Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
 
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
 
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  39 *                        | ... | caller-saved registers
  40 *                        +-----+
  41 *                        | ... | arguments passed on stack
  42 * ARM_SP during call =>  +-----|
  43 *                        |     |
  44 *                        | ... | Function call stack
  45 *                        |     |
  46 *                        +-----+
  47 *                          low
  48 *
  49 * The callee saved registers depends on whether frame pointers are enabled.
  50 * With frame pointers (to be compliant with the ABI):
  51 *
  52 *                              high
  53 * original ARM_SP =>     +--------------+ \
  54 *                        |      pc      | |
  55 * current ARM_FP =>      +--------------+ } callee saved registers
  56 *                        |r4-r9,fp,ip,lr| |
  57 *                        +--------------+ /
  58 *                              low
  59 *
  60 * Without frame pointers:
  61 *
  62 *                              high
  63 * original ARM_SP =>     +--------------+
  64 *                        |  r4-r9,fp,lr | callee saved registers
  65 * current ARM_FP =>      +--------------+
  66 *                              low
  67 *
  68 * When popping registers off the stack at the end of a BPF function, we
  69 * reference them via the current ARM_FP register.
  70 *
  71 * Some eBPF operations are implemented via a call to a helper function.
  72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  73 * program to preserve any caller-saved ARM registers during the call. The
  74 * JIT emits code to push and pop those registers onto the stack, immediately
  75 * above the callee stack frame.
  76 */
  77#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  78			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  79			 1 << ARM_FP)
  80#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  81#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  82
  83#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  84
  85enum {
  86	/* Stack layout - these are offsets from (top of stack - 4) */
  87	BPF_R2_HI,
  88	BPF_R2_LO,
  89	BPF_R3_HI,
  90	BPF_R3_LO,
  91	BPF_R4_HI,
  92	BPF_R4_LO,
  93	BPF_R5_HI,
  94	BPF_R5_LO,
  95	BPF_R7_HI,
  96	BPF_R7_LO,
  97	BPF_R8_HI,
  98	BPF_R8_LO,
  99	BPF_R9_HI,
 100	BPF_R9_LO,
 101	BPF_FP_HI,
 102	BPF_FP_LO,
 103	BPF_TC_HI,
 104	BPF_TC_LO,
 105	BPF_AX_HI,
 106	BPF_AX_LO,
 107	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 108	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 109	 * BPF_REG_FP and Tail call counts.
 110	 */
 111	BPF_JIT_SCRATCH_REGS,
 112};
 113
 114/*
 115 * Negative "register" values indicate the register is stored on the stack
 116 * and are the offset from the top of the eBPF JIT scratch space.
 117 */
 118#define STACK_OFFSET(k)	(-4 - (k) * 4)
 119#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 120
 121#ifdef CONFIG_FRAME_POINTER
 122#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 123#else
 124#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 125#endif
 126
 127#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 128#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 129#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 130
 131#define FLAG_IMM_OVERFLOW	(1 << 0)
 132
 133/*
 134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 135 *
 136 * 1. First argument is passed using the arm 32bit registers and rest of the
 137 * arguments are passed on stack scratch space.
 138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 139 * arguments are mapped to scratch space on stack.
 140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 141 * registers.
 142 *
 143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 145 * scratch memory space and we have to build eBPF 64 bit register from those.
 146 *
 147 */
 148static const s8 bpf2a32[][2] = {
 149	/* return value from in-kernel function, and exit value from eBPF */
 150	[BPF_REG_0] = {ARM_R1, ARM_R0},
 151	/* arguments from eBPF program to in-kernel function */
 152	[BPF_REG_1] = {ARM_R3, ARM_R2},
 153	/* Stored on stack scratch space */
 154	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 155	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 156	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 157	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 158	/* callee saved registers that in-kernel function will preserve */
 159	[BPF_REG_6] = {ARM_R5, ARM_R4},
 160	/* Stored on stack scratch space */
 161	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 162	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 163	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 164	/* Read only Frame Pointer to access Stack */
 165	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 166	/* Temporary Register for internal BPF JIT, can be used
 167	 * for constant blindings and others.
 168	 */
 169	[TMP_REG_1] = {ARM_R7, ARM_R6},
 170	[TMP_REG_2] = {ARM_R9, ARM_R8},
 171	/* Tail call count. Stored on stack scratch space. */
 172	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 173	/* temporary register for blinding constants.
 174	 * Stored on stack scratch space.
 175	 */
 176	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 177};
 178
 179#define	dst_lo	dst[1]
 180#define dst_hi	dst[0]
 181#define src_lo	src[1]
 182#define src_hi	src[0]
 183
 184/*
 185 * JIT Context:
 186 *
 187 * prog			:	bpf_prog
 188 * idx			:	index of current last JITed instruction.
 189 * prologue_bytes	:	bytes used in prologue.
 190 * epilogue_offset	:	offset of epilogue starting.
 191 * offsets		:	array of eBPF instruction offsets in
 192 *				JITed code.
 193 * target		:	final JITed code.
 194 * epilogue_bytes	:	no of bytes used in epilogue.
 195 * imm_count		:	no of immediate counts used for global
 196 *				variables.
 197 * imms			:	array of global variable addresses.
 198 */
 199
 200struct jit_ctx {
 201	const struct bpf_prog *prog;
 202	unsigned int idx;
 203	unsigned int prologue_bytes;
 204	unsigned int epilogue_offset;
 205	unsigned int cpu_architecture;
 206	u32 flags;
 207	u32 *offsets;
 208	u32 *target;
 209	u32 stack_size;
 210#if __LINUX_ARM_ARCH__ < 7
 211	u16 epilogue_bytes;
 212	u16 imm_count;
 213	u32 *imms;
 214#endif
 215};
 216
 217/*
 218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 219 * (where the assembly routines like __aeabi_uidiv could cause problems).
 220 */
 221static u32 jit_udiv32(u32 dividend, u32 divisor)
 222{
 223	return dividend / divisor;
 224}
 225
 226static u32 jit_mod32(u32 dividend, u32 divisor)
 227{
 228	return dividend % divisor;
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 232{
 233	inst |= (cond << 28);
 234	inst = __opcode_to_mem_arm(inst);
 235
 236	if (ctx->target != NULL)
 237		ctx->target[ctx->idx] = inst;
 238
 239	ctx->idx++;
 240}
 241
 242/*
 243 * Emit an instruction that will be executed unconditionally.
 244 */
 245static inline void emit(u32 inst, struct jit_ctx *ctx)
 246{
 247	_emit(ARM_COND_AL, inst, ctx);
 248}
 249
 250/*
 251 * This is rather horrid, but necessary to convert an integer constant
 252 * to an immediate operand for the opcodes, and be able to detect at
 253 * build time whether the constant can't be converted (iow, usable in
 254 * BUILD_BUG_ON()).
 255 */
 256#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 257#define const_imm8m(x)					\
 258	({ int r;					\
 259	   u32 v = (x);					\
 260	   if (!(v & ~0x000000ff))			\
 261		r = imm12val(v, 0);			\
 262	   else if (!(v & ~0xc000003f))			\
 263		r = imm12val(v, 2);			\
 264	   else if (!(v & ~0xf000000f))			\
 265		r = imm12val(v, 4);			\
 266	   else if (!(v & ~0xfc000003))			\
 267		r = imm12val(v, 6);			\
 268	   else if (!(v & ~0xff000000))			\
 269		r = imm12val(v, 8);			\
 270	   else if (!(v & ~0x3fc00000))			\
 271		r = imm12val(v, 10);			\
 272	   else if (!(v & ~0x0ff00000))			\
 273		r = imm12val(v, 12);			\
 274	   else if (!(v & ~0x03fc0000))			\
 275		r = imm12val(v, 14);			\
 276	   else if (!(v & ~0x00ff0000))			\
 277		r = imm12val(v, 16);			\
 278	   else if (!(v & ~0x003fc000))			\
 279		r = imm12val(v, 18);			\
 280	   else if (!(v & ~0x000ff000))			\
 281		r = imm12val(v, 20);			\
 282	   else if (!(v & ~0x0003fc00))			\
 283		r = imm12val(v, 22);			\
 284	   else if (!(v & ~0x0000ff00))			\
 285		r = imm12val(v, 24);			\
 286	   else if (!(v & ~0x00003fc0))			\
 287		r = imm12val(v, 26);			\
 288	   else if (!(v & ~0x00000ff0))			\
 289		r = imm12val(v, 28);			\
 290	   else if (!(v & ~0x000003fc))			\
 291		r = imm12val(v, 30);			\
 292	   else						\
 293		r = -1;					\
 294	   r; })
 295
 296/*
 297 * Checks if immediate value can be converted to imm12(12 bits) value.
 298 */
 299static int imm8m(u32 x)
 300{
 301	u32 rot;
 302
 303	for (rot = 0; rot < 16; rot++)
 304		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 305			return rol32(x, 2 * rot) | (rot << 8);
 306	return -1;
 307}
 308
 309#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 310
 311static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 312{
 313	op |= rt << 12 | rn << 16;
 314	if (imm12 >= 0)
 315		op |= ARM_INST_LDST__U;
 316	else
 317		imm12 = -imm12;
 318	return op | (imm12 & ARM_INST_LDST__IMM12);
 319}
 320
 321static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 322{
 323	op |= rt << 12 | rn << 16;
 324	if (imm8 >= 0)
 325		op |= ARM_INST_LDST__U;
 326	else
 327		imm8 = -imm8;
 328	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 329}
 330
 331#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 332#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 333#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 334#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 335
 
 
 
 336#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 337#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 338#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 339#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 340
 341/*
 342 * Initializes the JIT space with undefined instructions.
 343 */
 344static void jit_fill_hole(void *area, unsigned int size)
 345{
 346	u32 *ptr;
 347	/* We are guaranteed to have aligned memory. */
 348	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 349		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 350}
 351
 352#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 353/* EABI requires the stack to be aligned to 64-bit boundaries */
 354#define STACK_ALIGNMENT	8
 355#else
 356/* Stack must be aligned to 32-bit boundaries */
 357#define STACK_ALIGNMENT	4
 358#endif
 359
 360/* total stack size used in JITed code */
 361#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 362#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 363
 364#if __LINUX_ARM_ARCH__ < 7
 365
 366static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 367{
 368	unsigned int i = 0, offset;
 369	u16 imm;
 370
 371	/* on the "fake" run we just count them (duplicates included) */
 372	if (ctx->target == NULL) {
 373		ctx->imm_count++;
 374		return 0;
 375	}
 376
 377	while ((i < ctx->imm_count) && ctx->imms[i]) {
 378		if (ctx->imms[i] == k)
 379			break;
 380		i++;
 381	}
 382
 383	if (ctx->imms[i] == 0)
 384		ctx->imms[i] = k;
 385
 386	/* constants go just after the epilogue */
 387	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 388	offset += ctx->prologue_bytes;
 389	offset += ctx->epilogue_bytes;
 390	offset += i * 4;
 391
 392	ctx->target[offset / 4] = k;
 393
 394	/* PC in ARM mode == address of the instruction + 8 */
 395	imm = offset - (8 + ctx->idx * 4);
 396
 397	if (imm & ~0xfff) {
 398		/*
 399		 * literal pool is too far, signal it into flags. we
 400		 * can only detect it on the second pass unfortunately.
 401		 */
 402		ctx->flags |= FLAG_IMM_OVERFLOW;
 403		return 0;
 404	}
 405
 406	return imm;
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ */
 410
 411static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 412				 const struct jit_ctx *ctx) {
 413	int to, from;
 414
 415	if (ctx->target == NULL)
 416		return 0;
 417	to = ctx->offsets[bpf_to];
 418	from = ctx->offsets[bpf_from];
 419
 420	return to - from - 1;
 421}
 422
 423/*
 424 * Move an immediate that's not an imm8m to a core register.
 425 */
 426static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 427{
 428#if __LINUX_ARM_ARCH__ < 7
 429	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 430#else
 431	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 432	if (val > 0xffff)
 433		emit(ARM_MOVT(rd, val >> 16), ctx);
 434#endif
 435}
 436
 437static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 438{
 439	int imm12 = imm8m(val);
 440
 441	if (imm12 >= 0)
 442		emit(ARM_MOV_I(rd, imm12), ctx);
 443	else
 444		emit_mov_i_no8m(rd, val, ctx);
 445}
 446
 447static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 448{
 449	if (elf_hwcap & HWCAP_THUMB)
 450		emit(ARM_BX(tgt_reg), ctx);
 451	else
 452		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 453}
 454
 455static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 456{
 457#if __LINUX_ARM_ARCH__ < 5
 458	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 459	emit_bx_r(tgt_reg, ctx);
 460#else
 461	emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 463}
 464
 465static inline int epilogue_offset(const struct jit_ctx *ctx)
 466{
 467	int to, from;
 468	/* No need for 1st dummy run */
 469	if (ctx->target == NULL)
 470		return 0;
 471	to = ctx->epilogue_offset;
 472	from = ctx->idx;
 473
 474	return to - from - 2;
 475}
 476
 477static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 478{
 479	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 480	const s8 *tmp = bpf2a32[TMP_REG_1];
 
 481
 482#if __LINUX_ARM_ARCH__ == 7
 483	if (elf_hwcap & HWCAP_IDIVA) {
 484		if (op == BPF_DIV)
 485			emit(ARM_UDIV(rd, rm, rn), ctx);
 486		else {
 487			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 488			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 489		}
 490		return;
 491	}
 492#endif
 493
 494	/*
 495	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 496	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 497	 * function, we need to save it on caller side to save
 498	 * it from getting destroyed within callee.
 499	 * After the return from the callee, we restore ARM_R0
 500	 * ARM_R1.
 501	 */
 502	if (rn != ARM_R1) {
 503		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 504		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 505	}
 506	if (rm != ARM_R0) {
 507		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 508		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 509	}
 510
 511	/* Push caller-saved registers on stack */
 512	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 513
 514	/* Call appropriate function */
 515	emit_mov_i(ARM_IP, op == BPF_DIV ?
 516		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 
 
 
 
 
 
 
 
 
 
 
 517	emit_blx_r(ARM_IP, ctx);
 518
 519	/* Restore caller-saved registers from stack */
 520	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 521
 522	/* Save return value */
 523	if (rd != ARM_R0)
 524		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 525
 526	/* Restore ARM_R0 and ARM_R1 */
 527	if (rn != ARM_R1)
 528		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 529	if (rm != ARM_R0)
 530		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 531}
 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533/* Is the translated BPF register on stack? */
 534static bool is_stacked(s8 reg)
 535{
 536	return reg < 0;
 537}
 538
 539/* If a BPF register is on the stack (stk is true), load it to the
 540 * supplied temporary register and return the temporary register
 541 * for subsequent operations, otherwise just use the CPU register.
 542 */
 543static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 544{
 545	if (is_stacked(reg)) {
 546		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 547		reg = tmp;
 548	}
 549	return reg;
 550}
 551
 552static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 553				   struct jit_ctx *ctx)
 554{
 555	if (is_stacked(reg[1])) {
 556		if (__LINUX_ARM_ARCH__ >= 6 ||
 557		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 558			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 559					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 560		} else {
 561			emit(ARM_LDR_I(tmp[1], ARM_FP,
 562				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 563			emit(ARM_LDR_I(tmp[0], ARM_FP,
 564				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 565		}
 566		reg = tmp;
 567	}
 568	return reg;
 569}
 570
 571/* If a BPF register is on the stack (stk is true), save the register
 572 * back to the stack.  If the source register is not the same, then
 573 * move it into the correct register.
 574 */
 575static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 576{
 577	if (is_stacked(reg))
 578		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 579	else if (reg != src)
 580		emit(ARM_MOV_R(reg, src), ctx);
 581}
 582
 583static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 584			      struct jit_ctx *ctx)
 585{
 586	if (is_stacked(reg[1])) {
 587		if (__LINUX_ARM_ARCH__ >= 6 ||
 588		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 589			emit(ARM_STRD_I(src[1], ARM_FP,
 590				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 591		} else {
 592			emit(ARM_STR_I(src[1], ARM_FP,
 593				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 594			emit(ARM_STR_I(src[0], ARM_FP,
 595				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 596		}
 597	} else {
 598		if (reg[1] != src[1])
 599			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 600		if (reg[0] != src[0])
 601			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 602	}
 603}
 604
 605static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 606				  struct jit_ctx *ctx)
 607{
 608	const s8 *tmp = bpf2a32[TMP_REG_1];
 609
 610	if (is_stacked(dst)) {
 611		emit_mov_i(tmp[1], val, ctx);
 612		arm_bpf_put_reg32(dst, tmp[1], ctx);
 613	} else {
 614		emit_mov_i(dst, val, ctx);
 615	}
 616}
 617
 618static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 619{
 620	const s8 *tmp = bpf2a32[TMP_REG_1];
 621	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 622
 623	emit_mov_i(rd[1], (u32)val, ctx);
 624	emit_mov_i(rd[0], val >> 32, ctx);
 625
 626	arm_bpf_put_reg64(dst, rd, ctx);
 627}
 628
 629/* Sign extended move */
 630static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 631				       const u32 val, struct jit_ctx *ctx) {
 632	u64 val64 = val;
 633
 634	if (is64 && (val & (1<<31)))
 635		val64 |= 0xffffffff00000000ULL;
 636	emit_a32_mov_i64(dst, val64, ctx);
 637}
 638
 639static inline void emit_a32_add_r(const u8 dst, const u8 src,
 640			      const bool is64, const bool hi,
 641			      struct jit_ctx *ctx) {
 642	/* 64 bit :
 643	 *	adds dst_lo, dst_lo, src_lo
 644	 *	adc dst_hi, dst_hi, src_hi
 645	 * 32 bit :
 646	 *	add dst_lo, dst_lo, src_lo
 647	 */
 648	if (!hi && is64)
 649		emit(ARM_ADDS_R(dst, dst, src), ctx);
 650	else if (hi && is64)
 651		emit(ARM_ADC_R(dst, dst, src), ctx);
 652	else
 653		emit(ARM_ADD_R(dst, dst, src), ctx);
 654}
 655
 656static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 657				  const bool is64, const bool hi,
 658				  struct jit_ctx *ctx) {
 659	/* 64 bit :
 660	 *	subs dst_lo, dst_lo, src_lo
 661	 *	sbc dst_hi, dst_hi, src_hi
 662	 * 32 bit :
 663	 *	sub dst_lo, dst_lo, src_lo
 664	 */
 665	if (!hi && is64)
 666		emit(ARM_SUBS_R(dst, dst, src), ctx);
 667	else if (hi && is64)
 668		emit(ARM_SBC_R(dst, dst, src), ctx);
 669	else
 670		emit(ARM_SUB_R(dst, dst, src), ctx);
 671}
 672
 673static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 674			      const bool hi, const u8 op, struct jit_ctx *ctx){
 675	switch (BPF_OP(op)) {
 676	/* dst = dst + src */
 677	case BPF_ADD:
 678		emit_a32_add_r(dst, src, is64, hi, ctx);
 679		break;
 680	/* dst = dst - src */
 681	case BPF_SUB:
 682		emit_a32_sub_r(dst, src, is64, hi, ctx);
 683		break;
 684	/* dst = dst | src */
 685	case BPF_OR:
 686		emit(ARM_ORR_R(dst, dst, src), ctx);
 687		break;
 688	/* dst = dst & src */
 689	case BPF_AND:
 690		emit(ARM_AND_R(dst, dst, src), ctx);
 691		break;
 692	/* dst = dst ^ src */
 693	case BPF_XOR:
 694		emit(ARM_EOR_R(dst, dst, src), ctx);
 695		break;
 696	/* dst = dst * src */
 697	case BPF_MUL:
 698		emit(ARM_MUL(dst, dst, src), ctx);
 699		break;
 700	/* dst = dst << src */
 701	case BPF_LSH:
 702		emit(ARM_LSL_R(dst, dst, src), ctx);
 703		break;
 704	/* dst = dst >> src */
 705	case BPF_RSH:
 706		emit(ARM_LSR_R(dst, dst, src), ctx);
 707		break;
 708	/* dst = dst >> src (signed)*/
 709	case BPF_ARSH:
 710		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 711		break;
 712	}
 713}
 714
 715/* ALU operation (32 bit)
 716 * dst = dst (op) src
 717 */
 718static inline void emit_a32_alu_r(const s8 dst, const s8 src,
 719				  struct jit_ctx *ctx, const bool is64,
 720				  const bool hi, const u8 op) {
 721	const s8 *tmp = bpf2a32[TMP_REG_1];
 722	s8 rn, rd;
 723
 724	rn = arm_bpf_get_reg32(src, tmp[1], ctx);
 725	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 726	/* ALU operation */
 727	emit_alu_r(rd, rn, is64, hi, op, ctx);
 728	arm_bpf_put_reg32(dst, rd, ctx);
 729}
 730
 731/* ALU operation (64 bit) */
 732static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 733				  const s8 src[], struct jit_ctx *ctx,
 734				  const u8 op) {
 735	const s8 *tmp = bpf2a32[TMP_REG_1];
 736	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 737	const s8 *rd;
 738
 739	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 740	if (is64) {
 741		const s8 *rs;
 742
 743		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 744
 745		/* ALU operation */
 746		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 747		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 748	} else {
 749		s8 rs;
 750
 751		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 752
 753		/* ALU operation */
 754		emit_alu_r(rd[1], rs, true, false, op, ctx);
 755		if (!ctx->prog->aux->verifier_zext)
 756			emit_a32_mov_i(rd[0], 0, ctx);
 757	}
 758
 759	arm_bpf_put_reg64(dst, rd, ctx);
 760}
 761
 762/* dst = src (4 bytes)*/
 763static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 764				  struct jit_ctx *ctx) {
 765	const s8 *tmp = bpf2a32[TMP_REG_1];
 766	s8 rt;
 767
 768	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 
 
 
 
 769	arm_bpf_put_reg32(dst, rt, ctx);
 770}
 771
 772/* dst = src */
 773static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 774				  const s8 src[],
 775				  struct jit_ctx *ctx) {
 776	if (!is64) {
 777		emit_a32_mov_r(dst_lo, src_lo, ctx);
 778		if (!ctx->prog->aux->verifier_zext)
 779			/* Zero out high 4 bytes */
 780			emit_a32_mov_i(dst_hi, 0, ctx);
 781	} else if (__LINUX_ARM_ARCH__ < 6 &&
 782		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 783		/* complete 8 byte move */
 784		emit_a32_mov_r(dst_lo, src_lo, ctx);
 785		emit_a32_mov_r(dst_hi, src_hi, ctx);
 786	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 787		const u8 *tmp = bpf2a32[TMP_REG_1];
 788
 789		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 790		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 791	} else if (is_stacked(src_lo)) {
 792		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 793	} else if (is_stacked(dst_lo)) {
 794		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 795	} else {
 796		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 797		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 798	}
 799}
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801/* Shift operations */
 802static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 803				struct jit_ctx *ctx, const u8 op) {
 804	const s8 *tmp = bpf2a32[TMP_REG_1];
 805	s8 rd;
 806
 807	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 808
 809	/* Do shift operation */
 810	switch (op) {
 811	case BPF_LSH:
 812		emit(ARM_LSL_I(rd, rd, val), ctx);
 813		break;
 814	case BPF_RSH:
 815		emit(ARM_LSR_I(rd, rd, val), ctx);
 816		break;
 817	case BPF_ARSH:
 818		emit(ARM_ASR_I(rd, rd, val), ctx);
 819		break;
 820	case BPF_NEG:
 821		emit(ARM_RSB_I(rd, rd, val), ctx);
 822		break;
 823	}
 824
 825	arm_bpf_put_reg32(dst, rd, ctx);
 826}
 827
 828/* dst = ~dst (64 bit) */
 829static inline void emit_a32_neg64(const s8 dst[],
 830				struct jit_ctx *ctx){
 831	const s8 *tmp = bpf2a32[TMP_REG_1];
 832	const s8 *rd;
 833
 834	/* Setup Operand */
 835	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 836
 837	/* Do Negate Operation */
 838	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 839	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 840
 841	arm_bpf_put_reg64(dst, rd, ctx);
 842}
 843
 844/* dst = dst << src */
 845static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 846				    struct jit_ctx *ctx) {
 847	const s8 *tmp = bpf2a32[TMP_REG_1];
 848	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 849	const s8 *rd;
 850	s8 rt;
 851
 852	/* Setup Operands */
 853	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 854	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 855
 856	/* Do LSH operation */
 857	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 858	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 859	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 860	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 861	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 862	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 863
 864	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 865	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 866}
 867
 868/* dst = dst >> src (signed)*/
 869static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 870				     struct jit_ctx *ctx) {
 871	const s8 *tmp = bpf2a32[TMP_REG_1];
 872	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 873	const s8 *rd;
 874	s8 rt;
 875
 876	/* Setup Operands */
 877	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 878	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 879
 880	/* Do the ARSH operation */
 881	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 882	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 883	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 884	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 885	_emit(ARM_COND_PL,
 886	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 887	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 888
 889	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 890	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 891}
 892
 893/* dst = dst >> src */
 894static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 895				    struct jit_ctx *ctx) {
 896	const s8 *tmp = bpf2a32[TMP_REG_1];
 897	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 898	const s8 *rd;
 899	s8 rt;
 900
 901	/* Setup Operands */
 902	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 903	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 904
 905	/* Do RSH operation */
 906	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 907	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 908	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 909	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 910	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 911	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 912
 913	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 914	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 915}
 916
 917/* dst = dst << val */
 918static inline void emit_a32_lsh_i64(const s8 dst[],
 919				    const u32 val, struct jit_ctx *ctx){
 920	const s8 *tmp = bpf2a32[TMP_REG_1];
 921	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 922	const s8 *rd;
 923
 924	/* Setup operands */
 925	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 926
 927	/* Do LSH operation */
 928	if (val < 32) {
 929		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 930		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 931		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 932	} else {
 933		if (val == 32)
 934			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 935		else
 936			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 937		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 938	}
 939
 940	arm_bpf_put_reg64(dst, rd, ctx);
 941}
 942
 943/* dst = dst >> val */
 944static inline void emit_a32_rsh_i64(const s8 dst[],
 945				    const u32 val, struct jit_ctx *ctx) {
 946	const s8 *tmp = bpf2a32[TMP_REG_1];
 947	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 948	const s8 *rd;
 949
 950	/* Setup operands */
 951	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 952
 953	/* Do LSR operation */
 954	if (val == 0) {
 955		/* An immediate value of 0 encodes a shift amount of 32
 956		 * for LSR. To shift by 0, don't do anything.
 957		 */
 958	} else if (val < 32) {
 959		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 960		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 961		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 962	} else if (val == 32) {
 963		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 964		emit(ARM_MOV_I(rd[0], 0), ctx);
 965	} else {
 966		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 967		emit(ARM_MOV_I(rd[0], 0), ctx);
 968	}
 969
 970	arm_bpf_put_reg64(dst, rd, ctx);
 971}
 972
 973/* dst = dst >> val (signed) */
 974static inline void emit_a32_arsh_i64(const s8 dst[],
 975				     const u32 val, struct jit_ctx *ctx){
 976	const s8 *tmp = bpf2a32[TMP_REG_1];
 977	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 978	const s8 *rd;
 979
 980	/* Setup operands */
 981	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 982
 983	/* Do ARSH operation */
 984	if (val == 0) {
 985		/* An immediate value of 0 encodes a shift amount of 32
 986		 * for ASR. To shift by 0, don't do anything.
 987		 */
 988	} else if (val < 32) {
 989		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 990		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 991		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 992	} else if (val == 32) {
 993		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 994		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 995	} else {
 996		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 997		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 998	}
 999
1000	arm_bpf_put_reg64(dst, rd, ctx);
1001}
1002
1003static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1004				    struct jit_ctx *ctx) {
1005	const s8 *tmp = bpf2a32[TMP_REG_1];
1006	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1007	const s8 *rd, *rt;
1008
1009	/* Setup operands for multiplication */
1010	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1011	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1012
1013	/* Do Multiplication */
1014	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1015	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1016	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1017
1018	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1019	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1020
1021	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1022	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1023}
1024
1025static bool is_ldst_imm(s16 off, const u8 size)
1026{
1027	s16 off_max = 0;
1028
1029	switch (size) {
1030	case BPF_B:
1031	case BPF_W:
1032		off_max = 0xfff;
1033		break;
1034	case BPF_H:
1035		off_max = 0xff;
1036		break;
1037	case BPF_DW:
1038		/* Need to make sure off+4 does not overflow. */
1039		off_max = 0xfff - 4;
1040		break;
1041	}
1042	return -off_max <= off && off <= off_max;
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045/* *(size *)(dst + off) = src */
1046static inline void emit_str_r(const s8 dst, const s8 src[],
1047			      s16 off, struct jit_ctx *ctx, const u8 sz){
1048	const s8 *tmp = bpf2a32[TMP_REG_1];
1049	s8 rd;
1050
1051	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1052
1053	if (!is_ldst_imm(off, sz)) {
1054		emit_a32_mov_i(tmp[0], off, ctx);
1055		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1056		rd = tmp[0];
1057		off = 0;
1058	}
1059	switch (sz) {
1060	case BPF_B:
1061		/* Store a Byte */
1062		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1063		break;
1064	case BPF_H:
1065		/* Store a HalfWord */
1066		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1067		break;
1068	case BPF_W:
1069		/* Store a Word */
1070		emit(ARM_STR_I(src_lo, rd, off), ctx);
1071		break;
1072	case BPF_DW:
1073		/* Store a Double Word */
1074		emit(ARM_STR_I(src_lo, rd, off), ctx);
1075		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1076		break;
1077	}
1078}
1079
1080/* dst = *(size*)(src + off) */
1081static inline void emit_ldx_r(const s8 dst[], const s8 src,
1082			      s16 off, struct jit_ctx *ctx, const u8 sz){
1083	const s8 *tmp = bpf2a32[TMP_REG_1];
1084	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1085	s8 rm = src;
1086
1087	if (!is_ldst_imm(off, sz)) {
1088		emit_a32_mov_i(tmp[0], off, ctx);
1089		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1090		rm = tmp[0];
1091		off = 0;
1092	} else if (rd[1] == rm) {
1093		emit(ARM_MOV_R(tmp[0], rm), ctx);
1094		rm = tmp[0];
1095	}
1096	switch (sz) {
1097	case BPF_B:
1098		/* Load a Byte */
1099		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1100		if (!ctx->prog->aux->verifier_zext)
1101			emit_a32_mov_i(rd[0], 0, ctx);
1102		break;
1103	case BPF_H:
1104		/* Load a HalfWord */
1105		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1106		if (!ctx->prog->aux->verifier_zext)
1107			emit_a32_mov_i(rd[0], 0, ctx);
1108		break;
1109	case BPF_W:
1110		/* Load a Word */
1111		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1112		if (!ctx->prog->aux->verifier_zext)
1113			emit_a32_mov_i(rd[0], 0, ctx);
1114		break;
1115	case BPF_DW:
1116		/* Load a Double Word */
1117		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1118		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1119		break;
1120	}
1121	arm_bpf_put_reg64(dst, rd, ctx);
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124/* Arithmatic Operation */
1125static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1126			     const u8 rn, struct jit_ctx *ctx, u8 op,
1127			     bool is_jmp64) {
1128	switch (op) {
1129	case BPF_JSET:
1130		if (is_jmp64) {
1131			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1132			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1133			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1134		} else {
1135			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1136		}
1137		break;
1138	case BPF_JEQ:
1139	case BPF_JNE:
1140	case BPF_JGT:
1141	case BPF_JGE:
1142	case BPF_JLE:
1143	case BPF_JLT:
1144		if (is_jmp64) {
1145			emit(ARM_CMP_R(rd, rm), ctx);
1146			/* Only compare low halve if high halve are equal. */
1147			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1148		} else {
1149			emit(ARM_CMP_R(rt, rn), ctx);
1150		}
1151		break;
1152	case BPF_JSLE:
1153	case BPF_JSGT:
1154		emit(ARM_CMP_R(rn, rt), ctx);
1155		if (is_jmp64)
1156			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1157		break;
1158	case BPF_JSLT:
1159	case BPF_JSGE:
1160		emit(ARM_CMP_R(rt, rn), ctx);
1161		if (is_jmp64)
1162			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1163		break;
1164	}
1165}
1166
1167static int out_offset = -1; /* initialized on the first pass of build_body() */
1168static int emit_bpf_tail_call(struct jit_ctx *ctx)
1169{
1170
1171	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1172	const s8 *r2 = bpf2a32[BPF_REG_2];
1173	const s8 *r3 = bpf2a32[BPF_REG_3];
1174	const s8 *tmp = bpf2a32[TMP_REG_1];
1175	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1176	const s8 *tcc = bpf2a32[TCALL_CNT];
1177	const s8 *tc;
1178	const int idx0 = ctx->idx;
1179#define cur_offset (ctx->idx - idx0)
1180#define jmp_offset (out_offset - (cur_offset) - 2)
1181	u32 lo, hi;
1182	s8 r_array, r_index;
1183	int off;
1184
1185	/* if (index >= array->map.max_entries)
1186	 *	goto out;
1187	 */
1188	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1189		     ARM_INST_LDST__IMM12);
1190	off = offsetof(struct bpf_array, map.max_entries);
1191	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1192	/* index is 32-bit for arrays */
1193	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1194	/* array->map.max_entries */
1195	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1196	/* index >= array->map.max_entries */
1197	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1198	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1199
1200	/* tmp2[0] = array, tmp2[1] = index */
1201
1202	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 
1203	 *	goto out;
1204	 * tail_call_cnt++;
1205	 */
1206	lo = (u32)MAX_TAIL_CALL_CNT;
1207	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1208	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1209	emit(ARM_CMP_I(tc[0], hi), ctx);
1210	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1211	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1212	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1213	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1214	arm_bpf_put_reg64(tcc, tmp, ctx);
1215
1216	/* prog = array->ptrs[index]
1217	 * if (prog == NULL)
1218	 *	goto out;
1219	 */
1220	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1221	off = imm8m(offsetof(struct bpf_array, ptrs));
1222	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1223	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1224	emit(ARM_CMP_I(tmp[1], 0), ctx);
1225	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1226
1227	/* goto *(prog->bpf_func + prologue_size); */
1228	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1229		     ARM_INST_LDST__IMM12);
1230	off = offsetof(struct bpf_prog, bpf_func);
1231	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1232	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1233	emit_bx_r(tmp[1], ctx);
1234
1235	/* out: */
1236	if (out_offset == -1)
1237		out_offset = cur_offset;
1238	if (cur_offset != out_offset) {
1239		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1240			    cur_offset, out_offset);
1241		return -1;
1242	}
1243	return 0;
1244#undef cur_offset
1245#undef jmp_offset
1246}
1247
1248/* 0xabcd => 0xcdab */
1249static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1250{
1251#if __LINUX_ARM_ARCH__ < 6
1252	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1253
1254	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1255	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1256	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1257	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1258#else /* ARMv6+ */
1259	emit(ARM_REV16(rd, rn), ctx);
1260#endif
1261}
1262
1263/* 0xabcdefgh => 0xghefcdab */
1264static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1265{
1266#if __LINUX_ARM_ARCH__ < 6
1267	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1268
1269	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1270	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1271	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1272
1273	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1274	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1275	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1276	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1277	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1278	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1279	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1280
1281#else /* ARMv6+ */
1282	emit(ARM_REV(rd, rn), ctx);
1283#endif
1284}
1285
1286// push the scratch stack register on top of the stack
1287static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1288{
1289	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1290	const s8 *rt;
1291	u16 reg_set = 0;
1292
1293	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1294
1295	reg_set = (1 << rt[1]) | (1 << rt[0]);
1296	emit(ARM_PUSH(reg_set), ctx);
1297}
1298
1299static void build_prologue(struct jit_ctx *ctx)
1300{
1301	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1302	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1303	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1304	const s8 *tcc = bpf2a32[TCALL_CNT];
1305
1306	/* Save callee saved registers. */
1307#ifdef CONFIG_FRAME_POINTER
1308	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1309	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1310	emit(ARM_PUSH(reg_set), ctx);
1311	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1312#else
1313	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1314	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1315#endif
1316	/* mov r3, #0 */
1317	/* sub r2, sp, #SCRATCH_SIZE */
1318	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1319	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1320
1321	ctx->stack_size = imm8m(STACK_SIZE);
1322
1323	/* Set up function call stack */
1324	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1325
1326	/* Set up BPF prog stack base register */
1327	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1328
1329	/* Initialize Tail Count */
1330	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1331	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1332
1333	/* Move BPF_CTX to BPF_R1 */
1334	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1335
1336	/* end of prologue */
1337}
1338
1339/* restore callee saved registers. */
1340static void build_epilogue(struct jit_ctx *ctx)
1341{
1342#ifdef CONFIG_FRAME_POINTER
1343	/* When using frame pointers, some additional registers need to
1344	 * be loaded. */
1345	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1346	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1347	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1348#else
1349	/* Restore callee saved registers. */
1350	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1351	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1352#endif
1353}
1354
1355/*
1356 * Convert an eBPF instruction to native instruction, i.e
1357 * JITs an eBPF instruction.
1358 * Returns :
1359 *	0  - Successfully JITed an 8-byte eBPF instruction
1360 *	>0 - Successfully JITed a 16-byte eBPF instruction
1361 *	<0 - Failed to JIT.
1362 */
1363static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1364{
1365	const u8 code = insn->code;
1366	const s8 *dst = bpf2a32[insn->dst_reg];
1367	const s8 *src = bpf2a32[insn->src_reg];
1368	const s8 *tmp = bpf2a32[TMP_REG_1];
1369	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1370	const s16 off = insn->off;
1371	const s32 imm = insn->imm;
1372	const int i = insn - ctx->prog->insnsi;
1373	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1374	const s8 *rd, *rs;
1375	s8 rd_lo, rt, rm, rn;
1376	s32 jmp_offset;
1377
1378#define check_imm(bits, imm) do {				\
1379	if ((imm) >= (1 << ((bits) - 1)) ||			\
1380	    (imm) < -(1 << ((bits) - 1))) {			\
1381		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1382			i, imm, imm);				\
1383		return -EINVAL;					\
1384	}							\
1385} while (0)
1386#define check_imm24(imm) check_imm(24, imm)
1387
1388	switch (code) {
1389	/* ALU operations */
1390
1391	/* dst = src */
1392	case BPF_ALU | BPF_MOV | BPF_K:
1393	case BPF_ALU | BPF_MOV | BPF_X:
1394	case BPF_ALU64 | BPF_MOV | BPF_K:
1395	case BPF_ALU64 | BPF_MOV | BPF_X:
1396		switch (BPF_SRC(code)) {
1397		case BPF_X:
1398			if (imm == 1) {
1399				/* Special mov32 for zext */
1400				emit_a32_mov_i(dst_hi, 0, ctx);
1401				break;
1402			}
1403			emit_a32_mov_r64(is64, dst, src, ctx);
 
 
 
1404			break;
1405		case BPF_K:
1406			/* Sign-extend immediate value to destination reg */
1407			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1408			break;
1409		}
1410		break;
1411	/* dst = dst + src/imm */
1412	/* dst = dst - src/imm */
1413	/* dst = dst | src/imm */
1414	/* dst = dst & src/imm */
1415	/* dst = dst ^ src/imm */
1416	/* dst = dst * src/imm */
1417	/* dst = dst << src */
1418	/* dst = dst >> src */
1419	case BPF_ALU | BPF_ADD | BPF_K:
1420	case BPF_ALU | BPF_ADD | BPF_X:
1421	case BPF_ALU | BPF_SUB | BPF_K:
1422	case BPF_ALU | BPF_SUB | BPF_X:
1423	case BPF_ALU | BPF_OR | BPF_K:
1424	case BPF_ALU | BPF_OR | BPF_X:
1425	case BPF_ALU | BPF_AND | BPF_K:
1426	case BPF_ALU | BPF_AND | BPF_X:
1427	case BPF_ALU | BPF_XOR | BPF_K:
1428	case BPF_ALU | BPF_XOR | BPF_X:
1429	case BPF_ALU | BPF_MUL | BPF_K:
1430	case BPF_ALU | BPF_MUL | BPF_X:
1431	case BPF_ALU | BPF_LSH | BPF_X:
1432	case BPF_ALU | BPF_RSH | BPF_X:
1433	case BPF_ALU | BPF_ARSH | BPF_X:
1434	case BPF_ALU64 | BPF_ADD | BPF_K:
1435	case BPF_ALU64 | BPF_ADD | BPF_X:
1436	case BPF_ALU64 | BPF_SUB | BPF_K:
1437	case BPF_ALU64 | BPF_SUB | BPF_X:
1438	case BPF_ALU64 | BPF_OR | BPF_K:
1439	case BPF_ALU64 | BPF_OR | BPF_X:
1440	case BPF_ALU64 | BPF_AND | BPF_K:
1441	case BPF_ALU64 | BPF_AND | BPF_X:
1442	case BPF_ALU64 | BPF_XOR | BPF_K:
1443	case BPF_ALU64 | BPF_XOR | BPF_X:
1444		switch (BPF_SRC(code)) {
1445		case BPF_X:
1446			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1447			break;
1448		case BPF_K:
1449			/* Move immediate value to the temporary register
1450			 * and then do the ALU operation on the temporary
1451			 * register as this will sign-extend the immediate
1452			 * value into temporary reg and then it would be
1453			 * safe to do the operation on it.
1454			 */
1455			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1456			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1457			break;
1458		}
1459		break;
1460	/* dst = dst / src(imm) */
1461	/* dst = dst % src(imm) */
1462	case BPF_ALU | BPF_DIV | BPF_K:
1463	case BPF_ALU | BPF_DIV | BPF_X:
1464	case BPF_ALU | BPF_MOD | BPF_K:
1465	case BPF_ALU | BPF_MOD | BPF_X:
1466		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1467		switch (BPF_SRC(code)) {
1468		case BPF_X:
1469			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1470			break;
1471		case BPF_K:
1472			rt = tmp2[0];
1473			emit_a32_mov_i(rt, imm, ctx);
1474			break;
1475		default:
1476			rt = src_lo;
1477			break;
1478		}
1479		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1480		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1481		if (!ctx->prog->aux->verifier_zext)
1482			emit_a32_mov_i(dst_hi, 0, ctx);
1483		break;
1484	case BPF_ALU64 | BPF_DIV | BPF_K:
1485	case BPF_ALU64 | BPF_DIV | BPF_X:
1486	case BPF_ALU64 | BPF_MOD | BPF_K:
1487	case BPF_ALU64 | BPF_MOD | BPF_X:
1488		goto notyet;
 
 
 
 
 
 
 
 
 
 
 
 
1489	/* dst = dst << imm */
1490	/* dst = dst >> imm */
1491	/* dst = dst >> imm (signed) */
1492	case BPF_ALU | BPF_LSH | BPF_K:
1493	case BPF_ALU | BPF_RSH | BPF_K:
1494	case BPF_ALU | BPF_ARSH | BPF_K:
1495		if (unlikely(imm > 31))
1496			return -EINVAL;
1497		if (imm)
1498			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1499		if (!ctx->prog->aux->verifier_zext)
1500			emit_a32_mov_i(dst_hi, 0, ctx);
1501		break;
1502	/* dst = dst << imm */
1503	case BPF_ALU64 | BPF_LSH | BPF_K:
1504		if (unlikely(imm > 63))
1505			return -EINVAL;
1506		emit_a32_lsh_i64(dst, imm, ctx);
1507		break;
1508	/* dst = dst >> imm */
1509	case BPF_ALU64 | BPF_RSH | BPF_K:
1510		if (unlikely(imm > 63))
1511			return -EINVAL;
1512		emit_a32_rsh_i64(dst, imm, ctx);
1513		break;
1514	/* dst = dst << src */
1515	case BPF_ALU64 | BPF_LSH | BPF_X:
1516		emit_a32_lsh_r64(dst, src, ctx);
1517		break;
1518	/* dst = dst >> src */
1519	case BPF_ALU64 | BPF_RSH | BPF_X:
1520		emit_a32_rsh_r64(dst, src, ctx);
1521		break;
1522	/* dst = dst >> src (signed) */
1523	case BPF_ALU64 | BPF_ARSH | BPF_X:
1524		emit_a32_arsh_r64(dst, src, ctx);
1525		break;
1526	/* dst = dst >> imm (signed) */
1527	case BPF_ALU64 | BPF_ARSH | BPF_K:
1528		if (unlikely(imm > 63))
1529			return -EINVAL;
1530		emit_a32_arsh_i64(dst, imm, ctx);
1531		break;
1532	/* dst = ~dst */
1533	case BPF_ALU | BPF_NEG:
1534		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1535		if (!ctx->prog->aux->verifier_zext)
1536			emit_a32_mov_i(dst_hi, 0, ctx);
1537		break;
1538	/* dst = ~dst (64 bit) */
1539	case BPF_ALU64 | BPF_NEG:
1540		emit_a32_neg64(dst, ctx);
1541		break;
1542	/* dst = dst * src/imm */
1543	case BPF_ALU64 | BPF_MUL | BPF_X:
1544	case BPF_ALU64 | BPF_MUL | BPF_K:
1545		switch (BPF_SRC(code)) {
1546		case BPF_X:
1547			emit_a32_mul_r64(dst, src, ctx);
1548			break;
1549		case BPF_K:
1550			/* Move immediate value to the temporary register
1551			 * and then do the multiplication on it as this
1552			 * will sign-extend the immediate value into temp
1553			 * reg then it would be safe to do the operation
1554			 * on it.
1555			 */
1556			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1557			emit_a32_mul_r64(dst, tmp2, ctx);
1558			break;
1559		}
1560		break;
1561	/* dst = htole(dst) */
1562	/* dst = htobe(dst) */
1563	case BPF_ALU | BPF_END | BPF_FROM_LE:
1564	case BPF_ALU | BPF_END | BPF_FROM_BE:
 
 
1565		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1566		if (BPF_SRC(code) == BPF_FROM_LE)
1567			goto emit_bswap_uxt;
1568		switch (imm) {
1569		case 16:
1570			emit_rev16(rd[1], rd[1], ctx);
1571			goto emit_bswap_uxt;
1572		case 32:
1573			emit_rev32(rd[1], rd[1], ctx);
1574			goto emit_bswap_uxt;
1575		case 64:
1576			emit_rev32(ARM_LR, rd[1], ctx);
1577			emit_rev32(rd[1], rd[0], ctx);
1578			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1579			break;
1580		}
1581		goto exit;
1582emit_bswap_uxt:
1583		switch (imm) {
1584		case 16:
1585			/* zero-extend 16 bits into 64 bits */
1586#if __LINUX_ARM_ARCH__ < 6
1587			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1588			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1589#else /* ARMv6+ */
1590			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1591#endif
1592			if (!ctx->prog->aux->verifier_zext)
1593				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1594			break;
1595		case 32:
1596			/* zero-extend 32 bits into 64 bits */
1597			if (!ctx->prog->aux->verifier_zext)
1598				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1599			break;
1600		case 64:
1601			/* nop */
1602			break;
1603		}
1604exit:
1605		arm_bpf_put_reg64(dst, rd, ctx);
1606		break;
1607	/* dst = imm64 */
1608	case BPF_LD | BPF_IMM | BPF_DW:
1609	{
1610		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1611
1612		emit_a32_mov_i64(dst, val, ctx);
1613
1614		return 1;
1615	}
1616	/* LDX: dst = *(size *)(src + off) */
1617	case BPF_LDX | BPF_MEM | BPF_W:
1618	case BPF_LDX | BPF_MEM | BPF_H:
1619	case BPF_LDX | BPF_MEM | BPF_B:
1620	case BPF_LDX | BPF_MEM | BPF_DW:
 
 
 
 
1621		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1622		emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
 
 
 
1623		break;
1624	/* speculation barrier */
1625	case BPF_ST | BPF_NOSPEC:
1626		break;
1627	/* ST: *(size *)(dst + off) = imm */
1628	case BPF_ST | BPF_MEM | BPF_W:
1629	case BPF_ST | BPF_MEM | BPF_H:
1630	case BPF_ST | BPF_MEM | BPF_B:
1631	case BPF_ST | BPF_MEM | BPF_DW:
1632		switch (BPF_SIZE(code)) {
1633		case BPF_DW:
1634			/* Sign-extend immediate value into temp reg */
1635			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1636			break;
1637		case BPF_W:
1638		case BPF_H:
1639		case BPF_B:
1640			emit_a32_mov_i(tmp2[1], imm, ctx);
1641			break;
1642		}
1643		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1644		break;
1645	/* Atomic ops */
1646	case BPF_STX | BPF_ATOMIC | BPF_W:
1647	case BPF_STX | BPF_ATOMIC | BPF_DW:
1648		goto notyet;
1649	/* STX: *(size *)(dst + off) = src */
1650	case BPF_STX | BPF_MEM | BPF_W:
1651	case BPF_STX | BPF_MEM | BPF_H:
1652	case BPF_STX | BPF_MEM | BPF_B:
1653	case BPF_STX | BPF_MEM | BPF_DW:
1654		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1655		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1656		break;
1657	/* PC += off if dst == src */
1658	/* PC += off if dst > src */
1659	/* PC += off if dst >= src */
1660	/* PC += off if dst < src */
1661	/* PC += off if dst <= src */
1662	/* PC += off if dst != src */
1663	/* PC += off if dst > src (signed) */
1664	/* PC += off if dst >= src (signed) */
1665	/* PC += off if dst < src (signed) */
1666	/* PC += off if dst <= src (signed) */
1667	/* PC += off if dst & src */
1668	case BPF_JMP | BPF_JEQ | BPF_X:
1669	case BPF_JMP | BPF_JGT | BPF_X:
1670	case BPF_JMP | BPF_JGE | BPF_X:
1671	case BPF_JMP | BPF_JNE | BPF_X:
1672	case BPF_JMP | BPF_JSGT | BPF_X:
1673	case BPF_JMP | BPF_JSGE | BPF_X:
1674	case BPF_JMP | BPF_JSET | BPF_X:
1675	case BPF_JMP | BPF_JLE | BPF_X:
1676	case BPF_JMP | BPF_JLT | BPF_X:
1677	case BPF_JMP | BPF_JSLT | BPF_X:
1678	case BPF_JMP | BPF_JSLE | BPF_X:
1679	case BPF_JMP32 | BPF_JEQ | BPF_X:
1680	case BPF_JMP32 | BPF_JGT | BPF_X:
1681	case BPF_JMP32 | BPF_JGE | BPF_X:
1682	case BPF_JMP32 | BPF_JNE | BPF_X:
1683	case BPF_JMP32 | BPF_JSGT | BPF_X:
1684	case BPF_JMP32 | BPF_JSGE | BPF_X:
1685	case BPF_JMP32 | BPF_JSET | BPF_X:
1686	case BPF_JMP32 | BPF_JLE | BPF_X:
1687	case BPF_JMP32 | BPF_JLT | BPF_X:
1688	case BPF_JMP32 | BPF_JSLT | BPF_X:
1689	case BPF_JMP32 | BPF_JSLE | BPF_X:
1690		/* Setup source registers */
1691		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1692		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1693		goto go_jmp;
1694	/* PC += off if dst == imm */
1695	/* PC += off if dst > imm */
1696	/* PC += off if dst >= imm */
1697	/* PC += off if dst < imm */
1698	/* PC += off if dst <= imm */
1699	/* PC += off if dst != imm */
1700	/* PC += off if dst > imm (signed) */
1701	/* PC += off if dst >= imm (signed) */
1702	/* PC += off if dst < imm (signed) */
1703	/* PC += off if dst <= imm (signed) */
1704	/* PC += off if dst & imm */
1705	case BPF_JMP | BPF_JEQ | BPF_K:
1706	case BPF_JMP | BPF_JGT | BPF_K:
1707	case BPF_JMP | BPF_JGE | BPF_K:
1708	case BPF_JMP | BPF_JNE | BPF_K:
1709	case BPF_JMP | BPF_JSGT | BPF_K:
1710	case BPF_JMP | BPF_JSGE | BPF_K:
1711	case BPF_JMP | BPF_JSET | BPF_K:
1712	case BPF_JMP | BPF_JLT | BPF_K:
1713	case BPF_JMP | BPF_JLE | BPF_K:
1714	case BPF_JMP | BPF_JSLT | BPF_K:
1715	case BPF_JMP | BPF_JSLE | BPF_K:
1716	case BPF_JMP32 | BPF_JEQ | BPF_K:
1717	case BPF_JMP32 | BPF_JGT | BPF_K:
1718	case BPF_JMP32 | BPF_JGE | BPF_K:
1719	case BPF_JMP32 | BPF_JNE | BPF_K:
1720	case BPF_JMP32 | BPF_JSGT | BPF_K:
1721	case BPF_JMP32 | BPF_JSGE | BPF_K:
1722	case BPF_JMP32 | BPF_JSET | BPF_K:
1723	case BPF_JMP32 | BPF_JLT | BPF_K:
1724	case BPF_JMP32 | BPF_JLE | BPF_K:
1725	case BPF_JMP32 | BPF_JSLT | BPF_K:
1726	case BPF_JMP32 | BPF_JSLE | BPF_K:
1727		if (off == 0)
1728			break;
1729		rm = tmp2[0];
1730		rn = tmp2[1];
1731		/* Sign-extend immediate value */
1732		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1733go_jmp:
1734		/* Setup destination register */
1735		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1736
1737		/* Check for the condition */
1738		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1739			  BPF_CLASS(code) == BPF_JMP);
1740
1741		/* Setup JUMP instruction */
1742		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1743		switch (BPF_OP(code)) {
1744		case BPF_JNE:
1745		case BPF_JSET:
1746			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1747			break;
1748		case BPF_JEQ:
1749			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1750			break;
1751		case BPF_JGT:
1752			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1753			break;
1754		case BPF_JGE:
1755			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1756			break;
1757		case BPF_JSGT:
1758			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1759			break;
1760		case BPF_JSGE:
1761			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1762			break;
1763		case BPF_JLE:
1764			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1765			break;
1766		case BPF_JLT:
1767			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1768			break;
1769		case BPF_JSLT:
1770			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1771			break;
1772		case BPF_JSLE:
1773			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1774			break;
1775		}
1776		break;
1777	/* JMP OFF */
1778	case BPF_JMP | BPF_JA:
 
1779	{
1780		if (off == 0)
 
 
 
 
1781			break;
1782		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1783		check_imm24(jmp_offset);
1784		emit(ARM_B(jmp_offset), ctx);
1785		break;
1786	}
1787	/* tail call */
1788	case BPF_JMP | BPF_TAIL_CALL:
1789		if (emit_bpf_tail_call(ctx))
1790			return -EFAULT;
1791		break;
1792	/* function call */
1793	case BPF_JMP | BPF_CALL:
1794	{
1795		const s8 *r0 = bpf2a32[BPF_REG_0];
1796		const s8 *r1 = bpf2a32[BPF_REG_1];
1797		const s8 *r2 = bpf2a32[BPF_REG_2];
1798		const s8 *r3 = bpf2a32[BPF_REG_3];
1799		const s8 *r4 = bpf2a32[BPF_REG_4];
1800		const s8 *r5 = bpf2a32[BPF_REG_5];
1801		const u32 func = (u32)__bpf_call_base + (u32)imm;
1802
1803		emit_a32_mov_r64(true, r0, r1, ctx);
1804		emit_a32_mov_r64(true, r1, r2, ctx);
1805		emit_push_r64(r5, ctx);
1806		emit_push_r64(r4, ctx);
1807		emit_push_r64(r3, ctx);
1808
1809		emit_a32_mov_i(tmp[1], func, ctx);
1810		emit_blx_r(tmp[1], ctx);
1811
1812		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1813		break;
1814	}
1815	/* function return */
1816	case BPF_JMP | BPF_EXIT:
1817		/* Optimization: when last instruction is EXIT
1818		 * simply fallthrough to epilogue.
1819		 */
1820		if (i == ctx->prog->len - 1)
1821			break;
1822		jmp_offset = epilogue_offset(ctx);
1823		check_imm24(jmp_offset);
1824		emit(ARM_B(jmp_offset), ctx);
1825		break;
1826notyet:
1827		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1828		return -EFAULT;
1829	default:
1830		pr_err_once("unknown opcode %02x\n", code);
1831		return -EINVAL;
1832	}
1833
1834	if (ctx->flags & FLAG_IMM_OVERFLOW)
1835		/*
1836		 * this instruction generated an overflow when
1837		 * trying to access the literal pool, so
1838		 * delegate this filter to the kernel interpreter.
1839		 */
1840		return -1;
1841	return 0;
1842}
1843
1844static int build_body(struct jit_ctx *ctx)
1845{
1846	const struct bpf_prog *prog = ctx->prog;
1847	unsigned int i;
1848
1849	for (i = 0; i < prog->len; i++) {
1850		const struct bpf_insn *insn = &(prog->insnsi[i]);
1851		int ret;
1852
1853		ret = build_insn(insn, ctx);
1854
1855		/* It's used with loading the 64 bit immediate value. */
1856		if (ret > 0) {
1857			i++;
1858			if (ctx->target == NULL)
1859				ctx->offsets[i] = ctx->idx;
1860			continue;
1861		}
1862
1863		if (ctx->target == NULL)
1864			ctx->offsets[i] = ctx->idx;
1865
1866		/* If unsuccesfull, return with error code */
1867		if (ret)
1868			return ret;
1869	}
1870	return 0;
1871}
1872
1873static int validate_code(struct jit_ctx *ctx)
1874{
1875	int i;
1876
1877	for (i = 0; i < ctx->idx; i++) {
1878		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1879			return -1;
1880	}
1881
1882	return 0;
1883}
1884
1885void bpf_jit_compile(struct bpf_prog *prog)
1886{
1887	/* Nothing to do here. We support Internal BPF. */
1888}
1889
1890bool bpf_jit_needs_zext(void)
1891{
1892	return true;
1893}
1894
1895struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1896{
1897	struct bpf_prog *tmp, *orig_prog = prog;
1898	struct bpf_binary_header *header;
1899	bool tmp_blinded = false;
1900	struct jit_ctx ctx;
1901	unsigned int tmp_idx;
1902	unsigned int image_size;
1903	u8 *image_ptr;
1904
1905	/* If BPF JIT was not enabled then we must fall back to
1906	 * the interpreter.
1907	 */
1908	if (!prog->jit_requested)
1909		return orig_prog;
1910
1911	/* If constant blinding was enabled and we failed during blinding
1912	 * then we must fall back to the interpreter. Otherwise, we save
1913	 * the new JITed code.
1914	 */
1915	tmp = bpf_jit_blind_constants(prog);
1916
1917	if (IS_ERR(tmp))
1918		return orig_prog;
1919	if (tmp != prog) {
1920		tmp_blinded = true;
1921		prog = tmp;
1922	}
1923
1924	memset(&ctx, 0, sizeof(ctx));
1925	ctx.prog = prog;
1926	ctx.cpu_architecture = cpu_architecture();
1927
1928	/* Not able to allocate memory for offsets[] , then
1929	 * we must fall back to the interpreter
1930	 */
1931	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1932	if (ctx.offsets == NULL) {
1933		prog = orig_prog;
1934		goto out;
1935	}
1936
1937	/* 1) fake pass to find in the length of the JITed code,
1938	 * to compute ctx->offsets and other context variables
1939	 * needed to compute final JITed code.
1940	 * Also, calculate random starting pointer/start of JITed code
1941	 * which is prefixed by random number of fault instructions.
1942	 *
1943	 * If the first pass fails then there is no chance of it
1944	 * being successful in the second pass, so just fall back
1945	 * to the interpreter.
1946	 */
1947	if (build_body(&ctx)) {
1948		prog = orig_prog;
1949		goto out_off;
1950	}
1951
1952	tmp_idx = ctx.idx;
1953	build_prologue(&ctx);
1954	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1955
1956	ctx.epilogue_offset = ctx.idx;
1957
1958#if __LINUX_ARM_ARCH__ < 7
1959	tmp_idx = ctx.idx;
1960	build_epilogue(&ctx);
1961	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1962
1963	ctx.idx += ctx.imm_count;
1964	if (ctx.imm_count) {
1965		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1966		if (ctx.imms == NULL) {
1967			prog = orig_prog;
1968			goto out_off;
1969		}
1970	}
1971#else
1972	/* there's nothing about the epilogue on ARMv7 */
1973	build_epilogue(&ctx);
1974#endif
1975	/* Now we can get the actual image size of the JITed arm code.
1976	 * Currently, we are not considering the THUMB-2 instructions
1977	 * for jit, although it can decrease the size of the image.
1978	 *
1979	 * As each arm instruction is of length 32bit, we are translating
1980	 * number of JITed intructions into the size required to store these
1981	 * JITed code.
1982	 */
1983	image_size = sizeof(u32) * ctx.idx;
1984
1985	/* Now we know the size of the structure to make */
1986	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1987				      sizeof(u32), jit_fill_hole);
1988	/* Not able to allocate memory for the structure then
1989	 * we must fall back to the interpretation
1990	 */
1991	if (header == NULL) {
1992		prog = orig_prog;
1993		goto out_imms;
1994	}
1995
1996	/* 2.) Actual pass to generate final JIT code */
1997	ctx.target = (u32 *) image_ptr;
1998	ctx.idx = 0;
1999
2000	build_prologue(&ctx);
2001
2002	/* If building the body of the JITed code fails somehow,
2003	 * we fall back to the interpretation.
2004	 */
2005	if (build_body(&ctx) < 0) {
2006		image_ptr = NULL;
2007		bpf_jit_binary_free(header);
2008		prog = orig_prog;
2009		goto out_imms;
2010	}
2011	build_epilogue(&ctx);
2012
2013	/* 3.) Extra pass to validate JITed Code */
2014	if (validate_code(&ctx)) {
2015		image_ptr = NULL;
2016		bpf_jit_binary_free(header);
2017		prog = orig_prog;
2018		goto out_imms;
2019	}
2020	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2021
2022	if (bpf_jit_enable > 1)
2023		/* there are 2 passes here */
2024		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2025
2026	bpf_jit_binary_lock_ro(header);
2027	prog->bpf_func = (void *)ctx.target;
2028	prog->jited = 1;
2029	prog->jited_len = image_size;
2030
2031out_imms:
2032#if __LINUX_ARM_ARCH__ < 7
2033	if (ctx.imm_count)
2034		kfree(ctx.imms);
2035#endif
2036out_off:
2037	kfree(ctx.offsets);
2038out:
2039	if (tmp_blinded)
2040		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2041					   tmp : orig_prog);
2042	return prog;
2043}
2044
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
   6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   8 */
   9
  10#include <linux/bpf.h>
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
  19#include <linux/math64.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/hwcap.h>
  23#include <asm/opcodes.h>
  24#include <asm/system_info.h>
  25
  26#include "bpf_jit_32.h"
  27
  28/*
  29 * eBPF prog stack layout:
  30 *
  31 *                         high
  32 * original ARM_SP =>     +-----+
  33 *                        |     | callee saved registers
  34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  35 *                        | ... | eBPF JIT scratch space
  36 * eBPF fp register =>    +-----+
  37 *   (BPF_FP)             | ... | eBPF prog stack
  38 *                        +-----+
  39 *                        |RSVD | JIT scratchpad
  40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  41 *                        | ... | caller-saved registers
  42 *                        +-----+
  43 *                        | ... | arguments passed on stack
  44 * ARM_SP during call =>  +-----|
  45 *                        |     |
  46 *                        | ... | Function call stack
  47 *                        |     |
  48 *                        +-----+
  49 *                          low
  50 *
  51 * The callee saved registers depends on whether frame pointers are enabled.
  52 * With frame pointers (to be compliant with the ABI):
  53 *
  54 *                              high
  55 * original ARM_SP =>     +--------------+ \
  56 *                        |      pc      | |
  57 * current ARM_FP =>      +--------------+ } callee saved registers
  58 *                        |r4-r9,fp,ip,lr| |
  59 *                        +--------------+ /
  60 *                              low
  61 *
  62 * Without frame pointers:
  63 *
  64 *                              high
  65 * original ARM_SP =>     +--------------+
  66 *                        |  r4-r9,fp,lr | callee saved registers
  67 * current ARM_FP =>      +--------------+
  68 *                              low
  69 *
  70 * When popping registers off the stack at the end of a BPF function, we
  71 * reference them via the current ARM_FP register.
  72 *
  73 * Some eBPF operations are implemented via a call to a helper function.
  74 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  75 * program to preserve any caller-saved ARM registers during the call. The
  76 * JIT emits code to push and pop those registers onto the stack, immediately
  77 * above the callee stack frame.
  78 */
  79#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  80			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  81			 1 << ARM_FP)
  82#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  83#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  84
  85#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  86
  87enum {
  88	/* Stack layout - these are offsets from (top of stack - 4) */
  89	BPF_R2_HI,
  90	BPF_R2_LO,
  91	BPF_R3_HI,
  92	BPF_R3_LO,
  93	BPF_R4_HI,
  94	BPF_R4_LO,
  95	BPF_R5_HI,
  96	BPF_R5_LO,
  97	BPF_R7_HI,
  98	BPF_R7_LO,
  99	BPF_R8_HI,
 100	BPF_R8_LO,
 101	BPF_R9_HI,
 102	BPF_R9_LO,
 103	BPF_FP_HI,
 104	BPF_FP_LO,
 105	BPF_TC_HI,
 106	BPF_TC_LO,
 107	BPF_AX_HI,
 108	BPF_AX_LO,
 109	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 110	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 111	 * BPF_REG_FP and Tail call counts.
 112	 */
 113	BPF_JIT_SCRATCH_REGS,
 114};
 115
 116/*
 117 * Negative "register" values indicate the register is stored on the stack
 118 * and are the offset from the top of the eBPF JIT scratch space.
 119 */
 120#define STACK_OFFSET(k)	(-4 - (k) * 4)
 121#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 122
 123#ifdef CONFIG_FRAME_POINTER
 124#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 125#else
 126#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 127#endif
 128
 129#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 130#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 131#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 132
 133#define FLAG_IMM_OVERFLOW	(1 << 0)
 134
 135/*
 136 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 137 *
 138 * 1. First argument is passed using the arm 32bit registers and rest of the
 139 * arguments are passed on stack scratch space.
 140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 141 * arguments are mapped to scratch space on stack.
 142 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 143 * registers.
 144 *
 145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 146 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 147 * scratch memory space and we have to build eBPF 64 bit register from those.
 148 *
 149 */
 150static const s8 bpf2a32[][2] = {
 151	/* return value from in-kernel function, and exit value from eBPF */
 152	[BPF_REG_0] = {ARM_R1, ARM_R0},
 153	/* arguments from eBPF program to in-kernel function */
 154	[BPF_REG_1] = {ARM_R3, ARM_R2},
 155	/* Stored on stack scratch space */
 156	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 157	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 158	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 159	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 160	/* callee saved registers that in-kernel function will preserve */
 161	[BPF_REG_6] = {ARM_R5, ARM_R4},
 162	/* Stored on stack scratch space */
 163	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 164	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 165	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 166	/* Read only Frame Pointer to access Stack */
 167	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 168	/* Temporary Register for BPF JIT, can be used
 169	 * for constant blindings and others.
 170	 */
 171	[TMP_REG_1] = {ARM_R7, ARM_R6},
 172	[TMP_REG_2] = {ARM_R9, ARM_R8},
 173	/* Tail call count. Stored on stack scratch space. */
 174	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 175	/* temporary register for blinding constants.
 176	 * Stored on stack scratch space.
 177	 */
 178	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 179};
 180
 181#define	dst_lo	dst[1]
 182#define dst_hi	dst[0]
 183#define src_lo	src[1]
 184#define src_hi	src[0]
 185
 186/*
 187 * JIT Context:
 188 *
 189 * prog			:	bpf_prog
 190 * idx			:	index of current last JITed instruction.
 191 * prologue_bytes	:	bytes used in prologue.
 192 * epilogue_offset	:	offset of epilogue starting.
 193 * offsets		:	array of eBPF instruction offsets in
 194 *				JITed code.
 195 * target		:	final JITed code.
 196 * epilogue_bytes	:	no of bytes used in epilogue.
 197 * imm_count		:	no of immediate counts used for global
 198 *				variables.
 199 * imms			:	array of global variable addresses.
 200 */
 201
 202struct jit_ctx {
 203	const struct bpf_prog *prog;
 204	unsigned int idx;
 205	unsigned int prologue_bytes;
 206	unsigned int epilogue_offset;
 207	unsigned int cpu_architecture;
 208	u32 flags;
 209	u32 *offsets;
 210	u32 *target;
 211	u32 stack_size;
 212#if __LINUX_ARM_ARCH__ < 7
 213	u16 epilogue_bytes;
 214	u16 imm_count;
 215	u32 *imms;
 216#endif
 217};
 218
 219/*
 220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 221 * (where the assembly routines like __aeabi_uidiv could cause problems).
 222 */
 223static u32 jit_udiv32(u32 dividend, u32 divisor)
 224{
 225	return dividend / divisor;
 226}
 227
 228static u32 jit_mod32(u32 dividend, u32 divisor)
 229{
 230	return dividend % divisor;
 231}
 232
 233static s32 jit_sdiv32(s32 dividend, s32 divisor)
 234{
 235	return dividend / divisor;
 236}
 237
 238static s32 jit_smod32(s32 dividend, s32 divisor)
 239{
 240	return dividend % divisor;
 241}
 242
 243/* Wrappers for 64-bit div/mod */
 244static u64 jit_udiv64(u64 dividend, u64 divisor)
 245{
 246	return div64_u64(dividend, divisor);
 247}
 248
 249static u64 jit_mod64(u64 dividend, u64 divisor)
 250{
 251	u64 rem;
 252
 253	div64_u64_rem(dividend, divisor, &rem);
 254	return rem;
 255}
 256
 257static s64 jit_sdiv64(s64 dividend, s64 divisor)
 258{
 259	return div64_s64(dividend, divisor);
 260}
 261
 262static s64 jit_smod64(s64 dividend, s64 divisor)
 263{
 264	u64 q;
 265
 266	q = div64_s64(dividend, divisor);
 267
 268	return dividend - q * divisor;
 269}
 270
 271static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 272{
 273	inst |= (cond << 28);
 274	inst = __opcode_to_mem_arm(inst);
 275
 276	if (ctx->target != NULL)
 277		ctx->target[ctx->idx] = inst;
 278
 279	ctx->idx++;
 280}
 281
 282/*
 283 * Emit an instruction that will be executed unconditionally.
 284 */
 285static inline void emit(u32 inst, struct jit_ctx *ctx)
 286{
 287	_emit(ARM_COND_AL, inst, ctx);
 288}
 289
 290/*
 291 * This is rather horrid, but necessary to convert an integer constant
 292 * to an immediate operand for the opcodes, and be able to detect at
 293 * build time whether the constant can't be converted (iow, usable in
 294 * BUILD_BUG_ON()).
 295 */
 296#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 297#define const_imm8m(x)					\
 298	({ int r;					\
 299	   u32 v = (x);					\
 300	   if (!(v & ~0x000000ff))			\
 301		r = imm12val(v, 0);			\
 302	   else if (!(v & ~0xc000003f))			\
 303		r = imm12val(v, 2);			\
 304	   else if (!(v & ~0xf000000f))			\
 305		r = imm12val(v, 4);			\
 306	   else if (!(v & ~0xfc000003))			\
 307		r = imm12val(v, 6);			\
 308	   else if (!(v & ~0xff000000))			\
 309		r = imm12val(v, 8);			\
 310	   else if (!(v & ~0x3fc00000))			\
 311		r = imm12val(v, 10);			\
 312	   else if (!(v & ~0x0ff00000))			\
 313		r = imm12val(v, 12);			\
 314	   else if (!(v & ~0x03fc0000))			\
 315		r = imm12val(v, 14);			\
 316	   else if (!(v & ~0x00ff0000))			\
 317		r = imm12val(v, 16);			\
 318	   else if (!(v & ~0x003fc000))			\
 319		r = imm12val(v, 18);			\
 320	   else if (!(v & ~0x000ff000))			\
 321		r = imm12val(v, 20);			\
 322	   else if (!(v & ~0x0003fc00))			\
 323		r = imm12val(v, 22);			\
 324	   else if (!(v & ~0x0000ff00))			\
 325		r = imm12val(v, 24);			\
 326	   else if (!(v & ~0x00003fc0))			\
 327		r = imm12val(v, 26);			\
 328	   else if (!(v & ~0x00000ff0))			\
 329		r = imm12val(v, 28);			\
 330	   else if (!(v & ~0x000003fc))			\
 331		r = imm12val(v, 30);			\
 332	   else						\
 333		r = -1;					\
 334	   r; })
 335
 336/*
 337 * Checks if immediate value can be converted to imm12(12 bits) value.
 338 */
 339static int imm8m(u32 x)
 340{
 341	u32 rot;
 342
 343	for (rot = 0; rot < 16; rot++)
 344		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 345			return rol32(x, 2 * rot) | (rot << 8);
 346	return -1;
 347}
 348
 349#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 350
 351static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 352{
 353	op |= rt << 12 | rn << 16;
 354	if (imm12 >= 0)
 355		op |= ARM_INST_LDST__U;
 356	else
 357		imm12 = -imm12;
 358	return op | (imm12 & ARM_INST_LDST__IMM12);
 359}
 360
 361static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 362{
 363	op |= rt << 12 | rn << 16;
 364	if (imm8 >= 0)
 365		op |= ARM_INST_LDST__U;
 366	else
 367		imm8 = -imm8;
 368	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 369}
 370
 371#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 372#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 373#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 374#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 375
 376#define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
 377#define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
 378
 379#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 380#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 381#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 382#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 383
 384/*
 385 * Initializes the JIT space with undefined instructions.
 386 */
 387static void jit_fill_hole(void *area, unsigned int size)
 388{
 389	u32 *ptr;
 390	/* We are guaranteed to have aligned memory. */
 391	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 392		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 393}
 394
 395#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 396/* EABI requires the stack to be aligned to 64-bit boundaries */
 397#define STACK_ALIGNMENT	8
 398#else
 399/* Stack must be aligned to 32-bit boundaries */
 400#define STACK_ALIGNMENT	4
 401#endif
 402
 403/* total stack size used in JITed code */
 404#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 405#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 406
 407#if __LINUX_ARM_ARCH__ < 7
 408
 409static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 410{
 411	unsigned int i = 0, offset;
 412	u16 imm;
 413
 414	/* on the "fake" run we just count them (duplicates included) */
 415	if (ctx->target == NULL) {
 416		ctx->imm_count++;
 417		return 0;
 418	}
 419
 420	while ((i < ctx->imm_count) && ctx->imms[i]) {
 421		if (ctx->imms[i] == k)
 422			break;
 423		i++;
 424	}
 425
 426	if (ctx->imms[i] == 0)
 427		ctx->imms[i] = k;
 428
 429	/* constants go just after the epilogue */
 430	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 431	offset += ctx->prologue_bytes;
 432	offset += ctx->epilogue_bytes;
 433	offset += i * 4;
 434
 435	ctx->target[offset / 4] = k;
 436
 437	/* PC in ARM mode == address of the instruction + 8 */
 438	imm = offset - (8 + ctx->idx * 4);
 439
 440	if (imm & ~0xfff) {
 441		/*
 442		 * literal pool is too far, signal it into flags. we
 443		 * can only detect it on the second pass unfortunately.
 444		 */
 445		ctx->flags |= FLAG_IMM_OVERFLOW;
 446		return 0;
 447	}
 448
 449	return imm;
 450}
 451
 452#endif /* __LINUX_ARM_ARCH__ */
 453
 454static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 455				 const struct jit_ctx *ctx) {
 456	int to, from;
 457
 458	if (ctx->target == NULL)
 459		return 0;
 460	to = ctx->offsets[bpf_to];
 461	from = ctx->offsets[bpf_from];
 462
 463	return to - from - 1;
 464}
 465
 466/*
 467 * Move an immediate that's not an imm8m to a core register.
 468 */
 469static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 470{
 471#if __LINUX_ARM_ARCH__ < 7
 472	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 473#else
 474	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 475	if (val > 0xffff)
 476		emit(ARM_MOVT(rd, val >> 16), ctx);
 477#endif
 478}
 479
 480static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 481{
 482	int imm12 = imm8m(val);
 483
 484	if (imm12 >= 0)
 485		emit(ARM_MOV_I(rd, imm12), ctx);
 486	else
 487		emit_mov_i_no8m(rd, val, ctx);
 488}
 489
 490static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 491{
 492	if (elf_hwcap & HWCAP_THUMB)
 493		emit(ARM_BX(tgt_reg), ctx);
 494	else
 495		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 496}
 497
 498static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 499{
 500#if __LINUX_ARM_ARCH__ < 5
 501	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 502	emit_bx_r(tgt_reg, ctx);
 503#else
 504	emit(ARM_BLX_R(tgt_reg), ctx);
 505#endif
 506}
 507
 508static inline int epilogue_offset(const struct jit_ctx *ctx)
 509{
 510	int to, from;
 511	/* No need for 1st dummy run */
 512	if (ctx->target == NULL)
 513		return 0;
 514	to = ctx->epilogue_offset;
 515	from = ctx->idx;
 516
 517	return to - from - 2;
 518}
 519
 520static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign)
 521{
 522	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 523	const s8 *tmp = bpf2a32[TMP_REG_1];
 524	u32 dst;
 525
 526#if __LINUX_ARM_ARCH__ == 7
 527	if (elf_hwcap & HWCAP_IDIVA) {
 528		if (op == BPF_DIV) {
 529			emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx);
 530		} else {
 531			emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx);
 532			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 533		}
 534		return;
 535	}
 536#endif
 537
 538	/*
 539	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 540	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 541	 * function, we need to save it on caller side to save
 542	 * it from getting destroyed within callee.
 543	 * After the return from the callee, we restore ARM_R0
 544	 * ARM_R1.
 545	 */
 546	if (rn != ARM_R1) {
 547		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 548		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 549	}
 550	if (rm != ARM_R0) {
 551		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 552		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 553	}
 554
 555	/* Push caller-saved registers on stack */
 556	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 557
 558	/* Call appropriate function */
 559	if (sign) {
 560		if (op == BPF_DIV)
 561			dst = (u32)jit_sdiv32;
 562		else
 563			dst = (u32)jit_smod32;
 564	} else {
 565		if (op == BPF_DIV)
 566			dst = (u32)jit_udiv32;
 567		else
 568			dst = (u32)jit_mod32;
 569	}
 570
 571	emit_mov_i(ARM_IP, dst, ctx);
 572	emit_blx_r(ARM_IP, ctx);
 573
 574	/* Restore caller-saved registers from stack */
 575	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 576
 577	/* Save return value */
 578	if (rd != ARM_R0)
 579		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 580
 581	/* Restore ARM_R0 and ARM_R1 */
 582	if (rn != ARM_R1)
 583		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 584	if (rm != ARM_R0)
 585		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 586}
 587
 588static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
 589				  u8 op, u8 sign)
 590{
 591	u32 dst;
 592
 593	/* Push caller-saved registers on stack */
 594	emit(ARM_PUSH(CALLER_MASK), ctx);
 595
 596	/*
 597	 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
 598	 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
 599	 * we can recover them later after returning from the function call.
 600	 */
 601	if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
 602		/*
 603		 * Move Rm to {R1, R0} if it is not already there.
 604		 */
 605		if (rm[1] != ARM_R0) {
 606			if (rn[1] == ARM_R0)
 607				emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 608			emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
 609			emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
 610			if (rn[1] == ARM_R0) {
 611				emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 612				goto cont;
 613			}
 614		}
 615		/*
 616		 * Move Rn to {R3, R2} if it is not already there.
 617		 */
 618		if (rn[1] != ARM_R2) {
 619			emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
 620			emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
 621		}
 622	}
 623
 624cont:
 625
 626	/* Call appropriate function */
 627	if (sign) {
 628		if (op == BPF_DIV)
 629			dst = (u32)jit_sdiv64;
 630		else
 631			dst = (u32)jit_smod64;
 632	} else {
 633		if (op == BPF_DIV)
 634			dst = (u32)jit_udiv64;
 635		else
 636			dst = (u32)jit_mod64;
 637	}
 638
 639	emit_mov_i(ARM_IP, dst, ctx);
 640	emit_blx_r(ARM_IP, ctx);
 641
 642	/* Save return value */
 643	if (rd[1] != ARM_R0) {
 644		emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
 645		emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
 646	}
 647
 648	/* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
 649	if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
 650		emit(ARM_POP(CALLER_MASK), ctx);
 651	} else if (rd[1] != ARM_R0) {
 652		emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 653		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 654	} else {
 655		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 656		emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 657	}
 658}
 659
 660/* Is the translated BPF register on stack? */
 661static bool is_stacked(s8 reg)
 662{
 663	return reg < 0;
 664}
 665
 666/* If a BPF register is on the stack (stk is true), load it to the
 667 * supplied temporary register and return the temporary register
 668 * for subsequent operations, otherwise just use the CPU register.
 669 */
 670static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 671{
 672	if (is_stacked(reg)) {
 673		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 674		reg = tmp;
 675	}
 676	return reg;
 677}
 678
 679static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 680				   struct jit_ctx *ctx)
 681{
 682	if (is_stacked(reg[1])) {
 683		if (__LINUX_ARM_ARCH__ >= 6 ||
 684		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 685			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 686					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 687		} else {
 688			emit(ARM_LDR_I(tmp[1], ARM_FP,
 689				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 690			emit(ARM_LDR_I(tmp[0], ARM_FP,
 691				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 692		}
 693		reg = tmp;
 694	}
 695	return reg;
 696}
 697
 698/* If a BPF register is on the stack (stk is true), save the register
 699 * back to the stack.  If the source register is not the same, then
 700 * move it into the correct register.
 701 */
 702static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 703{
 704	if (is_stacked(reg))
 705		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 706	else if (reg != src)
 707		emit(ARM_MOV_R(reg, src), ctx);
 708}
 709
 710static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 711			      struct jit_ctx *ctx)
 712{
 713	if (is_stacked(reg[1])) {
 714		if (__LINUX_ARM_ARCH__ >= 6 ||
 715		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 716			emit(ARM_STRD_I(src[1], ARM_FP,
 717				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 718		} else {
 719			emit(ARM_STR_I(src[1], ARM_FP,
 720				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 721			emit(ARM_STR_I(src[0], ARM_FP,
 722				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 723		}
 724	} else {
 725		if (reg[1] != src[1])
 726			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 727		if (reg[0] != src[0])
 728			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 729	}
 730}
 731
 732static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 733				  struct jit_ctx *ctx)
 734{
 735	const s8 *tmp = bpf2a32[TMP_REG_1];
 736
 737	if (is_stacked(dst)) {
 738		emit_mov_i(tmp[1], val, ctx);
 739		arm_bpf_put_reg32(dst, tmp[1], ctx);
 740	} else {
 741		emit_mov_i(dst, val, ctx);
 742	}
 743}
 744
 745static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 746{
 747	const s8 *tmp = bpf2a32[TMP_REG_1];
 748	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 749
 750	emit_mov_i(rd[1], (u32)val, ctx);
 751	emit_mov_i(rd[0], val >> 32, ctx);
 752
 753	arm_bpf_put_reg64(dst, rd, ctx);
 754}
 755
 756/* Sign extended move */
 757static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 758				       const u32 val, struct jit_ctx *ctx) {
 759	u64 val64 = val;
 760
 761	if (is64 && (val & (1<<31)))
 762		val64 |= 0xffffffff00000000ULL;
 763	emit_a32_mov_i64(dst, val64, ctx);
 764}
 765
 766static inline void emit_a32_add_r(const u8 dst, const u8 src,
 767			      const bool is64, const bool hi,
 768			      struct jit_ctx *ctx) {
 769	/* 64 bit :
 770	 *	adds dst_lo, dst_lo, src_lo
 771	 *	adc dst_hi, dst_hi, src_hi
 772	 * 32 bit :
 773	 *	add dst_lo, dst_lo, src_lo
 774	 */
 775	if (!hi && is64)
 776		emit(ARM_ADDS_R(dst, dst, src), ctx);
 777	else if (hi && is64)
 778		emit(ARM_ADC_R(dst, dst, src), ctx);
 779	else
 780		emit(ARM_ADD_R(dst, dst, src), ctx);
 781}
 782
 783static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 784				  const bool is64, const bool hi,
 785				  struct jit_ctx *ctx) {
 786	/* 64 bit :
 787	 *	subs dst_lo, dst_lo, src_lo
 788	 *	sbc dst_hi, dst_hi, src_hi
 789	 * 32 bit :
 790	 *	sub dst_lo, dst_lo, src_lo
 791	 */
 792	if (!hi && is64)
 793		emit(ARM_SUBS_R(dst, dst, src), ctx);
 794	else if (hi && is64)
 795		emit(ARM_SBC_R(dst, dst, src), ctx);
 796	else
 797		emit(ARM_SUB_R(dst, dst, src), ctx);
 798}
 799
 800static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 801			      const bool hi, const u8 op, struct jit_ctx *ctx){
 802	switch (BPF_OP(op)) {
 803	/* dst = dst + src */
 804	case BPF_ADD:
 805		emit_a32_add_r(dst, src, is64, hi, ctx);
 806		break;
 807	/* dst = dst - src */
 808	case BPF_SUB:
 809		emit_a32_sub_r(dst, src, is64, hi, ctx);
 810		break;
 811	/* dst = dst | src */
 812	case BPF_OR:
 813		emit(ARM_ORR_R(dst, dst, src), ctx);
 814		break;
 815	/* dst = dst & src */
 816	case BPF_AND:
 817		emit(ARM_AND_R(dst, dst, src), ctx);
 818		break;
 819	/* dst = dst ^ src */
 820	case BPF_XOR:
 821		emit(ARM_EOR_R(dst, dst, src), ctx);
 822		break;
 823	/* dst = dst * src */
 824	case BPF_MUL:
 825		emit(ARM_MUL(dst, dst, src), ctx);
 826		break;
 827	/* dst = dst << src */
 828	case BPF_LSH:
 829		emit(ARM_LSL_R(dst, dst, src), ctx);
 830		break;
 831	/* dst = dst >> src */
 832	case BPF_RSH:
 833		emit(ARM_LSR_R(dst, dst, src), ctx);
 834		break;
 835	/* dst = dst >> src (signed)*/
 836	case BPF_ARSH:
 837		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 838		break;
 839	}
 840}
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842/* ALU operation (64 bit) */
 843static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 844				  const s8 src[], struct jit_ctx *ctx,
 845				  const u8 op) {
 846	const s8 *tmp = bpf2a32[TMP_REG_1];
 847	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 848	const s8 *rd;
 849
 850	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 851	if (is64) {
 852		const s8 *rs;
 853
 854		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 855
 856		/* ALU operation */
 857		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 858		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 859	} else {
 860		s8 rs;
 861
 862		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 863
 864		/* ALU operation */
 865		emit_alu_r(rd[1], rs, true, false, op, ctx);
 866		if (!ctx->prog->aux->verifier_zext)
 867			emit_a32_mov_i(rd[0], 0, ctx);
 868	}
 869
 870	arm_bpf_put_reg64(dst, rd, ctx);
 871}
 872
 873/* dst = src (4 bytes)*/
 874static inline void emit_a32_mov_r(const s8 dst, const s8 src, const u8 off,
 875				  struct jit_ctx *ctx) {
 876	const s8 *tmp = bpf2a32[TMP_REG_1];
 877	s8 rt;
 878
 879	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 880	if (off && off != 32) {
 881		emit(ARM_LSL_I(rt, rt, 32 - off), ctx);
 882		emit(ARM_ASR_I(rt, rt, 32 - off), ctx);
 883	}
 884	arm_bpf_put_reg32(dst, rt, ctx);
 885}
 886
 887/* dst = src */
 888static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 889				  const s8 src[],
 890				  struct jit_ctx *ctx) {
 891	if (!is64) {
 892		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
 893		if (!ctx->prog->aux->verifier_zext)
 894			/* Zero out high 4 bytes */
 895			emit_a32_mov_i(dst_hi, 0, ctx);
 896	} else if (__LINUX_ARM_ARCH__ < 6 &&
 897		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 898		/* complete 8 byte move */
 899		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
 900		emit_a32_mov_r(dst_hi, src_hi, 0, ctx);
 901	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 902		const u8 *tmp = bpf2a32[TMP_REG_1];
 903
 904		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 905		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 906	} else if (is_stacked(src_lo)) {
 907		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 908	} else if (is_stacked(dst_lo)) {
 909		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 910	} else {
 911		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 912		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 913	}
 914}
 915
 916/* dst = (signed)src */
 917static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[],
 918				      struct jit_ctx *ctx) {
 919	const s8 *tmp = bpf2a32[TMP_REG_1];
 920	const s8 *rt;
 921
 922	rt = arm_bpf_get_reg64(dst, tmp, ctx);
 923
 924	emit_a32_mov_r(dst_lo, src_lo, off, ctx);
 925	if (!is64) {
 926		if (!ctx->prog->aux->verifier_zext)
 927			/* Zero out high 4 bytes */
 928			emit_a32_mov_i(dst_hi, 0, ctx);
 929	} else {
 930		emit(ARM_ASR_I(rt[0], rt[1], 31), ctx);
 931	}
 932}
 933
 934/* Shift operations */
 935static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 936				struct jit_ctx *ctx, const u8 op) {
 937	const s8 *tmp = bpf2a32[TMP_REG_1];
 938	s8 rd;
 939
 940	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 941
 942	/* Do shift operation */
 943	switch (op) {
 944	case BPF_LSH:
 945		emit(ARM_LSL_I(rd, rd, val), ctx);
 946		break;
 947	case BPF_RSH:
 948		emit(ARM_LSR_I(rd, rd, val), ctx);
 949		break;
 950	case BPF_ARSH:
 951		emit(ARM_ASR_I(rd, rd, val), ctx);
 952		break;
 953	case BPF_NEG:
 954		emit(ARM_RSB_I(rd, rd, val), ctx);
 955		break;
 956	}
 957
 958	arm_bpf_put_reg32(dst, rd, ctx);
 959}
 960
 961/* dst = ~dst (64 bit) */
 962static inline void emit_a32_neg64(const s8 dst[],
 963				struct jit_ctx *ctx){
 964	const s8 *tmp = bpf2a32[TMP_REG_1];
 965	const s8 *rd;
 966
 967	/* Setup Operand */
 968	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 969
 970	/* Do Negate Operation */
 971	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 972	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 973
 974	arm_bpf_put_reg64(dst, rd, ctx);
 975}
 976
 977/* dst = dst << src */
 978static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 979				    struct jit_ctx *ctx) {
 980	const s8 *tmp = bpf2a32[TMP_REG_1];
 981	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 982	const s8 *rd;
 983	s8 rt;
 984
 985	/* Setup Operands */
 986	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 987	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 988
 989	/* Do LSH operation */
 990	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 991	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 992	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 993	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 994	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 995	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 996
 997	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 998	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 999}
1000
1001/* dst = dst >> src (signed)*/
1002static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
1003				     struct jit_ctx *ctx) {
1004	const s8 *tmp = bpf2a32[TMP_REG_1];
1005	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1006	const s8 *rd;
1007	s8 rt;
1008
1009	/* Setup Operands */
1010	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1011	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1012
1013	/* Do the ARSH operation */
1014	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1015	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1016	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1017	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1018	_emit(ARM_COND_PL,
1019	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
1020	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
1021
1022	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1023	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1024}
1025
1026/* dst = dst >> src */
1027static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
1028				    struct jit_ctx *ctx) {
1029	const s8 *tmp = bpf2a32[TMP_REG_1];
1030	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1031	const s8 *rd;
1032	s8 rt;
1033
1034	/* Setup Operands */
1035	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1036	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1037
1038	/* Do RSH operation */
1039	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1040	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1041	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1042	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1043	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
1044	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
1045
1046	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1047	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1048}
1049
1050/* dst = dst << val */
1051static inline void emit_a32_lsh_i64(const s8 dst[],
1052				    const u32 val, struct jit_ctx *ctx){
1053	const s8 *tmp = bpf2a32[TMP_REG_1];
1054	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1055	const s8 *rd;
1056
1057	/* Setup operands */
1058	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1059
1060	/* Do LSH operation */
1061	if (val < 32) {
1062		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
1063		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
1064		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
1065	} else {
1066		if (val == 32)
1067			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
1068		else
1069			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
1070		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
1071	}
1072
1073	arm_bpf_put_reg64(dst, rd, ctx);
1074}
1075
1076/* dst = dst >> val */
1077static inline void emit_a32_rsh_i64(const s8 dst[],
1078				    const u32 val, struct jit_ctx *ctx) {
1079	const s8 *tmp = bpf2a32[TMP_REG_1];
1080	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1081	const s8 *rd;
1082
1083	/* Setup operands */
1084	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1085
1086	/* Do LSR operation */
1087	if (val == 0) {
1088		/* An immediate value of 0 encodes a shift amount of 32
1089		 * for LSR. To shift by 0, don't do anything.
1090		 */
1091	} else if (val < 32) {
1092		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1093		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1094		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
1095	} else if (val == 32) {
1096		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1097		emit(ARM_MOV_I(rd[0], 0), ctx);
1098	} else {
1099		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
1100		emit(ARM_MOV_I(rd[0], 0), ctx);
1101	}
1102
1103	arm_bpf_put_reg64(dst, rd, ctx);
1104}
1105
1106/* dst = dst >> val (signed) */
1107static inline void emit_a32_arsh_i64(const s8 dst[],
1108				     const u32 val, struct jit_ctx *ctx){
1109	const s8 *tmp = bpf2a32[TMP_REG_1];
1110	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1111	const s8 *rd;
1112
1113	/* Setup operands */
1114	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1115
1116	/* Do ARSH operation */
1117	if (val == 0) {
1118		/* An immediate value of 0 encodes a shift amount of 32
1119		 * for ASR. To shift by 0, don't do anything.
1120		 */
1121	} else if (val < 32) {
1122		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1123		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1124		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
1125	} else if (val == 32) {
1126		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1127		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1128	} else {
1129		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
1130		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1131	}
1132
1133	arm_bpf_put_reg64(dst, rd, ctx);
1134}
1135
1136static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1137				    struct jit_ctx *ctx) {
1138	const s8 *tmp = bpf2a32[TMP_REG_1];
1139	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1140	const s8 *rd, *rt;
1141
1142	/* Setup operands for multiplication */
1143	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1144	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1145
1146	/* Do Multiplication */
1147	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1148	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1149	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1150
1151	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1152	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1153
1154	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1155	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1156}
1157
1158static bool is_ldst_imm(s16 off, const u8 size)
1159{
1160	s16 off_max = 0;
1161
1162	switch (size) {
1163	case BPF_B:
1164	case BPF_W:
1165		off_max = 0xfff;
1166		break;
1167	case BPF_H:
1168		off_max = 0xff;
1169		break;
1170	case BPF_DW:
1171		/* Need to make sure off+4 does not overflow. */
1172		off_max = 0xfff - 4;
1173		break;
1174	}
1175	return -off_max <= off && off <= off_max;
1176}
1177
1178static bool is_ldst_imm8(s16 off, const u8 size)
1179{
1180	s16 off_max = 0;
1181
1182	switch (size) {
1183	case BPF_B:
1184		off_max = 0xff;
1185		break;
1186	case BPF_W:
1187		off_max = 0xfff;
1188		break;
1189	case BPF_H:
1190		off_max = 0xff;
1191		break;
1192	}
1193	return -off_max <= off && off <= off_max;
1194}
1195
1196/* *(size *)(dst + off) = src */
1197static inline void emit_str_r(const s8 dst, const s8 src[],
1198			      s16 off, struct jit_ctx *ctx, const u8 sz){
1199	const s8 *tmp = bpf2a32[TMP_REG_1];
1200	s8 rd;
1201
1202	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1203
1204	if (!is_ldst_imm(off, sz)) {
1205		emit_a32_mov_i(tmp[0], off, ctx);
1206		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1207		rd = tmp[0];
1208		off = 0;
1209	}
1210	switch (sz) {
1211	case BPF_B:
1212		/* Store a Byte */
1213		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1214		break;
1215	case BPF_H:
1216		/* Store a HalfWord */
1217		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1218		break;
1219	case BPF_W:
1220		/* Store a Word */
1221		emit(ARM_STR_I(src_lo, rd, off), ctx);
1222		break;
1223	case BPF_DW:
1224		/* Store a Double Word */
1225		emit(ARM_STR_I(src_lo, rd, off), ctx);
1226		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1227		break;
1228	}
1229}
1230
1231/* dst = *(size*)(src + off) */
1232static inline void emit_ldx_r(const s8 dst[], const s8 src,
1233			      s16 off, struct jit_ctx *ctx, const u8 sz){
1234	const s8 *tmp = bpf2a32[TMP_REG_1];
1235	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1236	s8 rm = src;
1237
1238	if (!is_ldst_imm(off, sz)) {
1239		emit_a32_mov_i(tmp[0], off, ctx);
1240		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1241		rm = tmp[0];
1242		off = 0;
1243	} else if (rd[1] == rm) {
1244		emit(ARM_MOV_R(tmp[0], rm), ctx);
1245		rm = tmp[0];
1246	}
1247	switch (sz) {
1248	case BPF_B:
1249		/* Load a Byte */
1250		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1251		if (!ctx->prog->aux->verifier_zext)
1252			emit_a32_mov_i(rd[0], 0, ctx);
1253		break;
1254	case BPF_H:
1255		/* Load a HalfWord */
1256		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1257		if (!ctx->prog->aux->verifier_zext)
1258			emit_a32_mov_i(rd[0], 0, ctx);
1259		break;
1260	case BPF_W:
1261		/* Load a Word */
1262		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1263		if (!ctx->prog->aux->verifier_zext)
1264			emit_a32_mov_i(rd[0], 0, ctx);
1265		break;
1266	case BPF_DW:
1267		/* Load a Double Word */
1268		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1269		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1270		break;
1271	}
1272	arm_bpf_put_reg64(dst, rd, ctx);
1273}
1274
1275/* dst = *(signed size*)(src + off) */
1276static inline void emit_ldsx_r(const s8 dst[], const s8 src,
1277			       s16 off, struct jit_ctx *ctx, const u8 sz){
1278	const s8 *tmp = bpf2a32[TMP_REG_1];
1279	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1280	s8 rm = src;
1281	int add_off;
1282
1283	if (!is_ldst_imm8(off, sz)) {
1284		/*
1285		 * offset does not fit in the load/store immediate,
1286		 * construct an ADD instruction to apply the offset.
1287		 */
1288		add_off = imm8m(off);
1289		if (add_off > 0) {
1290			emit(ARM_ADD_I(tmp[0], src, add_off), ctx);
1291			rm = tmp[0];
1292		} else {
1293			emit_a32_mov_i(tmp[0], off, ctx);
1294			emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1295			rm = tmp[0];
1296		}
1297		off = 0;
1298	}
1299
1300	switch (sz) {
1301	case BPF_B:
1302		/* Load a Byte with sign extension*/
1303		emit(ARM_LDRSB_I(rd[1], rm, off), ctx);
1304		break;
1305	case BPF_H:
1306		/* Load a HalfWord with sign extension*/
1307		emit(ARM_LDRSH_I(rd[1], rm, off), ctx);
1308		break;
1309	case BPF_W:
1310		/* Load a Word*/
1311		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1312		break;
1313	}
1314	/* Carry the sign extension to upper 32 bits */
1315	emit(ARM_ASR_I(rd[0], rd[1], 31), ctx);
1316	arm_bpf_put_reg64(dst, rd, ctx);
1317}
1318
1319/* Arithmatic Operation */
1320static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1321			     const u8 rn, struct jit_ctx *ctx, u8 op,
1322			     bool is_jmp64) {
1323	switch (op) {
1324	case BPF_JSET:
1325		if (is_jmp64) {
1326			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1327			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1328			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1329		} else {
1330			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1331		}
1332		break;
1333	case BPF_JEQ:
1334	case BPF_JNE:
1335	case BPF_JGT:
1336	case BPF_JGE:
1337	case BPF_JLE:
1338	case BPF_JLT:
1339		if (is_jmp64) {
1340			emit(ARM_CMP_R(rd, rm), ctx);
1341			/* Only compare low halve if high halve are equal. */
1342			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1343		} else {
1344			emit(ARM_CMP_R(rt, rn), ctx);
1345		}
1346		break;
1347	case BPF_JSLE:
1348	case BPF_JSGT:
1349		emit(ARM_CMP_R(rn, rt), ctx);
1350		if (is_jmp64)
1351			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1352		break;
1353	case BPF_JSLT:
1354	case BPF_JSGE:
1355		emit(ARM_CMP_R(rt, rn), ctx);
1356		if (is_jmp64)
1357			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1358		break;
1359	}
1360}
1361
1362static int out_offset = -1; /* initialized on the first pass of build_body() */
1363static int emit_bpf_tail_call(struct jit_ctx *ctx)
1364{
1365
1366	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1367	const s8 *r2 = bpf2a32[BPF_REG_2];
1368	const s8 *r3 = bpf2a32[BPF_REG_3];
1369	const s8 *tmp = bpf2a32[TMP_REG_1];
1370	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1371	const s8 *tcc = bpf2a32[TCALL_CNT];
1372	const s8 *tc;
1373	const int idx0 = ctx->idx;
1374#define cur_offset (ctx->idx - idx0)
1375#define jmp_offset (out_offset - (cur_offset) - 2)
1376	u32 lo, hi;
1377	s8 r_array, r_index;
1378	int off;
1379
1380	/* if (index >= array->map.max_entries)
1381	 *	goto out;
1382	 */
1383	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1384		     ARM_INST_LDST__IMM12);
1385	off = offsetof(struct bpf_array, map.max_entries);
1386	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1387	/* index is 32-bit for arrays */
1388	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1389	/* array->map.max_entries */
1390	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1391	/* index >= array->map.max_entries */
1392	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1393	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1394
1395	/* tmp2[0] = array, tmp2[1] = index */
1396
1397	/*
1398	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1399	 *	goto out;
1400	 * tail_call_cnt++;
1401	 */
1402	lo = (u32)MAX_TAIL_CALL_CNT;
1403	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1404	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1405	emit(ARM_CMP_I(tc[0], hi), ctx);
1406	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1407	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1408	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1409	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1410	arm_bpf_put_reg64(tcc, tmp, ctx);
1411
1412	/* prog = array->ptrs[index]
1413	 * if (prog == NULL)
1414	 *	goto out;
1415	 */
1416	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1417	off = imm8m(offsetof(struct bpf_array, ptrs));
1418	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1419	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1420	emit(ARM_CMP_I(tmp[1], 0), ctx);
1421	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1422
1423	/* goto *(prog->bpf_func + prologue_size); */
1424	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1425		     ARM_INST_LDST__IMM12);
1426	off = offsetof(struct bpf_prog, bpf_func);
1427	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1428	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1429	emit_bx_r(tmp[1], ctx);
1430
1431	/* out: */
1432	if (out_offset == -1)
1433		out_offset = cur_offset;
1434	if (cur_offset != out_offset) {
1435		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1436			    cur_offset, out_offset);
1437		return -1;
1438	}
1439	return 0;
1440#undef cur_offset
1441#undef jmp_offset
1442}
1443
1444/* 0xabcd => 0xcdab */
1445static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1446{
1447#if __LINUX_ARM_ARCH__ < 6
1448	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1449
1450	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1451	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1452	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1453	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1454#else /* ARMv6+ */
1455	emit(ARM_REV16(rd, rn), ctx);
1456#endif
1457}
1458
1459/* 0xabcdefgh => 0xghefcdab */
1460static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1461{
1462#if __LINUX_ARM_ARCH__ < 6
1463	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1464
1465	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1466	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1467	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1468
1469	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1470	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1471	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1472	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1473	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1474	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1475	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1476
1477#else /* ARMv6+ */
1478	emit(ARM_REV(rd, rn), ctx);
1479#endif
1480}
1481
1482// push the scratch stack register on top of the stack
1483static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1484{
1485	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1486	const s8 *rt;
1487	u16 reg_set = 0;
1488
1489	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1490
1491	reg_set = (1 << rt[1]) | (1 << rt[0]);
1492	emit(ARM_PUSH(reg_set), ctx);
1493}
1494
1495static void build_prologue(struct jit_ctx *ctx)
1496{
1497	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1498	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1499	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1500	const s8 *tcc = bpf2a32[TCALL_CNT];
1501
1502	/* Save callee saved registers. */
1503#ifdef CONFIG_FRAME_POINTER
1504	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1505	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1506	emit(ARM_PUSH(reg_set), ctx);
1507	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1508#else
1509	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1510	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1511#endif
1512	/* mov r3, #0 */
1513	/* sub r2, sp, #SCRATCH_SIZE */
1514	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1515	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1516
1517	ctx->stack_size = imm8m(STACK_SIZE);
1518
1519	/* Set up function call stack */
1520	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1521
1522	/* Set up BPF prog stack base register */
1523	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1524
1525	/* Initialize Tail Count */
1526	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1527	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1528
1529	/* Move BPF_CTX to BPF_R1 */
1530	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1531
1532	/* end of prologue */
1533}
1534
1535/* restore callee saved registers. */
1536static void build_epilogue(struct jit_ctx *ctx)
1537{
1538#ifdef CONFIG_FRAME_POINTER
1539	/* When using frame pointers, some additional registers need to
1540	 * be loaded. */
1541	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1542	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1543	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1544#else
1545	/* Restore callee saved registers. */
1546	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1547	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1548#endif
1549}
1550
1551/*
1552 * Convert an eBPF instruction to native instruction, i.e
1553 * JITs an eBPF instruction.
1554 * Returns :
1555 *	0  - Successfully JITed an 8-byte eBPF instruction
1556 *	>0 - Successfully JITed a 16-byte eBPF instruction
1557 *	<0 - Failed to JIT.
1558 */
1559static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1560{
1561	const u8 code = insn->code;
1562	const s8 *dst = bpf2a32[insn->dst_reg];
1563	const s8 *src = bpf2a32[insn->src_reg];
1564	const s8 *tmp = bpf2a32[TMP_REG_1];
1565	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1566	const s16 off = insn->off;
1567	const s32 imm = insn->imm;
1568	const int i = insn - ctx->prog->insnsi;
1569	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1570	const s8 *rd, *rs;
1571	s8 rd_lo, rt, rm, rn;
1572	s32 jmp_offset;
1573
1574#define check_imm(bits, imm) do {				\
1575	if ((imm) >= (1 << ((bits) - 1)) ||			\
1576	    (imm) < -(1 << ((bits) - 1))) {			\
1577		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1578			i, imm, imm);				\
1579		return -EINVAL;					\
1580	}							\
1581} while (0)
1582#define check_imm24(imm) check_imm(24, imm)
1583
1584	switch (code) {
1585	/* ALU operations */
1586
1587	/* dst = src */
1588	case BPF_ALU | BPF_MOV | BPF_K:
1589	case BPF_ALU | BPF_MOV | BPF_X:
1590	case BPF_ALU64 | BPF_MOV | BPF_K:
1591	case BPF_ALU64 | BPF_MOV | BPF_X:
1592		switch (BPF_SRC(code)) {
1593		case BPF_X:
1594			if (imm == 1) {
1595				/* Special mov32 for zext */
1596				emit_a32_mov_i(dst_hi, 0, ctx);
1597				break;
1598			}
1599			if (insn->off)
1600				emit_a32_movsx_r64(is64, insn->off, dst, src, ctx);
1601			else
1602				emit_a32_mov_r64(is64, dst, src, ctx);
1603			break;
1604		case BPF_K:
1605			/* Sign-extend immediate value to destination reg */
1606			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1607			break;
1608		}
1609		break;
1610	/* dst = dst + src/imm */
1611	/* dst = dst - src/imm */
1612	/* dst = dst | src/imm */
1613	/* dst = dst & src/imm */
1614	/* dst = dst ^ src/imm */
1615	/* dst = dst * src/imm */
1616	/* dst = dst << src */
1617	/* dst = dst >> src */
1618	case BPF_ALU | BPF_ADD | BPF_K:
1619	case BPF_ALU | BPF_ADD | BPF_X:
1620	case BPF_ALU | BPF_SUB | BPF_K:
1621	case BPF_ALU | BPF_SUB | BPF_X:
1622	case BPF_ALU | BPF_OR | BPF_K:
1623	case BPF_ALU | BPF_OR | BPF_X:
1624	case BPF_ALU | BPF_AND | BPF_K:
1625	case BPF_ALU | BPF_AND | BPF_X:
1626	case BPF_ALU | BPF_XOR | BPF_K:
1627	case BPF_ALU | BPF_XOR | BPF_X:
1628	case BPF_ALU | BPF_MUL | BPF_K:
1629	case BPF_ALU | BPF_MUL | BPF_X:
1630	case BPF_ALU | BPF_LSH | BPF_X:
1631	case BPF_ALU | BPF_RSH | BPF_X:
1632	case BPF_ALU | BPF_ARSH | BPF_X:
1633	case BPF_ALU64 | BPF_ADD | BPF_K:
1634	case BPF_ALU64 | BPF_ADD | BPF_X:
1635	case BPF_ALU64 | BPF_SUB | BPF_K:
1636	case BPF_ALU64 | BPF_SUB | BPF_X:
1637	case BPF_ALU64 | BPF_OR | BPF_K:
1638	case BPF_ALU64 | BPF_OR | BPF_X:
1639	case BPF_ALU64 | BPF_AND | BPF_K:
1640	case BPF_ALU64 | BPF_AND | BPF_X:
1641	case BPF_ALU64 | BPF_XOR | BPF_K:
1642	case BPF_ALU64 | BPF_XOR | BPF_X:
1643		switch (BPF_SRC(code)) {
1644		case BPF_X:
1645			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1646			break;
1647		case BPF_K:
1648			/* Move immediate value to the temporary register
1649			 * and then do the ALU operation on the temporary
1650			 * register as this will sign-extend the immediate
1651			 * value into temporary reg and then it would be
1652			 * safe to do the operation on it.
1653			 */
1654			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1655			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1656			break;
1657		}
1658		break;
1659	/* dst = dst / src(imm) */
1660	/* dst = dst % src(imm) */
1661	case BPF_ALU | BPF_DIV | BPF_K:
1662	case BPF_ALU | BPF_DIV | BPF_X:
1663	case BPF_ALU | BPF_MOD | BPF_K:
1664	case BPF_ALU | BPF_MOD | BPF_X:
1665		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1666		switch (BPF_SRC(code)) {
1667		case BPF_X:
1668			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1669			break;
1670		case BPF_K:
1671			rt = tmp2[0];
1672			emit_a32_mov_i(rt, imm, ctx);
1673			break;
1674		default:
1675			rt = src_lo;
1676			break;
1677		}
1678		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off);
1679		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1680		if (!ctx->prog->aux->verifier_zext)
1681			emit_a32_mov_i(dst_hi, 0, ctx);
1682		break;
1683	case BPF_ALU64 | BPF_DIV | BPF_K:
1684	case BPF_ALU64 | BPF_DIV | BPF_X:
1685	case BPF_ALU64 | BPF_MOD | BPF_K:
1686	case BPF_ALU64 | BPF_MOD | BPF_X:
1687		rd = arm_bpf_get_reg64(dst, tmp2, ctx);
1688		switch (BPF_SRC(code)) {
1689		case BPF_X:
1690			rs = arm_bpf_get_reg64(src, tmp, ctx);
1691			break;
1692		case BPF_K:
1693			rs = tmp;
1694			emit_a32_mov_se_i64(is64, rs, imm, ctx);
1695			break;
1696		}
1697		emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
1698		arm_bpf_put_reg64(dst, rd, ctx);
1699		break;
1700	/* dst = dst << imm */
1701	/* dst = dst >> imm */
1702	/* dst = dst >> imm (signed) */
1703	case BPF_ALU | BPF_LSH | BPF_K:
1704	case BPF_ALU | BPF_RSH | BPF_K:
1705	case BPF_ALU | BPF_ARSH | BPF_K:
1706		if (unlikely(imm > 31))
1707			return -EINVAL;
1708		if (imm)
1709			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1710		if (!ctx->prog->aux->verifier_zext)
1711			emit_a32_mov_i(dst_hi, 0, ctx);
1712		break;
1713	/* dst = dst << imm */
1714	case BPF_ALU64 | BPF_LSH | BPF_K:
1715		if (unlikely(imm > 63))
1716			return -EINVAL;
1717		emit_a32_lsh_i64(dst, imm, ctx);
1718		break;
1719	/* dst = dst >> imm */
1720	case BPF_ALU64 | BPF_RSH | BPF_K:
1721		if (unlikely(imm > 63))
1722			return -EINVAL;
1723		emit_a32_rsh_i64(dst, imm, ctx);
1724		break;
1725	/* dst = dst << src */
1726	case BPF_ALU64 | BPF_LSH | BPF_X:
1727		emit_a32_lsh_r64(dst, src, ctx);
1728		break;
1729	/* dst = dst >> src */
1730	case BPF_ALU64 | BPF_RSH | BPF_X:
1731		emit_a32_rsh_r64(dst, src, ctx);
1732		break;
1733	/* dst = dst >> src (signed) */
1734	case BPF_ALU64 | BPF_ARSH | BPF_X:
1735		emit_a32_arsh_r64(dst, src, ctx);
1736		break;
1737	/* dst = dst >> imm (signed) */
1738	case BPF_ALU64 | BPF_ARSH | BPF_K:
1739		if (unlikely(imm > 63))
1740			return -EINVAL;
1741		emit_a32_arsh_i64(dst, imm, ctx);
1742		break;
1743	/* dst = ~dst */
1744	case BPF_ALU | BPF_NEG:
1745		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1746		if (!ctx->prog->aux->verifier_zext)
1747			emit_a32_mov_i(dst_hi, 0, ctx);
1748		break;
1749	/* dst = ~dst (64 bit) */
1750	case BPF_ALU64 | BPF_NEG:
1751		emit_a32_neg64(dst, ctx);
1752		break;
1753	/* dst = dst * src/imm */
1754	case BPF_ALU64 | BPF_MUL | BPF_X:
1755	case BPF_ALU64 | BPF_MUL | BPF_K:
1756		switch (BPF_SRC(code)) {
1757		case BPF_X:
1758			emit_a32_mul_r64(dst, src, ctx);
1759			break;
1760		case BPF_K:
1761			/* Move immediate value to the temporary register
1762			 * and then do the multiplication on it as this
1763			 * will sign-extend the immediate value into temp
1764			 * reg then it would be safe to do the operation
1765			 * on it.
1766			 */
1767			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1768			emit_a32_mul_r64(dst, tmp2, ctx);
1769			break;
1770		}
1771		break;
1772	/* dst = htole(dst) */
1773	/* dst = htobe(dst) */
1774	case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1775	case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */
1776	/* dst = bswap(dst) */
1777	case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1778		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1779		if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64)
1780			goto emit_bswap_uxt;
1781		switch (imm) {
1782		case 16:
1783			emit_rev16(rd[1], rd[1], ctx);
1784			goto emit_bswap_uxt;
1785		case 32:
1786			emit_rev32(rd[1], rd[1], ctx);
1787			goto emit_bswap_uxt;
1788		case 64:
1789			emit_rev32(ARM_LR, rd[1], ctx);
1790			emit_rev32(rd[1], rd[0], ctx);
1791			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1792			break;
1793		}
1794		goto exit;
1795emit_bswap_uxt:
1796		switch (imm) {
1797		case 16:
1798			/* zero-extend 16 bits into 64 bits */
1799#if __LINUX_ARM_ARCH__ < 6
1800			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1801			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1802#else /* ARMv6+ */
1803			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1804#endif
1805			if (!ctx->prog->aux->verifier_zext)
1806				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1807			break;
1808		case 32:
1809			/* zero-extend 32 bits into 64 bits */
1810			if (!ctx->prog->aux->verifier_zext)
1811				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1812			break;
1813		case 64:
1814			/* nop */
1815			break;
1816		}
1817exit:
1818		arm_bpf_put_reg64(dst, rd, ctx);
1819		break;
1820	/* dst = imm64 */
1821	case BPF_LD | BPF_IMM | BPF_DW:
1822	{
1823		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1824
1825		emit_a32_mov_i64(dst, val, ctx);
1826
1827		return 1;
1828	}
1829	/* LDX: dst = *(size *)(src + off) */
1830	case BPF_LDX | BPF_MEM | BPF_W:
1831	case BPF_LDX | BPF_MEM | BPF_H:
1832	case BPF_LDX | BPF_MEM | BPF_B:
1833	case BPF_LDX | BPF_MEM | BPF_DW:
1834	/* LDSX: dst = *(signed size *)(src + off) */
1835	case BPF_LDX | BPF_MEMSX | BPF_B:
1836	case BPF_LDX | BPF_MEMSX | BPF_H:
1837	case BPF_LDX | BPF_MEMSX | BPF_W:
1838		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1839		if (BPF_MODE(insn->code) == BPF_MEMSX)
1840			emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code));
1841		else
1842			emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1843		break;
1844	/* speculation barrier */
1845	case BPF_ST | BPF_NOSPEC:
1846		break;
1847	/* ST: *(size *)(dst + off) = imm */
1848	case BPF_ST | BPF_MEM | BPF_W:
1849	case BPF_ST | BPF_MEM | BPF_H:
1850	case BPF_ST | BPF_MEM | BPF_B:
1851	case BPF_ST | BPF_MEM | BPF_DW:
1852		switch (BPF_SIZE(code)) {
1853		case BPF_DW:
1854			/* Sign-extend immediate value into temp reg */
1855			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1856			break;
1857		case BPF_W:
1858		case BPF_H:
1859		case BPF_B:
1860			emit_a32_mov_i(tmp2[1], imm, ctx);
1861			break;
1862		}
1863		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1864		break;
1865	/* Atomic ops */
1866	case BPF_STX | BPF_ATOMIC | BPF_W:
1867	case BPF_STX | BPF_ATOMIC | BPF_DW:
1868		goto notyet;
1869	/* STX: *(size *)(dst + off) = src */
1870	case BPF_STX | BPF_MEM | BPF_W:
1871	case BPF_STX | BPF_MEM | BPF_H:
1872	case BPF_STX | BPF_MEM | BPF_B:
1873	case BPF_STX | BPF_MEM | BPF_DW:
1874		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1875		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1876		break;
1877	/* PC += off if dst == src */
1878	/* PC += off if dst > src */
1879	/* PC += off if dst >= src */
1880	/* PC += off if dst < src */
1881	/* PC += off if dst <= src */
1882	/* PC += off if dst != src */
1883	/* PC += off if dst > src (signed) */
1884	/* PC += off if dst >= src (signed) */
1885	/* PC += off if dst < src (signed) */
1886	/* PC += off if dst <= src (signed) */
1887	/* PC += off if dst & src */
1888	case BPF_JMP | BPF_JEQ | BPF_X:
1889	case BPF_JMP | BPF_JGT | BPF_X:
1890	case BPF_JMP | BPF_JGE | BPF_X:
1891	case BPF_JMP | BPF_JNE | BPF_X:
1892	case BPF_JMP | BPF_JSGT | BPF_X:
1893	case BPF_JMP | BPF_JSGE | BPF_X:
1894	case BPF_JMP | BPF_JSET | BPF_X:
1895	case BPF_JMP | BPF_JLE | BPF_X:
1896	case BPF_JMP | BPF_JLT | BPF_X:
1897	case BPF_JMP | BPF_JSLT | BPF_X:
1898	case BPF_JMP | BPF_JSLE | BPF_X:
1899	case BPF_JMP32 | BPF_JEQ | BPF_X:
1900	case BPF_JMP32 | BPF_JGT | BPF_X:
1901	case BPF_JMP32 | BPF_JGE | BPF_X:
1902	case BPF_JMP32 | BPF_JNE | BPF_X:
1903	case BPF_JMP32 | BPF_JSGT | BPF_X:
1904	case BPF_JMP32 | BPF_JSGE | BPF_X:
1905	case BPF_JMP32 | BPF_JSET | BPF_X:
1906	case BPF_JMP32 | BPF_JLE | BPF_X:
1907	case BPF_JMP32 | BPF_JLT | BPF_X:
1908	case BPF_JMP32 | BPF_JSLT | BPF_X:
1909	case BPF_JMP32 | BPF_JSLE | BPF_X:
1910		/* Setup source registers */
1911		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1912		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1913		goto go_jmp;
1914	/* PC += off if dst == imm */
1915	/* PC += off if dst > imm */
1916	/* PC += off if dst >= imm */
1917	/* PC += off if dst < imm */
1918	/* PC += off if dst <= imm */
1919	/* PC += off if dst != imm */
1920	/* PC += off if dst > imm (signed) */
1921	/* PC += off if dst >= imm (signed) */
1922	/* PC += off if dst < imm (signed) */
1923	/* PC += off if dst <= imm (signed) */
1924	/* PC += off if dst & imm */
1925	case BPF_JMP | BPF_JEQ | BPF_K:
1926	case BPF_JMP | BPF_JGT | BPF_K:
1927	case BPF_JMP | BPF_JGE | BPF_K:
1928	case BPF_JMP | BPF_JNE | BPF_K:
1929	case BPF_JMP | BPF_JSGT | BPF_K:
1930	case BPF_JMP | BPF_JSGE | BPF_K:
1931	case BPF_JMP | BPF_JSET | BPF_K:
1932	case BPF_JMP | BPF_JLT | BPF_K:
1933	case BPF_JMP | BPF_JLE | BPF_K:
1934	case BPF_JMP | BPF_JSLT | BPF_K:
1935	case BPF_JMP | BPF_JSLE | BPF_K:
1936	case BPF_JMP32 | BPF_JEQ | BPF_K:
1937	case BPF_JMP32 | BPF_JGT | BPF_K:
1938	case BPF_JMP32 | BPF_JGE | BPF_K:
1939	case BPF_JMP32 | BPF_JNE | BPF_K:
1940	case BPF_JMP32 | BPF_JSGT | BPF_K:
1941	case BPF_JMP32 | BPF_JSGE | BPF_K:
1942	case BPF_JMP32 | BPF_JSET | BPF_K:
1943	case BPF_JMP32 | BPF_JLT | BPF_K:
1944	case BPF_JMP32 | BPF_JLE | BPF_K:
1945	case BPF_JMP32 | BPF_JSLT | BPF_K:
1946	case BPF_JMP32 | BPF_JSLE | BPF_K:
1947		if (off == 0)
1948			break;
1949		rm = tmp2[0];
1950		rn = tmp2[1];
1951		/* Sign-extend immediate value */
1952		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1953go_jmp:
1954		/* Setup destination register */
1955		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1956
1957		/* Check for the condition */
1958		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1959			  BPF_CLASS(code) == BPF_JMP);
1960
1961		/* Setup JUMP instruction */
1962		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1963		switch (BPF_OP(code)) {
1964		case BPF_JNE:
1965		case BPF_JSET:
1966			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1967			break;
1968		case BPF_JEQ:
1969			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1970			break;
1971		case BPF_JGT:
1972			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1973			break;
1974		case BPF_JGE:
1975			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1976			break;
1977		case BPF_JSGT:
1978			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1979			break;
1980		case BPF_JSGE:
1981			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1982			break;
1983		case BPF_JLE:
1984			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1985			break;
1986		case BPF_JLT:
1987			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1988			break;
1989		case BPF_JSLT:
1990			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1991			break;
1992		case BPF_JSLE:
1993			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1994			break;
1995		}
1996		break;
1997	/* JMP OFF */
1998	case BPF_JMP | BPF_JA:
1999	case BPF_JMP32 | BPF_JA:
2000	{
2001		if (BPF_CLASS(code) == BPF_JMP32 && imm != 0)
2002			jmp_offset = bpf2a32_offset(i + imm, i, ctx);
2003		else if (BPF_CLASS(code) == BPF_JMP && off != 0)
2004			jmp_offset = bpf2a32_offset(i + off, i, ctx);
2005		else
2006			break;
2007
2008		check_imm24(jmp_offset);
2009		emit(ARM_B(jmp_offset), ctx);
2010		break;
2011	}
2012	/* tail call */
2013	case BPF_JMP | BPF_TAIL_CALL:
2014		if (emit_bpf_tail_call(ctx))
2015			return -EFAULT;
2016		break;
2017	/* function call */
2018	case BPF_JMP | BPF_CALL:
2019	{
2020		const s8 *r0 = bpf2a32[BPF_REG_0];
2021		const s8 *r1 = bpf2a32[BPF_REG_1];
2022		const s8 *r2 = bpf2a32[BPF_REG_2];
2023		const s8 *r3 = bpf2a32[BPF_REG_3];
2024		const s8 *r4 = bpf2a32[BPF_REG_4];
2025		const s8 *r5 = bpf2a32[BPF_REG_5];
2026		const u32 func = (u32)__bpf_call_base + (u32)imm;
2027
2028		emit_a32_mov_r64(true, r0, r1, ctx);
2029		emit_a32_mov_r64(true, r1, r2, ctx);
2030		emit_push_r64(r5, ctx);
2031		emit_push_r64(r4, ctx);
2032		emit_push_r64(r3, ctx);
2033
2034		emit_a32_mov_i(tmp[1], func, ctx);
2035		emit_blx_r(tmp[1], ctx);
2036
2037		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
2038		break;
2039	}
2040	/* function return */
2041	case BPF_JMP | BPF_EXIT:
2042		/* Optimization: when last instruction is EXIT
2043		 * simply fallthrough to epilogue.
2044		 */
2045		if (i == ctx->prog->len - 1)
2046			break;
2047		jmp_offset = epilogue_offset(ctx);
2048		check_imm24(jmp_offset);
2049		emit(ARM_B(jmp_offset), ctx);
2050		break;
2051notyet:
2052		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2053		return -EFAULT;
2054	default:
2055		pr_err_once("unknown opcode %02x\n", code);
2056		return -EINVAL;
2057	}
2058
2059	if (ctx->flags & FLAG_IMM_OVERFLOW)
2060		/*
2061		 * this instruction generated an overflow when
2062		 * trying to access the literal pool, so
2063		 * delegate this filter to the kernel interpreter.
2064		 */
2065		return -1;
2066	return 0;
2067}
2068
2069static int build_body(struct jit_ctx *ctx)
2070{
2071	const struct bpf_prog *prog = ctx->prog;
2072	unsigned int i;
2073
2074	for (i = 0; i < prog->len; i++) {
2075		const struct bpf_insn *insn = &(prog->insnsi[i]);
2076		int ret;
2077
2078		ret = build_insn(insn, ctx);
2079
2080		/* It's used with loading the 64 bit immediate value. */
2081		if (ret > 0) {
2082			i++;
2083			if (ctx->target == NULL)
2084				ctx->offsets[i] = ctx->idx;
2085			continue;
2086		}
2087
2088		if (ctx->target == NULL)
2089			ctx->offsets[i] = ctx->idx;
2090
2091		/* If unsuccesful, return with error code */
2092		if (ret)
2093			return ret;
2094	}
2095	return 0;
2096}
2097
2098static int validate_code(struct jit_ctx *ctx)
2099{
2100	int i;
2101
2102	for (i = 0; i < ctx->idx; i++) {
2103		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
2104			return -1;
2105	}
2106
2107	return 0;
2108}
2109
 
 
 
 
 
2110bool bpf_jit_needs_zext(void)
2111{
2112	return true;
2113}
2114
2115struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2116{
2117	struct bpf_prog *tmp, *orig_prog = prog;
2118	struct bpf_binary_header *header;
2119	bool tmp_blinded = false;
2120	struct jit_ctx ctx;
2121	unsigned int tmp_idx;
2122	unsigned int image_size;
2123	u8 *image_ptr;
2124
2125	/* If BPF JIT was not enabled then we must fall back to
2126	 * the interpreter.
2127	 */
2128	if (!prog->jit_requested)
2129		return orig_prog;
2130
2131	/* If constant blinding was enabled and we failed during blinding
2132	 * then we must fall back to the interpreter. Otherwise, we save
2133	 * the new JITed code.
2134	 */
2135	tmp = bpf_jit_blind_constants(prog);
2136
2137	if (IS_ERR(tmp))
2138		return orig_prog;
2139	if (tmp != prog) {
2140		tmp_blinded = true;
2141		prog = tmp;
2142	}
2143
2144	memset(&ctx, 0, sizeof(ctx));
2145	ctx.prog = prog;
2146	ctx.cpu_architecture = cpu_architecture();
2147
2148	/* Not able to allocate memory for offsets[] , then
2149	 * we must fall back to the interpreter
2150	 */
2151	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
2152	if (ctx.offsets == NULL) {
2153		prog = orig_prog;
2154		goto out;
2155	}
2156
2157	/* 1) fake pass to find in the length of the JITed code,
2158	 * to compute ctx->offsets and other context variables
2159	 * needed to compute final JITed code.
2160	 * Also, calculate random starting pointer/start of JITed code
2161	 * which is prefixed by random number of fault instructions.
2162	 *
2163	 * If the first pass fails then there is no chance of it
2164	 * being successful in the second pass, so just fall back
2165	 * to the interpreter.
2166	 */
2167	if (build_body(&ctx)) {
2168		prog = orig_prog;
2169		goto out_off;
2170	}
2171
2172	tmp_idx = ctx.idx;
2173	build_prologue(&ctx);
2174	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
2175
2176	ctx.epilogue_offset = ctx.idx;
2177
2178#if __LINUX_ARM_ARCH__ < 7
2179	tmp_idx = ctx.idx;
2180	build_epilogue(&ctx);
2181	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
2182
2183	ctx.idx += ctx.imm_count;
2184	if (ctx.imm_count) {
2185		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
2186		if (ctx.imms == NULL) {
2187			prog = orig_prog;
2188			goto out_off;
2189		}
2190	}
2191#else
2192	/* there's nothing about the epilogue on ARMv7 */
2193	build_epilogue(&ctx);
2194#endif
2195	/* Now we can get the actual image size of the JITed arm code.
2196	 * Currently, we are not considering the THUMB-2 instructions
2197	 * for jit, although it can decrease the size of the image.
2198	 *
2199	 * As each arm instruction is of length 32bit, we are translating
2200	 * number of JITed instructions into the size required to store these
2201	 * JITed code.
2202	 */
2203	image_size = sizeof(u32) * ctx.idx;
2204
2205	/* Now we know the size of the structure to make */
2206	header = bpf_jit_binary_alloc(image_size, &image_ptr,
2207				      sizeof(u32), jit_fill_hole);
2208	/* Not able to allocate memory for the structure then
2209	 * we must fall back to the interpretation
2210	 */
2211	if (header == NULL) {
2212		prog = orig_prog;
2213		goto out_imms;
2214	}
2215
2216	/* 2.) Actual pass to generate final JIT code */
2217	ctx.target = (u32 *) image_ptr;
2218	ctx.idx = 0;
2219
2220	build_prologue(&ctx);
2221
2222	/* If building the body of the JITed code fails somehow,
2223	 * we fall back to the interpretation.
2224	 */
2225	if (build_body(&ctx) < 0) {
2226		image_ptr = NULL;
2227		bpf_jit_binary_free(header);
2228		prog = orig_prog;
2229		goto out_imms;
2230	}
2231	build_epilogue(&ctx);
2232
2233	/* 3.) Extra pass to validate JITed Code */
2234	if (validate_code(&ctx)) {
2235		image_ptr = NULL;
2236		bpf_jit_binary_free(header);
2237		prog = orig_prog;
2238		goto out_imms;
2239	}
2240	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2241
2242	if (bpf_jit_enable > 1)
2243		/* there are 2 passes here */
2244		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2245
2246	bpf_jit_binary_lock_ro(header);
2247	prog->bpf_func = (void *)ctx.target;
2248	prog->jited = 1;
2249	prog->jited_len = image_size;
2250
2251out_imms:
2252#if __LINUX_ARM_ARCH__ < 7
2253	if (ctx.imm_count)
2254		kfree(ctx.imms);
2255#endif
2256out_off:
2257	kfree(ctx.offsets);
2258out:
2259	if (tmp_blinded)
2260		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2261					   tmp : orig_prog);
2262	return prog;
2263}
2264