Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
   3 * Copyright © 2006-2009 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors:
  25 *	Eric Anholt <eric@anholt.net>
  26 *	Jesse Barnes <jesse.barnes@intel.com>
  27 */
  28
  29#include <linux/delay.h>
  30#include <linux/hdmi.h>
  31#include <linux/i2c.h>
  32#include <linux/slab.h>
 
  33
 
 
 
  34#include <drm/drm_atomic_helper.h>
  35#include <drm/drm_crtc.h>
  36#include <drm/drm_edid.h>
  37#include <drm/drm_hdcp.h>
  38#include <drm/drm_scdc_helper.h>
  39#include <drm/intel_lpe_audio.h>
  40
  41#include "i915_debugfs.h"
  42#include "i915_drv.h"
 
  43#include "intel_atomic.h"
 
  44#include "intel_connector.h"
 
  45#include "intel_ddi.h"
  46#include "intel_de.h"
  47#include "intel_display_types.h"
  48#include "intel_dp.h"
  49#include "intel_gmbus.h"
  50#include "intel_hdcp.h"
 
  51#include "intel_hdmi.h"
  52#include "intel_lspcon.h"
  53#include "intel_panel.h"
 
  54
  55static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  56{
  57	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  58}
  59
  60static void
  61assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  62{
  63	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  64	struct drm_i915_private *dev_priv = to_i915(dev);
  65	u32 enabled_bits;
  66
  67	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  68
  69	drm_WARN(dev,
  70		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
  71		 "HDMI port enabled, expecting disabled\n");
  72}
  73
  74static void
  75assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
  76				     enum transcoder cpu_transcoder)
  77{
  78	drm_WARN(&dev_priv->drm,
  79		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
  80		 TRANS_DDI_FUNC_ENABLE,
  81		 "HDMI transcoder function enabled, expecting disabled\n");
  82}
  83
  84static u32 g4x_infoframe_index(unsigned int type)
  85{
  86	switch (type) {
  87	case HDMI_PACKET_TYPE_GAMUT_METADATA:
  88		return VIDEO_DIP_SELECT_GAMUT;
  89	case HDMI_INFOFRAME_TYPE_AVI:
  90		return VIDEO_DIP_SELECT_AVI;
  91	case HDMI_INFOFRAME_TYPE_SPD:
  92		return VIDEO_DIP_SELECT_SPD;
  93	case HDMI_INFOFRAME_TYPE_VENDOR:
  94		return VIDEO_DIP_SELECT_VENDOR;
  95	default:
  96		MISSING_CASE(type);
  97		return 0;
  98	}
  99}
 100
 101static u32 g4x_infoframe_enable(unsigned int type)
 102{
 103	switch (type) {
 104	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 105		return VIDEO_DIP_ENABLE_GCP;
 106	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 107		return VIDEO_DIP_ENABLE_GAMUT;
 108	case DP_SDP_VSC:
 109		return 0;
 110	case HDMI_INFOFRAME_TYPE_AVI:
 111		return VIDEO_DIP_ENABLE_AVI;
 112	case HDMI_INFOFRAME_TYPE_SPD:
 113		return VIDEO_DIP_ENABLE_SPD;
 114	case HDMI_INFOFRAME_TYPE_VENDOR:
 115		return VIDEO_DIP_ENABLE_VENDOR;
 116	case HDMI_INFOFRAME_TYPE_DRM:
 117		return 0;
 118	default:
 119		MISSING_CASE(type);
 120		return 0;
 121	}
 122}
 123
 124static u32 hsw_infoframe_enable(unsigned int type)
 125{
 126	switch (type) {
 127	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 128		return VIDEO_DIP_ENABLE_GCP_HSW;
 129	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 130		return VIDEO_DIP_ENABLE_GMP_HSW;
 131	case DP_SDP_VSC:
 132		return VIDEO_DIP_ENABLE_VSC_HSW;
 133	case DP_SDP_PPS:
 134		return VDIP_ENABLE_PPS;
 135	case HDMI_INFOFRAME_TYPE_AVI:
 136		return VIDEO_DIP_ENABLE_AVI_HSW;
 137	case HDMI_INFOFRAME_TYPE_SPD:
 138		return VIDEO_DIP_ENABLE_SPD_HSW;
 139	case HDMI_INFOFRAME_TYPE_VENDOR:
 140		return VIDEO_DIP_ENABLE_VS_HSW;
 141	case HDMI_INFOFRAME_TYPE_DRM:
 142		return VIDEO_DIP_ENABLE_DRM_GLK;
 143	default:
 144		MISSING_CASE(type);
 145		return 0;
 146	}
 147}
 148
 149static i915_reg_t
 150hsw_dip_data_reg(struct drm_i915_private *dev_priv,
 151		 enum transcoder cpu_transcoder,
 152		 unsigned int type,
 153		 int i)
 154{
 155	switch (type) {
 156	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 157		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
 158	case DP_SDP_VSC:
 159		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
 160	case DP_SDP_PPS:
 161		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
 162	case HDMI_INFOFRAME_TYPE_AVI:
 163		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
 164	case HDMI_INFOFRAME_TYPE_SPD:
 165		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
 166	case HDMI_INFOFRAME_TYPE_VENDOR:
 167		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
 168	case HDMI_INFOFRAME_TYPE_DRM:
 169		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
 170	default:
 171		MISSING_CASE(type);
 172		return INVALID_MMIO_REG;
 173	}
 174}
 175
 176static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
 177			     unsigned int type)
 178{
 179	switch (type) {
 180	case DP_SDP_VSC:
 181		return VIDEO_DIP_VSC_DATA_SIZE;
 182	case DP_SDP_PPS:
 183		return VIDEO_DIP_PPS_DATA_SIZE;
 184	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 185		if (DISPLAY_VER(dev_priv) >= 11)
 186			return VIDEO_DIP_GMP_DATA_SIZE;
 187		else
 188			return VIDEO_DIP_DATA_SIZE;
 189	default:
 190		return VIDEO_DIP_DATA_SIZE;
 191	}
 192}
 193
 194static void g4x_write_infoframe(struct intel_encoder *encoder,
 195				const struct intel_crtc_state *crtc_state,
 196				unsigned int type,
 197				const void *frame, ssize_t len)
 198{
 199	const u32 *data = frame;
 200	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 201	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 202	int i;
 203
 204	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 205		 "Writing DIP with CTL reg disabled\n");
 206
 207	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 208	val |= g4x_infoframe_index(type);
 209
 210	val &= ~g4x_infoframe_enable(type);
 211
 212	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 213
 214	for (i = 0; i < len; i += 4) {
 215		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
 216		data++;
 217	}
 218	/* Write every possible data byte to force correct ECC calculation. */
 219	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 220		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
 221
 222	val |= g4x_infoframe_enable(type);
 223	val &= ~VIDEO_DIP_FREQ_MASK;
 224	val |= VIDEO_DIP_FREQ_VSYNC;
 225
 226	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 227	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
 228}
 229
 230static void g4x_read_infoframe(struct intel_encoder *encoder,
 231			       const struct intel_crtc_state *crtc_state,
 232			       unsigned int type,
 233			       void *frame, ssize_t len)
 234{
 235	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 236	u32 val, *data = frame;
 237	int i;
 238
 239	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 240
 241	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 242	val |= g4x_infoframe_index(type);
 243
 244	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 245
 246	for (i = 0; i < len; i += 4)
 247		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
 248}
 249
 250static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
 251				  const struct intel_crtc_state *pipe_config)
 252{
 253	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 254	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 255
 256	if ((val & VIDEO_DIP_ENABLE) == 0)
 257		return 0;
 258
 259	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 260		return 0;
 261
 262	return val & (VIDEO_DIP_ENABLE_AVI |
 263		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 264}
 265
 266static void ibx_write_infoframe(struct intel_encoder *encoder,
 267				const struct intel_crtc_state *crtc_state,
 268				unsigned int type,
 269				const void *frame, ssize_t len)
 270{
 271	const u32 *data = frame;
 272	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 273	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 274	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
 275	u32 val = intel_de_read(dev_priv, reg);
 276	int i;
 277
 278	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 279		 "Writing DIP with CTL reg disabled\n");
 280
 281	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 282	val |= g4x_infoframe_index(type);
 283
 284	val &= ~g4x_infoframe_enable(type);
 285
 286	intel_de_write(dev_priv, reg, val);
 287
 288	for (i = 0; i < len; i += 4) {
 289		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
 290			       *data);
 291		data++;
 292	}
 293	/* Write every possible data byte to force correct ECC calculation. */
 294	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 295		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 296
 297	val |= g4x_infoframe_enable(type);
 298	val &= ~VIDEO_DIP_FREQ_MASK;
 299	val |= VIDEO_DIP_FREQ_VSYNC;
 300
 301	intel_de_write(dev_priv, reg, val);
 302	intel_de_posting_read(dev_priv, reg);
 303}
 304
 305static void ibx_read_infoframe(struct intel_encoder *encoder,
 306			       const struct intel_crtc_state *crtc_state,
 307			       unsigned int type,
 308			       void *frame, ssize_t len)
 309{
 310	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 311	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 312	u32 val, *data = frame;
 313	int i;
 314
 315	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 316
 317	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 318	val |= g4x_infoframe_index(type);
 319
 320	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 321
 322	for (i = 0; i < len; i += 4)
 323		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 324}
 325
 326static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
 327				  const struct intel_crtc_state *pipe_config)
 328{
 329	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 330	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 331	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
 332	u32 val = intel_de_read(dev_priv, reg);
 333
 334	if ((val & VIDEO_DIP_ENABLE) == 0)
 335		return 0;
 336
 337	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 338		return 0;
 339
 340	return val & (VIDEO_DIP_ENABLE_AVI |
 341		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 342		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 343}
 344
 345static void cpt_write_infoframe(struct intel_encoder *encoder,
 346				const struct intel_crtc_state *crtc_state,
 347				unsigned int type,
 348				const void *frame, ssize_t len)
 349{
 350	const u32 *data = frame;
 351	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 352	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 353	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
 354	u32 val = intel_de_read(dev_priv, reg);
 355	int i;
 356
 357	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 358		 "Writing DIP with CTL reg disabled\n");
 359
 360	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 361	val |= g4x_infoframe_index(type);
 362
 363	/* The DIP control register spec says that we need to update the AVI
 364	 * infoframe without clearing its enable bit */
 365	if (type != HDMI_INFOFRAME_TYPE_AVI)
 366		val &= ~g4x_infoframe_enable(type);
 367
 368	intel_de_write(dev_priv, reg, val);
 369
 370	for (i = 0; i < len; i += 4) {
 371		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
 372			       *data);
 373		data++;
 374	}
 375	/* Write every possible data byte to force correct ECC calculation. */
 376	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 377		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 378
 379	val |= g4x_infoframe_enable(type);
 380	val &= ~VIDEO_DIP_FREQ_MASK;
 381	val |= VIDEO_DIP_FREQ_VSYNC;
 382
 383	intel_de_write(dev_priv, reg, val);
 384	intel_de_posting_read(dev_priv, reg);
 385}
 386
 387static void cpt_read_infoframe(struct intel_encoder *encoder,
 388			       const struct intel_crtc_state *crtc_state,
 389			       unsigned int type,
 390			       void *frame, ssize_t len)
 391{
 392	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 393	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 394	u32 val, *data = frame;
 395	int i;
 396
 397	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 398
 399	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 400	val |= g4x_infoframe_index(type);
 401
 402	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 403
 404	for (i = 0; i < len; i += 4)
 405		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 406}
 407
 408static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
 409				  const struct intel_crtc_state *pipe_config)
 410{
 411	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 412	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 413	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
 414
 415	if ((val & VIDEO_DIP_ENABLE) == 0)
 416		return 0;
 417
 418	return val & (VIDEO_DIP_ENABLE_AVI |
 419		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 420		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 421}
 422
 423static void vlv_write_infoframe(struct intel_encoder *encoder,
 424				const struct intel_crtc_state *crtc_state,
 425				unsigned int type,
 426				const void *frame, ssize_t len)
 427{
 428	const u32 *data = frame;
 429	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 430	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 431	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
 432	u32 val = intel_de_read(dev_priv, reg);
 433	int i;
 434
 435	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 436		 "Writing DIP with CTL reg disabled\n");
 437
 438	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 439	val |= g4x_infoframe_index(type);
 440
 441	val &= ~g4x_infoframe_enable(type);
 442
 443	intel_de_write(dev_priv, reg, val);
 444
 445	for (i = 0; i < len; i += 4) {
 446		intel_de_write(dev_priv,
 447			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
 448		data++;
 449	}
 450	/* Write every possible data byte to force correct ECC calculation. */
 451	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 452		intel_de_write(dev_priv,
 453			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 454
 455	val |= g4x_infoframe_enable(type);
 456	val &= ~VIDEO_DIP_FREQ_MASK;
 457	val |= VIDEO_DIP_FREQ_VSYNC;
 458
 459	intel_de_write(dev_priv, reg, val);
 460	intel_de_posting_read(dev_priv, reg);
 461}
 462
 463static void vlv_read_infoframe(struct intel_encoder *encoder,
 464			       const struct intel_crtc_state *crtc_state,
 465			       unsigned int type,
 466			       void *frame, ssize_t len)
 467{
 468	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 469	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 470	u32 val, *data = frame;
 471	int i;
 472
 473	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
 474
 475	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 476	val |= g4x_infoframe_index(type);
 477
 478	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
 479
 480	for (i = 0; i < len; i += 4)
 481		*data++ = intel_de_read(dev_priv,
 482				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
 483}
 484
 485static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
 486				  const struct intel_crtc_state *pipe_config)
 487{
 488	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 489	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 490	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
 491
 492	if ((val & VIDEO_DIP_ENABLE) == 0)
 493		return 0;
 494
 495	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 496		return 0;
 497
 498	return val & (VIDEO_DIP_ENABLE_AVI |
 499		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 500		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 501}
 502
 503void hsw_write_infoframe(struct intel_encoder *encoder,
 504			 const struct intel_crtc_state *crtc_state,
 505			 unsigned int type,
 506			 const void *frame, ssize_t len)
 507{
 508	const u32 *data = frame;
 509	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 510	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 511	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
 512	int data_size;
 513	int i;
 514	u32 val = intel_de_read(dev_priv, ctl_reg);
 515
 516	data_size = hsw_dip_data_size(dev_priv, type);
 517
 518	drm_WARN_ON(&dev_priv->drm, len > data_size);
 519
 520	val &= ~hsw_infoframe_enable(type);
 521	intel_de_write(dev_priv, ctl_reg, val);
 522
 523	for (i = 0; i < len; i += 4) {
 524		intel_de_write(dev_priv,
 525			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 526			       *data);
 527		data++;
 528	}
 529	/* Write every possible data byte to force correct ECC calculation. */
 530	for (; i < data_size; i += 4)
 531		intel_de_write(dev_priv,
 532			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 533			       0);
 534
 535	/* Wa_14013475917 */
 536	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
 537	    type == DP_SDP_VSC)
 538		return;
 539
 540	val |= hsw_infoframe_enable(type);
 541	intel_de_write(dev_priv, ctl_reg, val);
 542	intel_de_posting_read(dev_priv, ctl_reg);
 543}
 544
 545void hsw_read_infoframe(struct intel_encoder *encoder,
 546			const struct intel_crtc_state *crtc_state,
 547			unsigned int type, void *frame, ssize_t len)
 548{
 549	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 550	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 551	u32 *data = frame;
 552	int i;
 553
 554	for (i = 0; i < len; i += 4)
 555		*data++ = intel_de_read(dev_priv,
 556				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
 557}
 558
 559static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
 560				  const struct intel_crtc_state *pipe_config)
 561{
 562	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 563	u32 val = intel_de_read(dev_priv,
 564				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
 565	u32 mask;
 566
 567	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
 568		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
 569		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
 570
 571	if (DISPLAY_VER(dev_priv) >= 10)
 572		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
 573
 574	return val & mask;
 575}
 576
 577static const u8 infoframe_type_to_idx[] = {
 578	HDMI_PACKET_TYPE_GENERAL_CONTROL,
 579	HDMI_PACKET_TYPE_GAMUT_METADATA,
 580	DP_SDP_VSC,
 581	HDMI_INFOFRAME_TYPE_AVI,
 582	HDMI_INFOFRAME_TYPE_SPD,
 583	HDMI_INFOFRAME_TYPE_VENDOR,
 584	HDMI_INFOFRAME_TYPE_DRM,
 585};
 586
 587u32 intel_hdmi_infoframe_enable(unsigned int type)
 588{
 589	int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 592		if (infoframe_type_to_idx[i] == type)
 593			return BIT(i);
 594	}
 595
 596	return 0;
 597}
 598
 599u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
 600				  const struct intel_crtc_state *crtc_state)
 601{
 602	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 603	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 604	u32 val, ret = 0;
 605	int i;
 606
 607	val = dig_port->infoframes_enabled(encoder, crtc_state);
 608
 609	/* map from hardware bits to dip idx */
 610	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 611		unsigned int type = infoframe_type_to_idx[i];
 612
 613		if (HAS_DDI(dev_priv)) {
 614			if (val & hsw_infoframe_enable(type))
 615				ret |= BIT(i);
 616		} else {
 617			if (val & g4x_infoframe_enable(type))
 618				ret |= BIT(i);
 619		}
 620	}
 621
 622	return ret;
 623}
 624
 625/*
 626 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 627 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 628 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 629 * used for both technologies.
 630 *
 631 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 632 * DW1:       DB3       | DB2 | DB1 | DB0
 633 * DW2:       DB7       | DB6 | DB5 | DB4
 634 * DW3: ...
 635 *
 636 * (HB is Header Byte, DB is Data Byte)
 637 *
 638 * The hdmi pack() functions don't know about that hardware specific hole so we
 639 * trick them by giving an offset into the buffer and moving back the header
 640 * bytes by one.
 641 */
 642static void intel_write_infoframe(struct intel_encoder *encoder,
 643				  const struct intel_crtc_state *crtc_state,
 644				  enum hdmi_infoframe_type type,
 645				  const union hdmi_infoframe *frame)
 646{
 647	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 648	u8 buffer[VIDEO_DIP_DATA_SIZE];
 649	ssize_t len;
 650
 651	if ((crtc_state->infoframes.enable &
 652	     intel_hdmi_infoframe_enable(type)) == 0)
 653		return;
 654
 655	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
 656		return;
 657
 658	/* see comment above for the reason for this offset */
 659	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
 660	if (drm_WARN_ON(encoder->base.dev, len < 0))
 661		return;
 662
 663	/* Insert the 'hole' (see big comment above) at position 3 */
 664	memmove(&buffer[0], &buffer[1], 3);
 665	buffer[3] = 0;
 666	len++;
 667
 668	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
 669}
 670
 671void intel_read_infoframe(struct intel_encoder *encoder,
 672			  const struct intel_crtc_state *crtc_state,
 673			  enum hdmi_infoframe_type type,
 674			  union hdmi_infoframe *frame)
 675{
 676	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 677	u8 buffer[VIDEO_DIP_DATA_SIZE];
 678	int ret;
 679
 680	if ((crtc_state->infoframes.enable &
 681	     intel_hdmi_infoframe_enable(type)) == 0)
 682		return;
 683
 684	dig_port->read_infoframe(encoder, crtc_state,
 685				       type, buffer, sizeof(buffer));
 686
 687	/* Fill the 'hole' (see big comment above) at position 3 */
 688	memmove(&buffer[1], &buffer[0], 3);
 689
 690	/* see comment above for the reason for this offset */
 691	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
 692	if (ret) {
 693		drm_dbg_kms(encoder->base.dev,
 694			    "Failed to unpack infoframe type 0x%02x\n", type);
 695		return;
 696	}
 697
 698	if (frame->any.type != type)
 699		drm_dbg_kms(encoder->base.dev,
 700			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
 701			    frame->any.type, type);
 702}
 703
 704static bool
 705intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
 706				 struct intel_crtc_state *crtc_state,
 707				 struct drm_connector_state *conn_state)
 708{
 709	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
 710	const struct drm_display_mode *adjusted_mode =
 711		&crtc_state->hw.adjusted_mode;
 712	struct drm_connector *connector = conn_state->connector;
 713	int ret;
 714
 715	if (!crtc_state->has_infoframe)
 716		return true;
 717
 718	crtc_state->infoframes.enable |=
 719		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
 720
 721	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
 722						       adjusted_mode);
 723	if (ret)
 724		return false;
 725
 726	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
 727		frame->colorspace = HDMI_COLORSPACE_YUV420;
 728	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
 729		frame->colorspace = HDMI_COLORSPACE_YUV444;
 730	else
 731		frame->colorspace = HDMI_COLORSPACE_RGB;
 732
 733	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
 734
 735	/* nonsense combination */
 736	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
 737		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
 738
 739	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
 740		drm_hdmi_avi_infoframe_quant_range(frame, connector,
 741						   adjusted_mode,
 742						   crtc_state->limited_color_range ?
 743						   HDMI_QUANTIZATION_RANGE_LIMITED :
 744						   HDMI_QUANTIZATION_RANGE_FULL);
 745	} else {
 746		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
 747		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
 748	}
 749
 750	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
 751
 752	/* TODO: handle pixel repetition for YCBCR420 outputs */
 753
 754	ret = hdmi_avi_infoframe_check(frame);
 755	if (drm_WARN_ON(encoder->base.dev, ret))
 756		return false;
 757
 758	return true;
 759}
 760
 761static bool
 762intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
 763				 struct intel_crtc_state *crtc_state,
 764				 struct drm_connector_state *conn_state)
 765{
 
 766	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
 767	int ret;
 768
 769	if (!crtc_state->has_infoframe)
 770		return true;
 771
 772	crtc_state->infoframes.enable |=
 773		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
 774
 775	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
 
 
 
 
 776	if (drm_WARN_ON(encoder->base.dev, ret))
 777		return false;
 778
 779	frame->sdi = HDMI_SPD_SDI_PC;
 780
 781	ret = hdmi_spd_infoframe_check(frame);
 782	if (drm_WARN_ON(encoder->base.dev, ret))
 783		return false;
 784
 785	return true;
 786}
 787
 788static bool
 789intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
 790				  struct intel_crtc_state *crtc_state,
 791				  struct drm_connector_state *conn_state)
 792{
 793	struct hdmi_vendor_infoframe *frame =
 794		&crtc_state->infoframes.hdmi.vendor.hdmi;
 795	const struct drm_display_info *info =
 796		&conn_state->connector->display_info;
 797	int ret;
 798
 799	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
 800		return true;
 801
 802	crtc_state->infoframes.enable |=
 803		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
 804
 805	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
 806							  conn_state->connector,
 807							  &crtc_state->hw.adjusted_mode);
 808	if (drm_WARN_ON(encoder->base.dev, ret))
 809		return false;
 810
 811	ret = hdmi_vendor_infoframe_check(frame);
 812	if (drm_WARN_ON(encoder->base.dev, ret))
 813		return false;
 814
 815	return true;
 816}
 817
 818static bool
 819intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
 820				 struct intel_crtc_state *crtc_state,
 821				 struct drm_connector_state *conn_state)
 822{
 823	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
 824	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 825	int ret;
 826
 827	if (DISPLAY_VER(dev_priv) < 10)
 828		return true;
 829
 830	if (!crtc_state->has_infoframe)
 831		return true;
 832
 833	if (!conn_state->hdr_output_metadata)
 834		return true;
 835
 836	crtc_state->infoframes.enable |=
 837		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
 838
 839	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
 840	if (ret < 0) {
 841		drm_dbg_kms(&dev_priv->drm,
 842			    "couldn't set HDR metadata in infoframe\n");
 843		return false;
 844	}
 845
 846	ret = hdmi_drm_infoframe_check(frame);
 847	if (drm_WARN_ON(&dev_priv->drm, ret))
 848		return false;
 849
 850	return true;
 851}
 852
 853static void g4x_set_infoframes(struct intel_encoder *encoder,
 854			       bool enable,
 855			       const struct intel_crtc_state *crtc_state,
 856			       const struct drm_connector_state *conn_state)
 857{
 858	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 859	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 860	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
 861	i915_reg_t reg = VIDEO_DIP_CTL;
 862	u32 val = intel_de_read(dev_priv, reg);
 863	u32 port = VIDEO_DIP_PORT(encoder->port);
 864
 865	assert_hdmi_port_disabled(intel_hdmi);
 866
 867	/* If the registers were not initialized yet, they might be zeroes,
 868	 * which means we're selecting the AVI DIP and we're setting its
 869	 * frequency to once. This seems to really confuse the HW and make
 870	 * things stop working (the register spec says the AVI always needs to
 871	 * be sent every VSync). So here we avoid writing to the register more
 872	 * than we need and also explicitly select the AVI DIP and explicitly
 873	 * set its frequency to every VSync. Avoiding to write it twice seems to
 874	 * be enough to solve the problem, but being defensive shouldn't hurt us
 875	 * either. */
 876	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
 877
 878	if (!enable) {
 879		if (!(val & VIDEO_DIP_ENABLE))
 880			return;
 881		if (port != (val & VIDEO_DIP_PORT_MASK)) {
 882			drm_dbg_kms(&dev_priv->drm,
 883				    "video DIP still enabled on port %c\n",
 884				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 885			return;
 886		}
 887		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
 888			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 889		intel_de_write(dev_priv, reg, val);
 890		intel_de_posting_read(dev_priv, reg);
 891		return;
 892	}
 893
 894	if (port != (val & VIDEO_DIP_PORT_MASK)) {
 895		if (val & VIDEO_DIP_ENABLE) {
 896			drm_dbg_kms(&dev_priv->drm,
 897				    "video DIP already enabled on port %c\n",
 898				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 899			return;
 900		}
 901		val &= ~VIDEO_DIP_PORT_MASK;
 902		val |= port;
 903	}
 904
 905	val |= VIDEO_DIP_ENABLE;
 906	val &= ~(VIDEO_DIP_ENABLE_AVI |
 907		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 908
 909	intel_de_write(dev_priv, reg, val);
 910	intel_de_posting_read(dev_priv, reg);
 911
 912	intel_write_infoframe(encoder, crtc_state,
 913			      HDMI_INFOFRAME_TYPE_AVI,
 914			      &crtc_state->infoframes.avi);
 915	intel_write_infoframe(encoder, crtc_state,
 916			      HDMI_INFOFRAME_TYPE_SPD,
 917			      &crtc_state->infoframes.spd);
 918	intel_write_infoframe(encoder, crtc_state,
 919			      HDMI_INFOFRAME_TYPE_VENDOR,
 920			      &crtc_state->infoframes.hdmi);
 921}
 922
 923/*
 924 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 925 *
 926 * From HDMI specification 1.4a:
 927 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 928 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 929 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 930 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 931 *   phase of 0
 932 */
 933static bool gcp_default_phase_possible(int pipe_bpp,
 934				       const struct drm_display_mode *mode)
 935{
 936	unsigned int pixels_per_group;
 937
 938	switch (pipe_bpp) {
 939	case 30:
 940		/* 4 pixels in 5 clocks */
 941		pixels_per_group = 4;
 942		break;
 943	case 36:
 944		/* 2 pixels in 3 clocks */
 945		pixels_per_group = 2;
 946		break;
 947	case 48:
 948		/* 1 pixel in 2 clocks */
 949		pixels_per_group = 1;
 950		break;
 951	default:
 952		/* phase information not relevant for 8bpc */
 953		return false;
 954	}
 955
 956	return mode->crtc_hdisplay % pixels_per_group == 0 &&
 957		mode->crtc_htotal % pixels_per_group == 0 &&
 958		mode->crtc_hblank_start % pixels_per_group == 0 &&
 959		mode->crtc_hblank_end % pixels_per_group == 0 &&
 960		mode->crtc_hsync_start % pixels_per_group == 0 &&
 961		mode->crtc_hsync_end % pixels_per_group == 0 &&
 962		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
 963		 mode->crtc_htotal/2 % pixels_per_group == 0);
 964}
 965
 966static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
 967					 const struct intel_crtc_state *crtc_state,
 968					 const struct drm_connector_state *conn_state)
 969{
 970	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 971	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 972	i915_reg_t reg;
 973
 974	if ((crtc_state->infoframes.enable &
 975	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
 976		return false;
 977
 978	if (HAS_DDI(dev_priv))
 979		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
 980	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 981		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
 982	else if (HAS_PCH_SPLIT(dev_priv))
 983		reg = TVIDEO_DIP_GCP(crtc->pipe);
 984	else
 985		return false;
 986
 987	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
 988
 989	return true;
 990}
 991
 992void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
 993				   struct intel_crtc_state *crtc_state)
 994{
 995	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 996	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 997	i915_reg_t reg;
 998
 999	if ((crtc_state->infoframes.enable &
1000	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001		return;
1002
1003	if (HAS_DDI(dev_priv))
1004		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007	else if (HAS_PCH_SPLIT(dev_priv))
1008		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009	else
1010		return;
1011
1012	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013}
1014
1015static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016					     struct intel_crtc_state *crtc_state,
1017					     struct drm_connector_state *conn_state)
1018{
1019	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022		return;
1023
1024	crtc_state->infoframes.enable |=
1025		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027	/* Indicate color indication for deep color mode */
1028	if (crtc_state->pipe_bpp > 24)
1029		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031	/* Enable default_phase whenever the display mode is suitably aligned */
1032	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033				       &crtc_state->hw.adjusted_mode))
1034		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035}
1036
1037static void ibx_set_infoframes(struct intel_encoder *encoder,
1038			       bool enable,
1039			       const struct intel_crtc_state *crtc_state,
1040			       const struct drm_connector_state *conn_state)
1041{
1042	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047	u32 val = intel_de_read(dev_priv, reg);
1048	u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050	assert_hdmi_port_disabled(intel_hdmi);
1051
1052	/* See the big comment in g4x_set_infoframes() */
1053	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055	if (!enable) {
1056		if (!(val & VIDEO_DIP_ENABLE))
1057			return;
1058		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061		intel_de_write(dev_priv, reg, val);
1062		intel_de_posting_read(dev_priv, reg);
1063		return;
1064	}
1065
1066	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068			 "DIP already enabled on port %c\n",
1069			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070		val &= ~VIDEO_DIP_PORT_MASK;
1071		val |= port;
1072	}
1073
1074	val |= VIDEO_DIP_ENABLE;
1075	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080		val |= VIDEO_DIP_ENABLE_GCP;
1081
1082	intel_de_write(dev_priv, reg, val);
1083	intel_de_posting_read(dev_priv, reg);
1084
1085	intel_write_infoframe(encoder, crtc_state,
1086			      HDMI_INFOFRAME_TYPE_AVI,
1087			      &crtc_state->infoframes.avi);
1088	intel_write_infoframe(encoder, crtc_state,
1089			      HDMI_INFOFRAME_TYPE_SPD,
1090			      &crtc_state->infoframes.spd);
1091	intel_write_infoframe(encoder, crtc_state,
1092			      HDMI_INFOFRAME_TYPE_VENDOR,
1093			      &crtc_state->infoframes.hdmi);
1094}
1095
1096static void cpt_set_infoframes(struct intel_encoder *encoder,
1097			       bool enable,
1098			       const struct intel_crtc_state *crtc_state,
1099			       const struct drm_connector_state *conn_state)
1100{
1101	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105	u32 val = intel_de_read(dev_priv, reg);
1106
1107	assert_hdmi_port_disabled(intel_hdmi);
1108
1109	/* See the big comment in g4x_set_infoframes() */
1110	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112	if (!enable) {
1113		if (!(val & VIDEO_DIP_ENABLE))
1114			return;
1115		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118		intel_de_write(dev_priv, reg, val);
1119		intel_de_posting_read(dev_priv, reg);
1120		return;
1121	}
1122
1123	/* Set both together, unset both together: see the spec. */
1124	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129		val |= VIDEO_DIP_ENABLE_GCP;
1130
1131	intel_de_write(dev_priv, reg, val);
1132	intel_de_posting_read(dev_priv, reg);
1133
1134	intel_write_infoframe(encoder, crtc_state,
1135			      HDMI_INFOFRAME_TYPE_AVI,
1136			      &crtc_state->infoframes.avi);
1137	intel_write_infoframe(encoder, crtc_state,
1138			      HDMI_INFOFRAME_TYPE_SPD,
1139			      &crtc_state->infoframes.spd);
1140	intel_write_infoframe(encoder, crtc_state,
1141			      HDMI_INFOFRAME_TYPE_VENDOR,
1142			      &crtc_state->infoframes.hdmi);
1143}
1144
1145static void vlv_set_infoframes(struct intel_encoder *encoder,
1146			       bool enable,
1147			       const struct intel_crtc_state *crtc_state,
1148			       const struct drm_connector_state *conn_state)
1149{
1150	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154	u32 val = intel_de_read(dev_priv, reg);
1155	u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157	assert_hdmi_port_disabled(intel_hdmi);
1158
1159	/* See the big comment in g4x_set_infoframes() */
1160	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162	if (!enable) {
1163		if (!(val & VIDEO_DIP_ENABLE))
1164			return;
1165		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168		intel_de_write(dev_priv, reg, val);
1169		intel_de_posting_read(dev_priv, reg);
1170		return;
1171	}
1172
1173	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175			 "DIP already enabled on port %c\n",
1176			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177		val &= ~VIDEO_DIP_PORT_MASK;
1178		val |= port;
1179	}
1180
1181	val |= VIDEO_DIP_ENABLE;
1182	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187		val |= VIDEO_DIP_ENABLE_GCP;
1188
1189	intel_de_write(dev_priv, reg, val);
1190	intel_de_posting_read(dev_priv, reg);
1191
1192	intel_write_infoframe(encoder, crtc_state,
1193			      HDMI_INFOFRAME_TYPE_AVI,
1194			      &crtc_state->infoframes.avi);
1195	intel_write_infoframe(encoder, crtc_state,
1196			      HDMI_INFOFRAME_TYPE_SPD,
1197			      &crtc_state->infoframes.spd);
1198	intel_write_infoframe(encoder, crtc_state,
1199			      HDMI_INFOFRAME_TYPE_VENDOR,
1200			      &crtc_state->infoframes.hdmi);
1201}
1202
1203static void hsw_set_infoframes(struct intel_encoder *encoder,
1204			       bool enable,
1205			       const struct intel_crtc_state *crtc_state,
1206			       const struct drm_connector_state *conn_state)
1207{
1208	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210	u32 val = intel_de_read(dev_priv, reg);
1211
1212	assert_hdmi_transcoder_func_disabled(dev_priv,
1213					     crtc_state->cpu_transcoder);
1214
1215	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218		 VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220	if (!enable) {
1221		intel_de_write(dev_priv, reg, val);
1222		intel_de_posting_read(dev_priv, reg);
1223		return;
1224	}
1225
1226	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229	intel_de_write(dev_priv, reg, val);
1230	intel_de_posting_read(dev_priv, reg);
1231
1232	intel_write_infoframe(encoder, crtc_state,
1233			      HDMI_INFOFRAME_TYPE_AVI,
1234			      &crtc_state->infoframes.avi);
1235	intel_write_infoframe(encoder, crtc_state,
1236			      HDMI_INFOFRAME_TYPE_SPD,
1237			      &crtc_state->infoframes.spd);
1238	intel_write_infoframe(encoder, crtc_state,
1239			      HDMI_INFOFRAME_TYPE_VENDOR,
1240			      &crtc_state->infoframes.hdmi);
1241	intel_write_infoframe(encoder, crtc_state,
1242			      HDMI_INFOFRAME_TYPE_DRM,
1243			      &crtc_state->infoframes.drm);
1244}
1245
1246void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247{
1248	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249	struct i2c_adapter *adapter =
1250		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251
1252	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253		return;
1254
1255	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256		    enable ? "Enabling" : "Disabling");
1257
1258	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
 
1259}
1260
1261static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262				unsigned int offset, void *buffer, size_t size)
1263{
1264	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265	struct intel_hdmi *hdmi = &dig_port->hdmi;
1266	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267							      hdmi->ddc_bus);
1268	int ret;
1269	u8 start = offset & 0xff;
1270	struct i2c_msg msgs[] = {
1271		{
1272			.addr = DRM_HDCP_DDC_ADDR,
1273			.flags = 0,
1274			.len = 1,
1275			.buf = &start,
1276		},
1277		{
1278			.addr = DRM_HDCP_DDC_ADDR,
1279			.flags = I2C_M_RD,
1280			.len = size,
1281			.buf = buffer
1282		}
1283	};
1284	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285	if (ret == ARRAY_SIZE(msgs))
1286		return 0;
1287	return ret >= 0 ? -EIO : ret;
1288}
1289
1290static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291				 unsigned int offset, void *buffer, size_t size)
1292{
1293	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294	struct intel_hdmi *hdmi = &dig_port->hdmi;
1295	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296							      hdmi->ddc_bus);
1297	int ret;
1298	u8 *write_buf;
1299	struct i2c_msg msg;
1300
1301	write_buf = kzalloc(size + 1, GFP_KERNEL);
1302	if (!write_buf)
1303		return -ENOMEM;
1304
1305	write_buf[0] = offset & 0xff;
1306	memcpy(&write_buf[1], buffer, size);
1307
1308	msg.addr = DRM_HDCP_DDC_ADDR;
1309	msg.flags = 0,
1310	msg.len = size + 1,
1311	msg.buf = write_buf;
1312
1313	ret = i2c_transfer(adapter, &msg, 1);
1314	if (ret == 1)
1315		ret = 0;
1316	else if (ret >= 0)
1317		ret = -EIO;
1318
1319	kfree(write_buf);
1320	return ret;
1321}
1322
1323static
1324int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325				  u8 *an)
1326{
1327	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330							      hdmi->ddc_bus);
1331	int ret;
1332
1333	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334				    DRM_HDCP_AN_LEN);
1335	if (ret) {
1336		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337			    ret);
1338		return ret;
1339	}
1340
1341	ret = intel_gmbus_output_aksv(adapter);
1342	if (ret < 0) {
1343		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344		return ret;
1345	}
1346	return 0;
1347}
1348
1349static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350				     u8 *bksv)
1351{
1352	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353
1354	int ret;
1355	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356				   DRM_HDCP_KSV_LEN);
1357	if (ret)
1358		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359			    ret);
1360	return ret;
1361}
1362
1363static
1364int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365				 u8 *bstatus)
1366{
1367	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368
1369	int ret;
1370	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371				   bstatus, DRM_HDCP_BSTATUS_LEN);
1372	if (ret)
1373		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374			    ret);
1375	return ret;
1376}
1377
1378static
1379int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380				     bool *repeater_present)
1381{
1382	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383	int ret;
1384	u8 val;
1385
1386	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387	if (ret) {
1388		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389			    ret);
1390		return ret;
1391	}
1392	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393	return 0;
1394}
1395
1396static
1397int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398				  u8 *ri_prime)
1399{
1400	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401
1402	int ret;
1403	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404				   ri_prime, DRM_HDCP_RI_LEN);
1405	if (ret)
1406		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407			    ret);
1408	return ret;
1409}
1410
1411static
1412int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413				   bool *ksv_ready)
1414{
1415	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416	int ret;
1417	u8 val;
1418
1419	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420	if (ret) {
1421		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422			    ret);
1423		return ret;
1424	}
1425	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426	return 0;
1427}
1428
1429static
1430int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431				  int num_downstream, u8 *ksv_fifo)
1432{
1433	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434	int ret;
1435	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437	if (ret) {
1438		drm_dbg_kms(&i915->drm,
1439			    "Read ksv fifo over DDC failed (%d)\n", ret);
1440		return ret;
1441	}
1442	return 0;
1443}
1444
1445static
1446int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447				      int i, u32 *part)
1448{
1449	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450	int ret;
1451
1452	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453		return -EINVAL;
1454
1455	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456				   part, DRM_HDCP_V_PRIME_PART_LEN);
1457	if (ret)
1458		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459			    i, ret);
1460	return ret;
1461}
1462
1463static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464					   enum transcoder cpu_transcoder)
1465{
1466	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468	struct drm_crtc *crtc = connector->base.state->crtc;
1469	struct intel_crtc *intel_crtc = container_of(crtc,
1470						     struct intel_crtc, base);
1471	u32 scanline;
1472	int ret;
1473
1474	for (;;) {
1475		scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476		if (scanline > 100 && scanline < 200)
1477			break;
1478		usleep_range(25, 50);
1479	}
1480
1481	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482					 false, TRANS_DDI_HDCP_SIGNALLING);
1483	if (ret) {
1484		drm_err(&dev_priv->drm,
1485			"Disable HDCP signalling failed (%d)\n", ret);
1486		return ret;
1487	}
1488
1489	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490					 true, TRANS_DDI_HDCP_SIGNALLING);
1491	if (ret) {
1492		drm_err(&dev_priv->drm,
1493			"Enable HDCP signalling failed (%d)\n", ret);
1494		return ret;
1495	}
1496
1497	return 0;
1498}
1499
1500static
1501int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502				      enum transcoder cpu_transcoder,
1503				      bool enable)
1504{
1505	struct intel_hdmi *hdmi = &dig_port->hdmi;
1506	struct intel_connector *connector = hdmi->attached_connector;
1507	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508	int ret;
1509
1510	if (!enable)
1511		usleep_range(6, 60); /* Bspec says >= 6us */
1512
1513	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514					 cpu_transcoder, enable,
1515					 TRANS_DDI_HDCP_SIGNALLING);
1516	if (ret) {
1517		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518			enable ? "Enable" : "Disable", ret);
1519		return ret;
1520	}
1521
1522	/*
1523	 * WA: To fix incorrect positioning of the window of
1524	 * opportunity and enc_en signalling in KABYLAKE.
1525	 */
1526	if (IS_KABYLAKE(dev_priv) && enable)
1527		return kbl_repositioning_enc_en_signal(connector,
1528						       cpu_transcoder);
1529
1530	return 0;
1531}
1532
1533static
1534bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535				     struct intel_connector *connector)
1536{
1537	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538	enum port port = dig_port->base.port;
1539	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540	int ret;
1541	union {
1542		u32 reg;
1543		u8 shim[DRM_HDCP_RI_LEN];
1544	} ri;
1545
1546	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547	if (ret)
1548		return false;
1549
1550	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551
1552	/* Wait for Ri prime match */
1553	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558							port)));
1559		return false;
1560	}
1561	return true;
1562}
1563
1564static
1565bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566				struct intel_connector *connector)
1567{
1568	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569	int retry;
1570
1571	for (retry = 0; retry < 3; retry++)
1572		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573			return true;
1574
1575	drm_err(&i915->drm, "Link check failed\n");
1576	return false;
1577}
1578
1579struct hdcp2_hdmi_msg_timeout {
1580	u8 msg_id;
1581	u16 timeout;
1582};
1583
1584static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590};
1591
1592static
1593int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594				    u8 *rx_status)
1595{
1596	return intel_hdmi_hdcp_read(dig_port,
1597				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598				    rx_status,
1599				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1600}
1601
1602static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603{
1604	int i;
1605
1606	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607		if (is_paired)
1608			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609		else
1610			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611	}
1612
1613	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615			return hdcp2_msg_timeout[i].timeout;
1616	}
1617
1618	return -EINVAL;
1619}
1620
1621static int
1622hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623			      u8 msg_id, bool *msg_ready,
1624			      ssize_t *msg_sz)
1625{
1626	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628	int ret;
1629
1630	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631	if (ret < 0) {
1632		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633			    ret);
1634		return ret;
1635	}
1636
1637	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638		  rx_status[0]);
1639
1640	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642			     *msg_sz);
1643	else
1644		*msg_ready = *msg_sz;
1645
1646	return 0;
1647}
1648
1649static ssize_t
1650intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651			      u8 msg_id, bool paired)
1652{
1653	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654	bool msg_ready = false;
1655	int timeout, ret;
1656	ssize_t msg_sz = 0;
1657
1658	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659	if (timeout < 0)
1660		return timeout;
1661
1662	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663							     msg_id, &msg_ready,
1664							     &msg_sz),
1665			 !ret && msg_ready && msg_sz, timeout * 1000,
1666			 1000, 5 * 1000);
1667	if (ret)
1668		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669			    msg_id, ret, timeout);
1670
1671	return ret ? ret : msg_sz;
1672}
1673
1674static
1675int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676			       void *buf, size_t size)
1677{
 
1678	unsigned int offset;
1679
1680	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682}
1683
1684static
1685int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686			      u8 msg_id, void *buf, size_t size)
1687{
 
1688	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689	struct intel_hdmi *hdmi = &dig_port->hdmi;
1690	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691	unsigned int offset;
1692	ssize_t ret;
1693
1694	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695					    hdcp->is_paired);
1696	if (ret < 0)
1697		return ret;
1698
1699	/*
1700	 * Available msg size should be equal to or lesser than the
1701	 * available buffer.
1702	 */
1703	if (ret > size) {
1704		drm_dbg_kms(&i915->drm,
1705			    "msg_sz(%zd) is more than exp size(%zu)\n",
1706			    ret, size);
1707		return -1;
1708	}
1709
1710	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712	if (ret)
1713		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714			    msg_id, ret);
1715
1716	return ret;
1717}
1718
1719static
1720int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721				struct intel_connector *connector)
1722{
1723	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724	int ret;
1725
1726	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727	if (ret)
1728		return ret;
1729
1730	/*
1731	 * Re-auth request and Link Integrity Failures are represented by
1732	 * same bit. i.e reauth_req.
1733	 */
1734	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735		ret = HDCP_REAUTH_REQUEST;
1736	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737		ret = HDCP_TOPOLOGY_CHANGE;
1738
1739	return ret;
1740}
1741
1742static
1743int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744			     bool *capable)
1745{
 
1746	u8 hdcp2_version;
1747	int ret;
1748
1749	*capable = false;
1750	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751				   &hdcp2_version, sizeof(hdcp2_version));
1752	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753		*capable = true;
1754
1755	return ret;
1756}
1757
1758static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760	.read_bksv = intel_hdmi_hdcp_read_bksv,
1761	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762	.repeater_present = intel_hdmi_hdcp_repeater_present,
1763	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768	.check_link = intel_hdmi_hdcp_check_link,
1769	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1772	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773	.protocol = HDCP_PROTOCOL_HDMI,
1774};
1775
1776static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777{
1778	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779	int max_tmds_clock, vbt_max_tmds_clock;
1780
1781	if (DISPLAY_VER(dev_priv) >= 10)
1782		max_tmds_clock = 594000;
1783	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784		max_tmds_clock = 300000;
1785	else if (DISPLAY_VER(dev_priv) >= 5)
1786		max_tmds_clock = 225000;
1787	else
1788		max_tmds_clock = 165000;
1789
1790	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791	if (vbt_max_tmds_clock)
1792		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793
1794	return max_tmds_clock;
1795}
1796
1797static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798				const struct drm_connector_state *conn_state)
1799{
1800	return hdmi->has_hdmi_sink &&
 
 
1801		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802}
1803
 
 
 
 
 
1804static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805				 bool respect_downstream_limits,
1806				 bool has_hdmi_sink)
1807{
1808	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810
1811	if (respect_downstream_limits) {
1812		struct intel_connector *connector = hdmi->attached_connector;
1813		const struct drm_display_info *info = &connector->base.display_info;
1814
1815		if (hdmi->dp_dual_mode.max_tmds_clock)
1816			max_tmds_clock = min(max_tmds_clock,
1817					     hdmi->dp_dual_mode.max_tmds_clock);
1818
1819		if (info->max_tmds_clock)
1820			max_tmds_clock = min(max_tmds_clock,
1821					     info->max_tmds_clock);
1822		else if (!has_hdmi_sink)
1823			max_tmds_clock = min(max_tmds_clock, 165000);
1824	}
1825
1826	return max_tmds_clock;
1827}
1828
1829static enum drm_mode_status
1830hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831		      int clock, bool respect_downstream_limits,
1832		      bool has_hdmi_sink)
1833{
1834	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
 
1835
1836	if (clock < 25000)
1837		return MODE_CLOCK_LOW;
1838	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839					  has_hdmi_sink))
1840		return MODE_CLOCK_HIGH;
1841
1842	/* GLK DPLL can't generate 446-480 MHz */
1843	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844		return MODE_CLOCK_RANGE;
1845
1846	/* BXT/GLK DPLL can't generate 223-240 MHz */
1847	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848	    clock > 223333 && clock < 240000)
1849		return MODE_CLOCK_RANGE;
1850
1851	/* CHV DPLL can't generate 216-240 MHz */
1852	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853		return MODE_CLOCK_RANGE;
1854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855	return MODE_OK;
1856}
1857
1858static int intel_hdmi_port_clock(int clock, int bpc)
 
1859{
 
 
 
 
1860	/*
1861	 * Need to adjust the port link by:
1862	 *  1.5x for 12bpc
1863	 *  1.25x for 10bpc
1864	 */
1865	return clock * bpc / 8;
1866}
1867
1868static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1869				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870{
1871	struct drm_i915_private *i915 = to_i915(connector->dev);
1872	const struct drm_display_info *info = &connector->display_info;
1873	const struct drm_hdmi_info *hdmi = &info->hdmi;
1874
1875	switch (bpc) {
1876	case 12:
1877		if (HAS_GMCH(i915))
1878			return false;
1879
1880		if (!has_hdmi_sink)
1881			return false;
1882
1883		if (ycbcr420_output)
1884			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1885		else
1886			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1887	case 10:
1888		if (DISPLAY_VER(i915) < 11)
1889			return false;
1890
1891		if (!has_hdmi_sink)
1892			return false;
1893
1894		if (ycbcr420_output)
1895			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1896		else
1897			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1898	case 8:
1899		return true;
1900	default:
1901		MISSING_CASE(bpc);
1902		return false;
1903	}
1904}
1905
1906static enum drm_mode_status
1907intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1908			    bool has_hdmi_sink, bool ycbcr420_output)
 
1909{
 
1910	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1911	enum drm_mode_status status;
 
1912
1913	if (ycbcr420_output)
1914		clock /= 2;
 
 
 
 
 
1915
1916	/* check if we can do 8bpc */
1917	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1918				       true, has_hdmi_sink);
1919
1920	/* if we can't do 8bpc we may still be able to do 12bpc */
1921	if (status != MODE_OK &&
1922	    intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1923		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1924					       true, has_hdmi_sink);
1925
1926	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1927	if (status != MODE_OK &&
1928	    intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1929		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1930					       true, has_hdmi_sink);
1931
1932	return status;
1933}
1934
1935static enum drm_mode_status
1936intel_hdmi_mode_valid(struct drm_connector *connector,
1937		      struct drm_display_mode *mode)
1938{
1939	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1940	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1941	struct drm_i915_private *dev_priv = to_i915(dev);
1942	enum drm_mode_status status;
1943	int clock = mode->clock;
1944	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1945	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1946	bool ycbcr_420_only;
 
1947
1948	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1949		return MODE_NO_DBLESCAN;
 
1950
1951	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1952		clock *= 2;
1953
1954	if (clock > max_dotclk)
1955		return MODE_CLOCK_HIGH;
1956
1957	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1958		if (!has_hdmi_sink)
1959			return MODE_CLOCK_LOW;
1960		clock *= 2;
1961	}
1962
 
 
 
 
 
 
 
 
 
1963	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1964
1965	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
 
 
 
 
 
1966	if (status != MODE_OK) {
1967		if (ycbcr_420_only ||
1968		    !connector->ycbcr_420_allowed ||
1969		    !drm_mode_is_420_also(&connector->display_info, mode))
1970			return status;
1971
1972		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
 
1973		if (status != MODE_OK)
1974			return status;
1975	}
1976
1977	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1978}
1979
1980bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1981				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1982{
1983	struct drm_atomic_state *state = crtc_state->uapi.state;
1984	struct drm_connector_state *connector_state;
1985	struct drm_connector *connector;
1986	int i;
1987
1988	if (crtc_state->pipe_bpp < bpc * 3)
1989		return false;
1990
1991	for_each_new_connector_in_state(state, connector, connector_state, i) {
1992		if (connector_state->crtc != crtc_state->uapi.crtc)
1993			continue;
1994
1995		if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
 
1996			return false;
1997	}
1998
1999	return true;
2000}
2001
2002static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2003				     int bpc)
2004{
2005	struct drm_i915_private *dev_priv =
2006		to_i915(crtc_state->uapi.crtc->dev);
2007	const struct drm_display_mode *adjusted_mode =
2008		&crtc_state->hw.adjusted_mode;
2009
2010	/*
2011	 * HDMI deep color affects the clocks, so it's only possible
2012	 * when not cloning with other encoder types.
2013	 */
2014	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2015		return false;
2016
2017	/* Display Wa_1405510057:icl,ehl */
2018	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2019	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2020	    (adjusted_mode->crtc_hblank_end -
2021	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2022		return false;
2023
2024	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2025					      crtc_state->has_hdmi_sink,
2026					      crtc_state->output_format ==
2027					      INTEL_OUTPUT_FORMAT_YCBCR420);
2028}
2029
2030static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2031				  struct intel_crtc_state *crtc_state,
2032				  int clock)
2033{
2034	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2035	int bpc;
2036
2037	for (bpc = 12; bpc >= 10; bpc -= 2) {
2038		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2039		    hdmi_port_clock_valid(intel_hdmi,
2040					  intel_hdmi_port_clock(clock, bpc),
2041					  true, crtc_state->has_hdmi_sink) == MODE_OK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042			return bpc;
2043	}
2044
2045	return 8;
2046}
2047
2048static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2049				    struct intel_crtc_state *crtc_state)
 
2050{
2051	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2052	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2053	const struct drm_display_mode *adjusted_mode =
2054		&crtc_state->hw.adjusted_mode;
2055	int bpc, clock = adjusted_mode->crtc_clock;
2056
2057	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2058		clock *= 2;
2059
2060	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2061	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2062		clock /= 2;
 
2063
2064	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2065
2066	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2067
2068	/*
2069	 * pipe_bpp could already be below 8bpc due to
2070	 * FDI bandwidth constraints. We shouldn't bump it
2071	 * back up to 8bpc in that case.
2072	 */
2073	if (crtc_state->pipe_bpp > bpc * 3)
2074		crtc_state->pipe_bpp = bpc * 3;
2075
2076	drm_dbg_kms(&i915->drm,
2077		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2078		    bpc, crtc_state->pipe_bpp);
2079
2080	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2081				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2082		drm_dbg_kms(&i915->drm,
2083			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2084			    crtc_state->port_clock);
2085		return -EINVAL;
2086	}
2087
2088	return 0;
2089}
2090
2091bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2092				    const struct drm_connector_state *conn_state)
2093{
2094	const struct intel_digital_connector_state *intel_conn_state =
2095		to_intel_digital_connector_state(conn_state);
2096	const struct drm_display_mode *adjusted_mode =
2097		&crtc_state->hw.adjusted_mode;
2098
2099	/*
2100	 * Our YCbCr output is always limited range.
2101	 * crtc_state->limited_color_range only applies to RGB,
2102	 * and it must never be set for YCbCr or we risk setting
2103	 * some conflicting bits in PIPECONF which will mess up
2104	 * the colors on the monitor.
2105	 */
2106	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2107		return false;
2108
2109	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2110		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2111		return crtc_state->has_hdmi_sink &&
2112			drm_default_rgb_quant_range(adjusted_mode) ==
2113			HDMI_QUANTIZATION_RANGE_LIMITED;
2114	} else {
2115		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2116	}
2117}
2118
2119static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2120				 const struct intel_crtc_state *crtc_state,
2121				 const struct drm_connector_state *conn_state)
2122{
2123	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2124	const struct intel_digital_connector_state *intel_conn_state =
2125		to_intel_digital_connector_state(conn_state);
2126
2127	if (!crtc_state->has_hdmi_sink)
2128		return false;
2129
2130	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2131		return intel_hdmi->has_audio;
2132	else
2133		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2134}
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2137					    struct intel_crtc_state *crtc_state,
2138					    const struct drm_connector_state *conn_state)
 
2139{
2140	struct drm_connector *connector = conn_state->connector;
2141	struct drm_i915_private *i915 = to_i915(connector->dev);
2142	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
 
 
 
2143	int ret;
2144	bool ycbcr_420_only;
2145
2146	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2147	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2148		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2149	} else {
2150		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2151			drm_dbg_kms(&i915->drm,
2152				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2153		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2154	}
2155
2156	ret = intel_hdmi_compute_clock(encoder, crtc_state);
 
2157	if (ret) {
2158		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2159		    connector->ycbcr_420_allowed &&
2160		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2161			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2162			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2163		}
 
 
 
2164	}
2165
2166	return ret;
2167}
2168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169int intel_hdmi_compute_config(struct intel_encoder *encoder,
2170			      struct intel_crtc_state *pipe_config,
2171			      struct drm_connector_state *conn_state)
2172{
2173	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2174	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2175	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2176	struct drm_connector *connector = conn_state->connector;
2177	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2178	int ret;
2179
2180	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2181		return -EINVAL;
2182
 
 
 
 
2183	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2184	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2185							 conn_state);
2186
2187	if (pipe_config->has_hdmi_sink)
2188		pipe_config->has_infoframe = true;
2189
2190	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2191		pipe_config->pixel_multiplier = 2;
2192
2193	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2194		pipe_config->has_pch_encoder = true;
2195
2196	pipe_config->has_audio =
2197		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
 
2198
2199	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
 
 
 
 
2200	if (ret)
 
 
 
 
 
2201		return ret;
 
2202
2203	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2204		ret = intel_pch_panel_fitting(pipe_config, conn_state);
2205		if (ret)
2206			return ret;
2207	}
2208
2209	pipe_config->limited_color_range =
2210		intel_hdmi_limited_color_range(pipe_config, conn_state);
2211
2212	if (conn_state->picture_aspect_ratio)
2213		adjusted_mode->picture_aspect_ratio =
2214			conn_state->picture_aspect_ratio;
2215
2216	pipe_config->lane_count = 4;
2217
2218	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2219		if (scdc->scrambling.low_rates)
2220			pipe_config->hdmi_scrambling = true;
2221
2222		if (pipe_config->port_clock > 340000) {
2223			pipe_config->hdmi_scrambling = true;
2224			pipe_config->hdmi_high_tmds_clock_ratio = true;
2225		}
2226	}
2227
2228	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2229					 conn_state);
2230
2231	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2232		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2233		return -EINVAL;
2234	}
2235
2236	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2237		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2238		return -EINVAL;
2239	}
2240
2241	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2242		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2243		return -EINVAL;
2244	}
2245
2246	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2247		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2248		return -EINVAL;
2249	}
2250
2251	return 0;
2252}
2253
 
 
 
 
 
 
 
 
 
 
 
2254static void
2255intel_hdmi_unset_edid(struct drm_connector *connector)
2256{
2257	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2258
2259	intel_hdmi->has_hdmi_sink = false;
2260	intel_hdmi->has_audio = false;
2261
2262	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2263	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2264
2265	kfree(to_intel_connector(connector)->detect_edid);
2266	to_intel_connector(connector)->detect_edid = NULL;
2267}
2268
2269static void
2270intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2271{
2272	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2273	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2274	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2275	struct i2c_adapter *adapter =
2276		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2277	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
 
2278
2279	/*
2280	 * Type 1 DVI adaptors are not required to implement any
2281	 * registers, so we can't always detect their presence.
2282	 * Ideally we should be able to check the state of the
2283	 * CONFIG1 pin, but no such luck on our hardware.
2284	 *
2285	 * The only method left to us is to check the VBT to see
2286	 * if the port is a dual mode capable DP port. But let's
2287	 * only do that when we sucesfully read the EDID, to avoid
2288	 * confusing log messages about DP dual mode adaptors when
2289	 * there's nothing connected to the port.
2290	 */
2291	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2292		/* An overridden EDID imply that we want this port for testing.
2293		 * Make sure not to set limits for that port.
2294		 */
2295		if (has_edid && !connector->override_edid &&
2296		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2297			drm_dbg_kms(&dev_priv->drm,
2298				    "Assuming DP dual mode adaptor presence based on VBT\n");
2299			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2300		} else {
2301			type = DRM_DP_DUAL_MODE_NONE;
2302		}
2303	}
2304
2305	if (type == DRM_DP_DUAL_MODE_NONE)
2306		return;
2307
2308	hdmi->dp_dual_mode.type = type;
2309	hdmi->dp_dual_mode.max_tmds_clock =
2310		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2311
2312	drm_dbg_kms(&dev_priv->drm,
2313		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2314		    drm_dp_get_dual_mode_type_name(type),
2315		    hdmi->dp_dual_mode.max_tmds_clock);
 
 
 
 
 
 
 
 
2316}
2317
2318static bool
2319intel_hdmi_set_edid(struct drm_connector *connector)
2320{
2321	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2322	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
 
2323	intel_wakeref_t wakeref;
2324	struct edid *edid;
2325	bool connected = false;
2326	struct i2c_adapter *i2c;
2327
2328	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2329
2330	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2331
2332	edid = drm_get_edid(connector, i2c);
2333
2334	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2335		drm_dbg_kms(&dev_priv->drm,
2336			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2337		intel_gmbus_force_bit(i2c, true);
2338		edid = drm_get_edid(connector, i2c);
2339		intel_gmbus_force_bit(i2c, false);
2340	}
2341
2342	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
 
2343
2344	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2345
2346	to_intel_connector(connector)->detect_edid = edid;
2347	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2348		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2349		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2350
2351		connected = true;
2352	}
2353
2354	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
 
 
 
2355
2356	return connected;
2357}
2358
2359static enum drm_connector_status
2360intel_hdmi_detect(struct drm_connector *connector, bool force)
2361{
2362	enum drm_connector_status status = connector_status_disconnected;
2363	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2364	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2365	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2366	intel_wakeref_t wakeref;
2367
2368	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2369		    connector->base.id, connector->name);
2370
2371	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2372		return connector_status_disconnected;
2373
2374	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2375
2376	if (DISPLAY_VER(dev_priv) >= 11 &&
2377	    !intel_digital_port_connected(encoder))
2378		goto out;
2379
2380	intel_hdmi_unset_edid(connector);
2381
2382	if (intel_hdmi_set_edid(connector))
2383		status = connector_status_connected;
2384
2385out:
2386	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2387
2388	if (status != connector_status_connected)
2389		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2390
2391	/*
2392	 * Make sure the refs for power wells enabled during detect are
2393	 * dropped to avoid a new detect cycle triggered by HPD polling.
2394	 */
2395	intel_display_power_flush_work(dev_priv);
2396
2397	return status;
2398}
2399
2400static void
2401intel_hdmi_force(struct drm_connector *connector)
2402{
2403	struct drm_i915_private *i915 = to_i915(connector->dev);
2404
2405	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2406		    connector->base.id, connector->name);
2407
2408	intel_hdmi_unset_edid(connector);
2409
2410	if (connector->status != connector_status_connected)
2411		return;
2412
2413	intel_hdmi_set_edid(connector);
2414}
2415
2416static int intel_hdmi_get_modes(struct drm_connector *connector)
2417{
2418	struct edid *edid;
2419
2420	edid = to_intel_connector(connector)->detect_edid;
2421	if (edid == NULL)
2422		return 0;
2423
2424	return intel_connector_update_modes(connector, edid);
2425}
2426
2427static struct i2c_adapter *
2428intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2429{
2430	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2431	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2432
2433	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2434}
2435
2436static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2437{
2438	struct drm_i915_private *i915 = to_i915(connector->dev);
2439	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440	struct kobject *i2c_kobj = &adapter->dev.kobj;
2441	struct kobject *connector_kobj = &connector->kdev->kobj;
2442	int ret;
2443
2444	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2445	if (ret)
2446		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2447}
2448
2449static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2450{
2451	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2452	struct kobject *i2c_kobj = &adapter->dev.kobj;
2453	struct kobject *connector_kobj = &connector->kdev->kobj;
2454
2455	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2456}
2457
2458static int
2459intel_hdmi_connector_register(struct drm_connector *connector)
2460{
2461	int ret;
2462
2463	ret = intel_connector_register(connector);
2464	if (ret)
2465		return ret;
2466
2467	intel_hdmi_create_i2c_symlink(connector);
2468
2469	return ret;
2470}
2471
2472static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2473{
2474	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2475
2476	cec_notifier_conn_unregister(n);
2477
2478	intel_hdmi_remove_i2c_symlink(connector);
2479	intel_connector_unregister(connector);
2480}
2481
2482static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2483	.detect = intel_hdmi_detect,
2484	.force = intel_hdmi_force,
2485	.fill_modes = drm_helper_probe_single_connector_modes,
2486	.atomic_get_property = intel_digital_connector_atomic_get_property,
2487	.atomic_set_property = intel_digital_connector_atomic_set_property,
2488	.late_register = intel_hdmi_connector_register,
2489	.early_unregister = intel_hdmi_connector_unregister,
2490	.destroy = intel_connector_destroy,
2491	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2492	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2493};
2494
 
 
 
 
 
 
 
 
 
 
 
2495static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2496	.get_modes = intel_hdmi_get_modes,
2497	.mode_valid = intel_hdmi_mode_valid,
2498	.atomic_check = intel_digital_connector_atomic_check,
2499};
2500
2501static void
2502intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2503{
2504	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2505
2506	intel_attach_force_audio_property(connector);
2507	intel_attach_broadcast_rgb_property(connector);
2508	intel_attach_aspect_ratio_property(connector);
2509
2510	intel_attach_hdmi_colorspace_property(connector);
2511	drm_connector_attach_content_type_property(connector);
2512
2513	if (DISPLAY_VER(dev_priv) >= 10)
2514		drm_connector_attach_hdr_output_metadata_property(connector);
2515
2516	if (!HAS_GMCH(dev_priv))
2517		drm_connector_attach_max_bpc_property(connector, 8, 12);
2518}
2519
2520/*
2521 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2522 * @encoder: intel_encoder
2523 * @connector: drm_connector
2524 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2525 *  or reset the high tmds clock ratio for scrambling
2526 * @scrambling: bool to Indicate if the function needs to set or reset
2527 *  sink scrambling
2528 *
2529 * This function handles scrambling on HDMI 2.0 capable sinks.
2530 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2531 * it enables scrambling. This should be called before enabling the HDMI
2532 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2533 * detect a scrambled clock within 100 ms.
2534 *
2535 * Returns:
2536 * True on success, false on failure.
2537 */
2538bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2539				       struct drm_connector *connector,
2540				       bool high_tmds_clock_ratio,
2541				       bool scrambling)
2542{
2543	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2544	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2545	struct drm_scrambling *sink_scrambling =
2546		&connector->display_info.hdmi.scdc.scrambling;
2547	struct i2c_adapter *adapter =
2548		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2549
2550	if (!sink_scrambling->supported)
2551		return true;
2552
2553	drm_dbg_kms(&dev_priv->drm,
2554		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2555		    connector->base.id, connector->name,
2556		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2557
2558	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2559	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2560						  high_tmds_clock_ratio) &&
2561		drm_scdc_set_scrambling(adapter, scrambling);
2562}
2563
2564static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2565{
2566	u8 ddc_pin;
2567
2568	switch (port) {
2569	case PORT_B:
2570		ddc_pin = GMBUS_PIN_DPB;
2571		break;
2572	case PORT_C:
2573		ddc_pin = GMBUS_PIN_DPC;
2574		break;
2575	case PORT_D:
2576		ddc_pin = GMBUS_PIN_DPD_CHV;
2577		break;
2578	default:
2579		MISSING_CASE(port);
2580		ddc_pin = GMBUS_PIN_DPB;
2581		break;
2582	}
2583	return ddc_pin;
2584}
2585
2586static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2587{
2588	u8 ddc_pin;
2589
2590	switch (port) {
2591	case PORT_B:
2592		ddc_pin = GMBUS_PIN_1_BXT;
2593		break;
2594	case PORT_C:
2595		ddc_pin = GMBUS_PIN_2_BXT;
2596		break;
2597	default:
2598		MISSING_CASE(port);
2599		ddc_pin = GMBUS_PIN_1_BXT;
2600		break;
2601	}
2602	return ddc_pin;
2603}
2604
2605static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2606			      enum port port)
2607{
2608	u8 ddc_pin;
2609
2610	switch (port) {
2611	case PORT_B:
2612		ddc_pin = GMBUS_PIN_1_BXT;
2613		break;
2614	case PORT_C:
2615		ddc_pin = GMBUS_PIN_2_BXT;
2616		break;
2617	case PORT_D:
2618		ddc_pin = GMBUS_PIN_4_CNP;
2619		break;
2620	case PORT_F:
2621		ddc_pin = GMBUS_PIN_3_BXT;
2622		break;
2623	default:
2624		MISSING_CASE(port);
2625		ddc_pin = GMBUS_PIN_1_BXT;
2626		break;
2627	}
2628	return ddc_pin;
2629}
2630
2631static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2632{
2633	enum phy phy = intel_port_to_phy(dev_priv, port);
2634
2635	if (intel_phy_is_combo(dev_priv, phy))
2636		return GMBUS_PIN_1_BXT + port;
2637	else if (intel_phy_is_tc(dev_priv, phy))
2638		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2639
2640	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2641	return GMBUS_PIN_2_BXT;
2642}
2643
2644static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2645{
2646	enum phy phy = intel_port_to_phy(dev_priv, port);
2647	u8 ddc_pin;
2648
2649	switch (phy) {
2650	case PHY_A:
2651		ddc_pin = GMBUS_PIN_1_BXT;
2652		break;
2653	case PHY_B:
2654		ddc_pin = GMBUS_PIN_2_BXT;
2655		break;
2656	case PHY_C:
2657		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2658		break;
2659	default:
2660		MISSING_CASE(phy);
2661		ddc_pin = GMBUS_PIN_1_BXT;
2662		break;
2663	}
2664	return ddc_pin;
2665}
2666
2667static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2668{
2669	enum phy phy = intel_port_to_phy(dev_priv, port);
2670
2671	WARN_ON(port == PORT_C);
2672
2673	/*
2674	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2675	 * final two outputs use type-c pins, even though they're actually
2676	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2677	 * all outputs.
2678	 */
2679	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2680		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2681
2682	return GMBUS_PIN_1_BXT + phy;
2683}
2684
2685static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2686{
2687	enum phy phy = intel_port_to_phy(i915, port);
2688
2689	drm_WARN_ON(&i915->drm, port == PORT_A);
2690
2691	/*
2692	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2693	 * final two outputs use type-c pins, even though they're actually
2694	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2695	 * all outputs.
2696	 */
2697	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2698		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2699
2700	return GMBUS_PIN_1_BXT + phy;
2701}
2702
2703static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2704{
2705	return intel_port_to_phy(dev_priv, port) + 1;
2706}
2707
2708static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2709{
2710	enum phy phy = intel_port_to_phy(dev_priv, port);
2711
2712	WARN_ON(port == PORT_B || port == PORT_C);
2713
2714	/*
2715	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2716	 * except first combo output.
2717	 */
2718	if (phy == PHY_A)
2719		return GMBUS_PIN_1_BXT;
2720
2721	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2722}
2723
2724static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2725			      enum port port)
2726{
2727	u8 ddc_pin;
2728
2729	switch (port) {
2730	case PORT_B:
2731		ddc_pin = GMBUS_PIN_DPB;
2732		break;
2733	case PORT_C:
2734		ddc_pin = GMBUS_PIN_DPC;
2735		break;
2736	case PORT_D:
2737		ddc_pin = GMBUS_PIN_DPD;
2738		break;
2739	default:
2740		MISSING_CASE(port);
2741		ddc_pin = GMBUS_PIN_DPB;
2742		break;
2743	}
2744	return ddc_pin;
2745}
2746
2747static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2748{
2749	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2750	enum port port = encoder->port;
2751	u8 ddc_pin;
2752
2753	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2754	if (ddc_pin) {
2755		drm_dbg_kms(&dev_priv->drm,
2756			    "Using DDC pin 0x%x for port %c (VBT)\n",
2757			    ddc_pin, port_name(port));
2758		return ddc_pin;
2759	}
2760
2761	if (IS_ALDERLAKE_S(dev_priv))
2762		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2763	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2764		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2765	else if (IS_ROCKETLAKE(dev_priv))
2766		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2767	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2768		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2769	else if (HAS_PCH_MCC(dev_priv))
 
2770		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2771	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2772		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2773	else if (HAS_PCH_CNP(dev_priv))
2774		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2775	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2776		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2777	else if (IS_CHERRYVIEW(dev_priv))
2778		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2779	else
2780		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2781
2782	drm_dbg_kms(&dev_priv->drm,
2783		    "Using DDC pin 0x%x for port %c (platform default)\n",
2784		    ddc_pin, port_name(port));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785
2786	return ddc_pin;
2787}
2788
2789void intel_infoframe_init(struct intel_digital_port *dig_port)
2790{
2791	struct drm_i915_private *dev_priv =
2792		to_i915(dig_port->base.base.dev);
2793
2794	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2795		dig_port->write_infoframe = vlv_write_infoframe;
2796		dig_port->read_infoframe = vlv_read_infoframe;
2797		dig_port->set_infoframes = vlv_set_infoframes;
2798		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2799	} else if (IS_G4X(dev_priv)) {
2800		dig_port->write_infoframe = g4x_write_infoframe;
2801		dig_port->read_infoframe = g4x_read_infoframe;
2802		dig_port->set_infoframes = g4x_set_infoframes;
2803		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2804	} else if (HAS_DDI(dev_priv)) {
2805		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2806			dig_port->write_infoframe = lspcon_write_infoframe;
2807			dig_port->read_infoframe = lspcon_read_infoframe;
2808			dig_port->set_infoframes = lspcon_set_infoframes;
2809			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2810		} else {
2811			dig_port->write_infoframe = hsw_write_infoframe;
2812			dig_port->read_infoframe = hsw_read_infoframe;
2813			dig_port->set_infoframes = hsw_set_infoframes;
2814			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2815		}
2816	} else if (HAS_PCH_IBX(dev_priv)) {
2817		dig_port->write_infoframe = ibx_write_infoframe;
2818		dig_port->read_infoframe = ibx_read_infoframe;
2819		dig_port->set_infoframes = ibx_set_infoframes;
2820		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2821	} else {
2822		dig_port->write_infoframe = cpt_write_infoframe;
2823		dig_port->read_infoframe = cpt_read_infoframe;
2824		dig_port->set_infoframes = cpt_set_infoframes;
2825		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2826	}
2827}
2828
2829void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2830			       struct intel_connector *intel_connector)
2831{
2832	struct drm_connector *connector = &intel_connector->base;
2833	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2834	struct intel_encoder *intel_encoder = &dig_port->base;
2835	struct drm_device *dev = intel_encoder->base.dev;
2836	struct drm_i915_private *dev_priv = to_i915(dev);
2837	struct i2c_adapter *ddc;
2838	enum port port = intel_encoder->port;
2839	struct cec_connector_info conn_info;
 
2840
2841	drm_dbg_kms(&dev_priv->drm,
2842		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2843		    intel_encoder->base.base.id, intel_encoder->base.name);
2844
2845	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2846		return;
2847
2848	if (drm_WARN(dev, dig_port->max_lanes < 4,
2849		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2850		     dig_port->max_lanes, intel_encoder->base.base.id,
2851		     intel_encoder->base.name))
2852		return;
2853
2854	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2855	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
 
2856
2857	drm_connector_init_with_ddc(dev, connector,
2858				    &intel_hdmi_connector_funcs,
2859				    DRM_MODE_CONNECTOR_HDMIA,
2860				    ddc);
 
2861	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2862
2863	connector->interlace_allowed = 1;
2864	connector->doublescan_allowed = 0;
2865	connector->stereo_allowed = 1;
 
2866
2867	if (DISPLAY_VER(dev_priv) >= 10)
2868		connector->ycbcr_420_allowed = true;
2869
2870	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2871
2872	if (HAS_DDI(dev_priv))
2873		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2874	else
2875		intel_connector->get_hw_state = intel_connector_get_hw_state;
2876
2877	intel_hdmi_add_properties(intel_hdmi, connector);
2878
2879	intel_connector_attach_encoder(intel_connector, intel_encoder);
2880	intel_hdmi->attached_connector = intel_connector;
2881
2882	if (is_hdcp_supported(dev_priv, port)) {
2883		int ret = intel_hdcp_init(intel_connector, dig_port,
2884					  &intel_hdmi_hdcp_shim);
2885		if (ret)
2886			drm_dbg_kms(&dev_priv->drm,
2887				    "HDCP init failed, skipping.\n");
2888	}
2889
2890	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2891	 * 0xd.  Failure to do so will result in spurious interrupts being
2892	 * generated on the port when a cable is not attached.
2893	 */
2894	if (IS_G45(dev_priv)) {
2895		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2896		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2897		               (temp & ~0xf) | 0xd);
2898	}
2899
2900	cec_fill_conn_info_from_drm(&conn_info, connector);
2901
2902	intel_hdmi->cec_notifier =
2903		cec_notifier_conn_register(dev->dev, port_identifier(port),
2904					   &conn_info);
2905	if (!intel_hdmi->cec_notifier)
2906		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2907}
2908
2909/*
2910 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2911 * @vactive: Vactive of a display mode
2912 *
2913 * @return: appropriate dsc slice height for a given mode.
2914 */
2915int intel_hdmi_dsc_get_slice_height(int vactive)
2916{
2917	int slice_height;
2918
2919	/*
2920	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2921	 * Select smallest slice height >=96, that results in a valid PPS and
2922	 * requires minimum padding lines required for final slice.
2923	 *
2924	 * Assumption : Vactive is even.
2925	 */
2926	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2927		if (vactive % slice_height == 0)
2928			return slice_height;
2929
2930	return 0;
2931}
2932
2933/*
2934 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2935 * and dsc decoder capabilities
2936 *
2937 * @crtc_state: intel crtc_state
2938 * @src_max_slices: maximum slices supported by the DSC encoder
2939 * @src_max_slice_width: maximum slice width supported by DSC encoder
2940 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2941 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2942 *
2943 * @return: num of dsc slices that can be supported by the dsc encoder
2944 * and decoder.
2945 */
2946int
2947intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2948			      int src_max_slices, int src_max_slice_width,
2949			      int hdmi_max_slices, int hdmi_throughput)
2950{
2951/* Pixel rates in KPixels/sec */
2952#define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2953/*
2954 * Rates at which the source and sink are required to process pixels in each
2955 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2956 */
2957#define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2958#define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2959
2960/* Spec limits the slice width to 2720 pixels */
2961#define MAX_HDMI_SLICE_WIDTH			2720
2962	int kslice_adjust;
2963	int adjusted_clk_khz;
2964	int min_slices;
2965	int target_slices;
2966	int max_throughput; /* max clock freq. in khz per slice */
2967	int max_slice_width;
2968	int slice_width;
2969	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2970
2971	if (!hdmi_throughput)
2972		return 0;
2973
2974	/*
2975	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2976	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2977	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2978	 * dividing adjusted clock value by 10.
2979	 */
2980	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2981	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2982		kslice_adjust = 10;
2983	else
2984		kslice_adjust = 5;
2985
2986	/*
2987	 * As per spec, the rate at which the source and the sink process
2988	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2989	 * This depends upon the pixel clock rate and output formats
2990	 * (kslice adjust).
2991	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2992	 * at max 340MHz, otherwise they can be processed at max 400MHz.
2993	 */
2994
2995	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2996
2997	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2998		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2999	else
3000		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3001
3002	/*
3003	 * Taking into account the sink's capability for maximum
3004	 * clock per slice (in MHz) as read from HF-VSDB.
3005	 */
3006	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3007
3008	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3009	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3010
3011	/*
3012	 * Keep on increasing the num of slices/line, starting from min_slices
3013	 * per line till we get such a number, for which the slice_width is
3014	 * just less than max_slice_width. The slices/line selected should be
3015	 * less than or equal to the max horizontal slices that the combination
3016	 * of PCON encoder and HDMI decoder can support.
3017	 */
3018	slice_width = max_slice_width;
3019
3020	do {
3021		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3022			target_slices = 1;
3023		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3024			target_slices = 2;
3025		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3026			target_slices = 4;
3027		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3028			target_slices = 8;
3029		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3030			target_slices = 12;
3031		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3032			target_slices = 16;
3033		else
3034			return 0;
3035
3036		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3037		if (slice_width >= max_slice_width)
3038			min_slices = target_slices + 1;
3039	} while (slice_width >= max_slice_width);
3040
3041	return target_slices;
3042}
3043
3044/*
3045 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3046 * source and sink capabilities.
3047 *
3048 * @src_fraction_bpp: fractional bpp supported by the source
3049 * @slice_width: dsc slice width supported by the source and sink
3050 * @num_slices: num of slices supported by the source and sink
3051 * @output_format: video output format
3052 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3053 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3054 *
3055 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3056 */
3057int
3058intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3059		       int output_format, bool hdmi_all_bpp,
3060		       int hdmi_max_chunk_bytes)
3061{
3062	int max_dsc_bpp, min_dsc_bpp;
3063	int target_bytes;
3064	bool bpp_found = false;
3065	int bpp_decrement_x16;
3066	int bpp_target;
3067	int bpp_target_x16;
3068
3069	/*
3070	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3071	 * Start with the max bpp and keep on decrementing with
3072	 * fractional bpp, if supported by PCON DSC encoder
3073	 *
3074	 * for each bpp we check if no of bytes can be supported by HDMI sink
3075	 */
3076
3077	/* Assuming: bpc as 8*/
3078	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3079		min_dsc_bpp = 6;
3080		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3081	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3082		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3083		min_dsc_bpp = 8;
3084		max_dsc_bpp = 3 * 8; /* 3*bpc */
3085	} else {
3086		/* Assuming 4:2:2 encoding */
3087		min_dsc_bpp = 7;
3088		max_dsc_bpp = 2 * 8; /* 2*bpc */
3089	}
3090
3091	/*
3092	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3093	 * Section 7.7.34 : Source shall not enable compressed Video
3094	 * Transport with bpp_target settings above 12 bpp unless
3095	 * DSC_all_bpp is set to 1.
3096	 */
3097	if (!hdmi_all_bpp)
3098		max_dsc_bpp = min(max_dsc_bpp, 12);
3099
3100	/*
3101	 * The Sink has a limit of compressed data in bytes for a scanline,
3102	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3103	 * The no. of bytes depend on the target bits per pixel that the
3104	 * source configures. So we start with the max_bpp and calculate
3105	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3106	 * till we get the target_chunk_bytes just less than what the sink's
3107	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3108	 *
3109	 * The decrement is according to the fractional support from PCON DSC
3110	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3111	 *
3112	 * bpp_target_x16 = bpp_target * 16
3113	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3114	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3115	 */
3116
3117	bpp_target = max_dsc_bpp;
3118
3119	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3120	if (!src_fractional_bpp)
3121		src_fractional_bpp = 1;
3122	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3123	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3124
3125	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3126		int bpp;
3127
3128		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3129		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3130		if (target_bytes <= hdmi_max_chunk_bytes) {
3131			bpp_found = true;
3132			break;
3133		}
3134		bpp_target_x16 -= bpp_decrement_x16;
3135	}
3136	if (bpp_found)
3137		return bpp_target_x16;
3138
3139	return 0;
3140}
v6.8
   1/*
   2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
   3 * Copyright © 2006-2009 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors:
  25 *	Eric Anholt <eric@anholt.net>
  26 *	Jesse Barnes <jesse.barnes@intel.com>
  27 */
  28
  29#include <linux/delay.h>
  30#include <linux/hdmi.h>
  31#include <linux/i2c.h>
  32#include <linux/slab.h>
  33#include <linux/string_helpers.h>
  34
  35#include <drm/display/drm_hdcp_helper.h>
  36#include <drm/display/drm_hdmi_helper.h>
  37#include <drm/display/drm_scdc_helper.h>
  38#include <drm/drm_atomic_helper.h>
  39#include <drm/drm_crtc.h>
  40#include <drm/drm_edid.h>
 
 
  41#include <drm/intel_lpe_audio.h>
  42
  43#include "g4x_hdmi.h"
  44#include "i915_drv.h"
  45#include "i915_reg.h"
  46#include "intel_atomic.h"
  47#include "intel_audio.h"
  48#include "intel_connector.h"
  49#include "intel_cx0_phy.h"
  50#include "intel_ddi.h"
  51#include "intel_de.h"
  52#include "intel_display_types.h"
  53#include "intel_dp.h"
  54#include "intel_gmbus.h"
  55#include "intel_hdcp.h"
  56#include "intel_hdcp_regs.h"
  57#include "intel_hdmi.h"
  58#include "intel_lspcon.h"
  59#include "intel_panel.h"
  60#include "intel_snps_phy.h"
  61
  62inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
  63{
  64	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
  65}
  66
  67static void
  68assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  69{
  70	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
 
  71	u32 enabled_bits;
  72
  73	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  74
  75	drm_WARN(&dev_priv->drm,
  76		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
  77		 "HDMI port enabled, expecting disabled\n");
  78}
  79
  80static void
  81assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
  82				     enum transcoder cpu_transcoder)
  83{
  84	drm_WARN(&dev_priv->drm,
  85		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
  86		 TRANS_DDI_FUNC_ENABLE,
  87		 "HDMI transcoder function enabled, expecting disabled\n");
  88}
  89
  90static u32 g4x_infoframe_index(unsigned int type)
  91{
  92	switch (type) {
  93	case HDMI_PACKET_TYPE_GAMUT_METADATA:
  94		return VIDEO_DIP_SELECT_GAMUT;
  95	case HDMI_INFOFRAME_TYPE_AVI:
  96		return VIDEO_DIP_SELECT_AVI;
  97	case HDMI_INFOFRAME_TYPE_SPD:
  98		return VIDEO_DIP_SELECT_SPD;
  99	case HDMI_INFOFRAME_TYPE_VENDOR:
 100		return VIDEO_DIP_SELECT_VENDOR;
 101	default:
 102		MISSING_CASE(type);
 103		return 0;
 104	}
 105}
 106
 107static u32 g4x_infoframe_enable(unsigned int type)
 108{
 109	switch (type) {
 110	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 111		return VIDEO_DIP_ENABLE_GCP;
 112	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 113		return VIDEO_DIP_ENABLE_GAMUT;
 114	case DP_SDP_VSC:
 115		return 0;
 116	case HDMI_INFOFRAME_TYPE_AVI:
 117		return VIDEO_DIP_ENABLE_AVI;
 118	case HDMI_INFOFRAME_TYPE_SPD:
 119		return VIDEO_DIP_ENABLE_SPD;
 120	case HDMI_INFOFRAME_TYPE_VENDOR:
 121		return VIDEO_DIP_ENABLE_VENDOR;
 122	case HDMI_INFOFRAME_TYPE_DRM:
 123		return 0;
 124	default:
 125		MISSING_CASE(type);
 126		return 0;
 127	}
 128}
 129
 130static u32 hsw_infoframe_enable(unsigned int type)
 131{
 132	switch (type) {
 133	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 134		return VIDEO_DIP_ENABLE_GCP_HSW;
 135	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 136		return VIDEO_DIP_ENABLE_GMP_HSW;
 137	case DP_SDP_VSC:
 138		return VIDEO_DIP_ENABLE_VSC_HSW;
 139	case DP_SDP_PPS:
 140		return VDIP_ENABLE_PPS;
 141	case HDMI_INFOFRAME_TYPE_AVI:
 142		return VIDEO_DIP_ENABLE_AVI_HSW;
 143	case HDMI_INFOFRAME_TYPE_SPD:
 144		return VIDEO_DIP_ENABLE_SPD_HSW;
 145	case HDMI_INFOFRAME_TYPE_VENDOR:
 146		return VIDEO_DIP_ENABLE_VS_HSW;
 147	case HDMI_INFOFRAME_TYPE_DRM:
 148		return VIDEO_DIP_ENABLE_DRM_GLK;
 149	default:
 150		MISSING_CASE(type);
 151		return 0;
 152	}
 153}
 154
 155static i915_reg_t
 156hsw_dip_data_reg(struct drm_i915_private *dev_priv,
 157		 enum transcoder cpu_transcoder,
 158		 unsigned int type,
 159		 int i)
 160{
 161	switch (type) {
 162	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 163		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
 164	case DP_SDP_VSC:
 165		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
 166	case DP_SDP_PPS:
 167		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
 168	case HDMI_INFOFRAME_TYPE_AVI:
 169		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
 170	case HDMI_INFOFRAME_TYPE_SPD:
 171		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
 172	case HDMI_INFOFRAME_TYPE_VENDOR:
 173		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
 174	case HDMI_INFOFRAME_TYPE_DRM:
 175		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
 176	default:
 177		MISSING_CASE(type);
 178		return INVALID_MMIO_REG;
 179	}
 180}
 181
 182static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
 183			     unsigned int type)
 184{
 185	switch (type) {
 186	case DP_SDP_VSC:
 187		return VIDEO_DIP_VSC_DATA_SIZE;
 188	case DP_SDP_PPS:
 189		return VIDEO_DIP_PPS_DATA_SIZE;
 190	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 191		if (DISPLAY_VER(dev_priv) >= 11)
 192			return VIDEO_DIP_GMP_DATA_SIZE;
 193		else
 194			return VIDEO_DIP_DATA_SIZE;
 195	default:
 196		return VIDEO_DIP_DATA_SIZE;
 197	}
 198}
 199
 200static void g4x_write_infoframe(struct intel_encoder *encoder,
 201				const struct intel_crtc_state *crtc_state,
 202				unsigned int type,
 203				const void *frame, ssize_t len)
 204{
 205	const u32 *data = frame;
 206	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 207	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 208	int i;
 209
 210	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 211		 "Writing DIP with CTL reg disabled\n");
 212
 213	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 214	val |= g4x_infoframe_index(type);
 215
 216	val &= ~g4x_infoframe_enable(type);
 217
 218	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 219
 220	for (i = 0; i < len; i += 4) {
 221		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
 222		data++;
 223	}
 224	/* Write every possible data byte to force correct ECC calculation. */
 225	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 226		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
 227
 228	val |= g4x_infoframe_enable(type);
 229	val &= ~VIDEO_DIP_FREQ_MASK;
 230	val |= VIDEO_DIP_FREQ_VSYNC;
 231
 232	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 233	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
 234}
 235
 236static void g4x_read_infoframe(struct intel_encoder *encoder,
 237			       const struct intel_crtc_state *crtc_state,
 238			       unsigned int type,
 239			       void *frame, ssize_t len)
 240{
 241	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 242	u32 *data = frame;
 243	int i;
 244
 245	intel_de_rmw(dev_priv, VIDEO_DIP_CTL,
 246		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
 
 
 
 
 247
 248	for (i = 0; i < len; i += 4)
 249		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
 250}
 251
 252static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
 253				  const struct intel_crtc_state *pipe_config)
 254{
 255	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 256	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 257
 258	if ((val & VIDEO_DIP_ENABLE) == 0)
 259		return 0;
 260
 261	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 262		return 0;
 263
 264	return val & (VIDEO_DIP_ENABLE_AVI |
 265		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 266}
 267
 268static void ibx_write_infoframe(struct intel_encoder *encoder,
 269				const struct intel_crtc_state *crtc_state,
 270				unsigned int type,
 271				const void *frame, ssize_t len)
 272{
 273	const u32 *data = frame;
 274	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 275	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 276	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
 277	u32 val = intel_de_read(dev_priv, reg);
 278	int i;
 279
 280	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 281		 "Writing DIP with CTL reg disabled\n");
 282
 283	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 284	val |= g4x_infoframe_index(type);
 285
 286	val &= ~g4x_infoframe_enable(type);
 287
 288	intel_de_write(dev_priv, reg, val);
 289
 290	for (i = 0; i < len; i += 4) {
 291		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
 292			       *data);
 293		data++;
 294	}
 295	/* Write every possible data byte to force correct ECC calculation. */
 296	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 297		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
 298
 299	val |= g4x_infoframe_enable(type);
 300	val &= ~VIDEO_DIP_FREQ_MASK;
 301	val |= VIDEO_DIP_FREQ_VSYNC;
 302
 303	intel_de_write(dev_priv, reg, val);
 304	intel_de_posting_read(dev_priv, reg);
 305}
 306
 307static void ibx_read_infoframe(struct intel_encoder *encoder,
 308			       const struct intel_crtc_state *crtc_state,
 309			       unsigned int type,
 310			       void *frame, ssize_t len)
 311{
 312	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 313	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 314	u32 *data = frame;
 315	int i;
 316
 317	intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
 318		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
 
 
 
 
 319
 320	for (i = 0; i < len; i += 4)
 321		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 322}
 323
 324static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
 325				  const struct intel_crtc_state *pipe_config)
 326{
 327	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 328	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 329	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
 330	u32 val = intel_de_read(dev_priv, reg);
 331
 332	if ((val & VIDEO_DIP_ENABLE) == 0)
 333		return 0;
 334
 335	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 336		return 0;
 337
 338	return val & (VIDEO_DIP_ENABLE_AVI |
 339		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 340		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 341}
 342
 343static void cpt_write_infoframe(struct intel_encoder *encoder,
 344				const struct intel_crtc_state *crtc_state,
 345				unsigned int type,
 346				const void *frame, ssize_t len)
 347{
 348	const u32 *data = frame;
 349	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 350	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 351	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
 352	u32 val = intel_de_read(dev_priv, reg);
 353	int i;
 354
 355	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 356		 "Writing DIP with CTL reg disabled\n");
 357
 358	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 359	val |= g4x_infoframe_index(type);
 360
 361	/* The DIP control register spec says that we need to update the AVI
 362	 * infoframe without clearing its enable bit */
 363	if (type != HDMI_INFOFRAME_TYPE_AVI)
 364		val &= ~g4x_infoframe_enable(type);
 365
 366	intel_de_write(dev_priv, reg, val);
 367
 368	for (i = 0; i < len; i += 4) {
 369		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
 370			       *data);
 371		data++;
 372	}
 373	/* Write every possible data byte to force correct ECC calculation. */
 374	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 375		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
 376
 377	val |= g4x_infoframe_enable(type);
 378	val &= ~VIDEO_DIP_FREQ_MASK;
 379	val |= VIDEO_DIP_FREQ_VSYNC;
 380
 381	intel_de_write(dev_priv, reg, val);
 382	intel_de_posting_read(dev_priv, reg);
 383}
 384
 385static void cpt_read_infoframe(struct intel_encoder *encoder,
 386			       const struct intel_crtc_state *crtc_state,
 387			       unsigned int type,
 388			       void *frame, ssize_t len)
 389{
 390	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 391	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 392	u32 *data = frame;
 393	int i;
 394
 395	intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
 396		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
 
 
 
 
 397
 398	for (i = 0; i < len; i += 4)
 399		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 400}
 401
 402static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
 403				  const struct intel_crtc_state *pipe_config)
 404{
 405	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 406	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 407	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
 408
 409	if ((val & VIDEO_DIP_ENABLE) == 0)
 410		return 0;
 411
 412	return val & (VIDEO_DIP_ENABLE_AVI |
 413		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 414		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 415}
 416
 417static void vlv_write_infoframe(struct intel_encoder *encoder,
 418				const struct intel_crtc_state *crtc_state,
 419				unsigned int type,
 420				const void *frame, ssize_t len)
 421{
 422	const u32 *data = frame;
 423	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 424	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 425	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
 426	u32 val = intel_de_read(dev_priv, reg);
 427	int i;
 428
 429	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 430		 "Writing DIP with CTL reg disabled\n");
 431
 432	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 433	val |= g4x_infoframe_index(type);
 434
 435	val &= ~g4x_infoframe_enable(type);
 436
 437	intel_de_write(dev_priv, reg, val);
 438
 439	for (i = 0; i < len; i += 4) {
 440		intel_de_write(dev_priv,
 441			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
 442		data++;
 443	}
 444	/* Write every possible data byte to force correct ECC calculation. */
 445	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 446		intel_de_write(dev_priv,
 447			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
 448
 449	val |= g4x_infoframe_enable(type);
 450	val &= ~VIDEO_DIP_FREQ_MASK;
 451	val |= VIDEO_DIP_FREQ_VSYNC;
 452
 453	intel_de_write(dev_priv, reg, val);
 454	intel_de_posting_read(dev_priv, reg);
 455}
 456
 457static void vlv_read_infoframe(struct intel_encoder *encoder,
 458			       const struct intel_crtc_state *crtc_state,
 459			       unsigned int type,
 460			       void *frame, ssize_t len)
 461{
 462	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 463	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 464	u32 *data = frame;
 465	int i;
 466
 467	intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe),
 468		     VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
 
 
 
 
 469
 470	for (i = 0; i < len; i += 4)
 471		*data++ = intel_de_read(dev_priv,
 472				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
 473}
 474
 475static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
 476				  const struct intel_crtc_state *pipe_config)
 477{
 478	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 479	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 480	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
 481
 482	if ((val & VIDEO_DIP_ENABLE) == 0)
 483		return 0;
 484
 485	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 486		return 0;
 487
 488	return val & (VIDEO_DIP_ENABLE_AVI |
 489		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 490		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 491}
 492
 493void hsw_write_infoframe(struct intel_encoder *encoder,
 494			 const struct intel_crtc_state *crtc_state,
 495			 unsigned int type,
 496			 const void *frame, ssize_t len)
 497{
 498	const u32 *data = frame;
 499	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 500	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 501	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
 502	int data_size;
 503	int i;
 504	u32 val = intel_de_read(dev_priv, ctl_reg);
 505
 506	data_size = hsw_dip_data_size(dev_priv, type);
 507
 508	drm_WARN_ON(&dev_priv->drm, len > data_size);
 509
 510	val &= ~hsw_infoframe_enable(type);
 511	intel_de_write(dev_priv, ctl_reg, val);
 512
 513	for (i = 0; i < len; i += 4) {
 514		intel_de_write(dev_priv,
 515			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 516			       *data);
 517		data++;
 518	}
 519	/* Write every possible data byte to force correct ECC calculation. */
 520	for (; i < data_size; i += 4)
 521		intel_de_write(dev_priv,
 522			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 523			       0);
 524
 525	/* Wa_14013475917 */
 526	if (IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC)
 
 527		return;
 528
 529	val |= hsw_infoframe_enable(type);
 530	intel_de_write(dev_priv, ctl_reg, val);
 531	intel_de_posting_read(dev_priv, ctl_reg);
 532}
 533
 534void hsw_read_infoframe(struct intel_encoder *encoder,
 535			const struct intel_crtc_state *crtc_state,
 536			unsigned int type, void *frame, ssize_t len)
 537{
 538	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 539	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 540	u32 *data = frame;
 541	int i;
 542
 543	for (i = 0; i < len; i += 4)
 544		*data++ = intel_de_read(dev_priv,
 545				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
 546}
 547
 548static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
 549				  const struct intel_crtc_state *pipe_config)
 550{
 551	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 552	u32 val = intel_de_read(dev_priv,
 553				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
 554	u32 mask;
 555
 556	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
 557		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
 558		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
 559
 560	if (DISPLAY_VER(dev_priv) >= 10)
 561		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
 562
 563	return val & mask;
 564}
 565
 566static const u8 infoframe_type_to_idx[] = {
 567	HDMI_PACKET_TYPE_GENERAL_CONTROL,
 568	HDMI_PACKET_TYPE_GAMUT_METADATA,
 569	DP_SDP_VSC,
 570	HDMI_INFOFRAME_TYPE_AVI,
 571	HDMI_INFOFRAME_TYPE_SPD,
 572	HDMI_INFOFRAME_TYPE_VENDOR,
 573	HDMI_INFOFRAME_TYPE_DRM,
 574};
 575
 576u32 intel_hdmi_infoframe_enable(unsigned int type)
 577{
 578	int i;
 579
 580	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 581		if (infoframe_type_to_idx[i] == type)
 582			return BIT(i);
 583	}
 584
 585	return 0;
 586}
 587
 588u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
 589				  const struct intel_crtc_state *crtc_state)
 590{
 591	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 592	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 593	u32 val, ret = 0;
 594	int i;
 595
 596	val = dig_port->infoframes_enabled(encoder, crtc_state);
 597
 598	/* map from hardware bits to dip idx */
 599	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 600		unsigned int type = infoframe_type_to_idx[i];
 601
 602		if (HAS_DDI(dev_priv)) {
 603			if (val & hsw_infoframe_enable(type))
 604				ret |= BIT(i);
 605		} else {
 606			if (val & g4x_infoframe_enable(type))
 607				ret |= BIT(i);
 608		}
 609	}
 610
 611	return ret;
 612}
 613
 614/*
 615 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 616 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 617 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 618 * used for both technologies.
 619 *
 620 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 621 * DW1:       DB3       | DB2 | DB1 | DB0
 622 * DW2:       DB7       | DB6 | DB5 | DB4
 623 * DW3: ...
 624 *
 625 * (HB is Header Byte, DB is Data Byte)
 626 *
 627 * The hdmi pack() functions don't know about that hardware specific hole so we
 628 * trick them by giving an offset into the buffer and moving back the header
 629 * bytes by one.
 630 */
 631static void intel_write_infoframe(struct intel_encoder *encoder,
 632				  const struct intel_crtc_state *crtc_state,
 633				  enum hdmi_infoframe_type type,
 634				  const union hdmi_infoframe *frame)
 635{
 636	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 637	u8 buffer[VIDEO_DIP_DATA_SIZE];
 638	ssize_t len;
 639
 640	if ((crtc_state->infoframes.enable &
 641	     intel_hdmi_infoframe_enable(type)) == 0)
 642		return;
 643
 644	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
 645		return;
 646
 647	/* see comment above for the reason for this offset */
 648	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
 649	if (drm_WARN_ON(encoder->base.dev, len < 0))
 650		return;
 651
 652	/* Insert the 'hole' (see big comment above) at position 3 */
 653	memmove(&buffer[0], &buffer[1], 3);
 654	buffer[3] = 0;
 655	len++;
 656
 657	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
 658}
 659
 660void intel_read_infoframe(struct intel_encoder *encoder,
 661			  const struct intel_crtc_state *crtc_state,
 662			  enum hdmi_infoframe_type type,
 663			  union hdmi_infoframe *frame)
 664{
 665	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 666	u8 buffer[VIDEO_DIP_DATA_SIZE];
 667	int ret;
 668
 669	if ((crtc_state->infoframes.enable &
 670	     intel_hdmi_infoframe_enable(type)) == 0)
 671		return;
 672
 673	dig_port->read_infoframe(encoder, crtc_state,
 674				       type, buffer, sizeof(buffer));
 675
 676	/* Fill the 'hole' (see big comment above) at position 3 */
 677	memmove(&buffer[1], &buffer[0], 3);
 678
 679	/* see comment above for the reason for this offset */
 680	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
 681	if (ret) {
 682		drm_dbg_kms(encoder->base.dev,
 683			    "Failed to unpack infoframe type 0x%02x\n", type);
 684		return;
 685	}
 686
 687	if (frame->any.type != type)
 688		drm_dbg_kms(encoder->base.dev,
 689			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
 690			    frame->any.type, type);
 691}
 692
 693static bool
 694intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
 695				 struct intel_crtc_state *crtc_state,
 696				 struct drm_connector_state *conn_state)
 697{
 698	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
 699	const struct drm_display_mode *adjusted_mode =
 700		&crtc_state->hw.adjusted_mode;
 701	struct drm_connector *connector = conn_state->connector;
 702	int ret;
 703
 704	if (!crtc_state->has_infoframe)
 705		return true;
 706
 707	crtc_state->infoframes.enable |=
 708		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
 709
 710	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
 711						       adjusted_mode);
 712	if (ret)
 713		return false;
 714
 715	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
 716		frame->colorspace = HDMI_COLORSPACE_YUV420;
 717	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
 718		frame->colorspace = HDMI_COLORSPACE_YUV444;
 719	else
 720		frame->colorspace = HDMI_COLORSPACE_RGB;
 721
 722	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
 723
 724	/* nonsense combination */
 725	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
 726		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
 727
 728	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
 729		drm_hdmi_avi_infoframe_quant_range(frame, connector,
 730						   adjusted_mode,
 731						   crtc_state->limited_color_range ?
 732						   HDMI_QUANTIZATION_RANGE_LIMITED :
 733						   HDMI_QUANTIZATION_RANGE_FULL);
 734	} else {
 735		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
 736		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
 737	}
 738
 739	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
 740
 741	/* TODO: handle pixel repetition for YCBCR420 outputs */
 742
 743	ret = hdmi_avi_infoframe_check(frame);
 744	if (drm_WARN_ON(encoder->base.dev, ret))
 745		return false;
 746
 747	return true;
 748}
 749
 750static bool
 751intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
 752				 struct intel_crtc_state *crtc_state,
 753				 struct drm_connector_state *conn_state)
 754{
 755	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 756	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
 757	int ret;
 758
 759	if (!crtc_state->has_infoframe)
 760		return true;
 761
 762	crtc_state->infoframes.enable |=
 763		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
 764
 765	if (IS_DGFX(i915))
 766		ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
 767	else
 768		ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
 769
 770	if (drm_WARN_ON(encoder->base.dev, ret))
 771		return false;
 772
 773	frame->sdi = HDMI_SPD_SDI_PC;
 774
 775	ret = hdmi_spd_infoframe_check(frame);
 776	if (drm_WARN_ON(encoder->base.dev, ret))
 777		return false;
 778
 779	return true;
 780}
 781
 782static bool
 783intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
 784				  struct intel_crtc_state *crtc_state,
 785				  struct drm_connector_state *conn_state)
 786{
 787	struct hdmi_vendor_infoframe *frame =
 788		&crtc_state->infoframes.hdmi.vendor.hdmi;
 789	const struct drm_display_info *info =
 790		&conn_state->connector->display_info;
 791	int ret;
 792
 793	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
 794		return true;
 795
 796	crtc_state->infoframes.enable |=
 797		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
 798
 799	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
 800							  conn_state->connector,
 801							  &crtc_state->hw.adjusted_mode);
 802	if (drm_WARN_ON(encoder->base.dev, ret))
 803		return false;
 804
 805	ret = hdmi_vendor_infoframe_check(frame);
 806	if (drm_WARN_ON(encoder->base.dev, ret))
 807		return false;
 808
 809	return true;
 810}
 811
 812static bool
 813intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
 814				 struct intel_crtc_state *crtc_state,
 815				 struct drm_connector_state *conn_state)
 816{
 817	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
 818	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 819	int ret;
 820
 821	if (DISPLAY_VER(dev_priv) < 10)
 822		return true;
 823
 824	if (!crtc_state->has_infoframe)
 825		return true;
 826
 827	if (!conn_state->hdr_output_metadata)
 828		return true;
 829
 830	crtc_state->infoframes.enable |=
 831		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
 832
 833	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
 834	if (ret < 0) {
 835		drm_dbg_kms(&dev_priv->drm,
 836			    "couldn't set HDR metadata in infoframe\n");
 837		return false;
 838	}
 839
 840	ret = hdmi_drm_infoframe_check(frame);
 841	if (drm_WARN_ON(&dev_priv->drm, ret))
 842		return false;
 843
 844	return true;
 845}
 846
 847static void g4x_set_infoframes(struct intel_encoder *encoder,
 848			       bool enable,
 849			       const struct intel_crtc_state *crtc_state,
 850			       const struct drm_connector_state *conn_state)
 851{
 852	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 853	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 854	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
 855	i915_reg_t reg = VIDEO_DIP_CTL;
 856	u32 val = intel_de_read(dev_priv, reg);
 857	u32 port = VIDEO_DIP_PORT(encoder->port);
 858
 859	assert_hdmi_port_disabled(intel_hdmi);
 860
 861	/* If the registers were not initialized yet, they might be zeroes,
 862	 * which means we're selecting the AVI DIP and we're setting its
 863	 * frequency to once. This seems to really confuse the HW and make
 864	 * things stop working (the register spec says the AVI always needs to
 865	 * be sent every VSync). So here we avoid writing to the register more
 866	 * than we need and also explicitly select the AVI DIP and explicitly
 867	 * set its frequency to every VSync. Avoiding to write it twice seems to
 868	 * be enough to solve the problem, but being defensive shouldn't hurt us
 869	 * either. */
 870	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
 871
 872	if (!enable) {
 873		if (!(val & VIDEO_DIP_ENABLE))
 874			return;
 875		if (port != (val & VIDEO_DIP_PORT_MASK)) {
 876			drm_dbg_kms(&dev_priv->drm,
 877				    "video DIP still enabled on port %c\n",
 878				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 879			return;
 880		}
 881		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
 882			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 883		intel_de_write(dev_priv, reg, val);
 884		intel_de_posting_read(dev_priv, reg);
 885		return;
 886	}
 887
 888	if (port != (val & VIDEO_DIP_PORT_MASK)) {
 889		if (val & VIDEO_DIP_ENABLE) {
 890			drm_dbg_kms(&dev_priv->drm,
 891				    "video DIP already enabled on port %c\n",
 892				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 893			return;
 894		}
 895		val &= ~VIDEO_DIP_PORT_MASK;
 896		val |= port;
 897	}
 898
 899	val |= VIDEO_DIP_ENABLE;
 900	val &= ~(VIDEO_DIP_ENABLE_AVI |
 901		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 902
 903	intel_de_write(dev_priv, reg, val);
 904	intel_de_posting_read(dev_priv, reg);
 905
 906	intel_write_infoframe(encoder, crtc_state,
 907			      HDMI_INFOFRAME_TYPE_AVI,
 908			      &crtc_state->infoframes.avi);
 909	intel_write_infoframe(encoder, crtc_state,
 910			      HDMI_INFOFRAME_TYPE_SPD,
 911			      &crtc_state->infoframes.spd);
 912	intel_write_infoframe(encoder, crtc_state,
 913			      HDMI_INFOFRAME_TYPE_VENDOR,
 914			      &crtc_state->infoframes.hdmi);
 915}
 916
 917/*
 918 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 919 *
 920 * From HDMI specification 1.4a:
 921 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 922 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 923 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 924 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 925 *   phase of 0
 926 */
 927static bool gcp_default_phase_possible(int pipe_bpp,
 928				       const struct drm_display_mode *mode)
 929{
 930	unsigned int pixels_per_group;
 931
 932	switch (pipe_bpp) {
 933	case 30:
 934		/* 4 pixels in 5 clocks */
 935		pixels_per_group = 4;
 936		break;
 937	case 36:
 938		/* 2 pixels in 3 clocks */
 939		pixels_per_group = 2;
 940		break;
 941	case 48:
 942		/* 1 pixel in 2 clocks */
 943		pixels_per_group = 1;
 944		break;
 945	default:
 946		/* phase information not relevant for 8bpc */
 947		return false;
 948	}
 949
 950	return mode->crtc_hdisplay % pixels_per_group == 0 &&
 951		mode->crtc_htotal % pixels_per_group == 0 &&
 952		mode->crtc_hblank_start % pixels_per_group == 0 &&
 953		mode->crtc_hblank_end % pixels_per_group == 0 &&
 954		mode->crtc_hsync_start % pixels_per_group == 0 &&
 955		mode->crtc_hsync_end % pixels_per_group == 0 &&
 956		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
 957		 mode->crtc_htotal/2 % pixels_per_group == 0);
 958}
 959
 960static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
 961					 const struct intel_crtc_state *crtc_state,
 962					 const struct drm_connector_state *conn_state)
 963{
 964	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 965	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 966	i915_reg_t reg;
 967
 968	if ((crtc_state->infoframes.enable &
 969	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
 970		return false;
 971
 972	if (HAS_DDI(dev_priv))
 973		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
 974	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 975		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
 976	else if (HAS_PCH_SPLIT(dev_priv))
 977		reg = TVIDEO_DIP_GCP(crtc->pipe);
 978	else
 979		return false;
 980
 981	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
 982
 983	return true;
 984}
 985
 986void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
 987				   struct intel_crtc_state *crtc_state)
 988{
 989	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 990	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 991	i915_reg_t reg;
 992
 993	if ((crtc_state->infoframes.enable &
 994	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
 995		return;
 996
 997	if (HAS_DDI(dev_priv))
 998		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
 999	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1000		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1001	else if (HAS_PCH_SPLIT(dev_priv))
1002		reg = TVIDEO_DIP_GCP(crtc->pipe);
1003	else
1004		return;
1005
1006	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1007}
1008
1009static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1010					     struct intel_crtc_state *crtc_state,
1011					     struct drm_connector_state *conn_state)
1012{
1013	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1014
1015	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1016		return;
1017
1018	crtc_state->infoframes.enable |=
1019		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1020
1021	/* Indicate color indication for deep color mode */
1022	if (crtc_state->pipe_bpp > 24)
1023		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1024
1025	/* Enable default_phase whenever the display mode is suitably aligned */
1026	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1027				       &crtc_state->hw.adjusted_mode))
1028		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1029}
1030
1031static void ibx_set_infoframes(struct intel_encoder *encoder,
1032			       bool enable,
1033			       const struct intel_crtc_state *crtc_state,
1034			       const struct drm_connector_state *conn_state)
1035{
1036	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1037	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1038	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1039	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1040	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1041	u32 val = intel_de_read(dev_priv, reg);
1042	u32 port = VIDEO_DIP_PORT(encoder->port);
1043
1044	assert_hdmi_port_disabled(intel_hdmi);
1045
1046	/* See the big comment in g4x_set_infoframes() */
1047	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1048
1049	if (!enable) {
1050		if (!(val & VIDEO_DIP_ENABLE))
1051			return;
1052		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1053			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1054			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1055		intel_de_write(dev_priv, reg, val);
1056		intel_de_posting_read(dev_priv, reg);
1057		return;
1058	}
1059
1060	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1061		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1062			 "DIP already enabled on port %c\n",
1063			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1064		val &= ~VIDEO_DIP_PORT_MASK;
1065		val |= port;
1066	}
1067
1068	val |= VIDEO_DIP_ENABLE;
1069	val &= ~(VIDEO_DIP_ENABLE_AVI |
1070		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1071		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1072
1073	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1074		val |= VIDEO_DIP_ENABLE_GCP;
1075
1076	intel_de_write(dev_priv, reg, val);
1077	intel_de_posting_read(dev_priv, reg);
1078
1079	intel_write_infoframe(encoder, crtc_state,
1080			      HDMI_INFOFRAME_TYPE_AVI,
1081			      &crtc_state->infoframes.avi);
1082	intel_write_infoframe(encoder, crtc_state,
1083			      HDMI_INFOFRAME_TYPE_SPD,
1084			      &crtc_state->infoframes.spd);
1085	intel_write_infoframe(encoder, crtc_state,
1086			      HDMI_INFOFRAME_TYPE_VENDOR,
1087			      &crtc_state->infoframes.hdmi);
1088}
1089
1090static void cpt_set_infoframes(struct intel_encoder *encoder,
1091			       bool enable,
1092			       const struct intel_crtc_state *crtc_state,
1093			       const struct drm_connector_state *conn_state)
1094{
1095	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1096	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1097	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1098	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1099	u32 val = intel_de_read(dev_priv, reg);
1100
1101	assert_hdmi_port_disabled(intel_hdmi);
1102
1103	/* See the big comment in g4x_set_infoframes() */
1104	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1105
1106	if (!enable) {
1107		if (!(val & VIDEO_DIP_ENABLE))
1108			return;
1109		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1110			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1111			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1112		intel_de_write(dev_priv, reg, val);
1113		intel_de_posting_read(dev_priv, reg);
1114		return;
1115	}
1116
1117	/* Set both together, unset both together: see the spec. */
1118	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1119	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1120		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1121
1122	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1123		val |= VIDEO_DIP_ENABLE_GCP;
1124
1125	intel_de_write(dev_priv, reg, val);
1126	intel_de_posting_read(dev_priv, reg);
1127
1128	intel_write_infoframe(encoder, crtc_state,
1129			      HDMI_INFOFRAME_TYPE_AVI,
1130			      &crtc_state->infoframes.avi);
1131	intel_write_infoframe(encoder, crtc_state,
1132			      HDMI_INFOFRAME_TYPE_SPD,
1133			      &crtc_state->infoframes.spd);
1134	intel_write_infoframe(encoder, crtc_state,
1135			      HDMI_INFOFRAME_TYPE_VENDOR,
1136			      &crtc_state->infoframes.hdmi);
1137}
1138
1139static void vlv_set_infoframes(struct intel_encoder *encoder,
1140			       bool enable,
1141			       const struct intel_crtc_state *crtc_state,
1142			       const struct drm_connector_state *conn_state)
1143{
1144	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1145	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1146	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1147	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1148	u32 val = intel_de_read(dev_priv, reg);
1149	u32 port = VIDEO_DIP_PORT(encoder->port);
1150
1151	assert_hdmi_port_disabled(intel_hdmi);
1152
1153	/* See the big comment in g4x_set_infoframes() */
1154	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1155
1156	if (!enable) {
1157		if (!(val & VIDEO_DIP_ENABLE))
1158			return;
1159		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1160			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1161			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1162		intel_de_write(dev_priv, reg, val);
1163		intel_de_posting_read(dev_priv, reg);
1164		return;
1165	}
1166
1167	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1168		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1169			 "DIP already enabled on port %c\n",
1170			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1171		val &= ~VIDEO_DIP_PORT_MASK;
1172		val |= port;
1173	}
1174
1175	val |= VIDEO_DIP_ENABLE;
1176	val &= ~(VIDEO_DIP_ENABLE_AVI |
1177		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1178		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1179
1180	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1181		val |= VIDEO_DIP_ENABLE_GCP;
1182
1183	intel_de_write(dev_priv, reg, val);
1184	intel_de_posting_read(dev_priv, reg);
1185
1186	intel_write_infoframe(encoder, crtc_state,
1187			      HDMI_INFOFRAME_TYPE_AVI,
1188			      &crtc_state->infoframes.avi);
1189	intel_write_infoframe(encoder, crtc_state,
1190			      HDMI_INFOFRAME_TYPE_SPD,
1191			      &crtc_state->infoframes.spd);
1192	intel_write_infoframe(encoder, crtc_state,
1193			      HDMI_INFOFRAME_TYPE_VENDOR,
1194			      &crtc_state->infoframes.hdmi);
1195}
1196
1197static void hsw_set_infoframes(struct intel_encoder *encoder,
1198			       bool enable,
1199			       const struct intel_crtc_state *crtc_state,
1200			       const struct drm_connector_state *conn_state)
1201{
1202	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1203	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1204	u32 val = intel_de_read(dev_priv, reg);
1205
1206	assert_hdmi_transcoder_func_disabled(dev_priv,
1207					     crtc_state->cpu_transcoder);
1208
1209	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1210		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1211		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1212		 VIDEO_DIP_ENABLE_DRM_GLK);
1213
1214	if (!enable) {
1215		intel_de_write(dev_priv, reg, val);
1216		intel_de_posting_read(dev_priv, reg);
1217		return;
1218	}
1219
1220	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1221		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1222
1223	intel_de_write(dev_priv, reg, val);
1224	intel_de_posting_read(dev_priv, reg);
1225
1226	intel_write_infoframe(encoder, crtc_state,
1227			      HDMI_INFOFRAME_TYPE_AVI,
1228			      &crtc_state->infoframes.avi);
1229	intel_write_infoframe(encoder, crtc_state,
1230			      HDMI_INFOFRAME_TYPE_SPD,
1231			      &crtc_state->infoframes.spd);
1232	intel_write_infoframe(encoder, crtc_state,
1233			      HDMI_INFOFRAME_TYPE_VENDOR,
1234			      &crtc_state->infoframes.hdmi);
1235	intel_write_infoframe(encoder, crtc_state,
1236			      HDMI_INFOFRAME_TYPE_DRM,
1237			      &crtc_state->infoframes.drm);
1238}
1239
1240void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1241{
1242	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1243	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
 
1244
1245	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1246		return;
1247
1248	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1249		    enable ? "Enabling" : "Disabling");
1250
1251	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm,
1252					 hdmi->dp_dual_mode.type, ddc, enable);
1253}
1254
1255static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1256				unsigned int offset, void *buffer, size_t size)
1257{
 
1258	struct intel_hdmi *hdmi = &dig_port->hdmi;
1259	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
 
1260	int ret;
1261	u8 start = offset & 0xff;
1262	struct i2c_msg msgs[] = {
1263		{
1264			.addr = DRM_HDCP_DDC_ADDR,
1265			.flags = 0,
1266			.len = 1,
1267			.buf = &start,
1268		},
1269		{
1270			.addr = DRM_HDCP_DDC_ADDR,
1271			.flags = I2C_M_RD,
1272			.len = size,
1273			.buf = buffer
1274		}
1275	};
1276	ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1277	if (ret == ARRAY_SIZE(msgs))
1278		return 0;
1279	return ret >= 0 ? -EIO : ret;
1280}
1281
1282static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1283				 unsigned int offset, void *buffer, size_t size)
1284{
 
1285	struct intel_hdmi *hdmi = &dig_port->hdmi;
1286	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
 
1287	int ret;
1288	u8 *write_buf;
1289	struct i2c_msg msg;
1290
1291	write_buf = kzalloc(size + 1, GFP_KERNEL);
1292	if (!write_buf)
1293		return -ENOMEM;
1294
1295	write_buf[0] = offset & 0xff;
1296	memcpy(&write_buf[1], buffer, size);
1297
1298	msg.addr = DRM_HDCP_DDC_ADDR;
1299	msg.flags = 0,
1300	msg.len = size + 1,
1301	msg.buf = write_buf;
1302
1303	ret = i2c_transfer(ddc, &msg, 1);
1304	if (ret == 1)
1305		ret = 0;
1306	else if (ret >= 0)
1307		ret = -EIO;
1308
1309	kfree(write_buf);
1310	return ret;
1311}
1312
1313static
1314int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1315				  u8 *an)
1316{
1317	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1318	struct intel_hdmi *hdmi = &dig_port->hdmi;
1319	struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
 
1320	int ret;
1321
1322	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1323				    DRM_HDCP_AN_LEN);
1324	if (ret) {
1325		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1326			    ret);
1327		return ret;
1328	}
1329
1330	ret = intel_gmbus_output_aksv(ddc);
1331	if (ret < 0) {
1332		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1333		return ret;
1334	}
1335	return 0;
1336}
1337
1338static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1339				     u8 *bksv)
1340{
1341	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1342
1343	int ret;
1344	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1345				   DRM_HDCP_KSV_LEN);
1346	if (ret)
1347		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1348			    ret);
1349	return ret;
1350}
1351
1352static
1353int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1354				 u8 *bstatus)
1355{
1356	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1357
1358	int ret;
1359	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1360				   bstatus, DRM_HDCP_BSTATUS_LEN);
1361	if (ret)
1362		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1363			    ret);
1364	return ret;
1365}
1366
1367static
1368int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1369				     bool *repeater_present)
1370{
1371	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1372	int ret;
1373	u8 val;
1374
1375	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1376	if (ret) {
1377		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1378			    ret);
1379		return ret;
1380	}
1381	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1382	return 0;
1383}
1384
1385static
1386int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1387				  u8 *ri_prime)
1388{
1389	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1390
1391	int ret;
1392	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1393				   ri_prime, DRM_HDCP_RI_LEN);
1394	if (ret)
1395		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1396			    ret);
1397	return ret;
1398}
1399
1400static
1401int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1402				   bool *ksv_ready)
1403{
1404	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1405	int ret;
1406	u8 val;
1407
1408	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1409	if (ret) {
1410		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1411			    ret);
1412		return ret;
1413	}
1414	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1415	return 0;
1416}
1417
1418static
1419int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1420				  int num_downstream, u8 *ksv_fifo)
1421{
1422	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1423	int ret;
1424	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1425				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1426	if (ret) {
1427		drm_dbg_kms(&i915->drm,
1428			    "Read ksv fifo over DDC failed (%d)\n", ret);
1429		return ret;
1430	}
1431	return 0;
1432}
1433
1434static
1435int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1436				      int i, u32 *part)
1437{
1438	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1439	int ret;
1440
1441	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1442		return -EINVAL;
1443
1444	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1445				   part, DRM_HDCP_V_PRIME_PART_LEN);
1446	if (ret)
1447		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1448			    i, ret);
1449	return ret;
1450}
1451
1452static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1453					   enum transcoder cpu_transcoder)
1454{
1455	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1456	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1457	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
 
 
1458	u32 scanline;
1459	int ret;
1460
1461	for (;;) {
1462		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1463		if (scanline > 100 && scanline < 200)
1464			break;
1465		usleep_range(25, 50);
1466	}
1467
1468	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1469					 false, TRANS_DDI_HDCP_SIGNALLING);
1470	if (ret) {
1471		drm_err(&dev_priv->drm,
1472			"Disable HDCP signalling failed (%d)\n", ret);
1473		return ret;
1474	}
1475
1476	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1477					 true, TRANS_DDI_HDCP_SIGNALLING);
1478	if (ret) {
1479		drm_err(&dev_priv->drm,
1480			"Enable HDCP signalling failed (%d)\n", ret);
1481		return ret;
1482	}
1483
1484	return 0;
1485}
1486
1487static
1488int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1489				      enum transcoder cpu_transcoder,
1490				      bool enable)
1491{
1492	struct intel_hdmi *hdmi = &dig_port->hdmi;
1493	struct intel_connector *connector = hdmi->attached_connector;
1494	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1495	int ret;
1496
1497	if (!enable)
1498		usleep_range(6, 60); /* Bspec says >= 6us */
1499
1500	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1501					 cpu_transcoder, enable,
1502					 TRANS_DDI_HDCP_SIGNALLING);
1503	if (ret) {
1504		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1505			enable ? "Enable" : "Disable", ret);
1506		return ret;
1507	}
1508
1509	/*
1510	 * WA: To fix incorrect positioning of the window of
1511	 * opportunity and enc_en signalling in KABYLAKE.
1512	 */
1513	if (IS_KABYLAKE(dev_priv) && enable)
1514		return kbl_repositioning_enc_en_signal(connector,
1515						       cpu_transcoder);
1516
1517	return 0;
1518}
1519
1520static
1521bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1522				     struct intel_connector *connector)
1523{
1524	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1525	enum port port = dig_port->base.port;
1526	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1527	int ret;
1528	union {
1529		u32 reg;
1530		u8 shim[DRM_HDCP_RI_LEN];
1531	} ri;
1532
1533	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1534	if (ret)
1535		return false;
1536
1537	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1538
1539	/* Wait for Ri prime match */
1540	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1541		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1542		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1543		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1544			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1545							port)));
1546		return false;
1547	}
1548	return true;
1549}
1550
1551static
1552bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1553				struct intel_connector *connector)
1554{
1555	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1556	int retry;
1557
1558	for (retry = 0; retry < 3; retry++)
1559		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1560			return true;
1561
1562	drm_err(&i915->drm, "Link check failed\n");
1563	return false;
1564}
1565
1566struct hdcp2_hdmi_msg_timeout {
1567	u8 msg_id;
1568	u16 timeout;
1569};
1570
1571static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1572	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1573	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1574	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1575	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1576	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1577};
1578
1579static
1580int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1581				    u8 *rx_status)
1582{
1583	return intel_hdmi_hdcp_read(dig_port,
1584				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1585				    rx_status,
1586				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1587}
1588
1589static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1590{
1591	int i;
1592
1593	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1594		if (is_paired)
1595			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1596		else
1597			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1598	}
1599
1600	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1601		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1602			return hdcp2_msg_timeout[i].timeout;
1603	}
1604
1605	return -EINVAL;
1606}
1607
1608static int
1609hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1610			      u8 msg_id, bool *msg_ready,
1611			      ssize_t *msg_sz)
1612{
1613	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1614	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1615	int ret;
1616
1617	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1618	if (ret < 0) {
1619		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1620			    ret);
1621		return ret;
1622	}
1623
1624	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1625		  rx_status[0]);
1626
1627	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1628		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1629			     *msg_sz);
1630	else
1631		*msg_ready = *msg_sz;
1632
1633	return 0;
1634}
1635
1636static ssize_t
1637intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1638			      u8 msg_id, bool paired)
1639{
1640	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1641	bool msg_ready = false;
1642	int timeout, ret;
1643	ssize_t msg_sz = 0;
1644
1645	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1646	if (timeout < 0)
1647		return timeout;
1648
1649	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1650							     msg_id, &msg_ready,
1651							     &msg_sz),
1652			 !ret && msg_ready && msg_sz, timeout * 1000,
1653			 1000, 5 * 1000);
1654	if (ret)
1655		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1656			    msg_id, ret, timeout);
1657
1658	return ret ? ret : msg_sz;
1659}
1660
1661static
1662int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1663			       void *buf, size_t size)
1664{
1665	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1666	unsigned int offset;
1667
1668	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1669	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1670}
1671
1672static
1673int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1674			      u8 msg_id, void *buf, size_t size)
1675{
1676	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1677	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1678	struct intel_hdmi *hdmi = &dig_port->hdmi;
1679	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1680	unsigned int offset;
1681	ssize_t ret;
1682
1683	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1684					    hdcp->is_paired);
1685	if (ret < 0)
1686		return ret;
1687
1688	/*
1689	 * Available msg size should be equal to or lesser than the
1690	 * available buffer.
1691	 */
1692	if (ret > size) {
1693		drm_dbg_kms(&i915->drm,
1694			    "msg_sz(%zd) is more than exp size(%zu)\n",
1695			    ret, size);
1696		return -EINVAL;
1697	}
1698
1699	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1700	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1701	if (ret)
1702		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1703			    msg_id, ret);
1704
1705	return ret;
1706}
1707
1708static
1709int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1710				struct intel_connector *connector)
1711{
1712	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1713	int ret;
1714
1715	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1716	if (ret)
1717		return ret;
1718
1719	/*
1720	 * Re-auth request and Link Integrity Failures are represented by
1721	 * same bit. i.e reauth_req.
1722	 */
1723	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1724		ret = HDCP_REAUTH_REQUEST;
1725	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1726		ret = HDCP_TOPOLOGY_CHANGE;
1727
1728	return ret;
1729}
1730
1731static
1732int intel_hdmi_hdcp2_capable(struct intel_connector *connector,
1733			     bool *capable)
1734{
1735	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1736	u8 hdcp2_version;
1737	int ret;
1738
1739	*capable = false;
1740	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1741				   &hdcp2_version, sizeof(hdcp2_version));
1742	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1743		*capable = true;
1744
1745	return ret;
1746}
1747
1748static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1749	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1750	.read_bksv = intel_hdmi_hdcp_read_bksv,
1751	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1752	.repeater_present = intel_hdmi_hdcp_repeater_present,
1753	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1754	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1755	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1756	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1757	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1758	.check_link = intel_hdmi_hdcp_check_link,
1759	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1760	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1761	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1762	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1763	.protocol = HDCP_PROTOCOL_HDMI,
1764};
1765
1766static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1767{
1768	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769	int max_tmds_clock, vbt_max_tmds_clock;
1770
1771	if (DISPLAY_VER(dev_priv) >= 10)
1772		max_tmds_clock = 594000;
1773	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1774		max_tmds_clock = 300000;
1775	else if (DISPLAY_VER(dev_priv) >= 5)
1776		max_tmds_clock = 225000;
1777	else
1778		max_tmds_clock = 165000;
1779
1780	vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1781	if (vbt_max_tmds_clock)
1782		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1783
1784	return max_tmds_clock;
1785}
1786
1787static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1788				const struct drm_connector_state *conn_state)
1789{
1790	struct intel_connector *connector = hdmi->attached_connector;
1791
1792	return connector->base.display_info.is_hdmi &&
1793		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1794}
1795
1796static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1797{
1798	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1799}
1800
1801static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1802				 bool respect_downstream_limits,
1803				 bool has_hdmi_sink)
1804{
1805	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1806	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1807
1808	if (respect_downstream_limits) {
1809		struct intel_connector *connector = hdmi->attached_connector;
1810		const struct drm_display_info *info = &connector->base.display_info;
1811
1812		if (hdmi->dp_dual_mode.max_tmds_clock)
1813			max_tmds_clock = min(max_tmds_clock,
1814					     hdmi->dp_dual_mode.max_tmds_clock);
1815
1816		if (info->max_tmds_clock)
1817			max_tmds_clock = min(max_tmds_clock,
1818					     info->max_tmds_clock);
1819		else if (!has_hdmi_sink)
1820			max_tmds_clock = min(max_tmds_clock, 165000);
1821	}
1822
1823	return max_tmds_clock;
1824}
1825
1826static enum drm_mode_status
1827hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1828		      int clock, bool respect_downstream_limits,
1829		      bool has_hdmi_sink)
1830{
1831	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1832	enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1833
1834	if (clock < 25000)
1835		return MODE_CLOCK_LOW;
1836	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1837					  has_hdmi_sink))
1838		return MODE_CLOCK_HIGH;
1839
1840	/* GLK DPLL can't generate 446-480 MHz */
1841	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1842		return MODE_CLOCK_RANGE;
1843
1844	/* BXT/GLK DPLL can't generate 223-240 MHz */
1845	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1846	    clock > 223333 && clock < 240000)
1847		return MODE_CLOCK_RANGE;
1848
1849	/* CHV DPLL can't generate 216-240 MHz */
1850	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1851		return MODE_CLOCK_RANGE;
1852
1853	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1854	if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1855		return MODE_CLOCK_RANGE;
1856
1857	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1858	if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1859		return MODE_CLOCK_RANGE;
1860
1861	/*
1862	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1863	 * set of link rates.
1864	 *
1865	 * FIXME: We will hopefully get an algorithmic way of programming
1866	 * the MPLLB for HDMI in the future.
1867	 */
1868	if (DISPLAY_VER(dev_priv) >= 14)
1869		return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1870	else if (IS_DG2(dev_priv))
1871		return intel_snps_phy_check_hdmi_link_rate(clock);
1872
1873	return MODE_OK;
1874}
1875
1876int intel_hdmi_tmds_clock(int clock, int bpc,
1877			  enum intel_output_format sink_format)
1878{
1879	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1880	if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1881		clock /= 2;
1882
1883	/*
1884	 * Need to adjust the port link by:
1885	 *  1.5x for 12bpc
1886	 *  1.25x for 10bpc
1887	 */
1888	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1889}
1890
1891static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1892{
1893	switch (bpc) {
1894	case 12:
1895		return !HAS_GMCH(i915);
1896	case 10:
1897		return DISPLAY_VER(i915) >= 11;
1898	case 8:
1899		return true;
1900	default:
1901		MISSING_CASE(bpc);
1902		return false;
1903	}
1904}
1905
1906static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1907					 int bpc, bool has_hdmi_sink,
1908					 enum intel_output_format sink_format)
1909{
 
1910	const struct drm_display_info *info = &connector->display_info;
1911	const struct drm_hdmi_info *hdmi = &info->hdmi;
1912
1913	switch (bpc) {
1914	case 12:
 
 
 
1915		if (!has_hdmi_sink)
1916			return false;
1917
1918		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1919			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1920		else
1921			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1922	case 10:
 
 
 
1923		if (!has_hdmi_sink)
1924			return false;
1925
1926		if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1927			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1928		else
1929			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1930	case 8:
1931		return true;
1932	default:
1933		MISSING_CASE(bpc);
1934		return false;
1935	}
1936}
1937
1938static enum drm_mode_status
1939intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1940			    bool has_hdmi_sink,
1941			    enum intel_output_format sink_format)
1942{
1943	struct drm_i915_private *i915 = to_i915(connector->dev);
1944	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1945	enum drm_mode_status status = MODE_OK;
1946	int bpc;
1947
1948	/*
1949	 * Try all color depths since valid port clock range
1950	 * can have holes. Any mode that can be used with at
1951	 * least one color depth is accepted.
1952	 */
1953	for (bpc = 12; bpc >= 8; bpc -= 2) {
1954		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1955
1956		if (!intel_hdmi_source_bpc_possible(i915, bpc))
1957			continue;
1958
1959		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1960			continue;
1961
1962		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1963		if (status == MODE_OK)
1964			return MODE_OK;
1965	}
1966
1967	/* can never happen */
1968	drm_WARN_ON(&i915->drm, status == MODE_OK);
 
 
1969
1970	return status;
1971}
1972
1973static enum drm_mode_status
1974intel_hdmi_mode_valid(struct drm_connector *connector,
1975		      struct drm_display_mode *mode)
1976{
1977	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1978	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
 
1979	enum drm_mode_status status;
1980	int clock = mode->clock;
1981	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1982	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1983	bool ycbcr_420_only;
1984	enum intel_output_format sink_format;
1985
1986	status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
1987	if (status != MODE_OK)
1988		return status;
1989
1990	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1991		clock *= 2;
1992
1993	if (clock > max_dotclk)
1994		return MODE_CLOCK_HIGH;
1995
1996	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1997		if (!has_hdmi_sink)
1998			return MODE_CLOCK_LOW;
1999		clock *= 2;
2000	}
2001
2002	/*
2003	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2004	 * enumerated only if FRL is supported. Current platforms do not support
2005	 * FRL so prune the higher resolution modes that require doctclock more
2006	 * than 600MHz.
2007	 */
2008	if (clock > 600000)
2009		return MODE_CLOCK_HIGH;
2010
2011	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2012
2013	if (ycbcr_420_only)
2014		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2015	else
2016		sink_format = INTEL_OUTPUT_FORMAT_RGB;
2017
2018	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2019	if (status != MODE_OK) {
2020		if (ycbcr_420_only ||
2021		    !connector->ycbcr_420_allowed ||
2022		    !drm_mode_is_420_also(&connector->display_info, mode))
2023			return status;
2024
2025		sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2026		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2027		if (status != MODE_OK)
2028			return status;
2029	}
2030
2031	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2032}
2033
2034bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2035			     int bpc, bool has_hdmi_sink)
2036{
2037	struct drm_atomic_state *state = crtc_state->uapi.state;
2038	struct drm_connector_state *connector_state;
2039	struct drm_connector *connector;
2040	int i;
2041
 
 
 
2042	for_each_new_connector_in_state(state, connector, connector_state, i) {
2043		if (connector_state->crtc != crtc_state->uapi.crtc)
2044			continue;
2045
2046		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2047						  crtc_state->sink_format))
2048			return false;
2049	}
2050
2051	return true;
2052}
2053
2054static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
 
2055{
2056	struct drm_i915_private *dev_priv =
2057		to_i915(crtc_state->uapi.crtc->dev);
2058	const struct drm_display_mode *adjusted_mode =
2059		&crtc_state->hw.adjusted_mode;
2060
2061	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
 
 
 
 
2062		return false;
2063
2064	/* Display Wa_1405510057:icl,ehl */
2065	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2066	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2067	    (adjusted_mode->crtc_hblank_end -
2068	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2069		return false;
2070
2071	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
 
 
 
2072}
2073
2074static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2075				  struct intel_crtc_state *crtc_state,
2076				  int clock, bool respect_downstream_limits)
2077{
2078	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2079	int bpc;
2080
2081	/*
2082	 * pipe_bpp could already be below 8bpc due to FDI
2083	 * bandwidth constraints. HDMI minimum is 8bpc however.
2084	 */
2085	bpc = max(crtc_state->pipe_bpp / 3, 8);
2086
2087	/*
2088	 * We will never exceed downstream TMDS clock limits while
2089	 * attempting deep color. If the user insists on forcing an
2090	 * out of spec mode they will have to be satisfied with 8bpc.
2091	 */
2092	if (!respect_downstream_limits)
2093		bpc = 8;
2094
2095	for (; bpc >= 8; bpc -= 2) {
2096		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2097						       crtc_state->sink_format);
2098
2099		if (hdmi_bpc_possible(crtc_state, bpc) &&
2100		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2101					  respect_downstream_limits,
2102					  crtc_state->has_hdmi_sink) == MODE_OK)
2103			return bpc;
2104	}
2105
2106	return -EINVAL;
2107}
2108
2109static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2110				    struct intel_crtc_state *crtc_state,
2111				    bool respect_downstream_limits)
2112{
2113	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 
2114	const struct drm_display_mode *adjusted_mode =
2115		&crtc_state->hw.adjusted_mode;
2116	int bpc, clock = adjusted_mode->crtc_clock;
2117
2118	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2119		clock *= 2;
2120
2121	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2122				     respect_downstream_limits);
2123	if (bpc < 0)
2124		return bpc;
2125
2126	crtc_state->port_clock =
2127		intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
 
2128
2129	/*
2130	 * pipe_bpp could already be below 8bpc due to
2131	 * FDI bandwidth constraints. We shouldn't bump it
2132	 * back up to the HDMI minimum 8bpc in that case.
2133	 */
2134	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
 
2135
2136	drm_dbg_kms(&i915->drm,
2137		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2138		    bpc, crtc_state->pipe_bpp);
2139
 
 
 
 
 
 
 
 
2140	return 0;
2141}
2142
2143bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2144				    const struct drm_connector_state *conn_state)
2145{
2146	const struct intel_digital_connector_state *intel_conn_state =
2147		to_intel_digital_connector_state(conn_state);
2148	const struct drm_display_mode *adjusted_mode =
2149		&crtc_state->hw.adjusted_mode;
2150
2151	/*
2152	 * Our YCbCr output is always limited range.
2153	 * crtc_state->limited_color_range only applies to RGB,
2154	 * and it must never be set for YCbCr or we risk setting
2155	 * some conflicting bits in TRANSCONF which will mess up
2156	 * the colors on the monitor.
2157	 */
2158	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2159		return false;
2160
2161	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2162		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2163		return crtc_state->has_hdmi_sink &&
2164			drm_default_rgb_quant_range(adjusted_mode) ==
2165			HDMI_QUANTIZATION_RANGE_LIMITED;
2166	} else {
2167		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2168	}
2169}
2170
2171static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2172				 const struct intel_crtc_state *crtc_state,
2173				 const struct drm_connector_state *conn_state)
2174{
2175	struct drm_connector *connector = conn_state->connector;
2176	const struct intel_digital_connector_state *intel_conn_state =
2177		to_intel_digital_connector_state(conn_state);
2178
2179	if (!crtc_state->has_hdmi_sink)
2180		return false;
2181
2182	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2183		return connector->display_info.has_audio;
2184	else
2185		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2186}
2187
2188static enum intel_output_format
2189intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2190		       struct intel_connector *connector,
2191		       bool ycbcr_420_output)
2192{
2193	if (!crtc_state->has_hdmi_sink)
2194		return INTEL_OUTPUT_FORMAT_RGB;
2195
2196	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2197		return INTEL_OUTPUT_FORMAT_YCBCR420;
2198	else
2199		return INTEL_OUTPUT_FORMAT_RGB;
2200}
2201
2202static enum intel_output_format
2203intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2204{
2205	return crtc_state->sink_format;
2206}
2207
2208static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2209					    struct intel_crtc_state *crtc_state,
2210					    const struct drm_connector_state *conn_state,
2211					    bool respect_downstream_limits)
2212{
2213	struct intel_connector *connector = to_intel_connector(conn_state->connector);
 
2214	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2215	const struct drm_display_info *info = &connector->base.display_info;
2216	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2217	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2218	int ret;
 
2219
2220	crtc_state->sink_format =
2221		intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2222
2223	if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2224		drm_dbg_kms(&i915->drm,
2225			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2226		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
 
2227	}
2228
2229	crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2230	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2231	if (ret) {
2232		if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2233		    !crtc_state->has_hdmi_sink ||
2234		    !connector->base.ycbcr_420_allowed ||
2235		    !drm_mode_is_420_also(info, adjusted_mode))
2236			return ret;
2237
2238		crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2239		crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2240		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2241	}
2242
2243	return ret;
2244}
2245
2246static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2247{
2248	return crtc_state->uapi.encoder_mask &&
2249		!is_power_of_2(crtc_state->uapi.encoder_mask);
2250}
2251
2252static bool source_supports_scrambling(struct intel_encoder *encoder)
2253{
2254	/*
2255	 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2256	 * scrambling is supported.
2257	 * But there seem to be cases where certain platforms that support
2258	 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2259	 * capped by VBT to less than 340MHz.
2260	 *
2261	 * In such cases when an HDMI2.0 sink is connected, it creates a
2262	 * problem : the platform and the sink both support scrambling but the
2263	 * HDMI 1.4 retimer chip doesn't.
2264	 *
2265	 * So go for scrambling, based on the max tmds clock taking into account,
2266	 * restrictions coming from VBT.
2267	 */
2268	return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2269}
2270
2271bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2272				      const struct intel_crtc_state *crtc_state,
2273				      const struct drm_connector_state *conn_state)
2274{
2275	struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2276
2277	return intel_has_hdmi_sink(hdmi, conn_state) &&
2278		!intel_hdmi_is_cloned(crtc_state);
2279}
2280
2281int intel_hdmi_compute_config(struct intel_encoder *encoder,
2282			      struct intel_crtc_state *pipe_config,
2283			      struct drm_connector_state *conn_state)
2284{
 
2285	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2286	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2287	struct drm_connector *connector = conn_state->connector;
2288	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2289	int ret;
2290
2291	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2292		return -EINVAL;
2293
2294	if (!connector->interlace_allowed &&
2295	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2296		return -EINVAL;
2297
2298	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
 
 
2299
2300	if (pipe_config->has_hdmi_sink)
2301		pipe_config->has_infoframe = true;
2302
2303	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2304		pipe_config->pixel_multiplier = 2;
2305
 
 
 
2306	pipe_config->has_audio =
2307		intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2308		intel_audio_compute_config(encoder, pipe_config, conn_state);
2309
2310	/*
2311	 * Try to respect downstream TMDS clock limits first, if
2312	 * that fails assume the user might know something we don't.
2313	 */
2314	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2315	if (ret)
2316		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2317	if (ret) {
2318		drm_dbg_kms(&dev_priv->drm,
2319			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2320			    pipe_config->hw.adjusted_mode.crtc_clock);
2321		return ret;
2322	}
2323
2324	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2325		ret = intel_panel_fitting(pipe_config, conn_state);
2326		if (ret)
2327			return ret;
2328	}
2329
2330	pipe_config->limited_color_range =
2331		intel_hdmi_limited_color_range(pipe_config, conn_state);
2332
2333	if (conn_state->picture_aspect_ratio)
2334		adjusted_mode->picture_aspect_ratio =
2335			conn_state->picture_aspect_ratio;
2336
2337	pipe_config->lane_count = 4;
2338
2339	if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2340		if (scdc->scrambling.low_rates)
2341			pipe_config->hdmi_scrambling = true;
2342
2343		if (pipe_config->port_clock > 340000) {
2344			pipe_config->hdmi_scrambling = true;
2345			pipe_config->hdmi_high_tmds_clock_ratio = true;
2346		}
2347	}
2348
2349	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2350					 conn_state);
2351
2352	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2353		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2354		return -EINVAL;
2355	}
2356
2357	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2358		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2359		return -EINVAL;
2360	}
2361
2362	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2363		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2364		return -EINVAL;
2365	}
2366
2367	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2368		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2369		return -EINVAL;
2370	}
2371
2372	return 0;
2373}
2374
2375void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2376{
2377	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2378
2379	/*
2380	 * Give a hand to buggy BIOSen which forget to turn
2381	 * the TMDS output buffers back on after a reboot.
2382	 */
2383	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2384}
2385
2386static void
2387intel_hdmi_unset_edid(struct drm_connector *connector)
2388{
2389	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2390
 
 
 
2391	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2392	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2393
2394	drm_edid_free(to_intel_connector(connector)->detect_edid);
2395	to_intel_connector(connector)->detect_edid = NULL;
2396}
2397
2398static void
2399intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2400{
2401	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2402	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2403	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2404	struct i2c_adapter *ddc = connector->ddc;
2405	enum drm_dp_dual_mode_type type;
2406
2407	type = drm_dp_dual_mode_detect(&dev_priv->drm, ddc);
2408
2409	/*
2410	 * Type 1 DVI adaptors are not required to implement any
2411	 * registers, so we can't always detect their presence.
2412	 * Ideally we should be able to check the state of the
2413	 * CONFIG1 pin, but no such luck on our hardware.
2414	 *
2415	 * The only method left to us is to check the VBT to see
2416	 * if the port is a dual mode capable DP port.
 
 
 
2417	 */
2418	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2419		if (!connector->force &&
2420		    intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
 
 
 
2421			drm_dbg_kms(&dev_priv->drm,
2422				    "Assuming DP dual mode adaptor presence based on VBT\n");
2423			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2424		} else {
2425			type = DRM_DP_DUAL_MODE_NONE;
2426		}
2427	}
2428
2429	if (type == DRM_DP_DUAL_MODE_NONE)
2430		return;
2431
2432	hdmi->dp_dual_mode.type = type;
2433	hdmi->dp_dual_mode.max_tmds_clock =
2434		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, ddc);
2435
2436	drm_dbg_kms(&dev_priv->drm,
2437		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2438		    drm_dp_get_dual_mode_type_name(type),
2439		    hdmi->dp_dual_mode.max_tmds_clock);
2440
2441	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2442	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2443	    !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2444		drm_dbg_kms(&dev_priv->drm,
2445			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2446		hdmi->dp_dual_mode.max_tmds_clock = 0;
2447	}
2448}
2449
2450static bool
2451intel_hdmi_set_edid(struct drm_connector *connector)
2452{
2453	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2454	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2455	struct i2c_adapter *ddc = connector->ddc;
2456	intel_wakeref_t wakeref;
2457	const struct drm_edid *drm_edid;
2458	bool connected = false;
 
2459
2460	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2461
2462	drm_edid = drm_edid_read_ddc(connector, ddc);
 
 
2463
2464	if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2465		drm_dbg_kms(&dev_priv->drm,
2466			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2467		intel_gmbus_force_bit(ddc, true);
2468		drm_edid = drm_edid_read_ddc(connector, ddc);
2469		intel_gmbus_force_bit(ddc, false);
2470	}
2471
2472	/* Below we depend on display info having been updated */
2473	drm_edid_connector_update(connector, drm_edid);
2474
2475	to_intel_connector(connector)->detect_edid = drm_edid;
2476
2477	if (drm_edid_is_digital(drm_edid)) {
2478		intel_hdmi_dp_dual_mode_detect(connector);
 
 
2479
2480		connected = true;
2481	}
2482
2483	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2484
2485	cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2486				   connector->display_info.source_physical_address);
2487
2488	return connected;
2489}
2490
2491static enum drm_connector_status
2492intel_hdmi_detect(struct drm_connector *connector, bool force)
2493{
2494	enum drm_connector_status status = connector_status_disconnected;
2495	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2496	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2497	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2498	intel_wakeref_t wakeref;
2499
2500	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2501		    connector->base.id, connector->name);
2502
2503	if (!intel_display_device_enabled(dev_priv))
2504		return connector_status_disconnected;
2505
2506	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2507
2508	if (DISPLAY_VER(dev_priv) >= 11 &&
2509	    !intel_digital_port_connected(encoder))
2510		goto out;
2511
2512	intel_hdmi_unset_edid(connector);
2513
2514	if (intel_hdmi_set_edid(connector))
2515		status = connector_status_connected;
2516
2517out:
2518	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2519
2520	if (status != connector_status_connected)
2521		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2522
 
 
 
 
 
 
2523	return status;
2524}
2525
2526static void
2527intel_hdmi_force(struct drm_connector *connector)
2528{
2529	struct drm_i915_private *i915 = to_i915(connector->dev);
2530
2531	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2532		    connector->base.id, connector->name);
2533
2534	intel_hdmi_unset_edid(connector);
2535
2536	if (connector->status != connector_status_connected)
2537		return;
2538
2539	intel_hdmi_set_edid(connector);
2540}
2541
2542static int intel_hdmi_get_modes(struct drm_connector *connector)
2543{
2544	/* drm_edid_connector_update() done in ->detect() or ->force() */
2545	return drm_edid_connector_add_modes(connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546}
2547
2548static int
2549intel_hdmi_connector_register(struct drm_connector *connector)
2550{
2551	int ret;
2552
2553	ret = intel_connector_register(connector);
2554	if (ret)
2555		return ret;
2556
 
 
2557	return ret;
2558}
2559
2560static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2561{
2562	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2563
2564	cec_notifier_conn_unregister(n);
2565
 
2566	intel_connector_unregister(connector);
2567}
2568
2569static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2570	.detect = intel_hdmi_detect,
2571	.force = intel_hdmi_force,
2572	.fill_modes = drm_helper_probe_single_connector_modes,
2573	.atomic_get_property = intel_digital_connector_atomic_get_property,
2574	.atomic_set_property = intel_digital_connector_atomic_set_property,
2575	.late_register = intel_hdmi_connector_register,
2576	.early_unregister = intel_hdmi_connector_unregister,
2577	.destroy = intel_connector_destroy,
2578	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2579	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2580};
2581
2582static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2583					     struct drm_atomic_state *state)
2584{
2585	struct drm_i915_private *i915 = to_i915(state->dev);
2586
2587	if (HAS_DDI(i915))
2588		return intel_digital_connector_atomic_check(connector, state);
2589	else
2590		return g4x_hdmi_connector_atomic_check(connector, state);
2591}
2592
2593static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2594	.get_modes = intel_hdmi_get_modes,
2595	.mode_valid = intel_hdmi_mode_valid,
2596	.atomic_check = intel_hdmi_connector_atomic_check,
2597};
2598
2599static void
2600intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2601{
2602	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2603
2604	intel_attach_force_audio_property(connector);
2605	intel_attach_broadcast_rgb_property(connector);
2606	intel_attach_aspect_ratio_property(connector);
2607
2608	intel_attach_hdmi_colorspace_property(connector);
2609	drm_connector_attach_content_type_property(connector);
2610
2611	if (DISPLAY_VER(dev_priv) >= 10)
2612		drm_connector_attach_hdr_output_metadata_property(connector);
2613
2614	if (!HAS_GMCH(dev_priv))
2615		drm_connector_attach_max_bpc_property(connector, 8, 12);
2616}
2617
2618/*
2619 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2620 * @encoder: intel_encoder
2621 * @connector: drm_connector
2622 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2623 *  or reset the high tmds clock ratio for scrambling
2624 * @scrambling: bool to Indicate if the function needs to set or reset
2625 *  sink scrambling
2626 *
2627 * This function handles scrambling on HDMI 2.0 capable sinks.
2628 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2629 * it enables scrambling. This should be called before enabling the HDMI
2630 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2631 * detect a scrambled clock within 100 ms.
2632 *
2633 * Returns:
2634 * True on success, false on failure.
2635 */
2636bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2637				       struct drm_connector *connector,
2638				       bool high_tmds_clock_ratio,
2639				       bool scrambling)
2640{
2641	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 
2642	struct drm_scrambling *sink_scrambling =
2643		&connector->display_info.hdmi.scdc.scrambling;
 
 
2644
2645	if (!sink_scrambling->supported)
2646		return true;
2647
2648	drm_dbg_kms(&dev_priv->drm,
2649		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2650		    connector->base.id, connector->name,
2651		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2652
2653	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2654	return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2655		drm_scdc_set_scrambling(connector, scrambling);
 
2656}
2657
2658static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2659{
2660	u8 ddc_pin;
2661
2662	switch (port) {
2663	case PORT_B:
2664		ddc_pin = GMBUS_PIN_DPB;
2665		break;
2666	case PORT_C:
2667		ddc_pin = GMBUS_PIN_DPC;
2668		break;
2669	case PORT_D:
2670		ddc_pin = GMBUS_PIN_DPD_CHV;
2671		break;
2672	default:
2673		MISSING_CASE(port);
2674		ddc_pin = GMBUS_PIN_DPB;
2675		break;
2676	}
2677	return ddc_pin;
2678}
2679
2680static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2681{
2682	u8 ddc_pin;
2683
2684	switch (port) {
2685	case PORT_B:
2686		ddc_pin = GMBUS_PIN_1_BXT;
2687		break;
2688	case PORT_C:
2689		ddc_pin = GMBUS_PIN_2_BXT;
2690		break;
2691	default:
2692		MISSING_CASE(port);
2693		ddc_pin = GMBUS_PIN_1_BXT;
2694		break;
2695	}
2696	return ddc_pin;
2697}
2698
2699static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2700			      enum port port)
2701{
2702	u8 ddc_pin;
2703
2704	switch (port) {
2705	case PORT_B:
2706		ddc_pin = GMBUS_PIN_1_BXT;
2707		break;
2708	case PORT_C:
2709		ddc_pin = GMBUS_PIN_2_BXT;
2710		break;
2711	case PORT_D:
2712		ddc_pin = GMBUS_PIN_4_CNP;
2713		break;
2714	case PORT_F:
2715		ddc_pin = GMBUS_PIN_3_BXT;
2716		break;
2717	default:
2718		MISSING_CASE(port);
2719		ddc_pin = GMBUS_PIN_1_BXT;
2720		break;
2721	}
2722	return ddc_pin;
2723}
2724
2725static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2726{
2727	enum phy phy = intel_port_to_phy(dev_priv, port);
2728
2729	if (intel_phy_is_combo(dev_priv, phy))
2730		return GMBUS_PIN_1_BXT + port;
2731	else if (intel_phy_is_tc(dev_priv, phy))
2732		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2733
2734	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2735	return GMBUS_PIN_2_BXT;
2736}
2737
2738static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2739{
2740	enum phy phy = intel_port_to_phy(dev_priv, port);
2741	u8 ddc_pin;
2742
2743	switch (phy) {
2744	case PHY_A:
2745		ddc_pin = GMBUS_PIN_1_BXT;
2746		break;
2747	case PHY_B:
2748		ddc_pin = GMBUS_PIN_2_BXT;
2749		break;
2750	case PHY_C:
2751		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2752		break;
2753	default:
2754		MISSING_CASE(phy);
2755		ddc_pin = GMBUS_PIN_1_BXT;
2756		break;
2757	}
2758	return ddc_pin;
2759}
2760
2761static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2762{
2763	enum phy phy = intel_port_to_phy(dev_priv, port);
2764
2765	WARN_ON(port == PORT_C);
2766
2767	/*
2768	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2769	 * final two outputs use type-c pins, even though they're actually
2770	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2771	 * all outputs.
2772	 */
2773	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2774		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2775
2776	return GMBUS_PIN_1_BXT + phy;
2777}
2778
2779static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2780{
2781	enum phy phy = intel_port_to_phy(i915, port);
2782
2783	drm_WARN_ON(&i915->drm, port == PORT_A);
2784
2785	/*
2786	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2787	 * final two outputs use type-c pins, even though they're actually
2788	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2789	 * all outputs.
2790	 */
2791	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2792		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2793
2794	return GMBUS_PIN_1_BXT + phy;
2795}
2796
2797static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2798{
2799	return intel_port_to_phy(dev_priv, port) + 1;
2800}
2801
2802static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2803{
2804	enum phy phy = intel_port_to_phy(dev_priv, port);
2805
2806	WARN_ON(port == PORT_B || port == PORT_C);
2807
2808	/*
2809	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2810	 * except first combo output.
2811	 */
2812	if (phy == PHY_A)
2813		return GMBUS_PIN_1_BXT;
2814
2815	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2816}
2817
2818static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2819			      enum port port)
2820{
2821	u8 ddc_pin;
2822
2823	switch (port) {
2824	case PORT_B:
2825		ddc_pin = GMBUS_PIN_DPB;
2826		break;
2827	case PORT_C:
2828		ddc_pin = GMBUS_PIN_DPC;
2829		break;
2830	case PORT_D:
2831		ddc_pin = GMBUS_PIN_DPD;
2832		break;
2833	default:
2834		MISSING_CASE(port);
2835		ddc_pin = GMBUS_PIN_DPB;
2836		break;
2837	}
2838	return ddc_pin;
2839}
2840
2841static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2842{
2843	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2844	enum port port = encoder->port;
2845	u8 ddc_pin;
2846
 
 
 
 
 
 
 
 
2847	if (IS_ALDERLAKE_S(dev_priv))
2848		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2849	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2850		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2851	else if (IS_ROCKETLAKE(dev_priv))
2852		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2853	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2854		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2855	else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2856		 HAS_PCH_TGP(dev_priv))
2857		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2858	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2859		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2860	else if (HAS_PCH_CNP(dev_priv))
2861		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2862	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2863		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2864	else if (IS_CHERRYVIEW(dev_priv))
2865		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2866	else
2867		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2868
2869	return ddc_pin;
2870}
2871
2872static struct intel_encoder *
2873get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2874{
2875	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2876	struct intel_encoder *other;
2877
2878	for_each_intel_encoder(&i915->drm, other) {
2879		struct intel_connector *connector;
2880
2881		if (other == encoder)
2882			continue;
2883
2884		if (!intel_encoder_is_dig_port(other))
2885			continue;
2886
2887		connector = enc_to_dig_port(other)->hdmi.attached_connector;
2888
2889		if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2890			return other;
2891	}
2892
2893	return NULL;
2894}
2895
2896static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2897{
2898	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2899	struct intel_encoder *other;
2900	const char *source;
2901	u8 ddc_pin;
2902
2903	ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2904	source = "VBT";
2905
2906	if (!ddc_pin) {
2907		ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2908		source = "platform default";
2909	}
2910
2911	if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2912		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2913			    encoder->base.base.id, encoder->base.name, ddc_pin);
2914		return 0;
2915	}
2916
2917	other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2918	if (other) {
2919		drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2920			    encoder->base.base.id, encoder->base.name, ddc_pin,
2921			    other->base.base.id, other->base.name);
2922		return 0;
2923	}
2924
2925	drm_dbg_kms(&i915->drm,
2926		    "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2927		    encoder->base.base.id, encoder->base.name,
2928		    ddc_pin, source);
2929
2930	return ddc_pin;
2931}
2932
2933void intel_infoframe_init(struct intel_digital_port *dig_port)
2934{
2935	struct drm_i915_private *dev_priv =
2936		to_i915(dig_port->base.base.dev);
2937
2938	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2939		dig_port->write_infoframe = vlv_write_infoframe;
2940		dig_port->read_infoframe = vlv_read_infoframe;
2941		dig_port->set_infoframes = vlv_set_infoframes;
2942		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2943	} else if (IS_G4X(dev_priv)) {
2944		dig_port->write_infoframe = g4x_write_infoframe;
2945		dig_port->read_infoframe = g4x_read_infoframe;
2946		dig_port->set_infoframes = g4x_set_infoframes;
2947		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2948	} else if (HAS_DDI(dev_priv)) {
2949		if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2950			dig_port->write_infoframe = lspcon_write_infoframe;
2951			dig_port->read_infoframe = lspcon_read_infoframe;
2952			dig_port->set_infoframes = lspcon_set_infoframes;
2953			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2954		} else {
2955			dig_port->write_infoframe = hsw_write_infoframe;
2956			dig_port->read_infoframe = hsw_read_infoframe;
2957			dig_port->set_infoframes = hsw_set_infoframes;
2958			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2959		}
2960	} else if (HAS_PCH_IBX(dev_priv)) {
2961		dig_port->write_infoframe = ibx_write_infoframe;
2962		dig_port->read_infoframe = ibx_read_infoframe;
2963		dig_port->set_infoframes = ibx_set_infoframes;
2964		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2965	} else {
2966		dig_port->write_infoframe = cpt_write_infoframe;
2967		dig_port->read_infoframe = cpt_read_infoframe;
2968		dig_port->set_infoframes = cpt_set_infoframes;
2969		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2970	}
2971}
2972
2973void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2974			       struct intel_connector *intel_connector)
2975{
2976	struct drm_connector *connector = &intel_connector->base;
2977	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2978	struct intel_encoder *intel_encoder = &dig_port->base;
2979	struct drm_device *dev = intel_encoder->base.dev;
2980	struct drm_i915_private *dev_priv = to_i915(dev);
 
2981	enum port port = intel_encoder->port;
2982	struct cec_connector_info conn_info;
2983	u8 ddc_pin;
2984
2985	drm_dbg_kms(&dev_priv->drm,
2986		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2987		    intel_encoder->base.base.id, intel_encoder->base.name);
2988
2989	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2990		return;
2991
2992	if (drm_WARN(dev, dig_port->max_lanes < 4,
2993		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2994		     dig_port->max_lanes, intel_encoder->base.base.id,
2995		     intel_encoder->base.name))
2996		return;
2997
2998	ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
2999	if (!ddc_pin)
3000		return;
3001
3002	drm_connector_init_with_ddc(dev, connector,
3003				    &intel_hdmi_connector_funcs,
3004				    DRM_MODE_CONNECTOR_HDMIA,
3005				    intel_gmbus_get_adapter(dev_priv, ddc_pin));
3006
3007	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3008
3009	if (DISPLAY_VER(dev_priv) < 12)
3010		connector->interlace_allowed = true;
3011
3012	connector->stereo_allowed = true;
3013
3014	if (DISPLAY_VER(dev_priv) >= 10)
3015		connector->ycbcr_420_allowed = true;
3016
3017	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3018
3019	if (HAS_DDI(dev_priv))
3020		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3021	else
3022		intel_connector->get_hw_state = intel_connector_get_hw_state;
3023
3024	intel_hdmi_add_properties(intel_hdmi, connector);
3025
3026	intel_connector_attach_encoder(intel_connector, intel_encoder);
3027	intel_hdmi->attached_connector = intel_connector;
3028
3029	if (is_hdcp_supported(dev_priv, port)) {
3030		int ret = intel_hdcp_init(intel_connector, dig_port,
3031					  &intel_hdmi_hdcp_shim);
3032		if (ret)
3033			drm_dbg_kms(&dev_priv->drm,
3034				    "HDCP init failed, skipping.\n");
 
 
 
 
 
 
 
 
 
 
3035	}
3036
3037	cec_fill_conn_info_from_drm(&conn_info, connector);
3038
3039	intel_hdmi->cec_notifier =
3040		cec_notifier_conn_register(dev->dev, port_identifier(port),
3041					   &conn_info);
3042	if (!intel_hdmi->cec_notifier)
3043		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3044}
3045
3046/*
3047 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3048 * @vactive: Vactive of a display mode
3049 *
3050 * @return: appropriate dsc slice height for a given mode.
3051 */
3052int intel_hdmi_dsc_get_slice_height(int vactive)
3053{
3054	int slice_height;
3055
3056	/*
3057	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3058	 * Select smallest slice height >=96, that results in a valid PPS and
3059	 * requires minimum padding lines required for final slice.
3060	 *
3061	 * Assumption : Vactive is even.
3062	 */
3063	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3064		if (vactive % slice_height == 0)
3065			return slice_height;
3066
3067	return 0;
3068}
3069
3070/*
3071 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3072 * and dsc decoder capabilities
3073 *
3074 * @crtc_state: intel crtc_state
3075 * @src_max_slices: maximum slices supported by the DSC encoder
3076 * @src_max_slice_width: maximum slice width supported by DSC encoder
3077 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3078 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3079 *
3080 * @return: num of dsc slices that can be supported by the dsc encoder
3081 * and decoder.
3082 */
3083int
3084intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3085			      int src_max_slices, int src_max_slice_width,
3086			      int hdmi_max_slices, int hdmi_throughput)
3087{
3088/* Pixel rates in KPixels/sec */
3089#define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3090/*
3091 * Rates at which the source and sink are required to process pixels in each
3092 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3093 */
3094#define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3095#define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3096
3097/* Spec limits the slice width to 2720 pixels */
3098#define MAX_HDMI_SLICE_WIDTH			2720
3099	int kslice_adjust;
3100	int adjusted_clk_khz;
3101	int min_slices;
3102	int target_slices;
3103	int max_throughput; /* max clock freq. in khz per slice */
3104	int max_slice_width;
3105	int slice_width;
3106	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3107
3108	if (!hdmi_throughput)
3109		return 0;
3110
3111	/*
3112	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3113	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3114	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3115	 * dividing adjusted clock value by 10.
3116	 */
3117	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3118	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3119		kslice_adjust = 10;
3120	else
3121		kslice_adjust = 5;
3122
3123	/*
3124	 * As per spec, the rate at which the source and the sink process
3125	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3126	 * This depends upon the pixel clock rate and output formats
3127	 * (kslice adjust).
3128	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3129	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3130	 */
3131
3132	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3133
3134	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3135		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3136	else
3137		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3138
3139	/*
3140	 * Taking into account the sink's capability for maximum
3141	 * clock per slice (in MHz) as read from HF-VSDB.
3142	 */
3143	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3144
3145	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3146	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3147
3148	/*
3149	 * Keep on increasing the num of slices/line, starting from min_slices
3150	 * per line till we get such a number, for which the slice_width is
3151	 * just less than max_slice_width. The slices/line selected should be
3152	 * less than or equal to the max horizontal slices that the combination
3153	 * of PCON encoder and HDMI decoder can support.
3154	 */
3155	slice_width = max_slice_width;
3156
3157	do {
3158		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3159			target_slices = 1;
3160		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3161			target_slices = 2;
3162		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3163			target_slices = 4;
3164		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3165			target_slices = 8;
3166		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3167			target_slices = 12;
3168		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3169			target_slices = 16;
3170		else
3171			return 0;
3172
3173		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3174		if (slice_width >= max_slice_width)
3175			min_slices = target_slices + 1;
3176	} while (slice_width >= max_slice_width);
3177
3178	return target_slices;
3179}
3180
3181/*
3182 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3183 * source and sink capabilities.
3184 *
3185 * @src_fraction_bpp: fractional bpp supported by the source
3186 * @slice_width: dsc slice width supported by the source and sink
3187 * @num_slices: num of slices supported by the source and sink
3188 * @output_format: video output format
3189 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3190 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3191 *
3192 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3193 */
3194int
3195intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3196		       int output_format, bool hdmi_all_bpp,
3197		       int hdmi_max_chunk_bytes)
3198{
3199	int max_dsc_bpp, min_dsc_bpp;
3200	int target_bytes;
3201	bool bpp_found = false;
3202	int bpp_decrement_x16;
3203	int bpp_target;
3204	int bpp_target_x16;
3205
3206	/*
3207	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3208	 * Start with the max bpp and keep on decrementing with
3209	 * fractional bpp, if supported by PCON DSC encoder
3210	 *
3211	 * for each bpp we check if no of bytes can be supported by HDMI sink
3212	 */
3213
3214	/* Assuming: bpc as 8*/
3215	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3216		min_dsc_bpp = 6;
3217		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3218	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3219		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3220		min_dsc_bpp = 8;
3221		max_dsc_bpp = 3 * 8; /* 3*bpc */
3222	} else {
3223		/* Assuming 4:2:2 encoding */
3224		min_dsc_bpp = 7;
3225		max_dsc_bpp = 2 * 8; /* 2*bpc */
3226	}
3227
3228	/*
3229	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3230	 * Section 7.7.34 : Source shall not enable compressed Video
3231	 * Transport with bpp_target settings above 12 bpp unless
3232	 * DSC_all_bpp is set to 1.
3233	 */
3234	if (!hdmi_all_bpp)
3235		max_dsc_bpp = min(max_dsc_bpp, 12);
3236
3237	/*
3238	 * The Sink has a limit of compressed data in bytes for a scanline,
3239	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3240	 * The no. of bytes depend on the target bits per pixel that the
3241	 * source configures. So we start with the max_bpp and calculate
3242	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3243	 * till we get the target_chunk_bytes just less than what the sink's
3244	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3245	 *
3246	 * The decrement is according to the fractional support from PCON DSC
3247	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3248	 *
3249	 * bpp_target_x16 = bpp_target * 16
3250	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3251	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3252	 */
3253
3254	bpp_target = max_dsc_bpp;
3255
3256	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3257	if (!src_fractional_bpp)
3258		src_fractional_bpp = 1;
3259	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3260	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3261
3262	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3263		int bpp;
3264
3265		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3266		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3267		if (target_bytes <= hdmi_max_chunk_bytes) {
3268			bpp_found = true;
3269			break;
3270		}
3271		bpp_target_x16 -= bpp_decrement_x16;
3272	}
3273	if (bpp_found)
3274		return bpp_target_x16;
3275
3276	return 0;
3277}