Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The file intends to implement PE based on the information from
  4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  5 * All the PEs should be organized as hierarchy tree. The first level
  6 * of the tree will be associated to existing PHBs since the particular
  7 * PE is only meaningful in one PHB domain.
  8 *
  9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
 10 */
 11
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/gfp.h>
 15#include <linux/kernel.h>
 
 16#include <linux/pci.h>
 17#include <linux/string.h>
 18
 19#include <asm/pci-bridge.h>
 20#include <asm/ppc-pci.h>
 21
 22static int eeh_pe_aux_size = 0;
 23static LIST_HEAD(eeh_phb_pe);
 24
 25/**
 26 * eeh_set_pe_aux_size - Set PE auxillary data size
 27 * @size: PE auxillary data size
 28 *
 29 * Set PE auxillary data size
 30 */
 31void eeh_set_pe_aux_size(int size)
 32{
 33	if (size < 0)
 34		return;
 35
 36	eeh_pe_aux_size = size;
 37}
 38
 39/**
 40 * eeh_pe_alloc - Allocate PE
 41 * @phb: PCI controller
 42 * @type: PE type
 43 *
 44 * Allocate PE instance dynamically.
 45 */
 46static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 47{
 48	struct eeh_pe *pe;
 49	size_t alloc_size;
 50
 51	alloc_size = sizeof(struct eeh_pe);
 52	if (eeh_pe_aux_size) {
 53		alloc_size = ALIGN(alloc_size, cache_line_size());
 54		alloc_size += eeh_pe_aux_size;
 55	}
 56
 57	/* Allocate PHB PE */
 58	pe = kzalloc(alloc_size, GFP_KERNEL);
 59	if (!pe) return NULL;
 60
 61	/* Initialize PHB PE */
 62	pe->type = type;
 63	pe->phb = phb;
 64	INIT_LIST_HEAD(&pe->child_list);
 65	INIT_LIST_HEAD(&pe->edevs);
 66
 67	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 68				      cache_line_size());
 69	return pe;
 70}
 71
 72/**
 73 * eeh_phb_pe_create - Create PHB PE
 74 * @phb: PCI controller
 75 *
 76 * The function should be called while the PHB is detected during
 77 * system boot or PCI hotplug in order to create PHB PE.
 78 */
 79int eeh_phb_pe_create(struct pci_controller *phb)
 80{
 81	struct eeh_pe *pe;
 82
 83	/* Allocate PHB PE */
 84	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 85	if (!pe) {
 86		pr_err("%s: out of memory!\n", __func__);
 87		return -ENOMEM;
 88	}
 89
 90	/* Put it into the list */
 91	list_add_tail(&pe->child, &eeh_phb_pe);
 92
 93	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
 94
 95	return 0;
 96}
 97
 98/**
 99 * eeh_wait_state - Wait for PE state
100 * @pe: EEH PE
101 * @max_wait: maximal period in millisecond
102 *
103 * Wait for the state of associated PE. It might take some time
104 * to retrieve the PE's state.
105 */
106int eeh_wait_state(struct eeh_pe *pe, int max_wait)
107{
108	int ret;
109	int mwait;
110
111	/*
112	 * According to PAPR, the state of PE might be temporarily
113	 * unavailable. Under the circumstance, we have to wait
114	 * for indicated time determined by firmware. The maximal
115	 * wait time is 5 minutes, which is acquired from the original
116	 * EEH implementation. Also, the original implementation
117	 * also defined the minimal wait time as 1 second.
118	 */
119#define EEH_STATE_MIN_WAIT_TIME	(1000)
120#define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
121
122	while (1) {
123		ret = eeh_ops->get_state(pe, &mwait);
124
125		if (ret != EEH_STATE_UNAVAILABLE)
126			return ret;
127
128		if (max_wait <= 0) {
129			pr_warn("%s: Timeout when getting PE's state (%d)\n",
130				__func__, max_wait);
131			return EEH_STATE_NOT_SUPPORT;
132		}
133
134		if (mwait < EEH_STATE_MIN_WAIT_TIME) {
135			pr_warn("%s: Firmware returned bad wait value %d\n",
136				__func__, mwait);
137			mwait = EEH_STATE_MIN_WAIT_TIME;
138		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
139			pr_warn("%s: Firmware returned too long wait value %d\n",
140				__func__, mwait);
141			mwait = EEH_STATE_MAX_WAIT_TIME;
142		}
143
144		msleep(min(mwait, max_wait));
145		max_wait -= mwait;
146	}
147}
148
149/**
150 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
151 * @phb: PCI controller
152 *
153 * The overall PEs form hierarchy tree. The first layer of the
154 * hierarchy tree is composed of PHB PEs. The function is used
155 * to retrieve the corresponding PHB PE according to the given PHB.
156 */
157struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
158{
159	struct eeh_pe *pe;
160
161	list_for_each_entry(pe, &eeh_phb_pe, child) {
162		/*
163		 * Actually, we needn't check the type since
164		 * the PE for PHB has been determined when that
165		 * was created.
166		 */
167		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
168			return pe;
169	}
170
171	return NULL;
172}
173
174/**
175 * eeh_pe_next - Retrieve the next PE in the tree
176 * @pe: current PE
177 * @root: root PE
178 *
179 * The function is used to retrieve the next PE in the
180 * hierarchy PE tree.
181 */
182struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
183{
184	struct list_head *next = pe->child_list.next;
185
186	if (next == &pe->child_list) {
187		while (1) {
188			if (pe == root)
189				return NULL;
190			next = pe->child.next;
191			if (next != &pe->parent->child_list)
192				break;
193			pe = pe->parent;
194		}
195	}
196
197	return list_entry(next, struct eeh_pe, child);
198}
199
200/**
201 * eeh_pe_traverse - Traverse PEs in the specified PHB
202 * @root: root PE
203 * @fn: callback
204 * @flag: extra parameter to callback
205 *
206 * The function is used to traverse the specified PE and its
207 * child PEs. The traversing is to be terminated once the
208 * callback returns something other than NULL, or no more PEs
209 * to be traversed.
210 */
211void *eeh_pe_traverse(struct eeh_pe *root,
212		      eeh_pe_traverse_func fn, void *flag)
213{
214	struct eeh_pe *pe;
215	void *ret;
216
217	eeh_for_each_pe(root, pe) {
218		ret = fn(pe, flag);
219		if (ret) return ret;
220	}
221
222	return NULL;
223}
224
225/**
226 * eeh_pe_dev_traverse - Traverse the devices from the PE
227 * @root: EEH PE
228 * @fn: function callback
229 * @flag: extra parameter to callback
230 *
231 * The function is used to traverse the devices of the specified
232 * PE and its child PEs.
233 */
234void eeh_pe_dev_traverse(struct eeh_pe *root,
235			  eeh_edev_traverse_func fn, void *flag)
236{
237	struct eeh_pe *pe;
238	struct eeh_dev *edev, *tmp;
239
240	if (!root) {
241		pr_warn("%s: Invalid PE %p\n",
242			__func__, root);
243		return;
244	}
245
246	/* Traverse root PE */
247	eeh_for_each_pe(root, pe)
248		eeh_pe_for_each_dev(pe, edev, tmp)
249			fn(edev, flag);
250}
251
252/**
253 * __eeh_pe_get - Check the PE address
254 *
255 * For one particular PE, it can be identified by PE address
256 * or tranditional BDF address. BDF address is composed of
257 * Bus/Device/Function number. The extra data referred by flag
258 * indicates which type of address should be used.
259 */
260static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
261{
262	int *target_pe = flag;
263
264	/* PHB PEs are special and should be ignored */
265	if (pe->type & EEH_PE_PHB)
266		return NULL;
267
268	if (*target_pe == pe->addr)
269		return pe;
270
271	return NULL;
272}
273
274/**
275 * eeh_pe_get - Search PE based on the given address
276 * @phb: PCI controller
277 * @pe_no: PE number
278 *
279 * Search the corresponding PE based on the specified address which
280 * is included in the eeh device. The function is used to check if
281 * the associated PE has been created against the PE address. It's
282 * notable that the PE address has 2 format: traditional PE address
283 * which is composed of PCI bus/device/function number, or unified
284 * PE address.
285 */
286struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
287{
288	struct eeh_pe *root = eeh_phb_pe_get(phb);
289
290	return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
291}
292
293/**
294 * eeh_pe_tree_insert - Add EEH device to parent PE
295 * @edev: EEH device
296 * @new_pe_parent: PE to create additional PEs under
297 *
298 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
299 * exists with that address then @edev is added to that PE. Otherwise
300 * a new PE is created and inserted into the PE tree as a child of
301 * @new_pe_parent.
302 *
303 * If @new_pe_parent is NULL then the new PE will be inserted under
304 * directly under the the PHB.
305 */
306int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
307{
308	struct pci_controller *hose = edev->controller;
309	struct eeh_pe *pe, *parent;
310
311	/*
312	 * Search the PE has been existing or not according
313	 * to the PE address. If that has been existing, the
314	 * PE should be composed of PCI bus and its subordinate
315	 * components.
316	 */
317	pe = eeh_pe_get(hose, edev->pe_config_addr);
318	if (pe) {
319		if (pe->type & EEH_PE_INVALID) {
320			list_add_tail(&edev->entry, &pe->edevs);
321			edev->pe = pe;
322			/*
323			 * We're running to here because of PCI hotplug caused by
324			 * EEH recovery. We need clear EEH_PE_INVALID until the top.
325			 */
326			parent = pe;
327			while (parent) {
328				if (!(parent->type & EEH_PE_INVALID))
329					break;
330				parent->type &= ~EEH_PE_INVALID;
331				parent = parent->parent;
332			}
333
334			eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
335				     pe->parent->addr);
336		} else {
337			/* Mark the PE as type of PCI bus */
338			pe->type = EEH_PE_BUS;
339			edev->pe = pe;
340
341			/* Put the edev to PE */
342			list_add_tail(&edev->entry, &pe->edevs);
343			eeh_edev_dbg(edev, "Added to bus PE\n");
344		}
345		return 0;
346	}
347
348	/* Create a new EEH PE */
349	if (edev->physfn)
350		pe = eeh_pe_alloc(hose, EEH_PE_VF);
351	else
352		pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
353	if (!pe) {
354		pr_err("%s: out of memory!\n", __func__);
355		return -ENOMEM;
356	}
357
358	pe->addr = edev->pe_config_addr;
359
360	/*
361	 * Put the new EEH PE into hierarchy tree. If the parent
362	 * can't be found, the newly created PE will be attached
363	 * to PHB directly. Otherwise, we have to associate the
364	 * PE with its parent.
365	 */
366	if (!new_pe_parent) {
367		new_pe_parent = eeh_phb_pe_get(hose);
368		if (!new_pe_parent) {
369			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
370				__func__, hose->global_number);
371			edev->pe = NULL;
372			kfree(pe);
373			return -EEXIST;
374		}
375	}
376
377	/* link new PE into the tree */
378	pe->parent = new_pe_parent;
379	list_add_tail(&pe->child, &new_pe_parent->child_list);
380
381	/*
382	 * Put the newly created PE into the child list and
383	 * link the EEH device accordingly.
384	 */
385	list_add_tail(&edev->entry, &pe->edevs);
386	edev->pe = pe;
387	eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
388		     new_pe_parent->addr);
389
390	return 0;
391}
392
393/**
394 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
395 * @edev: EEH device
396 *
397 * The PE hierarchy tree might be changed when doing PCI hotplug.
398 * Also, the PCI devices or buses could be removed from the system
399 * during EEH recovery. So we have to call the function remove the
400 * corresponding PE accordingly if necessary.
401 */
402int eeh_pe_tree_remove(struct eeh_dev *edev)
403{
404	struct eeh_pe *pe, *parent, *child;
405	bool keep, recover;
406	int cnt;
407
408	pe = eeh_dev_to_pe(edev);
409	if (!pe) {
410		eeh_edev_dbg(edev, "No PE found for device.\n");
411		return -EEXIST;
412	}
413
414	/* Remove the EEH device */
415	edev->pe = NULL;
416	list_del(&edev->entry);
417
418	/*
419	 * Check if the parent PE includes any EEH devices.
420	 * If not, we should delete that. Also, we should
421	 * delete the parent PE if it doesn't have associated
422	 * child PEs and EEH devices.
423	 */
424	while (1) {
425		parent = pe->parent;
426
427		/* PHB PEs should never be removed */
428		if (pe->type & EEH_PE_PHB)
429			break;
430
431		/*
432		 * XXX: KEEP is set while resetting a PE. I don't think it's
433		 * ever set without RECOVERING also being set. I could
434		 * be wrong though so catch that with a WARN.
435		 */
436		keep = !!(pe->state & EEH_PE_KEEP);
437		recover = !!(pe->state & EEH_PE_RECOVERING);
438		WARN_ON(keep && !recover);
439
440		if (!keep && !recover) {
441			if (list_empty(&pe->edevs) &&
442			    list_empty(&pe->child_list)) {
443				list_del(&pe->child);
444				kfree(pe);
445			} else {
446				break;
447			}
448		} else {
449			/*
450			 * Mark the PE as invalid. At the end of the recovery
451			 * process any invalid PEs will be garbage collected.
452			 *
453			 * We need to delay the free()ing of them since we can
454			 * remove edev's while traversing the PE tree which
455			 * might trigger the removal of a PE and we can't
456			 * deal with that (yet).
457			 */
458			if (list_empty(&pe->edevs)) {
459				cnt = 0;
460				list_for_each_entry(child, &pe->child_list, child) {
461					if (!(child->type & EEH_PE_INVALID)) {
462						cnt++;
463						break;
464					}
465				}
466
467				if (!cnt)
468					pe->type |= EEH_PE_INVALID;
469				else
470					break;
471			}
472		}
473
474		pe = parent;
475	}
476
477	return 0;
478}
479
480/**
481 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
482 * @pe: EEH PE
483 *
484 * We have time stamp for each PE to trace its time of getting
485 * frozen in last hour. The function should be called to update
486 * the time stamp on first error of the specific PE. On the other
487 * handle, we needn't account for errors happened in last hour.
488 */
489void eeh_pe_update_time_stamp(struct eeh_pe *pe)
490{
491	time64_t tstamp;
492
493	if (!pe) return;
494
495	if (pe->freeze_count <= 0) {
496		pe->freeze_count = 0;
497		pe->tstamp = ktime_get_seconds();
498	} else {
499		tstamp = ktime_get_seconds();
500		if (tstamp - pe->tstamp > 3600) {
501			pe->tstamp = tstamp;
502			pe->freeze_count = 0;
503		}
504	}
505}
506
507/**
508 * eeh_pe_state_mark - Mark specified state for PE and its associated device
509 * @pe: EEH PE
510 *
511 * EEH error affects the current PE and its child PEs. The function
512 * is used to mark appropriate state for the affected PEs and the
513 * associated devices.
514 */
515void eeh_pe_state_mark(struct eeh_pe *root, int state)
516{
517	struct eeh_pe *pe;
518
519	eeh_for_each_pe(root, pe)
520		if (!(pe->state & EEH_PE_REMOVED))
521			pe->state |= state;
522}
523EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
524
525/**
526 * eeh_pe_mark_isolated
527 * @pe: EEH PE
528 *
529 * Record that a PE has been isolated by marking the PE and it's children as
530 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
531 * as pci_channel_io_frozen.
532 */
533void eeh_pe_mark_isolated(struct eeh_pe *root)
534{
535	struct eeh_pe *pe;
536	struct eeh_dev *edev;
537	struct pci_dev *pdev;
538
539	eeh_pe_state_mark(root, EEH_PE_ISOLATED);
540	eeh_for_each_pe(root, pe) {
541		list_for_each_entry(edev, &pe->edevs, entry) {
542			pdev = eeh_dev_to_pci_dev(edev);
543			if (pdev)
544				pdev->error_state = pci_channel_io_frozen;
545		}
546		/* Block PCI config access if required */
547		if (pe->state & EEH_PE_CFG_RESTRICTED)
548			pe->state |= EEH_PE_CFG_BLOCKED;
549	}
550}
551EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
552
553static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
554{
555	int mode = *((int *)flag);
556
557	edev->mode |= mode;
558}
559
560/**
561 * eeh_pe_dev_state_mark - Mark state for all device under the PE
562 * @pe: EEH PE
563 *
564 * Mark specific state for all child devices of the PE.
565 */
566void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
567{
568	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
569}
570
571/**
572 * eeh_pe_state_clear - Clear state for the PE
573 * @data: EEH PE
574 * @state: state
575 * @include_passed: include passed-through devices?
576 *
577 * The function is used to clear the indicated state from the
578 * given PE. Besides, we also clear the check count of the PE
579 * as well.
580 */
581void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
582{
583	struct eeh_pe *pe;
584	struct eeh_dev *edev, *tmp;
585	struct pci_dev *pdev;
586
587	eeh_for_each_pe(root, pe) {
588		/* Keep the state of permanently removed PE intact */
589		if (pe->state & EEH_PE_REMOVED)
590			continue;
591
592		if (!include_passed && eeh_pe_passed(pe))
593			continue;
594
595		pe->state &= ~state;
596
597		/*
598		 * Special treatment on clearing isolated state. Clear
599		 * check count since last isolation and put all affected
600		 * devices to normal state.
601		 */
602		if (!(state & EEH_PE_ISOLATED))
603			continue;
604
605		pe->check_count = 0;
606		eeh_pe_for_each_dev(pe, edev, tmp) {
607			pdev = eeh_dev_to_pci_dev(edev);
608			if (!pdev)
609				continue;
610
611			pdev->error_state = pci_channel_io_normal;
612		}
613
614		/* Unblock PCI config access if required */
615		if (pe->state & EEH_PE_CFG_RESTRICTED)
616			pe->state &= ~EEH_PE_CFG_BLOCKED;
617	}
618}
619
620/*
621 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
622 * buses assigned explicitly by firmware, and we probably have
623 * lost that after reset. So we have to delay the check until
624 * the PCI-CFG registers have been restored for the parent
625 * bridge.
626 *
627 * Don't use normal PCI-CFG accessors, which probably has been
628 * blocked on normal path during the stage. So we need utilize
629 * eeh operations, which is always permitted.
630 */
631static void eeh_bridge_check_link(struct eeh_dev *edev)
632{
633	int cap;
634	uint32_t val;
635	int timeout = 0;
636
637	/*
638	 * We only check root port and downstream ports of
639	 * PCIe switches
640	 */
641	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
642		return;
643
644	eeh_edev_dbg(edev, "Checking PCIe link...\n");
645
646	/* Check slot status */
647	cap = edev->pcie_cap;
648	eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
649	if (!(val & PCI_EXP_SLTSTA_PDS)) {
650		eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
651		return;
652	}
653
654	/* Check power status if we have the capability */
655	eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
656	if (val & PCI_EXP_SLTCAP_PCP) {
657		eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
658		if (val & PCI_EXP_SLTCTL_PCC) {
659			eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
660			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
661			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
662			eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
663			msleep(2 * 1000);
664		}
665	}
666
667	/* Enable link */
668	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
669	val &= ~PCI_EXP_LNKCTL_LD;
670	eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
671
672	/* Check link */
673	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
674	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
675		eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
676		msleep(1000);
677		return;
678	}
679
680	/* Wait the link is up until timeout (5s) */
681	timeout = 0;
682	while (timeout < 5000) {
683		msleep(20);
684		timeout += 20;
685
686		eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687		if (val & PCI_EXP_LNKSTA_DLLLA)
688			break;
689	}
690
691	if (val & PCI_EXP_LNKSTA_DLLLA)
692		eeh_edev_dbg(edev, "Link up (%s)\n",
693			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694	else
695		eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696}
697
698#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
699#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700
701static void eeh_restore_bridge_bars(struct eeh_dev *edev)
702{
703	int i;
704
705	/*
706	 * Device BARs: 0x10 - 0x18
707	 * Bus numbers and windows: 0x18 - 0x30
708	 */
709	for (i = 4; i < 13; i++)
710		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711	/* Rom: 0x38 */
712	eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713
714	/* Cache line & Latency timer: 0xC 0xD */
715	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718		SAVED_BYTE(PCI_LATENCY_TIMER));
719	/* Max latency, min grant, interrupt ping and line: 0x3C */
720	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721
722	/* PCI Command: 0x4 */
723	eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724			      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725
726	/* Check the PCIe link is ready */
727	eeh_bridge_check_link(edev);
728}
729
730static void eeh_restore_device_bars(struct eeh_dev *edev)
731{
732	int i;
733	u32 cmd;
734
735	for (i = 4; i < 10; i++)
736		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737	/* 12 == Expansion ROM Address */
738	eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739
740	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743		SAVED_BYTE(PCI_LATENCY_TIMER));
744
745	/* max latency, min grant, interrupt pin and line */
746	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747
748	/*
749	 * Restore PERR & SERR bits, some devices require it,
750	 * don't touch the other command bits
751	 */
752	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753	if (edev->config_space[1] & PCI_COMMAND_PARITY)
754		cmd |= PCI_COMMAND_PARITY;
755	else
756		cmd &= ~PCI_COMMAND_PARITY;
757	if (edev->config_space[1] & PCI_COMMAND_SERR)
758		cmd |= PCI_COMMAND_SERR;
759	else
760		cmd &= ~PCI_COMMAND_SERR;
761	eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762}
763
764/**
765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766 * @data: EEH device
767 * @flag: Unused
768 *
769 * Loads the PCI configuration space base address registers,
770 * the expansion ROM base address, the latency timer, and etc.
771 * from the saved values in the device node.
772 */
773static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774{
775	/* Do special restore for bridges */
776	if (edev->mode & EEH_DEV_BRIDGE)
777		eeh_restore_bridge_bars(edev);
778	else
779		eeh_restore_device_bars(edev);
780
781	if (eeh_ops->restore_config)
782		eeh_ops->restore_config(edev);
783}
784
785/**
786 * eeh_pe_restore_bars - Restore the PCI config space info
787 * @pe: EEH PE
788 *
789 * This routine performs a recursive walk to the children
790 * of this device as well.
791 */
792void eeh_pe_restore_bars(struct eeh_pe *pe)
793{
794	/*
795	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796	 * will take that.
797	 */
798	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799}
800
801/**
802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
803 * @pe: EEH PE
804 *
805 * Retrieve the location code of the given PE. If the primary PE bus
806 * is root bus, we will grab location code from PHB device tree node
807 * or root port. Otherwise, the upstream bridge's device tree node
808 * of the primary PE bus will be checked for the location code.
809 */
810const char *eeh_pe_loc_get(struct eeh_pe *pe)
811{
812	struct pci_bus *bus = eeh_pe_bus_get(pe);
813	struct device_node *dn;
814	const char *loc = NULL;
815
816	while (bus) {
817		dn = pci_bus_to_OF_node(bus);
818		if (!dn) {
819			bus = bus->parent;
820			continue;
821		}
822
823		if (pci_is_root_bus(bus))
824			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825		else
826			loc = of_get_property(dn, "ibm,slot-location-code",
827					      NULL);
828
829		if (loc)
830			return loc;
831
832		bus = bus->parent;
833	}
834
835	return "N/A";
836}
837
838/**
839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840 * @pe: EEH PE
841 *
842 * Retrieve the PCI bus according to the given PE. Basically,
843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844 * primary PCI bus will be retrieved. The parent bus will be
845 * returned for BUS PE. However, we don't have associated PCI
846 * bus for DEVICE PE.
847 */
848struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849{
850	struct eeh_dev *edev;
851	struct pci_dev *pdev;
852
853	if (pe->type & EEH_PE_PHB)
854		return pe->phb->bus;
855
856	/* The primary bus might be cached during probe time */
857	if (pe->state & EEH_PE_PRI_BUS)
858		return pe->bus;
859
860	/* Retrieve the parent PCI bus of first (top) PCI device */
861	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862	pdev = eeh_dev_to_pci_dev(edev);
863	if (pdev)
864		return pdev->bus;
865
866	return NULL;
867}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * The file intends to implement PE based on the information from
  4 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
  5 * All the PEs should be organized as hierarchy tree. The first level
  6 * of the tree will be associated to existing PHBs since the particular
  7 * PE is only meaningful in one PHB domain.
  8 *
  9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
 10 */
 11
 12#include <linux/delay.h>
 13#include <linux/export.h>
 14#include <linux/gfp.h>
 15#include <linux/kernel.h>
 16#include <linux/of.h>
 17#include <linux/pci.h>
 18#include <linux/string.h>
 19
 20#include <asm/pci-bridge.h>
 21#include <asm/ppc-pci.h>
 22
 23static int eeh_pe_aux_size = 0;
 24static LIST_HEAD(eeh_phb_pe);
 25
 26/**
 27 * eeh_set_pe_aux_size - Set PE auxillary data size
 28 * @size: PE auxillary data size
 29 *
 30 * Set PE auxillary data size
 31 */
 32void eeh_set_pe_aux_size(int size)
 33{
 34	if (size < 0)
 35		return;
 36
 37	eeh_pe_aux_size = size;
 38}
 39
 40/**
 41 * eeh_pe_alloc - Allocate PE
 42 * @phb: PCI controller
 43 * @type: PE type
 44 *
 45 * Allocate PE instance dynamically.
 46 */
 47static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
 48{
 49	struct eeh_pe *pe;
 50	size_t alloc_size;
 51
 52	alloc_size = sizeof(struct eeh_pe);
 53	if (eeh_pe_aux_size) {
 54		alloc_size = ALIGN(alloc_size, cache_line_size());
 55		alloc_size += eeh_pe_aux_size;
 56	}
 57
 58	/* Allocate PHB PE */
 59	pe = kzalloc(alloc_size, GFP_KERNEL);
 60	if (!pe) return NULL;
 61
 62	/* Initialize PHB PE */
 63	pe->type = type;
 64	pe->phb = phb;
 65	INIT_LIST_HEAD(&pe->child_list);
 66	INIT_LIST_HEAD(&pe->edevs);
 67
 68	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
 69				      cache_line_size());
 70	return pe;
 71}
 72
 73/**
 74 * eeh_phb_pe_create - Create PHB PE
 75 * @phb: PCI controller
 76 *
 77 * The function should be called while the PHB is detected during
 78 * system boot or PCI hotplug in order to create PHB PE.
 79 */
 80int eeh_phb_pe_create(struct pci_controller *phb)
 81{
 82	struct eeh_pe *pe;
 83
 84	/* Allocate PHB PE */
 85	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
 86	if (!pe) {
 87		pr_err("%s: out of memory!\n", __func__);
 88		return -ENOMEM;
 89	}
 90
 91	/* Put it into the list */
 92	list_add_tail(&pe->child, &eeh_phb_pe);
 93
 94	pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
 95
 96	return 0;
 97}
 98
 99/**
100 * eeh_wait_state - Wait for PE state
101 * @pe: EEH PE
102 * @max_wait: maximal period in millisecond
103 *
104 * Wait for the state of associated PE. It might take some time
105 * to retrieve the PE's state.
106 */
107int eeh_wait_state(struct eeh_pe *pe, int max_wait)
108{
109	int ret;
110	int mwait;
111
112	/*
113	 * According to PAPR, the state of PE might be temporarily
114	 * unavailable. Under the circumstance, we have to wait
115	 * for indicated time determined by firmware. The maximal
116	 * wait time is 5 minutes, which is acquired from the original
117	 * EEH implementation. Also, the original implementation
118	 * also defined the minimal wait time as 1 second.
119	 */
120#define EEH_STATE_MIN_WAIT_TIME	(1000)
121#define EEH_STATE_MAX_WAIT_TIME	(300 * 1000)
122
123	while (1) {
124		ret = eeh_ops->get_state(pe, &mwait);
125
126		if (ret != EEH_STATE_UNAVAILABLE)
127			return ret;
128
129		if (max_wait <= 0) {
130			pr_warn("%s: Timeout when getting PE's state (%d)\n",
131				__func__, max_wait);
132			return EEH_STATE_NOT_SUPPORT;
133		}
134
135		if (mwait < EEH_STATE_MIN_WAIT_TIME) {
136			pr_warn("%s: Firmware returned bad wait value %d\n",
137				__func__, mwait);
138			mwait = EEH_STATE_MIN_WAIT_TIME;
139		} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
140			pr_warn("%s: Firmware returned too long wait value %d\n",
141				__func__, mwait);
142			mwait = EEH_STATE_MAX_WAIT_TIME;
143		}
144
145		msleep(min(mwait, max_wait));
146		max_wait -= mwait;
147	}
148}
149
150/**
151 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
152 * @phb: PCI controller
153 *
154 * The overall PEs form hierarchy tree. The first layer of the
155 * hierarchy tree is composed of PHB PEs. The function is used
156 * to retrieve the corresponding PHB PE according to the given PHB.
157 */
158struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
159{
160	struct eeh_pe *pe;
161
162	list_for_each_entry(pe, &eeh_phb_pe, child) {
163		/*
164		 * Actually, we needn't check the type since
165		 * the PE for PHB has been determined when that
166		 * was created.
167		 */
168		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
169			return pe;
170	}
171
172	return NULL;
173}
174
175/**
176 * eeh_pe_next - Retrieve the next PE in the tree
177 * @pe: current PE
178 * @root: root PE
179 *
180 * The function is used to retrieve the next PE in the
181 * hierarchy PE tree.
182 */
183struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
184{
185	struct list_head *next = pe->child_list.next;
186
187	if (next == &pe->child_list) {
188		while (1) {
189			if (pe == root)
190				return NULL;
191			next = pe->child.next;
192			if (next != &pe->parent->child_list)
193				break;
194			pe = pe->parent;
195		}
196	}
197
198	return list_entry(next, struct eeh_pe, child);
199}
200
201/**
202 * eeh_pe_traverse - Traverse PEs in the specified PHB
203 * @root: root PE
204 * @fn: callback
205 * @flag: extra parameter to callback
206 *
207 * The function is used to traverse the specified PE and its
208 * child PEs. The traversing is to be terminated once the
209 * callback returns something other than NULL, or no more PEs
210 * to be traversed.
211 */
212void *eeh_pe_traverse(struct eeh_pe *root,
213		      eeh_pe_traverse_func fn, void *flag)
214{
215	struct eeh_pe *pe;
216	void *ret;
217
218	eeh_for_each_pe(root, pe) {
219		ret = fn(pe, flag);
220		if (ret) return ret;
221	}
222
223	return NULL;
224}
225
226/**
227 * eeh_pe_dev_traverse - Traverse the devices from the PE
228 * @root: EEH PE
229 * @fn: function callback
230 * @flag: extra parameter to callback
231 *
232 * The function is used to traverse the devices of the specified
233 * PE and its child PEs.
234 */
235void eeh_pe_dev_traverse(struct eeh_pe *root,
236			  eeh_edev_traverse_func fn, void *flag)
237{
238	struct eeh_pe *pe;
239	struct eeh_dev *edev, *tmp;
240
241	if (!root) {
242		pr_warn("%s: Invalid PE %p\n",
243			__func__, root);
244		return;
245	}
246
247	/* Traverse root PE */
248	eeh_for_each_pe(root, pe)
249		eeh_pe_for_each_dev(pe, edev, tmp)
250			fn(edev, flag);
251}
252
253/**
254 * __eeh_pe_get - Check the PE address
255 *
256 * For one particular PE, it can be identified by PE address
257 * or tranditional BDF address. BDF address is composed of
258 * Bus/Device/Function number. The extra data referred by flag
259 * indicates which type of address should be used.
260 */
261static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
262{
263	int *target_pe = flag;
264
265	/* PHB PEs are special and should be ignored */
266	if (pe->type & EEH_PE_PHB)
267		return NULL;
268
269	if (*target_pe == pe->addr)
270		return pe;
271
272	return NULL;
273}
274
275/**
276 * eeh_pe_get - Search PE based on the given address
277 * @phb: PCI controller
278 * @pe_no: PE number
279 *
280 * Search the corresponding PE based on the specified address which
281 * is included in the eeh device. The function is used to check if
282 * the associated PE has been created against the PE address. It's
283 * notable that the PE address has 2 format: traditional PE address
284 * which is composed of PCI bus/device/function number, or unified
285 * PE address.
286 */
287struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
288{
289	struct eeh_pe *root = eeh_phb_pe_get(phb);
290
291	return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
292}
293
294/**
295 * eeh_pe_tree_insert - Add EEH device to parent PE
296 * @edev: EEH device
297 * @new_pe_parent: PE to create additional PEs under
298 *
299 * Add EEH device to the PE in edev->pe_config_addr. If a PE already
300 * exists with that address then @edev is added to that PE. Otherwise
301 * a new PE is created and inserted into the PE tree as a child of
302 * @new_pe_parent.
303 *
304 * If @new_pe_parent is NULL then the new PE will be inserted under
305 * directly under the PHB.
306 */
307int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
308{
309	struct pci_controller *hose = edev->controller;
310	struct eeh_pe *pe, *parent;
311
312	/*
313	 * Search the PE has been existing or not according
314	 * to the PE address. If that has been existing, the
315	 * PE should be composed of PCI bus and its subordinate
316	 * components.
317	 */
318	pe = eeh_pe_get(hose, edev->pe_config_addr);
319	if (pe) {
320		if (pe->type & EEH_PE_INVALID) {
321			list_add_tail(&edev->entry, &pe->edevs);
322			edev->pe = pe;
323			/*
324			 * We're running to here because of PCI hotplug caused by
325			 * EEH recovery. We need clear EEH_PE_INVALID until the top.
326			 */
327			parent = pe;
328			while (parent) {
329				if (!(parent->type & EEH_PE_INVALID))
330					break;
331				parent->type &= ~EEH_PE_INVALID;
332				parent = parent->parent;
333			}
334
335			eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
336				     pe->parent->addr);
337		} else {
338			/* Mark the PE as type of PCI bus */
339			pe->type = EEH_PE_BUS;
340			edev->pe = pe;
341
342			/* Put the edev to PE */
343			list_add_tail(&edev->entry, &pe->edevs);
344			eeh_edev_dbg(edev, "Added to bus PE\n");
345		}
346		return 0;
347	}
348
349	/* Create a new EEH PE */
350	if (edev->physfn)
351		pe = eeh_pe_alloc(hose, EEH_PE_VF);
352	else
353		pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
354	if (!pe) {
355		pr_err("%s: out of memory!\n", __func__);
356		return -ENOMEM;
357	}
358
359	pe->addr = edev->pe_config_addr;
360
361	/*
362	 * Put the new EEH PE into hierarchy tree. If the parent
363	 * can't be found, the newly created PE will be attached
364	 * to PHB directly. Otherwise, we have to associate the
365	 * PE with its parent.
366	 */
367	if (!new_pe_parent) {
368		new_pe_parent = eeh_phb_pe_get(hose);
369		if (!new_pe_parent) {
370			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
371				__func__, hose->global_number);
372			edev->pe = NULL;
373			kfree(pe);
374			return -EEXIST;
375		}
376	}
377
378	/* link new PE into the tree */
379	pe->parent = new_pe_parent;
380	list_add_tail(&pe->child, &new_pe_parent->child_list);
381
382	/*
383	 * Put the newly created PE into the child list and
384	 * link the EEH device accordingly.
385	 */
386	list_add_tail(&edev->entry, &pe->edevs);
387	edev->pe = pe;
388	eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
389		     new_pe_parent->addr);
390
391	return 0;
392}
393
394/**
395 * eeh_pe_tree_remove - Remove one EEH device from the associated PE
396 * @edev: EEH device
397 *
398 * The PE hierarchy tree might be changed when doing PCI hotplug.
399 * Also, the PCI devices or buses could be removed from the system
400 * during EEH recovery. So we have to call the function remove the
401 * corresponding PE accordingly if necessary.
402 */
403int eeh_pe_tree_remove(struct eeh_dev *edev)
404{
405	struct eeh_pe *pe, *parent, *child;
406	bool keep, recover;
407	int cnt;
408
409	pe = eeh_dev_to_pe(edev);
410	if (!pe) {
411		eeh_edev_dbg(edev, "No PE found for device.\n");
412		return -EEXIST;
413	}
414
415	/* Remove the EEH device */
416	edev->pe = NULL;
417	list_del(&edev->entry);
418
419	/*
420	 * Check if the parent PE includes any EEH devices.
421	 * If not, we should delete that. Also, we should
422	 * delete the parent PE if it doesn't have associated
423	 * child PEs and EEH devices.
424	 */
425	while (1) {
426		parent = pe->parent;
427
428		/* PHB PEs should never be removed */
429		if (pe->type & EEH_PE_PHB)
430			break;
431
432		/*
433		 * XXX: KEEP is set while resetting a PE. I don't think it's
434		 * ever set without RECOVERING also being set. I could
435		 * be wrong though so catch that with a WARN.
436		 */
437		keep = !!(pe->state & EEH_PE_KEEP);
438		recover = !!(pe->state & EEH_PE_RECOVERING);
439		WARN_ON(keep && !recover);
440
441		if (!keep && !recover) {
442			if (list_empty(&pe->edevs) &&
443			    list_empty(&pe->child_list)) {
444				list_del(&pe->child);
445				kfree(pe);
446			} else {
447				break;
448			}
449		} else {
450			/*
451			 * Mark the PE as invalid. At the end of the recovery
452			 * process any invalid PEs will be garbage collected.
453			 *
454			 * We need to delay the free()ing of them since we can
455			 * remove edev's while traversing the PE tree which
456			 * might trigger the removal of a PE and we can't
457			 * deal with that (yet).
458			 */
459			if (list_empty(&pe->edevs)) {
460				cnt = 0;
461				list_for_each_entry(child, &pe->child_list, child) {
462					if (!(child->type & EEH_PE_INVALID)) {
463						cnt++;
464						break;
465					}
466				}
467
468				if (!cnt)
469					pe->type |= EEH_PE_INVALID;
470				else
471					break;
472			}
473		}
474
475		pe = parent;
476	}
477
478	return 0;
479}
480
481/**
482 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
483 * @pe: EEH PE
484 *
485 * We have time stamp for each PE to trace its time of getting
486 * frozen in last hour. The function should be called to update
487 * the time stamp on first error of the specific PE. On the other
488 * handle, we needn't account for errors happened in last hour.
489 */
490void eeh_pe_update_time_stamp(struct eeh_pe *pe)
491{
492	time64_t tstamp;
493
494	if (!pe) return;
495
496	if (pe->freeze_count <= 0) {
497		pe->freeze_count = 0;
498		pe->tstamp = ktime_get_seconds();
499	} else {
500		tstamp = ktime_get_seconds();
501		if (tstamp - pe->tstamp > 3600) {
502			pe->tstamp = tstamp;
503			pe->freeze_count = 0;
504		}
505	}
506}
507
508/**
509 * eeh_pe_state_mark - Mark specified state for PE and its associated device
510 * @pe: EEH PE
511 *
512 * EEH error affects the current PE and its child PEs. The function
513 * is used to mark appropriate state for the affected PEs and the
514 * associated devices.
515 */
516void eeh_pe_state_mark(struct eeh_pe *root, int state)
517{
518	struct eeh_pe *pe;
519
520	eeh_for_each_pe(root, pe)
521		if (!(pe->state & EEH_PE_REMOVED))
522			pe->state |= state;
523}
524EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
525
526/**
527 * eeh_pe_mark_isolated
528 * @pe: EEH PE
529 *
530 * Record that a PE has been isolated by marking the PE and it's children as
531 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
532 * as pci_channel_io_frozen.
533 */
534void eeh_pe_mark_isolated(struct eeh_pe *root)
535{
536	struct eeh_pe *pe;
537	struct eeh_dev *edev;
538	struct pci_dev *pdev;
539
540	eeh_pe_state_mark(root, EEH_PE_ISOLATED);
541	eeh_for_each_pe(root, pe) {
542		list_for_each_entry(edev, &pe->edevs, entry) {
543			pdev = eeh_dev_to_pci_dev(edev);
544			if (pdev)
545				pdev->error_state = pci_channel_io_frozen;
546		}
547		/* Block PCI config access if required */
548		if (pe->state & EEH_PE_CFG_RESTRICTED)
549			pe->state |= EEH_PE_CFG_BLOCKED;
550	}
551}
552EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
553
554static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
555{
556	int mode = *((int *)flag);
557
558	edev->mode |= mode;
559}
560
561/**
562 * eeh_pe_dev_state_mark - Mark state for all device under the PE
563 * @pe: EEH PE
564 *
565 * Mark specific state for all child devices of the PE.
566 */
567void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
568{
569	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
570}
571
572/**
573 * eeh_pe_state_clear - Clear state for the PE
574 * @data: EEH PE
575 * @state: state
576 * @include_passed: include passed-through devices?
577 *
578 * The function is used to clear the indicated state from the
579 * given PE. Besides, we also clear the check count of the PE
580 * as well.
581 */
582void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
583{
584	struct eeh_pe *pe;
585	struct eeh_dev *edev, *tmp;
586	struct pci_dev *pdev;
587
588	eeh_for_each_pe(root, pe) {
589		/* Keep the state of permanently removed PE intact */
590		if (pe->state & EEH_PE_REMOVED)
591			continue;
592
593		if (!include_passed && eeh_pe_passed(pe))
594			continue;
595
596		pe->state &= ~state;
597
598		/*
599		 * Special treatment on clearing isolated state. Clear
600		 * check count since last isolation and put all affected
601		 * devices to normal state.
602		 */
603		if (!(state & EEH_PE_ISOLATED))
604			continue;
605
606		pe->check_count = 0;
607		eeh_pe_for_each_dev(pe, edev, tmp) {
608			pdev = eeh_dev_to_pci_dev(edev);
609			if (!pdev)
610				continue;
611
612			pdev->error_state = pci_channel_io_normal;
613		}
614
615		/* Unblock PCI config access if required */
616		if (pe->state & EEH_PE_CFG_RESTRICTED)
617			pe->state &= ~EEH_PE_CFG_BLOCKED;
618	}
619}
620
621/*
622 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
623 * buses assigned explicitly by firmware, and we probably have
624 * lost that after reset. So we have to delay the check until
625 * the PCI-CFG registers have been restored for the parent
626 * bridge.
627 *
628 * Don't use normal PCI-CFG accessors, which probably has been
629 * blocked on normal path during the stage. So we need utilize
630 * eeh operations, which is always permitted.
631 */
632static void eeh_bridge_check_link(struct eeh_dev *edev)
633{
634	int cap;
635	uint32_t val;
636	int timeout = 0;
637
638	/*
639	 * We only check root port and downstream ports of
640	 * PCIe switches
641	 */
642	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
643		return;
644
645	eeh_edev_dbg(edev, "Checking PCIe link...\n");
646
647	/* Check slot status */
648	cap = edev->pcie_cap;
649	eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
650	if (!(val & PCI_EXP_SLTSTA_PDS)) {
651		eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
652		return;
653	}
654
655	/* Check power status if we have the capability */
656	eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
657	if (val & PCI_EXP_SLTCAP_PCP) {
658		eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
659		if (val & PCI_EXP_SLTCTL_PCC) {
660			eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
661			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
662			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
663			eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
664			msleep(2 * 1000);
665		}
666	}
667
668	/* Enable link */
669	eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
670	val &= ~PCI_EXP_LNKCTL_LD;
671	eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
672
673	/* Check link */
674	if (!edev->pdev->link_active_reporting) {
675		eeh_edev_dbg(edev, "No link reporting capability\n");
 
676		msleep(1000);
677		return;
678	}
679
680	/* Wait the link is up until timeout (5s) */
681	timeout = 0;
682	while (timeout < 5000) {
683		msleep(20);
684		timeout += 20;
685
686		eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
687		if (val & PCI_EXP_LNKSTA_DLLLA)
688			break;
689	}
690
691	if (val & PCI_EXP_LNKSTA_DLLLA)
692		eeh_edev_dbg(edev, "Link up (%s)\n",
693			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
694	else
695		eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
696}
697
698#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
699#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
700
701static void eeh_restore_bridge_bars(struct eeh_dev *edev)
702{
703	int i;
704
705	/*
706	 * Device BARs: 0x10 - 0x18
707	 * Bus numbers and windows: 0x18 - 0x30
708	 */
709	for (i = 4; i < 13; i++)
710		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
711	/* Rom: 0x38 */
712	eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
713
714	/* Cache line & Latency timer: 0xC 0xD */
715	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
716                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
717	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
718		SAVED_BYTE(PCI_LATENCY_TIMER));
719	/* Max latency, min grant, interrupt ping and line: 0x3C */
720	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
721
722	/* PCI Command: 0x4 */
723	eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
724			      PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
725
726	/* Check the PCIe link is ready */
727	eeh_bridge_check_link(edev);
728}
729
730static void eeh_restore_device_bars(struct eeh_dev *edev)
731{
732	int i;
733	u32 cmd;
734
735	for (i = 4; i < 10; i++)
736		eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
737	/* 12 == Expansion ROM Address */
738	eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
739
740	eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
741		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
742	eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
743		SAVED_BYTE(PCI_LATENCY_TIMER));
744
745	/* max latency, min grant, interrupt pin and line */
746	eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
747
748	/*
749	 * Restore PERR & SERR bits, some devices require it,
750	 * don't touch the other command bits
751	 */
752	eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
753	if (edev->config_space[1] & PCI_COMMAND_PARITY)
754		cmd |= PCI_COMMAND_PARITY;
755	else
756		cmd &= ~PCI_COMMAND_PARITY;
757	if (edev->config_space[1] & PCI_COMMAND_SERR)
758		cmd |= PCI_COMMAND_SERR;
759	else
760		cmd &= ~PCI_COMMAND_SERR;
761	eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
762}
763
764/**
765 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
766 * @data: EEH device
767 * @flag: Unused
768 *
769 * Loads the PCI configuration space base address registers,
770 * the expansion ROM base address, the latency timer, and etc.
771 * from the saved values in the device node.
772 */
773static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
774{
775	/* Do special restore for bridges */
776	if (edev->mode & EEH_DEV_BRIDGE)
777		eeh_restore_bridge_bars(edev);
778	else
779		eeh_restore_device_bars(edev);
780
781	if (eeh_ops->restore_config)
782		eeh_ops->restore_config(edev);
783}
784
785/**
786 * eeh_pe_restore_bars - Restore the PCI config space info
787 * @pe: EEH PE
788 *
789 * This routine performs a recursive walk to the children
790 * of this device as well.
791 */
792void eeh_pe_restore_bars(struct eeh_pe *pe)
793{
794	/*
795	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
796	 * will take that.
797	 */
798	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
799}
800
801/**
802 * eeh_pe_loc_get - Retrieve location code binding to the given PE
803 * @pe: EEH PE
804 *
805 * Retrieve the location code of the given PE. If the primary PE bus
806 * is root bus, we will grab location code from PHB device tree node
807 * or root port. Otherwise, the upstream bridge's device tree node
808 * of the primary PE bus will be checked for the location code.
809 */
810const char *eeh_pe_loc_get(struct eeh_pe *pe)
811{
812	struct pci_bus *bus = eeh_pe_bus_get(pe);
813	struct device_node *dn;
814	const char *loc = NULL;
815
816	while (bus) {
817		dn = pci_bus_to_OF_node(bus);
818		if (!dn) {
819			bus = bus->parent;
820			continue;
821		}
822
823		if (pci_is_root_bus(bus))
824			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
825		else
826			loc = of_get_property(dn, "ibm,slot-location-code",
827					      NULL);
828
829		if (loc)
830			return loc;
831
832		bus = bus->parent;
833	}
834
835	return "N/A";
836}
837
838/**
839 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
840 * @pe: EEH PE
841 *
842 * Retrieve the PCI bus according to the given PE. Basically,
843 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
844 * primary PCI bus will be retrieved. The parent bus will be
845 * returned for BUS PE. However, we don't have associated PCI
846 * bus for DEVICE PE.
847 */
848struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
849{
850	struct eeh_dev *edev;
851	struct pci_dev *pdev;
852
853	if (pe->type & EEH_PE_PHB)
854		return pe->phb->bus;
855
856	/* The primary bus might be cached during probe time */
857	if (pe->state & EEH_PE_PRI_BUS)
858		return pe->bus;
859
860	/* Retrieve the parent PCI bus of first (top) PCI device */
861	edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
862	pdev = eeh_dev_to_pci_dev(edev);
863	if (pdev)
864		return pdev->bus;
865
866	return NULL;
867}