		 * its d_hash is on the s_anon list and d_drop() would hide
1457		 * it from shrink_dcache_for_unmount(), leading to busy
1458		 * inodes on unmount and further oopses.
1459		 */
1460		if (inode && IS_ROOT(dentry))
1461			return 1;
1462		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1463				__func__, dentry);
1464		return 0;
1465	}
1466	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1467				__func__, dentry, error);
1468	return error;
1469}
1470
1471static int
1472nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1473			       unsigned int flags)
1474{
1475	int ret = 1;
1476	if (nfs_neg_need_reval(dir, dentry, flags)) {
1477		if (flags & LOOKUP_RCU)
1478			return -ECHILD;
1479		ret = 0;
1480	}
1481	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1482}
1483
1484static int
1485nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1486				struct inode *inode)
1487{
1488	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1489	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1490}
1491
1492static int
1493nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1494			     struct inode *inode)
1495{
1496	struct nfs_fh *fhandle;
1497	struct nfs_fattr *fattr;
1498	struct nfs4_label *label;
1499	unsigned long dir_verifier;
1500	int ret;
1501
 
 
1502	ret = -ENOMEM;
1503	fhandle = nfs_alloc_fhandle();
1504	fattr = nfs_alloc_fattr();
1505	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1506	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1507		goto out;
1508
1509	dir_verifier = nfs_save_change_attribute(dir);
1510	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1511	if (ret < 0) {
1512		switch (ret) {
1513		case -ESTALE:
1514		case -ENOENT:
1515			ret = 0;
1516			break;
1517		case -ETIMEDOUT:
1518			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1519				ret = 1;
1520		}
1521		goto out;
1522	}
 
 
 
 
1523	ret = 0;
1524	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1525		goto out;
1526	if (nfs_refresh_inode(inode, fattr) < 0)
1527		goto out;
1528
1529	nfs_setsecurity(inode, fattr, label);
1530	nfs_set_verifier(dentry, dir_verifier);
1531
1532	/* set a readdirplus hint that we had a cache miss */
1533	nfs_force_use_readdirplus(dir);
1534	ret = 1;
1535out:
1536	nfs_free_fattr(fattr);
1537	nfs_free_fhandle(fhandle);
1538	nfs4_label_free(label);
1539
1540	/*
1541	 * If the lookup failed despite the dentry change attribute being
1542	 * a match, then we should revalidate the directory cache.
1543	 */
1544	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1545		nfs_mark_dir_for_revalidate(dir);
1546	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1547}
1548
1549/*
1550 * This is called every time the dcache has a lookup hit,
1551 * and we should check whether we can really trust that
1552 * lookup.
1553 *
1554 * NOTE! The hit can be a negative hit too, don't assume
1555 * we have an inode!
1556 *
1557 * If the parent directory is seen to have changed, we throw out the
1558 * cached dentry and do a new lookup.
1559 */
1560static int
1561nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1562			 unsigned int flags)
1563{
1564	struct inode *inode;
1565	int error;
1566
1567	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1568	inode = d_inode(dentry);
1569
1570	if (!inode)
1571		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1572
1573	if (is_bad_inode(inode)) {
1574		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1575				__func__, dentry);
1576		goto out_bad;
1577	}
1578
 
 
 
 
1579	if (nfs_verifier_is_delegated(dentry))
1580		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1581
1582	/* Force a full look up iff the parent directory has changed */
1583	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1584	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1585		error = nfs_lookup_verify_inode(inode, flags);
1586		if (error) {
1587			if (error == -ESTALE)
1588				nfs_mark_dir_for_revalidate(dir);
1589			goto out_bad;
1590		}
1591		nfs_advise_use_readdirplus(dir);
1592		goto out_valid;
1593	}
1594
1595	if (flags & LOOKUP_RCU)
1596		return -ECHILD;
1597
1598	if (NFS_STALE(inode))
1599		goto out_bad;
1600
1601	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1602	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1603	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1604	return error;
1605out_valid:
1606	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1607out_bad:
1608	if (flags & LOOKUP_RCU)
1609		return -ECHILD;
1610	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1611}
1612
1613static int
1614__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1615			int (*reval)(struct inode *, struct dentry *, unsigned int))
1616{
1617	struct dentry *parent;
1618	struct inode *dir;
1619	int ret;
1620
1621	if (flags & LOOKUP_RCU) {
 
 
1622		parent = READ_ONCE(dentry->d_parent);
1623		dir = d_inode_rcu(parent);
1624		if (!dir)
1625			return -ECHILD;
1626		ret = reval(dir, dentry, flags);
1627		if (parent != READ_ONCE(dentry->d_parent))
1628			return -ECHILD;
1629	} else {
 
 
 
1630		parent = dget_parent(dentry);
1631		ret = reval(d_inode(parent), dentry, flags);
1632		dput(parent);
1633	}
1634	return ret;
1635}
1636
1637static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1638{
1639	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1640}
1641
1642/*
1643 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1644 * when we don't really care about the dentry name. This is called when a
1645 * pathwalk ends on a dentry that was not found via a normal lookup in the
1646 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1647 *
1648 * In this situation, we just want to verify that the inode itself is OK
1649 * since the dentry might have changed on the server.
1650 */
1651static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1652{
1653	struct inode *inode = d_inode(dentry);
1654	int error = 0;
1655
1656	/*
1657	 * I believe we can only get a negative dentry here in the case of a
1658	 * procfs-style symlink. Just assume it's correct for now, but we may
1659	 * eventually need to do something more here.
1660	 */
1661	if (!inode) {
1662		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1663				__func__, dentry);
1664		return 1;
1665	}
1666
1667	if (is_bad_inode(inode)) {
1668		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1669				__func__, dentry);
1670		return 0;
1671	}
1672
1673	error = nfs_lookup_verify_inode(inode, flags);
1674	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1675			__func__, inode->i_ino, error ? "invalid" : "valid");
1676	return !error;
1677}
1678
1679/*
1680 * This is called from dput() when d_count is going to 0.
1681 */
1682static int nfs_dentry_delete(const struct dentry *dentry)
1683{
1684	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1685		dentry, dentry->d_flags);
1686
1687	/* Unhash any dentry with a stale inode */
1688	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1689		return 1;
1690
1691	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1692		/* Unhash it, so that ->d_iput() would be called */
1693		return 1;
1694	}
1695	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1696		/* Unhash it, so that ancestors of killed async unlink
1697		 * files will be cleaned up during umount */
1698		return 1;
1699	}
1700	return 0;
1701
1702}
1703
1704/* Ensure that we revalidate inode->i_nlink */
1705static void nfs_drop_nlink(struct inode *inode)
1706{
1707	spin_lock(&inode->i_lock);
1708	/* drop the inode if we're reasonably sure this is the last link */
1709	if (inode->i_nlink > 0)
1710		drop_nlink(inode);
1711	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1712	nfs_set_cache_invalid(
1713		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1714			       NFS_INO_INVALID_NLINK);
1715	spin_unlock(&inode->i_lock);
1716}
1717
1718/*
1719 * Called when the dentry loses inode.
1720 * We use it to clean up silly-renamed files.
1721 */
1722static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1723{
1724	if (S_ISDIR(inode->i_mode))
1725		/* drop any readdir cache as it could easily be old */
1726		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1727
1728	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1729		nfs_complete_unlink(dentry, inode);
1730		nfs_drop_nlink(inode);
1731	}
1732	iput(inode);
1733}
1734
1735static void nfs_d_release(struct dentry *dentry)
1736{
1737	/* free cached devname value, if it survived that far */
1738	if (unlikely(dentry->d_fsdata)) {
1739		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1740			WARN_ON(1);
1741		else
1742			kfree(dentry->d_fsdata);
1743	}
1744}
1745
1746const struct dentry_operations nfs_dentry_operations = {
1747	.d_revalidate	= nfs_lookup_revalidate,
1748	.d_weak_revalidate	= nfs_weak_revalidate,
1749	.d_delete	= nfs_dentry_delete,
1750	.d_iput		= nfs_dentry_iput,
1751	.d_automount	= nfs_d_automount,
1752	.d_release	= nfs_d_release,
1753};
1754EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1755
1756struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1757{
1758	struct dentry *res;
1759	struct inode *inode = NULL;
1760	struct nfs_fh *fhandle = NULL;
1761	struct nfs_fattr *fattr = NULL;
1762	struct nfs4_label *label = NULL;
1763	unsigned long dir_verifier;
1764	int error;
1765
1766	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1767	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1768
1769	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1770		return ERR_PTR(-ENAMETOOLONG);
1771
1772	/*
1773	 * If we're doing an exclusive create, optimize away the lookup
1774	 * but don't hash the dentry.
1775	 */
1776	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1777		return NULL;
1778
1779	res = ERR_PTR(-ENOMEM);
1780	fhandle = nfs_alloc_fhandle();
1781	fattr = nfs_alloc_fattr();
1782	if (fhandle == NULL || fattr == NULL)
1783		goto out;
1784
1785	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1786	if (IS_ERR(label))
1787		goto out;
1788
1789	dir_verifier = nfs_save_change_attribute(dir);
1790	trace_nfs_lookup_enter(dir, dentry, flags);
1791	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1792	if (error == -ENOENT)
 
 
1793		goto no_entry;
 
1794	if (error < 0) {
1795		res = ERR_PTR(error);
1796		goto out_label;
1797	}
1798	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1799	res = ERR_CAST(inode);
1800	if (IS_ERR(res))
1801		goto out_label;
1802
1803	/* Notify readdir to use READDIRPLUS */
1804	nfs_force_use_readdirplus(dir);
1805
1806no_entry:
1807	res = d_splice_alias(inode, dentry);
1808	if (res != NULL) {
1809		if (IS_ERR(res))
1810			goto out_label;
1811		dentry = res;
1812	}
1813	nfs_set_verifier(dentry, dir_verifier);
1814out_label:
1815	trace_nfs_lookup_exit(dir, dentry, flags, error);
1816	nfs4_label_free(label);
1817out:
 
1818	nfs_free_fattr(fattr);
1819	nfs_free_fhandle(fhandle);
1820	return res;
1821}
1822EXPORT_SYMBOL_GPL(nfs_lookup);
1823
 
 
 
 
 
 
 
 
1824#if IS_ENABLED(CONFIG_NFS_V4)
1825static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1826
1827const struct dentry_operations nfs4_dentry_operations = {
1828	.d_revalidate	= nfs4_lookup_revalidate,
1829	.d_weak_revalidate	= nfs_weak_revalidate,
1830	.d_delete	= nfs_dentry_delete,
1831	.d_iput		= nfs_dentry_iput,
1832	.d_automount	= nfs_d_automount,
1833	.d_release	= nfs_d_release,
1834};
1835EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1836
1837static fmode_t flags_to_mode(int flags)
1838{
1839	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1840	if ((flags & O_ACCMODE) != O_WRONLY)
1841		res |= FMODE_READ;
1842	if ((flags & O_ACCMODE) != O_RDONLY)
1843		res |= FMODE_WRITE;
1844	return res;
1845}
1846
1847static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1848{
1849	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1850}
1851
1852static int do_open(struct inode *inode, struct file *filp)
1853{
1854	nfs_fscache_open_file(inode, filp);
1855	return 0;
1856}
1857
1858static int nfs_finish_open(struct nfs_open_context *ctx,
1859			   struct dentry *dentry,
1860			   struct file *file, unsigned open_flags)
1861{
1862	int err;
1863
1864	err = finish_open(file, dentry, do_open);
1865	if (err)
1866		goto out;
1867	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1868		nfs_file_set_open_context(file, ctx);
1869	else
1870		err = -EOPENSTALE;
1871out:
1872	return err;
1873}
1874
1875int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1876		    struct file *file, unsigned open_flags,
1877		    umode_t mode)
1878{
1879	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1880	struct nfs_open_context *ctx;
1881	struct dentry *res;
1882	struct iattr attr = { .ia_valid = ATTR_OPEN };
1883	struct inode *inode;
1884	unsigned int lookup_flags = 0;
 
1885	bool switched = false;
1886	int created = 0;
1887	int err;
1888
1889	/* Expect a negative dentry */
1890	BUG_ON(d_inode(dentry));
1891
1892	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1893			dir->i_sb->s_id, dir->i_ino, dentry);
1894
1895	err = nfs_check_flags(open_flags);
1896	if (err)
1897		return err;
1898
1899	/* NFS only supports OPEN on regular files */
1900	if ((open_flags & O_DIRECTORY)) {
1901		if (!d_in_lookup(dentry)) {
1902			/*
1903			 * Hashed negative dentry with O_DIRECTORY: dentry was
1904			 * revalidated and is fine, no need to perform lookup
1905			 * again
1906			 */
1907			return -ENOENT;
1908		}
1909		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1910		goto no_open;
1911	}
1912
1913	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1914		return -ENAMETOOLONG;
1915
1916	if (open_flags & O_CREAT) {
1917		struct nfs_server *server = NFS_SERVER(dir);
1918
1919		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1920			mode &= ~current_umask();
1921
1922		attr.ia_valid |= ATTR_MODE;
1923		attr.ia_mode = mode;
1924	}
1925	if (open_flags & O_TRUNC) {
1926		attr.ia_valid |= ATTR_SIZE;
1927		attr.ia_size = 0;
1928	}
1929
1930	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1931		d_drop(dentry);
1932		switched = true;
1933		dentry = d_alloc_parallel(dentry->d_parent,
1934					  &dentry->d_name, &wq);
1935		if (IS_ERR(dentry))
1936			return PTR_ERR(dentry);
1937		if (unlikely(!d_in_lookup(dentry)))
1938			return finish_no_open(file, dentry);
1939	}
1940
1941	ctx = create_nfs_open_context(dentry, open_flags, file);
1942	err = PTR_ERR(ctx);
1943	if (IS_ERR(ctx))
1944		goto out;
1945
1946	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1947	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1948	if (created)
1949		file->f_mode |= FMODE_CREATED;
1950	if (IS_ERR(inode)) {
1951		err = PTR_ERR(inode);
1952		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1953		put_nfs_open_context(ctx);
1954		d_drop(dentry);
1955		switch (err) {
1956		case -ENOENT:
1957			d_splice_alias(NULL, dentry);
1958			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 
 
 
 
1959			break;
1960		case -EISDIR:
1961		case -ENOTDIR:
1962			goto no_open;
1963		case -ELOOP:
1964			if (!(open_flags & O_NOFOLLOW))
1965				goto no_open;
1966			break;
1967			/* case -EINVAL: */
1968		default:
1969			break;
1970		}
1971		goto out;
1972	}
 
1973
1974	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1975	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1976	put_nfs_open_context(ctx);
1977out:
1978	if (unlikely(switched)) {
1979		d_lookup_done(dentry);
1980		dput(dentry);
1981	}
1982	return err;
1983
1984no_open:
1985	res = nfs_lookup(dir, dentry, lookup_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986	if (switched) {
1987		d_lookup_done(dentry);
1988		if (!res)
1989			res = dentry;
1990		else
1991			dput(dentry);
1992	}
1993	if (IS_ERR(res))
1994		return PTR_ERR(res);
1995	return finish_no_open(file, res);
1996}
1997EXPORT_SYMBOL_GPL(nfs_atomic_open);
1998
1999static int
2000nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2001			  unsigned int flags)
2002{
2003	struct inode *inode;
2004
 
 
2005	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2006		goto full_reval;
2007	if (d_mountpoint(dentry))
2008		goto full_reval;
2009
2010	inode = d_inode(dentry);
2011
2012	/* We can't create new files in nfs_open_revalidate(), so we
2013	 * optimize away revalidation of negative dentries.
2014	 */
2015	if (inode == NULL)
2016		goto full_reval;
2017
2018	if (nfs_verifier_is_delegated(dentry))
2019		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2020
2021	/* NFS only supports OPEN on regular files */
2022	if (!S_ISREG(inode->i_mode))
2023		goto full_reval;
2024
2025	/* We cannot do exclusive creation on a positive dentry */
2026	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2027		goto reval_dentry;
2028
2029	/* Check if the directory changed */
2030	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2031		goto reval_dentry;
2032
2033	/* Let f_op->open() actually open (and revalidate) the file */
2034	return 1;
2035reval_dentry:
2036	if (flags & LOOKUP_RCU)
2037		return -ECHILD;
2038	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2039
2040full_reval:
2041	return nfs_do_lookup_revalidate(dir, dentry, flags);
2042}
2043
2044static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2045{
2046	return __nfs_lookup_revalidate(dentry, flags,
2047			nfs4_do_lookup_revalidate);
2048}
2049
2050#endif /* CONFIG_NFSV4 */
2051
2052struct dentry *
2053nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2054				struct nfs_fattr *fattr,
2055				struct nfs4_label *label)
2056{
2057	struct dentry *parent = dget_parent(dentry);
2058	struct inode *dir = d_inode(parent);
2059	struct inode *inode;
2060	struct dentry *d;
2061	int error;
2062
2063	d_drop(dentry);
2064
2065	if (fhandle->size == 0) {
2066		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2067		if (error)
2068			goto out_error;
2069	}
2070	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2071	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2072		struct nfs_server *server = NFS_SB(dentry->d_sb);
2073		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2074				fattr, NULL, NULL);
2075		if (error < 0)
2076			goto out_error;
2077	}
2078	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2079	d = d_splice_alias(inode, dentry);
2080out:
2081	dput(parent);
2082	return d;
2083out_error:
2084	d = ERR_PTR(error);
2085	goto out;
2086}
2087EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2088
2089/*
2090 * Code common to create, mkdir, and mknod.
2091 */
2092int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2093				struct nfs_fattr *fattr,
2094				struct nfs4_label *label)
2095{
2096	struct dentry *d;
2097
2098	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2099	if (IS_ERR(d))
2100		return PTR_ERR(d);
2101
2102	/* Callers don't care */
2103	dput(d);
2104	return 0;
2105}
2106EXPORT_SYMBOL_GPL(nfs_instantiate);
2107
2108/*
2109 * Following a failed create operation, we drop the dentry rather
2110 * than retain a negative dentry. This avoids a problem in the event
2111 * that the operation succeeded on the server, but an error in the
2112 * reply path made it appear to have failed.
2113 */
2114int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2115	       struct dentry *dentry, umode_t mode, bool excl)
2116{
2117	struct iattr attr;
2118	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2119	int error;
2120
2121	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2122			dir->i_sb->s_id, dir->i_ino, dentry);
2123
2124	attr.ia_mode = mode;
2125	attr.ia_valid = ATTR_MODE;
2126
2127	trace_nfs_create_enter(dir, dentry, open_flags);
2128	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2129	trace_nfs_create_exit(dir, dentry, open_flags, error);
2130	if (error != 0)
2131		goto out_err;
2132	return 0;
2133out_err:
2134	d_drop(dentry);
2135	return error;
2136}
2137EXPORT_SYMBOL_GPL(nfs_create);
2138
2139/*
2140 * See comments for nfs_proc_create regarding failed operations.
2141 */
2142int
2143nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2144	  struct dentry *dentry, umode_t mode, dev_t rdev)
2145{
2146	struct iattr attr;
2147	int status;
2148
2149	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2150			dir->i_sb->s_id, dir->i_ino, dentry);
2151
2152	attr.ia_mode = mode;
2153	attr.ia_valid = ATTR_MODE;
2154
2155	trace_nfs_mknod_enter(dir, dentry);
2156	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2157	trace_nfs_mknod_exit(dir, dentry, status);
2158	if (status != 0)
2159		goto out_err;
2160	return 0;
2161out_err:
2162	d_drop(dentry);
2163	return status;
2164}
2165EXPORT_SYMBOL_GPL(nfs_mknod);
2166
2167/*
2168 * See comments for nfs_proc_create regarding failed operations.
2169 */
2170int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2171	      struct dentry *dentry, umode_t mode)
2172{
2173	struct iattr attr;
2174	int error;
2175
2176	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2177			dir->i_sb->s_id, dir->i_ino, dentry);
2178
2179	attr.ia_valid = ATTR_MODE;
2180	attr.ia_mode = mode | S_IFDIR;
2181
2182	trace_nfs_mkdir_enter(dir, dentry);
2183	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2184	trace_nfs_mkdir_exit(dir, dentry, error);
2185	if (error != 0)
2186		goto out_err;
2187	return 0;
2188out_err:
2189	d_drop(dentry);
2190	return error;
2191}
2192EXPORT_SYMBOL_GPL(nfs_mkdir);
2193
2194static void nfs_dentry_handle_enoent(struct dentry *dentry)
2195{
2196	if (simple_positive(dentry))
2197		d_delete(dentry);
2198}
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2201{
2202	int error;
2203
2204	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2205			dir->i_sb->s_id, dir->i_ino, dentry);
2206
2207	trace_nfs_rmdir_enter(dir, dentry);
2208	if (d_really_is_positive(dentry)) {
2209		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2210		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2211		/* Ensure the VFS deletes this inode */
2212		switch (error) {
2213		case 0:
2214			clear_nlink(d_inode(dentry));
2215			break;
2216		case -ENOENT:
2217			nfs_dentry_handle_enoent(dentry);
2218		}
2219		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2220	} else
2221		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
 
2222	trace_nfs_rmdir_exit(dir, dentry, error);
2223
2224	return error;
2225}
2226EXPORT_SYMBOL_GPL(nfs_rmdir);
2227
2228/*
2229 * Remove a file after making sure there are no pending writes,
2230 * and after checking that the file has only one user. 
2231 *
2232 * We invalidate the attribute cache and free the inode prior to the operation
2233 * to avoid possible races if the server reuses the inode.
2234 */
2235static int nfs_safe_remove(struct dentry *dentry)
2236{
2237	struct inode *dir = d_inode(dentry->d_parent);
2238	struct inode *inode = d_inode(dentry);
2239	int error = -EBUSY;
2240		
2241	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2242
2243	/* If the dentry was sillyrenamed, we simply call d_delete() */
2244	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2245		error = 0;
2246		goto out;
2247	}
2248
2249	trace_nfs_remove_enter(dir, dentry);
2250	if (inode != NULL) {
2251		error = NFS_PROTO(dir)->remove(dir, dentry);
2252		if (error == 0)
2253			nfs_drop_nlink(inode);
2254	} else
2255		error = NFS_PROTO(dir)->remove(dir, dentry);
2256	if (error == -ENOENT)
2257		nfs_dentry_handle_enoent(dentry);
2258	trace_nfs_remove_exit(dir, dentry, error);
2259out:
2260	return error;
2261}
2262
2263/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2264 *  belongs to an active ".nfs..." file and we return -EBUSY.
2265 *
2266 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2267 */
2268int nfs_unlink(struct inode *dir, struct dentry *dentry)
2269{
2270	int error;
2271	int need_rehash = 0;
2272
2273	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2274		dir->i_ino, dentry);
2275
2276	trace_nfs_unlink_enter(dir, dentry);
2277	spin_lock(&dentry->d_lock);
2278	if (d_count(dentry) > 1) {
 
2279		spin_unlock(&dentry->d_lock);
2280		/* Start asynchronous writeout of the inode */
2281		write_inode_now(d_inode(dentry), 0);
2282		error = nfs_sillyrename(dir, dentry);
2283		goto out;
2284	}
2285	if (!d_unhashed(dentry)) {
2286		__d_drop(dentry);
2287		need_rehash = 1;
 
 
 
 
 
 
 
2288	}
 
 
 
 
2289	spin_unlock(&dentry->d_lock);
2290	error = nfs_safe_remove(dentry);
2291	if (!error || error == -ENOENT) {
2292		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2293	} else if (need_rehash)
2294		d_rehash(dentry);
2295out:
2296	trace_nfs_unlink_exit(dir, dentry, error);
2297	return error;
2298}
2299EXPORT_SYMBOL_GPL(nfs_unlink);
2300
2301/*
2302 * To create a symbolic link, most file systems instantiate a new inode,
2303 * add a page to it containing the path, then write it out to the disk
2304 * using prepare_write/commit_write.
2305 *
2306 * Unfortunately the NFS client can't create the in-core inode first
2307 * because it needs a file handle to create an in-core inode (see
2308 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2309 * symlink request has completed on the server.
2310 *
2311 * So instead we allocate a raw page, copy the symname into it, then do
2312 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2313 * now have a new file handle and can instantiate an in-core NFS inode
2314 * and move the raw page into its mapping.
2315 */
2316int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2317		struct dentry *dentry, const char *symname)
2318{
2319	struct page *page;
2320	char *kaddr;
2321	struct iattr attr;
2322	unsigned int pathlen = strlen(symname);
2323	int error;
2324
2325	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2326		dir->i_ino, dentry, symname);
2327
2328	if (pathlen > PAGE_SIZE)
2329		return -ENAMETOOLONG;
2330
2331	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2332	attr.ia_valid = ATTR_MODE;
2333
2334	page = alloc_page(GFP_USER);
2335	if (!page)
2336		return -ENOMEM;
2337
2338	kaddr = page_address(page);
2339	memcpy(kaddr, symname, pathlen);
2340	if (pathlen < PAGE_SIZE)
2341		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2342
2343	trace_nfs_symlink_enter(dir, dentry);
2344	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2345	trace_nfs_symlink_exit(dir, dentry, error);
2346	if (error != 0) {
2347		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2348			dir->i_sb->s_id, dir->i_ino,
2349			dentry, symname, error);
2350		d_drop(dentry);
2351		__free_page(page);
2352		return error;
2353	}
2354
 
 
2355	/*
2356	 * No big deal if we can't add this page to the page cache here.
2357	 * READLINK will get the missing page from the server if needed.
2358	 */
2359	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2360							GFP_KERNEL)) {
2361		SetPageUptodate(page);
2362		unlock_page(page);
2363		/*
2364		 * add_to_page_cache_lru() grabs an extra page refcount.
2365		 * Drop it here to avoid leaking this page later.
2366		 */
2367		put_page(page);
2368	} else
2369		__free_page(page);
2370
 
2371	return 0;
2372}
2373EXPORT_SYMBOL_GPL(nfs_symlink);
2374
2375int
2376nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377{
2378	struct inode *inode = d_inode(old_dentry);
2379	int error;
2380
2381	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2382		old_dentry, dentry);
2383
2384	trace_nfs_link_enter(inode, dir, dentry);
2385	d_drop(dentry);
 
 
2386	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2387	if (error == 0) {
 
2388		ihold(inode);
2389		d_add(dentry, inode);
2390	}
2391	trace_nfs_link_exit(inode, dir, dentry, error);
2392	return error;
2393}
2394EXPORT_SYMBOL_GPL(nfs_link);
2395
 
 
 
 
 
 
 
 
 
2396/*
2397 * RENAME
2398 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2399 * different file handle for the same inode after a rename (e.g. when
2400 * moving to a different directory). A fail-safe method to do so would
2401 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2402 * rename the old file using the sillyrename stuff. This way, the original
2403 * file in old_dir will go away when the last process iput()s the inode.
2404 *
2405 * FIXED.
2406 * 
2407 * It actually works quite well. One needs to have the possibility for
2408 * at least one ".nfs..." file in each directory the file ever gets
2409 * moved or linked to which happens automagically with the new
2410 * implementation that only depends on the dcache stuff instead of
2411 * using the inode layer
2412 *
2413 * Unfortunately, things are a little more complicated than indicated
2414 * above. For a cross-directory move, we want to make sure we can get
2415 * rid of the old inode after the operation.  This means there must be
2416 * no pending writes (if it's a file), and the use count must be 1.
2417 * If these conditions are met, we can drop the dentries before doing
2418 * the rename.
2419 */
2420int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2421	       struct dentry *old_dentry, struct inode *new_dir,
2422	       struct dentry *new_dentry, unsigned int flags)
2423{
2424	struct inode *old_inode = d_inode(old_dentry);
2425	struct inode *new_inode = d_inode(new_dentry);
2426	struct dentry *dentry = NULL, *rehash = NULL;
2427	struct rpc_task *task;
 
2428	int error = -EBUSY;
2429
2430	if (flags)
2431		return -EINVAL;
2432
2433	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2434		 old_dentry, new_dentry,
2435		 d_count(new_dentry));
2436
2437	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2438	/*
2439	 * For non-directories, check whether the target is busy and if so,
2440	 * make a copy of the dentry and then do a silly-rename. If the
2441	 * silly-rename succeeds, the copied dentry is hashed and becomes
2442	 * the new target.
2443	 */
2444	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2445		/*
2446		 * To prevent any new references to the target during the
2447		 * rename, we unhash the dentry in advance.
 
2448		 */
2449		if (!d_unhashed(new_dentry)) {
2450			d_drop(new_dentry);
2451			rehash = new_dentry;
 
 
 
 
 
2452		}
2453
 
2454		if (d_count(new_dentry) > 2) {
2455			int err;
2456
 
 
2457			/* copy the target dentry's name */
2458			dentry = d_alloc(new_dentry->d_parent,
2459					 &new_dentry->d_name);
2460			if (!dentry)
2461				goto out;
2462
2463			/* silly-rename the existing target ... */
2464			err = nfs_sillyrename(new_dir, new_dentry);
2465			if (err)
2466				goto out;
2467
2468			new_dentry = dentry;
2469			rehash = NULL;
2470			new_inode = NULL;
 
 
 
 
2471		}
 
2472	}
2473
2474	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
 
 
 
2475	if (IS_ERR(task)) {
2476		error = PTR_ERR(task);
2477		goto out;
2478	}
2479
2480	error = rpc_wait_for_completion_task(task);
2481	if (error != 0) {
2482		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2483		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2484		smp_wmb();
2485	} else
2486		error = task->tk_status;
2487	rpc_put_task(task);
2488	/* Ensure the inode attributes are revalidated */
2489	if (error == 0) {
2490		spin_lock(&old_inode->i_lock);
2491		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2492		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2493							 NFS_INO_INVALID_CTIME |
2494							 NFS_INO_REVAL_FORCED);
2495		spin_unlock(&old_inode->i_lock);
2496	}
2497out:
2498	if (rehash)
2499		d_rehash(rehash);
2500	trace_nfs_rename_exit(old_dir, old_dentry,
2501			new_dir, new_dentry, error);
2502	if (!error) {
2503		if (new_inode != NULL)
2504			nfs_drop_nlink(new_inode);
2505		/*
2506		 * The d_move() should be here instead of in an async RPC completion
2507		 * handler because we need the proper locks to move the dentry.  If
2508		 * we're interrupted by a signal, the async RPC completion handler
2509		 * should mark the directories for revalidation.
2510		 */
2511		d_move(old_dentry, new_dentry);
2512		nfs_set_verifier(old_dentry,
2513					nfs_save_change_attribute(new_dir));
2514	} else if (error == -ENOENT)
2515		nfs_dentry_handle_enoent(old_dentry);
2516
2517	/* new dentry created? */
2518	if (dentry)
2519		dput(dentry);
2520	return error;
2521}
2522EXPORT_SYMBOL_GPL(nfs_rename);
2523
2524static DEFINE_SPINLOCK(nfs_access_lru_lock);
2525static LIST_HEAD(nfs_access_lru_list);
2526static atomic_long_t nfs_access_nr_entries;
2527
2528static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2529module_param(nfs_access_max_cachesize, ulong, 0644);
2530MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2531
2532static void nfs_access_free_entry(struct nfs_access_entry *entry)
2533{
2534	put_cred(entry->cred);
2535	kfree_rcu(entry, rcu_head);
2536	smp_mb__before_atomic();
2537	atomic_long_dec(&nfs_access_nr_entries);
2538	smp_mb__after_atomic();
2539}
2540
2541static void nfs_access_free_list(struct list_head *head)
2542{
2543	struct nfs_access_entry *cache;
2544
2545	while (!list_empty(head)) {
2546		cache = list_entry(head->next, struct nfs_access_entry, lru);
2547		list_del(&cache->lru);
2548		nfs_access_free_entry(cache);
2549	}
2550}
2551
2552static unsigned long
2553nfs_do_access_cache_scan(unsigned int nr_to_scan)
2554{
2555	LIST_HEAD(head);
2556	struct nfs_inode *nfsi, *next;
2557	struct nfs_access_entry *cache;
2558	long freed = 0;
2559
2560	spin_lock(&nfs_access_lru_lock);
2561	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2562		struct inode *inode;
2563
2564		if (nr_to_scan-- == 0)
2565			break;
2566		inode = &nfsi->vfs_inode;
2567		spin_lock(&inode->i_lock);
2568		if (list_empty(&nfsi->access_cache_entry_lru))
2569			goto remove_lru_entry;
2570		cache = list_entry(nfsi->access_cache_entry_lru.next,
2571				struct nfs_access_entry, lru);
2572		list_move(&cache->lru, &head);
2573		rb_erase(&cache->rb_node, &nfsi->access_cache);
2574		freed++;
2575		if (!list_empty(&nfsi->access_cache_entry_lru))
2576			list_move_tail(&nfsi->access_cache_inode_lru,
2577					&nfs_access_lru_list);
2578		else {
2579remove_lru_entry:
2580			list_del_init(&nfsi->access_cache_inode_lru);
2581			smp_mb__before_atomic();
2582			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2583			smp_mb__after_atomic();
2584		}
2585		spin_unlock(&inode->i_lock);
2586	}
2587	spin_unlock(&nfs_access_lru_lock);
2588	nfs_access_free_list(&head);
2589	return freed;
2590}
2591
2592unsigned long
2593nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2594{
2595	int nr_to_scan = sc->nr_to_scan;
2596	gfp_t gfp_mask = sc->gfp_mask;
2597
2598	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2599		return SHRINK_STOP;
2600	return nfs_do_access_cache_scan(nr_to_scan);
2601}
2602
2603
2604unsigned long
2605nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2606{
2607	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2608}
2609
2610static void
2611nfs_access_cache_enforce_limit(void)
2612{
2613	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2614	unsigned long diff;
2615	unsigned int nr_to_scan;
2616
2617	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2618		return;
2619	nr_to_scan = 100;
2620	diff = nr_entries - nfs_access_max_cachesize;
2621	if (diff < nr_to_scan)
2622		nr_to_scan = diff;
2623	nfs_do_access_cache_scan(nr_to_scan);
2624}
2625
2626static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2627{
2628	struct rb_root *root_node = &nfsi->access_cache;
2629	struct rb_node *n;
2630	struct nfs_access_entry *entry;
2631
2632	/* Unhook entries from the cache */
2633	while ((n = rb_first(root_node)) != NULL) {
2634		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2635		rb_erase(n, root_node);
2636		list_move(&entry->lru, head);
2637	}
2638	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2639}
2640
2641void nfs_access_zap_cache(struct inode *inode)
2642{
2643	LIST_HEAD(head);
2644
2645	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2646		return;
2647	/* Remove from global LRU init */
2648	spin_lock(&nfs_access_lru_lock);
2649	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2650		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2651
2652	spin_lock(&inode->i_lock);
2653	__nfs_access_zap_cache(NFS_I(inode), &head);
2654	spin_unlock(&inode->i_lock);
2655	spin_unlock(&nfs_access_lru_lock);
2656	nfs_access_free_list(&head);
2657}
2658EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2661{
2662	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2663
2664	while (n != NULL) {
2665		struct nfs_access_entry *entry =
2666			rb_entry(n, struct nfs_access_entry, rb_node);
2667		int cmp = cred_fscmp(cred, entry->cred);
2668
2669		if (cmp < 0)
2670			n = n->rb_left;
2671		else if (cmp > 0)
2672			n = n->rb_right;
2673		else
2674			return entry;
2675	}
2676	return NULL;
2677}
2678
2679static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680{
2681	struct nfs_inode *nfsi = NFS_I(inode);
 
2682	struct nfs_access_entry *cache;
2683	bool retry = true;
2684	int err;
2685
2686	spin_lock(&inode->i_lock);
2687	for(;;) {
2688		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2689			goto out_zap;
2690		cache = nfs_access_search_rbtree(inode, cred);
2691		err = -ENOENT;
2692		if (cache == NULL)
2693			goto out;
2694		/* Found an entry, is our attribute cache valid? */
2695		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2696			break;
2697		if (!retry)
2698			break;
2699		err = -ECHILD;
2700		if (!may_block)
2701			goto out;
2702		spin_unlock(&inode->i_lock);
2703		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2704		if (err)
2705			return err;
2706		spin_lock(&inode->i_lock);
2707		retry = false;
2708	}
2709	res->cred = cache->cred;
2710	res->mask = cache->mask;
 
 
2711	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2712	err = 0;
2713out:
2714	spin_unlock(&inode->i_lock);
2715	return err;
2716out_zap:
2717	spin_unlock(&inode->i_lock);
2718	nfs_access_zap_cache(inode);
2719	return -ENOENT;
2720}
2721
2722static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2723{
2724	/* Only check the most recently returned cache entry,
2725	 * but do it without locking.
2726	 */
2727	struct nfs_inode *nfsi = NFS_I(inode);
 
2728	struct nfs_access_entry *cache;
2729	int err = -ECHILD;
2730	struct list_head *lh;
2731
2732	rcu_read_lock();
2733	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2734		goto out;
2735	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2736	cache = list_entry(lh, struct nfs_access_entry, lru);
2737	if (lh == &nfsi->access_cache_entry_lru ||
2738	    cred_fscmp(cred, cache->cred) != 0)
2739		cache = NULL;
2740	if (cache == NULL)
2741		goto out;
 
 
2742	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2743		goto out;
2744	res->cred = cache->cred;
2745	res->mask = cache->mask;
2746	err = 0;
2747out:
2748	rcu_read_unlock();
2749	return err;
2750}
2751
2752int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2753nfs_access_entry *res, bool may_block)
2754{
2755	int status;
2756
2757	status = nfs_access_get_cached_rcu(inode, cred, res);
2758	if (status != 0)
2759		status = nfs_access_get_cached_locked(inode, cred, res,
2760		    may_block);
2761
2762	return status;
2763}
2764EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2765
2766static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
 
 
2767{
2768	struct nfs_inode *nfsi = NFS_I(inode);
2769	struct rb_root *root_node = &nfsi->access_cache;
2770	struct rb_node **p = &root_node->rb_node;
2771	struct rb_node *parent = NULL;
2772	struct nfs_access_entry *entry;
2773	int cmp;
2774
2775	spin_lock(&inode->i_lock);
2776	while (*p != NULL) {
2777		parent = *p;
2778		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2779		cmp = cred_fscmp(set->cred, entry->cred);
2780
2781		if (cmp < 0)
2782			p = &parent->rb_left;
2783		else if (cmp > 0)
2784			p = &parent->rb_right;
2785		else
2786			goto found;
2787	}
2788	rb_link_node(&set->rb_node, parent, p);
2789	rb_insert_color(&set->rb_node, root_node);
2790	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2791	spin_unlock(&inode->i_lock);
2792	return;
2793found:
2794	rb_replace_node(parent, &set->rb_node, root_node);
2795	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2796	list_del(&entry->lru);
2797	spin_unlock(&inode->i_lock);
2798	nfs_access_free_entry(entry);
2799}
2800
2801void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
 
2802{
2803	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2804	if (cache == NULL)
2805		return;
2806	RB_CLEAR_NODE(&cache->rb_node);
2807	cache->cred = get_cred(set->cred);
 
 
2808	cache->mask = set->mask;
 
2809
2810	/* The above field assignments must be visible
2811	 * before this item appears on the lru.  We cannot easily
2812	 * use rcu_assign_pointer, so just force the memory barrier.
2813	 */
2814	smp_wmb();
2815	nfs_access_add_rbtree(inode, cache);
2816
2817	/* Update accounting */
2818	smp_mb__before_atomic();
2819	atomic_long_inc(&nfs_access_nr_entries);
2820	smp_mb__after_atomic();
2821
2822	/* Add inode to global LRU list */
2823	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2824		spin_lock(&nfs_access_lru_lock);
2825		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2826			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2827					&nfs_access_lru_list);
2828		spin_unlock(&nfs_access_lru_lock);
2829	}
2830	nfs_access_cache_enforce_limit();
2831}
2832EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2833
2834#define NFS_MAY_READ (NFS_ACCESS_READ)
2835#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2836		NFS_ACCESS_EXTEND | \
2837		NFS_ACCESS_DELETE)
2838#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2839		NFS_ACCESS_EXTEND)
2840#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2841#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2842#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2843static int
2844nfs_access_calc_mask(u32 access_result, umode_t umode)
2845{
2846	int mask = 0;
2847
2848	if (access_result & NFS_MAY_READ)
2849		mask |= MAY_READ;
2850	if (S_ISDIR(umode)) {
2851		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2852			mask |= MAY_WRITE;
2853		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2854			mask |= MAY_EXEC;
2855	} else if (S_ISREG(umode)) {
2856		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2857			mask |= MAY_WRITE;
2858		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2859			mask |= MAY_EXEC;
2860	} else if (access_result & NFS_MAY_WRITE)
2861			mask |= MAY_WRITE;
2862	return mask;
2863}
2864
2865void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2866{
2867	entry->mask = access_result;
2868}
2869EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2870
2871static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2872{
2873	struct nfs_access_entry cache;
2874	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2875	int cache_mask = -1;
2876	int status;
2877
2878	trace_nfs_access_enter(inode);
2879
2880	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2881	if (status == 0)
2882		goto out_cached;
2883
2884	status = -ECHILD;
2885	if (!may_block)
2886		goto out;
2887
2888	/*
2889	 * Determine which access bits we want to ask for...
2890	 */
2891	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2892	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2893		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2894		    NFS_ACCESS_XALIST;
2895	}
2896	if (S_ISDIR(inode->i_mode))
2897		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2898	else
2899		cache.mask |= NFS_ACCESS_EXECUTE;
2900	cache.cred = cred;
2901	status = NFS_PROTO(inode)->access(inode, &cache);
2902	if (status != 0) {
2903		if (status == -ESTALE) {
2904			if (!S_ISDIR(inode->i_mode))
2905				nfs_set_inode_stale(inode);
2906			else
2907				nfs_zap_caches(inode);
2908		}
2909		goto out;
2910	}
2911	nfs_access_add_cache(inode, &cache);
2912out_cached:
2913	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2914	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2915		status = -EACCES;
2916out:
2917	trace_nfs_access_exit(inode, mask, cache_mask, status);
2918	return status;
2919}
2920
2921static int nfs_open_permission_mask(int openflags)
2922{
2923	int mask = 0;
2924
2925	if (openflags & __FMODE_EXEC) {
2926		/* ONLY check exec rights */
2927		mask = MAY_EXEC;
2928	} else {
2929		if ((openflags & O_ACCMODE) != O_WRONLY)
2930			mask |= MAY_READ;
2931		if ((openflags & O_ACCMODE) != O_RDONLY)
2932			mask |= MAY_WRITE;
2933	}
2934
2935	return mask;
2936}
2937
2938int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2939{
2940	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2941}
2942EXPORT_SYMBOL_GPL(nfs_may_open);
2943
2944static int nfs_execute_ok(struct inode *inode, int mask)
2945{
2946	struct nfs_server *server = NFS_SERVER(inode);
2947	int ret = 0;
2948
2949	if (S_ISDIR(inode->i_mode))
2950		return 0;
2951	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2952		if (mask & MAY_NOT_BLOCK)
2953			return -ECHILD;
2954		ret = __nfs_revalidate_inode(server, inode);
2955	}
2956	if (ret == 0 && !execute_ok(inode))
2957		ret = -EACCES;
2958	return ret;
2959}
2960
2961int nfs_permission(struct user_namespace *mnt_userns,
2962		   struct inode *inode,
2963		   int mask)
2964{
2965	const struct cred *cred = current_cred();
2966	int res = 0;
2967
2968	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2969
2970	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2971		goto out;
2972	/* Is this sys_access() ? */
2973	if (mask & (MAY_ACCESS | MAY_CHDIR))
2974		goto force_lookup;
2975
2976	switch (inode->i_mode & S_IFMT) {
2977		case S_IFLNK:
2978			goto out;
2979		case S_IFREG:
2980			if ((mask & MAY_OPEN) &&
2981			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2982				return 0;
2983			break;
2984		case S_IFDIR:
2985			/*
2986			 * Optimize away all write operations, since the server
2987			 * will check permissions when we perform the op.
2988			 */
2989			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2990				goto out;
2991	}
2992
2993force_lookup:
2994	if (!NFS_PROTO(inode)->access)
2995		goto out_notsup;
2996
2997	res = nfs_do_access(inode, cred, mask);
2998out:
2999	if (!res && (mask & MAY_EXEC))
3000		res = nfs_execute_ok(inode, mask);
3001
3002	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3003		inode->i_sb->s_id, inode->i_ino, mask, res);
3004	return res;
3005out_notsup:
3006	if (mask & MAY_NOT_BLOCK)
3007		return -ECHILD;
3008
3009	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3010						  NFS_INO_INVALID_OTHER);
3011	if (res == 0)
3012		res = generic_permission(&init_user_ns, inode, mask);
3013	goto out;
3014}
3015EXPORT_SYMBOL_GPL(nfs_permission);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/nfs/dir.c
   4 *
   5 *  Copyright (C) 1992  Rick Sladkey
   6 *
   7 *  nfs directory handling functions
   8 *
   9 * 10 Apr 1996	Added silly rename for unlink	--okir
  10 * 28 Sep 1996	Improved directory cache --okir
  11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  12 *              Re-implemented silly rename for unlink, newly implemented
  13 *              silly rename for nfs_rename() following the suggestions
  14 *              of Olaf Kirch (okir) found in this file.
  15 *              Following Linus comments on my original hack, this version
  16 *              depends only on the dcache stuff and doesn't touch the inode
  17 *              layer (iput() and friends).
  18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
  19 */
  20
  21#include <linux/compat.h>
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/errno.h>
  25#include <linux/stat.h>
  26#include <linux/fcntl.h>
  27#include <linux/string.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/mm.h>
  31#include <linux/sunrpc/clnt.h>
  32#include <linux/nfs_fs.h>
  33#include <linux/nfs_mount.h>
  34#include <linux/pagemap.h>
  35#include <linux/pagevec.h>
  36#include <linux/namei.h>
  37#include <linux/mount.h>
  38#include <linux/swap.h>
  39#include <linux/sched.h>
  40#include <linux/kmemleak.h>
  41#include <linux/xattr.h>
  42#include <linux/hash.h>
  43
  44#include "delegation.h"
  45#include "iostat.h"
  46#include "internal.h"
  47#include "fscache.h"
  48
  49#include "nfstrace.h"
  50
  51/* #define NFS_DEBUG_VERBOSE 1 */
  52
  53static int nfs_opendir(struct inode *, struct file *);
  54static int nfs_closedir(struct inode *, struct file *);
  55static int nfs_readdir(struct file *, struct dir_context *);
  56static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  58static void nfs_readdir_clear_array(struct folio *);
  59
  60const struct file_operations nfs_dir_operations = {
  61	.llseek		= nfs_llseek_dir,
  62	.read		= generic_read_dir,
  63	.iterate_shared	= nfs_readdir,
  64	.open		= nfs_opendir,
  65	.release	= nfs_closedir,
  66	.fsync		= nfs_fsync_dir,
  67};
  68
  69const struct address_space_operations nfs_dir_aops = {
  70	.free_folio = nfs_readdir_clear_array,
  71};
  72
  73#define NFS_INIT_DTSIZE PAGE_SIZE
  74
  75static struct nfs_open_dir_context *
  76alloc_nfs_open_dir_context(struct inode *dir)
  77{
  78	struct nfs_inode *nfsi = NFS_I(dir);
  79	struct nfs_open_dir_context *ctx;
  80
  81	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
  82	if (ctx != NULL) {
 
  83		ctx->attr_gencount = nfsi->attr_gencount;
  84		ctx->dtsize = NFS_INIT_DTSIZE;
 
  85		spin_lock(&dir->i_lock);
  86		if (list_empty(&nfsi->open_files) &&
  87		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
  88			nfs_set_cache_invalid(dir,
  89					      NFS_INO_INVALID_DATA |
  90						      NFS_INO_REVAL_FORCED);
  91		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
  92		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
  93		spin_unlock(&dir->i_lock);
  94		return ctx;
  95	}
  96	return  ERR_PTR(-ENOMEM);
  97}
  98
  99static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
 100{
 101	spin_lock(&dir->i_lock);
 102	list_del_rcu(&ctx->list);
 103	spin_unlock(&dir->i_lock);
 104	kfree_rcu(ctx, rcu_head);
 105}
 106
 107/*
 108 * Open file
 109 */
 110static int
 111nfs_opendir(struct inode *inode, struct file *filp)
 112{
 113	int res = 0;
 114	struct nfs_open_dir_context *ctx;
 115
 116	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 117
 118	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 119
 120	ctx = alloc_nfs_open_dir_context(inode);
 121	if (IS_ERR(ctx)) {
 122		res = PTR_ERR(ctx);
 123		goto out;
 124	}
 125	filp->private_data = ctx;
 126out:
 127	return res;
 128}
 129
 130static int
 131nfs_closedir(struct inode *inode, struct file *filp)
 132{
 133	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 134	return 0;
 135}
 136
 137struct nfs_cache_array_entry {
 138	u64 cookie;
 139	u64 ino;
 140	const char *name;
 141	unsigned int name_len;
 142	unsigned char d_type;
 143};
 144
 145struct nfs_cache_array {
 146	u64 change_attr;
 147	u64 last_cookie;
 148	unsigned int size;
 149	unsigned char folio_full : 1,
 150		      folio_is_eof : 1,
 151		      cookies_are_ordered : 1;
 152	struct nfs_cache_array_entry array[];
 153};
 154
 155struct nfs_readdir_descriptor {
 156	struct file	*file;
 157	struct folio	*folio;
 158	struct dir_context *ctx;
 159	pgoff_t		folio_index;
 160	pgoff_t		folio_index_max;
 161	u64		dir_cookie;
 162	u64		last_cookie;
 
 163	loff_t		current_index;
 
 164
 165	__be32		verf[NFS_DIR_VERIFIER_SIZE];
 166	unsigned long	dir_verifier;
 167	unsigned long	timestamp;
 168	unsigned long	gencount;
 169	unsigned long	attr_gencount;
 170	unsigned int	cache_entry_index;
 171	unsigned int	buffer_fills;
 172	unsigned int	dtsize;
 173	bool clear_cache;
 174	bool plus;
 175	bool eob;
 176	bool eof;
 177};
 178
 179static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
 180{
 181	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
 182	unsigned int maxsize = server->dtsize;
 183
 184	if (sz > maxsize)
 185		sz = maxsize;
 186	if (sz < NFS_MIN_FILE_IO_SIZE)
 187		sz = NFS_MIN_FILE_IO_SIZE;
 188	desc->dtsize = sz;
 189}
 190
 191static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
 192{
 193	nfs_set_dtsize(desc, desc->dtsize >> 1);
 194}
 195
 196static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
 197{
 198	nfs_set_dtsize(desc, desc->dtsize << 1);
 199}
 200
 201static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
 202					 u64 change_attr)
 203{
 204	struct nfs_cache_array *array;
 205
 206	array = kmap_local_folio(folio, 0);
 207	array->change_attr = change_attr;
 208	array->last_cookie = last_cookie;
 209	array->size = 0;
 210	array->folio_full = 0;
 211	array->folio_is_eof = 0;
 212	array->cookies_are_ordered = 1;
 213	kunmap_local(array);
 214}
 215
 216/*
 217 * we are freeing strings created by nfs_add_to_readdir_array()
 218 */
 219static void nfs_readdir_clear_array(struct folio *folio)
 
 220{
 221	struct nfs_cache_array *array;
 222	unsigned int i;
 223
 224	array = kmap_local_folio(folio, 0);
 225	for (i = 0; i < array->size; i++)
 226		kfree(array->array[i].name);
 227	array->size = 0;
 228	kunmap_local(array);
 229}
 230
 231static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
 232					   u64 change_attr)
 233{
 234	nfs_readdir_clear_array(folio);
 235	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
 236}
 237
 238static struct folio *
 239nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
 240{
 241	struct folio *folio = folio_alloc(gfp_flags, 0);
 242	if (folio)
 243		nfs_readdir_folio_init_array(folio, last_cookie, 0);
 244	return folio;
 245}
 246
 247static void nfs_readdir_folio_array_free(struct folio *folio)
 248{
 249	if (folio) {
 250		nfs_readdir_clear_array(folio);
 251		folio_put(folio);
 252	}
 253}
 254
 255static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
 256{
 257	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
 258}
 259
 260static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
 261{
 262	array->folio_is_eof = 1;
 263	array->folio_full = 1;
 264}
 265
 266static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
 267{
 268	return array->folio_full;
 269}
 270
 271/*
 272 * the caller is responsible for freeing qstr.name
 273 * when called by nfs_readdir_add_to_array, the strings will be freed in
 274 * nfs_clear_readdir_array()
 275 */
 276static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
 277{
 278	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
 279
 280	/*
 281	 * Avoid a kmemleak false positive. The pointer to the name is stored
 282	 * in a page cache page which kmemleak does not scan.
 283	 */
 284	if (ret != NULL)
 285		kmemleak_not_leak(ret);
 286	return ret;
 287}
 288
 289static size_t nfs_readdir_array_maxentries(void)
 290{
 291	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
 292	       sizeof(struct nfs_cache_array_entry);
 293}
 294
 295/*
 296 * Check that the next array entry lies entirely within the page bounds
 297 */
 298static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
 299{
 300	if (array->folio_full)
 
 
 301		return -ENOSPC;
 302	if (array->size == nfs_readdir_array_maxentries()) {
 303		array->folio_full = 1;
 
 304		return -ENOSPC;
 305	}
 306	return 0;
 307}
 308
 309static int nfs_readdir_folio_array_append(struct folio *folio,
 310					  const struct nfs_entry *entry,
 311					  u64 *cookie)
 312{
 313	struct nfs_cache_array *array;
 314	struct nfs_cache_array_entry *cache_entry;
 315	const char *name;
 316	int ret = -ENOMEM;
 317
 318	name = nfs_readdir_copy_name(entry->name, entry->len);
 
 
 319
 320	array = kmap_local_folio(folio, 0);
 321	if (!name)
 322		goto out;
 323	ret = nfs_readdir_array_can_expand(array);
 324	if (ret) {
 325		kfree(name);
 326		goto out;
 327	}
 328
 329	cache_entry = &array->array[array->size];
 330	cache_entry->cookie = array->last_cookie;
 331	cache_entry->ino = entry->ino;
 332	cache_entry->d_type = entry->d_type;
 333	cache_entry->name_len = entry->len;
 334	cache_entry->name = name;
 335	array->last_cookie = entry->cookie;
 336	if (array->last_cookie <= cache_entry->cookie)
 337		array->cookies_are_ordered = 0;
 338	array->size++;
 339	if (entry->eof != 0)
 340		nfs_readdir_array_set_eof(array);
 341out:
 342	*cookie = array->last_cookie;
 343	kunmap_local(array);
 344	return ret;
 345}
 346
 347#define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
 348/*
 349 * Hash algorithm allowing content addressible access to sequences
 350 * of directory cookies. Content is addressed by the value of the
 351 * cookie index of the first readdir entry in a page.
 352 *
 353 * We select only the first 18 bits to avoid issues with excessive
 354 * memory use for the page cache XArray. 18 bits should allow the caching
 355 * of 262144 pages of sequences of readdir entries. Since each page holds
 356 * 127 readdir entries for a typical 64-bit system, that works out to a
 357 * cache of ~ 33 million entries per directory.
 358 */
 359static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
 360{
 361	if (cookie == 0)
 362		return 0;
 363	return hash_64(cookie, 18);
 364}
 365
 366static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
 367				       u64 change_attr)
 368{
 369	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
 370	int ret = true;
 371
 372	if (array->change_attr != change_attr)
 373		ret = false;
 374	if (nfs_readdir_array_index_cookie(array) != last_cookie)
 375		ret = false;
 376	kunmap_local(array);
 377	return ret;
 378}
 379
 380static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
 
 381{
 382	folio_unlock(folio);
 383	folio_put(folio);
 384}
 385
 386static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
 387						u64 change_attr)
 388{
 389	if (folio_test_uptodate(folio)) {
 390		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
 391			return;
 392		nfs_readdir_clear_array(folio);
 393	}
 394	nfs_readdir_folio_init_array(folio, cookie, change_attr);
 395	folio_mark_uptodate(folio);
 396}
 397
 398static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
 399						  u64 cookie, u64 change_attr)
 400{
 401	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 402	struct folio *folio;
 403
 404	folio = filemap_grab_folio(mapping, index);
 405	if (IS_ERR(folio))
 406		return NULL;
 407	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 408	return folio;
 409}
 410
 411static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
 412{
 413	struct nfs_cache_array *array;
 414	u64 ret;
 415
 416	array = kmap_local_folio(folio, 0);
 417	ret = array->last_cookie;
 418	kunmap_local(array);
 419	return ret;
 420}
 421
 422static bool nfs_readdir_folio_needs_filling(struct folio *folio)
 423{
 424	struct nfs_cache_array *array;
 425	bool ret;
 426
 427	array = kmap_local_folio(folio, 0);
 428	ret = !nfs_readdir_array_is_full(array);
 429	kunmap_local(array);
 430	return ret;
 431}
 432
 433static void nfs_readdir_folio_set_eof(struct folio *folio)
 434{
 435	struct nfs_cache_array *array;
 436
 437	array = kmap_local_folio(folio, 0);
 438	nfs_readdir_array_set_eof(array);
 439	kunmap_local(array);
 
 
 
 
 
 
 440}
 441
 442static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
 443						u64 cookie, u64 change_attr)
 444{
 445	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
 446	struct folio *folio;
 447
 448	folio = __filemap_get_folio(mapping, index,
 449			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
 450			mapping_gfp_mask(mapping));
 451	if (IS_ERR(folio))
 452		return NULL;
 453	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
 454	if (nfs_readdir_folio_last_cookie(folio) != cookie)
 455		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
 456	return folio;
 457}
 458
 459static inline
 460int is_32bit_api(void)
 461{
 462#ifdef CONFIG_COMPAT
 463	return in_compat_syscall();
 464#else
 465	return (BITS_PER_LONG == 32);
 466#endif
 467}
 468
 469static
 470bool nfs_readdir_use_cookie(const struct file *filp)
 471{
 472	if ((filp->f_mode & FMODE_32BITHASH) ||
 473	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
 474		return false;
 475	return true;
 476}
 477
 478static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
 479					struct nfs_readdir_descriptor *desc)
 480{
 481	if (array->folio_full) {
 482		desc->last_cookie = array->last_cookie;
 483		desc->current_index += array->size;
 484		desc->cache_entry_index = 0;
 485		desc->folio_index++;
 486	} else
 487		desc->last_cookie = nfs_readdir_array_index_cookie(array);
 488}
 489
 490static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
 491{
 492	desc->current_index = 0;
 493	desc->last_cookie = 0;
 494	desc->folio_index = 0;
 495}
 496
 497static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
 498				      struct nfs_readdir_descriptor *desc)
 499{
 500	loff_t diff = desc->ctx->pos - desc->current_index;
 501	unsigned int index;
 502
 503	if (diff < 0)
 504		goto out_eof;
 505	if (diff >= array->size) {
 506		if (array->folio_is_eof)
 507			goto out_eof;
 508		nfs_readdir_seek_next_array(array, desc);
 509		return -EAGAIN;
 510	}
 511
 512	index = (unsigned int)diff;
 513	desc->dir_cookie = array->array[index].cookie;
 514	desc->cache_entry_index = index;
 515	return 0;
 516out_eof:
 517	desc->eof = true;
 518	return -EBADCOOKIE;
 519}
 520
 
 
 
 
 
 
 
 
 
 521static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
 522					      u64 cookie)
 523{
 524	if (!array->cookies_are_ordered)
 525		return true;
 526	/* Optimisation for monotonically increasing cookies */
 527	if (cookie >= array->last_cookie)
 528		return false;
 529	if (array->size && cookie < array->array[0].cookie)
 530		return false;
 531	return true;
 532}
 533
 534static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
 535					 struct nfs_readdir_descriptor *desc)
 536{
 537	unsigned int i;
 
 538	int status = -EAGAIN;
 539
 540	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
 541		goto check_eof;
 542
 543	for (i = 0; i < array->size; i++) {
 544		if (array->array[i].cookie == desc->dir_cookie) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545			if (nfs_readdir_use_cookie(desc->file))
 546				desc->ctx->pos = desc->dir_cookie;
 547			else
 548				desc->ctx->pos = desc->current_index + i;
 
 549			desc->cache_entry_index = i;
 550			return 0;
 551		}
 552	}
 553check_eof:
 554	if (array->folio_is_eof) {
 555		status = -EBADCOOKIE;
 556		if (desc->dir_cookie == array->last_cookie)
 557			desc->eof = true;
 558	} else
 559		nfs_readdir_seek_next_array(array, desc);
 560	return status;
 561}
 562
 563static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
 564{
 565	struct nfs_cache_array *array;
 566	int status;
 567
 568	array = kmap_local_folio(desc->folio, 0);
 569
 570	if (desc->dir_cookie == 0)
 571		status = nfs_readdir_search_for_pos(array, desc);
 572	else
 573		status = nfs_readdir_search_for_cookie(array, desc);
 574
 575	kunmap_local(array);
 
 
 
 
 
 576	return status;
 577}
 578
 579/* Fill a page with xdr information before transferring to the cache page */
 580static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
 581				  __be32 *verf, u64 cookie,
 582				  struct page **pages, size_t bufsize,
 583				  __be32 *verf_res)
 584{
 585	struct inode *inode = file_inode(desc->file);
 586	struct nfs_readdir_arg arg = {
 587		.dentry = file_dentry(desc->file),
 588		.cred = desc->file->f_cred,
 589		.verf = verf,
 590		.cookie = cookie,
 591		.pages = pages,
 592		.page_len = bufsize,
 593		.plus = desc->plus,
 594	};
 595	struct nfs_readdir_res res = {
 596		.verf = verf_res,
 597	};
 598	unsigned long	timestamp, gencount;
 599	int		error;
 600
 601 again:
 602	timestamp = jiffies;
 603	gencount = nfs_inc_attr_generation_counter();
 604	desc->dir_verifier = nfs_save_change_attribute(inode);
 605	error = NFS_PROTO(inode)->readdir(&arg, &res);
 606	if (error < 0) {
 607		/* We requested READDIRPLUS, but the server doesn't grok it */
 608		if (error == -ENOTSUPP && desc->plus) {
 609			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 
 610			desc->plus = arg.plus = false;
 611			goto again;
 612		}
 613		goto error;
 614	}
 615	desc->timestamp = timestamp;
 616	desc->gencount = gencount;
 617error:
 618	return error;
 619}
 620
 621static int xdr_decode(struct nfs_readdir_descriptor *desc,
 622		      struct nfs_entry *entry, struct xdr_stream *xdr)
 623{
 624	struct inode *inode = file_inode(desc->file);
 625	int error;
 626
 627	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
 628	if (error)
 629		return error;
 630	entry->fattr->time_start = desc->timestamp;
 631	entry->fattr->gencount = desc->gencount;
 632	return 0;
 633}
 634
 635/* Match file and dirent using either filehandle or fileid
 636 * Note: caller is responsible for checking the fsid
 637 */
 638static
 639int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 640{
 641	struct inode *inode;
 642	struct nfs_inode *nfsi;
 643
 644	if (d_really_is_negative(dentry))
 645		return 0;
 646
 647	inode = d_inode(dentry);
 648	if (is_bad_inode(inode) || NFS_STALE(inode))
 649		return 0;
 650
 651	nfsi = NFS_I(inode);
 652	if (entry->fattr->fileid != nfsi->fileid)
 653		return 0;
 654	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
 655		return 0;
 656	return 1;
 657}
 658
 659#define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
 660
 661static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
 662				unsigned int cache_hits,
 663				unsigned int cache_misses)
 664{
 665	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 666		return false;
 667	if (ctx->pos == 0 ||
 668	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
 
 669		return true;
 670	return false;
 671}
 672
 673/*
 674 * This function is called by the getattr code to request the
 675 * use of readdirplus to accelerate any future lookups in the same
 676 * directory.
 677 */
 678void nfs_readdir_record_entry_cache_hit(struct inode *dir)
 679{
 680	struct nfs_inode *nfsi = NFS_I(dir);
 681	struct nfs_open_dir_context *ctx;
 682
 683	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 684	    S_ISDIR(dir->i_mode)) {
 685		rcu_read_lock();
 686		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 687			atomic_inc(&ctx->cache_hits);
 688		rcu_read_unlock();
 689	}
 690}
 691
 692/*
 693 * This function is mainly for use by nfs_getattr().
 694 *
 695 * If this is an 'ls -l', we want to force use of readdirplus.
 
 
 
 696 */
 697void nfs_readdir_record_entry_cache_miss(struct inode *dir)
 698{
 699	struct nfs_inode *nfsi = NFS_I(dir);
 700	struct nfs_open_dir_context *ctx;
 701
 702	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
 703	    S_ISDIR(dir->i_mode)) {
 704		rcu_read_lock();
 705		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
 706			atomic_inc(&ctx->cache_misses);
 707		rcu_read_unlock();
 708	}
 709}
 710
 711static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
 712						unsigned int flags)
 713{
 714	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
 715		return;
 716	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
 717		return;
 718	nfs_readdir_record_entry_cache_miss(dir);
 719}
 720
 721static
 722void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
 723		unsigned long dir_verifier)
 724{
 725	struct qstr filename = QSTR_INIT(entry->name, entry->len);
 726	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 727	struct dentry *dentry;
 728	struct dentry *alias;
 729	struct inode *inode;
 730	int status;
 731
 732	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 733		return;
 734	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 735		return;
 736	if (filename.len == 0)
 737		return;
 738	/* Validate that the name doesn't contain any illegal '\0' */
 739	if (strnlen(filename.name, filename.len) != filename.len)
 740		return;
 741	/* ...or '/' */
 742	if (strnchr(filename.name, filename.len, '/'))
 743		return;
 744	if (filename.name[0] == '.') {
 745		if (filename.len == 1)
 746			return;
 747		if (filename.len == 2 && filename.name[1] == '.')
 748			return;
 749	}
 750	filename.hash = full_name_hash(parent, filename.name, filename.len);
 751
 752	dentry = d_lookup(parent, &filename);
 753again:
 754	if (!dentry) {
 755		dentry = d_alloc_parallel(parent, &filename, &wq);
 756		if (IS_ERR(dentry))
 757			return;
 758	}
 759	if (!d_in_lookup(dentry)) {
 760		/* Is there a mountpoint here? If so, just exit */
 761		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 762					&entry->fattr->fsid))
 763			goto out;
 764		if (nfs_same_file(dentry, entry)) {
 765			if (!entry->fh->size)
 766				goto out;
 767			nfs_set_verifier(dentry, dir_verifier);
 768			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 769			if (!status)
 770				nfs_setsecurity(d_inode(dentry), entry->fattr);
 771			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
 772							    dentry, 0, status);
 773			goto out;
 774		} else {
 775			trace_nfs_readdir_lookup_revalidate_failed(
 776				d_inode(parent), dentry, 0);
 777			d_invalidate(dentry);
 778			dput(dentry);
 779			dentry = NULL;
 780			goto again;
 781		}
 782	}
 783	if (!entry->fh->size) {
 784		d_lookup_done(dentry);
 785		goto out;
 786	}
 787
 788	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 789	alias = d_splice_alias(inode, dentry);
 790	d_lookup_done(dentry);
 791	if (alias) {
 792		if (IS_ERR(alias))
 793			goto out;
 794		dput(dentry);
 795		dentry = alias;
 796	}
 797	nfs_set_verifier(dentry, dir_verifier);
 798	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
 799out:
 800	dput(dentry);
 801}
 802
 803static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
 804				    struct nfs_entry *entry,
 805				    struct xdr_stream *stream)
 806{
 807	int ret;
 808
 809	if (entry->fattr->label)
 810		entry->fattr->label->len = NFS4_MAXLABELLEN;
 811	ret = xdr_decode(desc, entry, stream);
 812	if (ret || !desc->plus)
 813		return ret;
 814	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
 815	return 0;
 816}
 817
 818/* Perform conversion from xdr to cache array */
 819static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
 820				    struct nfs_entry *entry,
 821				    struct page **xdr_pages, unsigned int buflen,
 822				    struct folio **arrays, size_t narrays,
 823				    u64 change_attr)
 
 824{
 825	struct address_space *mapping = desc->file->f_mapping;
 826	struct folio *new, *folio = *arrays;
 827	struct xdr_stream stream;
 828	struct page *scratch;
 829	struct xdr_buf buf;
 830	u64 cookie;
 831	int status;
 832
 833	scratch = alloc_page(GFP_KERNEL);
 834	if (scratch == NULL)
 835		return -ENOMEM;
 836
 837	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 838	xdr_set_scratch_page(&stream, scratch);
 839
 840	do {
 841		status = nfs_readdir_entry_decode(desc, entry, &stream);
 
 
 
 842		if (status != 0)
 843			break;
 844
 845		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 
 
 
 
 846		if (status != -ENOSPC)
 847			continue;
 848
 849		if (folio->mapping != mapping) {
 850			if (!--narrays)
 851				break;
 852			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
 
 853			if (!new)
 854				break;
 855			arrays++;
 856			*arrays = folio = new;
 857		} else {
 858			new = nfs_readdir_folio_get_next(mapping, cookie,
 859							 change_attr);
 
 860			if (!new)
 861				break;
 862			if (folio != *arrays)
 863				nfs_readdir_folio_unlock_and_put(folio);
 864			folio = new;
 865		}
 866		desc->folio_index_max++;
 867		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
 868	} while (!status && !entry->eof);
 869
 870	switch (status) {
 871	case -EBADCOOKIE:
 872		if (!entry->eof)
 873			break;
 874		nfs_readdir_folio_set_eof(folio);
 875		fallthrough;
 
 
 876	case -EAGAIN:
 877		status = 0;
 878		break;
 879	case -ENOSPC:
 880		status = 0;
 881		if (!desc->plus)
 882			break;
 883		while (!nfs_readdir_entry_decode(desc, entry, &stream))
 884			;
 885	}
 886
 887	if (folio != *arrays)
 888		nfs_readdir_folio_unlock_and_put(folio);
 889
 890	put_page(scratch);
 891	return status;
 892}
 893
 894static void nfs_readdir_free_pages(struct page **pages, size_t npages)
 895{
 896	while (npages--)
 897		put_page(pages[npages]);
 898	kfree(pages);
 899}
 900
 901/*
 902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
 903 * to nfs_readdir_free_pages()
 904 */
 905static struct page **nfs_readdir_alloc_pages(size_t npages)
 906{
 907	struct page **pages;
 908	size_t i;
 909
 910	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
 911	if (!pages)
 912		return NULL;
 913	for (i = 0; i < npages; i++) {
 914		struct page *page = alloc_page(GFP_KERNEL);
 915		if (page == NULL)
 916			goto out_freepages;
 917		pages[i] = page;
 918	}
 919	return pages;
 920
 921out_freepages:
 922	nfs_readdir_free_pages(pages, i);
 923	return NULL;
 924}
 925
 926static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
 927				    __be32 *verf_arg, __be32 *verf_res,
 928				    struct folio **arrays, size_t narrays)
 929{
 930	u64 change_attr;
 931	struct page **pages;
 932	struct folio *folio = *arrays;
 933	struct nfs_entry *entry;
 934	size_t array_size;
 935	struct inode *inode = file_inode(desc->file);
 936	unsigned int dtsize = desc->dtsize;
 937	unsigned int pglen;
 938	int status = -ENOMEM;
 939
 940	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
 941	if (!entry)
 942		return -ENOMEM;
 943	entry->cookie = nfs_readdir_folio_last_cookie(folio);
 944	entry->fh = nfs_alloc_fhandle();
 945	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
 946	entry->server = NFS_SERVER(inode);
 947	if (entry->fh == NULL || entry->fattr == NULL)
 948		goto out;
 949
 
 
 
 
 
 
 950	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
 951	pages = nfs_readdir_alloc_pages(array_size);
 952	if (!pages)
 953		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954
 955	change_attr = inode_peek_iversion_raw(inode);
 956	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
 957					dtsize, verf_res);
 958	if (status < 0)
 959		goto free_pages;
 960
 961	pglen = status;
 962	if (pglen != 0)
 963		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
 964						  arrays, narrays, change_attr);
 965	else
 966		nfs_readdir_folio_set_eof(folio);
 967	desc->buffer_fills++;
 968
 969free_pages:
 970	nfs_readdir_free_pages(pages, array_size);
 
 
 971out:
 972	nfs_free_fattr(entry->fattr);
 973	nfs_free_fhandle(entry->fh);
 974	kfree(entry);
 975	return status;
 976}
 977
 978static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
 979{
 980	folio_put(desc->folio);
 981	desc->folio = NULL;
 982}
 983
 984static void
 985nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
 986{
 987	folio_unlock(desc->folio);
 988	nfs_readdir_folio_put(desc);
 989}
 990
 991static struct folio *
 992nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
 993{
 994	struct address_space *mapping = desc->file->f_mapping;
 995	u64 change_attr = inode_peek_iversion_raw(mapping->host);
 996	u64 cookie = desc->last_cookie;
 997	struct folio *folio;
 998
 999	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000	if (!folio)
1001		return NULL;
1002	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004	return folio;
1005}
1006
1007/*
1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009 * and locks the page to prevent removal from the page cache.
1010 */
1011static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012{
1013	struct inode *inode = file_inode(desc->file);
1014	struct nfs_inode *nfsi = NFS_I(inode);
1015	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016	int res;
1017
1018	desc->folio = nfs_readdir_folio_get_cached(desc);
1019	if (!desc->folio)
1020		return -ENOMEM;
1021	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022		/* Grow the dtsize if we had to go back for more pages */
1023		if (desc->folio_index == desc->folio_index_max)
1024			nfs_grow_dtsize(desc);
1025		desc->folio_index_max = desc->folio_index;
1026		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027					     desc->last_cookie,
1028					     desc->folio->index, desc->dtsize);
1029		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030					       &desc->folio, 1);
1031		if (res < 0) {
1032			nfs_readdir_folio_unlock_and_put_cached(desc);
1033			trace_nfs_readdir_cache_fill_done(inode, res);
1034			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035				invalidate_inode_pages2(desc->file->f_mapping);
1036				nfs_readdir_rewind_search(desc);
1037				trace_nfs_readdir_invalidate_cache_range(
1038					inode, 0, MAX_LFS_FILESIZE);
1039				return -EAGAIN;
1040			}
1041			return res;
1042		}
1043		/*
1044		 * Set the cookie verifier if the page cache was empty
1045		 */
1046		if (desc->last_cookie == 0 &&
1047		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048			memcpy(nfsi->cookieverf, verf,
1049			       sizeof(nfsi->cookieverf));
1050			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051						      -1);
1052			trace_nfs_readdir_invalidate_cache_range(
1053				inode, 1, MAX_LFS_FILESIZE);
1054		}
1055		desc->clear_cache = false;
1056	}
1057	res = nfs_readdir_search_array(desc);
1058	if (res == 0)
 
1059		return 0;
1060	nfs_readdir_folio_unlock_and_put_cached(desc);
 
1061	return res;
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064/* Search for desc->dir_cookie from the beginning of the page cache */
1065static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066{
1067	int res;
1068
 
 
 
1069	do {
 
 
 
 
 
1070		res = find_and_lock_cache_page(desc);
1071	} while (res == -EAGAIN);
1072	return res;
1073}
1074
1075#define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076
1077/*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
1080static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081			   const __be32 *verf)
1082{
1083	struct file	*file = desc->file;
1084	struct nfs_cache_array *array;
1085	unsigned int i;
1086	bool first_emit = !desc->dir_cookie;
1087
1088	array = kmap_local_folio(desc->folio, 0);
1089	for (i = desc->cache_entry_index; i < array->size; i++) {
1090		struct nfs_cache_array_entry *ent;
1091
1092		/*
1093		 * nfs_readdir_handle_cache_misses return force clear at
1094		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096		 * entries need be emitted here.
1097		 */
1098		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099			desc->eob = true;
1100			break;
1101		}
1102
1103		ent = &array->array[i];
1104		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106			desc->eob = true;
1107			break;
1108		}
1109		memcpy(desc->verf, verf, sizeof(desc->verf));
1110		if (i == array->size - 1) {
 
 
1111			desc->dir_cookie = array->last_cookie;
1112			nfs_readdir_seek_next_array(array, desc);
1113		} else {
1114			desc->dir_cookie = array->array[i + 1].cookie;
1115			desc->last_cookie = array->array[0].cookie;
1116		}
1117		if (nfs_readdir_use_cookie(file))
1118			desc->ctx->pos = desc->dir_cookie;
1119		else
1120			desc->ctx->pos++;
 
 
1121	}
1122	if (array->folio_is_eof)
1123		desc->eof = !desc->eob;
1124
1125	kunmap_local(array);
1126	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127			(unsigned long long)desc->dir_cookie);
1128}
1129
1130/*
1131 * If we cannot find a cookie in our cache, we suspect that this is
1132 * because it points to a deleted file, so we ask the server to return
1133 * whatever it thinks is the next entry. We then feed this to filldir.
1134 * If all goes well, we should then be able to find our way round the
1135 * cache on the next call to readdir_search_pagecache();
1136 *
1137 * NOTE: we cannot add the anonymous page to the pagecache because
1138 *	 the data it contains might not be page aligned. Besides,
1139 *	 we should already have a complete representation of the
1140 *	 directory in the page cache by the time we get here.
1141 */
1142static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143{
1144	struct folio	**arrays;
1145	size_t		i, sz = 512;
1146	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1147	int		status = -ENOMEM;
1148
1149	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150			(unsigned long long)desc->dir_cookie);
1151
1152	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153	if (!arrays)
1154		goto out;
1155	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156	if (!arrays[0])
1157		goto out;
1158
1159	desc->folio_index = 0;
1160	desc->cache_entry_index = 0;
1161	desc->last_cookie = desc->dir_cookie;
1162	desc->folio_index_max = 0;
1163
1164	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165				   -1, desc->dtsize);
1166
1167	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168	if (status < 0) {
1169		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170		goto out_free;
1171	}
1172
1173	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174		desc->folio = arrays[i];
1175		nfs_do_filldir(desc, verf);
1176	}
1177	desc->folio = NULL;
 
1178
1179	/*
1180	 * Grow the dtsize if we have to go back for more pages,
1181	 * or shrink it if we're reading too many.
1182	 */
1183	if (!desc->eof) {
1184		if (!desc->eob)
1185			nfs_grow_dtsize(desc);
1186		else if (desc->buffer_fills == 1 &&
1187			 i < (desc->folio_index_max >> 1))
1188			nfs_shrink_dtsize(desc);
1189	}
1190out_free:
1191	for (i = 0; i < sz && arrays[i]; i++)
1192		nfs_readdir_folio_array_free(arrays[i]);
1193out:
1194	if (!nfs_readdir_use_cookie(desc->file))
1195		nfs_readdir_rewind_search(desc);
1196	desc->folio_index_max = -1;
1197	kfree(arrays);
1198	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199	return status;
1200}
1201
1202static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203					    struct nfs_readdir_descriptor *desc,
1204					    unsigned int cache_misses,
1205					    bool force_clear)
1206{
1207	if (desc->ctx->pos == 0 || !desc->plus)
1208		return false;
1209	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210		return false;
1211	trace_nfs_readdir_force_readdirplus(inode);
1212	return true;
1213}
1214
1215/* The file offset position represents the dirent entry number.  A
1216   last cookie cache takes care of the common case of reading the
1217   whole directory.
1218 */
1219static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220{
1221	struct dentry	*dentry = file_dentry(file);
1222	struct inode	*inode = d_inode(dentry);
1223	struct nfs_inode *nfsi = NFS_I(inode);
1224	struct nfs_open_dir_context *dir_ctx = file->private_data;
1225	struct nfs_readdir_descriptor *desc;
1226	unsigned int cache_hits, cache_misses;
1227	bool force_clear;
1228	int res;
1229
1230	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231			file, (long long)ctx->pos);
1232	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233
1234	/*
1235	 * ctx->pos points to the dirent entry number.
1236	 * *desc->dir_cookie has the cookie for the next entry. We have
1237	 * to either find the entry with the appropriate number or
1238	 * revalidate the cookie.
1239	 */
1240	nfs_revalidate_mapping(inode, file->f_mapping);
 
 
 
 
1241
1242	res = -ENOMEM;
1243	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244	if (!desc)
1245		goto out;
1246	desc->file = file;
1247	desc->ctx = ctx;
1248	desc->folio_index_max = -1;
1249
1250	spin_lock(&file->f_lock);
1251	desc->dir_cookie = dir_ctx->dir_cookie;
1252	desc->folio_index = dir_ctx->page_index;
1253	desc->last_cookie = dir_ctx->last_cookie;
1254	desc->attr_gencount = dir_ctx->attr_gencount;
1255	desc->eof = dir_ctx->eof;
1256	nfs_set_dtsize(desc, dir_ctx->dtsize);
1257	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260	force_clear = dir_ctx->force_clear;
1261	spin_unlock(&file->f_lock);
1262
1263	if (desc->eof) {
1264		res = 0;
1265		goto out_free;
1266	}
1267
1268	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270						      force_clear);
1271	desc->clear_cache = force_clear;
1272
1273	do {
1274		res = readdir_search_pagecache(desc);
1275
1276		if (res == -EBADCOOKIE) {
1277			res = 0;
1278			/* This means either end of directory */
1279			if (desc->dir_cookie && !desc->eof) {
1280				/* Or that the server has 'lost' a cookie */
1281				res = uncached_readdir(desc);
1282				if (res == 0)
1283					continue;
1284				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285					res = 0;
1286			}
1287			break;
1288		}
1289		if (res == -ETOOSMALL && desc->plus) {
 
1290			nfs_zap_caches(inode);
 
1291			desc->plus = false;
1292			desc->eof = false;
1293			continue;
1294		}
1295		if (res < 0)
1296			break;
1297
1298		nfs_do_filldir(desc, nfsi->cookieverf);
1299		nfs_readdir_folio_unlock_and_put_cached(desc);
1300		if (desc->folio_index == desc->folio_index_max)
1301			desc->clear_cache = force_clear;
1302	} while (!desc->eob && !desc->eof);
1303
1304	spin_lock(&file->f_lock);
1305	dir_ctx->dir_cookie = desc->dir_cookie;
1306	dir_ctx->last_cookie = desc->last_cookie;
 
1307	dir_ctx->attr_gencount = desc->attr_gencount;
1308	dir_ctx->page_index = desc->folio_index;
1309	dir_ctx->force_clear = force_clear;
1310	dir_ctx->eof = desc->eof;
1311	dir_ctx->dtsize = desc->dtsize;
1312	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313	spin_unlock(&file->f_lock);
1314out_free:
1315	kfree(desc);
1316
1317out:
1318	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319	return res;
1320}
1321
1322static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323{
1324	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325
1326	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327			filp, offset, whence);
1328
1329	switch (whence) {
1330	default:
1331		return -EINVAL;
1332	case SEEK_SET:
1333		if (offset < 0)
1334			return -EINVAL;
1335		spin_lock(&filp->f_lock);
1336		break;
1337	case SEEK_CUR:
1338		if (offset == 0)
1339			return filp->f_pos;
1340		spin_lock(&filp->f_lock);
1341		offset += filp->f_pos;
1342		if (offset < 0) {
1343			spin_unlock(&filp->f_lock);
1344			return -EINVAL;
1345		}
1346	}
1347	if (offset != filp->f_pos) {
1348		filp->f_pos = offset;
1349		dir_ctx->page_index = 0;
1350		if (!nfs_readdir_use_cookie(filp)) {
 
1351			dir_ctx->dir_cookie = 0;
1352			dir_ctx->last_cookie = 0;
1353		} else {
1354			dir_ctx->dir_cookie = offset;
1355			dir_ctx->last_cookie = offset;
1356		}
1357		dir_ctx->eof = false;
1358	}
1359	spin_unlock(&filp->f_lock);
1360	return offset;
1361}
1362
1363/*
1364 * All directory operations under NFS are synchronous, so fsync()
1365 * is a dummy operation.
1366 */
1367static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368			 int datasync)
1369{
1370	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371
1372	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373	return 0;
1374}
1375
1376/**
1377 * nfs_force_lookup_revalidate - Mark the directory as having changed
1378 * @dir: pointer to directory inode
1379 *
1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381 * full lookup on all child dentries of 'dir' whenever a change occurs
1382 * on the server that might have invalidated our dcache.
1383 *
1384 * Note that we reserve bit '0' as a tag to let us know when a dentry
1385 * was revalidated while holding a delegation on its inode.
1386 *
1387 * The caller should be holding dir->i_lock
1388 */
1389void nfs_force_lookup_revalidate(struct inode *dir)
1390{
1391	NFS_I(dir)->cache_change_attribute += 2;
1392}
1393EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394
1395/**
1396 * nfs_verify_change_attribute - Detects NFS remote directory changes
1397 * @dir: pointer to parent directory inode
1398 * @verf: previously saved change attribute
1399 *
1400 * Return "false" if the verifiers doesn't match the change attribute.
1401 * This would usually indicate that the directory contents have changed on
1402 * the server, and that any dentries need revalidating.
1403 */
1404static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405{
1406	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407}
1408
1409static void nfs_set_verifier_delegated(unsigned long *verf)
1410{
1411	*verf |= 1UL;
1412}
1413
1414#if IS_ENABLED(CONFIG_NFS_V4)
1415static void nfs_unset_verifier_delegated(unsigned long *verf)
1416{
1417	*verf &= ~1UL;
1418}
1419#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420
1421static bool nfs_test_verifier_delegated(unsigned long verf)
1422{
1423	return verf & 1;
1424}
1425
1426static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427{
1428	return nfs_test_verifier_delegated(dentry->d_time);
1429}
1430
1431static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432{
1433	struct inode *inode = d_inode(dentry);
1434	struct inode *dir = d_inode_rcu(dentry->d_parent);
1435
1436	if (!dir || !nfs_verify_change_attribute(dir, verf))
1437		return;
 
1438	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439		nfs_set_verifier_delegated(&verf);
 
1440	dentry->d_time = verf;
1441}
1442
1443/**
1444 * nfs_set_verifier - save a parent directory verifier in the dentry
1445 * @dentry: pointer to dentry
1446 * @verf: verifier to save
1447 *
1448 * Saves the parent directory verifier in @dentry. If the inode has
1449 * a delegation, we also tag the dentry as having been revalidated
1450 * while holding a delegation so that we know we don't have to
1451 * look it up again after a directory change.
1452 */
1453void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454{
1455
1456	spin_lock(&dentry->d_lock);
1457	nfs_set_verifier_locked(dentry, verf);
1458	spin_unlock(&dentry->d_lock);
1459}
1460EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461
1462#if IS_ENABLED(CONFIG_NFS_V4)
1463/**
1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465 * @inode: pointer to inode
1466 *
1467 * Iterates through the dentries in the inode alias list and clears
1468 * the tag used to indicate that the dentry has been revalidated
1469 * while holding a delegation.
1470 * This function is intended for use when the delegation is being
1471 * returned or revoked.
1472 */
1473void nfs_clear_verifier_delegated(struct inode *inode)
1474{
1475	struct dentry *alias;
1476
1477	if (!inode)
1478		return;
1479	spin_lock(&inode->i_lock);
1480	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481		spin_lock(&alias->d_lock);
1482		nfs_unset_verifier_delegated(&alias->d_time);
1483		spin_unlock(&alias->d_lock);
1484	}
1485	spin_unlock(&inode->i_lock);
1486}
1487EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489
1490static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491{
1492	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493	    d_really_is_negative(dentry))
1494		return dentry->d_time == inode_peek_iversion_raw(dir);
1495	return nfs_verify_change_attribute(dir, dentry->d_time);
1496}
1497
1498/*
1499 * A check for whether or not the parent directory has changed.
1500 * In the case it has, we assume that the dentries are untrustworthy
1501 * and may need to be looked up again.
1502 * If rcu_walk prevents us from performing a full check, return 0.
1503 */
1504static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505			      int rcu_walk)
1506{
1507	if (IS_ROOT(dentry))
1508		return 1;
1509	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510		return 0;
1511	if (!nfs_dentry_verify_change(dir, dentry))
1512		return 0;
1513	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1514	if (nfs_mapping_need_revalidate_inode(dir)) {
1515		if (rcu_walk)
1516			return 0;
1517		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518			return 0;
1519	}
1520	if (!nfs_dentry_verify_change(dir, dentry))
1521		return 0;
1522	return 1;
1523}
1524
1525/*
1526 * Use intent information to check whether or not we're going to do
1527 * an O_EXCL create using this path component.
1528 */
1529static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530{
1531	if (NFS_PROTO(dir)->version == 2)
1532		return 0;
1533	return flags & LOOKUP_EXCL;
1534}
1535
1536/*
1537 * Inode and filehandle revalidation for lookups.
1538 *
1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540 * or if the intent information indicates that we're about to open this
1541 * particular file and the "nocto" mount flag is not set.
1542 *
1543 */
1544static
1545int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546{
1547	struct nfs_server *server = NFS_SERVER(inode);
1548	int ret;
1549
1550	if (IS_AUTOMOUNT(inode))
1551		return 0;
1552
1553	if (flags & LOOKUP_OPEN) {
1554		switch (inode->i_mode & S_IFMT) {
1555		case S_IFREG:
1556			/* A NFSv4 OPEN will revalidate later */
1557			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558				goto out;
1559			fallthrough;
1560		case S_IFDIR:
1561			if (server->flags & NFS_MOUNT_NOCTO)
1562				break;
1563			/* NFS close-to-open cache consistency validation */
1564			goto out_force;
1565		}
1566	}
1567
1568	/* VFS wants an on-the-wire revalidation */
1569	if (flags & LOOKUP_REVAL)
1570		goto out_force;
1571out:
1572	if (inode->i_nlink > 0 ||
1573	    (inode->i_nlink == 0 &&
1574	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575		return 0;
1576	else
1577		return -ESTALE;
1578out_force:
1579	if (flags & LOOKUP_RCU)
1580		return -ECHILD;
1581	ret = __nfs_revalidate_inode(server, inode);
1582	if (ret != 0)
1583		return ret;
1584	goto out;
1585}
1586
1587static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588{
1589	spin_lock(&inode->i_lock);
1590	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591	spin_unlock(&inode->i_lock);
1592}
1593
1594/*
1595 * We judge how long we want to trust negative
1596 * dentries by looking at the parent inode mtime.
1597 *
1598 * If parent mtime has changed, we revalidate, else we wait for a
1599 * period corresponding to the parent's attribute cache timeout value.
1600 *
1601 * If LOOKUP_RCU prevents us from performing a full check, return 1
1602 * suggesting a reval is needed.
1603 *
1604 * Note that when creating a new file, or looking up a rename target,
1605 * then it shouldn't be necessary to revalidate a negative dentry.
1606 */
1607static inline
1608int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609		       unsigned int flags)
1610{
1611	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612		return 0;
1613	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614		return 1;
1615	/* Case insensitive server? Revalidate negative dentries */
1616	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617		return 1;
1618	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619}
1620
1621static int
1622nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623			   struct inode *inode, int error)
1624{
1625	switch (error) {
1626	case 1:
1627		break;
 
 
1628	case 0:
1629		/*
1630		 * We can't d_drop the root of a disconnected tree:
1631		 * its d_hash is on the s_anon list and d_drop() would hide
1632		 * it from shrink_dcache_for_unmount(), leading to busy
1633		 * inodes on unmount and further oopses.
1634		 */
1635		if (inode && IS_ROOT(dentry))
1636			error = 1;
1637		break;
 
 
1638	}
1639	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
 
1640	return error;
1641}
1642
1643static int
1644nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1645			       unsigned int flags)
1646{
1647	int ret = 1;
1648	if (nfs_neg_need_reval(dir, dentry, flags)) {
1649		if (flags & LOOKUP_RCU)
1650			return -ECHILD;
1651		ret = 0;
1652	}
1653	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1654}
1655
1656static int
1657nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1658				struct inode *inode)
1659{
1660	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1662}
1663
1664static int nfs_lookup_revalidate_dentry(struct inode *dir,
1665					struct dentry *dentry,
1666					struct inode *inode, unsigned int flags)
1667{
1668	struct nfs_fh *fhandle;
1669	struct nfs_fattr *fattr;
 
1670	unsigned long dir_verifier;
1671	int ret;
1672
1673	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1674
1675	ret = -ENOMEM;
1676	fhandle = nfs_alloc_fhandle();
1677	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1678	if (fhandle == NULL || fattr == NULL)
 
1679		goto out;
1680
1681	dir_verifier = nfs_save_change_attribute(dir);
1682	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1683	if (ret < 0) {
1684		switch (ret) {
1685		case -ESTALE:
1686		case -ENOENT:
1687			ret = 0;
1688			break;
1689		case -ETIMEDOUT:
1690			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691				ret = 1;
1692		}
1693		goto out;
1694	}
1695
1696	/* Request help from readdirplus */
1697	nfs_lookup_advise_force_readdirplus(dir, flags);
1698
1699	ret = 0;
1700	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1701		goto out;
1702	if (nfs_refresh_inode(inode, fattr) < 0)
1703		goto out;
1704
1705	nfs_setsecurity(inode, fattr);
1706	nfs_set_verifier(dentry, dir_verifier);
1707
 
 
1708	ret = 1;
1709out:
1710	nfs_free_fattr(fattr);
1711	nfs_free_fhandle(fhandle);
 
1712
1713	/*
1714	 * If the lookup failed despite the dentry change attribute being
1715	 * a match, then we should revalidate the directory cache.
1716	 */
1717	if (!ret && nfs_dentry_verify_change(dir, dentry))
1718		nfs_mark_dir_for_revalidate(dir);
1719	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1720}
1721
1722/*
1723 * This is called every time the dcache has a lookup hit,
1724 * and we should check whether we can really trust that
1725 * lookup.
1726 *
1727 * NOTE! The hit can be a negative hit too, don't assume
1728 * we have an inode!
1729 *
1730 * If the parent directory is seen to have changed, we throw out the
1731 * cached dentry and do a new lookup.
1732 */
1733static int
1734nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1735			 unsigned int flags)
1736{
1737	struct inode *inode;
1738	int error;
1739
1740	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1741	inode = d_inode(dentry);
1742
1743	if (!inode)
1744		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1745
1746	if (is_bad_inode(inode)) {
1747		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1748				__func__, dentry);
1749		goto out_bad;
1750	}
1751
1752	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1753	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1754		goto out_bad;
1755
1756	if (nfs_verifier_is_delegated(dentry))
1757		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1758
1759	/* Force a full look up iff the parent directory has changed */
1760	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1761	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1762		error = nfs_lookup_verify_inode(inode, flags);
1763		if (error) {
1764			if (error == -ESTALE)
1765				nfs_mark_dir_for_revalidate(dir);
1766			goto out_bad;
1767		}
 
1768		goto out_valid;
1769	}
1770
1771	if (flags & LOOKUP_RCU)
1772		return -ECHILD;
1773
1774	if (NFS_STALE(inode))
1775		goto out_bad;
1776
1777	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
 
 
 
1778out_valid:
1779	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1780out_bad:
1781	if (flags & LOOKUP_RCU)
1782		return -ECHILD;
1783	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1784}
1785
1786static int
1787__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1788			int (*reval)(struct inode *, struct dentry *, unsigned int))
1789{
1790	struct dentry *parent;
1791	struct inode *dir;
1792	int ret;
1793
1794	if (flags & LOOKUP_RCU) {
1795		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1796			return -ECHILD;
1797		parent = READ_ONCE(dentry->d_parent);
1798		dir = d_inode_rcu(parent);
1799		if (!dir)
1800			return -ECHILD;
1801		ret = reval(dir, dentry, flags);
1802		if (parent != READ_ONCE(dentry->d_parent))
1803			return -ECHILD;
1804	} else {
1805		/* Wait for unlink to complete */
1806		wait_var_event(&dentry->d_fsdata,
1807			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1808		parent = dget_parent(dentry);
1809		ret = reval(d_inode(parent), dentry, flags);
1810		dput(parent);
1811	}
1812	return ret;
1813}
1814
1815static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816{
1817	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818}
1819
1820/*
1821 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1822 * when we don't really care about the dentry name. This is called when a
1823 * pathwalk ends on a dentry that was not found via a normal lookup in the
1824 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1825 *
1826 * In this situation, we just want to verify that the inode itself is OK
1827 * since the dentry might have changed on the server.
1828 */
1829static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831	struct inode *inode = d_inode(dentry);
1832	int error = 0;
1833
1834	/*
1835	 * I believe we can only get a negative dentry here in the case of a
1836	 * procfs-style symlink. Just assume it's correct for now, but we may
1837	 * eventually need to do something more here.
1838	 */
1839	if (!inode) {
1840		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1841				__func__, dentry);
1842		return 1;
1843	}
1844
1845	if (is_bad_inode(inode)) {
1846		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1847				__func__, dentry);
1848		return 0;
1849	}
1850
1851	error = nfs_lookup_verify_inode(inode, flags);
1852	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1853			__func__, inode->i_ino, error ? "invalid" : "valid");
1854	return !error;
1855}
1856
1857/*
1858 * This is called from dput() when d_count is going to 0.
1859 */
1860static int nfs_dentry_delete(const struct dentry *dentry)
1861{
1862	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1863		dentry, dentry->d_flags);
1864
1865	/* Unhash any dentry with a stale inode */
1866	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1867		return 1;
1868
1869	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870		/* Unhash it, so that ->d_iput() would be called */
1871		return 1;
1872	}
1873	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1874		/* Unhash it, so that ancestors of killed async unlink
1875		 * files will be cleaned up during umount */
1876		return 1;
1877	}
1878	return 0;
1879
1880}
1881
1882/* Ensure that we revalidate inode->i_nlink */
1883static void nfs_drop_nlink(struct inode *inode)
1884{
1885	spin_lock(&inode->i_lock);
1886	/* drop the inode if we're reasonably sure this is the last link */
1887	if (inode->i_nlink > 0)
1888		drop_nlink(inode);
1889	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1890	nfs_set_cache_invalid(
1891		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1892			       NFS_INO_INVALID_NLINK);
1893	spin_unlock(&inode->i_lock);
1894}
1895
1896/*
1897 * Called when the dentry loses inode.
1898 * We use it to clean up silly-renamed files.
1899 */
1900static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1901{
 
 
 
 
1902	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1903		nfs_complete_unlink(dentry, inode);
1904		nfs_drop_nlink(inode);
1905	}
1906	iput(inode);
1907}
1908
1909static void nfs_d_release(struct dentry *dentry)
1910{
1911	/* free cached devname value, if it survived that far */
1912	if (unlikely(dentry->d_fsdata)) {
1913		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1914			WARN_ON(1);
1915		else
1916			kfree(dentry->d_fsdata);
1917	}
1918}
1919
1920const struct dentry_operations nfs_dentry_operations = {
1921	.d_revalidate	= nfs_lookup_revalidate,
1922	.d_weak_revalidate	= nfs_weak_revalidate,
1923	.d_delete	= nfs_dentry_delete,
1924	.d_iput		= nfs_dentry_iput,
1925	.d_automount	= nfs_d_automount,
1926	.d_release	= nfs_d_release,
1927};
1928EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1929
1930struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1931{
1932	struct dentry *res;
1933	struct inode *inode = NULL;
1934	struct nfs_fh *fhandle = NULL;
1935	struct nfs_fattr *fattr = NULL;
 
1936	unsigned long dir_verifier;
1937	int error;
1938
1939	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1940	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1941
1942	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1943		return ERR_PTR(-ENAMETOOLONG);
1944
1945	/*
1946	 * If we're doing an exclusive create, optimize away the lookup
1947	 * but don't hash the dentry.
1948	 */
1949	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1950		return NULL;
1951
1952	res = ERR_PTR(-ENOMEM);
1953	fhandle = nfs_alloc_fhandle();
1954	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1955	if (fhandle == NULL || fattr == NULL)
1956		goto out;
1957
 
 
 
 
1958	dir_verifier = nfs_save_change_attribute(dir);
1959	trace_nfs_lookup_enter(dir, dentry, flags);
1960	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1961	if (error == -ENOENT) {
1962		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1963			dir_verifier = inode_peek_iversion_raw(dir);
1964		goto no_entry;
1965	}
1966	if (error < 0) {
1967		res = ERR_PTR(error);
1968		goto out;
1969	}
1970	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1971	res = ERR_CAST(inode);
1972	if (IS_ERR(res))
1973		goto out;
1974
1975	/* Notify readdir to use READDIRPLUS */
1976	nfs_lookup_advise_force_readdirplus(dir, flags);
1977
1978no_entry:
1979	res = d_splice_alias(inode, dentry);
1980	if (res != NULL) {
1981		if (IS_ERR(res))
1982			goto out;
1983		dentry = res;
1984	}
1985	nfs_set_verifier(dentry, dir_verifier);
 
 
 
1986out:
1987	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1988	nfs_free_fattr(fattr);
1989	nfs_free_fhandle(fhandle);
1990	return res;
1991}
1992EXPORT_SYMBOL_GPL(nfs_lookup);
1993
1994void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1995{
1996	/* Case insensitive server? Revalidate dentries */
1997	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1998		d_prune_aliases(inode);
1999}
2000EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2001
2002#if IS_ENABLED(CONFIG_NFS_V4)
2003static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2004
2005const struct dentry_operations nfs4_dentry_operations = {
2006	.d_revalidate	= nfs4_lookup_revalidate,
2007	.d_weak_revalidate	= nfs_weak_revalidate,
2008	.d_delete	= nfs_dentry_delete,
2009	.d_iput		= nfs_dentry_iput,
2010	.d_automount	= nfs_d_automount,
2011	.d_release	= nfs_d_release,
2012};
2013EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2014
 
 
 
 
 
 
 
 
 
 
2015static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2016{
2017	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2018}
2019
2020static int do_open(struct inode *inode, struct file *filp)
2021{
2022	nfs_fscache_open_file(inode, filp);
2023	return 0;
2024}
2025
2026static int nfs_finish_open(struct nfs_open_context *ctx,
2027			   struct dentry *dentry,
2028			   struct file *file, unsigned open_flags)
2029{
2030	int err;
2031
2032	err = finish_open(file, dentry, do_open);
2033	if (err)
2034		goto out;
2035	if (S_ISREG(file_inode(file)->i_mode))
2036		nfs_file_set_open_context(file, ctx);
2037	else
2038		err = -EOPENSTALE;
2039out:
2040	return err;
2041}
2042
2043int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2044		    struct file *file, unsigned open_flags,
2045		    umode_t mode)
2046{
2047	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048	struct nfs_open_context *ctx;
2049	struct dentry *res;
2050	struct iattr attr = { .ia_valid = ATTR_OPEN };
2051	struct inode *inode;
2052	unsigned int lookup_flags = 0;
2053	unsigned long dir_verifier;
2054	bool switched = false;
2055	int created = 0;
2056	int err;
2057
2058	/* Expect a negative dentry */
2059	BUG_ON(d_inode(dentry));
2060
2061	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2062			dir->i_sb->s_id, dir->i_ino, dentry);
2063
2064	err = nfs_check_flags(open_flags);
2065	if (err)
2066		return err;
2067
2068	/* NFS only supports OPEN on regular files */
2069	if ((open_flags & O_DIRECTORY)) {
2070		if (!d_in_lookup(dentry)) {
2071			/*
2072			 * Hashed negative dentry with O_DIRECTORY: dentry was
2073			 * revalidated and is fine, no need to perform lookup
2074			 * again
2075			 */
2076			return -ENOENT;
2077		}
2078		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2079		goto no_open;
2080	}
2081
2082	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2083		return -ENAMETOOLONG;
2084
2085	if (open_flags & O_CREAT) {
2086		struct nfs_server *server = NFS_SERVER(dir);
2087
2088		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2089			mode &= ~current_umask();
2090
2091		attr.ia_valid |= ATTR_MODE;
2092		attr.ia_mode = mode;
2093	}
2094	if (open_flags & O_TRUNC) {
2095		attr.ia_valid |= ATTR_SIZE;
2096		attr.ia_size = 0;
2097	}
2098
2099	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2100		d_drop(dentry);
2101		switched = true;
2102		dentry = d_alloc_parallel(dentry->d_parent,
2103					  &dentry->d_name, &wq);
2104		if (IS_ERR(dentry))
2105			return PTR_ERR(dentry);
2106		if (unlikely(!d_in_lookup(dentry)))
2107			return finish_no_open(file, dentry);
2108	}
2109
2110	ctx = create_nfs_open_context(dentry, open_flags, file);
2111	err = PTR_ERR(ctx);
2112	if (IS_ERR(ctx))
2113		goto out;
2114
2115	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2116	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2117	if (created)
2118		file->f_mode |= FMODE_CREATED;
2119	if (IS_ERR(inode)) {
2120		err = PTR_ERR(inode);
2121		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2122		put_nfs_open_context(ctx);
2123		d_drop(dentry);
2124		switch (err) {
2125		case -ENOENT:
2126			d_splice_alias(NULL, dentry);
2127			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2128				dir_verifier = inode_peek_iversion_raw(dir);
2129			else
2130				dir_verifier = nfs_save_change_attribute(dir);
2131			nfs_set_verifier(dentry, dir_verifier);
2132			break;
2133		case -EISDIR:
2134		case -ENOTDIR:
2135			goto no_open;
2136		case -ELOOP:
2137			if (!(open_flags & O_NOFOLLOW))
2138				goto no_open;
2139			break;
2140			/* case -EINVAL: */
2141		default:
2142			break;
2143		}
2144		goto out;
2145	}
2146	file->f_mode |= FMODE_CAN_ODIRECT;
2147
2148	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2149	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2150	put_nfs_open_context(ctx);
2151out:
2152	if (unlikely(switched)) {
2153		d_lookup_done(dentry);
2154		dput(dentry);
2155	}
2156	return err;
2157
2158no_open:
2159	res = nfs_lookup(dir, dentry, lookup_flags);
2160	if (!res) {
2161		inode = d_inode(dentry);
2162		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2164			res = ERR_PTR(-ENOTDIR);
2165		else if (inode && S_ISREG(inode->i_mode))
2166			res = ERR_PTR(-EOPENSTALE);
2167	} else if (!IS_ERR(res)) {
2168		inode = d_inode(res);
2169		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2170		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2171			dput(res);
2172			res = ERR_PTR(-ENOTDIR);
2173		} else if (inode && S_ISREG(inode->i_mode)) {
2174			dput(res);
2175			res = ERR_PTR(-EOPENSTALE);
2176		}
2177	}
2178	if (switched) {
2179		d_lookup_done(dentry);
2180		if (!res)
2181			res = dentry;
2182		else
2183			dput(dentry);
2184	}
2185	if (IS_ERR(res))
2186		return PTR_ERR(res);
2187	return finish_no_open(file, res);
2188}
2189EXPORT_SYMBOL_GPL(nfs_atomic_open);
2190
2191static int
2192nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2193			  unsigned int flags)
2194{
2195	struct inode *inode;
2196
2197	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
2198
2199	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2200		goto full_reval;
2201	if (d_mountpoint(dentry))
2202		goto full_reval;
2203
2204	inode = d_inode(dentry);
2205
2206	/* We can't create new files in nfs_open_revalidate(), so we
2207	 * optimize away revalidation of negative dentries.
2208	 */
2209	if (inode == NULL)
2210		goto full_reval;
2211
2212	if (nfs_verifier_is_delegated(dentry))
2213		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2214
2215	/* NFS only supports OPEN on regular files */
2216	if (!S_ISREG(inode->i_mode))
2217		goto full_reval;
2218
2219	/* We cannot do exclusive creation on a positive dentry */
2220	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2221		goto reval_dentry;
2222
2223	/* Check if the directory changed */
2224	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2225		goto reval_dentry;
2226
2227	/* Let f_op->open() actually open (and revalidate) the file */
2228	return 1;
2229reval_dentry:
2230	if (flags & LOOKUP_RCU)
2231		return -ECHILD;
2232	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2233
2234full_reval:
2235	return nfs_do_lookup_revalidate(dir, dentry, flags);
2236}
2237
2238static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2239{
2240	return __nfs_lookup_revalidate(dentry, flags,
2241			nfs4_do_lookup_revalidate);
2242}
2243
2244#endif /* CONFIG_NFSV4 */
2245
2246struct dentry *
2247nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2248				struct nfs_fattr *fattr)
 
2249{
2250	struct dentry *parent = dget_parent(dentry);
2251	struct inode *dir = d_inode(parent);
2252	struct inode *inode;
2253	struct dentry *d;
2254	int error;
2255
2256	d_drop(dentry);
2257
2258	if (fhandle->size == 0) {
2259		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2260		if (error)
2261			goto out_error;
2262	}
2263	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2264	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2265		struct nfs_server *server = NFS_SB(dentry->d_sb);
2266		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2267				fattr, NULL);
2268		if (error < 0)
2269			goto out_error;
2270	}
2271	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2272	d = d_splice_alias(inode, dentry);
2273out:
2274	dput(parent);
2275	return d;
2276out_error:
2277	d = ERR_PTR(error);
2278	goto out;
2279}
2280EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2281
2282/*
2283 * Code common to create, mkdir, and mknod.
2284 */
2285int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2286				struct nfs_fattr *fattr)
 
2287{
2288	struct dentry *d;
2289
2290	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2291	if (IS_ERR(d))
2292		return PTR_ERR(d);
2293
2294	/* Callers don't care */
2295	dput(d);
2296	return 0;
2297}
2298EXPORT_SYMBOL_GPL(nfs_instantiate);
2299
2300/*
2301 * Following a failed create operation, we drop the dentry rather
2302 * than retain a negative dentry. This avoids a problem in the event
2303 * that the operation succeeded on the server, but an error in the
2304 * reply path made it appear to have failed.
2305 */
2306int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2307	       struct dentry *dentry, umode_t mode, bool excl)
2308{
2309	struct iattr attr;
2310	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2311	int error;
2312
2313	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2314			dir->i_sb->s_id, dir->i_ino, dentry);
2315
2316	attr.ia_mode = mode;
2317	attr.ia_valid = ATTR_MODE;
2318
2319	trace_nfs_create_enter(dir, dentry, open_flags);
2320	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2321	trace_nfs_create_exit(dir, dentry, open_flags, error);
2322	if (error != 0)
2323		goto out_err;
2324	return 0;
2325out_err:
2326	d_drop(dentry);
2327	return error;
2328}
2329EXPORT_SYMBOL_GPL(nfs_create);
2330
2331/*
2332 * See comments for nfs_proc_create regarding failed operations.
2333 */
2334int
2335nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2336	  struct dentry *dentry, umode_t mode, dev_t rdev)
2337{
2338	struct iattr attr;
2339	int status;
2340
2341	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2342			dir->i_sb->s_id, dir->i_ino, dentry);
2343
2344	attr.ia_mode = mode;
2345	attr.ia_valid = ATTR_MODE;
2346
2347	trace_nfs_mknod_enter(dir, dentry);
2348	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2349	trace_nfs_mknod_exit(dir, dentry, status);
2350	if (status != 0)
2351		goto out_err;
2352	return 0;
2353out_err:
2354	d_drop(dentry);
2355	return status;
2356}
2357EXPORT_SYMBOL_GPL(nfs_mknod);
2358
2359/*
2360 * See comments for nfs_proc_create regarding failed operations.
2361 */
2362int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2363	      struct dentry *dentry, umode_t mode)
2364{
2365	struct iattr attr;
2366	int error;
2367
2368	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2369			dir->i_sb->s_id, dir->i_ino, dentry);
2370
2371	attr.ia_valid = ATTR_MODE;
2372	attr.ia_mode = mode | S_IFDIR;
2373
2374	trace_nfs_mkdir_enter(dir, dentry);
2375	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2376	trace_nfs_mkdir_exit(dir, dentry, error);
2377	if (error != 0)
2378		goto out_err;
2379	return 0;
2380out_err:
2381	d_drop(dentry);
2382	return error;
2383}
2384EXPORT_SYMBOL_GPL(nfs_mkdir);
2385
2386static void nfs_dentry_handle_enoent(struct dentry *dentry)
2387{
2388	if (simple_positive(dentry))
2389		d_delete(dentry);
2390}
2391
2392static void nfs_dentry_remove_handle_error(struct inode *dir,
2393					   struct dentry *dentry, int error)
2394{
2395	switch (error) {
2396	case -ENOENT:
2397		if (d_really_is_positive(dentry))
2398			d_delete(dentry);
2399		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2400		break;
2401	case 0:
2402		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2403		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2404	}
2405}
2406
2407int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2408{
2409	int error;
2410
2411	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2412			dir->i_sb->s_id, dir->i_ino, dentry);
2413
2414	trace_nfs_rmdir_enter(dir, dentry);
2415	if (d_really_is_positive(dentry)) {
2416		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2417		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2418		/* Ensure the VFS deletes this inode */
2419		switch (error) {
2420		case 0:
2421			clear_nlink(d_inode(dentry));
2422			break;
2423		case -ENOENT:
2424			nfs_dentry_handle_enoent(dentry);
2425		}
2426		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2427	} else
2428		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2429	nfs_dentry_remove_handle_error(dir, dentry, error);
2430	trace_nfs_rmdir_exit(dir, dentry, error);
2431
2432	return error;
2433}
2434EXPORT_SYMBOL_GPL(nfs_rmdir);
2435
2436/*
2437 * Remove a file after making sure there are no pending writes,
2438 * and after checking that the file has only one user. 
2439 *
2440 * We invalidate the attribute cache and free the inode prior to the operation
2441 * to avoid possible races if the server reuses the inode.
2442 */
2443static int nfs_safe_remove(struct dentry *dentry)
2444{
2445	struct inode *dir = d_inode(dentry->d_parent);
2446	struct inode *inode = d_inode(dentry);
2447	int error = -EBUSY;
2448		
2449	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2450
2451	/* If the dentry was sillyrenamed, we simply call d_delete() */
2452	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2453		error = 0;
2454		goto out;
2455	}
2456
2457	trace_nfs_remove_enter(dir, dentry);
2458	if (inode != NULL) {
2459		error = NFS_PROTO(dir)->remove(dir, dentry);
2460		if (error == 0)
2461			nfs_drop_nlink(inode);
2462	} else
2463		error = NFS_PROTO(dir)->remove(dir, dentry);
2464	if (error == -ENOENT)
2465		nfs_dentry_handle_enoent(dentry);
2466	trace_nfs_remove_exit(dir, dentry, error);
2467out:
2468	return error;
2469}
2470
2471/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2472 *  belongs to an active ".nfs..." file and we return -EBUSY.
2473 *
2474 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2475 */
2476int nfs_unlink(struct inode *dir, struct dentry *dentry)
2477{
2478	int error;
 
2479
2480	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2481		dir->i_ino, dentry);
2482
2483	trace_nfs_unlink_enter(dir, dentry);
2484	spin_lock(&dentry->d_lock);
2485	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2486					     &NFS_I(d_inode(dentry))->flags)) {
2487		spin_unlock(&dentry->d_lock);
2488		/* Start asynchronous writeout of the inode */
2489		write_inode_now(d_inode(dentry), 0);
2490		error = nfs_sillyrename(dir, dentry);
2491		goto out;
2492	}
2493	/* We must prevent any concurrent open until the unlink
2494	 * completes.  ->d_revalidate will wait for ->d_fsdata
2495	 * to clear.  We set it here to ensure no lookup succeeds until
2496	 * the unlink is complete on the server.
2497	 */
2498	error = -ETXTBSY;
2499	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2500	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2501		spin_unlock(&dentry->d_lock);
2502		goto out;
2503	}
2504	/* old devname */
2505	kfree(dentry->d_fsdata);
2506	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2507
2508	spin_unlock(&dentry->d_lock);
2509	error = nfs_safe_remove(dentry);
2510	nfs_dentry_remove_handle_error(dir, dentry, error);
2511	dentry->d_fsdata = NULL;
2512	wake_up_var(&dentry->d_fsdata);
 
2513out:
2514	trace_nfs_unlink_exit(dir, dentry, error);
2515	return error;
2516}
2517EXPORT_SYMBOL_GPL(nfs_unlink);
2518
2519/*
2520 * To create a symbolic link, most file systems instantiate a new inode,
2521 * add a page to it containing the path, then write it out to the disk
2522 * using prepare_write/commit_write.
2523 *
2524 * Unfortunately the NFS client can't create the in-core inode first
2525 * because it needs a file handle to create an in-core inode (see
2526 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2527 * symlink request has completed on the server.
2528 *
2529 * So instead we allocate a raw page, copy the symname into it, then do
2530 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2531 * now have a new file handle and can instantiate an in-core NFS inode
2532 * and move the raw page into its mapping.
2533 */
2534int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2535		struct dentry *dentry, const char *symname)
2536{
2537	struct folio *folio;
2538	char *kaddr;
2539	struct iattr attr;
2540	unsigned int pathlen = strlen(symname);
2541	int error;
2542
2543	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2544		dir->i_ino, dentry, symname);
2545
2546	if (pathlen > PAGE_SIZE)
2547		return -ENAMETOOLONG;
2548
2549	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2550	attr.ia_valid = ATTR_MODE;
2551
2552	folio = folio_alloc(GFP_USER, 0);
2553	if (!folio)
2554		return -ENOMEM;
2555
2556	kaddr = folio_address(folio);
2557	memcpy(kaddr, symname, pathlen);
2558	if (pathlen < PAGE_SIZE)
2559		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2560
2561	trace_nfs_symlink_enter(dir, dentry);
2562	error = NFS_PROTO(dir)->symlink(dir, dentry, folio, pathlen, &attr);
2563	trace_nfs_symlink_exit(dir, dentry, error);
2564	if (error != 0) {
2565		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2566			dir->i_sb->s_id, dir->i_ino,
2567			dentry, symname, error);
2568		d_drop(dentry);
2569		folio_put(folio);
2570		return error;
2571	}
2572
2573	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2574
2575	/*
2576	 * No big deal if we can't add this page to the page cache here.
2577	 * READLINK will get the missing page from the server if needed.
2578	 */
2579	if (filemap_add_folio(d_inode(dentry)->i_mapping, folio, 0,
2580							GFP_KERNEL) == 0) {
2581		folio_mark_uptodate(folio);
2582		folio_unlock(folio);
2583	}
 
 
 
 
 
 
2584
2585	folio_put(folio);
2586	return 0;
2587}
2588EXPORT_SYMBOL_GPL(nfs_symlink);
2589
2590int
2591nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2592{
2593	struct inode *inode = d_inode(old_dentry);
2594	int error;
2595
2596	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2597		old_dentry, dentry);
2598
2599	trace_nfs_link_enter(inode, dir, dentry);
2600	d_drop(dentry);
2601	if (S_ISREG(inode->i_mode))
2602		nfs_sync_inode(inode);
2603	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2604	if (error == 0) {
2605		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2606		ihold(inode);
2607		d_add(dentry, inode);
2608	}
2609	trace_nfs_link_exit(inode, dir, dentry, error);
2610	return error;
2611}
2612EXPORT_SYMBOL_GPL(nfs_link);
2613
2614static void
2615nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2616{
2617	struct dentry *new_dentry = data->new_dentry;
2618
2619	new_dentry->d_fsdata = NULL;
2620	wake_up_var(&new_dentry->d_fsdata);
2621}
2622
2623/*
2624 * RENAME
2625 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2626 * different file handle for the same inode after a rename (e.g. when
2627 * moving to a different directory). A fail-safe method to do so would
2628 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2629 * rename the old file using the sillyrename stuff. This way, the original
2630 * file in old_dir will go away when the last process iput()s the inode.
2631 *
2632 * FIXED.
2633 * 
2634 * It actually works quite well. One needs to have the possibility for
2635 * at least one ".nfs..." file in each directory the file ever gets
2636 * moved or linked to which happens automagically with the new
2637 * implementation that only depends on the dcache stuff instead of
2638 * using the inode layer
2639 *
2640 * Unfortunately, things are a little more complicated than indicated
2641 * above. For a cross-directory move, we want to make sure we can get
2642 * rid of the old inode after the operation.  This means there must be
2643 * no pending writes (if it's a file), and the use count must be 1.
2644 * If these conditions are met, we can drop the dentries before doing
2645 * the rename.
2646 */
2647int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2648	       struct dentry *old_dentry, struct inode *new_dir,
2649	       struct dentry *new_dentry, unsigned int flags)
2650{
2651	struct inode *old_inode = d_inode(old_dentry);
2652	struct inode *new_inode = d_inode(new_dentry);
2653	struct dentry *dentry = NULL;
2654	struct rpc_task *task;
2655	bool must_unblock = false;
2656	int error = -EBUSY;
2657
2658	if (flags)
2659		return -EINVAL;
2660
2661	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2662		 old_dentry, new_dentry,
2663		 d_count(new_dentry));
2664
2665	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2666	/*
2667	 * For non-directories, check whether the target is busy and if so,
2668	 * make a copy of the dentry and then do a silly-rename. If the
2669	 * silly-rename succeeds, the copied dentry is hashed and becomes
2670	 * the new target.
2671	 */
2672	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2673		/* We must prevent any concurrent open until the unlink
2674		 * completes.  ->d_revalidate will wait for ->d_fsdata
2675		 * to clear.  We set it here to ensure no lookup succeeds until
2676		 * the unlink is complete on the server.
2677		 */
2678		error = -ETXTBSY;
2679		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2680		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2681			goto out;
2682		if (new_dentry->d_fsdata) {
2683			/* old devname */
2684			kfree(new_dentry->d_fsdata);
2685			new_dentry->d_fsdata = NULL;
2686		}
2687
2688		spin_lock(&new_dentry->d_lock);
2689		if (d_count(new_dentry) > 2) {
2690			int err;
2691
2692			spin_unlock(&new_dentry->d_lock);
2693
2694			/* copy the target dentry's name */
2695			dentry = d_alloc(new_dentry->d_parent,
2696					 &new_dentry->d_name);
2697			if (!dentry)
2698				goto out;
2699
2700			/* silly-rename the existing target ... */
2701			err = nfs_sillyrename(new_dir, new_dentry);
2702			if (err)
2703				goto out;
2704
2705			new_dentry = dentry;
 
2706			new_inode = NULL;
2707		} else {
2708			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2709			must_unblock = true;
2710			spin_unlock(&new_dentry->d_lock);
2711		}
2712
2713	}
2714
2715	if (S_ISREG(old_inode->i_mode))
2716		nfs_sync_inode(old_inode);
2717	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2718				must_unblock ? nfs_unblock_rename : NULL);
2719	if (IS_ERR(task)) {
2720		error = PTR_ERR(task);
2721		goto out;
2722	}
2723
2724	error = rpc_wait_for_completion_task(task);
2725	if (error != 0) {
2726		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2727		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2728		smp_wmb();
2729	} else
2730		error = task->tk_status;
2731	rpc_put_task(task);
2732	/* Ensure the inode attributes are revalidated */
2733	if (error == 0) {
2734		spin_lock(&old_inode->i_lock);
2735		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2736		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2737							 NFS_INO_INVALID_CTIME |
2738							 NFS_INO_REVAL_FORCED);
2739		spin_unlock(&old_inode->i_lock);
2740	}
2741out:
 
 
2742	trace_nfs_rename_exit(old_dir, old_dentry,
2743			new_dir, new_dentry, error);
2744	if (!error) {
2745		if (new_inode != NULL)
2746			nfs_drop_nlink(new_inode);
2747		/*
2748		 * The d_move() should be here instead of in an async RPC completion
2749		 * handler because we need the proper locks to move the dentry.  If
2750		 * we're interrupted by a signal, the async RPC completion handler
2751		 * should mark the directories for revalidation.
2752		 */
2753		d_move(old_dentry, new_dentry);
2754		nfs_set_verifier(old_dentry,
2755					nfs_save_change_attribute(new_dir));
2756	} else if (error == -ENOENT)
2757		nfs_dentry_handle_enoent(old_dentry);
2758
2759	/* new dentry created? */
2760	if (dentry)
2761		dput(dentry);
2762	return error;
2763}
2764EXPORT_SYMBOL_GPL(nfs_rename);
2765
2766static DEFINE_SPINLOCK(nfs_access_lru_lock);
2767static LIST_HEAD(nfs_access_lru_list);
2768static atomic_long_t nfs_access_nr_entries;
2769
2770static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2771module_param(nfs_access_max_cachesize, ulong, 0644);
2772MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2773
2774static void nfs_access_free_entry(struct nfs_access_entry *entry)
2775{
2776	put_group_info(entry->group_info);
2777	kfree_rcu(entry, rcu_head);
2778	smp_mb__before_atomic();
2779	atomic_long_dec(&nfs_access_nr_entries);
2780	smp_mb__after_atomic();
2781}
2782
2783static void nfs_access_free_list(struct list_head *head)
2784{
2785	struct nfs_access_entry *cache;
2786
2787	while (!list_empty(head)) {
2788		cache = list_entry(head->next, struct nfs_access_entry, lru);
2789		list_del(&cache->lru);
2790		nfs_access_free_entry(cache);
2791	}
2792}
2793
2794static unsigned long
2795nfs_do_access_cache_scan(unsigned int nr_to_scan)
2796{
2797	LIST_HEAD(head);
2798	struct nfs_inode *nfsi, *next;
2799	struct nfs_access_entry *cache;
2800	long freed = 0;
2801
2802	spin_lock(&nfs_access_lru_lock);
2803	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2804		struct inode *inode;
2805
2806		if (nr_to_scan-- == 0)
2807			break;
2808		inode = &nfsi->vfs_inode;
2809		spin_lock(&inode->i_lock);
2810		if (list_empty(&nfsi->access_cache_entry_lru))
2811			goto remove_lru_entry;
2812		cache = list_entry(nfsi->access_cache_entry_lru.next,
2813				struct nfs_access_entry, lru);
2814		list_move(&cache->lru, &head);
2815		rb_erase(&cache->rb_node, &nfsi->access_cache);
2816		freed++;
2817		if (!list_empty(&nfsi->access_cache_entry_lru))
2818			list_move_tail(&nfsi->access_cache_inode_lru,
2819					&nfs_access_lru_list);
2820		else {
2821remove_lru_entry:
2822			list_del_init(&nfsi->access_cache_inode_lru);
2823			smp_mb__before_atomic();
2824			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2825			smp_mb__after_atomic();
2826		}
2827		spin_unlock(&inode->i_lock);
2828	}
2829	spin_unlock(&nfs_access_lru_lock);
2830	nfs_access_free_list(&head);
2831	return freed;
2832}
2833
2834unsigned long
2835nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2836{
2837	int nr_to_scan = sc->nr_to_scan;
2838	gfp_t gfp_mask = sc->gfp_mask;
2839
2840	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2841		return SHRINK_STOP;
2842	return nfs_do_access_cache_scan(nr_to_scan);
2843}
2844
2845
2846unsigned long
2847nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2848{
2849	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2850}
2851
2852static void
2853nfs_access_cache_enforce_limit(void)
2854{
2855	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2856	unsigned long diff;
2857	unsigned int nr_to_scan;
2858
2859	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2860		return;
2861	nr_to_scan = 100;
2862	diff = nr_entries - nfs_access_max_cachesize;
2863	if (diff < nr_to_scan)
2864		nr_to_scan = diff;
2865	nfs_do_access_cache_scan(nr_to_scan);
2866}
2867
2868static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2869{
2870	struct rb_root *root_node = &nfsi->access_cache;
2871	struct rb_node *n;
2872	struct nfs_access_entry *entry;
2873
2874	/* Unhook entries from the cache */
2875	while ((n = rb_first(root_node)) != NULL) {
2876		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2877		rb_erase(n, root_node);
2878		list_move(&entry->lru, head);
2879	}
2880	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2881}
2882
2883void nfs_access_zap_cache(struct inode *inode)
2884{
2885	LIST_HEAD(head);
2886
2887	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2888		return;
2889	/* Remove from global LRU init */
2890	spin_lock(&nfs_access_lru_lock);
2891	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2892		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2893
2894	spin_lock(&inode->i_lock);
2895	__nfs_access_zap_cache(NFS_I(inode), &head);
2896	spin_unlock(&inode->i_lock);
2897	spin_unlock(&nfs_access_lru_lock);
2898	nfs_access_free_list(&head);
2899}
2900EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2901
2902static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2903{
2904	struct group_info *ga, *gb;
2905	int g;
2906
2907	if (uid_lt(a->fsuid, b->fsuid))
2908		return -1;
2909	if (uid_gt(a->fsuid, b->fsuid))
2910		return 1;
2911
2912	if (gid_lt(a->fsgid, b->fsgid))
2913		return -1;
2914	if (gid_gt(a->fsgid, b->fsgid))
2915		return 1;
2916
2917	ga = a->group_info;
2918	gb = b->group_info;
2919	if (ga == gb)
2920		return 0;
2921	if (ga == NULL)
2922		return -1;
2923	if (gb == NULL)
2924		return 1;
2925	if (ga->ngroups < gb->ngroups)
2926		return -1;
2927	if (ga->ngroups > gb->ngroups)
2928		return 1;
2929
2930	for (g = 0; g < ga->ngroups; g++) {
2931		if (gid_lt(ga->gid[g], gb->gid[g]))
2932			return -1;
2933		if (gid_gt(ga->gid[g], gb->gid[g]))
2934			return 1;
2935	}
2936	return 0;
2937}
2938
2939static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2940{
2941	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2942
2943	while (n != NULL) {
2944		struct nfs_access_entry *entry =
2945			rb_entry(n, struct nfs_access_entry, rb_node);
2946		int cmp = access_cmp(cred, entry);
2947
2948		if (cmp < 0)
2949			n = n->rb_left;
2950		else if (cmp > 0)
2951			n = n->rb_right;
2952		else
2953			return entry;
2954	}
2955	return NULL;
2956}
2957
2958static u64 nfs_access_login_time(const struct task_struct *task,
2959				 const struct cred *cred)
2960{
2961	const struct task_struct *parent;
2962	const struct cred *pcred;
2963	u64 ret;
2964
2965	rcu_read_lock();
2966	for (;;) {
2967		parent = rcu_dereference(task->real_parent);
2968		pcred = __task_cred(parent);
2969		if (parent == task || cred_fscmp(pcred, cred) != 0)
2970			break;
2971		task = parent;
2972	}
2973	ret = task->start_time;
2974	rcu_read_unlock();
2975	return ret;
2976}
2977
2978static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2979{
2980	struct nfs_inode *nfsi = NFS_I(inode);
2981	u64 login_time = nfs_access_login_time(current, cred);
2982	struct nfs_access_entry *cache;
2983	bool retry = true;
2984	int err;
2985
2986	spin_lock(&inode->i_lock);
2987	for(;;) {
2988		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2989			goto out_zap;
2990		cache = nfs_access_search_rbtree(inode, cred);
2991		err = -ENOENT;
2992		if (cache == NULL)
2993			goto out;
2994		/* Found an entry, is our attribute cache valid? */
2995		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2996			break;
2997		if (!retry)
2998			break;
2999		err = -ECHILD;
3000		if (!may_block)
3001			goto out;
3002		spin_unlock(&inode->i_lock);
3003		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3004		if (err)
3005			return err;
3006		spin_lock(&inode->i_lock);
3007		retry = false;
3008	}
3009	err = -ENOENT;
3010	if ((s64)(login_time - cache->timestamp) > 0)
3011		goto out;
3012	*mask = cache->mask;
3013	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3014	err = 0;
3015out:
3016	spin_unlock(&inode->i_lock);
3017	return err;
3018out_zap:
3019	spin_unlock(&inode->i_lock);
3020	nfs_access_zap_cache(inode);
3021	return -ENOENT;
3022}
3023
3024static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3025{
3026	/* Only check the most recently returned cache entry,
3027	 * but do it without locking.
3028	 */
3029	struct nfs_inode *nfsi = NFS_I(inode);
3030	u64 login_time = nfs_access_login_time(current, cred);
3031	struct nfs_access_entry *cache;
3032	int err = -ECHILD;
3033	struct list_head *lh;
3034
3035	rcu_read_lock();
3036	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3037		goto out;
3038	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3039	cache = list_entry(lh, struct nfs_access_entry, lru);
3040	if (lh == &nfsi->access_cache_entry_lru ||
3041	    access_cmp(cred, cache) != 0)
3042		cache = NULL;
3043	if (cache == NULL)
3044		goto out;
3045	if ((s64)(login_time - cache->timestamp) > 0)
3046		goto out;
3047	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3048		goto out;
3049	*mask = cache->mask;
 
3050	err = 0;
3051out:
3052	rcu_read_unlock();
3053	return err;
3054}
3055
3056int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3057			  u32 *mask, bool may_block)
3058{
3059	int status;
3060
3061	status = nfs_access_get_cached_rcu(inode, cred, mask);
3062	if (status != 0)
3063		status = nfs_access_get_cached_locked(inode, cred, mask,
3064		    may_block);
3065
3066	return status;
3067}
3068EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3069
3070static void nfs_access_add_rbtree(struct inode *inode,
3071				  struct nfs_access_entry *set,
3072				  const struct cred *cred)
3073{
3074	struct nfs_inode *nfsi = NFS_I(inode);
3075	struct rb_root *root_node = &nfsi->access_cache;
3076	struct rb_node **p = &root_node->rb_node;
3077	struct rb_node *parent = NULL;
3078	struct nfs_access_entry *entry;
3079	int cmp;
3080
3081	spin_lock(&inode->i_lock);
3082	while (*p != NULL) {
3083		parent = *p;
3084		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3085		cmp = access_cmp(cred, entry);
3086
3087		if (cmp < 0)
3088			p = &parent->rb_left;
3089		else if (cmp > 0)
3090			p = &parent->rb_right;
3091		else
3092			goto found;
3093	}
3094	rb_link_node(&set->rb_node, parent, p);
3095	rb_insert_color(&set->rb_node, root_node);
3096	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3097	spin_unlock(&inode->i_lock);
3098	return;
3099found:
3100	rb_replace_node(parent, &set->rb_node, root_node);
3101	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3102	list_del(&entry->lru);
3103	spin_unlock(&inode->i_lock);
3104	nfs_access_free_entry(entry);
3105}
3106
3107void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3108			  const struct cred *cred)
3109{
3110	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3111	if (cache == NULL)
3112		return;
3113	RB_CLEAR_NODE(&cache->rb_node);
3114	cache->fsuid = cred->fsuid;
3115	cache->fsgid = cred->fsgid;
3116	cache->group_info = get_group_info(cred->group_info);
3117	cache->mask = set->mask;
3118	cache->timestamp = ktime_get_ns();
3119
3120	/* The above field assignments must be visible
3121	 * before this item appears on the lru.  We cannot easily
3122	 * use rcu_assign_pointer, so just force the memory barrier.
3123	 */
3124	smp_wmb();
3125	nfs_access_add_rbtree(inode, cache, cred);
3126
3127	/* Update accounting */
3128	smp_mb__before_atomic();
3129	atomic_long_inc(&nfs_access_nr_entries);
3130	smp_mb__after_atomic();
3131
3132	/* Add inode to global LRU list */
3133	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3134		spin_lock(&nfs_access_lru_lock);
3135		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3136			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3137					&nfs_access_lru_list);
3138		spin_unlock(&nfs_access_lru_lock);
3139	}
3140	nfs_access_cache_enforce_limit();
3141}
3142EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3143
3144#define NFS_MAY_READ (NFS_ACCESS_READ)
3145#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3146		NFS_ACCESS_EXTEND | \
3147		NFS_ACCESS_DELETE)
3148#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3149		NFS_ACCESS_EXTEND)
3150#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3151#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3152#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3153static int
3154nfs_access_calc_mask(u32 access_result, umode_t umode)
3155{
3156	int mask = 0;
3157
3158	if (access_result & NFS_MAY_READ)
3159		mask |= MAY_READ;
3160	if (S_ISDIR(umode)) {
3161		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3162			mask |= MAY_WRITE;
3163		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3164			mask |= MAY_EXEC;
3165	} else if (S_ISREG(umode)) {
3166		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3167			mask |= MAY_WRITE;
3168		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3169			mask |= MAY_EXEC;
3170	} else if (access_result & NFS_MAY_WRITE)
3171			mask |= MAY_WRITE;
3172	return mask;
3173}
3174
3175void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3176{
3177	entry->mask = access_result;
3178}
3179EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3180
3181static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3182{
3183	struct nfs_access_entry cache;
3184	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3185	int cache_mask = -1;
3186	int status;
3187
3188	trace_nfs_access_enter(inode);
3189
3190	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3191	if (status == 0)
3192		goto out_cached;
3193
3194	status = -ECHILD;
3195	if (!may_block)
3196		goto out;
3197
3198	/*
3199	 * Determine which access bits we want to ask for...
3200	 */
3201	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3202		     nfs_access_xattr_mask(NFS_SERVER(inode));
 
 
 
3203	if (S_ISDIR(inode->i_mode))
3204		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3205	else
3206		cache.mask |= NFS_ACCESS_EXECUTE;
3207	status = NFS_PROTO(inode)->access(inode, &cache, cred);
 
3208	if (status != 0) {
3209		if (status == -ESTALE) {
3210			if (!S_ISDIR(inode->i_mode))
3211				nfs_set_inode_stale(inode);
3212			else
3213				nfs_zap_caches(inode);
3214		}
3215		goto out;
3216	}
3217	nfs_access_add_cache(inode, &cache, cred);
3218out_cached:
3219	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3220	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3221		status = -EACCES;
3222out:
3223	trace_nfs_access_exit(inode, mask, cache_mask, status);
3224	return status;
3225}
3226
3227static int nfs_open_permission_mask(int openflags)
3228{
3229	int mask = 0;
3230
3231	if (openflags & __FMODE_EXEC) {
3232		/* ONLY check exec rights */
3233		mask = MAY_EXEC;
3234	} else {
3235		if ((openflags & O_ACCMODE) != O_WRONLY)
3236			mask |= MAY_READ;
3237		if ((openflags & O_ACCMODE) != O_RDONLY)
3238			mask |= MAY_WRITE;
3239	}
3240
3241	return mask;
3242}
3243
3244int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3245{
3246	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3247}
3248EXPORT_SYMBOL_GPL(nfs_may_open);
3249
3250static int nfs_execute_ok(struct inode *inode, int mask)
3251{
3252	struct nfs_server *server = NFS_SERVER(inode);
3253	int ret = 0;
3254
3255	if (S_ISDIR(inode->i_mode))
3256		return 0;
3257	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3258		if (mask & MAY_NOT_BLOCK)
3259			return -ECHILD;
3260		ret = __nfs_revalidate_inode(server, inode);
3261	}
3262	if (ret == 0 && !execute_ok(inode))
3263		ret = -EACCES;
3264	return ret;
3265}
3266
3267int nfs_permission(struct mnt_idmap *idmap,
3268		   struct inode *inode,
3269		   int mask)
3270{
3271	const struct cred *cred = current_cred();
3272	int res = 0;
3273
3274	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3275
3276	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3277		goto out;
3278	/* Is this sys_access() ? */
3279	if (mask & (MAY_ACCESS | MAY_CHDIR))
3280		goto force_lookup;
3281
3282	switch (inode->i_mode & S_IFMT) {
3283		case S_IFLNK:
3284			goto out;
3285		case S_IFREG:
3286			if ((mask & MAY_OPEN) &&
3287			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3288				return 0;
3289			break;
3290		case S_IFDIR:
3291			/*
3292			 * Optimize away all write operations, since the server
3293			 * will check permissions when we perform the op.
3294			 */
3295			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3296				goto out;
3297	}
3298
3299force_lookup:
3300	if (!NFS_PROTO(inode)->access)
3301		goto out_notsup;
3302
3303	res = nfs_do_access(inode, cred, mask);
3304out:
3305	if (!res && (mask & MAY_EXEC))
3306		res = nfs_execute_ok(inode, mask);
3307
3308	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3309		inode->i_sb->s_id, inode->i_ino, mask, res);
3310	return res;
3311out_notsup:
3312	if (mask & MAY_NOT_BLOCK)
3313		return -ECHILD;
3314
3315	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3316						  NFS_INO_INVALID_OTHER);
3317	if (res == 0)
3318		res = generic_permission(&nop_mnt_idmap, inode, mask);
3319	goto out;
3320}
3321EXPORT_SYMBOL_GPL(nfs_permission);