Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9#ifndef _NET_IPV6_H
10#define _NET_IPV6_H
11
12#include <linux/ipv6.h>
13#include <linux/hardirq.h>
14#include <linux/jhash.h>
15#include <linux/refcount.h>
16#include <linux/jump_label_ratelimit.h>
17#include <net/if_inet6.h>
18#include <net/ndisc.h>
19#include <net/flow.h>
20#include <net/flow_dissector.h>
21#include <net/snmp.h>
22#include <net/netns/hash.h>
23
24#define SIN6_LEN_RFC2133 24
25
26#define IPV6_MAXPLEN 65535
27
28/*
29 * NextHeader field of IPv6 header
30 */
31
32#define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
33#define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
34#define NEXTHDR_TCP 6 /* TCP segment. */
35#define NEXTHDR_UDP 17 /* UDP message. */
36#define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
37#define NEXTHDR_ROUTING 43 /* Routing header. */
38#define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
39#define NEXTHDR_GRE 47 /* GRE header. */
40#define NEXTHDR_ESP 50 /* Encapsulating security payload. */
41#define NEXTHDR_AUTH 51 /* Authentication header. */
42#define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
43#define NEXTHDR_NONE 59 /* No next header */
44#define NEXTHDR_DEST 60 /* Destination options header. */
45#define NEXTHDR_SCTP 132 /* SCTP message. */
46#define NEXTHDR_MOBILITY 135 /* Mobility header. */
47
48#define NEXTHDR_MAX 255
49
50#define IPV6_DEFAULT_HOPLIMIT 64
51#define IPV6_DEFAULT_MCASTHOPS 1
52
53/* Limits on Hop-by-Hop and Destination options.
54 *
55 * Per RFC8200 there is no limit on the maximum number or lengths of options in
56 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
57 * We allow configurable limits in order to mitigate potential denial of
58 * service attacks.
59 *
60 * There are three limits that may be set:
61 * - Limit the number of options in a Hop-by-Hop or Destination options
62 * extension header
63 * - Limit the byte length of a Hop-by-Hop or Destination options extension
64 * header
65 * - Disallow unknown options
66 *
67 * The limits are expressed in corresponding sysctls:
68 *
69 * ipv6.sysctl.max_dst_opts_cnt
70 * ipv6.sysctl.max_hbh_opts_cnt
71 * ipv6.sysctl.max_dst_opts_len
72 * ipv6.sysctl.max_hbh_opts_len
73 *
74 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
75 * options or Hop-by-Hop options. If the number is less than zero then unknown
76 * TLVs are disallowed and the number of known options that are allowed is the
77 * absolute value. Setting the value to INT_MAX indicates no limit.
78 *
79 * max_*_opts_len is the length limit in bytes of a Destination or
80 * Hop-by-Hop options extension header. Setting the value to INT_MAX
81 * indicates no length limit.
82 *
83 * If a limit is exceeded when processing an extension header the packet is
84 * silently discarded.
85 */
86
87/* Default limits for Hop-by-Hop and Destination options */
88#define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
89#define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
90#define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
91#define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
92
93/*
94 * Addr type
95 *
96 * type - unicast | multicast
97 * scope - local | site | global
98 * v4 - compat
99 * v4mapped
100 * any
101 * loopback
102 */
103
104#define IPV6_ADDR_ANY 0x0000U
105
106#define IPV6_ADDR_UNICAST 0x0001U
107#define IPV6_ADDR_MULTICAST 0x0002U
108
109#define IPV6_ADDR_LOOPBACK 0x0010U
110#define IPV6_ADDR_LINKLOCAL 0x0020U
111#define IPV6_ADDR_SITELOCAL 0x0040U
112
113#define IPV6_ADDR_COMPATv4 0x0080U
114
115#define IPV6_ADDR_SCOPE_MASK 0x00f0U
116
117#define IPV6_ADDR_MAPPED 0x1000U
118
119/*
120 * Addr scopes
121 */
122#define IPV6_ADDR_MC_SCOPE(a) \
123 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
124#define __IPV6_ADDR_SCOPE_INVALID -1
125#define IPV6_ADDR_SCOPE_NODELOCAL 0x01
126#define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
127#define IPV6_ADDR_SCOPE_SITELOCAL 0x05
128#define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
129#define IPV6_ADDR_SCOPE_GLOBAL 0x0e
130
131/*
132 * Addr flags
133 */
134#define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
135 ((a)->s6_addr[1] & 0x10)
136#define IPV6_ADDR_MC_FLAG_PREFIX(a) \
137 ((a)->s6_addr[1] & 0x20)
138#define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
139 ((a)->s6_addr[1] & 0x40)
140
141/*
142 * fragmentation header
143 */
144
145struct frag_hdr {
146 __u8 nexthdr;
147 __u8 reserved;
148 __be16 frag_off;
149 __be32 identification;
150};
151
152#define IP6_MF 0x0001
153#define IP6_OFFSET 0xFFF8
154
155struct ip6_fraglist_iter {
156 struct ipv6hdr *tmp_hdr;
157 struct sk_buff *frag;
158 int offset;
159 unsigned int hlen;
160 __be32 frag_id;
161 u8 nexthdr;
162};
163
164int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
165 u8 nexthdr, __be32 frag_id,
166 struct ip6_fraglist_iter *iter);
167void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
168
169static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
170{
171 struct sk_buff *skb = iter->frag;
172
173 iter->frag = skb->next;
174 skb_mark_not_on_list(skb);
175
176 return skb;
177}
178
179struct ip6_frag_state {
180 u8 *prevhdr;
181 unsigned int hlen;
182 unsigned int mtu;
183 unsigned int left;
184 int offset;
185 int ptr;
186 int hroom;
187 int troom;
188 __be32 frag_id;
189 u8 nexthdr;
190};
191
192void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
193 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
194 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
195struct sk_buff *ip6_frag_next(struct sk_buff *skb,
196 struct ip6_frag_state *state);
197
198#define IP6_REPLY_MARK(net, mark) \
199 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
200
201#include <net/sock.h>
202
203/* sysctls */
204extern int sysctl_mld_max_msf;
205extern int sysctl_mld_qrv;
206
207#define _DEVINC(net, statname, mod, idev, field) \
208({ \
209 struct inet6_dev *_idev = (idev); \
210 if (likely(_idev != NULL)) \
211 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
212 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
213})
214
215/* per device counters are atomic_long_t */
216#define _DEVINCATOMIC(net, statname, mod, idev, field) \
217({ \
218 struct inet6_dev *_idev = (idev); \
219 if (likely(_idev != NULL)) \
220 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
221 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
222})
223
224/* per device and per net counters are atomic_long_t */
225#define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
226({ \
227 struct inet6_dev *_idev = (idev); \
228 if (likely(_idev != NULL)) \
229 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
230 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
231})
232
233#define _DEVADD(net, statname, mod, idev, field, val) \
234({ \
235 struct inet6_dev *_idev = (idev); \
236 if (likely(_idev != NULL)) \
237 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
238 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
239})
240
241#define _DEVUPD(net, statname, mod, idev, field, val) \
242({ \
243 struct inet6_dev *_idev = (idev); \
244 if (likely(_idev != NULL)) \
245 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
246 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
247})
248
249/* MIBs */
250
251#define IP6_INC_STATS(net, idev,field) \
252 _DEVINC(net, ipv6, , idev, field)
253#define __IP6_INC_STATS(net, idev,field) \
254 _DEVINC(net, ipv6, __, idev, field)
255#define IP6_ADD_STATS(net, idev,field,val) \
256 _DEVADD(net, ipv6, , idev, field, val)
257#define __IP6_ADD_STATS(net, idev,field,val) \
258 _DEVADD(net, ipv6, __, idev, field, val)
259#define IP6_UPD_PO_STATS(net, idev,field,val) \
260 _DEVUPD(net, ipv6, , idev, field, val)
261#define __IP6_UPD_PO_STATS(net, idev,field,val) \
262 _DEVUPD(net, ipv6, __, idev, field, val)
263#define ICMP6_INC_STATS(net, idev, field) \
264 _DEVINCATOMIC(net, icmpv6, , idev, field)
265#define __ICMP6_INC_STATS(net, idev, field) \
266 _DEVINCATOMIC(net, icmpv6, __, idev, field)
267
268#define ICMP6MSGOUT_INC_STATS(net, idev, field) \
269 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
270#define ICMP6MSGIN_INC_STATS(net, idev, field) \
271 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
272
273struct ip6_ra_chain {
274 struct ip6_ra_chain *next;
275 struct sock *sk;
276 int sel;
277 void (*destructor)(struct sock *);
278};
279
280extern struct ip6_ra_chain *ip6_ra_chain;
281extern rwlock_t ip6_ra_lock;
282
283/*
284 This structure is prepared by protocol, when parsing
285 ancillary data and passed to IPv6.
286 */
287
288struct ipv6_txoptions {
289 refcount_t refcnt;
290 /* Length of this structure */
291 int tot_len;
292
293 /* length of extension headers */
294
295 __u16 opt_flen; /* after fragment hdr */
296 __u16 opt_nflen; /* before fragment hdr */
297
298 struct ipv6_opt_hdr *hopopt;
299 struct ipv6_opt_hdr *dst0opt;
300 struct ipv6_rt_hdr *srcrt; /* Routing Header */
301 struct ipv6_opt_hdr *dst1opt;
302 struct rcu_head rcu;
303 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
304};
305
306/* flowlabel_reflect sysctl values */
307enum flowlabel_reflect {
308 FLOWLABEL_REFLECT_ESTABLISHED = 1,
309 FLOWLABEL_REFLECT_TCP_RESET = 2,
310 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
311};
312
313struct ip6_flowlabel {
314 struct ip6_flowlabel __rcu *next;
315 __be32 label;
316 atomic_t users;
317 struct in6_addr dst;
318 struct ipv6_txoptions *opt;
319 unsigned long linger;
320 struct rcu_head rcu;
321 u8 share;
322 union {
323 struct pid *pid;
324 kuid_t uid;
325 } owner;
326 unsigned long lastuse;
327 unsigned long expires;
328 struct net *fl_net;
329};
330
331#define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
332#define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
333#define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
334
335#define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
336#define IPV6_TCLASS_SHIFT 20
337
338struct ipv6_fl_socklist {
339 struct ipv6_fl_socklist __rcu *next;
340 struct ip6_flowlabel *fl;
341 struct rcu_head rcu;
342};
343
344struct ipcm6_cookie {
345 struct sockcm_cookie sockc;
346 __s16 hlimit;
347 __s16 tclass;
348 __s8 dontfrag;
349 struct ipv6_txoptions *opt;
350 __u16 gso_size;
351};
352
353static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
354{
355 *ipc6 = (struct ipcm6_cookie) {
356 .hlimit = -1,
357 .tclass = -1,
358 .dontfrag = -1,
359 };
360}
361
362static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
363 const struct ipv6_pinfo *np)
364{
365 *ipc6 = (struct ipcm6_cookie) {
366 .hlimit = -1,
367 .tclass = np->tclass,
368 .dontfrag = np->dontfrag,
369 };
370}
371
372static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
373{
374 struct ipv6_txoptions *opt;
375
376 rcu_read_lock();
377 opt = rcu_dereference(np->opt);
378 if (opt) {
379 if (!refcount_inc_not_zero(&opt->refcnt))
380 opt = NULL;
381 else
382 opt = rcu_pointer_handoff(opt);
383 }
384 rcu_read_unlock();
385 return opt;
386}
387
388static inline void txopt_put(struct ipv6_txoptions *opt)
389{
390 if (opt && refcount_dec_and_test(&opt->refcnt))
391 kfree_rcu(opt, rcu);
392}
393
394struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
395
396extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
397static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
398 __be32 label)
399{
400 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key))
401 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
402
403 return NULL;
404}
405
406struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
407 struct ip6_flowlabel *fl,
408 struct ipv6_txoptions *fopt);
409void fl6_free_socklist(struct sock *sk);
410int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
411int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
412 int flags);
413int ip6_flowlabel_init(void);
414void ip6_flowlabel_cleanup(void);
415bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
416
417static inline void fl6_sock_release(struct ip6_flowlabel *fl)
418{
419 if (fl)
420 atomic_dec(&fl->users);
421}
422
423void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
424
425void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
426 struct icmp6hdr *thdr, int len);
427
428int ip6_ra_control(struct sock *sk, int sel);
429
430int ipv6_parse_hopopts(struct sk_buff *skb);
431
432struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
433 struct ipv6_txoptions *opt);
434struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
435 struct ipv6_txoptions *opt,
436 int newtype,
437 struct ipv6_opt_hdr *newopt);
438struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
439 struct ipv6_txoptions *opt);
440
441bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
442 const struct inet6_skb_parm *opt);
443struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
444 struct ipv6_txoptions *opt);
445
446static inline bool ipv6_accept_ra(struct inet6_dev *idev)
447{
448 /* If forwarding is enabled, RA are not accepted unless the special
449 * hybrid mode (accept_ra=2) is enabled.
450 */
451 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
452 idev->cnf.accept_ra;
453}
454
455#define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
456#define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
457#define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
458
459int __ipv6_addr_type(const struct in6_addr *addr);
460static inline int ipv6_addr_type(const struct in6_addr *addr)
461{
462 return __ipv6_addr_type(addr) & 0xffff;
463}
464
465static inline int ipv6_addr_scope(const struct in6_addr *addr)
466{
467 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
468}
469
470static inline int __ipv6_addr_src_scope(int type)
471{
472 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
473}
474
475static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
476{
477 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
478}
479
480static inline bool __ipv6_addr_needs_scope_id(int type)
481{
482 return type & IPV6_ADDR_LINKLOCAL ||
483 (type & IPV6_ADDR_MULTICAST &&
484 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
485}
486
487static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
488{
489 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
490}
491
492static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
493{
494 return memcmp(a1, a2, sizeof(struct in6_addr));
495}
496
497static inline bool
498ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
499 const struct in6_addr *a2)
500{
501#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
502 const unsigned long *ul1 = (const unsigned long *)a1;
503 const unsigned long *ulm = (const unsigned long *)m;
504 const unsigned long *ul2 = (const unsigned long *)a2;
505
506 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
507 ((ul1[1] ^ ul2[1]) & ulm[1]));
508#else
509 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
510 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
511 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
512 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
513#endif
514}
515
516static inline void ipv6_addr_prefix(struct in6_addr *pfx,
517 const struct in6_addr *addr,
518 int plen)
519{
520 /* caller must guarantee 0 <= plen <= 128 */
521 int o = plen >> 3,
522 b = plen & 0x7;
523
524 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
525 memcpy(pfx->s6_addr, addr, o);
526 if (b != 0)
527 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
528}
529
530static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
531 const struct in6_addr *pfx,
532 int plen)
533{
534 /* caller must guarantee 0 <= plen <= 128 */
535 int o = plen >> 3,
536 b = plen & 0x7;
537
538 memcpy(addr->s6_addr, pfx, o);
539 if (b != 0) {
540 addr->s6_addr[o] &= ~(0xff00 >> b);
541 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
542 }
543}
544
545static inline void __ipv6_addr_set_half(__be32 *addr,
546 __be32 wh, __be32 wl)
547{
548#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
549#if defined(__BIG_ENDIAN)
550 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
551 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
552 return;
553 }
554#elif defined(__LITTLE_ENDIAN)
555 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
556 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
557 return;
558 }
559#endif
560#endif
561 addr[0] = wh;
562 addr[1] = wl;
563}
564
565static inline void ipv6_addr_set(struct in6_addr *addr,
566 __be32 w1, __be32 w2,
567 __be32 w3, __be32 w4)
568{
569 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
570 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
571}
572
573static inline bool ipv6_addr_equal(const struct in6_addr *a1,
574 const struct in6_addr *a2)
575{
576#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
577 const unsigned long *ul1 = (const unsigned long *)a1;
578 const unsigned long *ul2 = (const unsigned long *)a2;
579
580 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
581#else
582 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
583 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
584 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
585 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
586#endif
587}
588
589#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
590static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
591 const __be64 *a2,
592 unsigned int len)
593{
594 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
595 return false;
596 return true;
597}
598
599static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
600 const struct in6_addr *addr2,
601 unsigned int prefixlen)
602{
603 const __be64 *a1 = (const __be64 *)addr1;
604 const __be64 *a2 = (const __be64 *)addr2;
605
606 if (prefixlen >= 64) {
607 if (a1[0] ^ a2[0])
608 return false;
609 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
610 }
611 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
612}
613#else
614static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
615 const struct in6_addr *addr2,
616 unsigned int prefixlen)
617{
618 const __be32 *a1 = addr1->s6_addr32;
619 const __be32 *a2 = addr2->s6_addr32;
620 unsigned int pdw, pbi;
621
622 /* check complete u32 in prefix */
623 pdw = prefixlen >> 5;
624 if (pdw && memcmp(a1, a2, pdw << 2))
625 return false;
626
627 /* check incomplete u32 in prefix */
628 pbi = prefixlen & 0x1f;
629 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
630 return false;
631
632 return true;
633}
634#endif
635
636static inline bool ipv6_addr_any(const struct in6_addr *a)
637{
638#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
639 const unsigned long *ul = (const unsigned long *)a;
640
641 return (ul[0] | ul[1]) == 0UL;
642#else
643 return (a->s6_addr32[0] | a->s6_addr32[1] |
644 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
645#endif
646}
647
648static inline u32 ipv6_addr_hash(const struct in6_addr *a)
649{
650#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
651 const unsigned long *ul = (const unsigned long *)a;
652 unsigned long x = ul[0] ^ ul[1];
653
654 return (u32)(x ^ (x >> 32));
655#else
656 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
657 a->s6_addr32[2] ^ a->s6_addr32[3]);
658#endif
659}
660
661/* more secured version of ipv6_addr_hash() */
662static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
663{
664 u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
665
666 return jhash_3words(v,
667 (__force u32)a->s6_addr32[2],
668 (__force u32)a->s6_addr32[3],
669 initval);
670}
671
672static inline bool ipv6_addr_loopback(const struct in6_addr *a)
673{
674#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
675 const __be64 *be = (const __be64 *)a;
676
677 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
678#else
679 return (a->s6_addr32[0] | a->s6_addr32[1] |
680 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
681#endif
682}
683
684/*
685 * Note that we must __force cast these to unsigned long to make sparse happy,
686 * since all of the endian-annotated types are fixed size regardless of arch.
687 */
688static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
689{
690 return (
691#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
692 *(unsigned long *)a |
693#else
694 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
695#endif
696 (__force unsigned long)(a->s6_addr32[2] ^
697 cpu_to_be32(0x0000ffff))) == 0UL;
698}
699
700static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
701{
702 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
703}
704
705static inline u32 ipv6_portaddr_hash(const struct net *net,
706 const struct in6_addr *addr6,
707 unsigned int port)
708{
709 unsigned int hash, mix = net_hash_mix(net);
710
711 if (ipv6_addr_any(addr6))
712 hash = jhash_1word(0, mix);
713 else if (ipv6_addr_v4mapped(addr6))
714 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
715 else
716 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
717
718 return hash ^ port;
719}
720
721/*
722 * Check for a RFC 4843 ORCHID address
723 * (Overlay Routable Cryptographic Hash Identifiers)
724 */
725static inline bool ipv6_addr_orchid(const struct in6_addr *a)
726{
727 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
728}
729
730static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
731{
732 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
733}
734
735static inline void ipv6_addr_set_v4mapped(const __be32 addr,
736 struct in6_addr *v4mapped)
737{
738 ipv6_addr_set(v4mapped,
739 0, 0,
740 htonl(0x0000FFFF),
741 addr);
742}
743
744/*
745 * find the first different bit between two addresses
746 * length of address must be a multiple of 32bits
747 */
748static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
749{
750 const __be32 *a1 = token1, *a2 = token2;
751 int i;
752
753 addrlen >>= 2;
754
755 for (i = 0; i < addrlen; i++) {
756 __be32 xb = a1[i] ^ a2[i];
757 if (xb)
758 return i * 32 + 31 - __fls(ntohl(xb));
759 }
760
761 /*
762 * we should *never* get to this point since that
763 * would mean the addrs are equal
764 *
765 * However, we do get to it 8) And exacly, when
766 * addresses are equal 8)
767 *
768 * ip route add 1111::/128 via ...
769 * ip route add 1111::/64 via ...
770 * and we are here.
771 *
772 * Ideally, this function should stop comparison
773 * at prefix length. It does not, but it is still OK,
774 * if returned value is greater than prefix length.
775 * --ANK (980803)
776 */
777 return addrlen << 5;
778}
779
780#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
781static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
782{
783 const __be64 *a1 = token1, *a2 = token2;
784 int i;
785
786 addrlen >>= 3;
787
788 for (i = 0; i < addrlen; i++) {
789 __be64 xb = a1[i] ^ a2[i];
790 if (xb)
791 return i * 64 + 63 - __fls(be64_to_cpu(xb));
792 }
793
794 return addrlen << 6;
795}
796#endif
797
798static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
799{
800#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
801 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
802 return __ipv6_addr_diff64(token1, token2, addrlen);
803#endif
804 return __ipv6_addr_diff32(token1, token2, addrlen);
805}
806
807static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
808{
809 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
810}
811
812__be32 ipv6_select_ident(struct net *net,
813 const struct in6_addr *daddr,
814 const struct in6_addr *saddr);
815__be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
816
817int ip6_dst_hoplimit(struct dst_entry *dst);
818
819static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
820 struct dst_entry *dst)
821{
822 int hlimit;
823
824 if (ipv6_addr_is_multicast(&fl6->daddr))
825 hlimit = np->mcast_hops;
826 else
827 hlimit = np->hop_limit;
828 if (hlimit < 0)
829 hlimit = ip6_dst_hoplimit(dst);
830 return hlimit;
831}
832
833/* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
834 * Equivalent to : flow->v6addrs.src = iph->saddr;
835 * flow->v6addrs.dst = iph->daddr;
836 */
837static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
838 const struct ipv6hdr *iph)
839{
840 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
841 offsetof(typeof(flow->addrs), v6addrs.src) +
842 sizeof(flow->addrs.v6addrs.src));
843 memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
844 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
845}
846
847#if IS_ENABLED(CONFIG_IPV6)
848
849static inline bool ipv6_can_nonlocal_bind(struct net *net,
850 struct inet_sock *inet)
851{
852 return net->ipv6.sysctl.ip_nonlocal_bind ||
853 inet->freebind || inet->transparent;
854}
855
856/* Sysctl settings for net ipv6.auto_flowlabels */
857#define IP6_AUTO_FLOW_LABEL_OFF 0
858#define IP6_AUTO_FLOW_LABEL_OPTOUT 1
859#define IP6_AUTO_FLOW_LABEL_OPTIN 2
860#define IP6_AUTO_FLOW_LABEL_FORCED 3
861
862#define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
863
864#define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
865
866static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
867 __be32 flowlabel, bool autolabel,
868 struct flowi6 *fl6)
869{
870 u32 hash;
871
872 /* @flowlabel may include more than a flow label, eg, the traffic class.
873 * Here we want only the flow label value.
874 */
875 flowlabel &= IPV6_FLOWLABEL_MASK;
876
877 if (flowlabel ||
878 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
879 (!autolabel &&
880 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
881 return flowlabel;
882
883 hash = skb_get_hash_flowi6(skb, fl6);
884
885 /* Since this is being sent on the wire obfuscate hash a bit
886 * to minimize possbility that any useful information to an
887 * attacker is leaked. Only lower 20 bits are relevant.
888 */
889 hash = rol32(hash, 16);
890
891 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
892
893 if (net->ipv6.sysctl.flowlabel_state_ranges)
894 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
895
896 return flowlabel;
897}
898
899static inline int ip6_default_np_autolabel(struct net *net)
900{
901 switch (net->ipv6.sysctl.auto_flowlabels) {
902 case IP6_AUTO_FLOW_LABEL_OFF:
903 case IP6_AUTO_FLOW_LABEL_OPTIN:
904 default:
905 return 0;
906 case IP6_AUTO_FLOW_LABEL_OPTOUT:
907 case IP6_AUTO_FLOW_LABEL_FORCED:
908 return 1;
909 }
910}
911#else
912static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
913 __be32 flowlabel, bool autolabel,
914 struct flowi6 *fl6)
915{
916 return flowlabel;
917}
918static inline int ip6_default_np_autolabel(struct net *net)
919{
920 return 0;
921}
922#endif
923
924#if IS_ENABLED(CONFIG_IPV6)
925static inline int ip6_multipath_hash_policy(const struct net *net)
926{
927 return net->ipv6.sysctl.multipath_hash_policy;
928}
929static inline u32 ip6_multipath_hash_fields(const struct net *net)
930{
931 return net->ipv6.sysctl.multipath_hash_fields;
932}
933#else
934static inline int ip6_multipath_hash_policy(const struct net *net)
935{
936 return 0;
937}
938static inline u32 ip6_multipath_hash_fields(const struct net *net)
939{
940 return 0;
941}
942#endif
943
944/*
945 * Header manipulation
946 */
947static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
948 __be32 flowlabel)
949{
950 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
951}
952
953static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
954{
955 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
956}
957
958static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
959{
960 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
961}
962
963static inline u8 ip6_tclass(__be32 flowinfo)
964{
965 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
966}
967
968static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
969{
970 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
971}
972
973static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
974{
975 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
976}
977
978/*
979 * Prototypes exported by ipv6
980 */
981
982/*
983 * rcv function (called from netdevice level)
984 */
985
986int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
987 struct packet_type *pt, struct net_device *orig_dev);
988void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
989 struct net_device *orig_dev);
990
991int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
992
993/*
994 * upper-layer output functions
995 */
996int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
997 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
998
999int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1000
1001int ip6_append_data(struct sock *sk,
1002 int getfrag(void *from, char *to, int offset, int len,
1003 int odd, struct sk_buff *skb),
1004 void *from, int length, int transhdrlen,
1005 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1006 struct rt6_info *rt, unsigned int flags);
1007
1008int ip6_push_pending_frames(struct sock *sk);
1009
1010void ip6_flush_pending_frames(struct sock *sk);
1011
1012int ip6_send_skb(struct sk_buff *skb);
1013
1014struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1015 struct inet_cork_full *cork,
1016 struct inet6_cork *v6_cork);
1017struct sk_buff *ip6_make_skb(struct sock *sk,
1018 int getfrag(void *from, char *to, int offset,
1019 int len, int odd, struct sk_buff *skb),
1020 void *from, int length, int transhdrlen,
1021 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1022 struct rt6_info *rt, unsigned int flags,
1023 struct inet_cork_full *cork);
1024
1025static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1026{
1027 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1028 &inet6_sk(sk)->cork);
1029}
1030
1031int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1032 struct flowi6 *fl6);
1033struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1034 const struct in6_addr *final_dst);
1035struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1036 const struct in6_addr *final_dst,
1037 bool connected);
1038struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
1039 struct net_device *dev,
1040 struct net *net, struct socket *sock,
1041 struct in6_addr *saddr,
1042 const struct ip_tunnel_info *info,
1043 u8 protocol, bool use_cache);
1044struct dst_entry *ip6_blackhole_route(struct net *net,
1045 struct dst_entry *orig_dst);
1046
1047/*
1048 * skb processing functions
1049 */
1050
1051int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1052int ip6_forward(struct sk_buff *skb);
1053int ip6_input(struct sk_buff *skb);
1054int ip6_mc_input(struct sk_buff *skb);
1055void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1056 bool have_final);
1057
1058int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1059int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1060
1061/*
1062 * Extension header (options) processing
1063 */
1064
1065void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1066 u8 *proto, struct in6_addr **daddr_p,
1067 struct in6_addr *saddr);
1068void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1069 u8 *proto);
1070
1071int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1072 __be16 *frag_offp);
1073
1074bool ipv6_ext_hdr(u8 nexthdr);
1075
1076enum {
1077 IP6_FH_F_FRAG = (1 << 0),
1078 IP6_FH_F_AUTH = (1 << 1),
1079 IP6_FH_F_SKIP_RH = (1 << 2),
1080};
1081
1082/* find specified header and get offset to it */
1083int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1084 unsigned short *fragoff, int *fragflg);
1085
1086int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1087
1088struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1089 const struct ipv6_txoptions *opt,
1090 struct in6_addr *orig);
1091
1092/*
1093 * socket options (ipv6_sockglue.c)
1094 */
1095
1096int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1097 unsigned int optlen);
1098int ipv6_getsockopt(struct sock *sk, int level, int optname,
1099 char __user *optval, int __user *optlen);
1100
1101int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1102 int addr_len);
1103int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1104int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1105 int addr_len);
1106int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1107void ip6_datagram_release_cb(struct sock *sk);
1108
1109int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1110 int *addr_len);
1111int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1112 int *addr_len);
1113void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1114 u32 info, u8 *payload);
1115void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1116void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1117
1118int inet6_release(struct socket *sock);
1119int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1120int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1121 int peer);
1122int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1123int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1124 unsigned long arg);
1125
1126int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1127 struct sock *sk);
1128int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1129int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1130 int flags);
1131
1132/*
1133 * reassembly.c
1134 */
1135extern const struct proto_ops inet6_stream_ops;
1136extern const struct proto_ops inet6_dgram_ops;
1137extern const struct proto_ops inet6_sockraw_ops;
1138
1139struct group_source_req;
1140struct group_filter;
1141
1142int ip6_mc_source(int add, int omode, struct sock *sk,
1143 struct group_source_req *pgsr);
1144int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1145 struct sockaddr_storage *list);
1146int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1147 struct sockaddr_storage __user *p);
1148
1149#ifdef CONFIG_PROC_FS
1150int ac6_proc_init(struct net *net);
1151void ac6_proc_exit(struct net *net);
1152int raw6_proc_init(void);
1153void raw6_proc_exit(void);
1154int tcp6_proc_init(struct net *net);
1155void tcp6_proc_exit(struct net *net);
1156int udp6_proc_init(struct net *net);
1157void udp6_proc_exit(struct net *net);
1158int udplite6_proc_init(void);
1159void udplite6_proc_exit(void);
1160int ipv6_misc_proc_init(void);
1161void ipv6_misc_proc_exit(void);
1162int snmp6_register_dev(struct inet6_dev *idev);
1163int snmp6_unregister_dev(struct inet6_dev *idev);
1164
1165#else
1166static inline int ac6_proc_init(struct net *net) { return 0; }
1167static inline void ac6_proc_exit(struct net *net) { }
1168static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1169static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1170#endif
1171
1172#ifdef CONFIG_SYSCTL
1173struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1174struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1175int ipv6_sysctl_register(void);
1176void ipv6_sysctl_unregister(void);
1177#endif
1178
1179int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1180 const struct in6_addr *addr);
1181int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1182 const struct in6_addr *addr, unsigned int mode);
1183int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1184 const struct in6_addr *addr);
1185
1186static inline int ip6_sock_set_v6only(struct sock *sk)
1187{
1188 if (inet_sk(sk)->inet_num)
1189 return -EINVAL;
1190 lock_sock(sk);
1191 sk->sk_ipv6only = true;
1192 release_sock(sk);
1193 return 0;
1194}
1195
1196static inline void ip6_sock_set_recverr(struct sock *sk)
1197{
1198 lock_sock(sk);
1199 inet6_sk(sk)->recverr = true;
1200 release_sock(sk);
1201}
1202
1203static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
1204{
1205 unsigned int pref = 0;
1206 unsigned int prefmask = ~0;
1207
1208 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1209 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1210 IPV6_PREFER_SRC_TMP |
1211 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1212 case IPV6_PREFER_SRC_PUBLIC:
1213 pref |= IPV6_PREFER_SRC_PUBLIC;
1214 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1215 IPV6_PREFER_SRC_TMP);
1216 break;
1217 case IPV6_PREFER_SRC_TMP:
1218 pref |= IPV6_PREFER_SRC_TMP;
1219 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1220 IPV6_PREFER_SRC_TMP);
1221 break;
1222 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1223 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1224 IPV6_PREFER_SRC_TMP);
1225 break;
1226 case 0:
1227 break;
1228 default:
1229 return -EINVAL;
1230 }
1231
1232 /* check HOME/COA conflicts */
1233 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1234 case IPV6_PREFER_SRC_HOME:
1235 prefmask &= ~IPV6_PREFER_SRC_COA;
1236 break;
1237 case IPV6_PREFER_SRC_COA:
1238 pref |= IPV6_PREFER_SRC_COA;
1239 break;
1240 case 0:
1241 break;
1242 default:
1243 return -EINVAL;
1244 }
1245
1246 /* check CGA/NONCGA conflicts */
1247 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1248 case IPV6_PREFER_SRC_CGA:
1249 case IPV6_PREFER_SRC_NONCGA:
1250 case 0:
1251 break;
1252 default:
1253 return -EINVAL;
1254 }
1255
1256 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
1257 return 0;
1258}
1259
1260static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val)
1261{
1262 int ret;
1263
1264 lock_sock(sk);
1265 ret = __ip6_sock_set_addr_preferences(sk, val);
1266 release_sock(sk);
1267 return ret;
1268}
1269
1270static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1271{
1272 lock_sock(sk);
1273 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1274 release_sock(sk);
1275}
1276
1277#endif /* _NET_IPV6_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9#ifndef _NET_IPV6_H
10#define _NET_IPV6_H
11
12#include <linux/ipv6.h>
13#include <linux/hardirq.h>
14#include <linux/jhash.h>
15#include <linux/refcount.h>
16#include <linux/jump_label_ratelimit.h>
17#include <net/if_inet6.h>
18#include <net/flow.h>
19#include <net/flow_dissector.h>
20#include <net/inet_dscp.h>
21#include <net/snmp.h>
22#include <net/netns/hash.h>
23
24struct ip_tunnel_info;
25
26#define SIN6_LEN_RFC2133 24
27
28#define IPV6_MAXPLEN 65535
29
30/*
31 * NextHeader field of IPv6 header
32 */
33
34#define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
35#define NEXTHDR_IPV4 4 /* IPv4 in IPv6 */
36#define NEXTHDR_TCP 6 /* TCP segment. */
37#define NEXTHDR_UDP 17 /* UDP message. */
38#define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
39#define NEXTHDR_ROUTING 43 /* Routing header. */
40#define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
41#define NEXTHDR_GRE 47 /* GRE header. */
42#define NEXTHDR_ESP 50 /* Encapsulating security payload. */
43#define NEXTHDR_AUTH 51 /* Authentication header. */
44#define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
45#define NEXTHDR_NONE 59 /* No next header */
46#define NEXTHDR_DEST 60 /* Destination options header. */
47#define NEXTHDR_SCTP 132 /* SCTP message. */
48#define NEXTHDR_MOBILITY 135 /* Mobility header. */
49
50#define NEXTHDR_MAX 255
51
52#define IPV6_DEFAULT_HOPLIMIT 64
53#define IPV6_DEFAULT_MCASTHOPS 1
54
55/* Limits on Hop-by-Hop and Destination options.
56 *
57 * Per RFC8200 there is no limit on the maximum number or lengths of options in
58 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
59 * We allow configurable limits in order to mitigate potential denial of
60 * service attacks.
61 *
62 * There are three limits that may be set:
63 * - Limit the number of options in a Hop-by-Hop or Destination options
64 * extension header
65 * - Limit the byte length of a Hop-by-Hop or Destination options extension
66 * header
67 * - Disallow unknown options
68 *
69 * The limits are expressed in corresponding sysctls:
70 *
71 * ipv6.sysctl.max_dst_opts_cnt
72 * ipv6.sysctl.max_hbh_opts_cnt
73 * ipv6.sysctl.max_dst_opts_len
74 * ipv6.sysctl.max_hbh_opts_len
75 *
76 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
77 * options or Hop-by-Hop options. If the number is less than zero then unknown
78 * TLVs are disallowed and the number of known options that are allowed is the
79 * absolute value. Setting the value to INT_MAX indicates no limit.
80 *
81 * max_*_opts_len is the length limit in bytes of a Destination or
82 * Hop-by-Hop options extension header. Setting the value to INT_MAX
83 * indicates no length limit.
84 *
85 * If a limit is exceeded when processing an extension header the packet is
86 * silently discarded.
87 */
88
89/* Default limits for Hop-by-Hop and Destination options */
90#define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
91#define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
92#define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
93#define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
94
95/*
96 * Addr type
97 *
98 * type - unicast | multicast
99 * scope - local | site | global
100 * v4 - compat
101 * v4mapped
102 * any
103 * loopback
104 */
105
106#define IPV6_ADDR_ANY 0x0000U
107
108#define IPV6_ADDR_UNICAST 0x0001U
109#define IPV6_ADDR_MULTICAST 0x0002U
110
111#define IPV6_ADDR_LOOPBACK 0x0010U
112#define IPV6_ADDR_LINKLOCAL 0x0020U
113#define IPV6_ADDR_SITELOCAL 0x0040U
114
115#define IPV6_ADDR_COMPATv4 0x0080U
116
117#define IPV6_ADDR_SCOPE_MASK 0x00f0U
118
119#define IPV6_ADDR_MAPPED 0x1000U
120
121/*
122 * Addr scopes
123 */
124#define IPV6_ADDR_MC_SCOPE(a) \
125 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
126#define __IPV6_ADDR_SCOPE_INVALID -1
127#define IPV6_ADDR_SCOPE_NODELOCAL 0x01
128#define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
129#define IPV6_ADDR_SCOPE_SITELOCAL 0x05
130#define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
131#define IPV6_ADDR_SCOPE_GLOBAL 0x0e
132
133/*
134 * Addr flags
135 */
136#define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
137 ((a)->s6_addr[1] & 0x10)
138#define IPV6_ADDR_MC_FLAG_PREFIX(a) \
139 ((a)->s6_addr[1] & 0x20)
140#define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
141 ((a)->s6_addr[1] & 0x40)
142
143/*
144 * fragmentation header
145 */
146
147struct frag_hdr {
148 __u8 nexthdr;
149 __u8 reserved;
150 __be16 frag_off;
151 __be32 identification;
152};
153
154/*
155 * Jumbo payload option, as described in RFC 2675 2.
156 */
157struct hop_jumbo_hdr {
158 u8 nexthdr;
159 u8 hdrlen;
160 u8 tlv_type; /* IPV6_TLV_JUMBO, 0xC2 */
161 u8 tlv_len; /* 4 */
162 __be32 jumbo_payload_len;
163};
164
165#define IP6_MF 0x0001
166#define IP6_OFFSET 0xFFF8
167
168struct ip6_fraglist_iter {
169 struct ipv6hdr *tmp_hdr;
170 struct sk_buff *frag;
171 int offset;
172 unsigned int hlen;
173 __be32 frag_id;
174 u8 nexthdr;
175};
176
177int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
178 u8 nexthdr, __be32 frag_id,
179 struct ip6_fraglist_iter *iter);
180void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
181
182static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
183{
184 struct sk_buff *skb = iter->frag;
185
186 iter->frag = skb->next;
187 skb_mark_not_on_list(skb);
188
189 return skb;
190}
191
192struct ip6_frag_state {
193 u8 *prevhdr;
194 unsigned int hlen;
195 unsigned int mtu;
196 unsigned int left;
197 int offset;
198 int ptr;
199 int hroom;
200 int troom;
201 __be32 frag_id;
202 u8 nexthdr;
203};
204
205void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
206 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
207 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
208struct sk_buff *ip6_frag_next(struct sk_buff *skb,
209 struct ip6_frag_state *state);
210
211#define IP6_REPLY_MARK(net, mark) \
212 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
213
214#include <net/sock.h>
215
216/* sysctls */
217extern int sysctl_mld_max_msf;
218extern int sysctl_mld_qrv;
219
220#define _DEVINC(net, statname, mod, idev, field) \
221({ \
222 struct inet6_dev *_idev = (idev); \
223 if (likely(_idev != NULL)) \
224 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
225 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
226})
227
228/* per device counters are atomic_long_t */
229#define _DEVINCATOMIC(net, statname, mod, idev, field) \
230({ \
231 struct inet6_dev *_idev = (idev); \
232 if (likely(_idev != NULL)) \
233 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
234 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
235})
236
237/* per device and per net counters are atomic_long_t */
238#define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
239({ \
240 struct inet6_dev *_idev = (idev); \
241 if (likely(_idev != NULL)) \
242 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
243 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
244})
245
246#define _DEVADD(net, statname, mod, idev, field, val) \
247({ \
248 struct inet6_dev *_idev = (idev); \
249 if (likely(_idev != NULL)) \
250 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
251 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
252})
253
254#define _DEVUPD(net, statname, mod, idev, field, val) \
255({ \
256 struct inet6_dev *_idev = (idev); \
257 if (likely(_idev != NULL)) \
258 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
259 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
260})
261
262/* MIBs */
263
264#define IP6_INC_STATS(net, idev,field) \
265 _DEVINC(net, ipv6, , idev, field)
266#define __IP6_INC_STATS(net, idev,field) \
267 _DEVINC(net, ipv6, __, idev, field)
268#define IP6_ADD_STATS(net, idev,field,val) \
269 _DEVADD(net, ipv6, , idev, field, val)
270#define __IP6_ADD_STATS(net, idev,field,val) \
271 _DEVADD(net, ipv6, __, idev, field, val)
272#define IP6_UPD_PO_STATS(net, idev,field,val) \
273 _DEVUPD(net, ipv6, , idev, field, val)
274#define __IP6_UPD_PO_STATS(net, idev,field,val) \
275 _DEVUPD(net, ipv6, __, idev, field, val)
276#define ICMP6_INC_STATS(net, idev, field) \
277 _DEVINCATOMIC(net, icmpv6, , idev, field)
278#define __ICMP6_INC_STATS(net, idev, field) \
279 _DEVINCATOMIC(net, icmpv6, __, idev, field)
280
281#define ICMP6MSGOUT_INC_STATS(net, idev, field) \
282 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
283#define ICMP6MSGIN_INC_STATS(net, idev, field) \
284 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
285
286struct ip6_ra_chain {
287 struct ip6_ra_chain *next;
288 struct sock *sk;
289 int sel;
290 void (*destructor)(struct sock *);
291};
292
293extern struct ip6_ra_chain *ip6_ra_chain;
294extern rwlock_t ip6_ra_lock;
295
296/*
297 This structure is prepared by protocol, when parsing
298 ancillary data and passed to IPv6.
299 */
300
301struct ipv6_txoptions {
302 refcount_t refcnt;
303 /* Length of this structure */
304 int tot_len;
305
306 /* length of extension headers */
307
308 __u16 opt_flen; /* after fragment hdr */
309 __u16 opt_nflen; /* before fragment hdr */
310
311 struct ipv6_opt_hdr *hopopt;
312 struct ipv6_opt_hdr *dst0opt;
313 struct ipv6_rt_hdr *srcrt; /* Routing Header */
314 struct ipv6_opt_hdr *dst1opt;
315 struct rcu_head rcu;
316 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
317};
318
319/* flowlabel_reflect sysctl values */
320enum flowlabel_reflect {
321 FLOWLABEL_REFLECT_ESTABLISHED = 1,
322 FLOWLABEL_REFLECT_TCP_RESET = 2,
323 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
324};
325
326struct ip6_flowlabel {
327 struct ip6_flowlabel __rcu *next;
328 __be32 label;
329 atomic_t users;
330 struct in6_addr dst;
331 struct ipv6_txoptions *opt;
332 unsigned long linger;
333 struct rcu_head rcu;
334 u8 share;
335 union {
336 struct pid *pid;
337 kuid_t uid;
338 } owner;
339 unsigned long lastuse;
340 unsigned long expires;
341 struct net *fl_net;
342};
343
344#define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
345#define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
346#define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
347
348#define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
349#define IPV6_TCLASS_SHIFT 20
350
351struct ipv6_fl_socklist {
352 struct ipv6_fl_socklist __rcu *next;
353 struct ip6_flowlabel *fl;
354 struct rcu_head rcu;
355};
356
357struct ipcm6_cookie {
358 struct sockcm_cookie sockc;
359 __s16 hlimit;
360 __s16 tclass;
361 __u16 gso_size;
362 __s8 dontfrag;
363 struct ipv6_txoptions *opt;
364};
365
366static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
367{
368 *ipc6 = (struct ipcm6_cookie) {
369 .hlimit = -1,
370 .tclass = -1,
371 .dontfrag = -1,
372 };
373}
374
375static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
376 const struct sock *sk)
377{
378 *ipc6 = (struct ipcm6_cookie) {
379 .hlimit = -1,
380 .tclass = inet6_sk(sk)->tclass,
381 .dontfrag = inet6_test_bit(DONTFRAG, sk),
382 };
383}
384
385static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
386{
387 struct ipv6_txoptions *opt;
388
389 rcu_read_lock();
390 opt = rcu_dereference(np->opt);
391 if (opt) {
392 if (!refcount_inc_not_zero(&opt->refcnt))
393 opt = NULL;
394 else
395 opt = rcu_pointer_handoff(opt);
396 }
397 rcu_read_unlock();
398 return opt;
399}
400
401static inline void txopt_put(struct ipv6_txoptions *opt)
402{
403 if (opt && refcount_dec_and_test(&opt->refcnt))
404 kfree_rcu(opt, rcu);
405}
406
407#if IS_ENABLED(CONFIG_IPV6)
408struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
409
410extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
411static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
412 __be32 label)
413{
414 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
415 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
416 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
417
418 return NULL;
419}
420#endif
421
422struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
423 struct ip6_flowlabel *fl,
424 struct ipv6_txoptions *fopt);
425void fl6_free_socklist(struct sock *sk);
426int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
427int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
428 int flags);
429int ip6_flowlabel_init(void);
430void ip6_flowlabel_cleanup(void);
431bool ip6_autoflowlabel(struct net *net, const struct sock *sk);
432
433static inline void fl6_sock_release(struct ip6_flowlabel *fl)
434{
435 if (fl)
436 atomic_dec(&fl->users);
437}
438
439enum skb_drop_reason icmpv6_notify(struct sk_buff *skb, u8 type,
440 u8 code, __be32 info);
441
442void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
443 struct icmp6hdr *thdr, int len);
444
445int ip6_ra_control(struct sock *sk, int sel);
446
447int ipv6_parse_hopopts(struct sk_buff *skb);
448
449struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
450 struct ipv6_txoptions *opt);
451struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
452 struct ipv6_txoptions *opt,
453 int newtype,
454 struct ipv6_opt_hdr *newopt);
455struct ipv6_txoptions *__ipv6_fixup_options(struct ipv6_txoptions *opt_space,
456 struct ipv6_txoptions *opt);
457
458static inline struct ipv6_txoptions *
459ipv6_fixup_options(struct ipv6_txoptions *opt_space, struct ipv6_txoptions *opt)
460{
461 if (!opt)
462 return NULL;
463 return __ipv6_fixup_options(opt_space, opt);
464}
465
466bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
467 const struct inet6_skb_parm *opt);
468struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
469 struct ipv6_txoptions *opt);
470
471/* This helper is specialized for BIG TCP needs.
472 * It assumes the hop_jumbo_hdr will immediately follow the IPV6 header.
473 * It assumes headers are already in skb->head.
474 * Returns 0, or IPPROTO_TCP if a BIG TCP packet is there.
475 */
476static inline int ipv6_has_hopopt_jumbo(const struct sk_buff *skb)
477{
478 const struct hop_jumbo_hdr *jhdr;
479 const struct ipv6hdr *nhdr;
480
481 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE))
482 return 0;
483
484 if (skb->protocol != htons(ETH_P_IPV6))
485 return 0;
486
487 if (skb_network_offset(skb) +
488 sizeof(struct ipv6hdr) +
489 sizeof(struct hop_jumbo_hdr) > skb_headlen(skb))
490 return 0;
491
492 nhdr = ipv6_hdr(skb);
493
494 if (nhdr->nexthdr != NEXTHDR_HOP)
495 return 0;
496
497 jhdr = (const struct hop_jumbo_hdr *) (nhdr + 1);
498 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 ||
499 jhdr->nexthdr != IPPROTO_TCP)
500 return 0;
501 return jhdr->nexthdr;
502}
503
504/* Return 0 if HBH header is successfully removed
505 * Or if HBH removal is unnecessary (packet is not big TCP)
506 * Return error to indicate dropping the packet
507 */
508static inline int ipv6_hopopt_jumbo_remove(struct sk_buff *skb)
509{
510 const int hophdr_len = sizeof(struct hop_jumbo_hdr);
511 int nexthdr = ipv6_has_hopopt_jumbo(skb);
512 struct ipv6hdr *h6;
513
514 if (!nexthdr)
515 return 0;
516
517 if (skb_cow_head(skb, 0))
518 return -1;
519
520 /* Remove the HBH header.
521 * Layout: [Ethernet header][IPv6 header][HBH][L4 Header]
522 */
523 memmove(skb_mac_header(skb) + hophdr_len, skb_mac_header(skb),
524 skb_network_header(skb) - skb_mac_header(skb) +
525 sizeof(struct ipv6hdr));
526
527 __skb_pull(skb, hophdr_len);
528 skb->network_header += hophdr_len;
529 skb->mac_header += hophdr_len;
530
531 h6 = ipv6_hdr(skb);
532 h6->nexthdr = nexthdr;
533
534 return 0;
535}
536
537static inline bool ipv6_accept_ra(struct inet6_dev *idev)
538{
539 /* If forwarding is enabled, RA are not accepted unless the special
540 * hybrid mode (accept_ra=2) is enabled.
541 */
542 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
543 idev->cnf.accept_ra;
544}
545
546#define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
547#define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
548#define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
549
550int __ipv6_addr_type(const struct in6_addr *addr);
551static inline int ipv6_addr_type(const struct in6_addr *addr)
552{
553 return __ipv6_addr_type(addr) & 0xffff;
554}
555
556static inline int ipv6_addr_scope(const struct in6_addr *addr)
557{
558 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
559}
560
561static inline int __ipv6_addr_src_scope(int type)
562{
563 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
564}
565
566static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
567{
568 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
569}
570
571static inline bool __ipv6_addr_needs_scope_id(int type)
572{
573 return type & IPV6_ADDR_LINKLOCAL ||
574 (type & IPV6_ADDR_MULTICAST &&
575 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
576}
577
578static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
579{
580 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
581}
582
583static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
584{
585 return memcmp(a1, a2, sizeof(struct in6_addr));
586}
587
588static inline bool
589ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
590 const struct in6_addr *a2)
591{
592#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
593 const unsigned long *ul1 = (const unsigned long *)a1;
594 const unsigned long *ulm = (const unsigned long *)m;
595 const unsigned long *ul2 = (const unsigned long *)a2;
596
597 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
598 ((ul1[1] ^ ul2[1]) & ulm[1]));
599#else
600 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
601 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
602 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
603 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
604#endif
605}
606
607static inline void ipv6_addr_prefix(struct in6_addr *pfx,
608 const struct in6_addr *addr,
609 int plen)
610{
611 /* caller must guarantee 0 <= plen <= 128 */
612 int o = plen >> 3,
613 b = plen & 0x7;
614
615 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
616 memcpy(pfx->s6_addr, addr, o);
617 if (b != 0)
618 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
619}
620
621static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
622 const struct in6_addr *pfx,
623 int plen)
624{
625 /* caller must guarantee 0 <= plen <= 128 */
626 int o = plen >> 3,
627 b = plen & 0x7;
628
629 memcpy(addr->s6_addr, pfx, o);
630 if (b != 0) {
631 addr->s6_addr[o] &= ~(0xff00 >> b);
632 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
633 }
634}
635
636static inline void __ipv6_addr_set_half(__be32 *addr,
637 __be32 wh, __be32 wl)
638{
639#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
640#if defined(__BIG_ENDIAN)
641 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
642 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
643 return;
644 }
645#elif defined(__LITTLE_ENDIAN)
646 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
647 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
648 return;
649 }
650#endif
651#endif
652 addr[0] = wh;
653 addr[1] = wl;
654}
655
656static inline void ipv6_addr_set(struct in6_addr *addr,
657 __be32 w1, __be32 w2,
658 __be32 w3, __be32 w4)
659{
660 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
661 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
662}
663
664static inline bool ipv6_addr_equal(const struct in6_addr *a1,
665 const struct in6_addr *a2)
666{
667#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
668 const unsigned long *ul1 = (const unsigned long *)a1;
669 const unsigned long *ul2 = (const unsigned long *)a2;
670
671 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
672#else
673 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
674 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
675 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
676 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
677#endif
678}
679
680#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
681static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
682 const __be64 *a2,
683 unsigned int len)
684{
685 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
686 return false;
687 return true;
688}
689
690static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
691 const struct in6_addr *addr2,
692 unsigned int prefixlen)
693{
694 const __be64 *a1 = (const __be64 *)addr1;
695 const __be64 *a2 = (const __be64 *)addr2;
696
697 if (prefixlen >= 64) {
698 if (a1[0] ^ a2[0])
699 return false;
700 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
701 }
702 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
703}
704#else
705static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
706 const struct in6_addr *addr2,
707 unsigned int prefixlen)
708{
709 const __be32 *a1 = addr1->s6_addr32;
710 const __be32 *a2 = addr2->s6_addr32;
711 unsigned int pdw, pbi;
712
713 /* check complete u32 in prefix */
714 pdw = prefixlen >> 5;
715 if (pdw && memcmp(a1, a2, pdw << 2))
716 return false;
717
718 /* check incomplete u32 in prefix */
719 pbi = prefixlen & 0x1f;
720 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
721 return false;
722
723 return true;
724}
725#endif
726
727static inline bool ipv6_addr_any(const struct in6_addr *a)
728{
729#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
730 const unsigned long *ul = (const unsigned long *)a;
731
732 return (ul[0] | ul[1]) == 0UL;
733#else
734 return (a->s6_addr32[0] | a->s6_addr32[1] |
735 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
736#endif
737}
738
739static inline u32 ipv6_addr_hash(const struct in6_addr *a)
740{
741#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
742 const unsigned long *ul = (const unsigned long *)a;
743 unsigned long x = ul[0] ^ ul[1];
744
745 return (u32)(x ^ (x >> 32));
746#else
747 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
748 a->s6_addr32[2] ^ a->s6_addr32[3]);
749#endif
750}
751
752/* more secured version of ipv6_addr_hash() */
753static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
754{
755 return jhash2((__force const u32 *)a->s6_addr32,
756 ARRAY_SIZE(a->s6_addr32), initval);
757}
758
759static inline bool ipv6_addr_loopback(const struct in6_addr *a)
760{
761#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
762 const __be64 *be = (const __be64 *)a;
763
764 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
765#else
766 return (a->s6_addr32[0] | a->s6_addr32[1] |
767 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
768#endif
769}
770
771/*
772 * Note that we must __force cast these to unsigned long to make sparse happy,
773 * since all of the endian-annotated types are fixed size regardless of arch.
774 */
775static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
776{
777 return (
778#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
779 *(unsigned long *)a |
780#else
781 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
782#endif
783 (__force unsigned long)(a->s6_addr32[2] ^
784 cpu_to_be32(0x0000ffff))) == 0UL;
785}
786
787static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
788{
789 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
790}
791
792static inline u32 ipv6_portaddr_hash(const struct net *net,
793 const struct in6_addr *addr6,
794 unsigned int port)
795{
796 unsigned int hash, mix = net_hash_mix(net);
797
798 if (ipv6_addr_any(addr6))
799 hash = jhash_1word(0, mix);
800 else if (ipv6_addr_v4mapped(addr6))
801 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
802 else
803 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
804
805 return hash ^ port;
806}
807
808/*
809 * Check for a RFC 4843 ORCHID address
810 * (Overlay Routable Cryptographic Hash Identifiers)
811 */
812static inline bool ipv6_addr_orchid(const struct in6_addr *a)
813{
814 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
815}
816
817static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
818{
819 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
820}
821
822static inline void ipv6_addr_set_v4mapped(const __be32 addr,
823 struct in6_addr *v4mapped)
824{
825 ipv6_addr_set(v4mapped,
826 0, 0,
827 htonl(0x0000FFFF),
828 addr);
829}
830
831/*
832 * find the first different bit between two addresses
833 * length of address must be a multiple of 32bits
834 */
835static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
836{
837 const __be32 *a1 = token1, *a2 = token2;
838 int i;
839
840 addrlen >>= 2;
841
842 for (i = 0; i < addrlen; i++) {
843 __be32 xb = a1[i] ^ a2[i];
844 if (xb)
845 return i * 32 + 31 - __fls(ntohl(xb));
846 }
847
848 /*
849 * we should *never* get to this point since that
850 * would mean the addrs are equal
851 *
852 * However, we do get to it 8) And exacly, when
853 * addresses are equal 8)
854 *
855 * ip route add 1111::/128 via ...
856 * ip route add 1111::/64 via ...
857 * and we are here.
858 *
859 * Ideally, this function should stop comparison
860 * at prefix length. It does not, but it is still OK,
861 * if returned value is greater than prefix length.
862 * --ANK (980803)
863 */
864 return addrlen << 5;
865}
866
867#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
868static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
869{
870 const __be64 *a1 = token1, *a2 = token2;
871 int i;
872
873 addrlen >>= 3;
874
875 for (i = 0; i < addrlen; i++) {
876 __be64 xb = a1[i] ^ a2[i];
877 if (xb)
878 return i * 64 + 63 - __fls(be64_to_cpu(xb));
879 }
880
881 return addrlen << 6;
882}
883#endif
884
885static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
886{
887#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
888 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
889 return __ipv6_addr_diff64(token1, token2, addrlen);
890#endif
891 return __ipv6_addr_diff32(token1, token2, addrlen);
892}
893
894static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
895{
896 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
897}
898
899__be32 ipv6_select_ident(struct net *net,
900 const struct in6_addr *daddr,
901 const struct in6_addr *saddr);
902__be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
903
904int ip6_dst_hoplimit(struct dst_entry *dst);
905
906static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
907 struct dst_entry *dst)
908{
909 int hlimit;
910
911 if (ipv6_addr_is_multicast(&fl6->daddr))
912 hlimit = READ_ONCE(np->mcast_hops);
913 else
914 hlimit = READ_ONCE(np->hop_limit);
915 if (hlimit < 0)
916 hlimit = ip6_dst_hoplimit(dst);
917 return hlimit;
918}
919
920/* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
921 * Equivalent to : flow->v6addrs.src = iph->saddr;
922 * flow->v6addrs.dst = iph->daddr;
923 */
924static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
925 const struct ipv6hdr *iph)
926{
927 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
928 offsetof(typeof(flow->addrs), v6addrs.src) +
929 sizeof(flow->addrs.v6addrs.src));
930 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
931 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
932}
933
934#if IS_ENABLED(CONFIG_IPV6)
935
936static inline bool ipv6_can_nonlocal_bind(struct net *net,
937 struct inet_sock *inet)
938{
939 return net->ipv6.sysctl.ip_nonlocal_bind ||
940 test_bit(INET_FLAGS_FREEBIND, &inet->inet_flags) ||
941 test_bit(INET_FLAGS_TRANSPARENT, &inet->inet_flags);
942}
943
944/* Sysctl settings for net ipv6.auto_flowlabels */
945#define IP6_AUTO_FLOW_LABEL_OFF 0
946#define IP6_AUTO_FLOW_LABEL_OPTOUT 1
947#define IP6_AUTO_FLOW_LABEL_OPTIN 2
948#define IP6_AUTO_FLOW_LABEL_FORCED 3
949
950#define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
951
952#define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
953
954static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
955 __be32 flowlabel, bool autolabel,
956 struct flowi6 *fl6)
957{
958 u32 hash;
959
960 /* @flowlabel may include more than a flow label, eg, the traffic class.
961 * Here we want only the flow label value.
962 */
963 flowlabel &= IPV6_FLOWLABEL_MASK;
964
965 if (flowlabel ||
966 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
967 (!autolabel &&
968 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
969 return flowlabel;
970
971 hash = skb_get_hash_flowi6(skb, fl6);
972
973 /* Since this is being sent on the wire obfuscate hash a bit
974 * to minimize possbility that any useful information to an
975 * attacker is leaked. Only lower 20 bits are relevant.
976 */
977 hash = rol32(hash, 16);
978
979 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
980
981 if (net->ipv6.sysctl.flowlabel_state_ranges)
982 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
983
984 return flowlabel;
985}
986
987static inline int ip6_default_np_autolabel(struct net *net)
988{
989 switch (net->ipv6.sysctl.auto_flowlabels) {
990 case IP6_AUTO_FLOW_LABEL_OFF:
991 case IP6_AUTO_FLOW_LABEL_OPTIN:
992 default:
993 return 0;
994 case IP6_AUTO_FLOW_LABEL_OPTOUT:
995 case IP6_AUTO_FLOW_LABEL_FORCED:
996 return 1;
997 }
998}
999#else
1000static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
1001 __be32 flowlabel, bool autolabel,
1002 struct flowi6 *fl6)
1003{
1004 return flowlabel;
1005}
1006static inline int ip6_default_np_autolabel(struct net *net)
1007{
1008 return 0;
1009}
1010#endif
1011
1012#if IS_ENABLED(CONFIG_IPV6)
1013static inline int ip6_multipath_hash_policy(const struct net *net)
1014{
1015 return net->ipv6.sysctl.multipath_hash_policy;
1016}
1017static inline u32 ip6_multipath_hash_fields(const struct net *net)
1018{
1019 return net->ipv6.sysctl.multipath_hash_fields;
1020}
1021#else
1022static inline int ip6_multipath_hash_policy(const struct net *net)
1023{
1024 return 0;
1025}
1026static inline u32 ip6_multipath_hash_fields(const struct net *net)
1027{
1028 return 0;
1029}
1030#endif
1031
1032/*
1033 * Header manipulation
1034 */
1035static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
1036 __be32 flowlabel)
1037{
1038 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
1039}
1040
1041static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
1042{
1043 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
1044}
1045
1046static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
1047{
1048 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
1049}
1050
1051static inline u8 ip6_tclass(__be32 flowinfo)
1052{
1053 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
1054}
1055
1056static inline dscp_t ip6_dscp(__be32 flowinfo)
1057{
1058 return inet_dsfield_to_dscp(ip6_tclass(flowinfo));
1059}
1060
1061static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
1062{
1063 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
1064}
1065
1066static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
1067{
1068 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
1069}
1070
1071/*
1072 * Prototypes exported by ipv6
1073 */
1074
1075/*
1076 * rcv function (called from netdevice level)
1077 */
1078
1079int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
1080 struct packet_type *pt, struct net_device *orig_dev);
1081void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
1082 struct net_device *orig_dev);
1083
1084int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
1085
1086/*
1087 * upper-layer output functions
1088 */
1089int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
1090 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
1091
1092int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
1093
1094int ip6_append_data(struct sock *sk,
1095 int getfrag(void *from, char *to, int offset, int len,
1096 int odd, struct sk_buff *skb),
1097 void *from, size_t length, int transhdrlen,
1098 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1099 struct rt6_info *rt, unsigned int flags);
1100
1101int ip6_push_pending_frames(struct sock *sk);
1102
1103void ip6_flush_pending_frames(struct sock *sk);
1104
1105int ip6_send_skb(struct sk_buff *skb);
1106
1107struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1108 struct inet_cork_full *cork,
1109 struct inet6_cork *v6_cork);
1110struct sk_buff *ip6_make_skb(struct sock *sk,
1111 int getfrag(void *from, char *to, int offset,
1112 int len, int odd, struct sk_buff *skb),
1113 void *from, size_t length, int transhdrlen,
1114 struct ipcm6_cookie *ipc6,
1115 struct rt6_info *rt, unsigned int flags,
1116 struct inet_cork_full *cork);
1117
1118static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1119{
1120 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1121 &inet6_sk(sk)->cork);
1122}
1123
1124int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1125 struct flowi6 *fl6);
1126struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1127 const struct in6_addr *final_dst);
1128struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1129 const struct in6_addr *final_dst,
1130 bool connected);
1131struct dst_entry *ip6_blackhole_route(struct net *net,
1132 struct dst_entry *orig_dst);
1133
1134/*
1135 * skb processing functions
1136 */
1137
1138int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1139int ip6_forward(struct sk_buff *skb);
1140int ip6_input(struct sk_buff *skb);
1141int ip6_mc_input(struct sk_buff *skb);
1142void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1143 bool have_final);
1144
1145int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1146int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1147
1148/*
1149 * Extension header (options) processing
1150 */
1151
1152void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1153 u8 *proto, struct in6_addr **daddr_p,
1154 struct in6_addr *saddr);
1155void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1156 u8 *proto);
1157
1158int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1159 __be16 *frag_offp);
1160
1161bool ipv6_ext_hdr(u8 nexthdr);
1162
1163enum {
1164 IP6_FH_F_FRAG = (1 << 0),
1165 IP6_FH_F_AUTH = (1 << 1),
1166 IP6_FH_F_SKIP_RH = (1 << 2),
1167};
1168
1169/* find specified header and get offset to it */
1170int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1171 unsigned short *fragoff, int *fragflg);
1172
1173int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1174
1175struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1176 const struct ipv6_txoptions *opt,
1177 struct in6_addr *orig);
1178
1179/*
1180 * socket options (ipv6_sockglue.c)
1181 */
1182DECLARE_STATIC_KEY_FALSE(ip6_min_hopcount);
1183
1184int do_ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1185 unsigned int optlen);
1186int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1187 unsigned int optlen);
1188int do_ipv6_getsockopt(struct sock *sk, int level, int optname,
1189 sockptr_t optval, sockptr_t optlen);
1190int ipv6_getsockopt(struct sock *sk, int level, int optname,
1191 char __user *optval, int __user *optlen);
1192
1193int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1194 int addr_len);
1195int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1196int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1197 int addr_len);
1198int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1199void ip6_datagram_release_cb(struct sock *sk);
1200
1201int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1202 int *addr_len);
1203int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1204 int *addr_len);
1205void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1206 u32 info, u8 *payload);
1207void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1208void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1209
1210void inet6_cleanup_sock(struct sock *sk);
1211void inet6_sock_destruct(struct sock *sk);
1212int inet6_release(struct socket *sock);
1213int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1214int inet6_bind_sk(struct sock *sk, struct sockaddr *uaddr, int addr_len);
1215int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1216 int peer);
1217int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1218int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1219 unsigned long arg);
1220
1221int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1222 struct sock *sk);
1223int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1224int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1225 int flags);
1226
1227/*
1228 * reassembly.c
1229 */
1230extern const struct proto_ops inet6_stream_ops;
1231extern const struct proto_ops inet6_dgram_ops;
1232extern const struct proto_ops inet6_sockraw_ops;
1233
1234struct group_source_req;
1235struct group_filter;
1236
1237int ip6_mc_source(int add, int omode, struct sock *sk,
1238 struct group_source_req *pgsr);
1239int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1240 struct sockaddr_storage *list);
1241int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1242 sockptr_t optval, size_t ss_offset);
1243
1244#ifdef CONFIG_PROC_FS
1245int ac6_proc_init(struct net *net);
1246void ac6_proc_exit(struct net *net);
1247int raw6_proc_init(void);
1248void raw6_proc_exit(void);
1249int tcp6_proc_init(struct net *net);
1250void tcp6_proc_exit(struct net *net);
1251int udp6_proc_init(struct net *net);
1252void udp6_proc_exit(struct net *net);
1253int udplite6_proc_init(void);
1254void udplite6_proc_exit(void);
1255int ipv6_misc_proc_init(void);
1256void ipv6_misc_proc_exit(void);
1257int snmp6_register_dev(struct inet6_dev *idev);
1258int snmp6_unregister_dev(struct inet6_dev *idev);
1259
1260#else
1261static inline int ac6_proc_init(struct net *net) { return 0; }
1262static inline void ac6_proc_exit(struct net *net) { }
1263static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
1264static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1265#endif
1266
1267#ifdef CONFIG_SYSCTL
1268struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1269size_t ipv6_icmp_sysctl_table_size(void);
1270struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1271size_t ipv6_route_sysctl_table_size(struct net *net);
1272int ipv6_sysctl_register(void);
1273void ipv6_sysctl_unregister(void);
1274#endif
1275
1276int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1277 const struct in6_addr *addr);
1278int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1279 const struct in6_addr *addr, unsigned int mode);
1280int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1281 const struct in6_addr *addr);
1282
1283static inline int ip6_sock_set_v6only(struct sock *sk)
1284{
1285 if (inet_sk(sk)->inet_num)
1286 return -EINVAL;
1287 lock_sock(sk);
1288 sk->sk_ipv6only = true;
1289 release_sock(sk);
1290 return 0;
1291}
1292
1293static inline void ip6_sock_set_recverr(struct sock *sk)
1294{
1295 inet6_set_bit(RECVERR6, sk);
1296}
1297
1298#define IPV6_PREFER_SRC_MASK (IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC | \
1299 IPV6_PREFER_SRC_COA)
1300
1301static inline int ip6_sock_set_addr_preferences(struct sock *sk, int val)
1302{
1303 unsigned int prefmask = ~IPV6_PREFER_SRC_MASK;
1304 unsigned int pref = 0;
1305
1306 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1307 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1308 IPV6_PREFER_SRC_TMP |
1309 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1310 case IPV6_PREFER_SRC_PUBLIC:
1311 pref |= IPV6_PREFER_SRC_PUBLIC;
1312 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1313 IPV6_PREFER_SRC_TMP);
1314 break;
1315 case IPV6_PREFER_SRC_TMP:
1316 pref |= IPV6_PREFER_SRC_TMP;
1317 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1318 IPV6_PREFER_SRC_TMP);
1319 break;
1320 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1321 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1322 IPV6_PREFER_SRC_TMP);
1323 break;
1324 case 0:
1325 break;
1326 default:
1327 return -EINVAL;
1328 }
1329
1330 /* check HOME/COA conflicts */
1331 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1332 case IPV6_PREFER_SRC_HOME:
1333 prefmask &= ~IPV6_PREFER_SRC_COA;
1334 break;
1335 case IPV6_PREFER_SRC_COA:
1336 pref |= IPV6_PREFER_SRC_COA;
1337 break;
1338 case 0:
1339 break;
1340 default:
1341 return -EINVAL;
1342 }
1343
1344 /* check CGA/NONCGA conflicts */
1345 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1346 case IPV6_PREFER_SRC_CGA:
1347 case IPV6_PREFER_SRC_NONCGA:
1348 case 0:
1349 break;
1350 default:
1351 return -EINVAL;
1352 }
1353
1354 WRITE_ONCE(inet6_sk(sk)->srcprefs,
1355 (READ_ONCE(inet6_sk(sk)->srcprefs) & prefmask) | pref);
1356 return 0;
1357}
1358
1359static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1360{
1361 lock_sock(sk);
1362 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1363 release_sock(sk);
1364}
1365
1366#endif /* _NET_IPV6_H */