Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/err.h>
  3#include <linux/slab.h>
  4#include <linux/mm_types.h>
  5#include <linux/sched/task.h>
  6
  7#include <asm/branch.h>
  8#include <asm/cacheflush.h>
  9#include <asm/fpu_emulator.h>
 10#include <asm/inst.h>
 11#include <asm/mipsregs.h>
 12#include <linux/uaccess.h>
 13
 14/**
 15 * struct emuframe - The 'emulation' frame structure
 16 * @emul:	The instruction to 'emulate'.
 17 * @badinst:	A break instruction to cause a return to the kernel.
 18 *
 19 * This structure defines the frames placed within the delay slot emulation
 20 * page in response to a call to mips_dsemul(). Each thread may be allocated
 21 * only one frame at any given time. The kernel stores within it the
 22 * instruction to be 'emulated' followed by a break instruction, then
 23 * executes the frame in user mode. The break causes a trap to the kernel
 24 * which leads to do_dsemulret() being called unless the instruction in
 25 * @emul causes a trap itself, is a branch, or a signal is delivered to
 26 * the thread. In these cases the allocated frame will either be reused by
 27 * a subsequent delay slot 'emulation', or be freed during signal delivery or
 28 * upon thread exit.
 29 *
 30 * This approach is used because:
 31 *
 32 * - Actually emulating all instructions isn't feasible. We would need to
 33 *   be able to handle instructions from all revisions of the MIPS ISA,
 34 *   all ASEs & all vendor instruction set extensions. This would be a
 35 *   whole lot of work & continual maintenance burden as new instructions
 36 *   are introduced, and in the case of some vendor extensions may not
 37 *   even be possible. Thus we need to take the approach of actually
 38 *   executing the instruction.
 39 *
 40 * - We must execute the instruction within user context. If we were to
 41 *   execute the instruction in kernel mode then it would have access to
 42 *   kernel resources without very careful checks, leaving us with a
 43 *   high potential for security or stability issues to arise.
 44 *
 45 * - We used to place the frame on the users stack, but this requires
 46 *   that the stack be executable. This is bad for security so the
 47 *   per-process page is now used instead.
 48 *
 49 * - The instruction in @emul may be something entirely invalid for a
 50 *   delay slot. The user may (intentionally or otherwise) place a branch
 51 *   in a delay slot, or a kernel mode instruction, or something else
 52 *   which generates an exception. Thus we can't rely upon the break in
 53 *   @badinst always being hit. For this reason we track the index of the
 54 *   frame allocated to each thread, allowing us to clean it up at later
 55 *   points such as signal delivery or thread exit.
 56 *
 57 * - The user may generate a fake struct emuframe if they wish, invoking
 58 *   the BRK_MEMU break instruction themselves. We must therefore not
 59 *   trust that BRK_MEMU means there's actually a valid frame allocated
 60 *   to the thread, and must not allow the user to do anything they
 61 *   couldn't already.
 62 */
 63struct emuframe {
 64	mips_instruction	emul;
 65	mips_instruction	badinst;
 66};
 67
 68static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
 69
 70static inline __user struct emuframe *dsemul_page(void)
 71{
 72	return (__user struct emuframe *)STACK_TOP;
 73}
 74
 75static int alloc_emuframe(void)
 76{
 77	mm_context_t *mm_ctx = &current->mm->context;
 78	int idx;
 79
 80retry:
 81	spin_lock(&mm_ctx->bd_emupage_lock);
 82
 83	/* Ensure we have an allocation bitmap */
 84	if (!mm_ctx->bd_emupage_allocmap) {
 85		mm_ctx->bd_emupage_allocmap =
 86			kcalloc(BITS_TO_LONGS(emupage_frame_count),
 87					      sizeof(unsigned long),
 88				GFP_ATOMIC);
 89
 90		if (!mm_ctx->bd_emupage_allocmap) {
 91			idx = BD_EMUFRAME_NONE;
 92			goto out_unlock;
 93		}
 94	}
 95
 96	/* Attempt to allocate a single bit/frame */
 97	idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
 98				      emupage_frame_count, 0);
 99	if (idx < 0) {
100		/*
101		 * Failed to allocate a frame. We'll wait until one becomes
102		 * available. We unlock the page so that other threads actually
103		 * get the opportunity to free their frames, which means
104		 * technically the result of bitmap_full may be incorrect.
105		 * However the worst case is that we repeat all this and end up
106		 * back here again.
107		 */
108		spin_unlock(&mm_ctx->bd_emupage_lock);
109		if (!wait_event_killable(mm_ctx->bd_emupage_queue,
110			!bitmap_full(mm_ctx->bd_emupage_allocmap,
111				     emupage_frame_count)))
112			goto retry;
113
114		/* Received a fatal signal - just give in */
115		return BD_EMUFRAME_NONE;
116	}
117
118	/* Success! */
119	pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
120out_unlock:
121	spin_unlock(&mm_ctx->bd_emupage_lock);
122	return idx;
123}
124
125static void free_emuframe(int idx, struct mm_struct *mm)
126{
127	mm_context_t *mm_ctx = &mm->context;
128
129	spin_lock(&mm_ctx->bd_emupage_lock);
130
131	pr_debug("free emuframe %d from %d\n", idx, current->pid);
132	bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
133
134	/* If some thread is waiting for a frame, now's its chance */
135	wake_up(&mm_ctx->bd_emupage_queue);
136
137	spin_unlock(&mm_ctx->bd_emupage_lock);
138}
139
140static bool within_emuframe(struct pt_regs *regs)
141{
142	unsigned long base = (unsigned long)dsemul_page();
143
144	if (regs->cp0_epc < base)
145		return false;
146	if (regs->cp0_epc >= (base + PAGE_SIZE))
147		return false;
148
149	return true;
150}
151
152bool dsemul_thread_cleanup(struct task_struct *tsk)
153{
154	int fr_idx;
155
156	/* Clear any allocated frame, retrieving its index */
157	fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
158
159	/* If no frame was allocated, we're done */
160	if (fr_idx == BD_EMUFRAME_NONE)
161		return false;
162
163	task_lock(tsk);
164
165	/* Free the frame that this thread had allocated */
166	if (tsk->mm)
167		free_emuframe(fr_idx, tsk->mm);
168
169	task_unlock(tsk);
170	return true;
171}
172
173bool dsemul_thread_rollback(struct pt_regs *regs)
174{
175	struct emuframe __user *fr;
176	int fr_idx;
177
178	/* Do nothing if we're not executing from a frame */
179	if (!within_emuframe(regs))
180		return false;
181
182	/* Find the frame being executed */
183	fr_idx = atomic_read(&current->thread.bd_emu_frame);
184	if (fr_idx == BD_EMUFRAME_NONE)
185		return false;
186	fr = &dsemul_page()[fr_idx];
187
188	/*
189	 * If the PC is at the emul instruction, roll back to the branch. If
190	 * PC is at the badinst (break) instruction, we've already emulated the
191	 * instruction so progress to the continue PC. If it's anything else
192	 * then something is amiss & the user has branched into some other area
193	 * of the emupage - we'll free the allocated frame anyway.
194	 */
195	if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
196		regs->cp0_epc = current->thread.bd_emu_branch_pc;
197	else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
198		regs->cp0_epc = current->thread.bd_emu_cont_pc;
199
200	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
201	free_emuframe(fr_idx, current->mm);
202	return true;
203}
204
205void dsemul_mm_cleanup(struct mm_struct *mm)
206{
207	mm_context_t *mm_ctx = &mm->context;
208
209	kfree(mm_ctx->bd_emupage_allocmap);
210}
211
212int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
213		unsigned long branch_pc, unsigned long cont_pc)
214{
215	int isa16 = get_isa16_mode(regs->cp0_epc);
216	mips_instruction break_math;
217	unsigned long fr_uaddr;
218	struct emuframe fr;
219	int fr_idx, ret;
220
221	/* NOP is easy */
222	if (ir == 0)
223		return -1;
224
225	/* microMIPS instructions */
226	if (isa16) {
227		union mips_instruction insn = { .word = ir };
228
229		/* NOP16 aka MOVE16 $0, $0 */
230		if ((ir >> 16) == MM_NOP16)
231			return -1;
232
233		/* ADDIUPC */
234		if (insn.mm_a_format.opcode == mm_addiupc_op) {
235			unsigned int rs;
236			s32 v;
237
238			rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
239			v = regs->cp0_epc & ~3;
240			v += insn.mm_a_format.simmediate << 2;
241			regs->regs[rs] = (long)v;
242			return -1;
243		}
244	}
245
246	pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
247
248	/* Allocate a frame if we don't already have one */
249	fr_idx = atomic_read(&current->thread.bd_emu_frame);
250	if (fr_idx == BD_EMUFRAME_NONE)
251		fr_idx = alloc_emuframe();
252	if (fr_idx == BD_EMUFRAME_NONE)
253		return SIGBUS;
254
255	/* Retrieve the appropriately encoded break instruction */
256	break_math = BREAK_MATH(isa16);
257
258	/* Write the instructions to the frame */
259	if (isa16) {
260		union mips_instruction _emul = {
261			.halfword = { ir >> 16, ir }
262		};
263		union mips_instruction _badinst = {
264			.halfword = { break_math >> 16, break_math }
265		};
266
267		fr.emul = _emul.word;
268		fr.badinst = _badinst.word;
269	} else {
270		fr.emul = ir;
271		fr.badinst = break_math;
272	}
273
274	/* Write the frame to user memory */
275	fr_uaddr = (unsigned long)&dsemul_page()[fr_idx];
276	ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr),
277				FOLL_FORCE | FOLL_WRITE);
278	if (unlikely(ret != sizeof(fr))) {
279		MIPS_FPU_EMU_INC_STATS(errors);
280		free_emuframe(fr_idx, current->mm);
281		return SIGBUS;
282	}
283
284	/* Record the PC of the branch, PC to continue from & frame index */
285	current->thread.bd_emu_branch_pc = branch_pc;
286	current->thread.bd_emu_cont_pc = cont_pc;
287	atomic_set(&current->thread.bd_emu_frame, fr_idx);
288
289	/* Change user register context to execute the frame */
290	regs->cp0_epc = fr_uaddr | isa16;
291
292	return 0;
293}
294
295bool do_dsemulret(struct pt_regs *xcp)
296{
297	/* Cleanup the allocated frame, returning if there wasn't one */
298	if (!dsemul_thread_cleanup(current)) {
299		MIPS_FPU_EMU_INC_STATS(errors);
300		return false;
301	}
302
303	/* Set EPC to return to post-branch instruction */
304	xcp->cp0_epc = current->thread.bd_emu_cont_pc;
305	pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
306	MIPS_FPU_EMU_INC_STATS(ds_emul);
307	return true;
308}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/err.h>
  3#include <linux/slab.h>
  4#include <linux/mm_types.h>
  5#include <linux/sched/task.h>
  6
  7#include <asm/branch.h>
  8#include <asm/cacheflush.h>
  9#include <asm/fpu_emulator.h>
 10#include <asm/inst.h>
 11#include <asm/mipsregs.h>
 12#include <linux/uaccess.h>
 13
 14/**
 15 * struct emuframe - The 'emulation' frame structure
 16 * @emul:	The instruction to 'emulate'.
 17 * @badinst:	A break instruction to cause a return to the kernel.
 18 *
 19 * This structure defines the frames placed within the delay slot emulation
 20 * page in response to a call to mips_dsemul(). Each thread may be allocated
 21 * only one frame at any given time. The kernel stores within it the
 22 * instruction to be 'emulated' followed by a break instruction, then
 23 * executes the frame in user mode. The break causes a trap to the kernel
 24 * which leads to do_dsemulret() being called unless the instruction in
 25 * @emul causes a trap itself, is a branch, or a signal is delivered to
 26 * the thread. In these cases the allocated frame will either be reused by
 27 * a subsequent delay slot 'emulation', or be freed during signal delivery or
 28 * upon thread exit.
 29 *
 30 * This approach is used because:
 31 *
 32 * - Actually emulating all instructions isn't feasible. We would need to
 33 *   be able to handle instructions from all revisions of the MIPS ISA,
 34 *   all ASEs & all vendor instruction set extensions. This would be a
 35 *   whole lot of work & continual maintenance burden as new instructions
 36 *   are introduced, and in the case of some vendor extensions may not
 37 *   even be possible. Thus we need to take the approach of actually
 38 *   executing the instruction.
 39 *
 40 * - We must execute the instruction within user context. If we were to
 41 *   execute the instruction in kernel mode then it would have access to
 42 *   kernel resources without very careful checks, leaving us with a
 43 *   high potential for security or stability issues to arise.
 44 *
 45 * - We used to place the frame on the users stack, but this requires
 46 *   that the stack be executable. This is bad for security so the
 47 *   per-process page is now used instead.
 48 *
 49 * - The instruction in @emul may be something entirely invalid for a
 50 *   delay slot. The user may (intentionally or otherwise) place a branch
 51 *   in a delay slot, or a kernel mode instruction, or something else
 52 *   which generates an exception. Thus we can't rely upon the break in
 53 *   @badinst always being hit. For this reason we track the index of the
 54 *   frame allocated to each thread, allowing us to clean it up at later
 55 *   points such as signal delivery or thread exit.
 56 *
 57 * - The user may generate a fake struct emuframe if they wish, invoking
 58 *   the BRK_MEMU break instruction themselves. We must therefore not
 59 *   trust that BRK_MEMU means there's actually a valid frame allocated
 60 *   to the thread, and must not allow the user to do anything they
 61 *   couldn't already.
 62 */
 63struct emuframe {
 64	mips_instruction	emul;
 65	mips_instruction	badinst;
 66};
 67
 68static const int emupage_frame_count = PAGE_SIZE / sizeof(struct emuframe);
 69
 70static inline __user struct emuframe *dsemul_page(void)
 71{
 72	return (__user struct emuframe *)STACK_TOP;
 73}
 74
 75static int alloc_emuframe(void)
 76{
 77	mm_context_t *mm_ctx = &current->mm->context;
 78	int idx;
 79
 80retry:
 81	spin_lock(&mm_ctx->bd_emupage_lock);
 82
 83	/* Ensure we have an allocation bitmap */
 84	if (!mm_ctx->bd_emupage_allocmap) {
 85		mm_ctx->bd_emupage_allocmap = bitmap_zalloc(emupage_frame_count,
 86							    GFP_ATOMIC);
 
 
 
 87		if (!mm_ctx->bd_emupage_allocmap) {
 88			idx = BD_EMUFRAME_NONE;
 89			goto out_unlock;
 90		}
 91	}
 92
 93	/* Attempt to allocate a single bit/frame */
 94	idx = bitmap_find_free_region(mm_ctx->bd_emupage_allocmap,
 95				      emupage_frame_count, 0);
 96	if (idx < 0) {
 97		/*
 98		 * Failed to allocate a frame. We'll wait until one becomes
 99		 * available. We unlock the page so that other threads actually
100		 * get the opportunity to free their frames, which means
101		 * technically the result of bitmap_full may be incorrect.
102		 * However the worst case is that we repeat all this and end up
103		 * back here again.
104		 */
105		spin_unlock(&mm_ctx->bd_emupage_lock);
106		if (!wait_event_killable(mm_ctx->bd_emupage_queue,
107			!bitmap_full(mm_ctx->bd_emupage_allocmap,
108				     emupage_frame_count)))
109			goto retry;
110
111		/* Received a fatal signal - just give in */
112		return BD_EMUFRAME_NONE;
113	}
114
115	/* Success! */
116	pr_debug("allocate emuframe %d to %d\n", idx, current->pid);
117out_unlock:
118	spin_unlock(&mm_ctx->bd_emupage_lock);
119	return idx;
120}
121
122static void free_emuframe(int idx, struct mm_struct *mm)
123{
124	mm_context_t *mm_ctx = &mm->context;
125
126	spin_lock(&mm_ctx->bd_emupage_lock);
127
128	pr_debug("free emuframe %d from %d\n", idx, current->pid);
129	bitmap_clear(mm_ctx->bd_emupage_allocmap, idx, 1);
130
131	/* If some thread is waiting for a frame, now's its chance */
132	wake_up(&mm_ctx->bd_emupage_queue);
133
134	spin_unlock(&mm_ctx->bd_emupage_lock);
135}
136
137static bool within_emuframe(struct pt_regs *regs)
138{
139	unsigned long base = (unsigned long)dsemul_page();
140
141	if (regs->cp0_epc < base)
142		return false;
143	if (regs->cp0_epc >= (base + PAGE_SIZE))
144		return false;
145
146	return true;
147}
148
149bool dsemul_thread_cleanup(struct task_struct *tsk)
150{
151	int fr_idx;
152
153	/* Clear any allocated frame, retrieving its index */
154	fr_idx = atomic_xchg(&tsk->thread.bd_emu_frame, BD_EMUFRAME_NONE);
155
156	/* If no frame was allocated, we're done */
157	if (fr_idx == BD_EMUFRAME_NONE)
158		return false;
159
160	task_lock(tsk);
161
162	/* Free the frame that this thread had allocated */
163	if (tsk->mm)
164		free_emuframe(fr_idx, tsk->mm);
165
166	task_unlock(tsk);
167	return true;
168}
169
170bool dsemul_thread_rollback(struct pt_regs *regs)
171{
172	struct emuframe __user *fr;
173	int fr_idx;
174
175	/* Do nothing if we're not executing from a frame */
176	if (!within_emuframe(regs))
177		return false;
178
179	/* Find the frame being executed */
180	fr_idx = atomic_read(&current->thread.bd_emu_frame);
181	if (fr_idx == BD_EMUFRAME_NONE)
182		return false;
183	fr = &dsemul_page()[fr_idx];
184
185	/*
186	 * If the PC is at the emul instruction, roll back to the branch. If
187	 * PC is at the badinst (break) instruction, we've already emulated the
188	 * instruction so progress to the continue PC. If it's anything else
189	 * then something is amiss & the user has branched into some other area
190	 * of the emupage - we'll free the allocated frame anyway.
191	 */
192	if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->emul)
193		regs->cp0_epc = current->thread.bd_emu_branch_pc;
194	else if (msk_isa16_mode(regs->cp0_epc) == (unsigned long)&fr->badinst)
195		regs->cp0_epc = current->thread.bd_emu_cont_pc;
196
197	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
198	free_emuframe(fr_idx, current->mm);
199	return true;
200}
201
202void dsemul_mm_cleanup(struct mm_struct *mm)
203{
204	mm_context_t *mm_ctx = &mm->context;
205
206	bitmap_free(mm_ctx->bd_emupage_allocmap);
207}
208
209int mips_dsemul(struct pt_regs *regs, mips_instruction ir,
210		unsigned long branch_pc, unsigned long cont_pc)
211{
212	int isa16 = get_isa16_mode(regs->cp0_epc);
213	mips_instruction break_math;
214	unsigned long fr_uaddr;
215	struct emuframe fr;
216	int fr_idx, ret;
217
218	/* NOP is easy */
219	if (ir == 0)
220		return -1;
221
222	/* microMIPS instructions */
223	if (isa16) {
224		union mips_instruction insn = { .word = ir };
225
226		/* NOP16 aka MOVE16 $0, $0 */
227		if ((ir >> 16) == MM_NOP16)
228			return -1;
229
230		/* ADDIUPC */
231		if (insn.mm_a_format.opcode == mm_addiupc_op) {
232			unsigned int rs;
233			s32 v;
234
235			rs = (((insn.mm_a_format.rs + 0xe) & 0xf) + 2);
236			v = regs->cp0_epc & ~3;
237			v += insn.mm_a_format.simmediate << 2;
238			regs->regs[rs] = (long)v;
239			return -1;
240		}
241	}
242
243	pr_debug("dsemul 0x%08lx cont at 0x%08lx\n", regs->cp0_epc, cont_pc);
244
245	/* Allocate a frame if we don't already have one */
246	fr_idx = atomic_read(&current->thread.bd_emu_frame);
247	if (fr_idx == BD_EMUFRAME_NONE)
248		fr_idx = alloc_emuframe();
249	if (fr_idx == BD_EMUFRAME_NONE)
250		return SIGBUS;
251
252	/* Retrieve the appropriately encoded break instruction */
253	break_math = BREAK_MATH(isa16);
254
255	/* Write the instructions to the frame */
256	if (isa16) {
257		union mips_instruction _emul = {
258			.halfword = { ir >> 16, ir }
259		};
260		union mips_instruction _badinst = {
261			.halfword = { break_math >> 16, break_math }
262		};
263
264		fr.emul = _emul.word;
265		fr.badinst = _badinst.word;
266	} else {
267		fr.emul = ir;
268		fr.badinst = break_math;
269	}
270
271	/* Write the frame to user memory */
272	fr_uaddr = (unsigned long)&dsemul_page()[fr_idx];
273	ret = access_process_vm(current, fr_uaddr, &fr, sizeof(fr),
274				FOLL_FORCE | FOLL_WRITE);
275	if (unlikely(ret != sizeof(fr))) {
276		MIPS_FPU_EMU_INC_STATS(errors);
277		free_emuframe(fr_idx, current->mm);
278		return SIGBUS;
279	}
280
281	/* Record the PC of the branch, PC to continue from & frame index */
282	current->thread.bd_emu_branch_pc = branch_pc;
283	current->thread.bd_emu_cont_pc = cont_pc;
284	atomic_set(&current->thread.bd_emu_frame, fr_idx);
285
286	/* Change user register context to execute the frame */
287	regs->cp0_epc = fr_uaddr | isa16;
288
289	return 0;
290}
291
292bool do_dsemulret(struct pt_regs *xcp)
293{
294	/* Cleanup the allocated frame, returning if there wasn't one */
295	if (!dsemul_thread_cleanup(current)) {
296		MIPS_FPU_EMU_INC_STATS(errors);
297		return false;
298	}
299
300	/* Set EPC to return to post-branch instruction */
301	xcp->cp0_epc = current->thread.bd_emu_cont_pc;
302	pr_debug("dsemulret to 0x%08lx\n", xcp->cp0_epc);
303	MIPS_FPU_EMU_INC_STATS(ds_emul);
304	return true;
305}