Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/data.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/buffer_head.h>
 
  11#include <linux/mpage.h>
  12#include <linux/writeback.h>
  13#include <linux/backing-dev.h>
  14#include <linux/pagevec.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/blk-crypto.h>
  18#include <linux/swap.h>
  19#include <linux/prefetch.h>
  20#include <linux/uio.h>
  21#include <linux/cleancache.h>
  22#include <linux/sched/signal.h>
  23#include <linux/fiemap.h>
 
  24
  25#include "f2fs.h"
  26#include "node.h"
  27#include "segment.h"
 
  28#include <trace/events/f2fs.h>
  29
  30#define NUM_PREALLOC_POST_READ_CTXS	128
  31
  32static struct kmem_cache *bio_post_read_ctx_cache;
  33static struct kmem_cache *bio_entry_slab;
  34static mempool_t *bio_post_read_ctx_pool;
  35static struct bio_set f2fs_bioset;
  36
  37#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
  38
  39int __init f2fs_init_bioset(void)
  40{
  41	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
  42					0, BIOSET_NEED_BVECS))
  43		return -ENOMEM;
  44	return 0;
  45}
  46
  47void f2fs_destroy_bioset(void)
  48{
  49	bioset_exit(&f2fs_bioset);
  50}
  51
  52static bool __is_cp_guaranteed(struct page *page)
  53{
  54	struct address_space *mapping = page->mapping;
  55	struct inode *inode;
  56	struct f2fs_sb_info *sbi;
  57
  58	if (!mapping)
  59		return false;
  60
  61	inode = mapping->host;
  62	sbi = F2FS_I_SB(inode);
  63
  64	if (inode->i_ino == F2FS_META_INO(sbi) ||
  65			inode->i_ino == F2FS_NODE_INO(sbi) ||
  66			S_ISDIR(inode->i_mode))
  67		return true;
  68
  69	if (f2fs_is_compressed_page(page))
  70		return false;
  71	if ((S_ISREG(inode->i_mode) &&
  72			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
  73			page_private_gcing(page))
  74		return true;
  75	return false;
  76}
  77
  78static enum count_type __read_io_type(struct page *page)
  79{
  80	struct address_space *mapping = page_file_mapping(page);
  81
  82	if (mapping) {
  83		struct inode *inode = mapping->host;
  84		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  85
  86		if (inode->i_ino == F2FS_META_INO(sbi))
  87			return F2FS_RD_META;
  88
  89		if (inode->i_ino == F2FS_NODE_INO(sbi))
  90			return F2FS_RD_NODE;
  91	}
  92	return F2FS_RD_DATA;
  93}
  94
  95/* postprocessing steps for read bios */
  96enum bio_post_read_step {
  97#ifdef CONFIG_FS_ENCRYPTION
  98	STEP_DECRYPT	= 1 << 0,
  99#else
 100	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
 101#endif
 102#ifdef CONFIG_F2FS_FS_COMPRESSION
 103	STEP_DECOMPRESS	= 1 << 1,
 104#else
 105	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
 106#endif
 107#ifdef CONFIG_FS_VERITY
 108	STEP_VERITY	= 1 << 2,
 109#else
 110	STEP_VERITY	= 0,	/* compile out the verity-related code */
 111#endif
 112};
 113
 114struct bio_post_read_ctx {
 115	struct bio *bio;
 116	struct f2fs_sb_info *sbi;
 117	struct work_struct work;
 118	unsigned int enabled_steps;
 
 
 
 
 
 
 119	block_t fs_blkaddr;
 120};
 121
 122static void f2fs_finish_read_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123{
 124	struct bio_vec *bv;
 125	struct bvec_iter_all iter_all;
 
 126
 127	/*
 128	 * Update and unlock the bio's pagecache pages, and put the
 129	 * decompression context for any compressed pages.
 130	 */
 131	bio_for_each_segment_all(bv, bio, iter_all) {
 132		struct page *page = bv->bv_page;
 133
 134		if (f2fs_is_compressed_page(page)) {
 135			if (bio->bi_status)
 136				f2fs_end_read_compressed_page(page, true, 0);
 137			f2fs_put_page_dic(page);
 
 138			continue;
 139		}
 140
 141		/* PG_error was set if decryption or verity failed. */
 142		if (bio->bi_status || PageError(page)) {
 143			ClearPageUptodate(page);
 144			/* will re-read again later */
 145			ClearPageError(page);
 146		} else {
 147			SetPageUptodate(page);
 148		}
 149		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
 150		unlock_page(page);
 151	}
 152
 153	if (bio->bi_private)
 154		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 155	bio_put(bio);
 156}
 157
 158static void f2fs_verify_bio(struct work_struct *work)
 159{
 160	struct bio_post_read_ctx *ctx =
 161		container_of(work, struct bio_post_read_ctx, work);
 162	struct bio *bio = ctx->bio;
 163	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
 164
 165	/*
 166	 * fsverity_verify_bio() may call readpages() again, and while verity
 167	 * will be disabled for this, decryption and/or decompression may still
 168	 * be needed, resulting in another bio_post_read_ctx being allocated.
 169	 * So to prevent deadlocks we need to release the current ctx to the
 170	 * mempool first.  This assumes that verity is the last post-read step.
 171	 */
 172	mempool_free(ctx, bio_post_read_ctx_pool);
 173	bio->bi_private = NULL;
 174
 175	/*
 176	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
 177	 * as those were handled separately by f2fs_end_read_compressed_page().
 178	 */
 179	if (may_have_compressed_pages) {
 180		struct bio_vec *bv;
 181		struct bvec_iter_all iter_all;
 182
 183		bio_for_each_segment_all(bv, bio, iter_all) {
 184			struct page *page = bv->bv_page;
 185
 186			if (!f2fs_is_compressed_page(page) &&
 187			    !PageError(page) && !fsverity_verify_page(page))
 188				SetPageError(page);
 
 
 189		}
 190	} else {
 191		fsverity_verify_bio(bio);
 192	}
 193
 194	f2fs_finish_read_bio(bio);
 195}
 196
 197/*
 198 * If the bio's data needs to be verified with fs-verity, then enqueue the
 199 * verity work for the bio.  Otherwise finish the bio now.
 200 *
 201 * Note that to avoid deadlocks, the verity work can't be done on the
 202 * decryption/decompression workqueue.  This is because verifying the data pages
 203 * can involve reading verity metadata pages from the file, and these verity
 204 * metadata pages may be encrypted and/or compressed.
 205 */
 206static void f2fs_verify_and_finish_bio(struct bio *bio)
 207{
 208	struct bio_post_read_ctx *ctx = bio->bi_private;
 209
 210	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
 211		INIT_WORK(&ctx->work, f2fs_verify_bio);
 212		fsverity_enqueue_verify_work(&ctx->work);
 213	} else {
 214		f2fs_finish_read_bio(bio);
 215	}
 216}
 217
 218/*
 219 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
 220 * remaining page was read by @ctx->bio.
 221 *
 222 * Note that a bio may span clusters (even a mix of compressed and uncompressed
 223 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
 224 * that the bio includes at least one compressed page.  The actual decompression
 225 * is done on a per-cluster basis, not a per-bio basis.
 226 */
 227static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx)
 
 228{
 229	struct bio_vec *bv;
 230	struct bvec_iter_all iter_all;
 231	bool all_compressed = true;
 232	block_t blkaddr = ctx->fs_blkaddr;
 233
 234	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
 235		struct page *page = bv->bv_page;
 236
 237		/* PG_error was set if decryption failed. */
 238		if (f2fs_is_compressed_page(page))
 239			f2fs_end_read_compressed_page(page, PageError(page),
 240						blkaddr);
 241		else
 242			all_compressed = false;
 243
 244		blkaddr++;
 245	}
 246
 
 
 247	/*
 248	 * Optimization: if all the bio's pages are compressed, then scheduling
 249	 * the per-bio verity work is unnecessary, as verity will be fully
 250	 * handled at the compression cluster level.
 251	 */
 252	if (all_compressed)
 253		ctx->enabled_steps &= ~STEP_VERITY;
 254}
 255
 256static void f2fs_post_read_work(struct work_struct *work)
 257{
 258	struct bio_post_read_ctx *ctx =
 259		container_of(work, struct bio_post_read_ctx, work);
 
 260
 261	if (ctx->enabled_steps & STEP_DECRYPT)
 262		fscrypt_decrypt_bio(ctx->bio);
 
 
 263
 264	if (ctx->enabled_steps & STEP_DECOMPRESS)
 265		f2fs_handle_step_decompress(ctx);
 266
 267	f2fs_verify_and_finish_bio(ctx->bio);
 268}
 269
 270static void f2fs_read_end_io(struct bio *bio)
 271{
 272	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
 273	struct bio_post_read_ctx *ctx = bio->bi_private;
 
 
 
 
 274
 275	if (time_to_inject(sbi, FAULT_READ_IO)) {
 276		f2fs_show_injection_info(sbi, FAULT_READ_IO);
 277		bio->bi_status = BLK_STS_IOERR;
 278	}
 279
 280	if (bio->bi_status) {
 281		f2fs_finish_read_bio(bio);
 282		return;
 283	}
 284
 285	if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) {
 286		INIT_WORK(&ctx->work, f2fs_post_read_work);
 287		queue_work(ctx->sbi->post_read_wq, &ctx->work);
 288	} else {
 289		f2fs_verify_and_finish_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 290	}
 
 
 291}
 292
 293static void f2fs_write_end_io(struct bio *bio)
 294{
 295	struct f2fs_sb_info *sbi = bio->bi_private;
 296	struct bio_vec *bvec;
 297	struct bvec_iter_all iter_all;
 298
 299	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
 300		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
 
 
 301		bio->bi_status = BLK_STS_IOERR;
 302	}
 303
 304	bio_for_each_segment_all(bvec, bio, iter_all) {
 305		struct page *page = bvec->bv_page;
 306		enum count_type type = WB_DATA_TYPE(page);
 307
 308		if (page_private_dummy(page)) {
 309			clear_page_private_dummy(page);
 310			unlock_page(page);
 311			mempool_free(page, sbi->write_io_dummy);
 312
 313			if (unlikely(bio->bi_status))
 314				f2fs_stop_checkpoint(sbi, true);
 
 315			continue;
 316		}
 317
 318		fscrypt_finalize_bounce_page(&page);
 319
 320#ifdef CONFIG_F2FS_FS_COMPRESSION
 321		if (f2fs_is_compressed_page(page)) {
 322			f2fs_compress_write_end_io(bio, page);
 323			continue;
 324		}
 325#endif
 326
 327		if (unlikely(bio->bi_status)) {
 328			mapping_set_error(page->mapping, -EIO);
 329			if (type == F2FS_WB_CP_DATA)
 330				f2fs_stop_checkpoint(sbi, true);
 
 331		}
 332
 333		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
 334					page->index != nid_of_node(page));
 335
 336		dec_page_count(sbi, type);
 337		if (f2fs_in_warm_node_list(sbi, page))
 338			f2fs_del_fsync_node_entry(sbi, page);
 339		clear_page_private_gcing(page);
 340		end_page_writeback(page);
 341	}
 342	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 343				wq_has_sleeper(&sbi->cp_wait))
 344		wake_up(&sbi->cp_wait);
 345
 346	bio_put(bio);
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 349struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 350				block_t blk_addr, struct bio *bio)
 351{
 352	struct block_device *bdev = sbi->sb->s_bdev;
 353	int i;
 354
 355	if (f2fs_is_multi_device(sbi)) {
 356		for (i = 0; i < sbi->s_ndevs; i++) {
 357			if (FDEV(i).start_blk <= blk_addr &&
 358			    FDEV(i).end_blk >= blk_addr) {
 359				blk_addr -= FDEV(i).start_blk;
 360				bdev = FDEV(i).bdev;
 361				break;
 362			}
 363		}
 364	}
 365	if (bio) {
 366		bio_set_dev(bio, bdev);
 367		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 368	}
 369	return bdev;
 370}
 371
 372int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 373{
 374	int i;
 375
 376	if (!f2fs_is_multi_device(sbi))
 377		return 0;
 378
 379	for (i = 0; i < sbi->s_ndevs; i++)
 380		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 381			return i;
 382	return 0;
 383}
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
 386{
 387	struct f2fs_sb_info *sbi = fio->sbi;
 
 
 388	struct bio *bio;
 389
 390	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
 391
 392	f2fs_target_device(sbi, fio->new_blkaddr, bio);
 
 
 393	if (is_read_io(fio->op)) {
 394		bio->bi_end_io = f2fs_read_end_io;
 395		bio->bi_private = NULL;
 396	} else {
 397		bio->bi_end_io = f2fs_write_end_io;
 398		bio->bi_private = sbi;
 399		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
 400						fio->type, fio->temp);
 401	}
 
 
 402	if (fio->io_wbc)
 403		wbc_init_bio(fio->io_wbc, bio);
 404
 405	return bio;
 406}
 407
 408static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
 409				  pgoff_t first_idx,
 410				  const struct f2fs_io_info *fio,
 411				  gfp_t gfp_mask)
 412{
 413	/*
 414	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 415	 * read/write raw data without encryption.
 416	 */
 417	if (!fio || !fio->encrypted_page)
 418		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
 419}
 420
 421static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
 422				     pgoff_t next_idx,
 423				     const struct f2fs_io_info *fio)
 424{
 425	/*
 426	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 427	 * read/write raw data without encryption.
 428	 */
 429	if (fio && fio->encrypted_page)
 430		return !bio_has_crypt_ctx(bio);
 431
 432	return fscrypt_mergeable_bio(bio, inode, next_idx);
 433}
 434
 435static inline void __submit_bio(struct f2fs_sb_info *sbi,
 436				struct bio *bio, enum page_type type)
 437{
 438	if (!is_read_io(bio_op(bio))) {
 439		unsigned int start;
 440
 441		if (type != DATA && type != NODE)
 442			goto submit_io;
 443
 444		if (f2fs_lfs_mode(sbi) && current->plug)
 445			blk_finish_plug(current->plug);
 446
 447		if (!F2FS_IO_ALIGNED(sbi))
 448			goto submit_io;
 
 449
 450		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
 451		start %= F2FS_IO_SIZE(sbi);
 
 
 452
 453		if (start == 0)
 454			goto submit_io;
 455
 456		/* fill dummy pages */
 457		for (; start < F2FS_IO_SIZE(sbi); start++) {
 458			struct page *page =
 459				mempool_alloc(sbi->write_io_dummy,
 460					      GFP_NOIO | __GFP_NOFAIL);
 461			f2fs_bug_on(sbi, !page);
 462
 463			lock_page(page);
 464
 465			zero_user_segment(page, 0, PAGE_SIZE);
 466			set_page_private_dummy(page);
 467
 468			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
 469				f2fs_bug_on(sbi, 1);
 470		}
 471		/*
 472		 * In the NODE case, we lose next block address chain. So, we
 473		 * need to do checkpoint in f2fs_sync_file.
 474		 */
 475		if (type == NODE)
 476			set_sbi_flag(sbi, SBI_NEED_CP);
 477	}
 478submit_io:
 479	if (is_read_io(bio_op(bio)))
 480		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
 481	else
 482		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
 483	submit_bio(bio);
 484}
 485
 486void f2fs_submit_bio(struct f2fs_sb_info *sbi,
 487				struct bio *bio, enum page_type type)
 488{
 489	__submit_bio(sbi, bio, type);
 490}
 491
 492static void __attach_io_flag(struct f2fs_io_info *fio)
 493{
 494	struct f2fs_sb_info *sbi = fio->sbi;
 495	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
 496	unsigned int io_flag, fua_flag, meta_flag;
 497
 498	if (fio->type == DATA)
 499		io_flag = sbi->data_io_flag;
 500	else if (fio->type == NODE)
 501		io_flag = sbi->node_io_flag;
 502	else
 503		return;
 504
 505	fua_flag = io_flag & temp_mask;
 506	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
 
 
 
 
 
 
 
 
 507
 508	/*
 509	 * data/node io flag bits per temp:
 510	 *      REQ_META     |      REQ_FUA      |
 511	 *    5 |    4 |   3 |    2 |    1 |   0 |
 512	 * Cold | Warm | Hot | Cold | Warm | Hot |
 513	 */
 514	if ((1 << fio->temp) & meta_flag)
 515		fio->op_flags |= REQ_META;
 516	if ((1 << fio->temp) & fua_flag)
 517		fio->op_flags |= REQ_FUA;
 518}
 519
 520static void __submit_merged_bio(struct f2fs_bio_info *io)
 521{
 522	struct f2fs_io_info *fio = &io->fio;
 523
 524	if (!io->bio)
 525		return;
 526
 527	__attach_io_flag(fio);
 528	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 529
 530	if (is_read_io(fio->op))
 531		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
 532	else
 
 533		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
 534
 535	__submit_bio(io->sbi, io->bio, fio->type);
 536	io->bio = NULL;
 537}
 538
 539static bool __has_merged_page(struct bio *bio, struct inode *inode,
 540						struct page *page, nid_t ino)
 541{
 542	struct bio_vec *bvec;
 543	struct bvec_iter_all iter_all;
 544
 545	if (!bio)
 546		return false;
 547
 548	if (!inode && !page && !ino)
 549		return true;
 550
 551	bio_for_each_segment_all(bvec, bio, iter_all) {
 552		struct page *target = bvec->bv_page;
 553
 554		if (fscrypt_is_bounce_page(target)) {
 555			target = fscrypt_pagecache_page(target);
 556			if (IS_ERR(target))
 557				continue;
 558		}
 559		if (f2fs_is_compressed_page(target)) {
 560			target = f2fs_compress_control_page(target);
 561			if (IS_ERR(target))
 562				continue;
 563		}
 564
 565		if (inode && inode == target->mapping->host)
 566			return true;
 567		if (page && page == target)
 568			return true;
 569		if (ino && ino == ino_of_node(target))
 570			return true;
 571	}
 572
 573	return false;
 574}
 575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
 577				enum page_type type, enum temp_type temp)
 578{
 579	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 580	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 581
 582	down_write(&io->io_rwsem);
 
 
 
 583
 584	/* change META to META_FLUSH in the checkpoint procedure */
 585	if (type >= META_FLUSH) {
 586		io->fio.type = META_FLUSH;
 587		io->fio.op = REQ_OP_WRITE;
 588		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
 589		if (!test_opt(sbi, NOBARRIER))
 590			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
 591	}
 592	__submit_merged_bio(io);
 593	up_write(&io->io_rwsem);
 
 594}
 595
 596static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
 597				struct inode *inode, struct page *page,
 598				nid_t ino, enum page_type type, bool force)
 599{
 600	enum temp_type temp;
 601	bool ret = true;
 602
 603	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
 604		if (!force)	{
 605			enum page_type btype = PAGE_TYPE_OF_BIO(type);
 606			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 607
 608			down_read(&io->io_rwsem);
 609			ret = __has_merged_page(io->bio, inode, page, ino);
 610			up_read(&io->io_rwsem);
 611		}
 612		if (ret)
 613			__f2fs_submit_merged_write(sbi, type, temp);
 614
 615		/* TODO: use HOT temp only for meta pages now. */
 616		if (type >= META)
 617			break;
 618	}
 619}
 620
 621void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
 622{
 623	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
 624}
 625
 626void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
 627				struct inode *inode, struct page *page,
 628				nid_t ino, enum page_type type)
 629{
 630	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
 631}
 632
 633void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
 634{
 635	f2fs_submit_merged_write(sbi, DATA);
 636	f2fs_submit_merged_write(sbi, NODE);
 637	f2fs_submit_merged_write(sbi, META);
 638}
 639
 640/*
 641 * Fill the locked page with data located in the block address.
 642 * A caller needs to unlock the page on failure.
 643 */
 644int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 645{
 646	struct bio *bio;
 647	struct page *page = fio->encrypted_page ?
 648			fio->encrypted_page : fio->page;
 649
 650	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 651			fio->is_por ? META_POR : (__is_meta_io(fio) ?
 652			META_GENERIC : DATA_GENERIC_ENHANCE)))
 
 653		return -EFSCORRUPTED;
 
 654
 655	trace_f2fs_submit_page_bio(page, fio);
 656
 657	/* Allocate a new bio */
 658	bio = __bio_alloc(fio, 1);
 659
 660	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 661			       fio->page->index, fio, GFP_NOIO);
 662
 663	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 664		bio_put(bio);
 665		return -EFAULT;
 666	}
 667
 668	if (fio->io_wbc && !is_read_io(fio->op))
 669		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 670
 671	__attach_io_flag(fio);
 672	bio_set_op_attrs(bio, fio->op, fio->op_flags);
 673
 674	inc_page_count(fio->sbi, is_read_io(fio->op) ?
 675			__read_io_type(page): WB_DATA_TYPE(fio->page));
 676
 677	__submit_bio(fio->sbi, bio, fio->type);
 
 
 
 678	return 0;
 679}
 680
 681static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 682				block_t last_blkaddr, block_t cur_blkaddr)
 683{
 684	if (unlikely(sbi->max_io_bytes &&
 685			bio->bi_iter.bi_size >= sbi->max_io_bytes))
 686		return false;
 687	if (last_blkaddr + 1 != cur_blkaddr)
 688		return false;
 689	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
 690}
 691
 692static bool io_type_is_mergeable(struct f2fs_bio_info *io,
 693						struct f2fs_io_info *fio)
 694{
 695	if (io->fio.op != fio->op)
 696		return false;
 697	return io->fio.op_flags == fio->op_flags;
 698}
 699
 700static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 701					struct f2fs_bio_info *io,
 702					struct f2fs_io_info *fio,
 703					block_t last_blkaddr,
 704					block_t cur_blkaddr)
 705{
 706	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
 707		unsigned int filled_blocks =
 708				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
 709		unsigned int io_size = F2FS_IO_SIZE(sbi);
 710		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
 711
 712		/* IOs in bio is aligned and left space of vectors is not enough */
 713		if (!(filled_blocks % io_size) && left_vecs < io_size)
 714			return false;
 715	}
 716	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
 717		return false;
 718	return io_type_is_mergeable(io, fio);
 719}
 720
 721static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
 722				struct page *page, enum temp_type temp)
 723{
 724	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 725	struct bio_entry *be;
 726
 727	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
 728	be->bio = bio;
 729	bio_get(bio);
 730
 731	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
 732		f2fs_bug_on(sbi, 1);
 733
 734	down_write(&io->bio_list_lock);
 735	list_add_tail(&be->list, &io->bio_list);
 736	up_write(&io->bio_list_lock);
 737}
 738
 739static void del_bio_entry(struct bio_entry *be)
 740{
 741	list_del(&be->list);
 742	kmem_cache_free(bio_entry_slab, be);
 743}
 744
 745static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
 746							struct page *page)
 747{
 748	struct f2fs_sb_info *sbi = fio->sbi;
 749	enum temp_type temp;
 750	bool found = false;
 751	int ret = -EAGAIN;
 752
 753	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 754		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 755		struct list_head *head = &io->bio_list;
 756		struct bio_entry *be;
 757
 758		down_write(&io->bio_list_lock);
 759		list_for_each_entry(be, head, list) {
 760			if (be->bio != *bio)
 761				continue;
 762
 763			found = true;
 764
 765			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
 766							    *fio->last_block,
 767							    fio->new_blkaddr));
 768			if (f2fs_crypt_mergeable_bio(*bio,
 769					fio->page->mapping->host,
 770					fio->page->index, fio) &&
 771			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
 772					PAGE_SIZE) {
 773				ret = 0;
 774				break;
 775			}
 776
 777			/* page can't be merged into bio; submit the bio */
 778			del_bio_entry(be);
 779			__submit_bio(sbi, *bio, DATA);
 780			break;
 781		}
 782		up_write(&io->bio_list_lock);
 783	}
 784
 785	if (ret) {
 786		bio_put(*bio);
 787		*bio = NULL;
 788	}
 789
 790	return ret;
 791}
 792
 793void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
 794					struct bio **bio, struct page *page)
 795{
 796	enum temp_type temp;
 797	bool found = false;
 798	struct bio *target = bio ? *bio : NULL;
 799
 
 
 800	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 801		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 802		struct list_head *head = &io->bio_list;
 803		struct bio_entry *be;
 804
 805		if (list_empty(head))
 806			continue;
 807
 808		down_read(&io->bio_list_lock);
 809		list_for_each_entry(be, head, list) {
 810			if (target)
 811				found = (target == be->bio);
 812			else
 813				found = __has_merged_page(be->bio, NULL,
 814								page, 0);
 815			if (found)
 816				break;
 817		}
 818		up_read(&io->bio_list_lock);
 819
 820		if (!found)
 821			continue;
 822
 823		found = false;
 824
 825		down_write(&io->bio_list_lock);
 826		list_for_each_entry(be, head, list) {
 827			if (target)
 828				found = (target == be->bio);
 829			else
 830				found = __has_merged_page(be->bio, NULL,
 831								page, 0);
 832			if (found) {
 833				target = be->bio;
 834				del_bio_entry(be);
 835				break;
 836			}
 837		}
 838		up_write(&io->bio_list_lock);
 839	}
 840
 841	if (found)
 842		__submit_bio(sbi, target, DATA);
 843	if (bio && *bio) {
 844		bio_put(*bio);
 845		*bio = NULL;
 846	}
 847}
 848
 849int f2fs_merge_page_bio(struct f2fs_io_info *fio)
 850{
 851	struct bio *bio = *fio->bio;
 852	struct page *page = fio->encrypted_page ?
 853			fio->encrypted_page : fio->page;
 854
 855	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 856			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
 
 857		return -EFSCORRUPTED;
 
 858
 859	trace_f2fs_submit_page_bio(page, fio);
 860
 861	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
 862						fio->new_blkaddr))
 863		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
 864alloc_new:
 865	if (!bio) {
 866		bio = __bio_alloc(fio, BIO_MAX_VECS);
 867		__attach_io_flag(fio);
 868		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 869				       fio->page->index, fio, GFP_NOIO);
 870		bio_set_op_attrs(bio, fio->op, fio->op_flags);
 871
 872		add_bio_entry(fio->sbi, bio, page, fio->temp);
 873	} else {
 874		if (add_ipu_page(fio, &bio, page))
 875			goto alloc_new;
 876	}
 877
 878	if (fio->io_wbc)
 879		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 880
 881	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
 882
 883	*fio->last_block = fio->new_blkaddr;
 884	*fio->bio = bio;
 885
 886	return 0;
 887}
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889void f2fs_submit_page_write(struct f2fs_io_info *fio)
 890{
 891	struct f2fs_sb_info *sbi = fio->sbi;
 892	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 893	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
 894	struct page *bio_page;
 895
 896	f2fs_bug_on(sbi, is_read_io(fio->op));
 897
 898	down_write(&io->io_rwsem);
 
 
 
 
 
 
 
 
 
 
 899next:
 900	if (fio->in_list) {
 901		spin_lock(&io->io_lock);
 902		if (list_empty(&io->io_list)) {
 903			spin_unlock(&io->io_lock);
 904			goto out;
 905		}
 906		fio = list_first_entry(&io->io_list,
 907						struct f2fs_io_info, list);
 908		list_del(&fio->list);
 909		spin_unlock(&io->io_lock);
 910	}
 911
 912	verify_fio_blkaddr(fio);
 913
 914	if (fio->encrypted_page)
 915		bio_page = fio->encrypted_page;
 916	else if (fio->compressed_page)
 917		bio_page = fio->compressed_page;
 918	else
 919		bio_page = fio->page;
 920
 921	/* set submitted = true as a return value */
 922	fio->submitted = true;
 923
 924	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 925
 926	if (io->bio &&
 927	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
 928			      fio->new_blkaddr) ||
 929	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
 930				       bio_page->index, fio)))
 931		__submit_merged_bio(io);
 932alloc_new:
 933	if (io->bio == NULL) {
 934		if (F2FS_IO_ALIGNED(sbi) &&
 935				(fio->type == DATA || fio->type == NODE) &&
 936				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
 937			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
 938			fio->retry = true;
 939			goto skip;
 940		}
 941		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
 942		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
 943				       bio_page->index, fio, GFP_NOIO);
 944		io->fio = *fio;
 945	}
 946
 947	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
 948		__submit_merged_bio(io);
 949		goto alloc_new;
 950	}
 951
 952	if (fio->io_wbc)
 953		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
 954
 955	io->last_block_in_bio = fio->new_blkaddr;
 956
 957	trace_f2fs_submit_page_write(fio->page, fio);
 958skip:
 959	if (fio->in_list)
 960		goto next;
 961out:
 
 
 
 
 
 
 
 
 
 
 
 
 962	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
 963				!f2fs_is_checkpoint_ready(sbi))
 964		__submit_merged_bio(io);
 965	up_write(&io->io_rwsem);
 966}
 967
 968static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
 969				      unsigned nr_pages, unsigned op_flag,
 970				      pgoff_t first_idx, bool for_write)
 971{
 972	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 973	struct bio *bio;
 974	struct bio_post_read_ctx *ctx;
 975	unsigned int post_read_steps = 0;
 
 
 976
 977	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
 978			       bio_max_segs(nr_pages), &f2fs_bioset);
 
 979	if (!bio)
 980		return ERR_PTR(-ENOMEM);
 981
 982	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
 983
 984	f2fs_target_device(sbi, blkaddr, bio);
 985	bio->bi_end_io = f2fs_read_end_io;
 986	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
 987
 988	if (fscrypt_inode_uses_fs_layer_crypto(inode))
 989		post_read_steps |= STEP_DECRYPT;
 990
 991	if (f2fs_need_verity(inode, first_idx))
 992		post_read_steps |= STEP_VERITY;
 993
 994	/*
 995	 * STEP_DECOMPRESS is handled specially, since a compressed file might
 996	 * contain both compressed and uncompressed clusters.  We'll allocate a
 997	 * bio_post_read_ctx if the file is compressed, but the caller is
 998	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
 999	 */
1000
1001	if (post_read_steps || f2fs_compressed_file(inode)) {
1002		/* Due to the mempool, this never fails. */
1003		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1004		ctx->bio = bio;
1005		ctx->sbi = sbi;
1006		ctx->enabled_steps = post_read_steps;
1007		ctx->fs_blkaddr = blkaddr;
 
1008		bio->bi_private = ctx;
1009	}
 
1010
1011	return bio;
1012}
1013
1014/* This can handle encryption stuffs */
1015static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1016				 block_t blkaddr, int op_flags, bool for_write)
 
1017{
1018	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1019	struct bio *bio;
1020
1021	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1022					page->index, for_write);
1023	if (IS_ERR(bio))
1024		return PTR_ERR(bio);
1025
1026	/* wait for GCed page writeback via META_MAPPING */
1027	f2fs_wait_on_block_writeback(inode, blkaddr);
1028
1029	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 
 
 
1030		bio_put(bio);
1031		return -EFAULT;
1032	}
1033	ClearPageError(page);
1034	inc_page_count(sbi, F2FS_RD_DATA);
1035	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1036	__submit_bio(sbi, bio, DATA);
1037	return 0;
1038}
1039
1040static void __set_data_blkaddr(struct dnode_of_data *dn)
1041{
1042	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1043	__le32 *addr_array;
1044	int base = 0;
1045
1046	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1047		base = get_extra_isize(dn->inode);
1048
1049	/* Get physical address of data block */
1050	addr_array = blkaddr_in_node(rn);
1051	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1052}
1053
1054/*
1055 * Lock ordering for the change of data block address:
1056 * ->data_page
1057 *  ->node_page
1058 *    update block addresses in the node page
1059 */
1060void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1061{
1062	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1063	__set_data_blkaddr(dn);
1064	if (set_page_dirty(dn->node_page))
1065		dn->node_changed = true;
1066}
1067
1068void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1069{
1070	dn->data_blkaddr = blkaddr;
1071	f2fs_set_data_blkaddr(dn);
1072	f2fs_update_extent_cache(dn);
1073}
1074
1075/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1076int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1077{
1078	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1079	int err;
1080
1081	if (!count)
1082		return 0;
1083
1084	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1085		return -EPERM;
1086	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1087		return err;
1088
1089	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1090						dn->ofs_in_node, count);
1091
1092	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1093
1094	for (; count > 0; dn->ofs_in_node++) {
1095		block_t blkaddr = f2fs_data_blkaddr(dn);
1096
1097		if (blkaddr == NULL_ADDR) {
1098			dn->data_blkaddr = NEW_ADDR;
1099			__set_data_blkaddr(dn);
1100			count--;
1101		}
1102	}
1103
1104	if (set_page_dirty(dn->node_page))
1105		dn->node_changed = true;
1106	return 0;
1107}
1108
1109/* Should keep dn->ofs_in_node unchanged */
1110int f2fs_reserve_new_block(struct dnode_of_data *dn)
1111{
1112	unsigned int ofs_in_node = dn->ofs_in_node;
1113	int ret;
1114
1115	ret = f2fs_reserve_new_blocks(dn, 1);
1116	dn->ofs_in_node = ofs_in_node;
1117	return ret;
1118}
1119
1120int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1121{
1122	bool need_put = dn->inode_page ? false : true;
1123	int err;
1124
1125	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1126	if (err)
1127		return err;
1128
1129	if (dn->data_blkaddr == NULL_ADDR)
1130		err = f2fs_reserve_new_block(dn);
1131	if (err || need_put)
1132		f2fs_put_dnode(dn);
1133	return err;
1134}
1135
1136int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1137{
1138	struct extent_info ei = {0, 0, 0};
1139	struct inode *inode = dn->inode;
1140
1141	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1142		dn->data_blkaddr = ei.blk + index - ei.fofs;
1143		return 0;
1144	}
1145
1146	return f2fs_reserve_block(dn, index);
1147}
1148
1149struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1150						int op_flags, bool for_write)
 
1151{
1152	struct address_space *mapping = inode->i_mapping;
1153	struct dnode_of_data dn;
1154	struct page *page;
1155	struct extent_info ei = {0,0,0};
1156	int err;
1157
1158	page = f2fs_grab_cache_page(mapping, index, for_write);
1159	if (!page)
1160		return ERR_PTR(-ENOMEM);
1161
1162	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1163		dn.data_blkaddr = ei.blk + index - ei.fofs;
1164		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1165						DATA_GENERIC_ENHANCE_READ)) {
1166			err = -EFSCORRUPTED;
 
 
1167			goto put_err;
1168		}
1169		goto got_it;
1170	}
1171
1172	set_new_dnode(&dn, inode, NULL, NULL, 0);
1173	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1174	if (err)
 
 
1175		goto put_err;
 
1176	f2fs_put_dnode(&dn);
1177
1178	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1179		err = -ENOENT;
 
 
1180		goto put_err;
1181	}
1182	if (dn.data_blkaddr != NEW_ADDR &&
1183			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1184						dn.data_blkaddr,
1185						DATA_GENERIC_ENHANCE)) {
1186		err = -EFSCORRUPTED;
 
 
1187		goto put_err;
1188	}
1189got_it:
1190	if (PageUptodate(page)) {
1191		unlock_page(page);
1192		return page;
1193	}
1194
1195	/*
1196	 * A new dentry page is allocated but not able to be written, since its
1197	 * new inode page couldn't be allocated due to -ENOSPC.
1198	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1199	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1200	 * f2fs_init_inode_metadata.
1201	 */
1202	if (dn.data_blkaddr == NEW_ADDR) {
1203		zero_user_segment(page, 0, PAGE_SIZE);
1204		if (!PageUptodate(page))
1205			SetPageUptodate(page);
1206		unlock_page(page);
1207		return page;
1208	}
1209
1210	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1211						op_flags, for_write);
1212	if (err)
1213		goto put_err;
1214	return page;
1215
1216put_err:
1217	f2fs_put_page(page, 1);
1218	return ERR_PTR(err);
1219}
1220
1221struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
 
1222{
1223	struct address_space *mapping = inode->i_mapping;
1224	struct page *page;
1225
1226	page = find_get_page(mapping, index);
1227	if (page && PageUptodate(page))
1228		return page;
1229	f2fs_put_page(page, 0);
1230
1231	page = f2fs_get_read_data_page(inode, index, 0, false);
1232	if (IS_ERR(page))
1233		return page;
1234
1235	if (PageUptodate(page))
1236		return page;
1237
1238	wait_on_page_locked(page);
1239	if (unlikely(!PageUptodate(page))) {
1240		f2fs_put_page(page, 0);
1241		return ERR_PTR(-EIO);
1242	}
1243	return page;
1244}
1245
1246/*
1247 * If it tries to access a hole, return an error.
1248 * Because, the callers, functions in dir.c and GC, should be able to know
1249 * whether this page exists or not.
1250 */
1251struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1252							bool for_write)
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	struct page *page;
1256repeat:
1257	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1258	if (IS_ERR(page))
1259		return page;
1260
1261	/* wait for read completion */
1262	lock_page(page);
1263	if (unlikely(page->mapping != mapping)) {
1264		f2fs_put_page(page, 1);
1265		goto repeat;
1266	}
1267	if (unlikely(!PageUptodate(page))) {
1268		f2fs_put_page(page, 1);
1269		return ERR_PTR(-EIO);
1270	}
1271	return page;
1272}
1273
1274/*
1275 * Caller ensures that this data page is never allocated.
1276 * A new zero-filled data page is allocated in the page cache.
1277 *
1278 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1279 * f2fs_unlock_op().
1280 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1281 * ipage should be released by this function.
1282 */
1283struct page *f2fs_get_new_data_page(struct inode *inode,
1284		struct page *ipage, pgoff_t index, bool new_i_size)
1285{
1286	struct address_space *mapping = inode->i_mapping;
1287	struct page *page;
1288	struct dnode_of_data dn;
1289	int err;
1290
1291	page = f2fs_grab_cache_page(mapping, index, true);
1292	if (!page) {
1293		/*
1294		 * before exiting, we should make sure ipage will be released
1295		 * if any error occur.
1296		 */
1297		f2fs_put_page(ipage, 1);
1298		return ERR_PTR(-ENOMEM);
1299	}
1300
1301	set_new_dnode(&dn, inode, ipage, NULL, 0);
1302	err = f2fs_reserve_block(&dn, index);
1303	if (err) {
1304		f2fs_put_page(page, 1);
1305		return ERR_PTR(err);
1306	}
1307	if (!ipage)
1308		f2fs_put_dnode(&dn);
1309
1310	if (PageUptodate(page))
1311		goto got_it;
1312
1313	if (dn.data_blkaddr == NEW_ADDR) {
1314		zero_user_segment(page, 0, PAGE_SIZE);
1315		if (!PageUptodate(page))
1316			SetPageUptodate(page);
1317	} else {
1318		f2fs_put_page(page, 1);
1319
1320		/* if ipage exists, blkaddr should be NEW_ADDR */
1321		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1322		page = f2fs_get_lock_data_page(inode, index, true);
1323		if (IS_ERR(page))
1324			return page;
1325	}
1326got_it:
1327	if (new_i_size && i_size_read(inode) <
1328				((loff_t)(index + 1) << PAGE_SHIFT))
1329		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1330	return page;
1331}
1332
1333static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1334{
1335	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1336	struct f2fs_summary sum;
1337	struct node_info ni;
1338	block_t old_blkaddr;
1339	blkcnt_t count = 1;
1340	int err;
1341
1342	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1343		return -EPERM;
1344
1345	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1346	if (err)
1347		return err;
1348
1349	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1350	if (dn->data_blkaddr != NULL_ADDR)
1351		goto alloc;
1352
1353	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1354		return err;
1355
1356alloc:
1357	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1358	old_blkaddr = dn->data_blkaddr;
1359	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1360				&sum, seg_type, NULL);
1361	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1362		invalidate_mapping_pages(META_MAPPING(sbi),
1363					old_blkaddr, old_blkaddr);
1364		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1365	}
1366	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1367
1368	/*
1369	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1370	 * data from unwritten block via dio_read.
1371	 */
1372	return 0;
1373}
1374
1375int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1376{
1377	struct inode *inode = file_inode(iocb->ki_filp);
1378	struct f2fs_map_blocks map;
1379	int flag;
1380	int err = 0;
1381	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1382
1383	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1384	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1385	if (map.m_len > map.m_lblk)
1386		map.m_len -= map.m_lblk;
1387	else
1388		map.m_len = 0;
 
1389
1390	map.m_next_pgofs = NULL;
1391	map.m_next_extent = NULL;
1392	map.m_seg_type = NO_CHECK_TYPE;
1393	map.m_may_create = true;
 
 
 
1394
1395	if (direct_io) {
1396		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1397		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1398					F2FS_GET_BLOCK_PRE_AIO :
1399					F2FS_GET_BLOCK_PRE_DIO;
1400		goto map_blocks;
1401	}
1402	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1403		err = f2fs_convert_inline_inode(inode);
1404		if (err)
1405			return err;
1406	}
1407	if (f2fs_has_inline_data(inode))
1408		return err;
1409
1410	flag = F2FS_GET_BLOCK_PRE_AIO;
 
 
 
 
1411
1412map_blocks:
1413	err = f2fs_map_blocks(inode, &map, 1, flag);
1414	if (map.m_len > 0 && err == -ENOSPC) {
1415		if (!direct_io)
1416			set_inode_flag(inode, FI_NO_PREALLOC);
1417		err = 0;
1418	}
1419	return err;
1420}
1421
1422void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
 
 
1423{
1424	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1425		if (lock)
1426			down_read(&sbi->node_change);
1427		else
1428			up_read(&sbi->node_change);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429	} else {
1430		if (lock)
1431			f2fs_lock_op(sbi);
1432		else
1433			f2fs_unlock_op(sbi);
1434	}
 
1435}
1436
1437/*
1438 * f2fs_map_blocks() tries to find or build mapping relationship which
1439 * maps continuous logical blocks to physical blocks, and return such
1440 * info via f2fs_map_blocks structure.
1441 */
1442int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1443						int create, int flag)
1444{
1445	unsigned int maxblocks = map->m_len;
1446	struct dnode_of_data dn;
1447	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1449	pgoff_t pgofs, end_offset, end;
1450	int err = 0, ofs = 1;
1451	unsigned int ofs_in_node, last_ofs_in_node;
1452	blkcnt_t prealloc;
1453	struct extent_info ei = {0,0,0};
1454	block_t blkaddr;
1455	unsigned int start_pgofs;
 
 
1456
1457	if (!maxblocks)
1458		return 0;
1459
 
 
 
 
 
 
 
1460	map->m_len = 0;
1461	map->m_flags = 0;
1462
1463	/* it only supports block size == page size */
1464	pgofs =	(pgoff_t)map->m_lblk;
1465	end = pgofs + maxblocks;
1466
1467	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1468		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1469							map->m_may_create)
1470			goto next_dnode;
1471
1472		map->m_pblk = ei.blk + pgofs - ei.fofs;
1473		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1474		map->m_flags = F2FS_MAP_MAPPED;
1475		if (map->m_next_extent)
1476			*map->m_next_extent = pgofs + map->m_len;
1477
1478		/* for hardware encryption, but to avoid potential issue in future */
1479		if (flag == F2FS_GET_BLOCK_DIO)
1480			f2fs_wait_on_block_writeback_range(inode,
1481						map->m_pblk, map->m_len);
1482		goto out;
1483	}
1484
1485next_dnode:
1486	if (map->m_may_create)
1487		f2fs_do_map_lock(sbi, flag, true);
1488
1489	/* When reading holes, we need its node page */
1490	set_new_dnode(&dn, inode, NULL, NULL, 0);
1491	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1492	if (err) {
1493		if (flag == F2FS_GET_BLOCK_BMAP)
1494			map->m_pblk = 0;
1495
1496		if (err == -ENOENT) {
1497			/*
1498			 * There is one exceptional case that read_node_page()
1499			 * may return -ENOENT due to filesystem has been
1500			 * shutdown or cp_error, so force to convert error
1501			 * number to EIO for such case.
1502			 */
1503			if (map->m_may_create &&
1504				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1505				f2fs_cp_error(sbi))) {
1506				err = -EIO;
1507				goto unlock_out;
1508			}
1509
1510			err = 0;
1511			if (map->m_next_pgofs)
1512				*map->m_next_pgofs =
1513					f2fs_get_next_page_offset(&dn, pgofs);
1514			if (map->m_next_extent)
1515				*map->m_next_extent =
1516					f2fs_get_next_page_offset(&dn, pgofs);
1517		}
1518		goto unlock_out;
1519	}
1520
1521	start_pgofs = pgofs;
1522	prealloc = 0;
1523	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1524	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1525
1526next_block:
1527	blkaddr = f2fs_data_blkaddr(&dn);
1528
1529	if (__is_valid_data_blkaddr(blkaddr) &&
1530		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1531		err = -EFSCORRUPTED;
 
1532		goto sync_out;
1533	}
1534
1535	if (__is_valid_data_blkaddr(blkaddr)) {
1536		/* use out-place-update for driect IO under LFS mode */
1537		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1538							map->m_may_create) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1539			err = __allocate_data_block(&dn, map->m_seg_type);
1540			if (err)
1541				goto sync_out;
1542			blkaddr = dn.data_blkaddr;
 
1543			set_inode_flag(inode, FI_APPEND_WRITE);
 
 
 
 
 
1544		}
1545	} else {
1546		if (create) {
1547			if (unlikely(f2fs_cp_error(sbi))) {
1548				err = -EIO;
1549				goto sync_out;
1550			}
1551			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1552				if (blkaddr == NULL_ADDR) {
1553					prealloc++;
1554					last_ofs_in_node = dn.ofs_in_node;
1555				}
1556			} else {
1557				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1558					flag != F2FS_GET_BLOCK_DIO);
1559				err = __allocate_data_block(&dn,
1560							map->m_seg_type);
1561				if (!err)
1562					set_inode_flag(inode, FI_APPEND_WRITE);
1563			}
1564			if (err)
1565				goto sync_out;
1566			map->m_flags |= F2FS_MAP_NEW;
1567			blkaddr = dn.data_blkaddr;
1568		} else {
1569			if (flag == F2FS_GET_BLOCK_BMAP) {
1570				map->m_pblk = 0;
1571				goto sync_out;
1572			}
1573			if (flag == F2FS_GET_BLOCK_PRECACHE)
1574				goto sync_out;
1575			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1576						blkaddr == NULL_ADDR) {
1577				if (map->m_next_pgofs)
1578					*map->m_next_pgofs = pgofs + 1;
1579				goto sync_out;
1580			}
1581			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1582				/* for defragment case */
 
1583				if (map->m_next_pgofs)
1584					*map->m_next_pgofs = pgofs + 1;
1585				goto sync_out;
1586			}
 
 
 
 
 
 
1587		}
1588	}
1589
1590	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1591		goto skip;
1592
 
 
 
1593	if (map->m_len == 0) {
1594		/* preallocated unwritten block should be mapped for fiemap. */
1595		if (blkaddr == NEW_ADDR)
1596			map->m_flags |= F2FS_MAP_UNWRITTEN;
1597		map->m_flags |= F2FS_MAP_MAPPED;
1598
1599		map->m_pblk = blkaddr;
1600		map->m_len = 1;
 
 
 
1601	} else if ((map->m_pblk != NEW_ADDR &&
1602			blkaddr == (map->m_pblk + ofs)) ||
1603			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1604			flag == F2FS_GET_BLOCK_PRE_DIO) {
 
 
1605		ofs++;
1606		map->m_len++;
1607	} else {
1608		goto sync_out;
1609	}
1610
1611skip:
1612	dn.ofs_in_node++;
1613	pgofs++;
1614
1615	/* preallocate blocks in batch for one dnode page */
1616	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1617			(pgofs == end || dn.ofs_in_node == end_offset)) {
1618
1619		dn.ofs_in_node = ofs_in_node;
1620		err = f2fs_reserve_new_blocks(&dn, prealloc);
1621		if (err)
1622			goto sync_out;
1623
1624		map->m_len += dn.ofs_in_node - ofs_in_node;
1625		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1626			err = -ENOSPC;
1627			goto sync_out;
1628		}
1629		dn.ofs_in_node = end_offset;
1630	}
1631
1632	if (pgofs >= end)
1633		goto sync_out;
1634	else if (dn.ofs_in_node < end_offset)
1635		goto next_block;
1636
1637	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1638		if (map->m_flags & F2FS_MAP_MAPPED) {
1639			unsigned int ofs = start_pgofs - map->m_lblk;
1640
1641			f2fs_update_extent_cache_range(&dn,
1642				start_pgofs, map->m_pblk + ofs,
1643				map->m_len - ofs);
1644		}
1645	}
1646
1647	f2fs_put_dnode(&dn);
1648
1649	if (map->m_may_create) {
1650		f2fs_do_map_lock(sbi, flag, false);
1651		f2fs_balance_fs(sbi, dn.node_changed);
1652	}
1653	goto next_dnode;
1654
1655sync_out:
1656
1657	/* for hardware encryption, but to avoid potential issue in future */
1658	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
 
 
 
1659		f2fs_wait_on_block_writeback_range(inode,
1660						map->m_pblk, map->m_len);
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1663		if (map->m_flags & F2FS_MAP_MAPPED) {
1664			unsigned int ofs = start_pgofs - map->m_lblk;
1665
1666			f2fs_update_extent_cache_range(&dn,
1667				start_pgofs, map->m_pblk + ofs,
1668				map->m_len - ofs);
1669		}
1670		if (map->m_next_extent)
1671			*map->m_next_extent = pgofs + 1;
1672	}
1673	f2fs_put_dnode(&dn);
1674unlock_out:
1675	if (map->m_may_create) {
1676		f2fs_do_map_lock(sbi, flag, false);
1677		f2fs_balance_fs(sbi, dn.node_changed);
1678	}
1679out:
1680	trace_f2fs_map_blocks(inode, map, err);
1681	return err;
1682}
1683
1684bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1685{
1686	struct f2fs_map_blocks map;
1687	block_t last_lblk;
1688	int err;
1689
1690	if (pos + len > i_size_read(inode))
1691		return false;
1692
1693	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1694	map.m_next_pgofs = NULL;
1695	map.m_next_extent = NULL;
1696	map.m_seg_type = NO_CHECK_TYPE;
1697	map.m_may_create = false;
1698	last_lblk = F2FS_BLK_ALIGN(pos + len);
1699
1700	while (map.m_lblk < last_lblk) {
1701		map.m_len = last_lblk - map.m_lblk;
1702		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1703		if (err || map.m_len == 0)
1704			return false;
1705		map.m_lblk += map.m_len;
1706	}
1707	return true;
1708}
1709
1710static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1711{
1712	return (bytes >> inode->i_blkbits);
1713}
1714
1715static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1716{
1717	return (blks << inode->i_blkbits);
1718}
1719
1720static int __get_data_block(struct inode *inode, sector_t iblock,
1721			struct buffer_head *bh, int create, int flag,
1722			pgoff_t *next_pgofs, int seg_type, bool may_write)
1723{
1724	struct f2fs_map_blocks map;
1725	int err;
1726
1727	map.m_lblk = iblock;
1728	map.m_len = bytes_to_blks(inode, bh->b_size);
1729	map.m_next_pgofs = next_pgofs;
1730	map.m_next_extent = NULL;
1731	map.m_seg_type = seg_type;
1732	map.m_may_create = may_write;
1733
1734	err = f2fs_map_blocks(inode, &map, create, flag);
1735	if (!err) {
1736		map_bh(bh, inode->i_sb, map.m_pblk);
1737		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1738		bh->b_size = blks_to_bytes(inode, map.m_len);
1739	}
1740	return err;
1741}
1742
1743static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1744			struct buffer_head *bh_result, int create)
1745{
1746	return __get_data_block(inode, iblock, bh_result, create,
1747				F2FS_GET_BLOCK_DIO, NULL,
1748				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1749				true);
1750}
1751
1752static int get_data_block_dio(struct inode *inode, sector_t iblock,
1753			struct buffer_head *bh_result, int create)
1754{
1755	return __get_data_block(inode, iblock, bh_result, create,
1756				F2FS_GET_BLOCK_DIO, NULL,
1757				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1758				false);
1759}
1760
1761static int f2fs_xattr_fiemap(struct inode *inode,
1762				struct fiemap_extent_info *fieinfo)
1763{
1764	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1765	struct page *page;
1766	struct node_info ni;
1767	__u64 phys = 0, len;
1768	__u32 flags;
1769	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1770	int err = 0;
1771
1772	if (f2fs_has_inline_xattr(inode)) {
1773		int offset;
1774
1775		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1776						inode->i_ino, false);
1777		if (!page)
1778			return -ENOMEM;
1779
1780		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1781		if (err) {
1782			f2fs_put_page(page, 1);
1783			return err;
1784		}
1785
1786		phys = blks_to_bytes(inode, ni.blk_addr);
1787		offset = offsetof(struct f2fs_inode, i_addr) +
1788					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1789					get_inline_xattr_addrs(inode));
1790
1791		phys += offset;
1792		len = inline_xattr_size(inode);
1793
1794		f2fs_put_page(page, 1);
1795
1796		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1797
1798		if (!xnid)
1799			flags |= FIEMAP_EXTENT_LAST;
1800
1801		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1802		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1803		if (err || err == 1)
1804			return err;
1805	}
1806
1807	if (xnid) {
1808		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1809		if (!page)
1810			return -ENOMEM;
1811
1812		err = f2fs_get_node_info(sbi, xnid, &ni);
1813		if (err) {
1814			f2fs_put_page(page, 1);
1815			return err;
1816		}
1817
1818		phys = blks_to_bytes(inode, ni.blk_addr);
1819		len = inode->i_sb->s_blocksize;
1820
1821		f2fs_put_page(page, 1);
1822
1823		flags = FIEMAP_EXTENT_LAST;
1824	}
1825
1826	if (phys) {
1827		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1828		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1829	}
1830
1831	return (err < 0 ? err : 0);
1832}
1833
1834static loff_t max_inode_blocks(struct inode *inode)
1835{
1836	loff_t result = ADDRS_PER_INODE(inode);
1837	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1838
1839	/* two direct node blocks */
1840	result += (leaf_count * 2);
1841
1842	/* two indirect node blocks */
1843	leaf_count *= NIDS_PER_BLOCK;
1844	result += (leaf_count * 2);
1845
1846	/* one double indirect node block */
1847	leaf_count *= NIDS_PER_BLOCK;
1848	result += leaf_count;
1849
1850	return result;
1851}
1852
1853int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1854		u64 start, u64 len)
1855{
1856	struct f2fs_map_blocks map;
1857	sector_t start_blk, last_blk;
1858	pgoff_t next_pgofs;
1859	u64 logical = 0, phys = 0, size = 0;
1860	u32 flags = 0;
1861	int ret = 0;
1862	bool compr_cluster = false;
1863	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
 
1864	loff_t maxbytes;
1865
1866	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1867		ret = f2fs_precache_extents(inode);
1868		if (ret)
1869			return ret;
1870	}
1871
1872	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1873	if (ret)
1874		return ret;
1875
1876	inode_lock(inode);
1877
1878	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1879	if (start > maxbytes) {
1880		ret = -EFBIG;
1881		goto out;
1882	}
1883
1884	if (len > maxbytes || (maxbytes - len) < start)
1885		len = maxbytes - start;
1886
1887	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1888		ret = f2fs_xattr_fiemap(inode, fieinfo);
1889		goto out;
1890	}
1891
1892	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1893		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1894		if (ret != -EAGAIN)
1895			goto out;
1896	}
1897
1898	if (bytes_to_blks(inode, len) == 0)
1899		len = blks_to_bytes(inode, 1);
1900
1901	start_blk = bytes_to_blks(inode, start);
1902	last_blk = bytes_to_blks(inode, start + len - 1);
1903
1904next:
1905	memset(&map, 0, sizeof(map));
1906	map.m_lblk = start_blk;
1907	map.m_len = bytes_to_blks(inode, len);
1908	map.m_next_pgofs = &next_pgofs;
1909	map.m_seg_type = NO_CHECK_TYPE;
1910
1911	if (compr_cluster)
1912		map.m_len = cluster_size - 1;
 
 
1913
1914	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1915	if (ret)
1916		goto out;
1917
1918	/* HOLE */
1919	if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1920		start_blk = next_pgofs;
1921
1922		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1923						max_inode_blocks(inode)))
1924			goto prep_next;
1925
1926		flags |= FIEMAP_EXTENT_LAST;
1927	}
1928
 
 
 
 
 
 
 
 
1929	if (size) {
1930		flags |= FIEMAP_EXTENT_MERGED;
1931		if (IS_ENCRYPTED(inode))
1932			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1933
1934		ret = fiemap_fill_next_extent(fieinfo, logical,
1935				phys, size, flags);
1936		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1937		if (ret)
1938			goto out;
1939		size = 0;
1940	}
1941
1942	if (start_blk > last_blk)
1943		goto out;
1944
1945	if (compr_cluster) {
1946		compr_cluster = false;
1947
1948
1949		logical = blks_to_bytes(inode, start_blk - 1);
1950		phys = blks_to_bytes(inode, map.m_pblk);
1951		size = blks_to_bytes(inode, cluster_size);
1952
1953		flags |= FIEMAP_EXTENT_ENCODED;
1954
1955		start_blk += cluster_size - 1;
1956
1957		if (start_blk > last_blk)
1958			goto out;
1959
1960		goto prep_next;
1961	}
1962
1963	if (map.m_pblk == COMPRESS_ADDR) {
1964		compr_cluster = true;
1965		start_blk++;
1966		goto prep_next;
1967	}
1968
1969	logical = blks_to_bytes(inode, start_blk);
1970	phys = blks_to_bytes(inode, map.m_pblk);
1971	size = blks_to_bytes(inode, map.m_len);
1972	flags = 0;
1973	if (map.m_flags & F2FS_MAP_UNWRITTEN)
1974		flags = FIEMAP_EXTENT_UNWRITTEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975
1976	start_blk += bytes_to_blks(inode, size);
 
1977
1978prep_next:
1979	cond_resched();
1980	if (fatal_signal_pending(current))
1981		ret = -EINTR;
1982	else
1983		goto next;
1984out:
1985	if (ret == 1)
1986		ret = 0;
1987
1988	inode_unlock(inode);
1989	return ret;
1990}
1991
1992static inline loff_t f2fs_readpage_limit(struct inode *inode)
1993{
1994	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1995	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1996		return inode->i_sb->s_maxbytes;
1997
1998	return i_size_read(inode);
1999}
2000
2001static int f2fs_read_single_page(struct inode *inode, struct page *page,
2002					unsigned nr_pages,
2003					struct f2fs_map_blocks *map,
2004					struct bio **bio_ret,
2005					sector_t *last_block_in_bio,
2006					bool is_readahead)
2007{
2008	struct bio *bio = *bio_ret;
2009	const unsigned blocksize = blks_to_bytes(inode, 1);
2010	sector_t block_in_file;
2011	sector_t last_block;
2012	sector_t last_block_in_file;
2013	sector_t block_nr;
2014	int ret = 0;
2015
2016	block_in_file = (sector_t)page_index(page);
2017	last_block = block_in_file + nr_pages;
2018	last_block_in_file = bytes_to_blks(inode,
2019			f2fs_readpage_limit(inode) + blocksize - 1);
2020	if (last_block > last_block_in_file)
2021		last_block = last_block_in_file;
2022
2023	/* just zeroing out page which is beyond EOF */
2024	if (block_in_file >= last_block)
2025		goto zero_out;
2026	/*
2027	 * Map blocks using the previous result first.
2028	 */
2029	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2030			block_in_file > map->m_lblk &&
2031			block_in_file < (map->m_lblk + map->m_len))
2032		goto got_it;
2033
2034	/*
2035	 * Then do more f2fs_map_blocks() calls until we are
2036	 * done with this page.
2037	 */
2038	map->m_lblk = block_in_file;
2039	map->m_len = last_block - block_in_file;
2040
2041	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2042	if (ret)
2043		goto out;
2044got_it:
2045	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2046		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2047		SetPageMappedToDisk(page);
2048
2049		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2050					!cleancache_get_page(page))) {
2051			SetPageUptodate(page);
2052			goto confused;
2053		}
2054
2055		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2056						DATA_GENERIC_ENHANCE_READ)) {
2057			ret = -EFSCORRUPTED;
 
 
2058			goto out;
2059		}
2060	} else {
2061zero_out:
2062		zero_user_segment(page, 0, PAGE_SIZE);
2063		if (f2fs_need_verity(inode, page->index) &&
2064		    !fsverity_verify_page(page)) {
2065			ret = -EIO;
2066			goto out;
2067		}
2068		if (!PageUptodate(page))
2069			SetPageUptodate(page);
2070		unlock_page(page);
2071		goto out;
2072	}
2073
2074	/*
2075	 * This page will go to BIO.  Do we need to send this
2076	 * BIO off first?
2077	 */
2078	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2079				       *last_block_in_bio, block_nr) ||
2080		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2081submit_and_realloc:
2082		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2083		bio = NULL;
2084	}
2085	if (bio == NULL) {
2086		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2087				is_readahead ? REQ_RAHEAD : 0, page->index,
2088				false);
2089		if (IS_ERR(bio)) {
2090			ret = PTR_ERR(bio);
2091			bio = NULL;
2092			goto out;
2093		}
2094	}
2095
2096	/*
2097	 * If the page is under writeback, we need to wait for
2098	 * its completion to see the correct decrypted data.
2099	 */
2100	f2fs_wait_on_block_writeback(inode, block_nr);
2101
2102	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2103		goto submit_and_realloc;
2104
2105	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2106	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2107	ClearPageError(page);
2108	*last_block_in_bio = block_nr;
2109	goto out;
2110confused:
2111	if (bio) {
2112		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2113		bio = NULL;
2114	}
2115	unlock_page(page);
2116out:
2117	*bio_ret = bio;
2118	return ret;
2119}
2120
2121#ifdef CONFIG_F2FS_FS_COMPRESSION
2122int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2123				unsigned nr_pages, sector_t *last_block_in_bio,
2124				bool is_readahead, bool for_write)
2125{
2126	struct dnode_of_data dn;
2127	struct inode *inode = cc->inode;
2128	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2129	struct bio *bio = *bio_ret;
2130	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2131	sector_t last_block_in_file;
2132	const unsigned blocksize = blks_to_bytes(inode, 1);
2133	struct decompress_io_ctx *dic = NULL;
 
 
2134	int i;
2135	int ret = 0;
2136
2137	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2138
2139	last_block_in_file = bytes_to_blks(inode,
2140			f2fs_readpage_limit(inode) + blocksize - 1);
2141
2142	/* get rid of pages beyond EOF */
2143	for (i = 0; i < cc->cluster_size; i++) {
2144		struct page *page = cc->rpages[i];
2145
2146		if (!page)
2147			continue;
2148		if ((sector_t)page->index >= last_block_in_file) {
2149			zero_user_segment(page, 0, PAGE_SIZE);
2150			if (!PageUptodate(page))
2151				SetPageUptodate(page);
2152		} else if (!PageUptodate(page)) {
2153			continue;
2154		}
2155		unlock_page(page);
2156		if (for_write)
2157			put_page(page);
2158		cc->rpages[i] = NULL;
2159		cc->nr_rpages--;
2160	}
2161
2162	/* we are done since all pages are beyond EOF */
2163	if (f2fs_cluster_is_empty(cc))
2164		goto out;
2165
 
 
 
 
 
 
2166	set_new_dnode(&dn, inode, NULL, NULL, 0);
2167	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2168	if (ret)
2169		goto out;
2170
 
 
 
 
2171	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2172
 
2173	for (i = 1; i < cc->cluster_size; i++) {
2174		block_t blkaddr;
2175
2176		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2177						dn.ofs_in_node + i);
 
2178
2179		if (!__is_valid_data_blkaddr(blkaddr))
2180			break;
2181
2182		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2183			ret = -EFAULT;
2184			goto out_put_dnode;
2185		}
2186		cc->nr_cpages++;
 
 
 
2187	}
2188
2189	/* nothing to decompress */
2190	if (cc->nr_cpages == 0) {
2191		ret = 0;
2192		goto out_put_dnode;
2193	}
2194
2195	dic = f2fs_alloc_dic(cc);
2196	if (IS_ERR(dic)) {
2197		ret = PTR_ERR(dic);
2198		goto out_put_dnode;
2199	}
2200
2201	for (i = 0; i < cc->nr_cpages; i++) {
2202		struct page *page = dic->cpages[i];
2203		block_t blkaddr;
2204		struct bio_post_read_ctx *ctx;
2205
2206		blkaddr = data_blkaddr(dn.inode, dn.node_page,
2207						dn.ofs_in_node + i + 1);
 
2208
2209		f2fs_wait_on_block_writeback(inode, blkaddr);
2210
2211		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2212			if (atomic_dec_and_test(&dic->remaining_pages))
2213				f2fs_decompress_cluster(dic);
 
 
2214			continue;
2215		}
2216
2217		if (bio && (!page_is_mergeable(sbi, bio,
2218					*last_block_in_bio, blkaddr) ||
2219		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2220submit_and_realloc:
2221			__submit_bio(sbi, bio, DATA);
2222			bio = NULL;
2223		}
2224
2225		if (!bio) {
2226			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2227					is_readahead ? REQ_RAHEAD : 0,
2228					page->index, for_write);
2229			if (IS_ERR(bio)) {
2230				ret = PTR_ERR(bio);
2231				f2fs_decompress_end_io(dic, ret);
2232				f2fs_put_dnode(&dn);
2233				*bio_ret = NULL;
2234				return ret;
2235			}
2236		}
2237
2238		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2239			goto submit_and_realloc;
2240
2241		ctx = bio->bi_private;
2242		ctx->enabled_steps |= STEP_DECOMPRESS;
2243		refcount_inc(&dic->refcnt);
2244
2245		inc_page_count(sbi, F2FS_RD_DATA);
2246		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2247		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2248		ClearPageError(page);
2249		*last_block_in_bio = blkaddr;
2250	}
2251
2252	f2fs_put_dnode(&dn);
 
2253
2254	*bio_ret = bio;
2255	return 0;
2256
2257out_put_dnode:
2258	f2fs_put_dnode(&dn);
 
2259out:
2260	for (i = 0; i < cc->cluster_size; i++) {
2261		if (cc->rpages[i]) {
2262			ClearPageUptodate(cc->rpages[i]);
2263			ClearPageError(cc->rpages[i]);
2264			unlock_page(cc->rpages[i]);
2265		}
2266	}
2267	*bio_ret = bio;
2268	return ret;
2269}
2270#endif
2271
2272/*
2273 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2274 * Major change was from block_size == page_size in f2fs by default.
2275 */
2276static int f2fs_mpage_readpages(struct inode *inode,
2277		struct readahead_control *rac, struct page *page)
2278{
2279	struct bio *bio = NULL;
2280	sector_t last_block_in_bio = 0;
2281	struct f2fs_map_blocks map;
2282#ifdef CONFIG_F2FS_FS_COMPRESSION
2283	struct compress_ctx cc = {
2284		.inode = inode,
2285		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2286		.cluster_size = F2FS_I(inode)->i_cluster_size,
2287		.cluster_idx = NULL_CLUSTER,
2288		.rpages = NULL,
2289		.cpages = NULL,
2290		.nr_rpages = 0,
2291		.nr_cpages = 0,
2292	};
 
2293#endif
2294	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2295	unsigned max_nr_pages = nr_pages;
2296	int ret = 0;
2297
2298	map.m_pblk = 0;
2299	map.m_lblk = 0;
2300	map.m_len = 0;
2301	map.m_flags = 0;
2302	map.m_next_pgofs = NULL;
2303	map.m_next_extent = NULL;
2304	map.m_seg_type = NO_CHECK_TYPE;
2305	map.m_may_create = false;
2306
2307	for (; nr_pages; nr_pages--) {
2308		if (rac) {
2309			page = readahead_page(rac);
2310			prefetchw(&page->flags);
2311		}
2312
2313#ifdef CONFIG_F2FS_FS_COMPRESSION
2314		if (f2fs_compressed_file(inode)) {
2315			/* there are remained comressed pages, submit them */
2316			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2317				ret = f2fs_read_multi_pages(&cc, &bio,
2318							max_nr_pages,
2319							&last_block_in_bio,
2320							rac != NULL, false);
2321				f2fs_destroy_compress_ctx(&cc, false);
2322				if (ret)
2323					goto set_error_page;
2324			}
2325			ret = f2fs_is_compressed_cluster(inode, page->index);
2326			if (ret < 0)
2327				goto set_error_page;
2328			else if (!ret)
2329				goto read_single_page;
 
 
 
 
 
 
 
 
 
2330
 
 
2331			ret = f2fs_init_compress_ctx(&cc);
2332			if (ret)
2333				goto set_error_page;
2334
2335			f2fs_compress_ctx_add_page(&cc, page);
2336
2337			goto next_page;
2338		}
2339read_single_page:
2340#endif
2341
2342		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2343					&bio, &last_block_in_bio, rac);
2344		if (ret) {
2345#ifdef CONFIG_F2FS_FS_COMPRESSION
2346set_error_page:
2347#endif
2348			SetPageError(page);
2349			zero_user_segment(page, 0, PAGE_SIZE);
2350			unlock_page(page);
2351		}
2352#ifdef CONFIG_F2FS_FS_COMPRESSION
2353next_page:
2354#endif
2355		if (rac)
2356			put_page(page);
2357
2358#ifdef CONFIG_F2FS_FS_COMPRESSION
2359		if (f2fs_compressed_file(inode)) {
2360			/* last page */
2361			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2362				ret = f2fs_read_multi_pages(&cc, &bio,
2363							max_nr_pages,
2364							&last_block_in_bio,
2365							rac != NULL, false);
2366				f2fs_destroy_compress_ctx(&cc, false);
2367			}
2368		}
2369#endif
2370	}
2371	if (bio)
2372		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2373	return ret;
2374}
2375
2376static int f2fs_read_data_page(struct file *file, struct page *page)
2377{
 
2378	struct inode *inode = page_file_mapping(page)->host;
2379	int ret = -EAGAIN;
2380
2381	trace_f2fs_readpage(page, DATA);
2382
2383	if (!f2fs_is_compress_backend_ready(inode)) {
2384		unlock_page(page);
2385		return -EOPNOTSUPP;
2386	}
2387
2388	/* If the file has inline data, try to read it directly */
2389	if (f2fs_has_inline_data(inode))
2390		ret = f2fs_read_inline_data(inode, page);
2391	if (ret == -EAGAIN)
2392		ret = f2fs_mpage_readpages(inode, NULL, page);
2393	return ret;
2394}
2395
2396static void f2fs_readahead(struct readahead_control *rac)
2397{
2398	struct inode *inode = rac->mapping->host;
2399
2400	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2401
2402	if (!f2fs_is_compress_backend_ready(inode))
2403		return;
2404
2405	/* If the file has inline data, skip readpages */
2406	if (f2fs_has_inline_data(inode))
2407		return;
2408
2409	f2fs_mpage_readpages(inode, rac, NULL);
2410}
2411
2412int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2413{
2414	struct inode *inode = fio->page->mapping->host;
2415	struct page *mpage, *page;
2416	gfp_t gfp_flags = GFP_NOFS;
2417
2418	if (!f2fs_encrypted_file(inode))
2419		return 0;
2420
2421	page = fio->compressed_page ? fio->compressed_page : fio->page;
2422
2423	/* wait for GCed page writeback via META_MAPPING */
2424	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2425
2426	if (fscrypt_inode_uses_inline_crypto(inode))
2427		return 0;
2428
2429retry_encrypt:
2430	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2431					PAGE_SIZE, 0, gfp_flags);
2432	if (IS_ERR(fio->encrypted_page)) {
2433		/* flush pending IOs and wait for a while in the ENOMEM case */
2434		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2435			f2fs_flush_merged_writes(fio->sbi);
2436			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2437			gfp_flags |= __GFP_NOFAIL;
2438			goto retry_encrypt;
2439		}
2440		return PTR_ERR(fio->encrypted_page);
2441	}
2442
2443	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2444	if (mpage) {
2445		if (PageUptodate(mpage))
2446			memcpy(page_address(mpage),
2447				page_address(fio->encrypted_page), PAGE_SIZE);
2448		f2fs_put_page(mpage, 1);
2449	}
2450	return 0;
2451}
2452
2453static inline bool check_inplace_update_policy(struct inode *inode,
2454				struct f2fs_io_info *fio)
2455{
2456	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457	unsigned int policy = SM_I(sbi)->ipu_policy;
2458
2459	if (policy & (0x1 << F2FS_IPU_FORCE))
 
 
 
2460		return true;
2461	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2462		return true;
2463	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2464			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2465		return true;
2466	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2467			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2468		return true;
2469
2470	/*
2471	 * IPU for rewrite async pages
2472	 */
2473	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2474			fio && fio->op == REQ_OP_WRITE &&
2475			!(fio->op_flags & REQ_SYNC) &&
2476			!IS_ENCRYPTED(inode))
2477		return true;
2478
2479	/* this is only set during fdatasync */
2480	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2481			is_inode_flag_set(inode, FI_NEED_IPU))
2482		return true;
2483
2484	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2485			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2486		return true;
2487
2488	return false;
2489}
2490
2491bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2492{
2493	/* swap file is migrating in aligned write mode */
2494	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2495		return false;
2496
2497	if (f2fs_is_pinned_file(inode))
2498		return true;
2499
2500	/* if this is cold file, we should overwrite to avoid fragmentation */
2501	if (file_is_cold(inode))
2502		return true;
2503
2504	return check_inplace_update_policy(inode, fio);
2505}
2506
2507bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2508{
2509	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2510
 
 
 
 
 
2511	if (f2fs_lfs_mode(sbi))
2512		return true;
2513	if (S_ISDIR(inode->i_mode))
2514		return true;
2515	if (IS_NOQUOTA(inode))
2516		return true;
2517	if (f2fs_is_atomic_file(inode))
2518		return true;
2519	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
 
 
 
2520		return true;
2521
2522	/* swap file is migrating in aligned write mode */
2523	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2524		return true;
2525
 
 
 
2526	if (fio) {
2527		if (page_private_gcing(fio->page))
2528			return true;
2529		if (page_private_dummy(fio->page))
2530			return true;
2531		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2532			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2533			return true;
2534	}
2535	return false;
2536}
2537
2538static inline bool need_inplace_update(struct f2fs_io_info *fio)
2539{
2540	struct inode *inode = fio->page->mapping->host;
2541
2542	if (f2fs_should_update_outplace(inode, fio))
2543		return false;
2544
2545	return f2fs_should_update_inplace(inode, fio);
2546}
2547
2548int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2549{
2550	struct page *page = fio->page;
2551	struct inode *inode = page->mapping->host;
2552	struct dnode_of_data dn;
2553	struct extent_info ei = {0,0,0};
2554	struct node_info ni;
2555	bool ipu_force = false;
2556	int err = 0;
2557
2558	set_new_dnode(&dn, inode, NULL, NULL, 0);
2559	if (need_inplace_update(fio) &&
2560			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2561		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
 
2562
 
 
 
2563		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2564						DATA_GENERIC_ENHANCE))
 
 
2565			return -EFSCORRUPTED;
 
2566
2567		ipu_force = true;
2568		fio->need_lock = LOCK_DONE;
2569		goto got_it;
2570	}
2571
2572	/* Deadlock due to between page->lock and f2fs_lock_op */
2573	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2574		return -EAGAIN;
2575
2576	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2577	if (err)
2578		goto out;
2579
2580	fio->old_blkaddr = dn.data_blkaddr;
2581
2582	/* This page is already truncated */
2583	if (fio->old_blkaddr == NULL_ADDR) {
2584		ClearPageUptodate(page);
2585		clear_page_private_gcing(page);
2586		goto out_writepage;
2587	}
2588got_it:
2589	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2590		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2591						DATA_GENERIC_ENHANCE)) {
2592		err = -EFSCORRUPTED;
 
2593		goto out_writepage;
2594	}
 
 
 
 
 
2595	/*
2596	 * If current allocation needs SSR,
2597	 * it had better in-place writes for updated data.
2598	 */
2599	if (ipu_force ||
2600		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2601					need_inplace_update(fio))) {
2602		err = f2fs_encrypt_one_page(fio);
2603		if (err)
2604			goto out_writepage;
2605
2606		set_page_writeback(page);
2607		ClearPageError(page);
2608		f2fs_put_dnode(&dn);
2609		if (fio->need_lock == LOCK_REQ)
2610			f2fs_unlock_op(fio->sbi);
2611		err = f2fs_inplace_write_data(fio);
2612		if (err) {
2613			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2614				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2615			if (PageWriteback(page))
2616				end_page_writeback(page);
2617		} else {
2618			set_inode_flag(inode, FI_UPDATE_WRITE);
2619		}
2620		trace_f2fs_do_write_data_page(fio->page, IPU);
2621		return err;
2622	}
2623
2624	if (fio->need_lock == LOCK_RETRY) {
2625		if (!f2fs_trylock_op(fio->sbi)) {
2626			err = -EAGAIN;
2627			goto out_writepage;
2628		}
2629		fio->need_lock = LOCK_REQ;
2630	}
2631
2632	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2633	if (err)
2634		goto out_writepage;
2635
2636	fio->version = ni.version;
2637
2638	err = f2fs_encrypt_one_page(fio);
2639	if (err)
2640		goto out_writepage;
2641
2642	set_page_writeback(page);
2643	ClearPageError(page);
2644
2645	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2646		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2647
2648	/* LFS mode write path */
2649	f2fs_outplace_write_data(&dn, fio);
2650	trace_f2fs_do_write_data_page(page, OPU);
2651	set_inode_flag(inode, FI_APPEND_WRITE);
2652	if (page->index == 0)
2653		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2654out_writepage:
2655	f2fs_put_dnode(&dn);
2656out:
2657	if (fio->need_lock == LOCK_REQ)
2658		f2fs_unlock_op(fio->sbi);
2659	return err;
2660}
2661
2662int f2fs_write_single_data_page(struct page *page, int *submitted,
2663				struct bio **bio,
2664				sector_t *last_block,
2665				struct writeback_control *wbc,
2666				enum iostat_type io_type,
2667				int compr_blocks,
2668				bool allow_balance)
2669{
2670	struct inode *inode = page->mapping->host;
2671	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2672	loff_t i_size = i_size_read(inode);
2673	const pgoff_t end_index = ((unsigned long long)i_size)
2674							>> PAGE_SHIFT;
2675	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2676	unsigned offset = 0;
2677	bool need_balance_fs = false;
 
2678	int err = 0;
2679	struct f2fs_io_info fio = {
2680		.sbi = sbi,
2681		.ino = inode->i_ino,
2682		.type = DATA,
2683		.op = REQ_OP_WRITE,
2684		.op_flags = wbc_to_write_flags(wbc),
2685		.old_blkaddr = NULL_ADDR,
2686		.page = page,
2687		.encrypted_page = NULL,
2688		.submitted = false,
2689		.compr_blocks = compr_blocks,
2690		.need_lock = LOCK_RETRY,
 
2691		.io_type = io_type,
2692		.io_wbc = wbc,
2693		.bio = bio,
2694		.last_block = last_block,
2695	};
2696
2697	trace_f2fs_writepage(page, DATA);
2698
2699	/* we should bypass data pages to proceed the kworkder jobs */
2700	if (unlikely(f2fs_cp_error(sbi))) {
2701		mapping_set_error(page->mapping, -EIO);
2702		/*
2703		 * don't drop any dirty dentry pages for keeping lastest
2704		 * directory structure.
2705		 */
2706		if (S_ISDIR(inode->i_mode))
 
 
 
 
 
2707			goto redirty_out;
2708		goto out;
2709	}
2710
2711	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2712		goto redirty_out;
2713
2714	if (page->index < end_index ||
2715			f2fs_verity_in_progress(inode) ||
2716			compr_blocks)
2717		goto write;
2718
2719	/*
2720	 * If the offset is out-of-range of file size,
2721	 * this page does not have to be written to disk.
2722	 */
2723	offset = i_size & (PAGE_SIZE - 1);
2724	if ((page->index >= end_index + 1) || !offset)
2725		goto out;
2726
2727	zero_user_segment(page, offset, PAGE_SIZE);
2728write:
2729	if (f2fs_is_drop_cache(inode))
2730		goto out;
2731	/* we should not write 0'th page having journal header */
2732	if (f2fs_is_volatile_file(inode) && (!page->index ||
2733			(!wbc->for_reclaim &&
2734			f2fs_available_free_memory(sbi, BASE_CHECK))))
2735		goto redirty_out;
2736
2737	/* Dentry/quota blocks are controlled by checkpoint */
2738	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2739		/*
2740		 * We need to wait for node_write to avoid block allocation during
2741		 * checkpoint. This can only happen to quota writes which can cause
2742		 * the below discard race condition.
2743		 */
2744		if (IS_NOQUOTA(inode))
2745			down_read(&sbi->node_write);
2746
2747		fio.need_lock = LOCK_DONE;
2748		err = f2fs_do_write_data_page(&fio);
2749
2750		if (IS_NOQUOTA(inode))
2751			up_read(&sbi->node_write);
2752
2753		goto done;
2754	}
2755
2756	if (!wbc->for_reclaim)
2757		need_balance_fs = true;
2758	else if (has_not_enough_free_secs(sbi, 0, 0))
2759		goto redirty_out;
2760	else
2761		set_inode_flag(inode, FI_HOT_DATA);
2762
2763	err = -EAGAIN;
2764	if (f2fs_has_inline_data(inode)) {
2765		err = f2fs_write_inline_data(inode, page);
2766		if (!err)
2767			goto out;
2768	}
2769
2770	if (err == -EAGAIN) {
2771		err = f2fs_do_write_data_page(&fio);
2772		if (err == -EAGAIN) {
2773			fio.need_lock = LOCK_REQ;
2774			err = f2fs_do_write_data_page(&fio);
2775		}
2776	}
2777
2778	if (err) {
2779		file_set_keep_isize(inode);
2780	} else {
2781		spin_lock(&F2FS_I(inode)->i_size_lock);
2782		if (F2FS_I(inode)->last_disk_size < psize)
2783			F2FS_I(inode)->last_disk_size = psize;
2784		spin_unlock(&F2FS_I(inode)->i_size_lock);
2785	}
2786
2787done:
2788	if (err && err != -ENOENT)
2789		goto redirty_out;
2790
2791out:
2792	inode_dec_dirty_pages(inode);
2793	if (err) {
2794		ClearPageUptodate(page);
2795		clear_page_private_gcing(page);
2796	}
2797
2798	if (wbc->for_reclaim) {
2799		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2800		clear_inode_flag(inode, FI_HOT_DATA);
2801		f2fs_remove_dirty_inode(inode);
2802		submitted = NULL;
2803	}
2804	unlock_page(page);
2805	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2806			!F2FS_I(inode)->cp_task && allow_balance)
2807		f2fs_balance_fs(sbi, need_balance_fs);
2808
2809	if (unlikely(f2fs_cp_error(sbi))) {
2810		f2fs_submit_merged_write(sbi, DATA);
2811		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
 
2812		submitted = NULL;
2813	}
2814
2815	if (submitted)
2816		*submitted = fio.submitted ? 1 : 0;
2817
2818	return 0;
2819
2820redirty_out:
2821	redirty_page_for_writepage(wbc, page);
2822	/*
2823	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2824	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2825	 * file_write_and_wait_range() will see EIO error, which is critical
2826	 * to return value of fsync() followed by atomic_write failure to user.
2827	 */
2828	if (!err || wbc->for_reclaim)
2829		return AOP_WRITEPAGE_ACTIVATE;
2830	unlock_page(page);
2831	return err;
2832}
2833
2834static int f2fs_write_data_page(struct page *page,
2835					struct writeback_control *wbc)
2836{
2837#ifdef CONFIG_F2FS_FS_COMPRESSION
2838	struct inode *inode = page->mapping->host;
2839
2840	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2841		goto out;
2842
2843	if (f2fs_compressed_file(inode)) {
2844		if (f2fs_is_compressed_cluster(inode, page->index)) {
2845			redirty_page_for_writepage(wbc, page);
2846			return AOP_WRITEPAGE_ACTIVATE;
2847		}
2848	}
2849out:
2850#endif
2851
2852	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2853						wbc, FS_DATA_IO, 0, true);
2854}
2855
2856/*
2857 * This function was copied from write_cche_pages from mm/page-writeback.c.
2858 * The major change is making write step of cold data page separately from
2859 * warm/hot data page.
2860 */
2861static int f2fs_write_cache_pages(struct address_space *mapping,
2862					struct writeback_control *wbc,
2863					enum iostat_type io_type)
2864{
2865	int ret = 0;
2866	int done = 0, retry = 0;
2867	struct pagevec pvec;
 
 
2868	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2869	struct bio *bio = NULL;
2870	sector_t last_block;
2871#ifdef CONFIG_F2FS_FS_COMPRESSION
2872	struct inode *inode = mapping->host;
2873	struct compress_ctx cc = {
2874		.inode = inode,
2875		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2876		.cluster_size = F2FS_I(inode)->i_cluster_size,
2877		.cluster_idx = NULL_CLUSTER,
2878		.rpages = NULL,
2879		.nr_rpages = 0,
2880		.cpages = NULL,
 
2881		.rbuf = NULL,
2882		.cbuf = NULL,
2883		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2884		.private = NULL,
2885	};
2886#endif
 
2887	int nr_pages;
 
2888	pgoff_t index;
2889	pgoff_t end;		/* Inclusive */
2890	pgoff_t done_index;
2891	int range_whole = 0;
2892	xa_mark_t tag;
2893	int nwritten = 0;
2894	int submitted = 0;
2895	int i;
2896
2897	pagevec_init(&pvec);
 
 
 
 
 
 
 
 
 
2898
2899	if (get_dirty_pages(mapping->host) <=
2900				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2901		set_inode_flag(mapping->host, FI_HOT_DATA);
2902	else
2903		clear_inode_flag(mapping->host, FI_HOT_DATA);
2904
2905	if (wbc->range_cyclic) {
2906		index = mapping->writeback_index; /* prev offset */
2907		end = -1;
2908	} else {
2909		index = wbc->range_start >> PAGE_SHIFT;
2910		end = wbc->range_end >> PAGE_SHIFT;
2911		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2912			range_whole = 1;
2913	}
2914	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2915		tag = PAGECACHE_TAG_TOWRITE;
2916	else
2917		tag = PAGECACHE_TAG_DIRTY;
2918retry:
2919	retry = 0;
2920	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2921		tag_pages_for_writeback(mapping, index, end);
2922	done_index = index;
2923	while (!done && !retry && (index <= end)) {
2924		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2925				tag);
2926		if (nr_pages == 0)
 
 
 
 
2927			break;
 
 
 
 
2928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2929		for (i = 0; i < nr_pages; i++) {
2930			struct page *page = pvec.pages[i];
 
2931			bool need_readd;
2932readd:
2933			need_readd = false;
2934#ifdef CONFIG_F2FS_FS_COMPRESSION
2935			if (f2fs_compressed_file(inode)) {
 
 
 
 
2936				ret = f2fs_init_compress_ctx(&cc);
2937				if (ret) {
2938					done = 1;
2939					break;
2940				}
2941
2942				if (!f2fs_cluster_can_merge_page(&cc,
2943								page->index)) {
2944					ret = f2fs_write_multi_pages(&cc,
2945						&submitted, wbc, io_type);
2946					if (!ret)
2947						need_readd = true;
2948					goto result;
2949				}
2950
2951				if (unlikely(f2fs_cp_error(sbi)))
2952					goto lock_page;
 
 
 
2953
2954				if (f2fs_cluster_is_empty(&cc)) {
2955					void *fsdata = NULL;
2956					struct page *pagep;
2957					int ret2;
2958
2959					ret2 = f2fs_prepare_compress_overwrite(
2960							inode, &pagep,
2961							page->index, &fsdata);
2962					if (ret2 < 0) {
2963						ret = ret2;
2964						done = 1;
2965						break;
2966					} else if (ret2 &&
2967						!f2fs_compress_write_end(inode,
2968								fsdata, page->index,
2969								1)) {
2970						retry = 1;
2971						break;
2972					}
2973				} else {
2974					goto lock_page;
2975				}
2976			}
2977#endif
2978			/* give a priority to WB_SYNC threads */
2979			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2980					wbc->sync_mode == WB_SYNC_NONE) {
2981				done = 1;
2982				break;
2983			}
2984#ifdef CONFIG_F2FS_FS_COMPRESSION
2985lock_page:
2986#endif
2987			done_index = page->index;
2988retry_write:
2989			lock_page(page);
2990
2991			if (unlikely(page->mapping != mapping)) {
2992continue_unlock:
2993				unlock_page(page);
2994				continue;
2995			}
2996
2997			if (!PageDirty(page)) {
2998				/* someone wrote it for us */
2999				goto continue_unlock;
3000			}
3001
3002			if (PageWriteback(page)) {
3003				if (wbc->sync_mode != WB_SYNC_NONE)
3004					f2fs_wait_on_page_writeback(page,
3005							DATA, true, true);
3006				else
3007					goto continue_unlock;
 
3008			}
3009
3010			if (!clear_page_dirty_for_io(page))
3011				goto continue_unlock;
3012
3013#ifdef CONFIG_F2FS_FS_COMPRESSION
3014			if (f2fs_compressed_file(inode)) {
3015				get_page(page);
3016				f2fs_compress_ctx_add_page(&cc, page);
3017				continue;
3018			}
3019#endif
3020			ret = f2fs_write_single_data_page(page, &submitted,
3021					&bio, &last_block, wbc, io_type,
3022					0, true);
3023			if (ret == AOP_WRITEPAGE_ACTIVATE)
3024				unlock_page(page);
3025#ifdef CONFIG_F2FS_FS_COMPRESSION
3026result:
3027#endif
3028			nwritten += submitted;
3029			wbc->nr_to_write -= submitted;
3030
3031			if (unlikely(ret)) {
3032				/*
3033				 * keep nr_to_write, since vfs uses this to
3034				 * get # of written pages.
3035				 */
3036				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3037					ret = 0;
3038					goto next;
3039				} else if (ret == -EAGAIN) {
3040					ret = 0;
3041					if (wbc->sync_mode == WB_SYNC_ALL) {
3042						cond_resched();
3043						congestion_wait(BLK_RW_ASYNC,
3044							DEFAULT_IO_TIMEOUT);
3045						goto retry_write;
3046					}
3047					goto next;
3048				}
3049				done_index = page->index + 1;
3050				done = 1;
3051				break;
3052			}
3053
3054			if (wbc->nr_to_write <= 0 &&
3055					wbc->sync_mode == WB_SYNC_NONE) {
3056				done = 1;
3057				break;
3058			}
3059next:
3060			if (need_readd)
3061				goto readd;
3062		}
3063		pagevec_release(&pvec);
3064		cond_resched();
3065	}
3066#ifdef CONFIG_F2FS_FS_COMPRESSION
3067	/* flush remained pages in compress cluster */
3068	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3069		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3070		nwritten += submitted;
3071		wbc->nr_to_write -= submitted;
3072		if (ret) {
3073			done = 1;
3074			retry = 0;
3075		}
3076	}
3077	if (f2fs_compressed_file(inode))
3078		f2fs_destroy_compress_ctx(&cc, false);
3079#endif
3080	if (retry) {
3081		index = 0;
3082		end = -1;
3083		goto retry;
3084	}
3085	if (wbc->range_cyclic && !done)
3086		done_index = 0;
3087	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3088		mapping->writeback_index = done_index;
3089
3090	if (nwritten)
3091		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3092								NULL, 0, DATA);
3093	/* submit cached bio of IPU write */
3094	if (bio)
3095		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3096
 
 
 
 
 
3097	return ret;
3098}
3099
3100static inline bool __should_serialize_io(struct inode *inode,
3101					struct writeback_control *wbc)
3102{
3103	/* to avoid deadlock in path of data flush */
3104	if (F2FS_I(inode)->cp_task)
3105		return false;
3106
3107	if (!S_ISREG(inode->i_mode))
3108		return false;
3109	if (IS_NOQUOTA(inode))
3110		return false;
3111
3112	if (f2fs_need_compress_data(inode))
3113		return true;
3114	if (wbc->sync_mode != WB_SYNC_ALL)
3115		return true;
3116	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3117		return true;
3118	return false;
3119}
3120
3121static int __f2fs_write_data_pages(struct address_space *mapping,
3122						struct writeback_control *wbc,
3123						enum iostat_type io_type)
3124{
3125	struct inode *inode = mapping->host;
3126	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3127	struct blk_plug plug;
3128	int ret;
3129	bool locked = false;
3130
3131	/* deal with chardevs and other special file */
3132	if (!mapping->a_ops->writepage)
3133		return 0;
3134
3135	/* skip writing if there is no dirty page in this inode */
3136	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3137		return 0;
3138
3139	/* during POR, we don't need to trigger writepage at all. */
3140	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3141		goto skip_write;
3142
3143	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3144			wbc->sync_mode == WB_SYNC_NONE &&
3145			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3146			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3147		goto skip_write;
3148
3149	/* skip writing during file defragment */
3150	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3151		goto skip_write;
3152
3153	trace_f2fs_writepages(mapping->host, wbc, DATA);
3154
3155	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3156	if (wbc->sync_mode == WB_SYNC_ALL)
3157		atomic_inc(&sbi->wb_sync_req[DATA]);
3158	else if (atomic_read(&sbi->wb_sync_req[DATA]))
 
 
 
3159		goto skip_write;
 
3160
3161	if (__should_serialize_io(inode, wbc)) {
3162		mutex_lock(&sbi->writepages);
3163		locked = true;
3164	}
3165
3166	blk_start_plug(&plug);
3167	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3168	blk_finish_plug(&plug);
3169
3170	if (locked)
3171		mutex_unlock(&sbi->writepages);
3172
3173	if (wbc->sync_mode == WB_SYNC_ALL)
3174		atomic_dec(&sbi->wb_sync_req[DATA]);
3175	/*
3176	 * if some pages were truncated, we cannot guarantee its mapping->host
3177	 * to detect pending bios.
3178	 */
3179
3180	f2fs_remove_dirty_inode(inode);
3181	return ret;
3182
3183skip_write:
3184	wbc->pages_skipped += get_dirty_pages(inode);
3185	trace_f2fs_writepages(mapping->host, wbc, DATA);
3186	return 0;
3187}
3188
3189static int f2fs_write_data_pages(struct address_space *mapping,
3190			    struct writeback_control *wbc)
3191{
3192	struct inode *inode = mapping->host;
3193
3194	return __f2fs_write_data_pages(mapping, wbc,
3195			F2FS_I(inode)->cp_task == current ?
3196			FS_CP_DATA_IO : FS_DATA_IO);
3197}
3198
3199static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3200{
3201	struct inode *inode = mapping->host;
3202	loff_t i_size = i_size_read(inode);
3203
3204	if (IS_NOQUOTA(inode))
3205		return;
3206
3207	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3208	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3209		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3210		down_write(&F2FS_I(inode)->i_mmap_sem);
3211
3212		truncate_pagecache(inode, i_size);
3213		f2fs_truncate_blocks(inode, i_size, true);
3214
3215		up_write(&F2FS_I(inode)->i_mmap_sem);
3216		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3217	}
3218}
3219
3220static int prepare_write_begin(struct f2fs_sb_info *sbi,
3221			struct page *page, loff_t pos, unsigned len,
3222			block_t *blk_addr, bool *node_changed)
3223{
3224	struct inode *inode = page->mapping->host;
3225	pgoff_t index = page->index;
3226	struct dnode_of_data dn;
3227	struct page *ipage;
3228	bool locked = false;
3229	struct extent_info ei = {0,0,0};
3230	int err = 0;
3231	int flag;
3232
3233	/*
3234	 * we already allocated all the blocks, so we don't need to get
3235	 * the block addresses when there is no need to fill the page.
3236	 */
3237	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3238	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3239	    !f2fs_verity_in_progress(inode))
3240		return 0;
3241
3242	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3243	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3244		flag = F2FS_GET_BLOCK_DEFAULT;
3245	else
3246		flag = F2FS_GET_BLOCK_PRE_AIO;
3247
3248	if (f2fs_has_inline_data(inode) ||
3249			(pos & PAGE_MASK) >= i_size_read(inode)) {
3250		f2fs_do_map_lock(sbi, flag, true);
3251		locked = true;
3252	}
3253
3254restart:
3255	/* check inline_data */
3256	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3257	if (IS_ERR(ipage)) {
3258		err = PTR_ERR(ipage);
3259		goto unlock_out;
3260	}
3261
3262	set_new_dnode(&dn, inode, ipage, ipage, 0);
3263
3264	if (f2fs_has_inline_data(inode)) {
3265		if (pos + len <= MAX_INLINE_DATA(inode)) {
3266			f2fs_do_read_inline_data(page, ipage);
3267			set_inode_flag(inode, FI_DATA_EXIST);
3268			if (inode->i_nlink)
3269				set_page_private_inline(ipage);
3270		} else {
3271			err = f2fs_convert_inline_page(&dn, page);
3272			if (err)
3273				goto out;
3274			if (dn.data_blkaddr == NULL_ADDR)
3275				err = f2fs_get_block(&dn, index);
3276		}
3277	} else if (locked) {
3278		err = f2fs_get_block(&dn, index);
3279	} else {
3280		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3281			dn.data_blkaddr = ei.blk + index - ei.fofs;
3282		} else {
3283			/* hole case */
3284			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3285			if (err || dn.data_blkaddr == NULL_ADDR) {
3286				f2fs_put_dnode(&dn);
3287				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3288								true);
3289				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3290				locked = true;
3291				goto restart;
3292			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293		}
3294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3295
3296	/* convert_inline_page can make node_changed */
3297	*blk_addr = dn.data_blkaddr;
3298	*node_changed = dn.node_changed;
3299out:
3300	f2fs_put_dnode(&dn);
 
3301unlock_out:
3302	if (locked)
3303		f2fs_do_map_lock(sbi, flag, false);
3304	return err;
3305}
3306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3307static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3308		loff_t pos, unsigned len, unsigned flags,
3309		struct page **pagep, void **fsdata)
3310{
3311	struct inode *inode = mapping->host;
3312	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3313	struct page *page = NULL;
3314	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3315	bool need_balance = false, drop_atomic = false;
 
3316	block_t blkaddr = NULL_ADDR;
3317	int err = 0;
3318
3319	trace_f2fs_write_begin(inode, pos, len, flags);
3320
3321	if (!f2fs_is_checkpoint_ready(sbi)) {
3322		err = -ENOSPC;
3323		goto fail;
3324	}
3325
3326	if ((f2fs_is_atomic_file(inode) &&
3327			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3328			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3329		err = -ENOMEM;
3330		drop_atomic = true;
3331		goto fail;
3332	}
3333
3334	/*
3335	 * We should check this at this moment to avoid deadlock on inode page
3336	 * and #0 page. The locking rule for inline_data conversion should be:
3337	 * lock_page(page #0) -> lock_page(inode_page)
3338	 */
3339	if (index != 0) {
3340		err = f2fs_convert_inline_inode(inode);
3341		if (err)
3342			goto fail;
3343	}
3344
3345#ifdef CONFIG_F2FS_FS_COMPRESSION
3346	if (f2fs_compressed_file(inode)) {
3347		int ret;
3348
3349		*fsdata = NULL;
3350
 
 
 
3351		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3352							index, fsdata);
3353		if (ret < 0) {
3354			err = ret;
3355			goto fail;
3356		} else if (ret) {
3357			return 0;
3358		}
3359	}
3360#endif
3361
3362repeat:
3363	/*
3364	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3365	 * wait_for_stable_page. Will wait that below with our IO control.
3366	 */
3367	page = f2fs_pagecache_get_page(mapping, index,
3368				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3369	if (!page) {
3370		err = -ENOMEM;
3371		goto fail;
3372	}
3373
3374	/* TODO: cluster can be compressed due to race with .writepage */
3375
3376	*pagep = page;
3377
3378	err = prepare_write_begin(sbi, page, pos, len,
 
 
 
 
3379					&blkaddr, &need_balance);
3380	if (err)
3381		goto fail;
3382
3383	if (need_balance && !IS_NOQUOTA(inode) &&
3384			has_not_enough_free_secs(sbi, 0, 0)) {
3385		unlock_page(page);
3386		f2fs_balance_fs(sbi, true);
3387		lock_page(page);
3388		if (page->mapping != mapping) {
3389			/* The page got truncated from under us */
3390			f2fs_put_page(page, 1);
3391			goto repeat;
3392		}
3393	}
3394
3395	f2fs_wait_on_page_writeback(page, DATA, false, true);
3396
3397	if (len == PAGE_SIZE || PageUptodate(page))
3398		return 0;
3399
3400	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3401	    !f2fs_verity_in_progress(inode)) {
3402		zero_user_segment(page, len, PAGE_SIZE);
3403		return 0;
3404	}
3405
3406	if (blkaddr == NEW_ADDR) {
3407		zero_user_segment(page, 0, PAGE_SIZE);
3408		SetPageUptodate(page);
3409	} else {
3410		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3411				DATA_GENERIC_ENHANCE_READ)) {
3412			err = -EFSCORRUPTED;
 
3413			goto fail;
3414		}
3415		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
 
 
3416		if (err)
3417			goto fail;
3418
3419		lock_page(page);
3420		if (unlikely(page->mapping != mapping)) {
3421			f2fs_put_page(page, 1);
3422			goto repeat;
3423		}
3424		if (unlikely(!PageUptodate(page))) {
3425			err = -EIO;
3426			goto fail;
3427		}
3428	}
3429	return 0;
3430
3431fail:
3432	f2fs_put_page(page, 1);
3433	f2fs_write_failed(mapping, pos + len);
3434	if (drop_atomic)
3435		f2fs_drop_inmem_pages_all(sbi, false);
3436	return err;
3437}
3438
3439static int f2fs_write_end(struct file *file,
3440			struct address_space *mapping,
3441			loff_t pos, unsigned len, unsigned copied,
3442			struct page *page, void *fsdata)
3443{
3444	struct inode *inode = page->mapping->host;
3445
3446	trace_f2fs_write_end(inode, pos, len, copied);
3447
3448	/*
3449	 * This should be come from len == PAGE_SIZE, and we expect copied
3450	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3451	 * let generic_perform_write() try to copy data again through copied=0.
3452	 */
3453	if (!PageUptodate(page)) {
3454		if (unlikely(copied != len))
3455			copied = 0;
3456		else
3457			SetPageUptodate(page);
3458	}
3459
3460#ifdef CONFIG_F2FS_FS_COMPRESSION
3461	/* overwrite compressed file */
3462	if (f2fs_compressed_file(inode) && fsdata) {
3463		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3464		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3465
3466		if (pos + copied > i_size_read(inode) &&
3467				!f2fs_verity_in_progress(inode))
3468			f2fs_i_size_write(inode, pos + copied);
3469		return copied;
3470	}
3471#endif
3472
3473	if (!copied)
3474		goto unlock_out;
3475
3476	set_page_dirty(page);
3477
3478	if (pos + copied > i_size_read(inode) &&
3479	    !f2fs_verity_in_progress(inode))
3480		f2fs_i_size_write(inode, pos + copied);
 
 
 
 
3481unlock_out:
3482	f2fs_put_page(page, 1);
3483	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3484	return copied;
3485}
3486
3487static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3488			   loff_t offset)
3489{
3490	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3491	unsigned blkbits = i_blkbits;
3492	unsigned blocksize_mask = (1 << blkbits) - 1;
3493	unsigned long align = offset | iov_iter_alignment(iter);
3494	struct block_device *bdev = inode->i_sb->s_bdev;
3495
3496	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3497		return 1;
3498
3499	if (align & blocksize_mask) {
3500		if (bdev)
3501			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3502		blocksize_mask = (1 << blkbits) - 1;
3503		if (align & blocksize_mask)
3504			return -EINVAL;
3505		return 1;
3506	}
3507	return 0;
3508}
3509
3510static void f2fs_dio_end_io(struct bio *bio)
3511{
3512	struct f2fs_private_dio *dio = bio->bi_private;
3513
3514	dec_page_count(F2FS_I_SB(dio->inode),
3515			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3516
3517	bio->bi_private = dio->orig_private;
3518	bio->bi_end_io = dio->orig_end_io;
3519
3520	kfree(dio);
3521
3522	bio_endio(bio);
3523}
3524
3525static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3526							loff_t file_offset)
3527{
3528	struct f2fs_private_dio *dio;
3529	bool write = (bio_op(bio) == REQ_OP_WRITE);
3530
3531	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3532			sizeof(struct f2fs_private_dio), GFP_NOFS);
3533	if (!dio)
3534		goto out;
3535
3536	dio->inode = inode;
3537	dio->orig_end_io = bio->bi_end_io;
3538	dio->orig_private = bio->bi_private;
3539	dio->write = write;
3540
3541	bio->bi_end_io = f2fs_dio_end_io;
3542	bio->bi_private = dio;
3543
3544	inc_page_count(F2FS_I_SB(inode),
3545			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3546
3547	submit_bio(bio);
3548	return;
3549out:
3550	bio->bi_status = BLK_STS_IOERR;
3551	bio_endio(bio);
3552}
3553
3554static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3555{
3556	struct address_space *mapping = iocb->ki_filp->f_mapping;
3557	struct inode *inode = mapping->host;
3558	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559	struct f2fs_inode_info *fi = F2FS_I(inode);
3560	size_t count = iov_iter_count(iter);
3561	loff_t offset = iocb->ki_pos;
3562	int rw = iov_iter_rw(iter);
3563	int err;
3564	enum rw_hint hint = iocb->ki_hint;
3565	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3566	bool do_opu;
3567
3568	err = check_direct_IO(inode, iter, offset);
3569	if (err)
3570		return err < 0 ? err : 0;
3571
3572	if (f2fs_force_buffered_io(inode, iocb, iter))
3573		return 0;
3574
3575	do_opu = allow_outplace_dio(inode, iocb, iter);
3576
3577	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3578
3579	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3580		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3581
3582	if (iocb->ki_flags & IOCB_NOWAIT) {
3583		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3584			iocb->ki_hint = hint;
3585			err = -EAGAIN;
3586			goto out;
3587		}
3588		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3589			up_read(&fi->i_gc_rwsem[rw]);
3590			iocb->ki_hint = hint;
3591			err = -EAGAIN;
3592			goto out;
3593		}
3594	} else {
3595		down_read(&fi->i_gc_rwsem[rw]);
3596		if (do_opu)
3597			down_read(&fi->i_gc_rwsem[READ]);
3598	}
3599
3600	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3601			iter, rw == WRITE ? get_data_block_dio_write :
3602			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3603			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3604			DIO_SKIP_HOLES);
3605
3606	if (do_opu)
3607		up_read(&fi->i_gc_rwsem[READ]);
3608
3609	up_read(&fi->i_gc_rwsem[rw]);
3610
3611	if (rw == WRITE) {
3612		if (whint_mode == WHINT_MODE_OFF)
3613			iocb->ki_hint = hint;
3614		if (err > 0) {
3615			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3616									err);
3617			if (!do_opu)
3618				set_inode_flag(inode, FI_UPDATE_WRITE);
3619		} else if (err == -EIOCBQUEUED) {
3620			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3621						count - iov_iter_count(iter));
3622		} else if (err < 0) {
3623			f2fs_write_failed(mapping, offset + count);
3624		}
3625	} else {
3626		if (err > 0)
3627			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3628		else if (err == -EIOCBQUEUED)
3629			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3630						count - iov_iter_count(iter));
3631	}
3632
3633out:
3634	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3635
3636	return err;
3637}
3638
3639void f2fs_invalidate_page(struct page *page, unsigned int offset,
3640							unsigned int length)
3641{
3642	struct inode *inode = page->mapping->host;
3643	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3644
3645	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3646		(offset % PAGE_SIZE || length != PAGE_SIZE))
3647		return;
3648
3649	if (PageDirty(page)) {
3650		if (inode->i_ino == F2FS_META_INO(sbi)) {
3651			dec_page_count(sbi, F2FS_DIRTY_META);
3652		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3653			dec_page_count(sbi, F2FS_DIRTY_NODES);
3654		} else {
3655			inode_dec_dirty_pages(inode);
3656			f2fs_remove_dirty_inode(inode);
3657		}
3658	}
3659
3660	clear_page_private_gcing(page);
3661
3662	if (test_opt(sbi, COMPRESS_CACHE)) {
3663		if (f2fs_compressed_file(inode))
3664			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3665		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3666			clear_page_private_data(page);
3667	}
3668
3669	if (page_private_atomic(page))
3670		return f2fs_drop_inmem_page(inode, page);
3671
3672	detach_page_private(page);
3673	set_page_private(page, 0);
3674}
3675
3676int f2fs_release_page(struct page *page, gfp_t wait)
3677{
3678	/* If this is dirty page, keep PagePrivate */
3679	if (PageDirty(page))
3680		return 0;
3681
3682	/* This is atomic written page, keep Private */
3683	if (page_private_atomic(page))
3684		return 0;
3685
3686	if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3687		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3688		struct inode *inode = page->mapping->host;
3689
3690		if (f2fs_compressed_file(inode))
3691			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3692		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3693			clear_page_private_data(page);
3694	}
3695
3696	clear_page_private_gcing(page);
3697
3698	detach_page_private(page);
3699	set_page_private(page, 0);
3700	return 1;
3701}
3702
3703static int f2fs_set_data_page_dirty(struct page *page)
 
3704{
3705	struct inode *inode = page_file_mapping(page)->host;
3706
3707	trace_f2fs_set_page_dirty(page, DATA);
3708
3709	if (!PageUptodate(page))
3710		SetPageUptodate(page);
3711	if (PageSwapCache(page))
3712		return __set_page_dirty_nobuffers(page);
3713
3714	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3715		if (!page_private_atomic(page)) {
3716			f2fs_register_inmem_page(inode, page);
3717			return 1;
3718		}
3719		/*
3720		 * Previously, this page has been registered, we just
3721		 * return here.
3722		 */
3723		return 0;
3724	}
3725
3726	if (!PageDirty(page)) {
3727		__set_page_dirty_nobuffers(page);
3728		f2fs_update_dirty_page(inode, page);
3729		return 1;
3730	}
3731	return 0;
3732}
3733
3734
3735static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3736{
3737#ifdef CONFIG_F2FS_FS_COMPRESSION
3738	struct dnode_of_data dn;
3739	sector_t start_idx, blknr = 0;
3740	int ret;
3741
3742	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3743
3744	set_new_dnode(&dn, inode, NULL, NULL, 0);
3745	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3746	if (ret)
3747		return 0;
3748
3749	if (dn.data_blkaddr != COMPRESS_ADDR) {
3750		dn.ofs_in_node += block - start_idx;
3751		blknr = f2fs_data_blkaddr(&dn);
3752		if (!__is_valid_data_blkaddr(blknr))
3753			blknr = 0;
3754	}
3755
3756	f2fs_put_dnode(&dn);
3757	return blknr;
3758#else
3759	return 0;
3760#endif
3761}
3762
3763
3764static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3765{
3766	struct inode *inode = mapping->host;
3767	sector_t blknr = 0;
3768
3769	if (f2fs_has_inline_data(inode))
3770		goto out;
3771
3772	/* make sure allocating whole blocks */
3773	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3774		filemap_write_and_wait(mapping);
3775
3776	/* Block number less than F2FS MAX BLOCKS */
3777	if (unlikely(block >= max_file_blocks(inode)))
3778		goto out;
3779
3780	if (f2fs_compressed_file(inode)) {
3781		blknr = f2fs_bmap_compress(inode, block);
3782	} else {
3783		struct f2fs_map_blocks map;
3784
3785		memset(&map, 0, sizeof(map));
3786		map.m_lblk = block;
3787		map.m_len = 1;
3788		map.m_next_pgofs = NULL;
3789		map.m_seg_type = NO_CHECK_TYPE;
3790
3791		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3792			blknr = map.m_pblk;
3793	}
3794out:
3795	trace_f2fs_bmap(inode, block, blknr);
3796	return blknr;
3797}
3798
3799#ifdef CONFIG_MIGRATION
3800#include <linux/migrate.h>
3801
3802int f2fs_migrate_page(struct address_space *mapping,
3803		struct page *newpage, struct page *page, enum migrate_mode mode)
3804{
3805	int rc, extra_count;
3806	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3807	bool atomic_written = page_private_atomic(page);
3808
3809	BUG_ON(PageWriteback(page));
3810
3811	/* migrating an atomic written page is safe with the inmem_lock hold */
3812	if (atomic_written) {
3813		if (mode != MIGRATE_SYNC)
3814			return -EBUSY;
3815		if (!mutex_trylock(&fi->inmem_lock))
3816			return -EAGAIN;
3817	}
3818
3819	/* one extra reference was held for atomic_write page */
3820	extra_count = atomic_written ? 1 : 0;
3821	rc = migrate_page_move_mapping(mapping, newpage,
3822				page, extra_count);
3823	if (rc != MIGRATEPAGE_SUCCESS) {
3824		if (atomic_written)
3825			mutex_unlock(&fi->inmem_lock);
3826		return rc;
3827	}
3828
3829	if (atomic_written) {
3830		struct inmem_pages *cur;
3831
3832		list_for_each_entry(cur, &fi->inmem_pages, list)
3833			if (cur->page == page) {
3834				cur->page = newpage;
3835				break;
3836			}
3837		mutex_unlock(&fi->inmem_lock);
3838		put_page(page);
3839		get_page(newpage);
3840	}
3841
3842	/* guarantee to start from no stale private field */
3843	set_page_private(newpage, 0);
3844	if (PagePrivate(page)) {
3845		set_page_private(newpage, page_private(page));
3846		SetPagePrivate(newpage);
3847		get_page(newpage);
3848
3849		set_page_private(page, 0);
3850		ClearPagePrivate(page);
3851		put_page(page);
3852	}
3853
3854	if (mode != MIGRATE_SYNC_NO_COPY)
3855		migrate_page_copy(newpage, page);
3856	else
3857		migrate_page_states(newpage, page);
3858
3859	return MIGRATEPAGE_SUCCESS;
3860}
3861#endif
3862
3863#ifdef CONFIG_SWAP
3864static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3865							unsigned int blkcnt)
3866{
3867	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3868	unsigned int blkofs;
3869	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3870	unsigned int secidx = start_blk / blk_per_sec;
3871	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3872	int ret = 0;
3873
3874	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3875	down_write(&F2FS_I(inode)->i_mmap_sem);
3876
3877	set_inode_flag(inode, FI_ALIGNED_WRITE);
 
3878
3879	for (; secidx < end_sec; secidx++) {
3880		down_write(&sbi->pin_sem);
3881
3882		f2fs_lock_op(sbi);
3883		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3884		f2fs_unlock_op(sbi);
3885
3886		set_inode_flag(inode, FI_DO_DEFRAG);
3887
3888		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3889			struct page *page;
3890			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3891
3892			page = f2fs_get_lock_data_page(inode, blkidx, true);
3893			if (IS_ERR(page)) {
3894				up_write(&sbi->pin_sem);
3895				ret = PTR_ERR(page);
3896				goto done;
3897			}
3898
3899			set_page_dirty(page);
3900			f2fs_put_page(page, 1);
3901		}
3902
3903		clear_inode_flag(inode, FI_DO_DEFRAG);
3904
3905		ret = filemap_fdatawrite(inode->i_mapping);
3906
3907		up_write(&sbi->pin_sem);
3908
3909		if (ret)
3910			break;
3911	}
3912
3913done:
3914	clear_inode_flag(inode, FI_DO_DEFRAG);
 
3915	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3916
3917	up_write(&F2FS_I(inode)->i_mmap_sem);
3918	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3919
3920	return ret;
3921}
3922
3923static int check_swap_activate(struct swap_info_struct *sis,
3924				struct file *swap_file, sector_t *span)
3925{
3926	struct address_space *mapping = swap_file->f_mapping;
3927	struct inode *inode = mapping->host;
3928	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3929	sector_t cur_lblock;
3930	sector_t last_lblock;
3931	sector_t pblock;
3932	sector_t lowest_pblock = -1;
3933	sector_t highest_pblock = 0;
3934	int nr_extents = 0;
3935	unsigned long nr_pblocks;
3936	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3937	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3938	unsigned int not_aligned = 0;
3939	int ret = 0;
3940
3941	/*
3942	 * Map all the blocks into the extent list.  This code doesn't try
3943	 * to be very smart.
3944	 */
3945	cur_lblock = 0;
3946	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3947
3948	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3949		struct f2fs_map_blocks map;
3950retry:
3951		cond_resched();
3952
3953		memset(&map, 0, sizeof(map));
3954		map.m_lblk = cur_lblock;
3955		map.m_len = last_lblock - cur_lblock;
3956		map.m_next_pgofs = NULL;
3957		map.m_next_extent = NULL;
3958		map.m_seg_type = NO_CHECK_TYPE;
3959		map.m_may_create = false;
3960
3961		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
3962		if (ret)
3963			goto out;
3964
3965		/* hole */
3966		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3967			f2fs_err(sbi, "Swapfile has holes");
3968			ret = -EINVAL;
3969			goto out;
3970		}
3971
3972		pblock = map.m_pblk;
3973		nr_pblocks = map.m_len;
3974
3975		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3976				nr_pblocks & sec_blks_mask) {
3977			not_aligned++;
3978
3979			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3980			if (cur_lblock + nr_pblocks > sis->max)
3981				nr_pblocks -= blks_per_sec;
3982
3983			if (!nr_pblocks) {
3984				/* this extent is last one */
3985				nr_pblocks = map.m_len;
3986				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3987				goto next;
3988			}
3989
3990			ret = f2fs_migrate_blocks(inode, cur_lblock,
3991							nr_pblocks);
3992			if (ret)
3993				goto out;
3994			goto retry;
3995		}
3996next:
3997		if (cur_lblock + nr_pblocks >= sis->max)
3998			nr_pblocks = sis->max - cur_lblock;
3999
4000		if (cur_lblock) {	/* exclude the header page */
4001			if (pblock < lowest_pblock)
4002				lowest_pblock = pblock;
4003			if (pblock + nr_pblocks - 1 > highest_pblock)
4004				highest_pblock = pblock + nr_pblocks - 1;
4005		}
4006
4007		/*
4008		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4009		 */
4010		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4011		if (ret < 0)
4012			goto out;
4013		nr_extents += ret;
4014		cur_lblock += nr_pblocks;
4015	}
4016	ret = nr_extents;
4017	*span = 1 + highest_pblock - lowest_pblock;
4018	if (cur_lblock == 0)
4019		cur_lblock = 1;	/* force Empty message */
4020	sis->max = cur_lblock;
4021	sis->pages = cur_lblock - 1;
4022	sis->highest_bit = cur_lblock - 1;
4023out:
4024	if (not_aligned)
4025		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4026			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4027	return ret;
4028}
4029
4030static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4031				sector_t *span)
4032{
4033	struct inode *inode = file_inode(file);
4034	int ret;
4035
4036	if (!S_ISREG(inode->i_mode))
4037		return -EINVAL;
4038
4039	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4040		return -EROFS;
4041
4042	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4043		f2fs_err(F2FS_I_SB(inode),
4044			"Swapfile not supported in LFS mode");
4045		return -EINVAL;
4046	}
4047
4048	ret = f2fs_convert_inline_inode(inode);
4049	if (ret)
4050		return ret;
4051
4052	if (!f2fs_disable_compressed_file(inode))
4053		return -EINVAL;
4054
4055	f2fs_precache_extents(inode);
4056
4057	ret = check_swap_activate(sis, file, span);
4058	if (ret < 0)
4059		return ret;
4060
 
4061	set_inode_flag(inode, FI_PIN_FILE);
4062	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4063	return ret;
4064}
4065
4066static void f2fs_swap_deactivate(struct file *file)
4067{
4068	struct inode *inode = file_inode(file);
4069
 
4070	clear_inode_flag(inode, FI_PIN_FILE);
4071}
4072#else
4073static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4074				sector_t *span)
4075{
4076	return -EOPNOTSUPP;
4077}
4078
4079static void f2fs_swap_deactivate(struct file *file)
4080{
4081}
4082#endif
4083
4084const struct address_space_operations f2fs_dblock_aops = {
4085	.readpage	= f2fs_read_data_page,
4086	.readahead	= f2fs_readahead,
4087	.writepage	= f2fs_write_data_page,
4088	.writepages	= f2fs_write_data_pages,
4089	.write_begin	= f2fs_write_begin,
4090	.write_end	= f2fs_write_end,
4091	.set_page_dirty	= f2fs_set_data_page_dirty,
4092	.invalidatepage	= f2fs_invalidate_page,
4093	.releasepage	= f2fs_release_page,
4094	.direct_IO	= f2fs_direct_IO,
4095	.bmap		= f2fs_bmap,
4096	.swap_activate  = f2fs_swap_activate,
4097	.swap_deactivate = f2fs_swap_deactivate,
4098#ifdef CONFIG_MIGRATION
4099	.migratepage    = f2fs_migrate_page,
4100#endif
4101};
4102
4103void f2fs_clear_page_cache_dirty_tag(struct page *page)
4104{
4105	struct address_space *mapping = page_mapping(page);
4106	unsigned long flags;
4107
4108	xa_lock_irqsave(&mapping->i_pages, flags);
4109	__xa_clear_mark(&mapping->i_pages, page_index(page),
4110						PAGECACHE_TAG_DIRTY);
4111	xa_unlock_irqrestore(&mapping->i_pages, flags);
4112}
4113
4114int __init f2fs_init_post_read_processing(void)
4115{
4116	bio_post_read_ctx_cache =
4117		kmem_cache_create("f2fs_bio_post_read_ctx",
4118				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4119	if (!bio_post_read_ctx_cache)
4120		goto fail;
4121	bio_post_read_ctx_pool =
4122		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4123					 bio_post_read_ctx_cache);
4124	if (!bio_post_read_ctx_pool)
4125		goto fail_free_cache;
4126	return 0;
4127
4128fail_free_cache:
4129	kmem_cache_destroy(bio_post_read_ctx_cache);
4130fail:
4131	return -ENOMEM;
4132}
4133
4134void f2fs_destroy_post_read_processing(void)
4135{
4136	mempool_destroy(bio_post_read_ctx_pool);
4137	kmem_cache_destroy(bio_post_read_ctx_cache);
4138}
4139
4140int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4141{
4142	if (!f2fs_sb_has_encrypt(sbi) &&
4143		!f2fs_sb_has_verity(sbi) &&
4144		!f2fs_sb_has_compression(sbi))
4145		return 0;
4146
4147	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4148						 WQ_UNBOUND | WQ_HIGHPRI,
4149						 num_online_cpus());
4150	if (!sbi->post_read_wq)
4151		return -ENOMEM;
4152	return 0;
4153}
4154
4155void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4156{
4157	if (sbi->post_read_wq)
4158		destroy_workqueue(sbi->post_read_wq);
4159}
4160
4161int __init f2fs_init_bio_entry_cache(void)
4162{
4163	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4164			sizeof(struct bio_entry));
4165	if (!bio_entry_slab)
4166		return -ENOMEM;
4167	return 0;
4168}
4169
4170void f2fs_destroy_bio_entry_cache(void)
4171{
4172	kmem_cache_destroy(bio_entry_slab);
4173}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/data.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/buffer_head.h>
  11#include <linux/sched/mm.h>
  12#include <linux/mpage.h>
  13#include <linux/writeback.h>
 
  14#include <linux/pagevec.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/blk-crypto.h>
  18#include <linux/swap.h>
  19#include <linux/prefetch.h>
  20#include <linux/uio.h>
 
  21#include <linux/sched/signal.h>
  22#include <linux/fiemap.h>
  23#include <linux/iomap.h>
  24
  25#include "f2fs.h"
  26#include "node.h"
  27#include "segment.h"
  28#include "iostat.h"
  29#include <trace/events/f2fs.h>
  30
  31#define NUM_PREALLOC_POST_READ_CTXS	128
  32
  33static struct kmem_cache *bio_post_read_ctx_cache;
  34static struct kmem_cache *bio_entry_slab;
  35static mempool_t *bio_post_read_ctx_pool;
  36static struct bio_set f2fs_bioset;
  37
  38#define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
  39
  40int __init f2fs_init_bioset(void)
  41{
  42	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
  43					0, BIOSET_NEED_BVECS);
 
 
  44}
  45
  46void f2fs_destroy_bioset(void)
  47{
  48	bioset_exit(&f2fs_bioset);
  49}
  50
  51static bool __is_cp_guaranteed(struct page *page)
  52{
  53	struct address_space *mapping = page->mapping;
  54	struct inode *inode;
  55	struct f2fs_sb_info *sbi;
  56
  57	if (!mapping)
  58		return false;
  59
  60	inode = mapping->host;
  61	sbi = F2FS_I_SB(inode);
  62
  63	if (inode->i_ino == F2FS_META_INO(sbi) ||
  64			inode->i_ino == F2FS_NODE_INO(sbi) ||
  65			S_ISDIR(inode->i_mode))
  66		return true;
  67
  68	if (f2fs_is_compressed_page(page))
  69		return false;
  70	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
 
  71			page_private_gcing(page))
  72		return true;
  73	return false;
  74}
  75
  76static enum count_type __read_io_type(struct page *page)
  77{
  78	struct address_space *mapping = page_file_mapping(page);
  79
  80	if (mapping) {
  81		struct inode *inode = mapping->host;
  82		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  83
  84		if (inode->i_ino == F2FS_META_INO(sbi))
  85			return F2FS_RD_META;
  86
  87		if (inode->i_ino == F2FS_NODE_INO(sbi))
  88			return F2FS_RD_NODE;
  89	}
  90	return F2FS_RD_DATA;
  91}
  92
  93/* postprocessing steps for read bios */
  94enum bio_post_read_step {
  95#ifdef CONFIG_FS_ENCRYPTION
  96	STEP_DECRYPT	= BIT(0),
  97#else
  98	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
  99#endif
 100#ifdef CONFIG_F2FS_FS_COMPRESSION
 101	STEP_DECOMPRESS	= BIT(1),
 102#else
 103	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
 104#endif
 105#ifdef CONFIG_FS_VERITY
 106	STEP_VERITY	= BIT(2),
 107#else
 108	STEP_VERITY	= 0,	/* compile out the verity-related code */
 109#endif
 110};
 111
 112struct bio_post_read_ctx {
 113	struct bio *bio;
 114	struct f2fs_sb_info *sbi;
 115	struct work_struct work;
 116	unsigned int enabled_steps;
 117	/*
 118	 * decompression_attempted keeps track of whether
 119	 * f2fs_end_read_compressed_page() has been called on the pages in the
 120	 * bio that belong to a compressed cluster yet.
 121	 */
 122	bool decompression_attempted;
 123	block_t fs_blkaddr;
 124};
 125
 126/*
 127 * Update and unlock a bio's pages, and free the bio.
 128 *
 129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
 130 * decryption error, or verity error), as indicated by bio->bi_status.
 131 *
 132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
 133 * aren't marked up-to-date here, as decompression is done on a per-compression-
 134 * cluster basis rather than a per-bio basis.  Instead, we only must do two
 135 * things for each compressed page here: call f2fs_end_read_compressed_page()
 136 * with failed=true if an error occurred before it would have normally gotten
 137 * called (i.e., I/O error or decryption error, but *not* verity error), and
 138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
 139 */
 140static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
 141{
 142	struct bio_vec *bv;
 143	struct bvec_iter_all iter_all;
 144	struct bio_post_read_ctx *ctx = bio->bi_private;
 145
 
 
 
 
 146	bio_for_each_segment_all(bv, bio, iter_all) {
 147		struct page *page = bv->bv_page;
 148
 149		if (f2fs_is_compressed_page(page)) {
 150			if (ctx && !ctx->decompression_attempted)
 151				f2fs_end_read_compressed_page(page, true, 0,
 152							in_task);
 153			f2fs_put_page_dic(page, in_task);
 154			continue;
 155		}
 156
 157		if (bio->bi_status)
 
 158			ClearPageUptodate(page);
 159		else
 
 
 160			SetPageUptodate(page);
 
 161		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
 162		unlock_page(page);
 163	}
 164
 165	if (ctx)
 166		mempool_free(ctx, bio_post_read_ctx_pool);
 167	bio_put(bio);
 168}
 169
 170static void f2fs_verify_bio(struct work_struct *work)
 171{
 172	struct bio_post_read_ctx *ctx =
 173		container_of(work, struct bio_post_read_ctx, work);
 174	struct bio *bio = ctx->bio;
 175	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
 176
 177	/*
 178	 * fsverity_verify_bio() may call readahead() again, and while verity
 179	 * will be disabled for this, decryption and/or decompression may still
 180	 * be needed, resulting in another bio_post_read_ctx being allocated.
 181	 * So to prevent deadlocks we need to release the current ctx to the
 182	 * mempool first.  This assumes that verity is the last post-read step.
 183	 */
 184	mempool_free(ctx, bio_post_read_ctx_pool);
 185	bio->bi_private = NULL;
 186
 187	/*
 188	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
 189	 * as those were handled separately by f2fs_end_read_compressed_page().
 190	 */
 191	if (may_have_compressed_pages) {
 192		struct bio_vec *bv;
 193		struct bvec_iter_all iter_all;
 194
 195		bio_for_each_segment_all(bv, bio, iter_all) {
 196			struct page *page = bv->bv_page;
 197
 198			if (!f2fs_is_compressed_page(page) &&
 199			    !fsverity_verify_page(page)) {
 200				bio->bi_status = BLK_STS_IOERR;
 201				break;
 202			}
 203		}
 204	} else {
 205		fsverity_verify_bio(bio);
 206	}
 207
 208	f2fs_finish_read_bio(bio, true);
 209}
 210
 211/*
 212 * If the bio's data needs to be verified with fs-verity, then enqueue the
 213 * verity work for the bio.  Otherwise finish the bio now.
 214 *
 215 * Note that to avoid deadlocks, the verity work can't be done on the
 216 * decryption/decompression workqueue.  This is because verifying the data pages
 217 * can involve reading verity metadata pages from the file, and these verity
 218 * metadata pages may be encrypted and/or compressed.
 219 */
 220static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
 221{
 222	struct bio_post_read_ctx *ctx = bio->bi_private;
 223
 224	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
 225		INIT_WORK(&ctx->work, f2fs_verify_bio);
 226		fsverity_enqueue_verify_work(&ctx->work);
 227	} else {
 228		f2fs_finish_read_bio(bio, in_task);
 229	}
 230}
 231
 232/*
 233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
 234 * remaining page was read by @ctx->bio.
 235 *
 236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
 237 * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
 238 * that the bio includes at least one compressed page.  The actual decompression
 239 * is done on a per-cluster basis, not a per-bio basis.
 240 */
 241static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
 242		bool in_task)
 243{
 244	struct bio_vec *bv;
 245	struct bvec_iter_all iter_all;
 246	bool all_compressed = true;
 247	block_t blkaddr = ctx->fs_blkaddr;
 248
 249	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
 250		struct page *page = bv->bv_page;
 251
 
 252		if (f2fs_is_compressed_page(page))
 253			f2fs_end_read_compressed_page(page, false, blkaddr,
 254						      in_task);
 255		else
 256			all_compressed = false;
 257
 258		blkaddr++;
 259	}
 260
 261	ctx->decompression_attempted = true;
 262
 263	/*
 264	 * Optimization: if all the bio's pages are compressed, then scheduling
 265	 * the per-bio verity work is unnecessary, as verity will be fully
 266	 * handled at the compression cluster level.
 267	 */
 268	if (all_compressed)
 269		ctx->enabled_steps &= ~STEP_VERITY;
 270}
 271
 272static void f2fs_post_read_work(struct work_struct *work)
 273{
 274	struct bio_post_read_ctx *ctx =
 275		container_of(work, struct bio_post_read_ctx, work);
 276	struct bio *bio = ctx->bio;
 277
 278	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
 279		f2fs_finish_read_bio(bio, true);
 280		return;
 281	}
 282
 283	if (ctx->enabled_steps & STEP_DECOMPRESS)
 284		f2fs_handle_step_decompress(ctx, true);
 285
 286	f2fs_verify_and_finish_bio(bio, true);
 287}
 288
 289static void f2fs_read_end_io(struct bio *bio)
 290{
 291	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
 292	struct bio_post_read_ctx *ctx;
 293	bool intask = in_task();
 294
 295	iostat_update_and_unbind_ctx(bio);
 296	ctx = bio->bi_private;
 297
 298	if (time_to_inject(sbi, FAULT_READ_IO))
 
 299		bio->bi_status = BLK_STS_IOERR;
 
 300
 301	if (bio->bi_status) {
 302		f2fs_finish_read_bio(bio, intask);
 303		return;
 304	}
 305
 306	if (ctx) {
 307		unsigned int enabled_steps = ctx->enabled_steps &
 308					(STEP_DECRYPT | STEP_DECOMPRESS);
 309
 310		/*
 311		 * If we have only decompression step between decompression and
 312		 * decrypt, we don't need post processing for this.
 313		 */
 314		if (enabled_steps == STEP_DECOMPRESS &&
 315				!f2fs_low_mem_mode(sbi)) {
 316			f2fs_handle_step_decompress(ctx, intask);
 317		} else if (enabled_steps) {
 318			INIT_WORK(&ctx->work, f2fs_post_read_work);
 319			queue_work(ctx->sbi->post_read_wq, &ctx->work);
 320			return;
 321		}
 322	}
 323
 324	f2fs_verify_and_finish_bio(bio, intask);
 325}
 326
 327static void f2fs_write_end_io(struct bio *bio)
 328{
 329	struct f2fs_sb_info *sbi;
 330	struct bio_vec *bvec;
 331	struct bvec_iter_all iter_all;
 332
 333	iostat_update_and_unbind_ctx(bio);
 334	sbi = bio->bi_private;
 335
 336	if (time_to_inject(sbi, FAULT_WRITE_IO))
 337		bio->bi_status = BLK_STS_IOERR;
 
 338
 339	bio_for_each_segment_all(bvec, bio, iter_all) {
 340		struct page *page = bvec->bv_page;
 341		enum count_type type = WB_DATA_TYPE(page);
 342
 343		if (page_private_dummy(page)) {
 344			clear_page_private_dummy(page);
 345			unlock_page(page);
 346			mempool_free(page, sbi->write_io_dummy);
 347
 348			if (unlikely(bio->bi_status))
 349				f2fs_stop_checkpoint(sbi, true,
 350						STOP_CP_REASON_WRITE_FAIL);
 351			continue;
 352		}
 353
 354		fscrypt_finalize_bounce_page(&page);
 355
 356#ifdef CONFIG_F2FS_FS_COMPRESSION
 357		if (f2fs_is_compressed_page(page)) {
 358			f2fs_compress_write_end_io(bio, page);
 359			continue;
 360		}
 361#endif
 362
 363		if (unlikely(bio->bi_status)) {
 364			mapping_set_error(page->mapping, -EIO);
 365			if (type == F2FS_WB_CP_DATA)
 366				f2fs_stop_checkpoint(sbi, true,
 367						STOP_CP_REASON_WRITE_FAIL);
 368		}
 369
 370		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
 371					page->index != nid_of_node(page));
 372
 373		dec_page_count(sbi, type);
 374		if (f2fs_in_warm_node_list(sbi, page))
 375			f2fs_del_fsync_node_entry(sbi, page);
 376		clear_page_private_gcing(page);
 377		end_page_writeback(page);
 378	}
 379	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 380				wq_has_sleeper(&sbi->cp_wait))
 381		wake_up(&sbi->cp_wait);
 382
 383	bio_put(bio);
 384}
 385
 386#ifdef CONFIG_BLK_DEV_ZONED
 387static void f2fs_zone_write_end_io(struct bio *bio)
 388{
 389	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
 390
 391	bio->bi_private = io->bi_private;
 392	complete(&io->zone_wait);
 393	f2fs_write_end_io(bio);
 394}
 395#endif
 396
 397struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 398		block_t blk_addr, sector_t *sector)
 399{
 400	struct block_device *bdev = sbi->sb->s_bdev;
 401	int i;
 402
 403	if (f2fs_is_multi_device(sbi)) {
 404		for (i = 0; i < sbi->s_ndevs; i++) {
 405			if (FDEV(i).start_blk <= blk_addr &&
 406			    FDEV(i).end_blk >= blk_addr) {
 407				blk_addr -= FDEV(i).start_blk;
 408				bdev = FDEV(i).bdev;
 409				break;
 410			}
 411		}
 412	}
 413
 414	if (sector)
 415		*sector = SECTOR_FROM_BLOCK(blk_addr);
 
 416	return bdev;
 417}
 418
 419int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 420{
 421	int i;
 422
 423	if (!f2fs_is_multi_device(sbi))
 424		return 0;
 425
 426	for (i = 0; i < sbi->s_ndevs; i++)
 427		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 428			return i;
 429	return 0;
 430}
 431
 432static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
 433{
 434	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
 435	unsigned int fua_flag, meta_flag, io_flag;
 436	blk_opf_t op_flags = 0;
 437
 438	if (fio->op != REQ_OP_WRITE)
 439		return 0;
 440	if (fio->type == DATA)
 441		io_flag = fio->sbi->data_io_flag;
 442	else if (fio->type == NODE)
 443		io_flag = fio->sbi->node_io_flag;
 444	else
 445		return 0;
 446
 447	fua_flag = io_flag & temp_mask;
 448	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
 449
 450	/*
 451	 * data/node io flag bits per temp:
 452	 *      REQ_META     |      REQ_FUA      |
 453	 *    5 |    4 |   3 |    2 |    1 |   0 |
 454	 * Cold | Warm | Hot | Cold | Warm | Hot |
 455	 */
 456	if (BIT(fio->temp) & meta_flag)
 457		op_flags |= REQ_META;
 458	if (BIT(fio->temp) & fua_flag)
 459		op_flags |= REQ_FUA;
 460	return op_flags;
 461}
 462
 463static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
 464{
 465	struct f2fs_sb_info *sbi = fio->sbi;
 466	struct block_device *bdev;
 467	sector_t sector;
 468	struct bio *bio;
 469
 470	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
 471	bio = bio_alloc_bioset(bdev, npages,
 472				fio->op | fio->op_flags | f2fs_io_flags(fio),
 473				GFP_NOIO, &f2fs_bioset);
 474	bio->bi_iter.bi_sector = sector;
 475	if (is_read_io(fio->op)) {
 476		bio->bi_end_io = f2fs_read_end_io;
 477		bio->bi_private = NULL;
 478	} else {
 479		bio->bi_end_io = f2fs_write_end_io;
 480		bio->bi_private = sbi;
 
 
 481	}
 482	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
 483
 484	if (fio->io_wbc)
 485		wbc_init_bio(fio->io_wbc, bio);
 486
 487	return bio;
 488}
 489
 490static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
 491				  pgoff_t first_idx,
 492				  const struct f2fs_io_info *fio,
 493				  gfp_t gfp_mask)
 494{
 495	/*
 496	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 497	 * read/write raw data without encryption.
 498	 */
 499	if (!fio || !fio->encrypted_page)
 500		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
 501}
 502
 503static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
 504				     pgoff_t next_idx,
 505				     const struct f2fs_io_info *fio)
 506{
 507	/*
 508	 * The f2fs garbage collector sets ->encrypted_page when it wants to
 509	 * read/write raw data without encryption.
 510	 */
 511	if (fio && fio->encrypted_page)
 512		return !bio_has_crypt_ctx(bio);
 513
 514	return fscrypt_mergeable_bio(bio, inode, next_idx);
 515}
 516
 517void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
 518				 enum page_type type)
 519{
 520	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
 521	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
 
 
 
 
 
 
 522
 523	iostat_update_submit_ctx(bio, type);
 524	submit_bio(bio);
 525}
 526
 527static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
 528{
 529	unsigned int start =
 530		(bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
 531
 532	if (start == 0)
 533		return;
 534
 535	/* fill dummy pages */
 536	for (; start < F2FS_IO_SIZE(sbi); start++) {
 537		struct page *page =
 538			mempool_alloc(sbi->write_io_dummy,
 539				      GFP_NOIO | __GFP_NOFAIL);
 540		f2fs_bug_on(sbi, !page);
 541
 542		lock_page(page);
 543
 544		zero_user_segment(page, 0, PAGE_SIZE);
 545		set_page_private_dummy(page);
 546
 547		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
 548			f2fs_bug_on(sbi, 1);
 
 
 
 
 
 
 
 549	}
 
 
 
 
 
 
 550}
 551
 552static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
 553				  enum page_type type)
 554{
 555	WARN_ON_ONCE(is_read_io(bio_op(bio)));
 
 556
 557	if (type == DATA || type == NODE) {
 558		if (f2fs_lfs_mode(sbi) && current->plug)
 559			blk_finish_plug(current->plug);
 
 
 
 
 
 
 
 
 
 560
 561		if (F2FS_IO_ALIGNED(sbi)) {
 562			f2fs_align_write_bio(sbi, bio);
 563			/*
 564			 * In the NODE case, we lose next block address chain.
 565			 * So, we need to do checkpoint in f2fs_sync_file.
 566			 */
 567			if (type == NODE)
 568				set_sbi_flag(sbi, SBI_NEED_CP);
 569		}
 570	}
 571
 572	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
 573	iostat_update_submit_ctx(bio, type);
 574	submit_bio(bio);
 
 
 
 
 
 
 
 575}
 576
 577static void __submit_merged_bio(struct f2fs_bio_info *io)
 578{
 579	struct f2fs_io_info *fio = &io->fio;
 580
 581	if (!io->bio)
 582		return;
 583
 584	if (is_read_io(fio->op)) {
 
 
 
 585		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
 586		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
 587	} else {
 588		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
 589		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
 590	}
 591	io->bio = NULL;
 592}
 593
 594static bool __has_merged_page(struct bio *bio, struct inode *inode,
 595						struct page *page, nid_t ino)
 596{
 597	struct bio_vec *bvec;
 598	struct bvec_iter_all iter_all;
 599
 600	if (!bio)
 601		return false;
 602
 603	if (!inode && !page && !ino)
 604		return true;
 605
 606	bio_for_each_segment_all(bvec, bio, iter_all) {
 607		struct page *target = bvec->bv_page;
 608
 609		if (fscrypt_is_bounce_page(target)) {
 610			target = fscrypt_pagecache_page(target);
 611			if (IS_ERR(target))
 612				continue;
 613		}
 614		if (f2fs_is_compressed_page(target)) {
 615			target = f2fs_compress_control_page(target);
 616			if (IS_ERR(target))
 617				continue;
 618		}
 619
 620		if (inode && inode == target->mapping->host)
 621			return true;
 622		if (page && page == target)
 623			return true;
 624		if (ino && ino == ino_of_node(target))
 625			return true;
 626	}
 627
 628	return false;
 629}
 630
 631int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
 632{
 633	int i;
 634
 635	for (i = 0; i < NR_PAGE_TYPE; i++) {
 636		int n = (i == META) ? 1 : NR_TEMP_TYPE;
 637		int j;
 638
 639		sbi->write_io[i] = f2fs_kmalloc(sbi,
 640				array_size(n, sizeof(struct f2fs_bio_info)),
 641				GFP_KERNEL);
 642		if (!sbi->write_io[i])
 643			return -ENOMEM;
 644
 645		for (j = HOT; j < n; j++) {
 646			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
 647			sbi->write_io[i][j].sbi = sbi;
 648			sbi->write_io[i][j].bio = NULL;
 649			spin_lock_init(&sbi->write_io[i][j].io_lock);
 650			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
 651			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
 652			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
 653#ifdef CONFIG_BLK_DEV_ZONED
 654			init_completion(&sbi->write_io[i][j].zone_wait);
 655			sbi->write_io[i][j].zone_pending_bio = NULL;
 656			sbi->write_io[i][j].bi_private = NULL;
 657#endif
 658		}
 659	}
 660
 661	return 0;
 662}
 663
 664static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
 665				enum page_type type, enum temp_type temp)
 666{
 667	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 668	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 669
 670	f2fs_down_write(&io->io_rwsem);
 671
 672	if (!io->bio)
 673		goto unlock_out;
 674
 675	/* change META to META_FLUSH in the checkpoint procedure */
 676	if (type >= META_FLUSH) {
 677		io->fio.type = META_FLUSH;
 678		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
 
 679		if (!test_opt(sbi, NOBARRIER))
 680			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
 681	}
 682	__submit_merged_bio(io);
 683unlock_out:
 684	f2fs_up_write(&io->io_rwsem);
 685}
 686
 687static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
 688				struct inode *inode, struct page *page,
 689				nid_t ino, enum page_type type, bool force)
 690{
 691	enum temp_type temp;
 692	bool ret = true;
 693
 694	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
 695		if (!force)	{
 696			enum page_type btype = PAGE_TYPE_OF_BIO(type);
 697			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 698
 699			f2fs_down_read(&io->io_rwsem);
 700			ret = __has_merged_page(io->bio, inode, page, ino);
 701			f2fs_up_read(&io->io_rwsem);
 702		}
 703		if (ret)
 704			__f2fs_submit_merged_write(sbi, type, temp);
 705
 706		/* TODO: use HOT temp only for meta pages now. */
 707		if (type >= META)
 708			break;
 709	}
 710}
 711
 712void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
 713{
 714	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
 715}
 716
 717void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
 718				struct inode *inode, struct page *page,
 719				nid_t ino, enum page_type type)
 720{
 721	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
 722}
 723
 724void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
 725{
 726	f2fs_submit_merged_write(sbi, DATA);
 727	f2fs_submit_merged_write(sbi, NODE);
 728	f2fs_submit_merged_write(sbi, META);
 729}
 730
 731/*
 732 * Fill the locked page with data located in the block address.
 733 * A caller needs to unlock the page on failure.
 734 */
 735int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 736{
 737	struct bio *bio;
 738	struct page *page = fio->encrypted_page ?
 739			fio->encrypted_page : fio->page;
 740
 741	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 742			fio->is_por ? META_POR : (__is_meta_io(fio) ?
 743			META_GENERIC : DATA_GENERIC_ENHANCE))) {
 744		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
 745		return -EFSCORRUPTED;
 746	}
 747
 748	trace_f2fs_submit_page_bio(page, fio);
 749
 750	/* Allocate a new bio */
 751	bio = __bio_alloc(fio, 1);
 752
 753	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 754			       fio->page->index, fio, GFP_NOIO);
 755
 756	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 757		bio_put(bio);
 758		return -EFAULT;
 759	}
 760
 761	if (fio->io_wbc && !is_read_io(fio->op))
 762		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
 
 
 
 763
 764	inc_page_count(fio->sbi, is_read_io(fio->op) ?
 765			__read_io_type(page) : WB_DATA_TYPE(fio->page));
 766
 767	if (is_read_io(bio_op(bio)))
 768		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
 769	else
 770		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
 771	return 0;
 772}
 773
 774static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 775				block_t last_blkaddr, block_t cur_blkaddr)
 776{
 777	if (unlikely(sbi->max_io_bytes &&
 778			bio->bi_iter.bi_size >= sbi->max_io_bytes))
 779		return false;
 780	if (last_blkaddr + 1 != cur_blkaddr)
 781		return false;
 782	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
 783}
 784
 785static bool io_type_is_mergeable(struct f2fs_bio_info *io,
 786						struct f2fs_io_info *fio)
 787{
 788	if (io->fio.op != fio->op)
 789		return false;
 790	return io->fio.op_flags == fio->op_flags;
 791}
 792
 793static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 794					struct f2fs_bio_info *io,
 795					struct f2fs_io_info *fio,
 796					block_t last_blkaddr,
 797					block_t cur_blkaddr)
 798{
 799	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
 800		unsigned int filled_blocks =
 801				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
 802		unsigned int io_size = F2FS_IO_SIZE(sbi);
 803		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
 804
 805		/* IOs in bio is aligned and left space of vectors is not enough */
 806		if (!(filled_blocks % io_size) && left_vecs < io_size)
 807			return false;
 808	}
 809	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
 810		return false;
 811	return io_type_is_mergeable(io, fio);
 812}
 813
 814static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
 815				struct page *page, enum temp_type temp)
 816{
 817	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 818	struct bio_entry *be;
 819
 820	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
 821	be->bio = bio;
 822	bio_get(bio);
 823
 824	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
 825		f2fs_bug_on(sbi, 1);
 826
 827	f2fs_down_write(&io->bio_list_lock);
 828	list_add_tail(&be->list, &io->bio_list);
 829	f2fs_up_write(&io->bio_list_lock);
 830}
 831
 832static void del_bio_entry(struct bio_entry *be)
 833{
 834	list_del(&be->list);
 835	kmem_cache_free(bio_entry_slab, be);
 836}
 837
 838static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
 839							struct page *page)
 840{
 841	struct f2fs_sb_info *sbi = fio->sbi;
 842	enum temp_type temp;
 843	bool found = false;
 844	int ret = -EAGAIN;
 845
 846	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 847		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 848		struct list_head *head = &io->bio_list;
 849		struct bio_entry *be;
 850
 851		f2fs_down_write(&io->bio_list_lock);
 852		list_for_each_entry(be, head, list) {
 853			if (be->bio != *bio)
 854				continue;
 855
 856			found = true;
 857
 858			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
 859							    *fio->last_block,
 860							    fio->new_blkaddr));
 861			if (f2fs_crypt_mergeable_bio(*bio,
 862					fio->page->mapping->host,
 863					fio->page->index, fio) &&
 864			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
 865					PAGE_SIZE) {
 866				ret = 0;
 867				break;
 868			}
 869
 870			/* page can't be merged into bio; submit the bio */
 871			del_bio_entry(be);
 872			f2fs_submit_write_bio(sbi, *bio, DATA);
 873			break;
 874		}
 875		f2fs_up_write(&io->bio_list_lock);
 876	}
 877
 878	if (ret) {
 879		bio_put(*bio);
 880		*bio = NULL;
 881	}
 882
 883	return ret;
 884}
 885
 886void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
 887					struct bio **bio, struct page *page)
 888{
 889	enum temp_type temp;
 890	bool found = false;
 891	struct bio *target = bio ? *bio : NULL;
 892
 893	f2fs_bug_on(sbi, !target && !page);
 894
 895	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
 896		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
 897		struct list_head *head = &io->bio_list;
 898		struct bio_entry *be;
 899
 900		if (list_empty(head))
 901			continue;
 902
 903		f2fs_down_read(&io->bio_list_lock);
 904		list_for_each_entry(be, head, list) {
 905			if (target)
 906				found = (target == be->bio);
 907			else
 908				found = __has_merged_page(be->bio, NULL,
 909								page, 0);
 910			if (found)
 911				break;
 912		}
 913		f2fs_up_read(&io->bio_list_lock);
 914
 915		if (!found)
 916			continue;
 917
 918		found = false;
 919
 920		f2fs_down_write(&io->bio_list_lock);
 921		list_for_each_entry(be, head, list) {
 922			if (target)
 923				found = (target == be->bio);
 924			else
 925				found = __has_merged_page(be->bio, NULL,
 926								page, 0);
 927			if (found) {
 928				target = be->bio;
 929				del_bio_entry(be);
 930				break;
 931			}
 932		}
 933		f2fs_up_write(&io->bio_list_lock);
 934	}
 935
 936	if (found)
 937		f2fs_submit_write_bio(sbi, target, DATA);
 938	if (bio && *bio) {
 939		bio_put(*bio);
 940		*bio = NULL;
 941	}
 942}
 943
 944int f2fs_merge_page_bio(struct f2fs_io_info *fio)
 945{
 946	struct bio *bio = *fio->bio;
 947	struct page *page = fio->encrypted_page ?
 948			fio->encrypted_page : fio->page;
 949
 950	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 951			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
 952		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
 953		return -EFSCORRUPTED;
 954	}
 955
 956	trace_f2fs_submit_page_bio(page, fio);
 957
 958	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
 959						fio->new_blkaddr))
 960		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
 961alloc_new:
 962	if (!bio) {
 963		bio = __bio_alloc(fio, BIO_MAX_VECS);
 
 964		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
 965				       fio->page->index, fio, GFP_NOIO);
 
 966
 967		add_bio_entry(fio->sbi, bio, page, fio->temp);
 968	} else {
 969		if (add_ipu_page(fio, &bio, page))
 970			goto alloc_new;
 971	}
 972
 973	if (fio->io_wbc)
 974		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
 975
 976	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
 977
 978	*fio->last_block = fio->new_blkaddr;
 979	*fio->bio = bio;
 980
 981	return 0;
 982}
 983
 984#ifdef CONFIG_BLK_DEV_ZONED
 985static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
 986{
 987	int devi = 0;
 988
 989	if (f2fs_is_multi_device(sbi)) {
 990		devi = f2fs_target_device_index(sbi, blkaddr);
 991		if (blkaddr < FDEV(devi).start_blk ||
 992		    blkaddr > FDEV(devi).end_blk) {
 993			f2fs_err(sbi, "Invalid block %x", blkaddr);
 994			return false;
 995		}
 996		blkaddr -= FDEV(devi).start_blk;
 997	}
 998	return bdev_is_zoned(FDEV(devi).bdev) &&
 999		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001}
1002#endif
1003
1004void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005{
1006	struct f2fs_sb_info *sbi = fio->sbi;
1007	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009	struct page *bio_page;
1010
1011	f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013	f2fs_down_write(&io->io_rwsem);
1014
1015#ifdef CONFIG_BLK_DEV_ZONED
1016	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017		wait_for_completion_io(&io->zone_wait);
1018		bio_put(io->zone_pending_bio);
1019		io->zone_pending_bio = NULL;
1020		io->bi_private = NULL;
1021	}
1022#endif
1023
1024next:
1025	if (fio->in_list) {
1026		spin_lock(&io->io_lock);
1027		if (list_empty(&io->io_list)) {
1028			spin_unlock(&io->io_lock);
1029			goto out;
1030		}
1031		fio = list_first_entry(&io->io_list,
1032						struct f2fs_io_info, list);
1033		list_del(&fio->list);
1034		spin_unlock(&io->io_lock);
1035	}
1036
1037	verify_fio_blkaddr(fio);
1038
1039	if (fio->encrypted_page)
1040		bio_page = fio->encrypted_page;
1041	else if (fio->compressed_page)
1042		bio_page = fio->compressed_page;
1043	else
1044		bio_page = fio->page;
1045
1046	/* set submitted = true as a return value */
1047	fio->submitted = 1;
1048
1049	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051	if (io->bio &&
1052	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053			      fio->new_blkaddr) ||
1054	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055				       bio_page->index, fio)))
1056		__submit_merged_bio(io);
1057alloc_new:
1058	if (io->bio == NULL) {
1059		if (F2FS_IO_ALIGNED(sbi) &&
1060				(fio->type == DATA || fio->type == NODE) &&
1061				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063			fio->retry = 1;
1064			goto skip;
1065		}
1066		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068				       bio_page->index, fio, GFP_NOIO);
1069		io->fio = *fio;
1070	}
1071
1072	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073		__submit_merged_bio(io);
1074		goto alloc_new;
1075	}
1076
1077	if (fio->io_wbc)
1078		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080	io->last_block_in_bio = fio->new_blkaddr;
1081
1082	trace_f2fs_submit_page_write(fio->page, fio);
1083skip:
1084	if (fio->in_list)
1085		goto next;
1086out:
1087#ifdef CONFIG_BLK_DEV_ZONED
1088	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090		bio_get(io->bio);
1091		reinit_completion(&io->zone_wait);
1092		io->bi_private = io->bio->bi_private;
1093		io->bio->bi_private = io;
1094		io->bio->bi_end_io = f2fs_zone_write_end_io;
1095		io->zone_pending_bio = io->bio;
1096		__submit_merged_bio(io);
1097	}
1098#endif
1099	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100				!f2fs_is_checkpoint_ready(sbi))
1101		__submit_merged_bio(io);
1102	f2fs_up_write(&io->io_rwsem);
1103}
1104
1105static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106				      unsigned nr_pages, blk_opf_t op_flag,
1107				      pgoff_t first_idx, bool for_write)
1108{
1109	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110	struct bio *bio;
1111	struct bio_post_read_ctx *ctx = NULL;
1112	unsigned int post_read_steps = 0;
1113	sector_t sector;
1114	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1115
1116	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117			       REQ_OP_READ | op_flag,
1118			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119	if (!bio)
1120		return ERR_PTR(-ENOMEM);
1121	bio->bi_iter.bi_sector = sector;
1122	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
 
 
1123	bio->bi_end_io = f2fs_read_end_io;
 
1124
1125	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126		post_read_steps |= STEP_DECRYPT;
1127
1128	if (f2fs_need_verity(inode, first_idx))
1129		post_read_steps |= STEP_VERITY;
1130
1131	/*
1132	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133	 * contain both compressed and uncompressed clusters.  We'll allocate a
1134	 * bio_post_read_ctx if the file is compressed, but the caller is
1135	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136	 */
1137
1138	if (post_read_steps || f2fs_compressed_file(inode)) {
1139		/* Due to the mempool, this never fails. */
1140		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141		ctx->bio = bio;
1142		ctx->sbi = sbi;
1143		ctx->enabled_steps = post_read_steps;
1144		ctx->fs_blkaddr = blkaddr;
1145		ctx->decompression_attempted = false;
1146		bio->bi_private = ctx;
1147	}
1148	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150	return bio;
1151}
1152
1153/* This can handle encryption stuffs */
1154static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155				 block_t blkaddr, blk_opf_t op_flags,
1156				 bool for_write)
1157{
1158	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159	struct bio *bio;
1160
1161	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162					page->index, for_write);
1163	if (IS_ERR(bio))
1164		return PTR_ERR(bio);
1165
1166	/* wait for GCed page writeback via META_MAPPING */
1167	f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170		iostat_update_and_unbind_ctx(bio);
1171		if (bio->bi_private)
1172			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1173		bio_put(bio);
1174		return -EFAULT;
1175	}
 
1176	inc_page_count(sbi, F2FS_RD_DATA);
1177	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1178	f2fs_submit_read_bio(sbi, bio, DATA);
1179	return 0;
1180}
1181
1182static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1183{
1184	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1185
1186	dn->data_blkaddr = blkaddr;
1187	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
 
 
 
 
 
 
1188}
1189
1190/*
1191 * Lock ordering for the change of data block address:
1192 * ->data_page
1193 *  ->node_page
1194 *    update block addresses in the node page
1195 */
1196void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1197{
1198	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1199	__set_data_blkaddr(dn, blkaddr);
1200	if (set_page_dirty(dn->node_page))
1201		dn->node_changed = true;
1202}
1203
1204void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1205{
1206	f2fs_set_data_blkaddr(dn, blkaddr);
1207	f2fs_update_read_extent_cache(dn);
 
1208}
1209
1210/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1211int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1212{
1213	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1214	int err;
1215
1216	if (!count)
1217		return 0;
1218
1219	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220		return -EPERM;
1221	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1222		return err;
1223
1224	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1225						dn->ofs_in_node, count);
1226
1227	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1228
1229	for (; count > 0; dn->ofs_in_node++) {
1230		block_t blkaddr = f2fs_data_blkaddr(dn);
1231
1232		if (blkaddr == NULL_ADDR) {
1233			__set_data_blkaddr(dn, NEW_ADDR);
 
1234			count--;
1235		}
1236	}
1237
1238	if (set_page_dirty(dn->node_page))
1239		dn->node_changed = true;
1240	return 0;
1241}
1242
1243/* Should keep dn->ofs_in_node unchanged */
1244int f2fs_reserve_new_block(struct dnode_of_data *dn)
1245{
1246	unsigned int ofs_in_node = dn->ofs_in_node;
1247	int ret;
1248
1249	ret = f2fs_reserve_new_blocks(dn, 1);
1250	dn->ofs_in_node = ofs_in_node;
1251	return ret;
1252}
1253
1254int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1255{
1256	bool need_put = dn->inode_page ? false : true;
1257	int err;
1258
1259	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1260	if (err)
1261		return err;
1262
1263	if (dn->data_blkaddr == NULL_ADDR)
1264		err = f2fs_reserve_new_block(dn);
1265	if (err || need_put)
1266		f2fs_put_dnode(dn);
1267	return err;
1268}
1269
 
 
 
 
 
 
 
 
 
 
 
 
 
1270struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1271				     blk_opf_t op_flags, bool for_write,
1272				     pgoff_t *next_pgofs)
1273{
1274	struct address_space *mapping = inode->i_mapping;
1275	struct dnode_of_data dn;
1276	struct page *page;
 
1277	int err;
1278
1279	page = f2fs_grab_cache_page(mapping, index, for_write);
1280	if (!page)
1281		return ERR_PTR(-ENOMEM);
1282
1283	if (f2fs_lookup_read_extent_cache_block(inode, index,
1284						&dn.data_blkaddr)) {
1285		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1286						DATA_GENERIC_ENHANCE_READ)) {
1287			err = -EFSCORRUPTED;
1288			f2fs_handle_error(F2FS_I_SB(inode),
1289						ERROR_INVALID_BLKADDR);
1290			goto put_err;
1291		}
1292		goto got_it;
1293	}
1294
1295	set_new_dnode(&dn, inode, NULL, NULL, 0);
1296	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1297	if (err) {
1298		if (err == -ENOENT && next_pgofs)
1299			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1300		goto put_err;
1301	}
1302	f2fs_put_dnode(&dn);
1303
1304	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1305		err = -ENOENT;
1306		if (next_pgofs)
1307			*next_pgofs = index + 1;
1308		goto put_err;
1309	}
1310	if (dn.data_blkaddr != NEW_ADDR &&
1311			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1312						dn.data_blkaddr,
1313						DATA_GENERIC_ENHANCE)) {
1314		err = -EFSCORRUPTED;
1315		f2fs_handle_error(F2FS_I_SB(inode),
1316					ERROR_INVALID_BLKADDR);
1317		goto put_err;
1318	}
1319got_it:
1320	if (PageUptodate(page)) {
1321		unlock_page(page);
1322		return page;
1323	}
1324
1325	/*
1326	 * A new dentry page is allocated but not able to be written, since its
1327	 * new inode page couldn't be allocated due to -ENOSPC.
1328	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1329	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1330	 * f2fs_init_inode_metadata.
1331	 */
1332	if (dn.data_blkaddr == NEW_ADDR) {
1333		zero_user_segment(page, 0, PAGE_SIZE);
1334		if (!PageUptodate(page))
1335			SetPageUptodate(page);
1336		unlock_page(page);
1337		return page;
1338	}
1339
1340	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1341						op_flags, for_write);
1342	if (err)
1343		goto put_err;
1344	return page;
1345
1346put_err:
1347	f2fs_put_page(page, 1);
1348	return ERR_PTR(err);
1349}
1350
1351struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1352					pgoff_t *next_pgofs)
1353{
1354	struct address_space *mapping = inode->i_mapping;
1355	struct page *page;
1356
1357	page = find_get_page(mapping, index);
1358	if (page && PageUptodate(page))
1359		return page;
1360	f2fs_put_page(page, 0);
1361
1362	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1363	if (IS_ERR(page))
1364		return page;
1365
1366	if (PageUptodate(page))
1367		return page;
1368
1369	wait_on_page_locked(page);
1370	if (unlikely(!PageUptodate(page))) {
1371		f2fs_put_page(page, 0);
1372		return ERR_PTR(-EIO);
1373	}
1374	return page;
1375}
1376
1377/*
1378 * If it tries to access a hole, return an error.
1379 * Because, the callers, functions in dir.c and GC, should be able to know
1380 * whether this page exists or not.
1381 */
1382struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1383							bool for_write)
1384{
1385	struct address_space *mapping = inode->i_mapping;
1386	struct page *page;
1387
1388	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1389	if (IS_ERR(page))
1390		return page;
1391
1392	/* wait for read completion */
1393	lock_page(page);
1394	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
 
 
 
 
1395		f2fs_put_page(page, 1);
1396		return ERR_PTR(-EIO);
1397	}
1398	return page;
1399}
1400
1401/*
1402 * Caller ensures that this data page is never allocated.
1403 * A new zero-filled data page is allocated in the page cache.
1404 *
1405 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1406 * f2fs_unlock_op().
1407 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1408 * ipage should be released by this function.
1409 */
1410struct page *f2fs_get_new_data_page(struct inode *inode,
1411		struct page *ipage, pgoff_t index, bool new_i_size)
1412{
1413	struct address_space *mapping = inode->i_mapping;
1414	struct page *page;
1415	struct dnode_of_data dn;
1416	int err;
1417
1418	page = f2fs_grab_cache_page(mapping, index, true);
1419	if (!page) {
1420		/*
1421		 * before exiting, we should make sure ipage will be released
1422		 * if any error occur.
1423		 */
1424		f2fs_put_page(ipage, 1);
1425		return ERR_PTR(-ENOMEM);
1426	}
1427
1428	set_new_dnode(&dn, inode, ipage, NULL, 0);
1429	err = f2fs_reserve_block(&dn, index);
1430	if (err) {
1431		f2fs_put_page(page, 1);
1432		return ERR_PTR(err);
1433	}
1434	if (!ipage)
1435		f2fs_put_dnode(&dn);
1436
1437	if (PageUptodate(page))
1438		goto got_it;
1439
1440	if (dn.data_blkaddr == NEW_ADDR) {
1441		zero_user_segment(page, 0, PAGE_SIZE);
1442		if (!PageUptodate(page))
1443			SetPageUptodate(page);
1444	} else {
1445		f2fs_put_page(page, 1);
1446
1447		/* if ipage exists, blkaddr should be NEW_ADDR */
1448		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1449		page = f2fs_get_lock_data_page(inode, index, true);
1450		if (IS_ERR(page))
1451			return page;
1452	}
1453got_it:
1454	if (new_i_size && i_size_read(inode) <
1455				((loff_t)(index + 1) << PAGE_SHIFT))
1456		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1457	return page;
1458}
1459
1460static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1461{
1462	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1463	struct f2fs_summary sum;
1464	struct node_info ni;
1465	block_t old_blkaddr;
1466	blkcnt_t count = 1;
1467	int err;
1468
1469	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1470		return -EPERM;
1471
1472	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1473	if (err)
1474		return err;
1475
1476	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1477	if (dn->data_blkaddr == NULL_ADDR) {
1478		err = inc_valid_block_count(sbi, dn->inode, &count);
1479		if (unlikely(err))
1480			return err;
1481	}
1482
 
1483	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1484	old_blkaddr = dn->data_blkaddr;
1485	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1486				&sum, seg_type, NULL);
1487	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1488		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
 
 
 
 
1489
1490	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
 
 
 
1491	return 0;
1492}
1493
1494static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1495{
1496	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1497		f2fs_down_read(&sbi->node_change);
 
 
 
 
 
 
 
 
1498	else
1499		f2fs_lock_op(sbi);
1500}
1501
1502static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1503{
1504	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1505		f2fs_up_read(&sbi->node_change);
1506	else
1507		f2fs_unlock_op(sbi);
1508}
1509
1510int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1511{
1512	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1513	int err = 0;
 
 
 
 
 
 
 
 
 
 
1514
1515	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1516	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1517						&dn->data_blkaddr))
1518		err = f2fs_reserve_block(dn, index);
1519	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1520
 
 
 
 
 
 
 
1521	return err;
1522}
1523
1524static int f2fs_map_no_dnode(struct inode *inode,
1525		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1526		pgoff_t pgoff)
1527{
1528	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1529
1530	/*
1531	 * There is one exceptional case that read_node_page() may return
1532	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1533	 * -EIO in that case.
1534	 */
1535	if (map->m_may_create &&
1536	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1537		return -EIO;
1538
1539	if (map->m_next_pgofs)
1540		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1541	if (map->m_next_extent)
1542		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1543	return 0;
1544}
1545
1546static bool f2fs_map_blocks_cached(struct inode *inode,
1547		struct f2fs_map_blocks *map, int flag)
1548{
1549	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1550	unsigned int maxblocks = map->m_len;
1551	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1552	struct extent_info ei = {};
1553
1554	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1555		return false;
1556
1557	map->m_pblk = ei.blk + pgoff - ei.fofs;
1558	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1559	map->m_flags = F2FS_MAP_MAPPED;
1560	if (map->m_next_extent)
1561		*map->m_next_extent = pgoff + map->m_len;
1562
1563	/* for hardware encryption, but to avoid potential issue in future */
1564	if (flag == F2FS_GET_BLOCK_DIO)
1565		f2fs_wait_on_block_writeback_range(inode,
1566					map->m_pblk, map->m_len);
1567
1568	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1569		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1570		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1571
1572		map->m_bdev = dev->bdev;
1573		map->m_pblk -= dev->start_blk;
1574		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1575	} else {
1576		map->m_bdev = inode->i_sb->s_bdev;
 
 
 
1577	}
1578	return true;
1579}
1580
1581/*
1582 * f2fs_map_blocks() tries to find or build mapping relationship which
1583 * maps continuous logical blocks to physical blocks, and return such
1584 * info via f2fs_map_blocks structure.
1585 */
1586int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
 
1587{
1588	unsigned int maxblocks = map->m_len;
1589	struct dnode_of_data dn;
1590	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1591	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1592	pgoff_t pgofs, end_offset, end;
1593	int err = 0, ofs = 1;
1594	unsigned int ofs_in_node, last_ofs_in_node;
1595	blkcnt_t prealloc;
 
1596	block_t blkaddr;
1597	unsigned int start_pgofs;
1598	int bidx = 0;
1599	bool is_hole;
1600
1601	if (!maxblocks)
1602		return 0;
1603
1604	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1605		goto out;
1606
1607	map->m_bdev = inode->i_sb->s_bdev;
1608	map->m_multidev_dio =
1609		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1610
1611	map->m_len = 0;
1612	map->m_flags = 0;
1613
1614	/* it only supports block size == page size */
1615	pgofs =	(pgoff_t)map->m_lblk;
1616	end = pgofs + maxblocks;
1617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1618next_dnode:
1619	if (map->m_may_create)
1620		f2fs_map_lock(sbi, flag);
1621
1622	/* When reading holes, we need its node page */
1623	set_new_dnode(&dn, inode, NULL, NULL, 0);
1624	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1625	if (err) {
1626		if (flag == F2FS_GET_BLOCK_BMAP)
1627			map->m_pblk = 0;
1628		if (err == -ENOENT)
1629			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630		goto unlock_out;
1631	}
1632
1633	start_pgofs = pgofs;
1634	prealloc = 0;
1635	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1636	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1637
1638next_block:
1639	blkaddr = f2fs_data_blkaddr(&dn);
1640	is_hole = !__is_valid_data_blkaddr(blkaddr);
1641	if (!is_hole &&
1642	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1643		err = -EFSCORRUPTED;
1644		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1645		goto sync_out;
1646	}
1647
1648	/* use out-place-update for direct IO under LFS mode */
1649	if (map->m_may_create &&
1650	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1651		if (unlikely(f2fs_cp_error(sbi))) {
1652			err = -EIO;
1653			goto sync_out;
1654		}
1655
1656		switch (flag) {
1657		case F2FS_GET_BLOCK_PRE_AIO:
1658			if (blkaddr == NULL_ADDR) {
1659				prealloc++;
1660				last_ofs_in_node = dn.ofs_in_node;
1661			}
1662			break;
1663		case F2FS_GET_BLOCK_PRE_DIO:
1664		case F2FS_GET_BLOCK_DIO:
1665			err = __allocate_data_block(&dn, map->m_seg_type);
1666			if (err)
1667				goto sync_out;
1668			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1669				file_need_truncate(inode);
1670			set_inode_flag(inode, FI_APPEND_WRITE);
1671			break;
1672		default:
1673			WARN_ON_ONCE(1);
1674			err = -EIO;
1675			goto sync_out;
1676		}
1677
1678		blkaddr = dn.data_blkaddr;
1679		if (is_hole)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1680			map->m_flags |= F2FS_MAP_NEW;
1681	} else if (is_hole) {
1682		if (f2fs_compressed_file(inode) &&
1683		    f2fs_sanity_check_cluster(&dn)) {
1684			err = -EFSCORRUPTED;
1685			f2fs_handle_error(sbi,
1686					ERROR_CORRUPTED_CLUSTER);
1687			goto sync_out;
1688		}
1689
1690		switch (flag) {
1691		case F2FS_GET_BLOCK_PRECACHE:
1692			goto sync_out;
1693		case F2FS_GET_BLOCK_BMAP:
1694			map->m_pblk = 0;
1695			goto sync_out;
1696		case F2FS_GET_BLOCK_FIEMAP:
1697			if (blkaddr == NULL_ADDR) {
1698				if (map->m_next_pgofs)
1699					*map->m_next_pgofs = pgofs + 1;
1700				goto sync_out;
1701			}
1702			break;
1703		default:
1704			/* for defragment case */
1705			if (map->m_next_pgofs)
1706				*map->m_next_pgofs = pgofs + 1;
1707			goto sync_out;
1708		}
1709	}
1710
1711	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1712		goto skip;
1713
1714	if (map->m_multidev_dio)
1715		bidx = f2fs_target_device_index(sbi, blkaddr);
1716
1717	if (map->m_len == 0) {
1718		/* reserved delalloc block should be mapped for fiemap. */
1719		if (blkaddr == NEW_ADDR)
1720			map->m_flags |= F2FS_MAP_DELALLOC;
1721		map->m_flags |= F2FS_MAP_MAPPED;
1722
1723		map->m_pblk = blkaddr;
1724		map->m_len = 1;
1725
1726		if (map->m_multidev_dio)
1727			map->m_bdev = FDEV(bidx).bdev;
1728	} else if ((map->m_pblk != NEW_ADDR &&
1729			blkaddr == (map->m_pblk + ofs)) ||
1730			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1731			flag == F2FS_GET_BLOCK_PRE_DIO) {
1732		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1733			goto sync_out;
1734		ofs++;
1735		map->m_len++;
1736	} else {
1737		goto sync_out;
1738	}
1739
1740skip:
1741	dn.ofs_in_node++;
1742	pgofs++;
1743
1744	/* preallocate blocks in batch for one dnode page */
1745	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1746			(pgofs == end || dn.ofs_in_node == end_offset)) {
1747
1748		dn.ofs_in_node = ofs_in_node;
1749		err = f2fs_reserve_new_blocks(&dn, prealloc);
1750		if (err)
1751			goto sync_out;
1752
1753		map->m_len += dn.ofs_in_node - ofs_in_node;
1754		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1755			err = -ENOSPC;
1756			goto sync_out;
1757		}
1758		dn.ofs_in_node = end_offset;
1759	}
1760
1761	if (pgofs >= end)
1762		goto sync_out;
1763	else if (dn.ofs_in_node < end_offset)
1764		goto next_block;
1765
1766	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1767		if (map->m_flags & F2FS_MAP_MAPPED) {
1768			unsigned int ofs = start_pgofs - map->m_lblk;
1769
1770			f2fs_update_read_extent_cache_range(&dn,
1771				start_pgofs, map->m_pblk + ofs,
1772				map->m_len - ofs);
1773		}
1774	}
1775
1776	f2fs_put_dnode(&dn);
1777
1778	if (map->m_may_create) {
1779		f2fs_map_unlock(sbi, flag);
1780		f2fs_balance_fs(sbi, dn.node_changed);
1781	}
1782	goto next_dnode;
1783
1784sync_out:
1785
1786	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1787		/*
1788		 * for hardware encryption, but to avoid potential issue
1789		 * in future
1790		 */
1791		f2fs_wait_on_block_writeback_range(inode,
1792						map->m_pblk, map->m_len);
1793
1794		if (map->m_multidev_dio) {
1795			block_t blk_addr = map->m_pblk;
1796
1797			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1798
1799			map->m_bdev = FDEV(bidx).bdev;
1800			map->m_pblk -= FDEV(bidx).start_blk;
1801
1802			if (map->m_may_create)
1803				f2fs_update_device_state(sbi, inode->i_ino,
1804							blk_addr, map->m_len);
1805
1806			f2fs_bug_on(sbi, blk_addr + map->m_len >
1807						FDEV(bidx).end_blk + 1);
1808		}
1809	}
1810
1811	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1812		if (map->m_flags & F2FS_MAP_MAPPED) {
1813			unsigned int ofs = start_pgofs - map->m_lblk;
1814
1815			f2fs_update_read_extent_cache_range(&dn,
1816				start_pgofs, map->m_pblk + ofs,
1817				map->m_len - ofs);
1818		}
1819		if (map->m_next_extent)
1820			*map->m_next_extent = pgofs + 1;
1821	}
1822	f2fs_put_dnode(&dn);
1823unlock_out:
1824	if (map->m_may_create) {
1825		f2fs_map_unlock(sbi, flag);
1826		f2fs_balance_fs(sbi, dn.node_changed);
1827	}
1828out:
1829	trace_f2fs_map_blocks(inode, map, flag, err);
1830	return err;
1831}
1832
1833bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1834{
1835	struct f2fs_map_blocks map;
1836	block_t last_lblk;
1837	int err;
1838
1839	if (pos + len > i_size_read(inode))
1840		return false;
1841
1842	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1843	map.m_next_pgofs = NULL;
1844	map.m_next_extent = NULL;
1845	map.m_seg_type = NO_CHECK_TYPE;
1846	map.m_may_create = false;
1847	last_lblk = F2FS_BLK_ALIGN(pos + len);
1848
1849	while (map.m_lblk < last_lblk) {
1850		map.m_len = last_lblk - map.m_lblk;
1851		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1852		if (err || map.m_len == 0)
1853			return false;
1854		map.m_lblk += map.m_len;
1855	}
1856	return true;
1857}
1858
1859static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1860{
1861	return (bytes >> inode->i_blkbits);
1862}
1863
1864static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1865{
1866	return (blks << inode->i_blkbits);
1867}
1868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869static int f2fs_xattr_fiemap(struct inode *inode,
1870				struct fiemap_extent_info *fieinfo)
1871{
1872	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1873	struct page *page;
1874	struct node_info ni;
1875	__u64 phys = 0, len;
1876	__u32 flags;
1877	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1878	int err = 0;
1879
1880	if (f2fs_has_inline_xattr(inode)) {
1881		int offset;
1882
1883		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1884						inode->i_ino, false);
1885		if (!page)
1886			return -ENOMEM;
1887
1888		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1889		if (err) {
1890			f2fs_put_page(page, 1);
1891			return err;
1892		}
1893
1894		phys = blks_to_bytes(inode, ni.blk_addr);
1895		offset = offsetof(struct f2fs_inode, i_addr) +
1896					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1897					get_inline_xattr_addrs(inode));
1898
1899		phys += offset;
1900		len = inline_xattr_size(inode);
1901
1902		f2fs_put_page(page, 1);
1903
1904		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1905
1906		if (!xnid)
1907			flags |= FIEMAP_EXTENT_LAST;
1908
1909		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1910		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1911		if (err)
1912			return err;
1913	}
1914
1915	if (xnid) {
1916		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1917		if (!page)
1918			return -ENOMEM;
1919
1920		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1921		if (err) {
1922			f2fs_put_page(page, 1);
1923			return err;
1924		}
1925
1926		phys = blks_to_bytes(inode, ni.blk_addr);
1927		len = inode->i_sb->s_blocksize;
1928
1929		f2fs_put_page(page, 1);
1930
1931		flags = FIEMAP_EXTENT_LAST;
1932	}
1933
1934	if (phys) {
1935		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1936		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1937	}
1938
1939	return (err < 0 ? err : 0);
1940}
1941
1942static loff_t max_inode_blocks(struct inode *inode)
1943{
1944	loff_t result = ADDRS_PER_INODE(inode);
1945	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1946
1947	/* two direct node blocks */
1948	result += (leaf_count * 2);
1949
1950	/* two indirect node blocks */
1951	leaf_count *= NIDS_PER_BLOCK;
1952	result += (leaf_count * 2);
1953
1954	/* one double indirect node block */
1955	leaf_count *= NIDS_PER_BLOCK;
1956	result += leaf_count;
1957
1958	return result;
1959}
1960
1961int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1962		u64 start, u64 len)
1963{
1964	struct f2fs_map_blocks map;
1965	sector_t start_blk, last_blk;
1966	pgoff_t next_pgofs;
1967	u64 logical = 0, phys = 0, size = 0;
1968	u32 flags = 0;
1969	int ret = 0;
1970	bool compr_cluster = false, compr_appended;
1971	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1972	unsigned int count_in_cluster = 0;
1973	loff_t maxbytes;
1974
1975	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1976		ret = f2fs_precache_extents(inode);
1977		if (ret)
1978			return ret;
1979	}
1980
1981	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1982	if (ret)
1983		return ret;
1984
1985	inode_lock_shared(inode);
1986
1987	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1988	if (start > maxbytes) {
1989		ret = -EFBIG;
1990		goto out;
1991	}
1992
1993	if (len > maxbytes || (maxbytes - len) < start)
1994		len = maxbytes - start;
1995
1996	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1997		ret = f2fs_xattr_fiemap(inode, fieinfo);
1998		goto out;
1999	}
2000
2001	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2002		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2003		if (ret != -EAGAIN)
2004			goto out;
2005	}
2006
2007	if (bytes_to_blks(inode, len) == 0)
2008		len = blks_to_bytes(inode, 1);
2009
2010	start_blk = bytes_to_blks(inode, start);
2011	last_blk = bytes_to_blks(inode, start + len - 1);
2012
2013next:
2014	memset(&map, 0, sizeof(map));
2015	map.m_lblk = start_blk;
2016	map.m_len = bytes_to_blks(inode, len);
2017	map.m_next_pgofs = &next_pgofs;
2018	map.m_seg_type = NO_CHECK_TYPE;
2019
2020	if (compr_cluster) {
2021		map.m_lblk += 1;
2022		map.m_len = cluster_size - count_in_cluster;
2023	}
2024
2025	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2026	if (ret)
2027		goto out;
2028
2029	/* HOLE */
2030	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2031		start_blk = next_pgofs;
2032
2033		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2034						max_inode_blocks(inode)))
2035			goto prep_next;
2036
2037		flags |= FIEMAP_EXTENT_LAST;
2038	}
2039
2040	compr_appended = false;
2041	/* In a case of compressed cluster, append this to the last extent */
2042	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2043			!(map.m_flags & F2FS_MAP_FLAGS))) {
2044		compr_appended = true;
2045		goto skip_fill;
2046	}
2047
2048	if (size) {
2049		flags |= FIEMAP_EXTENT_MERGED;
2050		if (IS_ENCRYPTED(inode))
2051			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2052
2053		ret = fiemap_fill_next_extent(fieinfo, logical,
2054				phys, size, flags);
2055		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2056		if (ret)
2057			goto out;
2058		size = 0;
2059	}
2060
2061	if (start_blk > last_blk)
2062		goto out;
2063
2064skip_fill:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065	if (map.m_pblk == COMPRESS_ADDR) {
2066		compr_cluster = true;
2067		count_in_cluster = 1;
2068	} else if (compr_appended) {
2069		unsigned int appended_blks = cluster_size -
2070						count_in_cluster + 1;
2071		size += blks_to_bytes(inode, appended_blks);
2072		start_blk += appended_blks;
2073		compr_cluster = false;
2074	} else {
2075		logical = blks_to_bytes(inode, start_blk);
2076		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2077			blks_to_bytes(inode, map.m_pblk) : 0;
2078		size = blks_to_bytes(inode, map.m_len);
2079		flags = 0;
2080
2081		if (compr_cluster) {
2082			flags = FIEMAP_EXTENT_ENCODED;
2083			count_in_cluster += map.m_len;
2084			if (count_in_cluster == cluster_size) {
2085				compr_cluster = false;
2086				size += blks_to_bytes(inode, 1);
2087			}
2088		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2089			flags = FIEMAP_EXTENT_UNWRITTEN;
2090		}
2091
2092		start_blk += bytes_to_blks(inode, size);
2093	}
2094
2095prep_next:
2096	cond_resched();
2097	if (fatal_signal_pending(current))
2098		ret = -EINTR;
2099	else
2100		goto next;
2101out:
2102	if (ret == 1)
2103		ret = 0;
2104
2105	inode_unlock_shared(inode);
2106	return ret;
2107}
2108
2109static inline loff_t f2fs_readpage_limit(struct inode *inode)
2110{
2111	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
 
2112		return inode->i_sb->s_maxbytes;
2113
2114	return i_size_read(inode);
2115}
2116
2117static int f2fs_read_single_page(struct inode *inode, struct page *page,
2118					unsigned nr_pages,
2119					struct f2fs_map_blocks *map,
2120					struct bio **bio_ret,
2121					sector_t *last_block_in_bio,
2122					bool is_readahead)
2123{
2124	struct bio *bio = *bio_ret;
2125	const unsigned blocksize = blks_to_bytes(inode, 1);
2126	sector_t block_in_file;
2127	sector_t last_block;
2128	sector_t last_block_in_file;
2129	sector_t block_nr;
2130	int ret = 0;
2131
2132	block_in_file = (sector_t)page_index(page);
2133	last_block = block_in_file + nr_pages;
2134	last_block_in_file = bytes_to_blks(inode,
2135			f2fs_readpage_limit(inode) + blocksize - 1);
2136	if (last_block > last_block_in_file)
2137		last_block = last_block_in_file;
2138
2139	/* just zeroing out page which is beyond EOF */
2140	if (block_in_file >= last_block)
2141		goto zero_out;
2142	/*
2143	 * Map blocks using the previous result first.
2144	 */
2145	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2146			block_in_file > map->m_lblk &&
2147			block_in_file < (map->m_lblk + map->m_len))
2148		goto got_it;
2149
2150	/*
2151	 * Then do more f2fs_map_blocks() calls until we are
2152	 * done with this page.
2153	 */
2154	map->m_lblk = block_in_file;
2155	map->m_len = last_block - block_in_file;
2156
2157	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2158	if (ret)
2159		goto out;
2160got_it:
2161	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2162		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2163		SetPageMappedToDisk(page);
2164
 
 
 
 
 
 
2165		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2166						DATA_GENERIC_ENHANCE_READ)) {
2167			ret = -EFSCORRUPTED;
2168			f2fs_handle_error(F2FS_I_SB(inode),
2169						ERROR_INVALID_BLKADDR);
2170			goto out;
2171		}
2172	} else {
2173zero_out:
2174		zero_user_segment(page, 0, PAGE_SIZE);
2175		if (f2fs_need_verity(inode, page->index) &&
2176		    !fsverity_verify_page(page)) {
2177			ret = -EIO;
2178			goto out;
2179		}
2180		if (!PageUptodate(page))
2181			SetPageUptodate(page);
2182		unlock_page(page);
2183		goto out;
2184	}
2185
2186	/*
2187	 * This page will go to BIO.  Do we need to send this
2188	 * BIO off first?
2189	 */
2190	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2191				       *last_block_in_bio, block_nr) ||
2192		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2193submit_and_realloc:
2194		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2195		bio = NULL;
2196	}
2197	if (bio == NULL) {
2198		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2199				is_readahead ? REQ_RAHEAD : 0, page->index,
2200				false);
2201		if (IS_ERR(bio)) {
2202			ret = PTR_ERR(bio);
2203			bio = NULL;
2204			goto out;
2205		}
2206	}
2207
2208	/*
2209	 * If the page is under writeback, we need to wait for
2210	 * its completion to see the correct decrypted data.
2211	 */
2212	f2fs_wait_on_block_writeback(inode, block_nr);
2213
2214	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2215		goto submit_and_realloc;
2216
2217	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2218	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2219							F2FS_BLKSIZE);
2220	*last_block_in_bio = block_nr;
 
 
 
 
 
 
 
2221out:
2222	*bio_ret = bio;
2223	return ret;
2224}
2225
2226#ifdef CONFIG_F2FS_FS_COMPRESSION
2227int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2228				unsigned nr_pages, sector_t *last_block_in_bio,
2229				bool is_readahead, bool for_write)
2230{
2231	struct dnode_of_data dn;
2232	struct inode *inode = cc->inode;
2233	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2234	struct bio *bio = *bio_ret;
2235	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2236	sector_t last_block_in_file;
2237	const unsigned blocksize = blks_to_bytes(inode, 1);
2238	struct decompress_io_ctx *dic = NULL;
2239	struct extent_info ei = {};
2240	bool from_dnode = true;
2241	int i;
2242	int ret = 0;
2243
2244	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2245
2246	last_block_in_file = bytes_to_blks(inode,
2247			f2fs_readpage_limit(inode) + blocksize - 1);
2248
2249	/* get rid of pages beyond EOF */
2250	for (i = 0; i < cc->cluster_size; i++) {
2251		struct page *page = cc->rpages[i];
2252
2253		if (!page)
2254			continue;
2255		if ((sector_t)page->index >= last_block_in_file) {
2256			zero_user_segment(page, 0, PAGE_SIZE);
2257			if (!PageUptodate(page))
2258				SetPageUptodate(page);
2259		} else if (!PageUptodate(page)) {
2260			continue;
2261		}
2262		unlock_page(page);
2263		if (for_write)
2264			put_page(page);
2265		cc->rpages[i] = NULL;
2266		cc->nr_rpages--;
2267	}
2268
2269	/* we are done since all pages are beyond EOF */
2270	if (f2fs_cluster_is_empty(cc))
2271		goto out;
2272
2273	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2274		from_dnode = false;
2275
2276	if (!from_dnode)
2277		goto skip_reading_dnode;
2278
2279	set_new_dnode(&dn, inode, NULL, NULL, 0);
2280	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2281	if (ret)
2282		goto out;
2283
2284	if (unlikely(f2fs_cp_error(sbi))) {
2285		ret = -EIO;
2286		goto out_put_dnode;
2287	}
2288	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2289
2290skip_reading_dnode:
2291	for (i = 1; i < cc->cluster_size; i++) {
2292		block_t blkaddr;
2293
2294		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2295					dn.ofs_in_node + i) :
2296					ei.blk + i - 1;
2297
2298		if (!__is_valid_data_blkaddr(blkaddr))
2299			break;
2300
2301		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2302			ret = -EFAULT;
2303			goto out_put_dnode;
2304		}
2305		cc->nr_cpages++;
2306
2307		if (!from_dnode && i >= ei.c_len)
2308			break;
2309	}
2310
2311	/* nothing to decompress */
2312	if (cc->nr_cpages == 0) {
2313		ret = 0;
2314		goto out_put_dnode;
2315	}
2316
2317	dic = f2fs_alloc_dic(cc);
2318	if (IS_ERR(dic)) {
2319		ret = PTR_ERR(dic);
2320		goto out_put_dnode;
2321	}
2322
2323	for (i = 0; i < cc->nr_cpages; i++) {
2324		struct page *page = dic->cpages[i];
2325		block_t blkaddr;
2326		struct bio_post_read_ctx *ctx;
2327
2328		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2329					dn.ofs_in_node + i + 1) :
2330					ei.blk + i;
2331
2332		f2fs_wait_on_block_writeback(inode, blkaddr);
2333
2334		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2335			if (atomic_dec_and_test(&dic->remaining_pages)) {
2336				f2fs_decompress_cluster(dic, true);
2337				break;
2338			}
2339			continue;
2340		}
2341
2342		if (bio && (!page_is_mergeable(sbi, bio,
2343					*last_block_in_bio, blkaddr) ||
2344		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2345submit_and_realloc:
2346			f2fs_submit_read_bio(sbi, bio, DATA);
2347			bio = NULL;
2348		}
2349
2350		if (!bio) {
2351			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2352					is_readahead ? REQ_RAHEAD : 0,
2353					page->index, for_write);
2354			if (IS_ERR(bio)) {
2355				ret = PTR_ERR(bio);
2356				f2fs_decompress_end_io(dic, ret, true);
2357				f2fs_put_dnode(&dn);
2358				*bio_ret = NULL;
2359				return ret;
2360			}
2361		}
2362
2363		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2364			goto submit_and_realloc;
2365
2366		ctx = get_post_read_ctx(bio);
2367		ctx->enabled_steps |= STEP_DECOMPRESS;
2368		refcount_inc(&dic->refcnt);
2369
2370		inc_page_count(sbi, F2FS_RD_DATA);
2371		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
 
 
2372		*last_block_in_bio = blkaddr;
2373	}
2374
2375	if (from_dnode)
2376		f2fs_put_dnode(&dn);
2377
2378	*bio_ret = bio;
2379	return 0;
2380
2381out_put_dnode:
2382	if (from_dnode)
2383		f2fs_put_dnode(&dn);
2384out:
2385	for (i = 0; i < cc->cluster_size; i++) {
2386		if (cc->rpages[i]) {
2387			ClearPageUptodate(cc->rpages[i]);
 
2388			unlock_page(cc->rpages[i]);
2389		}
2390	}
2391	*bio_ret = bio;
2392	return ret;
2393}
2394#endif
2395
2396/*
2397 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2398 * Major change was from block_size == page_size in f2fs by default.
2399 */
2400static int f2fs_mpage_readpages(struct inode *inode,
2401		struct readahead_control *rac, struct page *page)
2402{
2403	struct bio *bio = NULL;
2404	sector_t last_block_in_bio = 0;
2405	struct f2fs_map_blocks map;
2406#ifdef CONFIG_F2FS_FS_COMPRESSION
2407	struct compress_ctx cc = {
2408		.inode = inode,
2409		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2410		.cluster_size = F2FS_I(inode)->i_cluster_size,
2411		.cluster_idx = NULL_CLUSTER,
2412		.rpages = NULL,
2413		.cpages = NULL,
2414		.nr_rpages = 0,
2415		.nr_cpages = 0,
2416	};
2417	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2418#endif
2419	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2420	unsigned max_nr_pages = nr_pages;
2421	int ret = 0;
2422
2423	map.m_pblk = 0;
2424	map.m_lblk = 0;
2425	map.m_len = 0;
2426	map.m_flags = 0;
2427	map.m_next_pgofs = NULL;
2428	map.m_next_extent = NULL;
2429	map.m_seg_type = NO_CHECK_TYPE;
2430	map.m_may_create = false;
2431
2432	for (; nr_pages; nr_pages--) {
2433		if (rac) {
2434			page = readahead_page(rac);
2435			prefetchw(&page->flags);
2436		}
2437
2438#ifdef CONFIG_F2FS_FS_COMPRESSION
2439		if (f2fs_compressed_file(inode)) {
2440			/* there are remained compressed pages, submit them */
2441			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2442				ret = f2fs_read_multi_pages(&cc, &bio,
2443							max_nr_pages,
2444							&last_block_in_bio,
2445							rac != NULL, false);
2446				f2fs_destroy_compress_ctx(&cc, false);
2447				if (ret)
2448					goto set_error_page;
2449			}
2450			if (cc.cluster_idx == NULL_CLUSTER) {
2451				if (nc_cluster_idx ==
2452					page->index >> cc.log_cluster_size) {
2453					goto read_single_page;
2454				}
2455
2456				ret = f2fs_is_compressed_cluster(inode, page->index);
2457				if (ret < 0)
2458					goto set_error_page;
2459				else if (!ret) {
2460					nc_cluster_idx =
2461						page->index >> cc.log_cluster_size;
2462					goto read_single_page;
2463				}
2464
2465				nc_cluster_idx = NULL_CLUSTER;
2466			}
2467			ret = f2fs_init_compress_ctx(&cc);
2468			if (ret)
2469				goto set_error_page;
2470
2471			f2fs_compress_ctx_add_page(&cc, page);
2472
2473			goto next_page;
2474		}
2475read_single_page:
2476#endif
2477
2478		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2479					&bio, &last_block_in_bio, rac);
2480		if (ret) {
2481#ifdef CONFIG_F2FS_FS_COMPRESSION
2482set_error_page:
2483#endif
 
2484			zero_user_segment(page, 0, PAGE_SIZE);
2485			unlock_page(page);
2486		}
2487#ifdef CONFIG_F2FS_FS_COMPRESSION
2488next_page:
2489#endif
2490		if (rac)
2491			put_page(page);
2492
2493#ifdef CONFIG_F2FS_FS_COMPRESSION
2494		if (f2fs_compressed_file(inode)) {
2495			/* last page */
2496			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2497				ret = f2fs_read_multi_pages(&cc, &bio,
2498							max_nr_pages,
2499							&last_block_in_bio,
2500							rac != NULL, false);
2501				f2fs_destroy_compress_ctx(&cc, false);
2502			}
2503		}
2504#endif
2505	}
2506	if (bio)
2507		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2508	return ret;
2509}
2510
2511static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2512{
2513	struct page *page = &folio->page;
2514	struct inode *inode = page_file_mapping(page)->host;
2515	int ret = -EAGAIN;
2516
2517	trace_f2fs_readpage(page, DATA);
2518
2519	if (!f2fs_is_compress_backend_ready(inode)) {
2520		unlock_page(page);
2521		return -EOPNOTSUPP;
2522	}
2523
2524	/* If the file has inline data, try to read it directly */
2525	if (f2fs_has_inline_data(inode))
2526		ret = f2fs_read_inline_data(inode, page);
2527	if (ret == -EAGAIN)
2528		ret = f2fs_mpage_readpages(inode, NULL, page);
2529	return ret;
2530}
2531
2532static void f2fs_readahead(struct readahead_control *rac)
2533{
2534	struct inode *inode = rac->mapping->host;
2535
2536	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2537
2538	if (!f2fs_is_compress_backend_ready(inode))
2539		return;
2540
2541	/* If the file has inline data, skip readahead */
2542	if (f2fs_has_inline_data(inode))
2543		return;
2544
2545	f2fs_mpage_readpages(inode, rac, NULL);
2546}
2547
2548int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2549{
2550	struct inode *inode = fio->page->mapping->host;
2551	struct page *mpage, *page;
2552	gfp_t gfp_flags = GFP_NOFS;
2553
2554	if (!f2fs_encrypted_file(inode))
2555		return 0;
2556
2557	page = fio->compressed_page ? fio->compressed_page : fio->page;
2558
 
 
 
2559	if (fscrypt_inode_uses_inline_crypto(inode))
2560		return 0;
2561
2562retry_encrypt:
2563	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2564					PAGE_SIZE, 0, gfp_flags);
2565	if (IS_ERR(fio->encrypted_page)) {
2566		/* flush pending IOs and wait for a while in the ENOMEM case */
2567		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2568			f2fs_flush_merged_writes(fio->sbi);
2569			memalloc_retry_wait(GFP_NOFS);
2570			gfp_flags |= __GFP_NOFAIL;
2571			goto retry_encrypt;
2572		}
2573		return PTR_ERR(fio->encrypted_page);
2574	}
2575
2576	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2577	if (mpage) {
2578		if (PageUptodate(mpage))
2579			memcpy(page_address(mpage),
2580				page_address(fio->encrypted_page), PAGE_SIZE);
2581		f2fs_put_page(mpage, 1);
2582	}
2583	return 0;
2584}
2585
2586static inline bool check_inplace_update_policy(struct inode *inode,
2587				struct f2fs_io_info *fio)
2588{
2589	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
2590
2591	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2592	    is_inode_flag_set(inode, FI_OPU_WRITE))
2593		return false;
2594	if (IS_F2FS_IPU_FORCE(sbi))
2595		return true;
2596	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2597		return true;
2598	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
 
2599		return true;
2600	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2601	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2602		return true;
2603
2604	/*
2605	 * IPU for rewrite async pages
2606	 */
2607	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2608	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
 
 
2609		return true;
2610
2611	/* this is only set during fdatasync */
2612	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
 
2613		return true;
2614
2615	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2616			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2617		return true;
2618
2619	return false;
2620}
2621
2622bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2623{
2624	/* swap file is migrating in aligned write mode */
2625	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2626		return false;
2627
2628	if (f2fs_is_pinned_file(inode))
2629		return true;
2630
2631	/* if this is cold file, we should overwrite to avoid fragmentation */
2632	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2633		return true;
2634
2635	return check_inplace_update_policy(inode, fio);
2636}
2637
2638bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2639{
2640	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2641
2642	/* The below cases were checked when setting it. */
2643	if (f2fs_is_pinned_file(inode))
2644		return false;
2645	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2646		return true;
2647	if (f2fs_lfs_mode(sbi))
2648		return true;
2649	if (S_ISDIR(inode->i_mode))
2650		return true;
2651	if (IS_NOQUOTA(inode))
2652		return true;
2653	if (f2fs_is_atomic_file(inode))
2654		return true;
2655	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2656	if (f2fs_compressed_file(inode) &&
2657		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2658		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2659		return true;
2660
2661	/* swap file is migrating in aligned write mode */
2662	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2663		return true;
2664
2665	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2666		return true;
2667
2668	if (fio) {
2669		if (page_private_gcing(fio->page))
2670			return true;
2671		if (page_private_dummy(fio->page))
2672			return true;
2673		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2674			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2675			return true;
2676	}
2677	return false;
2678}
2679
2680static inline bool need_inplace_update(struct f2fs_io_info *fio)
2681{
2682	struct inode *inode = fio->page->mapping->host;
2683
2684	if (f2fs_should_update_outplace(inode, fio))
2685		return false;
2686
2687	return f2fs_should_update_inplace(inode, fio);
2688}
2689
2690int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2691{
2692	struct page *page = fio->page;
2693	struct inode *inode = page->mapping->host;
2694	struct dnode_of_data dn;
 
2695	struct node_info ni;
2696	bool ipu_force = false;
2697	int err = 0;
2698
2699	/* Use COW inode to make dnode_of_data for atomic write */
2700	if (f2fs_is_atomic_file(inode))
2701		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2702	else
2703		set_new_dnode(&dn, inode, NULL, NULL, 0);
2704
2705	if (need_inplace_update(fio) &&
2706	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2707						&fio->old_blkaddr)) {
2708		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2709						DATA_GENERIC_ENHANCE)) {
2710			f2fs_handle_error(fio->sbi,
2711						ERROR_INVALID_BLKADDR);
2712			return -EFSCORRUPTED;
2713		}
2714
2715		ipu_force = true;
2716		fio->need_lock = LOCK_DONE;
2717		goto got_it;
2718	}
2719
2720	/* Deadlock due to between page->lock and f2fs_lock_op */
2721	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2722		return -EAGAIN;
2723
2724	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2725	if (err)
2726		goto out;
2727
2728	fio->old_blkaddr = dn.data_blkaddr;
2729
2730	/* This page is already truncated */
2731	if (fio->old_blkaddr == NULL_ADDR) {
2732		ClearPageUptodate(page);
2733		clear_page_private_gcing(page);
2734		goto out_writepage;
2735	}
2736got_it:
2737	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2738		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2739						DATA_GENERIC_ENHANCE)) {
2740		err = -EFSCORRUPTED;
2741		f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2742		goto out_writepage;
2743	}
2744
2745	/* wait for GCed page writeback via META_MAPPING */
2746	if (fio->post_read)
2747		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2748
2749	/*
2750	 * If current allocation needs SSR,
2751	 * it had better in-place writes for updated data.
2752	 */
2753	if (ipu_force ||
2754		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2755					need_inplace_update(fio))) {
2756		err = f2fs_encrypt_one_page(fio);
2757		if (err)
2758			goto out_writepage;
2759
2760		set_page_writeback(page);
 
2761		f2fs_put_dnode(&dn);
2762		if (fio->need_lock == LOCK_REQ)
2763			f2fs_unlock_op(fio->sbi);
2764		err = f2fs_inplace_write_data(fio);
2765		if (err) {
2766			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2767				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2768			if (PageWriteback(page))
2769				end_page_writeback(page);
2770		} else {
2771			set_inode_flag(inode, FI_UPDATE_WRITE);
2772		}
2773		trace_f2fs_do_write_data_page(fio->page, IPU);
2774		return err;
2775	}
2776
2777	if (fio->need_lock == LOCK_RETRY) {
2778		if (!f2fs_trylock_op(fio->sbi)) {
2779			err = -EAGAIN;
2780			goto out_writepage;
2781		}
2782		fio->need_lock = LOCK_REQ;
2783	}
2784
2785	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2786	if (err)
2787		goto out_writepage;
2788
2789	fio->version = ni.version;
2790
2791	err = f2fs_encrypt_one_page(fio);
2792	if (err)
2793		goto out_writepage;
2794
2795	set_page_writeback(page);
 
2796
2797	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2798		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2799
2800	/* LFS mode write path */
2801	f2fs_outplace_write_data(&dn, fio);
2802	trace_f2fs_do_write_data_page(page, OPU);
2803	set_inode_flag(inode, FI_APPEND_WRITE);
 
 
2804out_writepage:
2805	f2fs_put_dnode(&dn);
2806out:
2807	if (fio->need_lock == LOCK_REQ)
2808		f2fs_unlock_op(fio->sbi);
2809	return err;
2810}
2811
2812int f2fs_write_single_data_page(struct page *page, int *submitted,
2813				struct bio **bio,
2814				sector_t *last_block,
2815				struct writeback_control *wbc,
2816				enum iostat_type io_type,
2817				int compr_blocks,
2818				bool allow_balance)
2819{
2820	struct inode *inode = page->mapping->host;
2821	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2822	loff_t i_size = i_size_read(inode);
2823	const pgoff_t end_index = ((unsigned long long)i_size)
2824							>> PAGE_SHIFT;
2825	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2826	unsigned offset = 0;
2827	bool need_balance_fs = false;
2828	bool quota_inode = IS_NOQUOTA(inode);
2829	int err = 0;
2830	struct f2fs_io_info fio = {
2831		.sbi = sbi,
2832		.ino = inode->i_ino,
2833		.type = DATA,
2834		.op = REQ_OP_WRITE,
2835		.op_flags = wbc_to_write_flags(wbc),
2836		.old_blkaddr = NULL_ADDR,
2837		.page = page,
2838		.encrypted_page = NULL,
2839		.submitted = 0,
2840		.compr_blocks = compr_blocks,
2841		.need_lock = LOCK_RETRY,
2842		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2843		.io_type = io_type,
2844		.io_wbc = wbc,
2845		.bio = bio,
2846		.last_block = last_block,
2847	};
2848
2849	trace_f2fs_writepage(page, DATA);
2850
2851	/* we should bypass data pages to proceed the kworker jobs */
2852	if (unlikely(f2fs_cp_error(sbi))) {
2853		mapping_set_error(page->mapping, -EIO);
2854		/*
2855		 * don't drop any dirty dentry pages for keeping lastest
2856		 * directory structure.
2857		 */
2858		if (S_ISDIR(inode->i_mode) &&
2859				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2860			goto redirty_out;
2861
2862		/* keep data pages in remount-ro mode */
2863		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2864			goto redirty_out;
2865		goto out;
2866	}
2867
2868	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2869		goto redirty_out;
2870
2871	if (page->index < end_index ||
2872			f2fs_verity_in_progress(inode) ||
2873			compr_blocks)
2874		goto write;
2875
2876	/*
2877	 * If the offset is out-of-range of file size,
2878	 * this page does not have to be written to disk.
2879	 */
2880	offset = i_size & (PAGE_SIZE - 1);
2881	if ((page->index >= end_index + 1) || !offset)
2882		goto out;
2883
2884	zero_user_segment(page, offset, PAGE_SIZE);
2885write:
 
 
 
 
 
 
 
 
2886	/* Dentry/quota blocks are controlled by checkpoint */
2887	if (S_ISDIR(inode->i_mode) || quota_inode) {
2888		/*
2889		 * We need to wait for node_write to avoid block allocation during
2890		 * checkpoint. This can only happen to quota writes which can cause
2891		 * the below discard race condition.
2892		 */
2893		if (quota_inode)
2894			f2fs_down_read(&sbi->node_write);
2895
2896		fio.need_lock = LOCK_DONE;
2897		err = f2fs_do_write_data_page(&fio);
2898
2899		if (quota_inode)
2900			f2fs_up_read(&sbi->node_write);
2901
2902		goto done;
2903	}
2904
2905	if (!wbc->for_reclaim)
2906		need_balance_fs = true;
2907	else if (has_not_enough_free_secs(sbi, 0, 0))
2908		goto redirty_out;
2909	else
2910		set_inode_flag(inode, FI_HOT_DATA);
2911
2912	err = -EAGAIN;
2913	if (f2fs_has_inline_data(inode)) {
2914		err = f2fs_write_inline_data(inode, page);
2915		if (!err)
2916			goto out;
2917	}
2918
2919	if (err == -EAGAIN) {
2920		err = f2fs_do_write_data_page(&fio);
2921		if (err == -EAGAIN) {
2922			fio.need_lock = LOCK_REQ;
2923			err = f2fs_do_write_data_page(&fio);
2924		}
2925	}
2926
2927	if (err) {
2928		file_set_keep_isize(inode);
2929	} else {
2930		spin_lock(&F2FS_I(inode)->i_size_lock);
2931		if (F2FS_I(inode)->last_disk_size < psize)
2932			F2FS_I(inode)->last_disk_size = psize;
2933		spin_unlock(&F2FS_I(inode)->i_size_lock);
2934	}
2935
2936done:
2937	if (err && err != -ENOENT)
2938		goto redirty_out;
2939
2940out:
2941	inode_dec_dirty_pages(inode);
2942	if (err) {
2943		ClearPageUptodate(page);
2944		clear_page_private_gcing(page);
2945	}
2946
2947	if (wbc->for_reclaim) {
2948		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2949		clear_inode_flag(inode, FI_HOT_DATA);
2950		f2fs_remove_dirty_inode(inode);
2951		submitted = NULL;
2952	}
2953	unlock_page(page);
2954	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2955			!F2FS_I(inode)->wb_task && allow_balance)
2956		f2fs_balance_fs(sbi, need_balance_fs);
2957
2958	if (unlikely(f2fs_cp_error(sbi))) {
2959		f2fs_submit_merged_write(sbi, DATA);
2960		if (bio && *bio)
2961			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2962		submitted = NULL;
2963	}
2964
2965	if (submitted)
2966		*submitted = fio.submitted;
2967
2968	return 0;
2969
2970redirty_out:
2971	redirty_page_for_writepage(wbc, page);
2972	/*
2973	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2974	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2975	 * file_write_and_wait_range() will see EIO error, which is critical
2976	 * to return value of fsync() followed by atomic_write failure to user.
2977	 */
2978	if (!err || wbc->for_reclaim)
2979		return AOP_WRITEPAGE_ACTIVATE;
2980	unlock_page(page);
2981	return err;
2982}
2983
2984static int f2fs_write_data_page(struct page *page,
2985					struct writeback_control *wbc)
2986{
2987#ifdef CONFIG_F2FS_FS_COMPRESSION
2988	struct inode *inode = page->mapping->host;
2989
2990	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2991		goto out;
2992
2993	if (f2fs_compressed_file(inode)) {
2994		if (f2fs_is_compressed_cluster(inode, page->index)) {
2995			redirty_page_for_writepage(wbc, page);
2996			return AOP_WRITEPAGE_ACTIVATE;
2997		}
2998	}
2999out:
3000#endif
3001
3002	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3003						wbc, FS_DATA_IO, 0, true);
3004}
3005
3006/*
3007 * This function was copied from write_cache_pages from mm/page-writeback.c.
3008 * The major change is making write step of cold data page separately from
3009 * warm/hot data page.
3010 */
3011static int f2fs_write_cache_pages(struct address_space *mapping,
3012					struct writeback_control *wbc,
3013					enum iostat_type io_type)
3014{
3015	int ret = 0;
3016	int done = 0, retry = 0;
3017	struct page *pages_local[F2FS_ONSTACK_PAGES];
3018	struct page **pages = pages_local;
3019	struct folio_batch fbatch;
3020	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3021	struct bio *bio = NULL;
3022	sector_t last_block;
3023#ifdef CONFIG_F2FS_FS_COMPRESSION
3024	struct inode *inode = mapping->host;
3025	struct compress_ctx cc = {
3026		.inode = inode,
3027		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3028		.cluster_size = F2FS_I(inode)->i_cluster_size,
3029		.cluster_idx = NULL_CLUSTER,
3030		.rpages = NULL,
3031		.nr_rpages = 0,
3032		.cpages = NULL,
3033		.valid_nr_cpages = 0,
3034		.rbuf = NULL,
3035		.cbuf = NULL,
3036		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3037		.private = NULL,
3038	};
3039#endif
3040	int nr_folios, p, idx;
3041	int nr_pages;
3042	unsigned int max_pages = F2FS_ONSTACK_PAGES;
3043	pgoff_t index;
3044	pgoff_t end;		/* Inclusive */
3045	pgoff_t done_index;
3046	int range_whole = 0;
3047	xa_mark_t tag;
3048	int nwritten = 0;
3049	int submitted = 0;
3050	int i;
3051
3052#ifdef CONFIG_F2FS_FS_COMPRESSION
3053	if (f2fs_compressed_file(inode) &&
3054		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3055		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3056				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3057		max_pages = 1 << cc.log_cluster_size;
3058	}
3059#endif
3060
3061	folio_batch_init(&fbatch);
3062
3063	if (get_dirty_pages(mapping->host) <=
3064				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3065		set_inode_flag(mapping->host, FI_HOT_DATA);
3066	else
3067		clear_inode_flag(mapping->host, FI_HOT_DATA);
3068
3069	if (wbc->range_cyclic) {
3070		index = mapping->writeback_index; /* prev offset */
3071		end = -1;
3072	} else {
3073		index = wbc->range_start >> PAGE_SHIFT;
3074		end = wbc->range_end >> PAGE_SHIFT;
3075		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3076			range_whole = 1;
3077	}
3078	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3079		tag = PAGECACHE_TAG_TOWRITE;
3080	else
3081		tag = PAGECACHE_TAG_DIRTY;
3082retry:
3083	retry = 0;
3084	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3085		tag_pages_for_writeback(mapping, index, end);
3086	done_index = index;
3087	while (!done && !retry && (index <= end)) {
3088		nr_pages = 0;
3089again:
3090		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3091				tag, &fbatch);
3092		if (nr_folios == 0) {
3093			if (nr_pages)
3094				goto write;
3095			break;
3096		}
3097
3098		for (i = 0; i < nr_folios; i++) {
3099			struct folio *folio = fbatch.folios[i];
3100
3101			idx = 0;
3102			p = folio_nr_pages(folio);
3103add_more:
3104			pages[nr_pages] = folio_page(folio, idx);
3105			folio_get(folio);
3106			if (++nr_pages == max_pages) {
3107				index = folio->index + idx + 1;
3108				folio_batch_release(&fbatch);
3109				goto write;
3110			}
3111			if (++idx < p)
3112				goto add_more;
3113		}
3114		folio_batch_release(&fbatch);
3115		goto again;
3116write:
3117		for (i = 0; i < nr_pages; i++) {
3118			struct page *page = pages[i];
3119			struct folio *folio = page_folio(page);
3120			bool need_readd;
3121readd:
3122			need_readd = false;
3123#ifdef CONFIG_F2FS_FS_COMPRESSION
3124			if (f2fs_compressed_file(inode)) {
3125				void *fsdata = NULL;
3126				struct page *pagep;
3127				int ret2;
3128
3129				ret = f2fs_init_compress_ctx(&cc);
3130				if (ret) {
3131					done = 1;
3132					break;
3133				}
3134
3135				if (!f2fs_cluster_can_merge_page(&cc,
3136								folio->index)) {
3137					ret = f2fs_write_multi_pages(&cc,
3138						&submitted, wbc, io_type);
3139					if (!ret)
3140						need_readd = true;
3141					goto result;
3142				}
3143
3144				if (unlikely(f2fs_cp_error(sbi)))
3145					goto lock_folio;
3146
3147				if (!f2fs_cluster_is_empty(&cc))
3148					goto lock_folio;
3149
3150				if (f2fs_all_cluster_page_ready(&cc,
3151					pages, i, nr_pages, true))
3152					goto lock_folio;
 
3153
3154				ret2 = f2fs_prepare_compress_overwrite(
3155							inode, &pagep,
3156							folio->index, &fsdata);
3157				if (ret2 < 0) {
3158					ret = ret2;
3159					done = 1;
3160					break;
3161				} else if (ret2 &&
3162					(!f2fs_compress_write_end(inode,
3163						fsdata, folio->index, 1) ||
3164					 !f2fs_all_cluster_page_ready(&cc,
3165						pages, i, nr_pages,
3166						false))) {
3167					retry = 1;
3168					break;
 
3169				}
3170			}
3171#endif
3172			/* give a priority to WB_SYNC threads */
3173			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3174					wbc->sync_mode == WB_SYNC_NONE) {
3175				done = 1;
3176				break;
3177			}
3178#ifdef CONFIG_F2FS_FS_COMPRESSION
3179lock_folio:
3180#endif
3181			done_index = folio->index;
3182retry_write:
3183			folio_lock(folio);
3184
3185			if (unlikely(folio->mapping != mapping)) {
3186continue_unlock:
3187				folio_unlock(folio);
3188				continue;
3189			}
3190
3191			if (!folio_test_dirty(folio)) {
3192				/* someone wrote it for us */
3193				goto continue_unlock;
3194			}
3195
3196			if (folio_test_writeback(folio)) {
3197				if (wbc->sync_mode == WB_SYNC_NONE)
 
 
 
3198					goto continue_unlock;
3199				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3200			}
3201
3202			if (!folio_clear_dirty_for_io(folio))
3203				goto continue_unlock;
3204
3205#ifdef CONFIG_F2FS_FS_COMPRESSION
3206			if (f2fs_compressed_file(inode)) {
3207				folio_get(folio);
3208				f2fs_compress_ctx_add_page(&cc, &folio->page);
3209				continue;
3210			}
3211#endif
3212			ret = f2fs_write_single_data_page(&folio->page,
3213					&submitted, &bio, &last_block,
3214					wbc, io_type, 0, true);
3215			if (ret == AOP_WRITEPAGE_ACTIVATE)
3216				folio_unlock(folio);
3217#ifdef CONFIG_F2FS_FS_COMPRESSION
3218result:
3219#endif
3220			nwritten += submitted;
3221			wbc->nr_to_write -= submitted;
3222
3223			if (unlikely(ret)) {
3224				/*
3225				 * keep nr_to_write, since vfs uses this to
3226				 * get # of written pages.
3227				 */
3228				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3229					ret = 0;
3230					goto next;
3231				} else if (ret == -EAGAIN) {
3232					ret = 0;
3233					if (wbc->sync_mode == WB_SYNC_ALL) {
3234						f2fs_io_schedule_timeout(
 
3235							DEFAULT_IO_TIMEOUT);
3236						goto retry_write;
3237					}
3238					goto next;
3239				}
3240				done_index = folio_next_index(folio);
3241				done = 1;
3242				break;
3243			}
3244
3245			if (wbc->nr_to_write <= 0 &&
3246					wbc->sync_mode == WB_SYNC_NONE) {
3247				done = 1;
3248				break;
3249			}
3250next:
3251			if (need_readd)
3252				goto readd;
3253		}
3254		release_pages(pages, nr_pages);
3255		cond_resched();
3256	}
3257#ifdef CONFIG_F2FS_FS_COMPRESSION
3258	/* flush remained pages in compress cluster */
3259	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3260		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3261		nwritten += submitted;
3262		wbc->nr_to_write -= submitted;
3263		if (ret) {
3264			done = 1;
3265			retry = 0;
3266		}
3267	}
3268	if (f2fs_compressed_file(inode))
3269		f2fs_destroy_compress_ctx(&cc, false);
3270#endif
3271	if (retry) {
3272		index = 0;
3273		end = -1;
3274		goto retry;
3275	}
3276	if (wbc->range_cyclic && !done)
3277		done_index = 0;
3278	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3279		mapping->writeback_index = done_index;
3280
3281	if (nwritten)
3282		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3283								NULL, 0, DATA);
3284	/* submit cached bio of IPU write */
3285	if (bio)
3286		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3287
3288#ifdef CONFIG_F2FS_FS_COMPRESSION
3289	if (pages != pages_local)
3290		kfree(pages);
3291#endif
3292
3293	return ret;
3294}
3295
3296static inline bool __should_serialize_io(struct inode *inode,
3297					struct writeback_control *wbc)
3298{
3299	/* to avoid deadlock in path of data flush */
3300	if (F2FS_I(inode)->wb_task)
3301		return false;
3302
3303	if (!S_ISREG(inode->i_mode))
3304		return false;
3305	if (IS_NOQUOTA(inode))
3306		return false;
3307
3308	if (f2fs_need_compress_data(inode))
3309		return true;
3310	if (wbc->sync_mode != WB_SYNC_ALL)
3311		return true;
3312	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3313		return true;
3314	return false;
3315}
3316
3317static int __f2fs_write_data_pages(struct address_space *mapping,
3318						struct writeback_control *wbc,
3319						enum iostat_type io_type)
3320{
3321	struct inode *inode = mapping->host;
3322	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3323	struct blk_plug plug;
3324	int ret;
3325	bool locked = false;
3326
3327	/* deal with chardevs and other special file */
3328	if (!mapping->a_ops->writepage)
3329		return 0;
3330
3331	/* skip writing if there is no dirty page in this inode */
3332	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3333		return 0;
3334
3335	/* during POR, we don't need to trigger writepage at all. */
3336	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3337		goto skip_write;
3338
3339	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3340			wbc->sync_mode == WB_SYNC_NONE &&
3341			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3342			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3343		goto skip_write;
3344
3345	/* skip writing in file defragment preparing stage */
3346	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3347		goto skip_write;
3348
3349	trace_f2fs_writepages(mapping->host, wbc, DATA);
3350
3351	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3352	if (wbc->sync_mode == WB_SYNC_ALL)
3353		atomic_inc(&sbi->wb_sync_req[DATA]);
3354	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3355		/* to avoid potential deadlock */
3356		if (current->plug)
3357			blk_finish_plug(current->plug);
3358		goto skip_write;
3359	}
3360
3361	if (__should_serialize_io(inode, wbc)) {
3362		mutex_lock(&sbi->writepages);
3363		locked = true;
3364	}
3365
3366	blk_start_plug(&plug);
3367	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3368	blk_finish_plug(&plug);
3369
3370	if (locked)
3371		mutex_unlock(&sbi->writepages);
3372
3373	if (wbc->sync_mode == WB_SYNC_ALL)
3374		atomic_dec(&sbi->wb_sync_req[DATA]);
3375	/*
3376	 * if some pages were truncated, we cannot guarantee its mapping->host
3377	 * to detect pending bios.
3378	 */
3379
3380	f2fs_remove_dirty_inode(inode);
3381	return ret;
3382
3383skip_write:
3384	wbc->pages_skipped += get_dirty_pages(inode);
3385	trace_f2fs_writepages(mapping->host, wbc, DATA);
3386	return 0;
3387}
3388
3389static int f2fs_write_data_pages(struct address_space *mapping,
3390			    struct writeback_control *wbc)
3391{
3392	struct inode *inode = mapping->host;
3393
3394	return __f2fs_write_data_pages(mapping, wbc,
3395			F2FS_I(inode)->cp_task == current ?
3396			FS_CP_DATA_IO : FS_DATA_IO);
3397}
3398
3399void f2fs_write_failed(struct inode *inode, loff_t to)
3400{
 
3401	loff_t i_size = i_size_read(inode);
3402
3403	if (IS_NOQUOTA(inode))
3404		return;
3405
3406	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3407	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3408		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3409		filemap_invalidate_lock(inode->i_mapping);
3410
3411		truncate_pagecache(inode, i_size);
3412		f2fs_truncate_blocks(inode, i_size, true);
3413
3414		filemap_invalidate_unlock(inode->i_mapping);
3415		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3416	}
3417}
3418
3419static int prepare_write_begin(struct f2fs_sb_info *sbi,
3420			struct page *page, loff_t pos, unsigned len,
3421			block_t *blk_addr, bool *node_changed)
3422{
3423	struct inode *inode = page->mapping->host;
3424	pgoff_t index = page->index;
3425	struct dnode_of_data dn;
3426	struct page *ipage;
3427	bool locked = false;
3428	int flag = F2FS_GET_BLOCK_PRE_AIO;
3429	int err = 0;
 
3430
3431	/*
3432	 * If a whole page is being written and we already preallocated all the
3433	 * blocks, then there is no need to get a block address now.
3434	 */
3435	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
 
 
3436		return 0;
3437
3438	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3439	if (f2fs_has_inline_data(inode)) {
3440		if (pos + len > MAX_INLINE_DATA(inode))
3441			flag = F2FS_GET_BLOCK_DEFAULT;
3442		f2fs_map_lock(sbi, flag);
3443		locked = true;
3444	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3445		f2fs_map_lock(sbi, flag);
 
3446		locked = true;
3447	}
3448
3449restart:
3450	/* check inline_data */
3451	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3452	if (IS_ERR(ipage)) {
3453		err = PTR_ERR(ipage);
3454		goto unlock_out;
3455	}
3456
3457	set_new_dnode(&dn, inode, ipage, ipage, 0);
3458
3459	if (f2fs_has_inline_data(inode)) {
3460		if (pos + len <= MAX_INLINE_DATA(inode)) {
3461			f2fs_do_read_inline_data(page, ipage);
3462			set_inode_flag(inode, FI_DATA_EXIST);
3463			if (inode->i_nlink)
3464				set_page_private_inline(ipage);
3465			goto out;
 
 
 
 
 
3466		}
3467		err = f2fs_convert_inline_page(&dn, page);
3468		if (err || dn.data_blkaddr != NULL_ADDR)
3469			goto out;
3470	}
3471
3472	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3473						 &dn.data_blkaddr)) {
3474		if (locked) {
3475			err = f2fs_reserve_block(&dn, index);
3476			goto out;
3477		}
3478
3479		/* hole case */
3480		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3481		if (!err && dn.data_blkaddr != NULL_ADDR)
3482			goto out;
3483		f2fs_put_dnode(&dn);
3484		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3485		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3486		locked = true;
3487		goto restart;
3488	}
3489out:
3490	if (!err) {
3491		/* convert_inline_page can make node_changed */
3492		*blk_addr = dn.data_blkaddr;
3493		*node_changed = dn.node_changed;
3494	}
3495	f2fs_put_dnode(&dn);
3496unlock_out:
3497	if (locked)
3498		f2fs_map_unlock(sbi, flag);
3499	return err;
3500}
3501
3502static int __find_data_block(struct inode *inode, pgoff_t index,
3503				block_t *blk_addr)
3504{
3505	struct dnode_of_data dn;
3506	struct page *ipage;
3507	int err = 0;
3508
3509	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3510	if (IS_ERR(ipage))
3511		return PTR_ERR(ipage);
3512
3513	set_new_dnode(&dn, inode, ipage, ipage, 0);
3514
3515	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3516						 &dn.data_blkaddr)) {
3517		/* hole case */
3518		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3519		if (err) {
3520			dn.data_blkaddr = NULL_ADDR;
3521			err = 0;
3522		}
3523	}
3524	*blk_addr = dn.data_blkaddr;
3525	f2fs_put_dnode(&dn);
3526	return err;
3527}
3528
3529static int __reserve_data_block(struct inode *inode, pgoff_t index,
3530				block_t *blk_addr, bool *node_changed)
3531{
3532	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533	struct dnode_of_data dn;
3534	struct page *ipage;
3535	int err = 0;
3536
3537	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3538
3539	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3540	if (IS_ERR(ipage)) {
3541		err = PTR_ERR(ipage);
3542		goto unlock_out;
3543	}
3544	set_new_dnode(&dn, inode, ipage, ipage, 0);
3545
3546	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3547						&dn.data_blkaddr))
3548		err = f2fs_reserve_block(&dn, index);
3549
 
3550	*blk_addr = dn.data_blkaddr;
3551	*node_changed = dn.node_changed;
 
3552	f2fs_put_dnode(&dn);
3553
3554unlock_out:
3555	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
 
3556	return err;
3557}
3558
3559static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3560			struct page *page, loff_t pos, unsigned int len,
3561			block_t *blk_addr, bool *node_changed, bool *use_cow)
3562{
3563	struct inode *inode = page->mapping->host;
3564	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3565	pgoff_t index = page->index;
3566	int err = 0;
3567	block_t ori_blk_addr = NULL_ADDR;
3568
3569	/* If pos is beyond the end of file, reserve a new block in COW inode */
3570	if ((pos & PAGE_MASK) >= i_size_read(inode))
3571		goto reserve_block;
3572
3573	/* Look for the block in COW inode first */
3574	err = __find_data_block(cow_inode, index, blk_addr);
3575	if (err) {
3576		return err;
3577	} else if (*blk_addr != NULL_ADDR) {
3578		*use_cow = true;
3579		return 0;
3580	}
3581
3582	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3583		goto reserve_block;
3584
3585	/* Look for the block in the original inode */
3586	err = __find_data_block(inode, index, &ori_blk_addr);
3587	if (err)
3588		return err;
3589
3590reserve_block:
3591	/* Finally, we should reserve a new block in COW inode for the update */
3592	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3593	if (err)
3594		return err;
3595	inc_atomic_write_cnt(inode);
3596
3597	if (ori_blk_addr != NULL_ADDR)
3598		*blk_addr = ori_blk_addr;
3599	return 0;
3600}
3601
3602static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3603		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
 
3604{
3605	struct inode *inode = mapping->host;
3606	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3607	struct page *page = NULL;
3608	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3609	bool need_balance = false;
3610	bool use_cow = false;
3611	block_t blkaddr = NULL_ADDR;
3612	int err = 0;
3613
3614	trace_f2fs_write_begin(inode, pos, len);
3615
3616	if (!f2fs_is_checkpoint_ready(sbi)) {
3617		err = -ENOSPC;
3618		goto fail;
3619	}
3620
 
 
 
 
 
 
 
 
3621	/*
3622	 * We should check this at this moment to avoid deadlock on inode page
3623	 * and #0 page. The locking rule for inline_data conversion should be:
3624	 * lock_page(page #0) -> lock_page(inode_page)
3625	 */
3626	if (index != 0) {
3627		err = f2fs_convert_inline_inode(inode);
3628		if (err)
3629			goto fail;
3630	}
3631
3632#ifdef CONFIG_F2FS_FS_COMPRESSION
3633	if (f2fs_compressed_file(inode)) {
3634		int ret;
3635
3636		*fsdata = NULL;
3637
3638		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3639			goto repeat;
3640
3641		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3642							index, fsdata);
3643		if (ret < 0) {
3644			err = ret;
3645			goto fail;
3646		} else if (ret) {
3647			return 0;
3648		}
3649	}
3650#endif
3651
3652repeat:
3653	/*
3654	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3655	 * wait_for_stable_page. Will wait that below with our IO control.
3656	 */
3657	page = f2fs_pagecache_get_page(mapping, index,
3658				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3659	if (!page) {
3660		err = -ENOMEM;
3661		goto fail;
3662	}
3663
3664	/* TODO: cluster can be compressed due to race with .writepage */
3665
3666	*pagep = page;
3667
3668	if (f2fs_is_atomic_file(inode))
3669		err = prepare_atomic_write_begin(sbi, page, pos, len,
3670					&blkaddr, &need_balance, &use_cow);
3671	else
3672		err = prepare_write_begin(sbi, page, pos, len,
3673					&blkaddr, &need_balance);
3674	if (err)
3675		goto fail;
3676
3677	if (need_balance && !IS_NOQUOTA(inode) &&
3678			has_not_enough_free_secs(sbi, 0, 0)) {
3679		unlock_page(page);
3680		f2fs_balance_fs(sbi, true);
3681		lock_page(page);
3682		if (page->mapping != mapping) {
3683			/* The page got truncated from under us */
3684			f2fs_put_page(page, 1);
3685			goto repeat;
3686		}
3687	}
3688
3689	f2fs_wait_on_page_writeback(page, DATA, false, true);
3690
3691	if (len == PAGE_SIZE || PageUptodate(page))
3692		return 0;
3693
3694	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3695	    !f2fs_verity_in_progress(inode)) {
3696		zero_user_segment(page, len, PAGE_SIZE);
3697		return 0;
3698	}
3699
3700	if (blkaddr == NEW_ADDR) {
3701		zero_user_segment(page, 0, PAGE_SIZE);
3702		SetPageUptodate(page);
3703	} else {
3704		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3705				DATA_GENERIC_ENHANCE_READ)) {
3706			err = -EFSCORRUPTED;
3707			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3708			goto fail;
3709		}
3710		err = f2fs_submit_page_read(use_cow ?
3711				F2FS_I(inode)->cow_inode : inode, page,
3712				blkaddr, 0, true);
3713		if (err)
3714			goto fail;
3715
3716		lock_page(page);
3717		if (unlikely(page->mapping != mapping)) {
3718			f2fs_put_page(page, 1);
3719			goto repeat;
3720		}
3721		if (unlikely(!PageUptodate(page))) {
3722			err = -EIO;
3723			goto fail;
3724		}
3725	}
3726	return 0;
3727
3728fail:
3729	f2fs_put_page(page, 1);
3730	f2fs_write_failed(inode, pos + len);
 
 
3731	return err;
3732}
3733
3734static int f2fs_write_end(struct file *file,
3735			struct address_space *mapping,
3736			loff_t pos, unsigned len, unsigned copied,
3737			struct page *page, void *fsdata)
3738{
3739	struct inode *inode = page->mapping->host;
3740
3741	trace_f2fs_write_end(inode, pos, len, copied);
3742
3743	/*
3744	 * This should be come from len == PAGE_SIZE, and we expect copied
3745	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3746	 * let generic_perform_write() try to copy data again through copied=0.
3747	 */
3748	if (!PageUptodate(page)) {
3749		if (unlikely(copied != len))
3750			copied = 0;
3751		else
3752			SetPageUptodate(page);
3753	}
3754
3755#ifdef CONFIG_F2FS_FS_COMPRESSION
3756	/* overwrite compressed file */
3757	if (f2fs_compressed_file(inode) && fsdata) {
3758		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3759		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3760
3761		if (pos + copied > i_size_read(inode) &&
3762				!f2fs_verity_in_progress(inode))
3763			f2fs_i_size_write(inode, pos + copied);
3764		return copied;
3765	}
3766#endif
3767
3768	if (!copied)
3769		goto unlock_out;
3770
3771	set_page_dirty(page);
3772
3773	if (pos + copied > i_size_read(inode) &&
3774	    !f2fs_verity_in_progress(inode)) {
3775		f2fs_i_size_write(inode, pos + copied);
3776		if (f2fs_is_atomic_file(inode))
3777			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3778					pos + copied);
3779	}
3780unlock_out:
3781	f2fs_put_page(page, 1);
3782	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3783	return copied;
3784}
3785
3786void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787{
3788	struct inode *inode = folio->mapping->host;
3789	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3790
3791	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3792				(offset || length != folio_size(folio)))
3793		return;
3794
3795	if (folio_test_dirty(folio)) {
3796		if (inode->i_ino == F2FS_META_INO(sbi)) {
3797			dec_page_count(sbi, F2FS_DIRTY_META);
3798		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3799			dec_page_count(sbi, F2FS_DIRTY_NODES);
3800		} else {
3801			inode_dec_dirty_pages(inode);
3802			f2fs_remove_dirty_inode(inode);
3803		}
3804	}
3805	clear_page_private_all(&folio->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3806}
3807
3808bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3809{
3810	/* If this is dirty folio, keep private data */
3811	if (folio_test_dirty(folio))
3812		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813
3814	clear_page_private_all(&folio->page);
3815	return true;
 
3816}
3817
3818static bool f2fs_dirty_data_folio(struct address_space *mapping,
3819		struct folio *folio)
3820{
3821	struct inode *inode = mapping->host;
3822
3823	trace_f2fs_set_page_dirty(&folio->page, DATA);
3824
3825	if (!folio_test_uptodate(folio))
3826		folio_mark_uptodate(folio);
3827	BUG_ON(folio_test_swapcache(folio));
 
3828
3829	if (filemap_dirty_folio(mapping, folio)) {
3830		f2fs_update_dirty_folio(inode, folio);
3831		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
3832	}
3833	return false;
3834}
3835
3836
3837static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3838{
3839#ifdef CONFIG_F2FS_FS_COMPRESSION
3840	struct dnode_of_data dn;
3841	sector_t start_idx, blknr = 0;
3842	int ret;
3843
3844	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3845
3846	set_new_dnode(&dn, inode, NULL, NULL, 0);
3847	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3848	if (ret)
3849		return 0;
3850
3851	if (dn.data_blkaddr != COMPRESS_ADDR) {
3852		dn.ofs_in_node += block - start_idx;
3853		blknr = f2fs_data_blkaddr(&dn);
3854		if (!__is_valid_data_blkaddr(blknr))
3855			blknr = 0;
3856	}
3857
3858	f2fs_put_dnode(&dn);
3859	return blknr;
3860#else
3861	return 0;
3862#endif
3863}
3864
3865
3866static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3867{
3868	struct inode *inode = mapping->host;
3869	sector_t blknr = 0;
3870
3871	if (f2fs_has_inline_data(inode))
3872		goto out;
3873
3874	/* make sure allocating whole blocks */
3875	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3876		filemap_write_and_wait(mapping);
3877
3878	/* Block number less than F2FS MAX BLOCKS */
3879	if (unlikely(block >= max_file_blocks(inode)))
3880		goto out;
3881
3882	if (f2fs_compressed_file(inode)) {
3883		blknr = f2fs_bmap_compress(inode, block);
3884	} else {
3885		struct f2fs_map_blocks map;
3886
3887		memset(&map, 0, sizeof(map));
3888		map.m_lblk = block;
3889		map.m_len = 1;
3890		map.m_next_pgofs = NULL;
3891		map.m_seg_type = NO_CHECK_TYPE;
3892
3893		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3894			blknr = map.m_pblk;
3895	}
3896out:
3897	trace_f2fs_bmap(inode, block, blknr);
3898	return blknr;
3899}
3900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901#ifdef CONFIG_SWAP
3902static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3903							unsigned int blkcnt)
3904{
3905	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3906	unsigned int blkofs;
3907	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3908	unsigned int secidx = start_blk / blk_per_sec;
3909	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3910	int ret = 0;
3911
3912	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3913	filemap_invalidate_lock(inode->i_mapping);
3914
3915	set_inode_flag(inode, FI_ALIGNED_WRITE);
3916	set_inode_flag(inode, FI_OPU_WRITE);
3917
3918	for (; secidx < end_sec; secidx++) {
3919		f2fs_down_write(&sbi->pin_sem);
3920
3921		f2fs_lock_op(sbi);
3922		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3923		f2fs_unlock_op(sbi);
3924
3925		set_inode_flag(inode, FI_SKIP_WRITES);
3926
3927		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3928			struct page *page;
3929			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3930
3931			page = f2fs_get_lock_data_page(inode, blkidx, true);
3932			if (IS_ERR(page)) {
3933				f2fs_up_write(&sbi->pin_sem);
3934				ret = PTR_ERR(page);
3935				goto done;
3936			}
3937
3938			set_page_dirty(page);
3939			f2fs_put_page(page, 1);
3940		}
3941
3942		clear_inode_flag(inode, FI_SKIP_WRITES);
3943
3944		ret = filemap_fdatawrite(inode->i_mapping);
3945
3946		f2fs_up_write(&sbi->pin_sem);
3947
3948		if (ret)
3949			break;
3950	}
3951
3952done:
3953	clear_inode_flag(inode, FI_SKIP_WRITES);
3954	clear_inode_flag(inode, FI_OPU_WRITE);
3955	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3956
3957	filemap_invalidate_unlock(inode->i_mapping);
3958	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3959
3960	return ret;
3961}
3962
3963static int check_swap_activate(struct swap_info_struct *sis,
3964				struct file *swap_file, sector_t *span)
3965{
3966	struct address_space *mapping = swap_file->f_mapping;
3967	struct inode *inode = mapping->host;
3968	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3969	sector_t cur_lblock;
3970	sector_t last_lblock;
3971	sector_t pblock;
3972	sector_t lowest_pblock = -1;
3973	sector_t highest_pblock = 0;
3974	int nr_extents = 0;
3975	unsigned long nr_pblocks;
3976	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3977	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3978	unsigned int not_aligned = 0;
3979	int ret = 0;
3980
3981	/*
3982	 * Map all the blocks into the extent list.  This code doesn't try
3983	 * to be very smart.
3984	 */
3985	cur_lblock = 0;
3986	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3987
3988	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3989		struct f2fs_map_blocks map;
3990retry:
3991		cond_resched();
3992
3993		memset(&map, 0, sizeof(map));
3994		map.m_lblk = cur_lblock;
3995		map.m_len = last_lblock - cur_lblock;
3996		map.m_next_pgofs = NULL;
3997		map.m_next_extent = NULL;
3998		map.m_seg_type = NO_CHECK_TYPE;
3999		map.m_may_create = false;
4000
4001		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
4002		if (ret)
4003			goto out;
4004
4005		/* hole */
4006		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4007			f2fs_err(sbi, "Swapfile has holes");
4008			ret = -EINVAL;
4009			goto out;
4010		}
4011
4012		pblock = map.m_pblk;
4013		nr_pblocks = map.m_len;
4014
4015		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4016				nr_pblocks & sec_blks_mask) {
4017			not_aligned++;
4018
4019			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4020			if (cur_lblock + nr_pblocks > sis->max)
4021				nr_pblocks -= blks_per_sec;
4022
4023			if (!nr_pblocks) {
4024				/* this extent is last one */
4025				nr_pblocks = map.m_len;
4026				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4027				goto next;
4028			}
4029
4030			ret = f2fs_migrate_blocks(inode, cur_lblock,
4031							nr_pblocks);
4032			if (ret)
4033				goto out;
4034			goto retry;
4035		}
4036next:
4037		if (cur_lblock + nr_pblocks >= sis->max)
4038			nr_pblocks = sis->max - cur_lblock;
4039
4040		if (cur_lblock) {	/* exclude the header page */
4041			if (pblock < lowest_pblock)
4042				lowest_pblock = pblock;
4043			if (pblock + nr_pblocks - 1 > highest_pblock)
4044				highest_pblock = pblock + nr_pblocks - 1;
4045		}
4046
4047		/*
4048		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4049		 */
4050		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4051		if (ret < 0)
4052			goto out;
4053		nr_extents += ret;
4054		cur_lblock += nr_pblocks;
4055	}
4056	ret = nr_extents;
4057	*span = 1 + highest_pblock - lowest_pblock;
4058	if (cur_lblock == 0)
4059		cur_lblock = 1;	/* force Empty message */
4060	sis->max = cur_lblock;
4061	sis->pages = cur_lblock - 1;
4062	sis->highest_bit = cur_lblock - 1;
4063out:
4064	if (not_aligned)
4065		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4066			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4067	return ret;
4068}
4069
4070static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4071				sector_t *span)
4072{
4073	struct inode *inode = file_inode(file);
4074	int ret;
4075
4076	if (!S_ISREG(inode->i_mode))
4077		return -EINVAL;
4078
4079	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4080		return -EROFS;
4081
4082	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4083		f2fs_err(F2FS_I_SB(inode),
4084			"Swapfile not supported in LFS mode");
4085		return -EINVAL;
4086	}
4087
4088	ret = f2fs_convert_inline_inode(inode);
4089	if (ret)
4090		return ret;
4091
4092	if (!f2fs_disable_compressed_file(inode))
4093		return -EINVAL;
4094
4095	f2fs_precache_extents(inode);
4096
4097	ret = check_swap_activate(sis, file, span);
4098	if (ret < 0)
4099		return ret;
4100
4101	stat_inc_swapfile_inode(inode);
4102	set_inode_flag(inode, FI_PIN_FILE);
4103	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4104	return ret;
4105}
4106
4107static void f2fs_swap_deactivate(struct file *file)
4108{
4109	struct inode *inode = file_inode(file);
4110
4111	stat_dec_swapfile_inode(inode);
4112	clear_inode_flag(inode, FI_PIN_FILE);
4113}
4114#else
4115static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4116				sector_t *span)
4117{
4118	return -EOPNOTSUPP;
4119}
4120
4121static void f2fs_swap_deactivate(struct file *file)
4122{
4123}
4124#endif
4125
4126const struct address_space_operations f2fs_dblock_aops = {
4127	.read_folio	= f2fs_read_data_folio,
4128	.readahead	= f2fs_readahead,
4129	.writepage	= f2fs_write_data_page,
4130	.writepages	= f2fs_write_data_pages,
4131	.write_begin	= f2fs_write_begin,
4132	.write_end	= f2fs_write_end,
4133	.dirty_folio	= f2fs_dirty_data_folio,
4134	.migrate_folio	= filemap_migrate_folio,
4135	.invalidate_folio = f2fs_invalidate_folio,
4136	.release_folio	= f2fs_release_folio,
4137	.bmap		= f2fs_bmap,
4138	.swap_activate  = f2fs_swap_activate,
4139	.swap_deactivate = f2fs_swap_deactivate,
 
 
 
4140};
4141
4142void f2fs_clear_page_cache_dirty_tag(struct page *page)
4143{
4144	struct address_space *mapping = page_mapping(page);
4145	unsigned long flags;
4146
4147	xa_lock_irqsave(&mapping->i_pages, flags);
4148	__xa_clear_mark(&mapping->i_pages, page_index(page),
4149						PAGECACHE_TAG_DIRTY);
4150	xa_unlock_irqrestore(&mapping->i_pages, flags);
4151}
4152
4153int __init f2fs_init_post_read_processing(void)
4154{
4155	bio_post_read_ctx_cache =
4156		kmem_cache_create("f2fs_bio_post_read_ctx",
4157				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4158	if (!bio_post_read_ctx_cache)
4159		goto fail;
4160	bio_post_read_ctx_pool =
4161		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4162					 bio_post_read_ctx_cache);
4163	if (!bio_post_read_ctx_pool)
4164		goto fail_free_cache;
4165	return 0;
4166
4167fail_free_cache:
4168	kmem_cache_destroy(bio_post_read_ctx_cache);
4169fail:
4170	return -ENOMEM;
4171}
4172
4173void f2fs_destroy_post_read_processing(void)
4174{
4175	mempool_destroy(bio_post_read_ctx_pool);
4176	kmem_cache_destroy(bio_post_read_ctx_cache);
4177}
4178
4179int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4180{
4181	if (!f2fs_sb_has_encrypt(sbi) &&
4182		!f2fs_sb_has_verity(sbi) &&
4183		!f2fs_sb_has_compression(sbi))
4184		return 0;
4185
4186	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4187						 WQ_UNBOUND | WQ_HIGHPRI,
4188						 num_online_cpus());
4189	return sbi->post_read_wq ? 0 : -ENOMEM;
 
 
4190}
4191
4192void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4193{
4194	if (sbi->post_read_wq)
4195		destroy_workqueue(sbi->post_read_wq);
4196}
4197
4198int __init f2fs_init_bio_entry_cache(void)
4199{
4200	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4201			sizeof(struct bio_entry));
4202	return bio_entry_slab ? 0 : -ENOMEM;
 
 
4203}
4204
4205void f2fs_destroy_bio_entry_cache(void)
4206{
4207	kmem_cache_destroy(bio_entry_slab);
4208}
4209
4210static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4211			    unsigned int flags, struct iomap *iomap,
4212			    struct iomap *srcmap)
4213{
4214	struct f2fs_map_blocks map = {};
4215	pgoff_t next_pgofs = 0;
4216	int err;
4217
4218	map.m_lblk = bytes_to_blks(inode, offset);
4219	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4220	map.m_next_pgofs = &next_pgofs;
4221	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4222	if (flags & IOMAP_WRITE)
4223		map.m_may_create = true;
4224
4225	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4226	if (err)
4227		return err;
4228
4229	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4230
4231	/*
4232	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4233	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4234	 * limiting the length of the mapping returned.
4235	 */
4236	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4237
4238	/*
4239	 * We should never see delalloc or compressed extents here based on
4240	 * prior flushing and checks.
4241	 */
4242	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4243		return -EINVAL;
4244	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4245		return -EINVAL;
4246
4247	if (map.m_pblk != NULL_ADDR) {
4248		iomap->length = blks_to_bytes(inode, map.m_len);
4249		iomap->type = IOMAP_MAPPED;
4250		iomap->flags |= IOMAP_F_MERGED;
4251		iomap->bdev = map.m_bdev;
4252		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4253	} else {
4254		if (flags & IOMAP_WRITE)
4255			return -ENOTBLK;
4256		iomap->length = blks_to_bytes(inode, next_pgofs) -
4257				iomap->offset;
4258		iomap->type = IOMAP_HOLE;
4259		iomap->addr = IOMAP_NULL_ADDR;
4260	}
4261
4262	if (map.m_flags & F2FS_MAP_NEW)
4263		iomap->flags |= IOMAP_F_NEW;
4264	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4265	    offset + length > i_size_read(inode))
4266		iomap->flags |= IOMAP_F_DIRTY;
4267
4268	return 0;
4269}
4270
4271const struct iomap_ops f2fs_iomap_ops = {
4272	.iomap_begin	= f2fs_iomap_begin,
4273};