Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
  4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
 
  9#include "xfs_format.h"
 10#include "xfs_trans_resv.h"
 11#include "xfs_mount.h"
 12#include "xfs_btree.h"
 
 13#include "scrub/bitmap.h"
 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15/*
 16 * Set a range of this bitmap.  Caller must ensure the range is not set.
 17 *
 18 * This is the logical equivalent of bitmap |= mask(start, len).
 19 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 20int
 21xbitmap_set(
 22	struct xbitmap		*bitmap,
 23	uint64_t		start,
 24	uint64_t		len)
 25{
 26	struct xbitmap_range	*bmr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28	bmr = kmem_alloc(sizeof(struct xbitmap_range), KM_MAYFAIL);
 29	if (!bmr)
 30		return -ENOMEM;
 31
 32	INIT_LIST_HEAD(&bmr->list);
 33	bmr->start = start;
 34	bmr->len = len;
 35	list_add_tail(&bmr->list, &bitmap->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37	return 0;
 38}
 39
 40/* Free everything related to this bitmap. */
 41void
 42xbitmap_destroy(
 43	struct xbitmap		*bitmap)
 44{
 45	struct xbitmap_range	*bmr;
 46	struct xbitmap_range	*n;
 47
 48	for_each_xbitmap_extent(bmr, n, bitmap) {
 49		list_del(&bmr->list);
 50		kmem_free(bmr);
 51	}
 52}
 53
 54/* Set up a per-AG block bitmap. */
 55void
 56xbitmap_init(
 57	struct xbitmap		*bitmap)
 58{
 59	INIT_LIST_HEAD(&bitmap->list);
 60}
 61
 62/* Compare two btree extents. */
 63static int
 64xbitmap_range_cmp(
 65	void			*priv,
 66	const struct list_head	*a,
 67	const struct list_head	*b)
 68{
 69	struct xbitmap_range	*ap;
 70	struct xbitmap_range	*bp;
 71
 72	ap = container_of(a, struct xbitmap_range, list);
 73	bp = container_of(b, struct xbitmap_range, list);
 74
 75	if (ap->start > bp->start)
 76		return 1;
 77	if (ap->start < bp->start)
 78		return -1;
 79	return 0;
 80}
 81
 82/*
 83 * Remove all the blocks mentioned in @sub from the extents in @bitmap.
 84 *
 85 * The intent is that callers will iterate the rmapbt for all of its records
 86 * for a given owner to generate @bitmap; and iterate all the blocks of the
 87 * metadata structures that are not being rebuilt and have the same rmapbt
 88 * owner to generate @sub.  This routine subtracts all the extents
 89 * mentioned in sub from all the extents linked in @bitmap, which leaves
 90 * @bitmap as the list of blocks that are not accounted for, which we assume
 91 * are the dead blocks of the old metadata structure.  The blocks mentioned in
 92 * @bitmap can be reaped.
 93 *
 94 * This is the logical equivalent of bitmap &= ~sub.
 95 */
 96#define LEFT_ALIGNED	(1 << 0)
 97#define RIGHT_ALIGNED	(1 << 1)
 98int
 99xbitmap_disunion(
100	struct xbitmap		*bitmap,
101	struct xbitmap		*sub)
102{
103	struct list_head	*lp;
104	struct xbitmap_range	*br;
105	struct xbitmap_range	*new_br;
106	struct xbitmap_range	*sub_br;
107	uint64_t		sub_start;
108	uint64_t		sub_len;
109	int			state;
110	int			error = 0;
111
112	if (list_empty(&bitmap->list) || list_empty(&sub->list))
113		return 0;
114	ASSERT(!list_empty(&sub->list));
115
116	list_sort(NULL, &bitmap->list, xbitmap_range_cmp);
117	list_sort(NULL, &sub->list, xbitmap_range_cmp);
 
 
 
 
 
 
 
118
119	/*
120	 * Now that we've sorted both lists, we iterate bitmap once, rolling
121	 * forward through sub and/or bitmap as necessary until we find an
122	 * overlap or reach the end of either list.  We do not reset lp to the
123	 * head of bitmap nor do we reset sub_br to the head of sub.  The
124	 * list traversal is similar to merge sort, but we're deleting
125	 * instead.  In this manner we avoid O(n^2) operations.
126	 */
127	sub_br = list_first_entry(&sub->list, struct xbitmap_range,
128			list);
129	lp = bitmap->list.next;
130	while (lp != &bitmap->list) {
131		br = list_entry(lp, struct xbitmap_range, list);
132
133		/*
134		 * Advance sub_br and/or br until we find a pair that
135		 * intersect or we run out of extents.
136		 */
137		while (sub_br->start + sub_br->len <= br->start) {
138			if (list_is_last(&sub_br->list, &sub->list))
139				goto out;
140			sub_br = list_next_entry(sub_br, list);
141		}
142		if (sub_br->start >= br->start + br->len) {
143			lp = lp->next;
144			continue;
145		}
146
147		/* trim sub_br to fit the extent we have */
148		sub_start = sub_br->start;
149		sub_len = sub_br->len;
150		if (sub_br->start < br->start) {
151			sub_len -= br->start - sub_br->start;
152			sub_start = br->start;
153		}
154		if (sub_len > br->len)
155			sub_len = br->len;
156
157		state = 0;
158		if (sub_start == br->start)
159			state |= LEFT_ALIGNED;
160		if (sub_start + sub_len == br->start + br->len)
161			state |= RIGHT_ALIGNED;
162		switch (state) {
163		case LEFT_ALIGNED:
164			/* Coincides with only the left. */
165			br->start += sub_len;
166			br->len -= sub_len;
167			break;
168		case RIGHT_ALIGNED:
169			/* Coincides with only the right. */
170			br->len -= sub_len;
171			lp = lp->next;
172			break;
173		case LEFT_ALIGNED | RIGHT_ALIGNED:
174			/* Total overlap, just delete ex. */
175			lp = lp->next;
176			list_del(&br->list);
177			kmem_free(br);
178			break;
179		case 0:
180			/*
181			 * Deleting from the middle: add the new right extent
182			 * and then shrink the left extent.
183			 */
184			new_br = kmem_alloc(sizeof(struct xbitmap_range),
185					KM_MAYFAIL);
186			if (!new_br) {
187				error = -ENOMEM;
188				goto out;
189			}
190			INIT_LIST_HEAD(&new_br->list);
191			new_br->start = sub_start + sub_len;
192			new_br->len = br->start + br->len - new_br->start;
193			list_add(&new_br->list, &br->list);
194			br->len = sub_start - br->start;
195			lp = lp->next;
196			break;
197		default:
198			ASSERT(0);
199			break;
200		}
201	}
202
203out:
204	return error;
205}
206#undef LEFT_ALIGNED
207#undef RIGHT_ALIGNED
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
209/*
210 * Record all btree blocks seen while iterating all records of a btree.
211 *
212 * We know that the btree query_all function starts at the left edge and walks
213 * towards the right edge of the tree.  Therefore, we know that we can walk up
214 * the btree cursor towards the root; if the pointer for a given level points
215 * to the first record/key in that block, we haven't seen this block before;
216 * and therefore we need to remember that we saw this block in the btree.
217 *
218 * So if our btree is:
219 *
220 *    4
221 *  / | \
222 * 1  2  3
223 *
224 * Pretend for this example that each leaf block has 100 btree records.  For
225 * the first btree record, we'll observe that bc_ptrs[0] == 1, so we record
226 * that we saw block 1.  Then we observe that bc_ptrs[1] == 1, so we record
227 * block 4.  The list is [1, 4].
228 *
229 * For the second btree record, we see that bc_ptrs[0] == 2, so we exit the
230 * loop.  The list remains [1, 4].
231 *
232 * For the 101st btree record, we've moved onto leaf block 2.  Now
233 * bc_ptrs[0] == 1 again, so we record that we saw block 2.  We see that
234 * bc_ptrs[1] == 2, so we exit the loop.  The list is now [1, 4, 2].
235 *
236 * For the 102nd record, bc_ptrs[0] == 2, so we continue.
237 *
238 * For the 201st record, we've moved on to leaf block 3.  bc_ptrs[0] == 1, so
239 * we add 3 to the list.  Now it is [1, 4, 2, 3].
240 *
241 * For the 300th record we just exit, with the list being [1, 4, 2, 3].
242 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244/*
245 * Record all the buffers pointed to by the btree cursor.  Callers already
246 * engaged in a btree walk should call this function to capture the list of
247 * blocks going from the leaf towards the root.
 
 
 
 
 
 
 
 
 
248 */
249int
250xbitmap_set_btcur_path(
251	struct xbitmap		*bitmap,
252	struct xfs_btree_cur	*cur)
253{
254	struct xfs_buf		*bp;
255	xfs_fsblock_t		fsb;
256	int			i;
257	int			error;
258
259	for (i = 0; i < cur->bc_nlevels && cur->bc_ptrs[i] == 1; i++) {
260		xfs_btree_get_block(cur, i, &bp);
261		if (!bp)
262			continue;
263		fsb = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn);
264		error = xbitmap_set(bitmap, fsb, 1);
265		if (error)
266			return error;
267	}
268
269	return 0;
270}
271
272/* Collect a btree's block in the bitmap. */
273STATIC int
274xbitmap_collect_btblock(
275	struct xfs_btree_cur	*cur,
276	int			level,
277	void			*priv)
278{
279	struct xbitmap		*bitmap = priv;
280	struct xfs_buf		*bp;
281	xfs_fsblock_t		fsbno;
282
283	xfs_btree_get_block(cur, level, &bp);
284	if (!bp)
285		return 0;
286
287	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, bp->b_bn);
288	return xbitmap_set(bitmap, fsbno, 1);
289}
290
291/* Walk the btree and mark the bitmap wherever a btree block is found. */
292int
293xbitmap_set_btblocks(
294	struct xbitmap		*bitmap,
295	struct xfs_btree_cur	*cur)
 
296{
297	return xfs_btree_visit_blocks(cur, xbitmap_collect_btblock,
298			XFS_BTREE_VISIT_ALL, bitmap);
 
 
 
 
 
 
 
 
299}
300
301/* How many bits are set in this bitmap? */
302uint64_t
303xbitmap_hweight(
304	struct xbitmap		*bitmap)
305{
306	struct xbitmap_range	*bmr;
307	struct xbitmap_range	*n;
308	uint64_t		ret = 0;
309
310	for_each_xbitmap_extent(bmr, n, bitmap)
311		ret += bmr->len;
 
 
 
 
 
 
 
312
313	return ret;
 
 
 
 
 
 
 
 
 
314}
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
  4 * Author: Darrick J. Wong <djwong@kernel.org>
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_bit.h"
 10#include "xfs_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "scrub/scrub.h"
 15#include "scrub/bitmap.h"
 16
 17#include <linux/interval_tree_generic.h>
 18
 19/* u64 bitmap */
 20
 21struct xbitmap64_node {
 22	struct rb_node	bn_rbnode;
 23
 24	/* First set bit of this interval and subtree. */
 25	uint64_t	bn_start;
 26
 27	/* Last set bit of this interval. */
 28	uint64_t	bn_last;
 29
 30	/* Last set bit of this subtree.  Do not touch this. */
 31	uint64_t	__bn_subtree_last;
 32};
 33
 34/* Define our own interval tree type with uint64_t parameters. */
 35
 36#define START(node) ((node)->bn_start)
 37#define LAST(node)  ((node)->bn_last)
 38
 39/*
 40 * These functions are defined by the INTERVAL_TREE_DEFINE macro, but we'll
 41 * forward-declare them anyway for clarity.
 
 42 */
 43static inline void
 44xbitmap64_tree_insert(struct xbitmap64_node *node, struct rb_root_cached *root);
 45
 46static inline void
 47xbitmap64_tree_remove(struct xbitmap64_node *node, struct rb_root_cached *root);
 48
 49static inline struct xbitmap64_node *
 50xbitmap64_tree_iter_first(struct rb_root_cached *root, uint64_t start,
 51			uint64_t last);
 52
 53static inline struct xbitmap64_node *
 54xbitmap64_tree_iter_next(struct xbitmap64_node *node, uint64_t start,
 55		       uint64_t last);
 56
 57INTERVAL_TREE_DEFINE(struct xbitmap64_node, bn_rbnode, uint64_t,
 58		__bn_subtree_last, START, LAST, static inline, xbitmap64_tree)
 59
 60/* Iterate each interval of a bitmap.  Do not change the bitmap. */
 61#define for_each_xbitmap64_extent(bn, bitmap) \
 62	for ((bn) = rb_entry_safe(rb_first(&(bitmap)->xb_root.rb_root), \
 63				   struct xbitmap64_node, bn_rbnode); \
 64	     (bn) != NULL; \
 65	     (bn) = rb_entry_safe(rb_next(&(bn)->bn_rbnode), \
 66				   struct xbitmap64_node, bn_rbnode))
 67
 68/* Clear a range of this bitmap. */
 69int
 70xbitmap64_clear(
 71	struct xbitmap64	*bitmap,
 72	uint64_t		start,
 73	uint64_t		len)
 74{
 75	struct xbitmap64_node	*bn;
 76	struct xbitmap64_node	*new_bn;
 77	uint64_t		last = start + len - 1;
 78
 79	while ((bn = xbitmap64_tree_iter_first(&bitmap->xb_root, start, last))) {
 80		if (bn->bn_start < start && bn->bn_last > last) {
 81			uint64_t	old_last = bn->bn_last;
 82
 83			/* overlaps with the entire clearing range */
 84			xbitmap64_tree_remove(bn, &bitmap->xb_root);
 85			bn->bn_last = start - 1;
 86			xbitmap64_tree_insert(bn, &bitmap->xb_root);
 87
 88			/* add an extent */
 89			new_bn = kmalloc(sizeof(struct xbitmap64_node),
 90					XCHK_GFP_FLAGS);
 91			if (!new_bn)
 92				return -ENOMEM;
 93			new_bn->bn_start = last + 1;
 94			new_bn->bn_last = old_last;
 95			xbitmap64_tree_insert(new_bn, &bitmap->xb_root);
 96		} else if (bn->bn_start < start) {
 97			/* overlaps with the left side of the clearing range */
 98			xbitmap64_tree_remove(bn, &bitmap->xb_root);
 99			bn->bn_last = start - 1;
100			xbitmap64_tree_insert(bn, &bitmap->xb_root);
101		} else if (bn->bn_last > last) {
102			/* overlaps with the right side of the clearing range */
103			xbitmap64_tree_remove(bn, &bitmap->xb_root);
104			bn->bn_start = last + 1;
105			xbitmap64_tree_insert(bn, &bitmap->xb_root);
106			break;
107		} else {
108			/* in the middle of the clearing range */
109			xbitmap64_tree_remove(bn, &bitmap->xb_root);
110			kfree(bn);
111		}
112	}
113
114	return 0;
115}
116
117/* Set a range of this bitmap. */
118int
119xbitmap64_set(
120	struct xbitmap64	*bitmap,
121	uint64_t		start,
122	uint64_t		len)
123{
124	struct xbitmap64_node	*left;
125	struct xbitmap64_node	*right;
126	uint64_t		last = start + len - 1;
127	int			error;
128
129	/* Is this whole range already set? */
130	left = xbitmap64_tree_iter_first(&bitmap->xb_root, start, last);
131	if (left && left->bn_start <= start && left->bn_last >= last)
132		return 0;
133
134	/* Clear out everything in the range we want to set. */
135	error = xbitmap64_clear(bitmap, start, len);
136	if (error)
137		return error;
138
139	/* Do we have a left-adjacent extent? */
140	left = xbitmap64_tree_iter_first(&bitmap->xb_root, start - 1, start - 1);
141	ASSERT(!left || left->bn_last + 1 == start);
142
143	/* Do we have a right-adjacent extent? */
144	right = xbitmap64_tree_iter_first(&bitmap->xb_root, last + 1, last + 1);
145	ASSERT(!right || right->bn_start == last + 1);
146
147	if (left && right) {
148		/* combine left and right adjacent extent */
149		xbitmap64_tree_remove(left, &bitmap->xb_root);
150		xbitmap64_tree_remove(right, &bitmap->xb_root);
151		left->bn_last = right->bn_last;
152		xbitmap64_tree_insert(left, &bitmap->xb_root);
153		kfree(right);
154	} else if (left) {
155		/* combine with left extent */
156		xbitmap64_tree_remove(left, &bitmap->xb_root);
157		left->bn_last = last;
158		xbitmap64_tree_insert(left, &bitmap->xb_root);
159	} else if (right) {
160		/* combine with right extent */
161		xbitmap64_tree_remove(right, &bitmap->xb_root);
162		right->bn_start = start;
163		xbitmap64_tree_insert(right, &bitmap->xb_root);
164	} else {
165		/* add an extent */
166		left = kmalloc(sizeof(struct xbitmap64_node), XCHK_GFP_FLAGS);
167		if (!left)
168			return -ENOMEM;
169		left->bn_start = start;
170		left->bn_last = last;
171		xbitmap64_tree_insert(left, &bitmap->xb_root);
172	}
173
174	return 0;
175}
176
177/* Free everything related to this bitmap. */
178void
179xbitmap64_destroy(
180	struct xbitmap64	*bitmap)
181{
182	struct xbitmap64_node	*bn;
 
183
184	while ((bn = xbitmap64_tree_iter_first(&bitmap->xb_root, 0, -1ULL))) {
185		xbitmap64_tree_remove(bn, &bitmap->xb_root);
186		kfree(bn);
187	}
188}
189
190/* Set up a per-AG block bitmap. */
191void
192xbitmap64_init(
193	struct xbitmap64	*bitmap)
194{
195	bitmap->xb_root = RB_ROOT_CACHED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196}
197
198/*
199 * Remove all the blocks mentioned in @sub from the extents in @bitmap.
200 *
201 * The intent is that callers will iterate the rmapbt for all of its records
202 * for a given owner to generate @bitmap; and iterate all the blocks of the
203 * metadata structures that are not being rebuilt and have the same rmapbt
204 * owner to generate @sub.  This routine subtracts all the extents
205 * mentioned in sub from all the extents linked in @bitmap, which leaves
206 * @bitmap as the list of blocks that are not accounted for, which we assume
207 * are the dead blocks of the old metadata structure.  The blocks mentioned in
208 * @bitmap can be reaped.
209 *
210 * This is the logical equivalent of bitmap &= ~sub.
211 */
 
 
212int
213xbitmap64_disunion(
214	struct xbitmap64	*bitmap,
215	struct xbitmap64	*sub)
216{
217	struct xbitmap64_node	*bn;
218	int			error;
 
 
 
 
 
 
219
220	if (xbitmap64_empty(bitmap) || xbitmap64_empty(sub))
221		return 0;
 
222
223	for_each_xbitmap64_extent(bn, sub) {
224		error = xbitmap64_clear(bitmap, bn->bn_start,
225				bn->bn_last - bn->bn_start + 1);
226		if (error)
227			return error;
228	}
229
230	return 0;
231}
232
233/* How many bits are set in this bitmap? */
234uint64_t
235xbitmap64_hweight(
236	struct xbitmap64	*bitmap)
237{
238	struct xbitmap64_node	*bn;
239	uint64_t		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240
241	for_each_xbitmap64_extent(bn, bitmap)
242		ret += bn->bn_last - bn->bn_start + 1;
 
 
 
 
 
 
 
243
244	return ret;
245}
246
247/* Call a function for every run of set bits in this bitmap. */
248int
249xbitmap64_walk(
250	struct xbitmap64	*bitmap,
251	xbitmap64_walk_fn		fn,
252	void			*priv)
253{
254	struct xbitmap64_node	*bn;
255	int			error = 0;
256
257	for_each_xbitmap64_extent(bn, bitmap) {
258		error = fn(bn->bn_start, bn->bn_last - bn->bn_start + 1, priv);
259		if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260			break;
 
261	}
262
 
263	return error;
264}
265
266/* Does this bitmap have no bits set at all? */
267bool
268xbitmap64_empty(
269	struct xbitmap64	*bitmap)
270{
271	return bitmap->xb_root.rb_root.rb_node == NULL;
272}
273
274/* Is the start of the range set or clear?  And for how long? */
275bool
276xbitmap64_test(
277	struct xbitmap64	*bitmap,
278	uint64_t		start,
279	uint64_t		*len)
280{
281	struct xbitmap64_node	*bn;
282	uint64_t		last = start + *len - 1;
283
284	bn = xbitmap64_tree_iter_first(&bitmap->xb_root, start, last);
285	if (!bn)
286		return false;
287	if (bn->bn_start <= start) {
288		if (bn->bn_last < last)
289			*len = bn->bn_last - start + 1;
290		return true;
291	}
292	*len = bn->bn_start - start;
293	return false;
294}
295
296/* u32 bitmap */
297
298struct xbitmap32_node {
299	struct rb_node	bn_rbnode;
300
301	/* First set bit of this interval and subtree. */
302	uint32_t	bn_start;
303
304	/* Last set bit of this interval. */
305	uint32_t	bn_last;
306
307	/* Last set bit of this subtree.  Do not touch this. */
308	uint32_t	__bn_subtree_last;
309};
310
311/* Define our own interval tree type with uint32_t parameters. */
312
313/*
314 * These functions are defined by the INTERVAL_TREE_DEFINE macro, but we'll
315 * forward-declare them anyway for clarity.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316 */
317static inline void
318xbitmap32_tree_insert(struct xbitmap32_node *node, struct rb_root_cached *root);
319
320static inline void
321xbitmap32_tree_remove(struct xbitmap32_node *node, struct rb_root_cached *root);
322
323static inline struct xbitmap32_node *
324xbitmap32_tree_iter_first(struct rb_root_cached *root, uint32_t start,
325			  uint32_t last);
326
327static inline struct xbitmap32_node *
328xbitmap32_tree_iter_next(struct xbitmap32_node *node, uint32_t start,
329			 uint32_t last);
330
331INTERVAL_TREE_DEFINE(struct xbitmap32_node, bn_rbnode, uint32_t,
332		__bn_subtree_last, START, LAST, static inline, xbitmap32_tree)
333
334/* Iterate each interval of a bitmap.  Do not change the bitmap. */
335#define for_each_xbitmap32_extent(bn, bitmap) \
336	for ((bn) = rb_entry_safe(rb_first(&(bitmap)->xb_root.rb_root), \
337				   struct xbitmap32_node, bn_rbnode); \
338	     (bn) != NULL; \
339	     (bn) = rb_entry_safe(rb_next(&(bn)->bn_rbnode), \
340				   struct xbitmap32_node, bn_rbnode))
341
342/* Clear a range of this bitmap. */
343int
344xbitmap32_clear(
345	struct xbitmap32	*bitmap,
346	uint32_t		start,
347	uint32_t		len)
348{
349	struct xbitmap32_node	*bn;
350	struct xbitmap32_node	*new_bn;
351	uint32_t		last = start + len - 1;
352
353	while ((bn = xbitmap32_tree_iter_first(&bitmap->xb_root, start, last))) {
354		if (bn->bn_start < start && bn->bn_last > last) {
355			uint32_t	old_last = bn->bn_last;
356
357			/* overlaps with the entire clearing range */
358			xbitmap32_tree_remove(bn, &bitmap->xb_root);
359			bn->bn_last = start - 1;
360			xbitmap32_tree_insert(bn, &bitmap->xb_root);
361
362			/* add an extent */
363			new_bn = kmalloc(sizeof(struct xbitmap32_node),
364					XCHK_GFP_FLAGS);
365			if (!new_bn)
366				return -ENOMEM;
367			new_bn->bn_start = last + 1;
368			new_bn->bn_last = old_last;
369			xbitmap32_tree_insert(new_bn, &bitmap->xb_root);
370		} else if (bn->bn_start < start) {
371			/* overlaps with the left side of the clearing range */
372			xbitmap32_tree_remove(bn, &bitmap->xb_root);
373			bn->bn_last = start - 1;
374			xbitmap32_tree_insert(bn, &bitmap->xb_root);
375		} else if (bn->bn_last > last) {
376			/* overlaps with the right side of the clearing range */
377			xbitmap32_tree_remove(bn, &bitmap->xb_root);
378			bn->bn_start = last + 1;
379			xbitmap32_tree_insert(bn, &bitmap->xb_root);
380			break;
381		} else {
382			/* in the middle of the clearing range */
383			xbitmap32_tree_remove(bn, &bitmap->xb_root);
384			kfree(bn);
385		}
386	}
387
388	return 0;
389}
390
391/* Set a range of this bitmap. */
392int
393xbitmap32_set(
394	struct xbitmap32	*bitmap,
395	uint32_t		start,
396	uint32_t		len)
397{
398	struct xbitmap32_node	*left;
399	struct xbitmap32_node	*right;
400	uint32_t		last = start + len - 1;
401	int			error;
402
403	/* Is this whole range already set? */
404	left = xbitmap32_tree_iter_first(&bitmap->xb_root, start, last);
405	if (left && left->bn_start <= start && left->bn_last >= last)
406		return 0;
407
408	/* Clear out everything in the range we want to set. */
409	error = xbitmap32_clear(bitmap, start, len);
410	if (error)
411		return error;
412
413	/* Do we have a left-adjacent extent? */
414	left = xbitmap32_tree_iter_first(&bitmap->xb_root, start - 1, start - 1);
415	ASSERT(!left || left->bn_last + 1 == start);
416
417	/* Do we have a right-adjacent extent? */
418	right = xbitmap32_tree_iter_first(&bitmap->xb_root, last + 1, last + 1);
419	ASSERT(!right || right->bn_start == last + 1);
420
421	if (left && right) {
422		/* combine left and right adjacent extent */
423		xbitmap32_tree_remove(left, &bitmap->xb_root);
424		xbitmap32_tree_remove(right, &bitmap->xb_root);
425		left->bn_last = right->bn_last;
426		xbitmap32_tree_insert(left, &bitmap->xb_root);
427		kfree(right);
428	} else if (left) {
429		/* combine with left extent */
430		xbitmap32_tree_remove(left, &bitmap->xb_root);
431		left->bn_last = last;
432		xbitmap32_tree_insert(left, &bitmap->xb_root);
433	} else if (right) {
434		/* combine with right extent */
435		xbitmap32_tree_remove(right, &bitmap->xb_root);
436		right->bn_start = start;
437		xbitmap32_tree_insert(right, &bitmap->xb_root);
438	} else {
439		/* add an extent */
440		left = kmalloc(sizeof(struct xbitmap32_node), XCHK_GFP_FLAGS);
441		if (!left)
442			return -ENOMEM;
443		left->bn_start = start;
444		left->bn_last = last;
445		xbitmap32_tree_insert(left, &bitmap->xb_root);
446	}
447
448	return 0;
449}
450
451/* Free everything related to this bitmap. */
452void
453xbitmap32_destroy(
454	struct xbitmap32	*bitmap)
455{
456	struct xbitmap32_node	*bn;
457
458	while ((bn = xbitmap32_tree_iter_first(&bitmap->xb_root, 0, -1U))) {
459		xbitmap32_tree_remove(bn, &bitmap->xb_root);
460		kfree(bn);
461	}
462}
463
464/* Set up a per-AG block bitmap. */
465void
466xbitmap32_init(
467	struct xbitmap32	*bitmap)
468{
469	bitmap->xb_root = RB_ROOT_CACHED;
470}
471
472/*
473 * Remove all the blocks mentioned in @sub from the extents in @bitmap.
474 *
475 * The intent is that callers will iterate the rmapbt for all of its records
476 * for a given owner to generate @bitmap; and iterate all the blocks of the
477 * metadata structures that are not being rebuilt and have the same rmapbt
478 * owner to generate @sub.  This routine subtracts all the extents
479 * mentioned in sub from all the extents linked in @bitmap, which leaves
480 * @bitmap as the list of blocks that are not accounted for, which we assume
481 * are the dead blocks of the old metadata structure.  The blocks mentioned in
482 * @bitmap can be reaped.
483 *
484 * This is the logical equivalent of bitmap &= ~sub.
485 */
486int
487xbitmap32_disunion(
488	struct xbitmap32	*bitmap,
489	struct xbitmap32	*sub)
490{
491	struct xbitmap32_node	*bn;
 
 
492	int			error;
493
494	if (xbitmap32_empty(bitmap) || xbitmap32_empty(sub))
495		return 0;
496
497	for_each_xbitmap32_extent(bn, sub) {
498		error = xbitmap32_clear(bitmap, bn->bn_start,
499				bn->bn_last - bn->bn_start + 1);
500		if (error)
501			return error;
502	}
503
504	return 0;
505}
506
507/* How many bits are set in this bitmap? */
508uint32_t
509xbitmap32_hweight(
510	struct xbitmap32	*bitmap)
 
 
511{
512	struct xbitmap32_node	*bn;
513	uint32_t		ret = 0;
 
514
515	for_each_xbitmap32_extent(bn, bitmap)
516		ret += bn->bn_last - bn->bn_start + 1;
 
517
518	return ret;
 
519}
520
521/* Call a function for every run of set bits in this bitmap. */
522int
523xbitmap32_walk(
524	struct xbitmap32	*bitmap,
525	xbitmap32_walk_fn	fn,
526	void			*priv)
527{
528	struct xbitmap32_node	*bn;
529	int			error = 0;
530
531	for_each_xbitmap32_extent(bn, bitmap) {
532		error = fn(bn->bn_start, bn->bn_last - bn->bn_start + 1, priv);
533		if (error)
534			break;
535	}
536
537	return error;
538}
539
540/* Does this bitmap have no bits set at all? */
541bool
542xbitmap32_empty(
543	struct xbitmap32	*bitmap)
544{
545	return bitmap->xb_root.rb_root.rb_node == NULL;
546}
 
547
548/* Is the start of the range set or clear?  And for how long? */
549bool
550xbitmap32_test(
551	struct xbitmap32	*bitmap,
552	uint32_t		start,
553	uint32_t		*len)
554{
555	struct xbitmap32_node	*bn;
556	uint32_t		last = start + *len - 1;
557
558	bn = xbitmap32_tree_iter_first(&bitmap->xb_root, start, last);
559	if (!bn)
560		return false;
561	if (bn->bn_start <= start) {
562		if (bn->bn_last < last)
563			*len = bn->bn_last - start + 1;
564		return true;
565	}
566	*len = bn->bn_start - start;
567	return false;
568}