Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/page_pool.h>
74
75#include <linux/uaccess.h>
76#include <trace/events/skb.h>
77#include <linux/highmem.h>
78#include <linux/capability.h>
79#include <linux/user_namespace.h>
80#include <linux/indirect_call_wrapper.h>
81
82#include "datagram.h"
83
84struct kmem_cache *skbuff_head_cache __ro_after_init;
85static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86#ifdef CONFIG_SKB_EXTENSIONS
87static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88#endif
89int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90EXPORT_SYMBOL(sysctl_max_skb_frags);
91
92/**
93 * skb_panic - private function for out-of-line support
94 * @skb: buffer
95 * @sz: size
96 * @addr: address
97 * @msg: skb_over_panic or skb_under_panic
98 *
99 * Out-of-line support for skb_put() and skb_push().
100 * Called via the wrapper skb_over_panic() or skb_under_panic().
101 * Keep out of line to prevent kernel bloat.
102 * __builtin_return_address is not used because it is not always reliable.
103 */
104static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
105 const char msg[])
106{
107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 msg, addr, skb->len, sz, skb->head, skb->data,
109 (unsigned long)skb->tail, (unsigned long)skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
111 BUG();
112}
113
114static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115{
116 skb_panic(skb, sz, addr, __func__);
117}
118
119static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120{
121 skb_panic(skb, sz, addr, __func__);
122}
123
124#define NAPI_SKB_CACHE_SIZE 64
125#define NAPI_SKB_CACHE_BULK 16
126#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
127
128struct napi_alloc_cache {
129 struct page_frag_cache page;
130 unsigned int skb_count;
131 void *skb_cache[NAPI_SKB_CACHE_SIZE];
132};
133
134static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136
137static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 unsigned int align_mask)
139{
140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141
142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
143}
144
145void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146{
147 fragsz = SKB_DATA_ALIGN(fragsz);
148
149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150}
151EXPORT_SYMBOL(__napi_alloc_frag_align);
152
153void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154{
155 struct page_frag_cache *nc;
156 void *data;
157
158 fragsz = SKB_DATA_ALIGN(fragsz);
159 if (in_irq() || irqs_disabled()) {
160 nc = this_cpu_ptr(&netdev_alloc_cache);
161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
162 } else {
163 local_bh_disable();
164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
165 local_bh_enable();
166 }
167 return data;
168}
169EXPORT_SYMBOL(__netdev_alloc_frag_align);
170
171static struct sk_buff *napi_skb_cache_get(void)
172{
173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
174 struct sk_buff *skb;
175
176 if (unlikely(!nc->skb_count))
177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
178 GFP_ATOMIC,
179 NAPI_SKB_CACHE_BULK,
180 nc->skb_cache);
181 if (unlikely(!nc->skb_count))
182 return NULL;
183
184 skb = nc->skb_cache[--nc->skb_count];
185 kasan_unpoison_object_data(skbuff_head_cache, skb);
186
187 return skb;
188}
189
190/* Caller must provide SKB that is memset cleared */
191static void __build_skb_around(struct sk_buff *skb, void *data,
192 unsigned int frag_size)
193{
194 struct skb_shared_info *shinfo;
195 unsigned int size = frag_size ? : ksize(data);
196
197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198
199 /* Assumes caller memset cleared SKB */
200 skb->truesize = SKB_TRUESIZE(size);
201 refcount_set(&skb->users, 1);
202 skb->head = data;
203 skb->data = data;
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 skb->mac_header = (typeof(skb->mac_header))~0U;
207 skb->transport_header = (typeof(skb->transport_header))~0U;
208
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
213
214 skb_set_kcov_handle(skb, kcov_common_handle());
215}
216
217/**
218 * __build_skb - build a network buffer
219 * @data: data buffer provided by caller
220 * @frag_size: size of data, or 0 if head was kmalloced
221 *
222 * Allocate a new &sk_buff. Caller provides space holding head and
223 * skb_shared_info. @data must have been allocated by kmalloc() only if
224 * @frag_size is 0, otherwise data should come from the page allocator
225 * or vmalloc()
226 * The return is the new skb buffer.
227 * On a failure the return is %NULL, and @data is not freed.
228 * Notes :
229 * Before IO, driver allocates only data buffer where NIC put incoming frame
230 * Driver should add room at head (NET_SKB_PAD) and
231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
233 * before giving packet to stack.
234 * RX rings only contains data buffers, not full skbs.
235 */
236struct sk_buff *__build_skb(void *data, unsigned int frag_size)
237{
238 struct sk_buff *skb;
239
240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
241 if (unlikely(!skb))
242 return NULL;
243
244 memset(skb, 0, offsetof(struct sk_buff, tail));
245 __build_skb_around(skb, data, frag_size);
246
247 return skb;
248}
249
250/* build_skb() is wrapper over __build_skb(), that specifically
251 * takes care of skb->head and skb->pfmemalloc
252 * This means that if @frag_size is not zero, then @data must be backed
253 * by a page fragment, not kmalloc() or vmalloc()
254 */
255struct sk_buff *build_skb(void *data, unsigned int frag_size)
256{
257 struct sk_buff *skb = __build_skb(data, frag_size);
258
259 if (skb && frag_size) {
260 skb->head_frag = 1;
261 if (page_is_pfmemalloc(virt_to_head_page(data)))
262 skb->pfmemalloc = 1;
263 }
264 return skb;
265}
266EXPORT_SYMBOL(build_skb);
267
268/**
269 * build_skb_around - build a network buffer around provided skb
270 * @skb: sk_buff provide by caller, must be memset cleared
271 * @data: data buffer provided by caller
272 * @frag_size: size of data, or 0 if head was kmalloced
273 */
274struct sk_buff *build_skb_around(struct sk_buff *skb,
275 void *data, unsigned int frag_size)
276{
277 if (unlikely(!skb))
278 return NULL;
279
280 __build_skb_around(skb, data, frag_size);
281
282 if (frag_size) {
283 skb->head_frag = 1;
284 if (page_is_pfmemalloc(virt_to_head_page(data)))
285 skb->pfmemalloc = 1;
286 }
287 return skb;
288}
289EXPORT_SYMBOL(build_skb_around);
290
291/**
292 * __napi_build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of data, or 0 if head was kmalloced
295 *
296 * Version of __build_skb() that uses NAPI percpu caches to obtain
297 * skbuff_head instead of inplace allocation.
298 *
299 * Returns a new &sk_buff on success, %NULL on allocation failure.
300 */
301static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
302{
303 struct sk_buff *skb;
304
305 skb = napi_skb_cache_get();
306 if (unlikely(!skb))
307 return NULL;
308
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 __build_skb_around(skb, data, frag_size);
311
312 return skb;
313}
314
315/**
316 * napi_build_skb - build a network buffer
317 * @data: data buffer provided by caller
318 * @frag_size: size of data, or 0 if head was kmalloced
319 *
320 * Version of __napi_build_skb() that takes care of skb->head_frag
321 * and skb->pfmemalloc when the data is a page or page fragment.
322 *
323 * Returns a new &sk_buff on success, %NULL on allocation failure.
324 */
325struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326{
327 struct sk_buff *skb = __napi_build_skb(data, frag_size);
328
329 if (likely(skb) && frag_size) {
330 skb->head_frag = 1;
331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
332 }
333
334 return skb;
335}
336EXPORT_SYMBOL(napi_build_skb);
337
338/*
339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340 * the caller if emergency pfmemalloc reserves are being used. If it is and
341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342 * may be used. Otherwise, the packet data may be discarded until enough
343 * memory is free
344 */
345static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
346 bool *pfmemalloc)
347{
348 void *obj;
349 bool ret_pfmemalloc = false;
350
351 /*
352 * Try a regular allocation, when that fails and we're not entitled
353 * to the reserves, fail.
354 */
355 obj = kmalloc_node_track_caller(size,
356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 node);
358 if (obj || !(gfp_pfmemalloc_allowed(flags)))
359 goto out;
360
361 /* Try again but now we are using pfmemalloc reserves */
362 ret_pfmemalloc = true;
363 obj = kmalloc_node_track_caller(size, flags, node);
364
365out:
366 if (pfmemalloc)
367 *pfmemalloc = ret_pfmemalloc;
368
369 return obj;
370}
371
372/* Allocate a new skbuff. We do this ourselves so we can fill in a few
373 * 'private' fields and also do memory statistics to find all the
374 * [BEEP] leaks.
375 *
376 */
377
378/**
379 * __alloc_skb - allocate a network buffer
380 * @size: size to allocate
381 * @gfp_mask: allocation mask
382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383 * instead of head cache and allocate a cloned (child) skb.
384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385 * allocations in case the data is required for writeback
386 * @node: numa node to allocate memory on
387 *
388 * Allocate a new &sk_buff. The returned buffer has no headroom and a
389 * tail room of at least size bytes. The object has a reference count
390 * of one. The return is the buffer. On a failure the return is %NULL.
391 *
392 * Buffers may only be allocated from interrupts using a @gfp_mask of
393 * %GFP_ATOMIC.
394 */
395struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
396 int flags, int node)
397{
398 struct kmem_cache *cache;
399 struct sk_buff *skb;
400 u8 *data;
401 bool pfmemalloc;
402
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
405
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
408
409 /* Get the HEAD */
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
413 else
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
415 if (unlikely(!skb))
416 return NULL;
417 prefetchw(skb);
418
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
423 */
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
427 if (unlikely(!data))
428 goto nodata;
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
432 */
433 size = SKB_WITH_OVERHEAD(ksize(data));
434 prefetchw(data + size);
435
436 /*
437 * Only clear those fields we need to clear, not those that we will
438 * actually initialise below. Hence, don't put any more fields after
439 * the tail pointer in struct sk_buff!
440 */
441 memset(skb, 0, offsetof(struct sk_buff, tail));
442 __build_skb_around(skb, data, 0);
443 skb->pfmemalloc = pfmemalloc;
444
445 if (flags & SKB_ALLOC_FCLONE) {
446 struct sk_buff_fclones *fclones;
447
448 fclones = container_of(skb, struct sk_buff_fclones, skb1);
449
450 skb->fclone = SKB_FCLONE_ORIG;
451 refcount_set(&fclones->fclone_ref, 1);
452
453 fclones->skb2.fclone = SKB_FCLONE_CLONE;
454 }
455
456 return skb;
457
458nodata:
459 kmem_cache_free(cache, skb);
460 return NULL;
461}
462EXPORT_SYMBOL(__alloc_skb);
463
464/**
465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
466 * @dev: network device to receive on
467 * @len: length to allocate
468 * @gfp_mask: get_free_pages mask, passed to alloc_skb
469 *
470 * Allocate a new &sk_buff and assign it a usage count of one. The
471 * buffer has NET_SKB_PAD headroom built in. Users should allocate
472 * the headroom they think they need without accounting for the
473 * built in space. The built in space is used for optimisations.
474 *
475 * %NULL is returned if there is no free memory.
476 */
477struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
478 gfp_t gfp_mask)
479{
480 struct page_frag_cache *nc;
481 struct sk_buff *skb;
482 bool pfmemalloc;
483 void *data;
484
485 len += NET_SKB_PAD;
486
487 /* If requested length is either too small or too big,
488 * we use kmalloc() for skb->head allocation.
489 */
490 if (len <= SKB_WITH_OVERHEAD(1024) ||
491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
494 if (!skb)
495 goto skb_fail;
496 goto skb_success;
497 }
498
499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 len = SKB_DATA_ALIGN(len);
501
502 if (sk_memalloc_socks())
503 gfp_mask |= __GFP_MEMALLOC;
504
505 if (in_irq() || irqs_disabled()) {
506 nc = this_cpu_ptr(&netdev_alloc_cache);
507 data = page_frag_alloc(nc, len, gfp_mask);
508 pfmemalloc = nc->pfmemalloc;
509 } else {
510 local_bh_disable();
511 nc = this_cpu_ptr(&napi_alloc_cache.page);
512 data = page_frag_alloc(nc, len, gfp_mask);
513 pfmemalloc = nc->pfmemalloc;
514 local_bh_enable();
515 }
516
517 if (unlikely(!data))
518 return NULL;
519
520 skb = __build_skb(data, len);
521 if (unlikely(!skb)) {
522 skb_free_frag(data);
523 return NULL;
524 }
525
526 if (pfmemalloc)
527 skb->pfmemalloc = 1;
528 skb->head_frag = 1;
529
530skb_success:
531 skb_reserve(skb, NET_SKB_PAD);
532 skb->dev = dev;
533
534skb_fail:
535 return skb;
536}
537EXPORT_SYMBOL(__netdev_alloc_skb);
538
539/**
540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541 * @napi: napi instance this buffer was allocated for
542 * @len: length to allocate
543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544 *
545 * Allocate a new sk_buff for use in NAPI receive. This buffer will
546 * attempt to allocate the head from a special reserved region used
547 * only for NAPI Rx allocation. By doing this we can save several
548 * CPU cycles by avoiding having to disable and re-enable IRQs.
549 *
550 * %NULL is returned if there is no free memory.
551 */
552struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
553 gfp_t gfp_mask)
554{
555 struct napi_alloc_cache *nc;
556 struct sk_buff *skb;
557 void *data;
558
559 len += NET_SKB_PAD + NET_IP_ALIGN;
560
561 /* If requested length is either too small or too big,
562 * we use kmalloc() for skb->head allocation.
563 */
564 if (len <= SKB_WITH_OVERHEAD(1024) ||
565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
568 NUMA_NO_NODE);
569 if (!skb)
570 goto skb_fail;
571 goto skb_success;
572 }
573
574 nc = this_cpu_ptr(&napi_alloc_cache);
575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 len = SKB_DATA_ALIGN(len);
577
578 if (sk_memalloc_socks())
579 gfp_mask |= __GFP_MEMALLOC;
580
581 data = page_frag_alloc(&nc->page, len, gfp_mask);
582 if (unlikely(!data))
583 return NULL;
584
585 skb = __napi_build_skb(data, len);
586 if (unlikely(!skb)) {
587 skb_free_frag(data);
588 return NULL;
589 }
590
591 if (nc->page.pfmemalloc)
592 skb->pfmemalloc = 1;
593 skb->head_frag = 1;
594
595skb_success:
596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 skb->dev = napi->dev;
598
599skb_fail:
600 return skb;
601}
602EXPORT_SYMBOL(__napi_alloc_skb);
603
604void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 int size, unsigned int truesize)
606{
607 skb_fill_page_desc(skb, i, page, off, size);
608 skb->len += size;
609 skb->data_len += size;
610 skb->truesize += truesize;
611}
612EXPORT_SYMBOL(skb_add_rx_frag);
613
614void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 unsigned int truesize)
616{
617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618
619 skb_frag_size_add(frag, size);
620 skb->len += size;
621 skb->data_len += size;
622 skb->truesize += truesize;
623}
624EXPORT_SYMBOL(skb_coalesce_rx_frag);
625
626static void skb_drop_list(struct sk_buff **listp)
627{
628 kfree_skb_list(*listp);
629 *listp = NULL;
630}
631
632static inline void skb_drop_fraglist(struct sk_buff *skb)
633{
634 skb_drop_list(&skb_shinfo(skb)->frag_list);
635}
636
637static void skb_clone_fraglist(struct sk_buff *skb)
638{
639 struct sk_buff *list;
640
641 skb_walk_frags(skb, list)
642 skb_get(list);
643}
644
645static void skb_free_head(struct sk_buff *skb)
646{
647 unsigned char *head = skb->head;
648
649 if (skb->head_frag) {
650 if (skb_pp_recycle(skb, head))
651 return;
652 skb_free_frag(head);
653 } else {
654 kfree(head);
655 }
656}
657
658static void skb_release_data(struct sk_buff *skb)
659{
660 struct skb_shared_info *shinfo = skb_shinfo(skb);
661 int i;
662
663 if (skb->cloned &&
664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
665 &shinfo->dataref))
666 goto exit;
667
668 skb_zcopy_clear(skb, true);
669
670 for (i = 0; i < shinfo->nr_frags; i++)
671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
672
673 if (shinfo->frag_list)
674 kfree_skb_list(shinfo->frag_list);
675
676 skb_free_head(skb);
677exit:
678 /* When we clone an SKB we copy the reycling bit. The pp_recycle
679 * bit is only set on the head though, so in order to avoid races
680 * while trying to recycle fragments on __skb_frag_unref() we need
681 * to make one SKB responsible for triggering the recycle path.
682 * So disable the recycling bit if an SKB is cloned and we have
683 * additional references to to the fragmented part of the SKB.
684 * Eventually the last SKB will have the recycling bit set and it's
685 * dataref set to 0, which will trigger the recycling
686 */
687 skb->pp_recycle = 0;
688}
689
690/*
691 * Free an skbuff by memory without cleaning the state.
692 */
693static void kfree_skbmem(struct sk_buff *skb)
694{
695 struct sk_buff_fclones *fclones;
696
697 switch (skb->fclone) {
698 case SKB_FCLONE_UNAVAILABLE:
699 kmem_cache_free(skbuff_head_cache, skb);
700 return;
701
702 case SKB_FCLONE_ORIG:
703 fclones = container_of(skb, struct sk_buff_fclones, skb1);
704
705 /* We usually free the clone (TX completion) before original skb
706 * This test would have no chance to be true for the clone,
707 * while here, branch prediction will be good.
708 */
709 if (refcount_read(&fclones->fclone_ref) == 1)
710 goto fastpath;
711 break;
712
713 default: /* SKB_FCLONE_CLONE */
714 fclones = container_of(skb, struct sk_buff_fclones, skb2);
715 break;
716 }
717 if (!refcount_dec_and_test(&fclones->fclone_ref))
718 return;
719fastpath:
720 kmem_cache_free(skbuff_fclone_cache, fclones);
721}
722
723void skb_release_head_state(struct sk_buff *skb)
724{
725 skb_dst_drop(skb);
726 if (skb->destructor) {
727 WARN_ON(in_irq());
728 skb->destructor(skb);
729 }
730#if IS_ENABLED(CONFIG_NF_CONNTRACK)
731 nf_conntrack_put(skb_nfct(skb));
732#endif
733 skb_ext_put(skb);
734}
735
736/* Free everything but the sk_buff shell. */
737static void skb_release_all(struct sk_buff *skb)
738{
739 skb_release_head_state(skb);
740 if (likely(skb->head))
741 skb_release_data(skb);
742}
743
744/**
745 * __kfree_skb - private function
746 * @skb: buffer
747 *
748 * Free an sk_buff. Release anything attached to the buffer.
749 * Clean the state. This is an internal helper function. Users should
750 * always call kfree_skb
751 */
752
753void __kfree_skb(struct sk_buff *skb)
754{
755 skb_release_all(skb);
756 kfree_skbmem(skb);
757}
758EXPORT_SYMBOL(__kfree_skb);
759
760/**
761 * kfree_skb - free an sk_buff
762 * @skb: buffer to free
763 *
764 * Drop a reference to the buffer and free it if the usage count has
765 * hit zero.
766 */
767void kfree_skb(struct sk_buff *skb)
768{
769 if (!skb_unref(skb))
770 return;
771
772 trace_kfree_skb(skb, __builtin_return_address(0));
773 __kfree_skb(skb);
774}
775EXPORT_SYMBOL(kfree_skb);
776
777void kfree_skb_list(struct sk_buff *segs)
778{
779 while (segs) {
780 struct sk_buff *next = segs->next;
781
782 kfree_skb(segs);
783 segs = next;
784 }
785}
786EXPORT_SYMBOL(kfree_skb_list);
787
788/* Dump skb information and contents.
789 *
790 * Must only be called from net_ratelimit()-ed paths.
791 *
792 * Dumps whole packets if full_pkt, only headers otherwise.
793 */
794void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
795{
796 struct skb_shared_info *sh = skb_shinfo(skb);
797 struct net_device *dev = skb->dev;
798 struct sock *sk = skb->sk;
799 struct sk_buff *list_skb;
800 bool has_mac, has_trans;
801 int headroom, tailroom;
802 int i, len, seg_len;
803
804 if (full_pkt)
805 len = skb->len;
806 else
807 len = min_t(int, skb->len, MAX_HEADER + 128);
808
809 headroom = skb_headroom(skb);
810 tailroom = skb_tailroom(skb);
811
812 has_mac = skb_mac_header_was_set(skb);
813 has_trans = skb_transport_header_was_set(skb);
814
815 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
816 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
817 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
818 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
819 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
820 level, skb->len, headroom, skb_headlen(skb), tailroom,
821 has_mac ? skb->mac_header : -1,
822 has_mac ? skb_mac_header_len(skb) : -1,
823 skb->network_header,
824 has_trans ? skb_network_header_len(skb) : -1,
825 has_trans ? skb->transport_header : -1,
826 sh->tx_flags, sh->nr_frags,
827 sh->gso_size, sh->gso_type, sh->gso_segs,
828 skb->csum, skb->ip_summed, skb->csum_complete_sw,
829 skb->csum_valid, skb->csum_level,
830 skb->hash, skb->sw_hash, skb->l4_hash,
831 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
832
833 if (dev)
834 printk("%sdev name=%s feat=0x%pNF\n",
835 level, dev->name, &dev->features);
836 if (sk)
837 printk("%ssk family=%hu type=%u proto=%u\n",
838 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
839
840 if (full_pkt && headroom)
841 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
842 16, 1, skb->head, headroom, false);
843
844 seg_len = min_t(int, skb_headlen(skb), len);
845 if (seg_len)
846 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
847 16, 1, skb->data, seg_len, false);
848 len -= seg_len;
849
850 if (full_pkt && tailroom)
851 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
852 16, 1, skb_tail_pointer(skb), tailroom, false);
853
854 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
855 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 u32 p_off, p_len, copied;
857 struct page *p;
858 u8 *vaddr;
859
860 skb_frag_foreach_page(frag, skb_frag_off(frag),
861 skb_frag_size(frag), p, p_off, p_len,
862 copied) {
863 seg_len = min_t(int, p_len, len);
864 vaddr = kmap_atomic(p);
865 print_hex_dump(level, "skb frag: ",
866 DUMP_PREFIX_OFFSET,
867 16, 1, vaddr + p_off, seg_len, false);
868 kunmap_atomic(vaddr);
869 len -= seg_len;
870 if (!len)
871 break;
872 }
873 }
874
875 if (full_pkt && skb_has_frag_list(skb)) {
876 printk("skb fraglist:\n");
877 skb_walk_frags(skb, list_skb)
878 skb_dump(level, list_skb, true);
879 }
880}
881EXPORT_SYMBOL(skb_dump);
882
883/**
884 * skb_tx_error - report an sk_buff xmit error
885 * @skb: buffer that triggered an error
886 *
887 * Report xmit error if a device callback is tracking this skb.
888 * skb must be freed afterwards.
889 */
890void skb_tx_error(struct sk_buff *skb)
891{
892 skb_zcopy_clear(skb, true);
893}
894EXPORT_SYMBOL(skb_tx_error);
895
896#ifdef CONFIG_TRACEPOINTS
897/**
898 * consume_skb - free an skbuff
899 * @skb: buffer to free
900 *
901 * Drop a ref to the buffer and free it if the usage count has hit zero
902 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
903 * is being dropped after a failure and notes that
904 */
905void consume_skb(struct sk_buff *skb)
906{
907 if (!skb_unref(skb))
908 return;
909
910 trace_consume_skb(skb);
911 __kfree_skb(skb);
912}
913EXPORT_SYMBOL(consume_skb);
914#endif
915
916/**
917 * __consume_stateless_skb - free an skbuff, assuming it is stateless
918 * @skb: buffer to free
919 *
920 * Alike consume_skb(), but this variant assumes that this is the last
921 * skb reference and all the head states have been already dropped
922 */
923void __consume_stateless_skb(struct sk_buff *skb)
924{
925 trace_consume_skb(skb);
926 skb_release_data(skb);
927 kfree_skbmem(skb);
928}
929
930static void napi_skb_cache_put(struct sk_buff *skb)
931{
932 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
933 u32 i;
934
935 kasan_poison_object_data(skbuff_head_cache, skb);
936 nc->skb_cache[nc->skb_count++] = skb;
937
938 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
939 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
940 kasan_unpoison_object_data(skbuff_head_cache,
941 nc->skb_cache[i]);
942
943 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
944 nc->skb_cache + NAPI_SKB_CACHE_HALF);
945 nc->skb_count = NAPI_SKB_CACHE_HALF;
946 }
947}
948
949void __kfree_skb_defer(struct sk_buff *skb)
950{
951 skb_release_all(skb);
952 napi_skb_cache_put(skb);
953}
954
955void napi_skb_free_stolen_head(struct sk_buff *skb)
956{
957 nf_reset_ct(skb);
958 skb_dst_drop(skb);
959 skb_ext_put(skb);
960 napi_skb_cache_put(skb);
961}
962
963void napi_consume_skb(struct sk_buff *skb, int budget)
964{
965 /* Zero budget indicate non-NAPI context called us, like netpoll */
966 if (unlikely(!budget)) {
967 dev_consume_skb_any(skb);
968 return;
969 }
970
971 lockdep_assert_in_softirq();
972
973 if (!skb_unref(skb))
974 return;
975
976 /* if reaching here SKB is ready to free */
977 trace_consume_skb(skb);
978
979 /* if SKB is a clone, don't handle this case */
980 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
981 __kfree_skb(skb);
982 return;
983 }
984
985 skb_release_all(skb);
986 napi_skb_cache_put(skb);
987}
988EXPORT_SYMBOL(napi_consume_skb);
989
990/* Make sure a field is enclosed inside headers_start/headers_end section */
991#define CHECK_SKB_FIELD(field) \
992 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
993 offsetof(struct sk_buff, headers_start)); \
994 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
995 offsetof(struct sk_buff, headers_end)); \
996
997static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
998{
999 new->tstamp = old->tstamp;
1000 /* We do not copy old->sk */
1001 new->dev = old->dev;
1002 memcpy(new->cb, old->cb, sizeof(old->cb));
1003 skb_dst_copy(new, old);
1004 __skb_ext_copy(new, old);
1005 __nf_copy(new, old, false);
1006
1007 /* Note : this field could be in headers_start/headers_end section
1008 * It is not yet because we do not want to have a 16 bit hole
1009 */
1010 new->queue_mapping = old->queue_mapping;
1011
1012 memcpy(&new->headers_start, &old->headers_start,
1013 offsetof(struct sk_buff, headers_end) -
1014 offsetof(struct sk_buff, headers_start));
1015 CHECK_SKB_FIELD(protocol);
1016 CHECK_SKB_FIELD(csum);
1017 CHECK_SKB_FIELD(hash);
1018 CHECK_SKB_FIELD(priority);
1019 CHECK_SKB_FIELD(skb_iif);
1020 CHECK_SKB_FIELD(vlan_proto);
1021 CHECK_SKB_FIELD(vlan_tci);
1022 CHECK_SKB_FIELD(transport_header);
1023 CHECK_SKB_FIELD(network_header);
1024 CHECK_SKB_FIELD(mac_header);
1025 CHECK_SKB_FIELD(inner_protocol);
1026 CHECK_SKB_FIELD(inner_transport_header);
1027 CHECK_SKB_FIELD(inner_network_header);
1028 CHECK_SKB_FIELD(inner_mac_header);
1029 CHECK_SKB_FIELD(mark);
1030#ifdef CONFIG_NETWORK_SECMARK
1031 CHECK_SKB_FIELD(secmark);
1032#endif
1033#ifdef CONFIG_NET_RX_BUSY_POLL
1034 CHECK_SKB_FIELD(napi_id);
1035#endif
1036#ifdef CONFIG_XPS
1037 CHECK_SKB_FIELD(sender_cpu);
1038#endif
1039#ifdef CONFIG_NET_SCHED
1040 CHECK_SKB_FIELD(tc_index);
1041#endif
1042
1043}
1044
1045/*
1046 * You should not add any new code to this function. Add it to
1047 * __copy_skb_header above instead.
1048 */
1049static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1050{
1051#define C(x) n->x = skb->x
1052
1053 n->next = n->prev = NULL;
1054 n->sk = NULL;
1055 __copy_skb_header(n, skb);
1056
1057 C(len);
1058 C(data_len);
1059 C(mac_len);
1060 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1061 n->cloned = 1;
1062 n->nohdr = 0;
1063 n->peeked = 0;
1064 C(pfmemalloc);
1065 C(pp_recycle);
1066 n->destructor = NULL;
1067 C(tail);
1068 C(end);
1069 C(head);
1070 C(head_frag);
1071 C(data);
1072 C(truesize);
1073 refcount_set(&n->users, 1);
1074
1075 atomic_inc(&(skb_shinfo(skb)->dataref));
1076 skb->cloned = 1;
1077
1078 return n;
1079#undef C
1080}
1081
1082/**
1083 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1084 * @first: first sk_buff of the msg
1085 */
1086struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1087{
1088 struct sk_buff *n;
1089
1090 n = alloc_skb(0, GFP_ATOMIC);
1091 if (!n)
1092 return NULL;
1093
1094 n->len = first->len;
1095 n->data_len = first->len;
1096 n->truesize = first->truesize;
1097
1098 skb_shinfo(n)->frag_list = first;
1099
1100 __copy_skb_header(n, first);
1101 n->destructor = NULL;
1102
1103 return n;
1104}
1105EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1106
1107/**
1108 * skb_morph - morph one skb into another
1109 * @dst: the skb to receive the contents
1110 * @src: the skb to supply the contents
1111 *
1112 * This is identical to skb_clone except that the target skb is
1113 * supplied by the user.
1114 *
1115 * The target skb is returned upon exit.
1116 */
1117struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1118{
1119 skb_release_all(dst);
1120 return __skb_clone(dst, src);
1121}
1122EXPORT_SYMBOL_GPL(skb_morph);
1123
1124int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1125{
1126 unsigned long max_pg, num_pg, new_pg, old_pg;
1127 struct user_struct *user;
1128
1129 if (capable(CAP_IPC_LOCK) || !size)
1130 return 0;
1131
1132 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1133 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1134 user = mmp->user ? : current_user();
1135
1136 do {
1137 old_pg = atomic_long_read(&user->locked_vm);
1138 new_pg = old_pg + num_pg;
1139 if (new_pg > max_pg)
1140 return -ENOBUFS;
1141 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1142 old_pg);
1143
1144 if (!mmp->user) {
1145 mmp->user = get_uid(user);
1146 mmp->num_pg = num_pg;
1147 } else {
1148 mmp->num_pg += num_pg;
1149 }
1150
1151 return 0;
1152}
1153EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1154
1155void mm_unaccount_pinned_pages(struct mmpin *mmp)
1156{
1157 if (mmp->user) {
1158 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1159 free_uid(mmp->user);
1160 }
1161}
1162EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1163
1164struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1165{
1166 struct ubuf_info *uarg;
1167 struct sk_buff *skb;
1168
1169 WARN_ON_ONCE(!in_task());
1170
1171 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1172 if (!skb)
1173 return NULL;
1174
1175 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1176 uarg = (void *)skb->cb;
1177 uarg->mmp.user = NULL;
1178
1179 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1180 kfree_skb(skb);
1181 return NULL;
1182 }
1183
1184 uarg->callback = msg_zerocopy_callback;
1185 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1186 uarg->len = 1;
1187 uarg->bytelen = size;
1188 uarg->zerocopy = 1;
1189 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1190 refcount_set(&uarg->refcnt, 1);
1191 sock_hold(sk);
1192
1193 return uarg;
1194}
1195EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1196
1197static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1198{
1199 return container_of((void *)uarg, struct sk_buff, cb);
1200}
1201
1202struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1203 struct ubuf_info *uarg)
1204{
1205 if (uarg) {
1206 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1207 u32 bytelen, next;
1208
1209 /* realloc only when socket is locked (TCP, UDP cork),
1210 * so uarg->len and sk_zckey access is serialized
1211 */
1212 if (!sock_owned_by_user(sk)) {
1213 WARN_ON_ONCE(1);
1214 return NULL;
1215 }
1216
1217 bytelen = uarg->bytelen + size;
1218 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1219 /* TCP can create new skb to attach new uarg */
1220 if (sk->sk_type == SOCK_STREAM)
1221 goto new_alloc;
1222 return NULL;
1223 }
1224
1225 next = (u32)atomic_read(&sk->sk_zckey);
1226 if ((u32)(uarg->id + uarg->len) == next) {
1227 if (mm_account_pinned_pages(&uarg->mmp, size))
1228 return NULL;
1229 uarg->len++;
1230 uarg->bytelen = bytelen;
1231 atomic_set(&sk->sk_zckey, ++next);
1232
1233 /* no extra ref when appending to datagram (MSG_MORE) */
1234 if (sk->sk_type == SOCK_STREAM)
1235 net_zcopy_get(uarg);
1236
1237 return uarg;
1238 }
1239 }
1240
1241new_alloc:
1242 return msg_zerocopy_alloc(sk, size);
1243}
1244EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1245
1246static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1247{
1248 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1249 u32 old_lo, old_hi;
1250 u64 sum_len;
1251
1252 old_lo = serr->ee.ee_info;
1253 old_hi = serr->ee.ee_data;
1254 sum_len = old_hi - old_lo + 1ULL + len;
1255
1256 if (sum_len >= (1ULL << 32))
1257 return false;
1258
1259 if (lo != old_hi + 1)
1260 return false;
1261
1262 serr->ee.ee_data += len;
1263 return true;
1264}
1265
1266static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1267{
1268 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1269 struct sock_exterr_skb *serr;
1270 struct sock *sk = skb->sk;
1271 struct sk_buff_head *q;
1272 unsigned long flags;
1273 bool is_zerocopy;
1274 u32 lo, hi;
1275 u16 len;
1276
1277 mm_unaccount_pinned_pages(&uarg->mmp);
1278
1279 /* if !len, there was only 1 call, and it was aborted
1280 * so do not queue a completion notification
1281 */
1282 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1283 goto release;
1284
1285 len = uarg->len;
1286 lo = uarg->id;
1287 hi = uarg->id + len - 1;
1288 is_zerocopy = uarg->zerocopy;
1289
1290 serr = SKB_EXT_ERR(skb);
1291 memset(serr, 0, sizeof(*serr));
1292 serr->ee.ee_errno = 0;
1293 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1294 serr->ee.ee_data = hi;
1295 serr->ee.ee_info = lo;
1296 if (!is_zerocopy)
1297 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1298
1299 q = &sk->sk_error_queue;
1300 spin_lock_irqsave(&q->lock, flags);
1301 tail = skb_peek_tail(q);
1302 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1303 !skb_zerocopy_notify_extend(tail, lo, len)) {
1304 __skb_queue_tail(q, skb);
1305 skb = NULL;
1306 }
1307 spin_unlock_irqrestore(&q->lock, flags);
1308
1309 sk_error_report(sk);
1310
1311release:
1312 consume_skb(skb);
1313 sock_put(sk);
1314}
1315
1316void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1317 bool success)
1318{
1319 uarg->zerocopy = uarg->zerocopy & success;
1320
1321 if (refcount_dec_and_test(&uarg->refcnt))
1322 __msg_zerocopy_callback(uarg);
1323}
1324EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1325
1326void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1327{
1328 struct sock *sk = skb_from_uarg(uarg)->sk;
1329
1330 atomic_dec(&sk->sk_zckey);
1331 uarg->len--;
1332
1333 if (have_uref)
1334 msg_zerocopy_callback(NULL, uarg, true);
1335}
1336EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1337
1338int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1339{
1340 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1341}
1342EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1343
1344int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1345 struct msghdr *msg, int len,
1346 struct ubuf_info *uarg)
1347{
1348 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1349 struct iov_iter orig_iter = msg->msg_iter;
1350 int err, orig_len = skb->len;
1351
1352 /* An skb can only point to one uarg. This edge case happens when
1353 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1354 */
1355 if (orig_uarg && uarg != orig_uarg)
1356 return -EEXIST;
1357
1358 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1359 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1360 struct sock *save_sk = skb->sk;
1361
1362 /* Streams do not free skb on error. Reset to prev state. */
1363 msg->msg_iter = orig_iter;
1364 skb->sk = sk;
1365 ___pskb_trim(skb, orig_len);
1366 skb->sk = save_sk;
1367 return err;
1368 }
1369
1370 skb_zcopy_set(skb, uarg, NULL);
1371 return skb->len - orig_len;
1372}
1373EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1374
1375static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1376 gfp_t gfp_mask)
1377{
1378 if (skb_zcopy(orig)) {
1379 if (skb_zcopy(nskb)) {
1380 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1381 if (!gfp_mask) {
1382 WARN_ON_ONCE(1);
1383 return -ENOMEM;
1384 }
1385 if (skb_uarg(nskb) == skb_uarg(orig))
1386 return 0;
1387 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1388 return -EIO;
1389 }
1390 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1391 }
1392 return 0;
1393}
1394
1395/**
1396 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1397 * @skb: the skb to modify
1398 * @gfp_mask: allocation priority
1399 *
1400 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1401 * It will copy all frags into kernel and drop the reference
1402 * to userspace pages.
1403 *
1404 * If this function is called from an interrupt gfp_mask() must be
1405 * %GFP_ATOMIC.
1406 *
1407 * Returns 0 on success or a negative error code on failure
1408 * to allocate kernel memory to copy to.
1409 */
1410int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1411{
1412 int num_frags = skb_shinfo(skb)->nr_frags;
1413 struct page *page, *head = NULL;
1414 int i, new_frags;
1415 u32 d_off;
1416
1417 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1418 return -EINVAL;
1419
1420 if (!num_frags)
1421 goto release;
1422
1423 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1424 for (i = 0; i < new_frags; i++) {
1425 page = alloc_page(gfp_mask);
1426 if (!page) {
1427 while (head) {
1428 struct page *next = (struct page *)page_private(head);
1429 put_page(head);
1430 head = next;
1431 }
1432 return -ENOMEM;
1433 }
1434 set_page_private(page, (unsigned long)head);
1435 head = page;
1436 }
1437
1438 page = head;
1439 d_off = 0;
1440 for (i = 0; i < num_frags; i++) {
1441 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1442 u32 p_off, p_len, copied;
1443 struct page *p;
1444 u8 *vaddr;
1445
1446 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1447 p, p_off, p_len, copied) {
1448 u32 copy, done = 0;
1449 vaddr = kmap_atomic(p);
1450
1451 while (done < p_len) {
1452 if (d_off == PAGE_SIZE) {
1453 d_off = 0;
1454 page = (struct page *)page_private(page);
1455 }
1456 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1457 memcpy(page_address(page) + d_off,
1458 vaddr + p_off + done, copy);
1459 done += copy;
1460 d_off += copy;
1461 }
1462 kunmap_atomic(vaddr);
1463 }
1464 }
1465
1466 /* skb frags release userspace buffers */
1467 for (i = 0; i < num_frags; i++)
1468 skb_frag_unref(skb, i);
1469
1470 /* skb frags point to kernel buffers */
1471 for (i = 0; i < new_frags - 1; i++) {
1472 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1473 head = (struct page *)page_private(head);
1474 }
1475 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1476 skb_shinfo(skb)->nr_frags = new_frags;
1477
1478release:
1479 skb_zcopy_clear(skb, false);
1480 return 0;
1481}
1482EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1483
1484/**
1485 * skb_clone - duplicate an sk_buff
1486 * @skb: buffer to clone
1487 * @gfp_mask: allocation priority
1488 *
1489 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1490 * copies share the same packet data but not structure. The new
1491 * buffer has a reference count of 1. If the allocation fails the
1492 * function returns %NULL otherwise the new buffer is returned.
1493 *
1494 * If this function is called from an interrupt gfp_mask() must be
1495 * %GFP_ATOMIC.
1496 */
1497
1498struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1499{
1500 struct sk_buff_fclones *fclones = container_of(skb,
1501 struct sk_buff_fclones,
1502 skb1);
1503 struct sk_buff *n;
1504
1505 if (skb_orphan_frags(skb, gfp_mask))
1506 return NULL;
1507
1508 if (skb->fclone == SKB_FCLONE_ORIG &&
1509 refcount_read(&fclones->fclone_ref) == 1) {
1510 n = &fclones->skb2;
1511 refcount_set(&fclones->fclone_ref, 2);
1512 } else {
1513 if (skb_pfmemalloc(skb))
1514 gfp_mask |= __GFP_MEMALLOC;
1515
1516 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1517 if (!n)
1518 return NULL;
1519
1520 n->fclone = SKB_FCLONE_UNAVAILABLE;
1521 }
1522
1523 return __skb_clone(n, skb);
1524}
1525EXPORT_SYMBOL(skb_clone);
1526
1527void skb_headers_offset_update(struct sk_buff *skb, int off)
1528{
1529 /* Only adjust this if it actually is csum_start rather than csum */
1530 if (skb->ip_summed == CHECKSUM_PARTIAL)
1531 skb->csum_start += off;
1532 /* {transport,network,mac}_header and tail are relative to skb->head */
1533 skb->transport_header += off;
1534 skb->network_header += off;
1535 if (skb_mac_header_was_set(skb))
1536 skb->mac_header += off;
1537 skb->inner_transport_header += off;
1538 skb->inner_network_header += off;
1539 skb->inner_mac_header += off;
1540}
1541EXPORT_SYMBOL(skb_headers_offset_update);
1542
1543void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1544{
1545 __copy_skb_header(new, old);
1546
1547 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1548 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1549 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1550}
1551EXPORT_SYMBOL(skb_copy_header);
1552
1553static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1554{
1555 if (skb_pfmemalloc(skb))
1556 return SKB_ALLOC_RX;
1557 return 0;
1558}
1559
1560/**
1561 * skb_copy - create private copy of an sk_buff
1562 * @skb: buffer to copy
1563 * @gfp_mask: allocation priority
1564 *
1565 * Make a copy of both an &sk_buff and its data. This is used when the
1566 * caller wishes to modify the data and needs a private copy of the
1567 * data to alter. Returns %NULL on failure or the pointer to the buffer
1568 * on success. The returned buffer has a reference count of 1.
1569 *
1570 * As by-product this function converts non-linear &sk_buff to linear
1571 * one, so that &sk_buff becomes completely private and caller is allowed
1572 * to modify all the data of returned buffer. This means that this
1573 * function is not recommended for use in circumstances when only
1574 * header is going to be modified. Use pskb_copy() instead.
1575 */
1576
1577struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1578{
1579 int headerlen = skb_headroom(skb);
1580 unsigned int size = skb_end_offset(skb) + skb->data_len;
1581 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1582 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1583
1584 if (!n)
1585 return NULL;
1586
1587 /* Set the data pointer */
1588 skb_reserve(n, headerlen);
1589 /* Set the tail pointer and length */
1590 skb_put(n, skb->len);
1591
1592 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1593
1594 skb_copy_header(n, skb);
1595 return n;
1596}
1597EXPORT_SYMBOL(skb_copy);
1598
1599/**
1600 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1601 * @skb: buffer to copy
1602 * @headroom: headroom of new skb
1603 * @gfp_mask: allocation priority
1604 * @fclone: if true allocate the copy of the skb from the fclone
1605 * cache instead of the head cache; it is recommended to set this
1606 * to true for the cases where the copy will likely be cloned
1607 *
1608 * Make a copy of both an &sk_buff and part of its data, located
1609 * in header. Fragmented data remain shared. This is used when
1610 * the caller wishes to modify only header of &sk_buff and needs
1611 * private copy of the header to alter. Returns %NULL on failure
1612 * or the pointer to the buffer on success.
1613 * The returned buffer has a reference count of 1.
1614 */
1615
1616struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1617 gfp_t gfp_mask, bool fclone)
1618{
1619 unsigned int size = skb_headlen(skb) + headroom;
1620 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1621 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1622
1623 if (!n)
1624 goto out;
1625
1626 /* Set the data pointer */
1627 skb_reserve(n, headroom);
1628 /* Set the tail pointer and length */
1629 skb_put(n, skb_headlen(skb));
1630 /* Copy the bytes */
1631 skb_copy_from_linear_data(skb, n->data, n->len);
1632
1633 n->truesize += skb->data_len;
1634 n->data_len = skb->data_len;
1635 n->len = skb->len;
1636
1637 if (skb_shinfo(skb)->nr_frags) {
1638 int i;
1639
1640 if (skb_orphan_frags(skb, gfp_mask) ||
1641 skb_zerocopy_clone(n, skb, gfp_mask)) {
1642 kfree_skb(n);
1643 n = NULL;
1644 goto out;
1645 }
1646 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1647 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1648 skb_frag_ref(skb, i);
1649 }
1650 skb_shinfo(n)->nr_frags = i;
1651 }
1652
1653 if (skb_has_frag_list(skb)) {
1654 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1655 skb_clone_fraglist(n);
1656 }
1657
1658 skb_copy_header(n, skb);
1659out:
1660 return n;
1661}
1662EXPORT_SYMBOL(__pskb_copy_fclone);
1663
1664/**
1665 * pskb_expand_head - reallocate header of &sk_buff
1666 * @skb: buffer to reallocate
1667 * @nhead: room to add at head
1668 * @ntail: room to add at tail
1669 * @gfp_mask: allocation priority
1670 *
1671 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1672 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1673 * reference count of 1. Returns zero in the case of success or error,
1674 * if expansion failed. In the last case, &sk_buff is not changed.
1675 *
1676 * All the pointers pointing into skb header may change and must be
1677 * reloaded after call to this function.
1678 */
1679
1680int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1681 gfp_t gfp_mask)
1682{
1683 int i, osize = skb_end_offset(skb);
1684 int size = osize + nhead + ntail;
1685 long off;
1686 u8 *data;
1687
1688 BUG_ON(nhead < 0);
1689
1690 BUG_ON(skb_shared(skb));
1691
1692 size = SKB_DATA_ALIGN(size);
1693
1694 if (skb_pfmemalloc(skb))
1695 gfp_mask |= __GFP_MEMALLOC;
1696 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1697 gfp_mask, NUMA_NO_NODE, NULL);
1698 if (!data)
1699 goto nodata;
1700 size = SKB_WITH_OVERHEAD(ksize(data));
1701
1702 /* Copy only real data... and, alas, header. This should be
1703 * optimized for the cases when header is void.
1704 */
1705 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1706
1707 memcpy((struct skb_shared_info *)(data + size),
1708 skb_shinfo(skb),
1709 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1710
1711 /*
1712 * if shinfo is shared we must drop the old head gracefully, but if it
1713 * is not we can just drop the old head and let the existing refcount
1714 * be since all we did is relocate the values
1715 */
1716 if (skb_cloned(skb)) {
1717 if (skb_orphan_frags(skb, gfp_mask))
1718 goto nofrags;
1719 if (skb_zcopy(skb))
1720 refcount_inc(&skb_uarg(skb)->refcnt);
1721 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1722 skb_frag_ref(skb, i);
1723
1724 if (skb_has_frag_list(skb))
1725 skb_clone_fraglist(skb);
1726
1727 skb_release_data(skb);
1728 } else {
1729 skb_free_head(skb);
1730 }
1731 off = (data + nhead) - skb->head;
1732
1733 skb->head = data;
1734 skb->head_frag = 0;
1735 skb->data += off;
1736#ifdef NET_SKBUFF_DATA_USES_OFFSET
1737 skb->end = size;
1738 off = nhead;
1739#else
1740 skb->end = skb->head + size;
1741#endif
1742 skb->tail += off;
1743 skb_headers_offset_update(skb, nhead);
1744 skb->cloned = 0;
1745 skb->hdr_len = 0;
1746 skb->nohdr = 0;
1747 atomic_set(&skb_shinfo(skb)->dataref, 1);
1748
1749 skb_metadata_clear(skb);
1750
1751 /* It is not generally safe to change skb->truesize.
1752 * For the moment, we really care of rx path, or
1753 * when skb is orphaned (not attached to a socket).
1754 */
1755 if (!skb->sk || skb->destructor == sock_edemux)
1756 skb->truesize += size - osize;
1757
1758 return 0;
1759
1760nofrags:
1761 kfree(data);
1762nodata:
1763 return -ENOMEM;
1764}
1765EXPORT_SYMBOL(pskb_expand_head);
1766
1767/* Make private copy of skb with writable head and some headroom */
1768
1769struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1770{
1771 struct sk_buff *skb2;
1772 int delta = headroom - skb_headroom(skb);
1773
1774 if (delta <= 0)
1775 skb2 = pskb_copy(skb, GFP_ATOMIC);
1776 else {
1777 skb2 = skb_clone(skb, GFP_ATOMIC);
1778 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1779 GFP_ATOMIC)) {
1780 kfree_skb(skb2);
1781 skb2 = NULL;
1782 }
1783 }
1784 return skb2;
1785}
1786EXPORT_SYMBOL(skb_realloc_headroom);
1787
1788/**
1789 * skb_copy_expand - copy and expand sk_buff
1790 * @skb: buffer to copy
1791 * @newheadroom: new free bytes at head
1792 * @newtailroom: new free bytes at tail
1793 * @gfp_mask: allocation priority
1794 *
1795 * Make a copy of both an &sk_buff and its data and while doing so
1796 * allocate additional space.
1797 *
1798 * This is used when the caller wishes to modify the data and needs a
1799 * private copy of the data to alter as well as more space for new fields.
1800 * Returns %NULL on failure or the pointer to the buffer
1801 * on success. The returned buffer has a reference count of 1.
1802 *
1803 * You must pass %GFP_ATOMIC as the allocation priority if this function
1804 * is called from an interrupt.
1805 */
1806struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1807 int newheadroom, int newtailroom,
1808 gfp_t gfp_mask)
1809{
1810 /*
1811 * Allocate the copy buffer
1812 */
1813 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1814 gfp_mask, skb_alloc_rx_flag(skb),
1815 NUMA_NO_NODE);
1816 int oldheadroom = skb_headroom(skb);
1817 int head_copy_len, head_copy_off;
1818
1819 if (!n)
1820 return NULL;
1821
1822 skb_reserve(n, newheadroom);
1823
1824 /* Set the tail pointer and length */
1825 skb_put(n, skb->len);
1826
1827 head_copy_len = oldheadroom;
1828 head_copy_off = 0;
1829 if (newheadroom <= head_copy_len)
1830 head_copy_len = newheadroom;
1831 else
1832 head_copy_off = newheadroom - head_copy_len;
1833
1834 /* Copy the linear header and data. */
1835 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1836 skb->len + head_copy_len));
1837
1838 skb_copy_header(n, skb);
1839
1840 skb_headers_offset_update(n, newheadroom - oldheadroom);
1841
1842 return n;
1843}
1844EXPORT_SYMBOL(skb_copy_expand);
1845
1846/**
1847 * __skb_pad - zero pad the tail of an skb
1848 * @skb: buffer to pad
1849 * @pad: space to pad
1850 * @free_on_error: free buffer on error
1851 *
1852 * Ensure that a buffer is followed by a padding area that is zero
1853 * filled. Used by network drivers which may DMA or transfer data
1854 * beyond the buffer end onto the wire.
1855 *
1856 * May return error in out of memory cases. The skb is freed on error
1857 * if @free_on_error is true.
1858 */
1859
1860int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1861{
1862 int err;
1863 int ntail;
1864
1865 /* If the skbuff is non linear tailroom is always zero.. */
1866 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1867 memset(skb->data+skb->len, 0, pad);
1868 return 0;
1869 }
1870
1871 ntail = skb->data_len + pad - (skb->end - skb->tail);
1872 if (likely(skb_cloned(skb) || ntail > 0)) {
1873 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1874 if (unlikely(err))
1875 goto free_skb;
1876 }
1877
1878 /* FIXME: The use of this function with non-linear skb's really needs
1879 * to be audited.
1880 */
1881 err = skb_linearize(skb);
1882 if (unlikely(err))
1883 goto free_skb;
1884
1885 memset(skb->data + skb->len, 0, pad);
1886 return 0;
1887
1888free_skb:
1889 if (free_on_error)
1890 kfree_skb(skb);
1891 return err;
1892}
1893EXPORT_SYMBOL(__skb_pad);
1894
1895/**
1896 * pskb_put - add data to the tail of a potentially fragmented buffer
1897 * @skb: start of the buffer to use
1898 * @tail: tail fragment of the buffer to use
1899 * @len: amount of data to add
1900 *
1901 * This function extends the used data area of the potentially
1902 * fragmented buffer. @tail must be the last fragment of @skb -- or
1903 * @skb itself. If this would exceed the total buffer size the kernel
1904 * will panic. A pointer to the first byte of the extra data is
1905 * returned.
1906 */
1907
1908void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1909{
1910 if (tail != skb) {
1911 skb->data_len += len;
1912 skb->len += len;
1913 }
1914 return skb_put(tail, len);
1915}
1916EXPORT_SYMBOL_GPL(pskb_put);
1917
1918/**
1919 * skb_put - add data to a buffer
1920 * @skb: buffer to use
1921 * @len: amount of data to add
1922 *
1923 * This function extends the used data area of the buffer. If this would
1924 * exceed the total buffer size the kernel will panic. A pointer to the
1925 * first byte of the extra data is returned.
1926 */
1927void *skb_put(struct sk_buff *skb, unsigned int len)
1928{
1929 void *tmp = skb_tail_pointer(skb);
1930 SKB_LINEAR_ASSERT(skb);
1931 skb->tail += len;
1932 skb->len += len;
1933 if (unlikely(skb->tail > skb->end))
1934 skb_over_panic(skb, len, __builtin_return_address(0));
1935 return tmp;
1936}
1937EXPORT_SYMBOL(skb_put);
1938
1939/**
1940 * skb_push - add data to the start of a buffer
1941 * @skb: buffer to use
1942 * @len: amount of data to add
1943 *
1944 * This function extends the used data area of the buffer at the buffer
1945 * start. If this would exceed the total buffer headroom the kernel will
1946 * panic. A pointer to the first byte of the extra data is returned.
1947 */
1948void *skb_push(struct sk_buff *skb, unsigned int len)
1949{
1950 skb->data -= len;
1951 skb->len += len;
1952 if (unlikely(skb->data < skb->head))
1953 skb_under_panic(skb, len, __builtin_return_address(0));
1954 return skb->data;
1955}
1956EXPORT_SYMBOL(skb_push);
1957
1958/**
1959 * skb_pull - remove data from the start of a buffer
1960 * @skb: buffer to use
1961 * @len: amount of data to remove
1962 *
1963 * This function removes data from the start of a buffer, returning
1964 * the memory to the headroom. A pointer to the next data in the buffer
1965 * is returned. Once the data has been pulled future pushes will overwrite
1966 * the old data.
1967 */
1968void *skb_pull(struct sk_buff *skb, unsigned int len)
1969{
1970 return skb_pull_inline(skb, len);
1971}
1972EXPORT_SYMBOL(skb_pull);
1973
1974/**
1975 * skb_trim - remove end from a buffer
1976 * @skb: buffer to alter
1977 * @len: new length
1978 *
1979 * Cut the length of a buffer down by removing data from the tail. If
1980 * the buffer is already under the length specified it is not modified.
1981 * The skb must be linear.
1982 */
1983void skb_trim(struct sk_buff *skb, unsigned int len)
1984{
1985 if (skb->len > len)
1986 __skb_trim(skb, len);
1987}
1988EXPORT_SYMBOL(skb_trim);
1989
1990/* Trims skb to length len. It can change skb pointers.
1991 */
1992
1993int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1994{
1995 struct sk_buff **fragp;
1996 struct sk_buff *frag;
1997 int offset = skb_headlen(skb);
1998 int nfrags = skb_shinfo(skb)->nr_frags;
1999 int i;
2000 int err;
2001
2002 if (skb_cloned(skb) &&
2003 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2004 return err;
2005
2006 i = 0;
2007 if (offset >= len)
2008 goto drop_pages;
2009
2010 for (; i < nfrags; i++) {
2011 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2012
2013 if (end < len) {
2014 offset = end;
2015 continue;
2016 }
2017
2018 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2019
2020drop_pages:
2021 skb_shinfo(skb)->nr_frags = i;
2022
2023 for (; i < nfrags; i++)
2024 skb_frag_unref(skb, i);
2025
2026 if (skb_has_frag_list(skb))
2027 skb_drop_fraglist(skb);
2028 goto done;
2029 }
2030
2031 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2032 fragp = &frag->next) {
2033 int end = offset + frag->len;
2034
2035 if (skb_shared(frag)) {
2036 struct sk_buff *nfrag;
2037
2038 nfrag = skb_clone(frag, GFP_ATOMIC);
2039 if (unlikely(!nfrag))
2040 return -ENOMEM;
2041
2042 nfrag->next = frag->next;
2043 consume_skb(frag);
2044 frag = nfrag;
2045 *fragp = frag;
2046 }
2047
2048 if (end < len) {
2049 offset = end;
2050 continue;
2051 }
2052
2053 if (end > len &&
2054 unlikely((err = pskb_trim(frag, len - offset))))
2055 return err;
2056
2057 if (frag->next)
2058 skb_drop_list(&frag->next);
2059 break;
2060 }
2061
2062done:
2063 if (len > skb_headlen(skb)) {
2064 skb->data_len -= skb->len - len;
2065 skb->len = len;
2066 } else {
2067 skb->len = len;
2068 skb->data_len = 0;
2069 skb_set_tail_pointer(skb, len);
2070 }
2071
2072 if (!skb->sk || skb->destructor == sock_edemux)
2073 skb_condense(skb);
2074 return 0;
2075}
2076EXPORT_SYMBOL(___pskb_trim);
2077
2078/* Note : use pskb_trim_rcsum() instead of calling this directly
2079 */
2080int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2081{
2082 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2083 int delta = skb->len - len;
2084
2085 skb->csum = csum_block_sub(skb->csum,
2086 skb_checksum(skb, len, delta, 0),
2087 len);
2088 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2089 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2090 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2091
2092 if (offset + sizeof(__sum16) > hdlen)
2093 return -EINVAL;
2094 }
2095 return __pskb_trim(skb, len);
2096}
2097EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2098
2099/**
2100 * __pskb_pull_tail - advance tail of skb header
2101 * @skb: buffer to reallocate
2102 * @delta: number of bytes to advance tail
2103 *
2104 * The function makes a sense only on a fragmented &sk_buff,
2105 * it expands header moving its tail forward and copying necessary
2106 * data from fragmented part.
2107 *
2108 * &sk_buff MUST have reference count of 1.
2109 *
2110 * Returns %NULL (and &sk_buff does not change) if pull failed
2111 * or value of new tail of skb in the case of success.
2112 *
2113 * All the pointers pointing into skb header may change and must be
2114 * reloaded after call to this function.
2115 */
2116
2117/* Moves tail of skb head forward, copying data from fragmented part,
2118 * when it is necessary.
2119 * 1. It may fail due to malloc failure.
2120 * 2. It may change skb pointers.
2121 *
2122 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2123 */
2124void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2125{
2126 /* If skb has not enough free space at tail, get new one
2127 * plus 128 bytes for future expansions. If we have enough
2128 * room at tail, reallocate without expansion only if skb is cloned.
2129 */
2130 int i, k, eat = (skb->tail + delta) - skb->end;
2131
2132 if (eat > 0 || skb_cloned(skb)) {
2133 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2134 GFP_ATOMIC))
2135 return NULL;
2136 }
2137
2138 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2139 skb_tail_pointer(skb), delta));
2140
2141 /* Optimization: no fragments, no reasons to preestimate
2142 * size of pulled pages. Superb.
2143 */
2144 if (!skb_has_frag_list(skb))
2145 goto pull_pages;
2146
2147 /* Estimate size of pulled pages. */
2148 eat = delta;
2149 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2150 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2151
2152 if (size >= eat)
2153 goto pull_pages;
2154 eat -= size;
2155 }
2156
2157 /* If we need update frag list, we are in troubles.
2158 * Certainly, it is possible to add an offset to skb data,
2159 * but taking into account that pulling is expected to
2160 * be very rare operation, it is worth to fight against
2161 * further bloating skb head and crucify ourselves here instead.
2162 * Pure masohism, indeed. 8)8)
2163 */
2164 if (eat) {
2165 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2166 struct sk_buff *clone = NULL;
2167 struct sk_buff *insp = NULL;
2168
2169 do {
2170 if (list->len <= eat) {
2171 /* Eaten as whole. */
2172 eat -= list->len;
2173 list = list->next;
2174 insp = list;
2175 } else {
2176 /* Eaten partially. */
2177
2178 if (skb_shared(list)) {
2179 /* Sucks! We need to fork list. :-( */
2180 clone = skb_clone(list, GFP_ATOMIC);
2181 if (!clone)
2182 return NULL;
2183 insp = list->next;
2184 list = clone;
2185 } else {
2186 /* This may be pulled without
2187 * problems. */
2188 insp = list;
2189 }
2190 if (!pskb_pull(list, eat)) {
2191 kfree_skb(clone);
2192 return NULL;
2193 }
2194 break;
2195 }
2196 } while (eat);
2197
2198 /* Free pulled out fragments. */
2199 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2200 skb_shinfo(skb)->frag_list = list->next;
2201 kfree_skb(list);
2202 }
2203 /* And insert new clone at head. */
2204 if (clone) {
2205 clone->next = list;
2206 skb_shinfo(skb)->frag_list = clone;
2207 }
2208 }
2209 /* Success! Now we may commit changes to skb data. */
2210
2211pull_pages:
2212 eat = delta;
2213 k = 0;
2214 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2215 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2216
2217 if (size <= eat) {
2218 skb_frag_unref(skb, i);
2219 eat -= size;
2220 } else {
2221 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2222
2223 *frag = skb_shinfo(skb)->frags[i];
2224 if (eat) {
2225 skb_frag_off_add(frag, eat);
2226 skb_frag_size_sub(frag, eat);
2227 if (!i)
2228 goto end;
2229 eat = 0;
2230 }
2231 k++;
2232 }
2233 }
2234 skb_shinfo(skb)->nr_frags = k;
2235
2236end:
2237 skb->tail += delta;
2238 skb->data_len -= delta;
2239
2240 if (!skb->data_len)
2241 skb_zcopy_clear(skb, false);
2242
2243 return skb_tail_pointer(skb);
2244}
2245EXPORT_SYMBOL(__pskb_pull_tail);
2246
2247/**
2248 * skb_copy_bits - copy bits from skb to kernel buffer
2249 * @skb: source skb
2250 * @offset: offset in source
2251 * @to: destination buffer
2252 * @len: number of bytes to copy
2253 *
2254 * Copy the specified number of bytes from the source skb to the
2255 * destination buffer.
2256 *
2257 * CAUTION ! :
2258 * If its prototype is ever changed,
2259 * check arch/{*}/net/{*}.S files,
2260 * since it is called from BPF assembly code.
2261 */
2262int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2263{
2264 int start = skb_headlen(skb);
2265 struct sk_buff *frag_iter;
2266 int i, copy;
2267
2268 if (offset > (int)skb->len - len)
2269 goto fault;
2270
2271 /* Copy header. */
2272 if ((copy = start - offset) > 0) {
2273 if (copy > len)
2274 copy = len;
2275 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2276 if ((len -= copy) == 0)
2277 return 0;
2278 offset += copy;
2279 to += copy;
2280 }
2281
2282 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2283 int end;
2284 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2285
2286 WARN_ON(start > offset + len);
2287
2288 end = start + skb_frag_size(f);
2289 if ((copy = end - offset) > 0) {
2290 u32 p_off, p_len, copied;
2291 struct page *p;
2292 u8 *vaddr;
2293
2294 if (copy > len)
2295 copy = len;
2296
2297 skb_frag_foreach_page(f,
2298 skb_frag_off(f) + offset - start,
2299 copy, p, p_off, p_len, copied) {
2300 vaddr = kmap_atomic(p);
2301 memcpy(to + copied, vaddr + p_off, p_len);
2302 kunmap_atomic(vaddr);
2303 }
2304
2305 if ((len -= copy) == 0)
2306 return 0;
2307 offset += copy;
2308 to += copy;
2309 }
2310 start = end;
2311 }
2312
2313 skb_walk_frags(skb, frag_iter) {
2314 int end;
2315
2316 WARN_ON(start > offset + len);
2317
2318 end = start + frag_iter->len;
2319 if ((copy = end - offset) > 0) {
2320 if (copy > len)
2321 copy = len;
2322 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2323 goto fault;
2324 if ((len -= copy) == 0)
2325 return 0;
2326 offset += copy;
2327 to += copy;
2328 }
2329 start = end;
2330 }
2331
2332 if (!len)
2333 return 0;
2334
2335fault:
2336 return -EFAULT;
2337}
2338EXPORT_SYMBOL(skb_copy_bits);
2339
2340/*
2341 * Callback from splice_to_pipe(), if we need to release some pages
2342 * at the end of the spd in case we error'ed out in filling the pipe.
2343 */
2344static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2345{
2346 put_page(spd->pages[i]);
2347}
2348
2349static struct page *linear_to_page(struct page *page, unsigned int *len,
2350 unsigned int *offset,
2351 struct sock *sk)
2352{
2353 struct page_frag *pfrag = sk_page_frag(sk);
2354
2355 if (!sk_page_frag_refill(sk, pfrag))
2356 return NULL;
2357
2358 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2359
2360 memcpy(page_address(pfrag->page) + pfrag->offset,
2361 page_address(page) + *offset, *len);
2362 *offset = pfrag->offset;
2363 pfrag->offset += *len;
2364
2365 return pfrag->page;
2366}
2367
2368static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2369 struct page *page,
2370 unsigned int offset)
2371{
2372 return spd->nr_pages &&
2373 spd->pages[spd->nr_pages - 1] == page &&
2374 (spd->partial[spd->nr_pages - 1].offset +
2375 spd->partial[spd->nr_pages - 1].len == offset);
2376}
2377
2378/*
2379 * Fill page/offset/length into spd, if it can hold more pages.
2380 */
2381static bool spd_fill_page(struct splice_pipe_desc *spd,
2382 struct pipe_inode_info *pipe, struct page *page,
2383 unsigned int *len, unsigned int offset,
2384 bool linear,
2385 struct sock *sk)
2386{
2387 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2388 return true;
2389
2390 if (linear) {
2391 page = linear_to_page(page, len, &offset, sk);
2392 if (!page)
2393 return true;
2394 }
2395 if (spd_can_coalesce(spd, page, offset)) {
2396 spd->partial[spd->nr_pages - 1].len += *len;
2397 return false;
2398 }
2399 get_page(page);
2400 spd->pages[spd->nr_pages] = page;
2401 spd->partial[spd->nr_pages].len = *len;
2402 spd->partial[spd->nr_pages].offset = offset;
2403 spd->nr_pages++;
2404
2405 return false;
2406}
2407
2408static bool __splice_segment(struct page *page, unsigned int poff,
2409 unsigned int plen, unsigned int *off,
2410 unsigned int *len,
2411 struct splice_pipe_desc *spd, bool linear,
2412 struct sock *sk,
2413 struct pipe_inode_info *pipe)
2414{
2415 if (!*len)
2416 return true;
2417
2418 /* skip this segment if already processed */
2419 if (*off >= plen) {
2420 *off -= plen;
2421 return false;
2422 }
2423
2424 /* ignore any bits we already processed */
2425 poff += *off;
2426 plen -= *off;
2427 *off = 0;
2428
2429 do {
2430 unsigned int flen = min(*len, plen);
2431
2432 if (spd_fill_page(spd, pipe, page, &flen, poff,
2433 linear, sk))
2434 return true;
2435 poff += flen;
2436 plen -= flen;
2437 *len -= flen;
2438 } while (*len && plen);
2439
2440 return false;
2441}
2442
2443/*
2444 * Map linear and fragment data from the skb to spd. It reports true if the
2445 * pipe is full or if we already spliced the requested length.
2446 */
2447static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2448 unsigned int *offset, unsigned int *len,
2449 struct splice_pipe_desc *spd, struct sock *sk)
2450{
2451 int seg;
2452 struct sk_buff *iter;
2453
2454 /* map the linear part :
2455 * If skb->head_frag is set, this 'linear' part is backed by a
2456 * fragment, and if the head is not shared with any clones then
2457 * we can avoid a copy since we own the head portion of this page.
2458 */
2459 if (__splice_segment(virt_to_page(skb->data),
2460 (unsigned long) skb->data & (PAGE_SIZE - 1),
2461 skb_headlen(skb),
2462 offset, len, spd,
2463 skb_head_is_locked(skb),
2464 sk, pipe))
2465 return true;
2466
2467 /*
2468 * then map the fragments
2469 */
2470 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2471 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2472
2473 if (__splice_segment(skb_frag_page(f),
2474 skb_frag_off(f), skb_frag_size(f),
2475 offset, len, spd, false, sk, pipe))
2476 return true;
2477 }
2478
2479 skb_walk_frags(skb, iter) {
2480 if (*offset >= iter->len) {
2481 *offset -= iter->len;
2482 continue;
2483 }
2484 /* __skb_splice_bits() only fails if the output has no room
2485 * left, so no point in going over the frag_list for the error
2486 * case.
2487 */
2488 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2489 return true;
2490 }
2491
2492 return false;
2493}
2494
2495/*
2496 * Map data from the skb to a pipe. Should handle both the linear part,
2497 * the fragments, and the frag list.
2498 */
2499int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2500 struct pipe_inode_info *pipe, unsigned int tlen,
2501 unsigned int flags)
2502{
2503 struct partial_page partial[MAX_SKB_FRAGS];
2504 struct page *pages[MAX_SKB_FRAGS];
2505 struct splice_pipe_desc spd = {
2506 .pages = pages,
2507 .partial = partial,
2508 .nr_pages_max = MAX_SKB_FRAGS,
2509 .ops = &nosteal_pipe_buf_ops,
2510 .spd_release = sock_spd_release,
2511 };
2512 int ret = 0;
2513
2514 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2515
2516 if (spd.nr_pages)
2517 ret = splice_to_pipe(pipe, &spd);
2518
2519 return ret;
2520}
2521EXPORT_SYMBOL_GPL(skb_splice_bits);
2522
2523static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2524 struct kvec *vec, size_t num, size_t size)
2525{
2526 struct socket *sock = sk->sk_socket;
2527
2528 if (!sock)
2529 return -EINVAL;
2530 return kernel_sendmsg(sock, msg, vec, num, size);
2531}
2532
2533static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2534 size_t size, int flags)
2535{
2536 struct socket *sock = sk->sk_socket;
2537
2538 if (!sock)
2539 return -EINVAL;
2540 return kernel_sendpage(sock, page, offset, size, flags);
2541}
2542
2543typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2544 struct kvec *vec, size_t num, size_t size);
2545typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2546 size_t size, int flags);
2547static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2548 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2549{
2550 unsigned int orig_len = len;
2551 struct sk_buff *head = skb;
2552 unsigned short fragidx;
2553 int slen, ret;
2554
2555do_frag_list:
2556
2557 /* Deal with head data */
2558 while (offset < skb_headlen(skb) && len) {
2559 struct kvec kv;
2560 struct msghdr msg;
2561
2562 slen = min_t(int, len, skb_headlen(skb) - offset);
2563 kv.iov_base = skb->data + offset;
2564 kv.iov_len = slen;
2565 memset(&msg, 0, sizeof(msg));
2566 msg.msg_flags = MSG_DONTWAIT;
2567
2568 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2569 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2570 if (ret <= 0)
2571 goto error;
2572
2573 offset += ret;
2574 len -= ret;
2575 }
2576
2577 /* All the data was skb head? */
2578 if (!len)
2579 goto out;
2580
2581 /* Make offset relative to start of frags */
2582 offset -= skb_headlen(skb);
2583
2584 /* Find where we are in frag list */
2585 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2586 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2587
2588 if (offset < skb_frag_size(frag))
2589 break;
2590
2591 offset -= skb_frag_size(frag);
2592 }
2593
2594 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2595 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2596
2597 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2598
2599 while (slen) {
2600 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2601 sendpage_unlocked, sk,
2602 skb_frag_page(frag),
2603 skb_frag_off(frag) + offset,
2604 slen, MSG_DONTWAIT);
2605 if (ret <= 0)
2606 goto error;
2607
2608 len -= ret;
2609 offset += ret;
2610 slen -= ret;
2611 }
2612
2613 offset = 0;
2614 }
2615
2616 if (len) {
2617 /* Process any frag lists */
2618
2619 if (skb == head) {
2620 if (skb_has_frag_list(skb)) {
2621 skb = skb_shinfo(skb)->frag_list;
2622 goto do_frag_list;
2623 }
2624 } else if (skb->next) {
2625 skb = skb->next;
2626 goto do_frag_list;
2627 }
2628 }
2629
2630out:
2631 return orig_len - len;
2632
2633error:
2634 return orig_len == len ? ret : orig_len - len;
2635}
2636
2637/* Send skb data on a socket. Socket must be locked. */
2638int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2639 int len)
2640{
2641 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2642 kernel_sendpage_locked);
2643}
2644EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2645
2646/* Send skb data on a socket. Socket must be unlocked. */
2647int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2648{
2649 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2650 sendpage_unlocked);
2651}
2652
2653/**
2654 * skb_store_bits - store bits from kernel buffer to skb
2655 * @skb: destination buffer
2656 * @offset: offset in destination
2657 * @from: source buffer
2658 * @len: number of bytes to copy
2659 *
2660 * Copy the specified number of bytes from the source buffer to the
2661 * destination skb. This function handles all the messy bits of
2662 * traversing fragment lists and such.
2663 */
2664
2665int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2666{
2667 int start = skb_headlen(skb);
2668 struct sk_buff *frag_iter;
2669 int i, copy;
2670
2671 if (offset > (int)skb->len - len)
2672 goto fault;
2673
2674 if ((copy = start - offset) > 0) {
2675 if (copy > len)
2676 copy = len;
2677 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2678 if ((len -= copy) == 0)
2679 return 0;
2680 offset += copy;
2681 from += copy;
2682 }
2683
2684 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2686 int end;
2687
2688 WARN_ON(start > offset + len);
2689
2690 end = start + skb_frag_size(frag);
2691 if ((copy = end - offset) > 0) {
2692 u32 p_off, p_len, copied;
2693 struct page *p;
2694 u8 *vaddr;
2695
2696 if (copy > len)
2697 copy = len;
2698
2699 skb_frag_foreach_page(frag,
2700 skb_frag_off(frag) + offset - start,
2701 copy, p, p_off, p_len, copied) {
2702 vaddr = kmap_atomic(p);
2703 memcpy(vaddr + p_off, from + copied, p_len);
2704 kunmap_atomic(vaddr);
2705 }
2706
2707 if ((len -= copy) == 0)
2708 return 0;
2709 offset += copy;
2710 from += copy;
2711 }
2712 start = end;
2713 }
2714
2715 skb_walk_frags(skb, frag_iter) {
2716 int end;
2717
2718 WARN_ON(start > offset + len);
2719
2720 end = start + frag_iter->len;
2721 if ((copy = end - offset) > 0) {
2722 if (copy > len)
2723 copy = len;
2724 if (skb_store_bits(frag_iter, offset - start,
2725 from, copy))
2726 goto fault;
2727 if ((len -= copy) == 0)
2728 return 0;
2729 offset += copy;
2730 from += copy;
2731 }
2732 start = end;
2733 }
2734 if (!len)
2735 return 0;
2736
2737fault:
2738 return -EFAULT;
2739}
2740EXPORT_SYMBOL(skb_store_bits);
2741
2742/* Checksum skb data. */
2743__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2744 __wsum csum, const struct skb_checksum_ops *ops)
2745{
2746 int start = skb_headlen(skb);
2747 int i, copy = start - offset;
2748 struct sk_buff *frag_iter;
2749 int pos = 0;
2750
2751 /* Checksum header. */
2752 if (copy > 0) {
2753 if (copy > len)
2754 copy = len;
2755 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2756 skb->data + offset, copy, csum);
2757 if ((len -= copy) == 0)
2758 return csum;
2759 offset += copy;
2760 pos = copy;
2761 }
2762
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 int end;
2765 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2766
2767 WARN_ON(start > offset + len);
2768
2769 end = start + skb_frag_size(frag);
2770 if ((copy = end - offset) > 0) {
2771 u32 p_off, p_len, copied;
2772 struct page *p;
2773 __wsum csum2;
2774 u8 *vaddr;
2775
2776 if (copy > len)
2777 copy = len;
2778
2779 skb_frag_foreach_page(frag,
2780 skb_frag_off(frag) + offset - start,
2781 copy, p, p_off, p_len, copied) {
2782 vaddr = kmap_atomic(p);
2783 csum2 = INDIRECT_CALL_1(ops->update,
2784 csum_partial_ext,
2785 vaddr + p_off, p_len, 0);
2786 kunmap_atomic(vaddr);
2787 csum = INDIRECT_CALL_1(ops->combine,
2788 csum_block_add_ext, csum,
2789 csum2, pos, p_len);
2790 pos += p_len;
2791 }
2792
2793 if (!(len -= copy))
2794 return csum;
2795 offset += copy;
2796 }
2797 start = end;
2798 }
2799
2800 skb_walk_frags(skb, frag_iter) {
2801 int end;
2802
2803 WARN_ON(start > offset + len);
2804
2805 end = start + frag_iter->len;
2806 if ((copy = end - offset) > 0) {
2807 __wsum csum2;
2808 if (copy > len)
2809 copy = len;
2810 csum2 = __skb_checksum(frag_iter, offset - start,
2811 copy, 0, ops);
2812 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2813 csum, csum2, pos, copy);
2814 if ((len -= copy) == 0)
2815 return csum;
2816 offset += copy;
2817 pos += copy;
2818 }
2819 start = end;
2820 }
2821 BUG_ON(len);
2822
2823 return csum;
2824}
2825EXPORT_SYMBOL(__skb_checksum);
2826
2827__wsum skb_checksum(const struct sk_buff *skb, int offset,
2828 int len, __wsum csum)
2829{
2830 const struct skb_checksum_ops ops = {
2831 .update = csum_partial_ext,
2832 .combine = csum_block_add_ext,
2833 };
2834
2835 return __skb_checksum(skb, offset, len, csum, &ops);
2836}
2837EXPORT_SYMBOL(skb_checksum);
2838
2839/* Both of above in one bottle. */
2840
2841__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2842 u8 *to, int len)
2843{
2844 int start = skb_headlen(skb);
2845 int i, copy = start - offset;
2846 struct sk_buff *frag_iter;
2847 int pos = 0;
2848 __wsum csum = 0;
2849
2850 /* Copy header. */
2851 if (copy > 0) {
2852 if (copy > len)
2853 copy = len;
2854 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2855 copy);
2856 if ((len -= copy) == 0)
2857 return csum;
2858 offset += copy;
2859 to += copy;
2860 pos = copy;
2861 }
2862
2863 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2864 int end;
2865
2866 WARN_ON(start > offset + len);
2867
2868 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2869 if ((copy = end - offset) > 0) {
2870 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2871 u32 p_off, p_len, copied;
2872 struct page *p;
2873 __wsum csum2;
2874 u8 *vaddr;
2875
2876 if (copy > len)
2877 copy = len;
2878
2879 skb_frag_foreach_page(frag,
2880 skb_frag_off(frag) + offset - start,
2881 copy, p, p_off, p_len, copied) {
2882 vaddr = kmap_atomic(p);
2883 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2884 to + copied,
2885 p_len);
2886 kunmap_atomic(vaddr);
2887 csum = csum_block_add(csum, csum2, pos);
2888 pos += p_len;
2889 }
2890
2891 if (!(len -= copy))
2892 return csum;
2893 offset += copy;
2894 to += copy;
2895 }
2896 start = end;
2897 }
2898
2899 skb_walk_frags(skb, frag_iter) {
2900 __wsum csum2;
2901 int end;
2902
2903 WARN_ON(start > offset + len);
2904
2905 end = start + frag_iter->len;
2906 if ((copy = end - offset) > 0) {
2907 if (copy > len)
2908 copy = len;
2909 csum2 = skb_copy_and_csum_bits(frag_iter,
2910 offset - start,
2911 to, copy);
2912 csum = csum_block_add(csum, csum2, pos);
2913 if ((len -= copy) == 0)
2914 return csum;
2915 offset += copy;
2916 to += copy;
2917 pos += copy;
2918 }
2919 start = end;
2920 }
2921 BUG_ON(len);
2922 return csum;
2923}
2924EXPORT_SYMBOL(skb_copy_and_csum_bits);
2925
2926__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2927{
2928 __sum16 sum;
2929
2930 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2931 /* See comments in __skb_checksum_complete(). */
2932 if (likely(!sum)) {
2933 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2934 !skb->csum_complete_sw)
2935 netdev_rx_csum_fault(skb->dev, skb);
2936 }
2937 if (!skb_shared(skb))
2938 skb->csum_valid = !sum;
2939 return sum;
2940}
2941EXPORT_SYMBOL(__skb_checksum_complete_head);
2942
2943/* This function assumes skb->csum already holds pseudo header's checksum,
2944 * which has been changed from the hardware checksum, for example, by
2945 * __skb_checksum_validate_complete(). And, the original skb->csum must
2946 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2947 *
2948 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2949 * zero. The new checksum is stored back into skb->csum unless the skb is
2950 * shared.
2951 */
2952__sum16 __skb_checksum_complete(struct sk_buff *skb)
2953{
2954 __wsum csum;
2955 __sum16 sum;
2956
2957 csum = skb_checksum(skb, 0, skb->len, 0);
2958
2959 sum = csum_fold(csum_add(skb->csum, csum));
2960 /* This check is inverted, because we already knew the hardware
2961 * checksum is invalid before calling this function. So, if the
2962 * re-computed checksum is valid instead, then we have a mismatch
2963 * between the original skb->csum and skb_checksum(). This means either
2964 * the original hardware checksum is incorrect or we screw up skb->csum
2965 * when moving skb->data around.
2966 */
2967 if (likely(!sum)) {
2968 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2969 !skb->csum_complete_sw)
2970 netdev_rx_csum_fault(skb->dev, skb);
2971 }
2972
2973 if (!skb_shared(skb)) {
2974 /* Save full packet checksum */
2975 skb->csum = csum;
2976 skb->ip_summed = CHECKSUM_COMPLETE;
2977 skb->csum_complete_sw = 1;
2978 skb->csum_valid = !sum;
2979 }
2980
2981 return sum;
2982}
2983EXPORT_SYMBOL(__skb_checksum_complete);
2984
2985static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2986{
2987 net_warn_ratelimited(
2988 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2989 __func__);
2990 return 0;
2991}
2992
2993static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2994 int offset, int len)
2995{
2996 net_warn_ratelimited(
2997 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2998 __func__);
2999 return 0;
3000}
3001
3002static const struct skb_checksum_ops default_crc32c_ops = {
3003 .update = warn_crc32c_csum_update,
3004 .combine = warn_crc32c_csum_combine,
3005};
3006
3007const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3008 &default_crc32c_ops;
3009EXPORT_SYMBOL(crc32c_csum_stub);
3010
3011 /**
3012 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3013 * @from: source buffer
3014 *
3015 * Calculates the amount of linear headroom needed in the 'to' skb passed
3016 * into skb_zerocopy().
3017 */
3018unsigned int
3019skb_zerocopy_headlen(const struct sk_buff *from)
3020{
3021 unsigned int hlen = 0;
3022
3023 if (!from->head_frag ||
3024 skb_headlen(from) < L1_CACHE_BYTES ||
3025 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3026 hlen = skb_headlen(from);
3027 if (!hlen)
3028 hlen = from->len;
3029 }
3030
3031 if (skb_has_frag_list(from))
3032 hlen = from->len;
3033
3034 return hlen;
3035}
3036EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3037
3038/**
3039 * skb_zerocopy - Zero copy skb to skb
3040 * @to: destination buffer
3041 * @from: source buffer
3042 * @len: number of bytes to copy from source buffer
3043 * @hlen: size of linear headroom in destination buffer
3044 *
3045 * Copies up to `len` bytes from `from` to `to` by creating references
3046 * to the frags in the source buffer.
3047 *
3048 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3049 * headroom in the `to` buffer.
3050 *
3051 * Return value:
3052 * 0: everything is OK
3053 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3054 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3055 */
3056int
3057skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3058{
3059 int i, j = 0;
3060 int plen = 0; /* length of skb->head fragment */
3061 int ret;
3062 struct page *page;
3063 unsigned int offset;
3064
3065 BUG_ON(!from->head_frag && !hlen);
3066
3067 /* dont bother with small payloads */
3068 if (len <= skb_tailroom(to))
3069 return skb_copy_bits(from, 0, skb_put(to, len), len);
3070
3071 if (hlen) {
3072 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3073 if (unlikely(ret))
3074 return ret;
3075 len -= hlen;
3076 } else {
3077 plen = min_t(int, skb_headlen(from), len);
3078 if (plen) {
3079 page = virt_to_head_page(from->head);
3080 offset = from->data - (unsigned char *)page_address(page);
3081 __skb_fill_page_desc(to, 0, page, offset, plen);
3082 get_page(page);
3083 j = 1;
3084 len -= plen;
3085 }
3086 }
3087
3088 to->truesize += len + plen;
3089 to->len += len + plen;
3090 to->data_len += len + plen;
3091
3092 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3093 skb_tx_error(from);
3094 return -ENOMEM;
3095 }
3096 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3097
3098 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3099 int size;
3100
3101 if (!len)
3102 break;
3103 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3104 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3105 len);
3106 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3107 len -= size;
3108 skb_frag_ref(to, j);
3109 j++;
3110 }
3111 skb_shinfo(to)->nr_frags = j;
3112
3113 return 0;
3114}
3115EXPORT_SYMBOL_GPL(skb_zerocopy);
3116
3117void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3118{
3119 __wsum csum;
3120 long csstart;
3121
3122 if (skb->ip_summed == CHECKSUM_PARTIAL)
3123 csstart = skb_checksum_start_offset(skb);
3124 else
3125 csstart = skb_headlen(skb);
3126
3127 BUG_ON(csstart > skb_headlen(skb));
3128
3129 skb_copy_from_linear_data(skb, to, csstart);
3130
3131 csum = 0;
3132 if (csstart != skb->len)
3133 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3134 skb->len - csstart);
3135
3136 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137 long csstuff = csstart + skb->csum_offset;
3138
3139 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3140 }
3141}
3142EXPORT_SYMBOL(skb_copy_and_csum_dev);
3143
3144/**
3145 * skb_dequeue - remove from the head of the queue
3146 * @list: list to dequeue from
3147 *
3148 * Remove the head of the list. The list lock is taken so the function
3149 * may be used safely with other locking list functions. The head item is
3150 * returned or %NULL if the list is empty.
3151 */
3152
3153struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3154{
3155 unsigned long flags;
3156 struct sk_buff *result;
3157
3158 spin_lock_irqsave(&list->lock, flags);
3159 result = __skb_dequeue(list);
3160 spin_unlock_irqrestore(&list->lock, flags);
3161 return result;
3162}
3163EXPORT_SYMBOL(skb_dequeue);
3164
3165/**
3166 * skb_dequeue_tail - remove from the tail of the queue
3167 * @list: list to dequeue from
3168 *
3169 * Remove the tail of the list. The list lock is taken so the function
3170 * may be used safely with other locking list functions. The tail item is
3171 * returned or %NULL if the list is empty.
3172 */
3173struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3174{
3175 unsigned long flags;
3176 struct sk_buff *result;
3177
3178 spin_lock_irqsave(&list->lock, flags);
3179 result = __skb_dequeue_tail(list);
3180 spin_unlock_irqrestore(&list->lock, flags);
3181 return result;
3182}
3183EXPORT_SYMBOL(skb_dequeue_tail);
3184
3185/**
3186 * skb_queue_purge - empty a list
3187 * @list: list to empty
3188 *
3189 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3190 * the list and one reference dropped. This function takes the list
3191 * lock and is atomic with respect to other list locking functions.
3192 */
3193void skb_queue_purge(struct sk_buff_head *list)
3194{
3195 struct sk_buff *skb;
3196 while ((skb = skb_dequeue(list)) != NULL)
3197 kfree_skb(skb);
3198}
3199EXPORT_SYMBOL(skb_queue_purge);
3200
3201/**
3202 * skb_rbtree_purge - empty a skb rbtree
3203 * @root: root of the rbtree to empty
3204 * Return value: the sum of truesizes of all purged skbs.
3205 *
3206 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3207 * the list and one reference dropped. This function does not take
3208 * any lock. Synchronization should be handled by the caller (e.g., TCP
3209 * out-of-order queue is protected by the socket lock).
3210 */
3211unsigned int skb_rbtree_purge(struct rb_root *root)
3212{
3213 struct rb_node *p = rb_first(root);
3214 unsigned int sum = 0;
3215
3216 while (p) {
3217 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3218
3219 p = rb_next(p);
3220 rb_erase(&skb->rbnode, root);
3221 sum += skb->truesize;
3222 kfree_skb(skb);
3223 }
3224 return sum;
3225}
3226
3227/**
3228 * skb_queue_head - queue a buffer at the list head
3229 * @list: list to use
3230 * @newsk: buffer to queue
3231 *
3232 * Queue a buffer at the start of the list. This function takes the
3233 * list lock and can be used safely with other locking &sk_buff functions
3234 * safely.
3235 *
3236 * A buffer cannot be placed on two lists at the same time.
3237 */
3238void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3239{
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&list->lock, flags);
3243 __skb_queue_head(list, newsk);
3244 spin_unlock_irqrestore(&list->lock, flags);
3245}
3246EXPORT_SYMBOL(skb_queue_head);
3247
3248/**
3249 * skb_queue_tail - queue a buffer at the list tail
3250 * @list: list to use
3251 * @newsk: buffer to queue
3252 *
3253 * Queue a buffer at the tail of the list. This function takes the
3254 * list lock and can be used safely with other locking &sk_buff functions
3255 * safely.
3256 *
3257 * A buffer cannot be placed on two lists at the same time.
3258 */
3259void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3260{
3261 unsigned long flags;
3262
3263 spin_lock_irqsave(&list->lock, flags);
3264 __skb_queue_tail(list, newsk);
3265 spin_unlock_irqrestore(&list->lock, flags);
3266}
3267EXPORT_SYMBOL(skb_queue_tail);
3268
3269/**
3270 * skb_unlink - remove a buffer from a list
3271 * @skb: buffer to remove
3272 * @list: list to use
3273 *
3274 * Remove a packet from a list. The list locks are taken and this
3275 * function is atomic with respect to other list locked calls
3276 *
3277 * You must know what list the SKB is on.
3278 */
3279void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3280{
3281 unsigned long flags;
3282
3283 spin_lock_irqsave(&list->lock, flags);
3284 __skb_unlink(skb, list);
3285 spin_unlock_irqrestore(&list->lock, flags);
3286}
3287EXPORT_SYMBOL(skb_unlink);
3288
3289/**
3290 * skb_append - append a buffer
3291 * @old: buffer to insert after
3292 * @newsk: buffer to insert
3293 * @list: list to use
3294 *
3295 * Place a packet after a given packet in a list. The list locks are taken
3296 * and this function is atomic with respect to other list locked calls.
3297 * A buffer cannot be placed on two lists at the same time.
3298 */
3299void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3300{
3301 unsigned long flags;
3302
3303 spin_lock_irqsave(&list->lock, flags);
3304 __skb_queue_after(list, old, newsk);
3305 spin_unlock_irqrestore(&list->lock, flags);
3306}
3307EXPORT_SYMBOL(skb_append);
3308
3309static inline void skb_split_inside_header(struct sk_buff *skb,
3310 struct sk_buff* skb1,
3311 const u32 len, const int pos)
3312{
3313 int i;
3314
3315 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3316 pos - len);
3317 /* And move data appendix as is. */
3318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3319 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3320
3321 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3322 skb_shinfo(skb)->nr_frags = 0;
3323 skb1->data_len = skb->data_len;
3324 skb1->len += skb1->data_len;
3325 skb->data_len = 0;
3326 skb->len = len;
3327 skb_set_tail_pointer(skb, len);
3328}
3329
3330static inline void skb_split_no_header(struct sk_buff *skb,
3331 struct sk_buff* skb1,
3332 const u32 len, int pos)
3333{
3334 int i, k = 0;
3335 const int nfrags = skb_shinfo(skb)->nr_frags;
3336
3337 skb_shinfo(skb)->nr_frags = 0;
3338 skb1->len = skb1->data_len = skb->len - len;
3339 skb->len = len;
3340 skb->data_len = len - pos;
3341
3342 for (i = 0; i < nfrags; i++) {
3343 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344
3345 if (pos + size > len) {
3346 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3347
3348 if (pos < len) {
3349 /* Split frag.
3350 * We have two variants in this case:
3351 * 1. Move all the frag to the second
3352 * part, if it is possible. F.e.
3353 * this approach is mandatory for TUX,
3354 * where splitting is expensive.
3355 * 2. Split is accurately. We make this.
3356 */
3357 skb_frag_ref(skb, i);
3358 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3359 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3360 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3361 skb_shinfo(skb)->nr_frags++;
3362 }
3363 k++;
3364 } else
3365 skb_shinfo(skb)->nr_frags++;
3366 pos += size;
3367 }
3368 skb_shinfo(skb1)->nr_frags = k;
3369}
3370
3371/**
3372 * skb_split - Split fragmented skb to two parts at length len.
3373 * @skb: the buffer to split
3374 * @skb1: the buffer to receive the second part
3375 * @len: new length for skb
3376 */
3377void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3378{
3379 int pos = skb_headlen(skb);
3380
3381 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3382 skb_zerocopy_clone(skb1, skb, 0);
3383 if (len < pos) /* Split line is inside header. */
3384 skb_split_inside_header(skb, skb1, len, pos);
3385 else /* Second chunk has no header, nothing to copy. */
3386 skb_split_no_header(skb, skb1, len, pos);
3387}
3388EXPORT_SYMBOL(skb_split);
3389
3390/* Shifting from/to a cloned skb is a no-go.
3391 *
3392 * Caller cannot keep skb_shinfo related pointers past calling here!
3393 */
3394static int skb_prepare_for_shift(struct sk_buff *skb)
3395{
3396 int ret = 0;
3397
3398 if (skb_cloned(skb)) {
3399 /* Save and restore truesize: pskb_expand_head() may reallocate
3400 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3401 * cannot change truesize at this point.
3402 */
3403 unsigned int save_truesize = skb->truesize;
3404
3405 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3406 skb->truesize = save_truesize;
3407 }
3408 return ret;
3409}
3410
3411/**
3412 * skb_shift - Shifts paged data partially from skb to another
3413 * @tgt: buffer into which tail data gets added
3414 * @skb: buffer from which the paged data comes from
3415 * @shiftlen: shift up to this many bytes
3416 *
3417 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3418 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3419 * It's up to caller to free skb if everything was shifted.
3420 *
3421 * If @tgt runs out of frags, the whole operation is aborted.
3422 *
3423 * Skb cannot include anything else but paged data while tgt is allowed
3424 * to have non-paged data as well.
3425 *
3426 * TODO: full sized shift could be optimized but that would need
3427 * specialized skb free'er to handle frags without up-to-date nr_frags.
3428 */
3429int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3430{
3431 int from, to, merge, todo;
3432 skb_frag_t *fragfrom, *fragto;
3433
3434 BUG_ON(shiftlen > skb->len);
3435
3436 if (skb_headlen(skb))
3437 return 0;
3438 if (skb_zcopy(tgt) || skb_zcopy(skb))
3439 return 0;
3440
3441 todo = shiftlen;
3442 from = 0;
3443 to = skb_shinfo(tgt)->nr_frags;
3444 fragfrom = &skb_shinfo(skb)->frags[from];
3445
3446 /* Actual merge is delayed until the point when we know we can
3447 * commit all, so that we don't have to undo partial changes
3448 */
3449 if (!to ||
3450 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3451 skb_frag_off(fragfrom))) {
3452 merge = -1;
3453 } else {
3454 merge = to - 1;
3455
3456 todo -= skb_frag_size(fragfrom);
3457 if (todo < 0) {
3458 if (skb_prepare_for_shift(skb) ||
3459 skb_prepare_for_shift(tgt))
3460 return 0;
3461
3462 /* All previous frag pointers might be stale! */
3463 fragfrom = &skb_shinfo(skb)->frags[from];
3464 fragto = &skb_shinfo(tgt)->frags[merge];
3465
3466 skb_frag_size_add(fragto, shiftlen);
3467 skb_frag_size_sub(fragfrom, shiftlen);
3468 skb_frag_off_add(fragfrom, shiftlen);
3469
3470 goto onlymerged;
3471 }
3472
3473 from++;
3474 }
3475
3476 /* Skip full, not-fitting skb to avoid expensive operations */
3477 if ((shiftlen == skb->len) &&
3478 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3479 return 0;
3480
3481 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3482 return 0;
3483
3484 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3485 if (to == MAX_SKB_FRAGS)
3486 return 0;
3487
3488 fragfrom = &skb_shinfo(skb)->frags[from];
3489 fragto = &skb_shinfo(tgt)->frags[to];
3490
3491 if (todo >= skb_frag_size(fragfrom)) {
3492 *fragto = *fragfrom;
3493 todo -= skb_frag_size(fragfrom);
3494 from++;
3495 to++;
3496
3497 } else {
3498 __skb_frag_ref(fragfrom);
3499 skb_frag_page_copy(fragto, fragfrom);
3500 skb_frag_off_copy(fragto, fragfrom);
3501 skb_frag_size_set(fragto, todo);
3502
3503 skb_frag_off_add(fragfrom, todo);
3504 skb_frag_size_sub(fragfrom, todo);
3505 todo = 0;
3506
3507 to++;
3508 break;
3509 }
3510 }
3511
3512 /* Ready to "commit" this state change to tgt */
3513 skb_shinfo(tgt)->nr_frags = to;
3514
3515 if (merge >= 0) {
3516 fragfrom = &skb_shinfo(skb)->frags[0];
3517 fragto = &skb_shinfo(tgt)->frags[merge];
3518
3519 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3520 __skb_frag_unref(fragfrom, skb->pp_recycle);
3521 }
3522
3523 /* Reposition in the original skb */
3524 to = 0;
3525 while (from < skb_shinfo(skb)->nr_frags)
3526 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3527 skb_shinfo(skb)->nr_frags = to;
3528
3529 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3530
3531onlymerged:
3532 /* Most likely the tgt won't ever need its checksum anymore, skb on
3533 * the other hand might need it if it needs to be resent
3534 */
3535 tgt->ip_summed = CHECKSUM_PARTIAL;
3536 skb->ip_summed = CHECKSUM_PARTIAL;
3537
3538 /* Yak, is it really working this way? Some helper please? */
3539 skb->len -= shiftlen;
3540 skb->data_len -= shiftlen;
3541 skb->truesize -= shiftlen;
3542 tgt->len += shiftlen;
3543 tgt->data_len += shiftlen;
3544 tgt->truesize += shiftlen;
3545
3546 return shiftlen;
3547}
3548
3549/**
3550 * skb_prepare_seq_read - Prepare a sequential read of skb data
3551 * @skb: the buffer to read
3552 * @from: lower offset of data to be read
3553 * @to: upper offset of data to be read
3554 * @st: state variable
3555 *
3556 * Initializes the specified state variable. Must be called before
3557 * invoking skb_seq_read() for the first time.
3558 */
3559void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3560 unsigned int to, struct skb_seq_state *st)
3561{
3562 st->lower_offset = from;
3563 st->upper_offset = to;
3564 st->root_skb = st->cur_skb = skb;
3565 st->frag_idx = st->stepped_offset = 0;
3566 st->frag_data = NULL;
3567 st->frag_off = 0;
3568}
3569EXPORT_SYMBOL(skb_prepare_seq_read);
3570
3571/**
3572 * skb_seq_read - Sequentially read skb data
3573 * @consumed: number of bytes consumed by the caller so far
3574 * @data: destination pointer for data to be returned
3575 * @st: state variable
3576 *
3577 * Reads a block of skb data at @consumed relative to the
3578 * lower offset specified to skb_prepare_seq_read(). Assigns
3579 * the head of the data block to @data and returns the length
3580 * of the block or 0 if the end of the skb data or the upper
3581 * offset has been reached.
3582 *
3583 * The caller is not required to consume all of the data
3584 * returned, i.e. @consumed is typically set to the number
3585 * of bytes already consumed and the next call to
3586 * skb_seq_read() will return the remaining part of the block.
3587 *
3588 * Note 1: The size of each block of data returned can be arbitrary,
3589 * this limitation is the cost for zerocopy sequential
3590 * reads of potentially non linear data.
3591 *
3592 * Note 2: Fragment lists within fragments are not implemented
3593 * at the moment, state->root_skb could be replaced with
3594 * a stack for this purpose.
3595 */
3596unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3597 struct skb_seq_state *st)
3598{
3599 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3600 skb_frag_t *frag;
3601
3602 if (unlikely(abs_offset >= st->upper_offset)) {
3603 if (st->frag_data) {
3604 kunmap_atomic(st->frag_data);
3605 st->frag_data = NULL;
3606 }
3607 return 0;
3608 }
3609
3610next_skb:
3611 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3612
3613 if (abs_offset < block_limit && !st->frag_data) {
3614 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3615 return block_limit - abs_offset;
3616 }
3617
3618 if (st->frag_idx == 0 && !st->frag_data)
3619 st->stepped_offset += skb_headlen(st->cur_skb);
3620
3621 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3622 unsigned int pg_idx, pg_off, pg_sz;
3623
3624 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3625
3626 pg_idx = 0;
3627 pg_off = skb_frag_off(frag);
3628 pg_sz = skb_frag_size(frag);
3629
3630 if (skb_frag_must_loop(skb_frag_page(frag))) {
3631 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3632 pg_off = offset_in_page(pg_off + st->frag_off);
3633 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3634 PAGE_SIZE - pg_off);
3635 }
3636
3637 block_limit = pg_sz + st->stepped_offset;
3638 if (abs_offset < block_limit) {
3639 if (!st->frag_data)
3640 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3641
3642 *data = (u8 *)st->frag_data + pg_off +
3643 (abs_offset - st->stepped_offset);
3644
3645 return block_limit - abs_offset;
3646 }
3647
3648 if (st->frag_data) {
3649 kunmap_atomic(st->frag_data);
3650 st->frag_data = NULL;
3651 }
3652
3653 st->stepped_offset += pg_sz;
3654 st->frag_off += pg_sz;
3655 if (st->frag_off == skb_frag_size(frag)) {
3656 st->frag_off = 0;
3657 st->frag_idx++;
3658 }
3659 }
3660
3661 if (st->frag_data) {
3662 kunmap_atomic(st->frag_data);
3663 st->frag_data = NULL;
3664 }
3665
3666 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3667 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3668 st->frag_idx = 0;
3669 goto next_skb;
3670 } else if (st->cur_skb->next) {
3671 st->cur_skb = st->cur_skb->next;
3672 st->frag_idx = 0;
3673 goto next_skb;
3674 }
3675
3676 return 0;
3677}
3678EXPORT_SYMBOL(skb_seq_read);
3679
3680/**
3681 * skb_abort_seq_read - Abort a sequential read of skb data
3682 * @st: state variable
3683 *
3684 * Must be called if skb_seq_read() was not called until it
3685 * returned 0.
3686 */
3687void skb_abort_seq_read(struct skb_seq_state *st)
3688{
3689 if (st->frag_data)
3690 kunmap_atomic(st->frag_data);
3691}
3692EXPORT_SYMBOL(skb_abort_seq_read);
3693
3694#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3695
3696static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3697 struct ts_config *conf,
3698 struct ts_state *state)
3699{
3700 return skb_seq_read(offset, text, TS_SKB_CB(state));
3701}
3702
3703static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3704{
3705 skb_abort_seq_read(TS_SKB_CB(state));
3706}
3707
3708/**
3709 * skb_find_text - Find a text pattern in skb data
3710 * @skb: the buffer to look in
3711 * @from: search offset
3712 * @to: search limit
3713 * @config: textsearch configuration
3714 *
3715 * Finds a pattern in the skb data according to the specified
3716 * textsearch configuration. Use textsearch_next() to retrieve
3717 * subsequent occurrences of the pattern. Returns the offset
3718 * to the first occurrence or UINT_MAX if no match was found.
3719 */
3720unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3721 unsigned int to, struct ts_config *config)
3722{
3723 struct ts_state state;
3724 unsigned int ret;
3725
3726 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3727
3728 config->get_next_block = skb_ts_get_next_block;
3729 config->finish = skb_ts_finish;
3730
3731 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3732
3733 ret = textsearch_find(config, &state);
3734 return (ret <= to - from ? ret : UINT_MAX);
3735}
3736EXPORT_SYMBOL(skb_find_text);
3737
3738int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3739 int offset, size_t size)
3740{
3741 int i = skb_shinfo(skb)->nr_frags;
3742
3743 if (skb_can_coalesce(skb, i, page, offset)) {
3744 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3745 } else if (i < MAX_SKB_FRAGS) {
3746 get_page(page);
3747 skb_fill_page_desc(skb, i, page, offset, size);
3748 } else {
3749 return -EMSGSIZE;
3750 }
3751
3752 return 0;
3753}
3754EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3755
3756/**
3757 * skb_pull_rcsum - pull skb and update receive checksum
3758 * @skb: buffer to update
3759 * @len: length of data pulled
3760 *
3761 * This function performs an skb_pull on the packet and updates
3762 * the CHECKSUM_COMPLETE checksum. It should be used on
3763 * receive path processing instead of skb_pull unless you know
3764 * that the checksum difference is zero (e.g., a valid IP header)
3765 * or you are setting ip_summed to CHECKSUM_NONE.
3766 */
3767void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3768{
3769 unsigned char *data = skb->data;
3770
3771 BUG_ON(len > skb->len);
3772 __skb_pull(skb, len);
3773 skb_postpull_rcsum(skb, data, len);
3774 return skb->data;
3775}
3776EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3777
3778static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3779{
3780 skb_frag_t head_frag;
3781 struct page *page;
3782
3783 page = virt_to_head_page(frag_skb->head);
3784 __skb_frag_set_page(&head_frag, page);
3785 skb_frag_off_set(&head_frag, frag_skb->data -
3786 (unsigned char *)page_address(page));
3787 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3788 return head_frag;
3789}
3790
3791struct sk_buff *skb_segment_list(struct sk_buff *skb,
3792 netdev_features_t features,
3793 unsigned int offset)
3794{
3795 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3796 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3797 unsigned int delta_truesize = 0;
3798 unsigned int delta_len = 0;
3799 struct sk_buff *tail = NULL;
3800 struct sk_buff *nskb, *tmp;
3801 int err;
3802
3803 skb_push(skb, -skb_network_offset(skb) + offset);
3804
3805 skb_shinfo(skb)->frag_list = NULL;
3806
3807 do {
3808 nskb = list_skb;
3809 list_skb = list_skb->next;
3810
3811 err = 0;
3812 if (skb_shared(nskb)) {
3813 tmp = skb_clone(nskb, GFP_ATOMIC);
3814 if (tmp) {
3815 consume_skb(nskb);
3816 nskb = tmp;
3817 err = skb_unclone(nskb, GFP_ATOMIC);
3818 } else {
3819 err = -ENOMEM;
3820 }
3821 }
3822
3823 if (!tail)
3824 skb->next = nskb;
3825 else
3826 tail->next = nskb;
3827
3828 if (unlikely(err)) {
3829 nskb->next = list_skb;
3830 goto err_linearize;
3831 }
3832
3833 tail = nskb;
3834
3835 delta_len += nskb->len;
3836 delta_truesize += nskb->truesize;
3837
3838 skb_push(nskb, -skb_network_offset(nskb) + offset);
3839
3840 skb_release_head_state(nskb);
3841 __copy_skb_header(nskb, skb);
3842
3843 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3844 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3845 nskb->data - tnl_hlen,
3846 offset + tnl_hlen);
3847
3848 if (skb_needs_linearize(nskb, features) &&
3849 __skb_linearize(nskb))
3850 goto err_linearize;
3851
3852 } while (list_skb);
3853
3854 skb->truesize = skb->truesize - delta_truesize;
3855 skb->data_len = skb->data_len - delta_len;
3856 skb->len = skb->len - delta_len;
3857
3858 skb_gso_reset(skb);
3859
3860 skb->prev = tail;
3861
3862 if (skb_needs_linearize(skb, features) &&
3863 __skb_linearize(skb))
3864 goto err_linearize;
3865
3866 skb_get(skb);
3867
3868 return skb;
3869
3870err_linearize:
3871 kfree_skb_list(skb->next);
3872 skb->next = NULL;
3873 return ERR_PTR(-ENOMEM);
3874}
3875EXPORT_SYMBOL_GPL(skb_segment_list);
3876
3877int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3878{
3879 if (unlikely(p->len + skb->len >= 65536))
3880 return -E2BIG;
3881
3882 if (NAPI_GRO_CB(p)->last == p)
3883 skb_shinfo(p)->frag_list = skb;
3884 else
3885 NAPI_GRO_CB(p)->last->next = skb;
3886
3887 skb_pull(skb, skb_gro_offset(skb));
3888
3889 NAPI_GRO_CB(p)->last = skb;
3890 NAPI_GRO_CB(p)->count++;
3891 p->data_len += skb->len;
3892 p->truesize += skb->truesize;
3893 p->len += skb->len;
3894
3895 NAPI_GRO_CB(skb)->same_flow = 1;
3896
3897 return 0;
3898}
3899
3900/**
3901 * skb_segment - Perform protocol segmentation on skb.
3902 * @head_skb: buffer to segment
3903 * @features: features for the output path (see dev->features)
3904 *
3905 * This function performs segmentation on the given skb. It returns
3906 * a pointer to the first in a list of new skbs for the segments.
3907 * In case of error it returns ERR_PTR(err).
3908 */
3909struct sk_buff *skb_segment(struct sk_buff *head_skb,
3910 netdev_features_t features)
3911{
3912 struct sk_buff *segs = NULL;
3913 struct sk_buff *tail = NULL;
3914 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3915 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3916 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3917 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3918 struct sk_buff *frag_skb = head_skb;
3919 unsigned int offset = doffset;
3920 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3921 unsigned int partial_segs = 0;
3922 unsigned int headroom;
3923 unsigned int len = head_skb->len;
3924 __be16 proto;
3925 bool csum, sg;
3926 int nfrags = skb_shinfo(head_skb)->nr_frags;
3927 int err = -ENOMEM;
3928 int i = 0;
3929 int pos;
3930
3931 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3932 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3933 /* gso_size is untrusted, and we have a frag_list with a linear
3934 * non head_frag head.
3935 *
3936 * (we assume checking the first list_skb member suffices;
3937 * i.e if either of the list_skb members have non head_frag
3938 * head, then the first one has too).
3939 *
3940 * If head_skb's headlen does not fit requested gso_size, it
3941 * means that the frag_list members do NOT terminate on exact
3942 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3943 * sharing. Therefore we must fallback to copying the frag_list
3944 * skbs; we do so by disabling SG.
3945 */
3946 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3947 features &= ~NETIF_F_SG;
3948 }
3949
3950 __skb_push(head_skb, doffset);
3951 proto = skb_network_protocol(head_skb, NULL);
3952 if (unlikely(!proto))
3953 return ERR_PTR(-EINVAL);
3954
3955 sg = !!(features & NETIF_F_SG);
3956 csum = !!can_checksum_protocol(features, proto);
3957
3958 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3959 if (!(features & NETIF_F_GSO_PARTIAL)) {
3960 struct sk_buff *iter;
3961 unsigned int frag_len;
3962
3963 if (!list_skb ||
3964 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3965 goto normal;
3966
3967 /* If we get here then all the required
3968 * GSO features except frag_list are supported.
3969 * Try to split the SKB to multiple GSO SKBs
3970 * with no frag_list.
3971 * Currently we can do that only when the buffers don't
3972 * have a linear part and all the buffers except
3973 * the last are of the same length.
3974 */
3975 frag_len = list_skb->len;
3976 skb_walk_frags(head_skb, iter) {
3977 if (frag_len != iter->len && iter->next)
3978 goto normal;
3979 if (skb_headlen(iter) && !iter->head_frag)
3980 goto normal;
3981
3982 len -= iter->len;
3983 }
3984
3985 if (len != frag_len)
3986 goto normal;
3987 }
3988
3989 /* GSO partial only requires that we trim off any excess that
3990 * doesn't fit into an MSS sized block, so take care of that
3991 * now.
3992 */
3993 partial_segs = len / mss;
3994 if (partial_segs > 1)
3995 mss *= partial_segs;
3996 else
3997 partial_segs = 0;
3998 }
3999
4000normal:
4001 headroom = skb_headroom(head_skb);
4002 pos = skb_headlen(head_skb);
4003
4004 do {
4005 struct sk_buff *nskb;
4006 skb_frag_t *nskb_frag;
4007 int hsize;
4008 int size;
4009
4010 if (unlikely(mss == GSO_BY_FRAGS)) {
4011 len = list_skb->len;
4012 } else {
4013 len = head_skb->len - offset;
4014 if (len > mss)
4015 len = mss;
4016 }
4017
4018 hsize = skb_headlen(head_skb) - offset;
4019
4020 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4021 (skb_headlen(list_skb) == len || sg)) {
4022 BUG_ON(skb_headlen(list_skb) > len);
4023
4024 i = 0;
4025 nfrags = skb_shinfo(list_skb)->nr_frags;
4026 frag = skb_shinfo(list_skb)->frags;
4027 frag_skb = list_skb;
4028 pos += skb_headlen(list_skb);
4029
4030 while (pos < offset + len) {
4031 BUG_ON(i >= nfrags);
4032
4033 size = skb_frag_size(frag);
4034 if (pos + size > offset + len)
4035 break;
4036
4037 i++;
4038 pos += size;
4039 frag++;
4040 }
4041
4042 nskb = skb_clone(list_skb, GFP_ATOMIC);
4043 list_skb = list_skb->next;
4044
4045 if (unlikely(!nskb))
4046 goto err;
4047
4048 if (unlikely(pskb_trim(nskb, len))) {
4049 kfree_skb(nskb);
4050 goto err;
4051 }
4052
4053 hsize = skb_end_offset(nskb);
4054 if (skb_cow_head(nskb, doffset + headroom)) {
4055 kfree_skb(nskb);
4056 goto err;
4057 }
4058
4059 nskb->truesize += skb_end_offset(nskb) - hsize;
4060 skb_release_head_state(nskb);
4061 __skb_push(nskb, doffset);
4062 } else {
4063 if (hsize < 0)
4064 hsize = 0;
4065 if (hsize > len || !sg)
4066 hsize = len;
4067
4068 nskb = __alloc_skb(hsize + doffset + headroom,
4069 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4070 NUMA_NO_NODE);
4071
4072 if (unlikely(!nskb))
4073 goto err;
4074
4075 skb_reserve(nskb, headroom);
4076 __skb_put(nskb, doffset);
4077 }
4078
4079 if (segs)
4080 tail->next = nskb;
4081 else
4082 segs = nskb;
4083 tail = nskb;
4084
4085 __copy_skb_header(nskb, head_skb);
4086
4087 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4088 skb_reset_mac_len(nskb);
4089
4090 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4091 nskb->data - tnl_hlen,
4092 doffset + tnl_hlen);
4093
4094 if (nskb->len == len + doffset)
4095 goto perform_csum_check;
4096
4097 if (!sg) {
4098 if (!csum) {
4099 if (!nskb->remcsum_offload)
4100 nskb->ip_summed = CHECKSUM_NONE;
4101 SKB_GSO_CB(nskb)->csum =
4102 skb_copy_and_csum_bits(head_skb, offset,
4103 skb_put(nskb,
4104 len),
4105 len);
4106 SKB_GSO_CB(nskb)->csum_start =
4107 skb_headroom(nskb) + doffset;
4108 } else {
4109 skb_copy_bits(head_skb, offset,
4110 skb_put(nskb, len),
4111 len);
4112 }
4113 continue;
4114 }
4115
4116 nskb_frag = skb_shinfo(nskb)->frags;
4117
4118 skb_copy_from_linear_data_offset(head_skb, offset,
4119 skb_put(nskb, hsize), hsize);
4120
4121 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4122 SKBFL_SHARED_FRAG;
4123
4124 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4125 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4126 goto err;
4127
4128 while (pos < offset + len) {
4129 if (i >= nfrags) {
4130 i = 0;
4131 nfrags = skb_shinfo(list_skb)->nr_frags;
4132 frag = skb_shinfo(list_skb)->frags;
4133 frag_skb = list_skb;
4134 if (!skb_headlen(list_skb)) {
4135 BUG_ON(!nfrags);
4136 } else {
4137 BUG_ON(!list_skb->head_frag);
4138
4139 /* to make room for head_frag. */
4140 i--;
4141 frag--;
4142 }
4143 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4144 skb_zerocopy_clone(nskb, frag_skb,
4145 GFP_ATOMIC))
4146 goto err;
4147
4148 list_skb = list_skb->next;
4149 }
4150
4151 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4152 MAX_SKB_FRAGS)) {
4153 net_warn_ratelimited(
4154 "skb_segment: too many frags: %u %u\n",
4155 pos, mss);
4156 err = -EINVAL;
4157 goto err;
4158 }
4159
4160 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4161 __skb_frag_ref(nskb_frag);
4162 size = skb_frag_size(nskb_frag);
4163
4164 if (pos < offset) {
4165 skb_frag_off_add(nskb_frag, offset - pos);
4166 skb_frag_size_sub(nskb_frag, offset - pos);
4167 }
4168
4169 skb_shinfo(nskb)->nr_frags++;
4170
4171 if (pos + size <= offset + len) {
4172 i++;
4173 frag++;
4174 pos += size;
4175 } else {
4176 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4177 goto skip_fraglist;
4178 }
4179
4180 nskb_frag++;
4181 }
4182
4183skip_fraglist:
4184 nskb->data_len = len - hsize;
4185 nskb->len += nskb->data_len;
4186 nskb->truesize += nskb->data_len;
4187
4188perform_csum_check:
4189 if (!csum) {
4190 if (skb_has_shared_frag(nskb) &&
4191 __skb_linearize(nskb))
4192 goto err;
4193
4194 if (!nskb->remcsum_offload)
4195 nskb->ip_summed = CHECKSUM_NONE;
4196 SKB_GSO_CB(nskb)->csum =
4197 skb_checksum(nskb, doffset,
4198 nskb->len - doffset, 0);
4199 SKB_GSO_CB(nskb)->csum_start =
4200 skb_headroom(nskb) + doffset;
4201 }
4202 } while ((offset += len) < head_skb->len);
4203
4204 /* Some callers want to get the end of the list.
4205 * Put it in segs->prev to avoid walking the list.
4206 * (see validate_xmit_skb_list() for example)
4207 */
4208 segs->prev = tail;
4209
4210 if (partial_segs) {
4211 struct sk_buff *iter;
4212 int type = skb_shinfo(head_skb)->gso_type;
4213 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4214
4215 /* Update type to add partial and then remove dodgy if set */
4216 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4217 type &= ~SKB_GSO_DODGY;
4218
4219 /* Update GSO info and prepare to start updating headers on
4220 * our way back down the stack of protocols.
4221 */
4222 for (iter = segs; iter; iter = iter->next) {
4223 skb_shinfo(iter)->gso_size = gso_size;
4224 skb_shinfo(iter)->gso_segs = partial_segs;
4225 skb_shinfo(iter)->gso_type = type;
4226 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4227 }
4228
4229 if (tail->len - doffset <= gso_size)
4230 skb_shinfo(tail)->gso_size = 0;
4231 else if (tail != segs)
4232 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4233 }
4234
4235 /* Following permits correct backpressure, for protocols
4236 * using skb_set_owner_w().
4237 * Idea is to tranfert ownership from head_skb to last segment.
4238 */
4239 if (head_skb->destructor == sock_wfree) {
4240 swap(tail->truesize, head_skb->truesize);
4241 swap(tail->destructor, head_skb->destructor);
4242 swap(tail->sk, head_skb->sk);
4243 }
4244 return segs;
4245
4246err:
4247 kfree_skb_list(segs);
4248 return ERR_PTR(err);
4249}
4250EXPORT_SYMBOL_GPL(skb_segment);
4251
4252int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4253{
4254 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4255 unsigned int offset = skb_gro_offset(skb);
4256 unsigned int headlen = skb_headlen(skb);
4257 unsigned int len = skb_gro_len(skb);
4258 unsigned int delta_truesize;
4259 struct sk_buff *lp;
4260
4261 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4262 return -E2BIG;
4263
4264 lp = NAPI_GRO_CB(p)->last;
4265 pinfo = skb_shinfo(lp);
4266
4267 if (headlen <= offset) {
4268 skb_frag_t *frag;
4269 skb_frag_t *frag2;
4270 int i = skbinfo->nr_frags;
4271 int nr_frags = pinfo->nr_frags + i;
4272
4273 if (nr_frags > MAX_SKB_FRAGS)
4274 goto merge;
4275
4276 offset -= headlen;
4277 pinfo->nr_frags = nr_frags;
4278 skbinfo->nr_frags = 0;
4279
4280 frag = pinfo->frags + nr_frags;
4281 frag2 = skbinfo->frags + i;
4282 do {
4283 *--frag = *--frag2;
4284 } while (--i);
4285
4286 skb_frag_off_add(frag, offset);
4287 skb_frag_size_sub(frag, offset);
4288
4289 /* all fragments truesize : remove (head size + sk_buff) */
4290 delta_truesize = skb->truesize -
4291 SKB_TRUESIZE(skb_end_offset(skb));
4292
4293 skb->truesize -= skb->data_len;
4294 skb->len -= skb->data_len;
4295 skb->data_len = 0;
4296
4297 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4298 goto done;
4299 } else if (skb->head_frag) {
4300 int nr_frags = pinfo->nr_frags;
4301 skb_frag_t *frag = pinfo->frags + nr_frags;
4302 struct page *page = virt_to_head_page(skb->head);
4303 unsigned int first_size = headlen - offset;
4304 unsigned int first_offset;
4305
4306 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4307 goto merge;
4308
4309 first_offset = skb->data -
4310 (unsigned char *)page_address(page) +
4311 offset;
4312
4313 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4314
4315 __skb_frag_set_page(frag, page);
4316 skb_frag_off_set(frag, first_offset);
4317 skb_frag_size_set(frag, first_size);
4318
4319 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4320 /* We dont need to clear skbinfo->nr_frags here */
4321
4322 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4323 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4324 goto done;
4325 }
4326
4327merge:
4328 delta_truesize = skb->truesize;
4329 if (offset > headlen) {
4330 unsigned int eat = offset - headlen;
4331
4332 skb_frag_off_add(&skbinfo->frags[0], eat);
4333 skb_frag_size_sub(&skbinfo->frags[0], eat);
4334 skb->data_len -= eat;
4335 skb->len -= eat;
4336 offset = headlen;
4337 }
4338
4339 __skb_pull(skb, offset);
4340
4341 if (NAPI_GRO_CB(p)->last == p)
4342 skb_shinfo(p)->frag_list = skb;
4343 else
4344 NAPI_GRO_CB(p)->last->next = skb;
4345 NAPI_GRO_CB(p)->last = skb;
4346 __skb_header_release(skb);
4347 lp = p;
4348
4349done:
4350 NAPI_GRO_CB(p)->count++;
4351 p->data_len += len;
4352 p->truesize += delta_truesize;
4353 p->len += len;
4354 if (lp != p) {
4355 lp->data_len += len;
4356 lp->truesize += delta_truesize;
4357 lp->len += len;
4358 }
4359 NAPI_GRO_CB(skb)->same_flow = 1;
4360 return 0;
4361}
4362
4363#ifdef CONFIG_SKB_EXTENSIONS
4364#define SKB_EXT_ALIGN_VALUE 8
4365#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4366
4367static const u8 skb_ext_type_len[] = {
4368#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4369 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4370#endif
4371#ifdef CONFIG_XFRM
4372 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4373#endif
4374#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4375 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4376#endif
4377#if IS_ENABLED(CONFIG_MPTCP)
4378 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4379#endif
4380};
4381
4382static __always_inline unsigned int skb_ext_total_length(void)
4383{
4384 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4385#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4386 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4387#endif
4388#ifdef CONFIG_XFRM
4389 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4390#endif
4391#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4392 skb_ext_type_len[TC_SKB_EXT] +
4393#endif
4394#if IS_ENABLED(CONFIG_MPTCP)
4395 skb_ext_type_len[SKB_EXT_MPTCP] +
4396#endif
4397 0;
4398}
4399
4400static void skb_extensions_init(void)
4401{
4402 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4403 BUILD_BUG_ON(skb_ext_total_length() > 255);
4404
4405 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4406 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4407 0,
4408 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4409 NULL);
4410}
4411#else
4412static void skb_extensions_init(void) {}
4413#endif
4414
4415void __init skb_init(void)
4416{
4417 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4418 sizeof(struct sk_buff),
4419 0,
4420 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4421 offsetof(struct sk_buff, cb),
4422 sizeof_field(struct sk_buff, cb),
4423 NULL);
4424 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4425 sizeof(struct sk_buff_fclones),
4426 0,
4427 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4428 NULL);
4429 skb_extensions_init();
4430}
4431
4432static int
4433__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4434 unsigned int recursion_level)
4435{
4436 int start = skb_headlen(skb);
4437 int i, copy = start - offset;
4438 struct sk_buff *frag_iter;
4439 int elt = 0;
4440
4441 if (unlikely(recursion_level >= 24))
4442 return -EMSGSIZE;
4443
4444 if (copy > 0) {
4445 if (copy > len)
4446 copy = len;
4447 sg_set_buf(sg, skb->data + offset, copy);
4448 elt++;
4449 if ((len -= copy) == 0)
4450 return elt;
4451 offset += copy;
4452 }
4453
4454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4455 int end;
4456
4457 WARN_ON(start > offset + len);
4458
4459 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4460 if ((copy = end - offset) > 0) {
4461 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4462 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4463 return -EMSGSIZE;
4464
4465 if (copy > len)
4466 copy = len;
4467 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4468 skb_frag_off(frag) + offset - start);
4469 elt++;
4470 if (!(len -= copy))
4471 return elt;
4472 offset += copy;
4473 }
4474 start = end;
4475 }
4476
4477 skb_walk_frags(skb, frag_iter) {
4478 int end, ret;
4479
4480 WARN_ON(start > offset + len);
4481
4482 end = start + frag_iter->len;
4483 if ((copy = end - offset) > 0) {
4484 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4485 return -EMSGSIZE;
4486
4487 if (copy > len)
4488 copy = len;
4489 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4490 copy, recursion_level + 1);
4491 if (unlikely(ret < 0))
4492 return ret;
4493 elt += ret;
4494 if ((len -= copy) == 0)
4495 return elt;
4496 offset += copy;
4497 }
4498 start = end;
4499 }
4500 BUG_ON(len);
4501 return elt;
4502}
4503
4504/**
4505 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4506 * @skb: Socket buffer containing the buffers to be mapped
4507 * @sg: The scatter-gather list to map into
4508 * @offset: The offset into the buffer's contents to start mapping
4509 * @len: Length of buffer space to be mapped
4510 *
4511 * Fill the specified scatter-gather list with mappings/pointers into a
4512 * region of the buffer space attached to a socket buffer. Returns either
4513 * the number of scatterlist items used, or -EMSGSIZE if the contents
4514 * could not fit.
4515 */
4516int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4517{
4518 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4519
4520 if (nsg <= 0)
4521 return nsg;
4522
4523 sg_mark_end(&sg[nsg - 1]);
4524
4525 return nsg;
4526}
4527EXPORT_SYMBOL_GPL(skb_to_sgvec);
4528
4529/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4530 * sglist without mark the sg which contain last skb data as the end.
4531 * So the caller can mannipulate sg list as will when padding new data after
4532 * the first call without calling sg_unmark_end to expend sg list.
4533 *
4534 * Scenario to use skb_to_sgvec_nomark:
4535 * 1. sg_init_table
4536 * 2. skb_to_sgvec_nomark(payload1)
4537 * 3. skb_to_sgvec_nomark(payload2)
4538 *
4539 * This is equivalent to:
4540 * 1. sg_init_table
4541 * 2. skb_to_sgvec(payload1)
4542 * 3. sg_unmark_end
4543 * 4. skb_to_sgvec(payload2)
4544 *
4545 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4546 * is more preferable.
4547 */
4548int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4549 int offset, int len)
4550{
4551 return __skb_to_sgvec(skb, sg, offset, len, 0);
4552}
4553EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4554
4555
4556
4557/**
4558 * skb_cow_data - Check that a socket buffer's data buffers are writable
4559 * @skb: The socket buffer to check.
4560 * @tailbits: Amount of trailing space to be added
4561 * @trailer: Returned pointer to the skb where the @tailbits space begins
4562 *
4563 * Make sure that the data buffers attached to a socket buffer are
4564 * writable. If they are not, private copies are made of the data buffers
4565 * and the socket buffer is set to use these instead.
4566 *
4567 * If @tailbits is given, make sure that there is space to write @tailbits
4568 * bytes of data beyond current end of socket buffer. @trailer will be
4569 * set to point to the skb in which this space begins.
4570 *
4571 * The number of scatterlist elements required to completely map the
4572 * COW'd and extended socket buffer will be returned.
4573 */
4574int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4575{
4576 int copyflag;
4577 int elt;
4578 struct sk_buff *skb1, **skb_p;
4579
4580 /* If skb is cloned or its head is paged, reallocate
4581 * head pulling out all the pages (pages are considered not writable
4582 * at the moment even if they are anonymous).
4583 */
4584 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4585 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4586 return -ENOMEM;
4587
4588 /* Easy case. Most of packets will go this way. */
4589 if (!skb_has_frag_list(skb)) {
4590 /* A little of trouble, not enough of space for trailer.
4591 * This should not happen, when stack is tuned to generate
4592 * good frames. OK, on miss we reallocate and reserve even more
4593 * space, 128 bytes is fair. */
4594
4595 if (skb_tailroom(skb) < tailbits &&
4596 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4597 return -ENOMEM;
4598
4599 /* Voila! */
4600 *trailer = skb;
4601 return 1;
4602 }
4603
4604 /* Misery. We are in troubles, going to mincer fragments... */
4605
4606 elt = 1;
4607 skb_p = &skb_shinfo(skb)->frag_list;
4608 copyflag = 0;
4609
4610 while ((skb1 = *skb_p) != NULL) {
4611 int ntail = 0;
4612
4613 /* The fragment is partially pulled by someone,
4614 * this can happen on input. Copy it and everything
4615 * after it. */
4616
4617 if (skb_shared(skb1))
4618 copyflag = 1;
4619
4620 /* If the skb is the last, worry about trailer. */
4621
4622 if (skb1->next == NULL && tailbits) {
4623 if (skb_shinfo(skb1)->nr_frags ||
4624 skb_has_frag_list(skb1) ||
4625 skb_tailroom(skb1) < tailbits)
4626 ntail = tailbits + 128;
4627 }
4628
4629 if (copyflag ||
4630 skb_cloned(skb1) ||
4631 ntail ||
4632 skb_shinfo(skb1)->nr_frags ||
4633 skb_has_frag_list(skb1)) {
4634 struct sk_buff *skb2;
4635
4636 /* Fuck, we are miserable poor guys... */
4637 if (ntail == 0)
4638 skb2 = skb_copy(skb1, GFP_ATOMIC);
4639 else
4640 skb2 = skb_copy_expand(skb1,
4641 skb_headroom(skb1),
4642 ntail,
4643 GFP_ATOMIC);
4644 if (unlikely(skb2 == NULL))
4645 return -ENOMEM;
4646
4647 if (skb1->sk)
4648 skb_set_owner_w(skb2, skb1->sk);
4649
4650 /* Looking around. Are we still alive?
4651 * OK, link new skb, drop old one */
4652
4653 skb2->next = skb1->next;
4654 *skb_p = skb2;
4655 kfree_skb(skb1);
4656 skb1 = skb2;
4657 }
4658 elt++;
4659 *trailer = skb1;
4660 skb_p = &skb1->next;
4661 }
4662
4663 return elt;
4664}
4665EXPORT_SYMBOL_GPL(skb_cow_data);
4666
4667static void sock_rmem_free(struct sk_buff *skb)
4668{
4669 struct sock *sk = skb->sk;
4670
4671 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4672}
4673
4674static void skb_set_err_queue(struct sk_buff *skb)
4675{
4676 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4677 * So, it is safe to (mis)use it to mark skbs on the error queue.
4678 */
4679 skb->pkt_type = PACKET_OUTGOING;
4680 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4681}
4682
4683/*
4684 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4685 */
4686int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4687{
4688 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4689 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4690 return -ENOMEM;
4691
4692 skb_orphan(skb);
4693 skb->sk = sk;
4694 skb->destructor = sock_rmem_free;
4695 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4696 skb_set_err_queue(skb);
4697
4698 /* before exiting rcu section, make sure dst is refcounted */
4699 skb_dst_force(skb);
4700
4701 skb_queue_tail(&sk->sk_error_queue, skb);
4702 if (!sock_flag(sk, SOCK_DEAD))
4703 sk_error_report(sk);
4704 return 0;
4705}
4706EXPORT_SYMBOL(sock_queue_err_skb);
4707
4708static bool is_icmp_err_skb(const struct sk_buff *skb)
4709{
4710 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4711 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4712}
4713
4714struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4715{
4716 struct sk_buff_head *q = &sk->sk_error_queue;
4717 struct sk_buff *skb, *skb_next = NULL;
4718 bool icmp_next = false;
4719 unsigned long flags;
4720
4721 spin_lock_irqsave(&q->lock, flags);
4722 skb = __skb_dequeue(q);
4723 if (skb && (skb_next = skb_peek(q))) {
4724 icmp_next = is_icmp_err_skb(skb_next);
4725 if (icmp_next)
4726 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4727 }
4728 spin_unlock_irqrestore(&q->lock, flags);
4729
4730 if (is_icmp_err_skb(skb) && !icmp_next)
4731 sk->sk_err = 0;
4732
4733 if (skb_next)
4734 sk_error_report(sk);
4735
4736 return skb;
4737}
4738EXPORT_SYMBOL(sock_dequeue_err_skb);
4739
4740/**
4741 * skb_clone_sk - create clone of skb, and take reference to socket
4742 * @skb: the skb to clone
4743 *
4744 * This function creates a clone of a buffer that holds a reference on
4745 * sk_refcnt. Buffers created via this function are meant to be
4746 * returned using sock_queue_err_skb, or free via kfree_skb.
4747 *
4748 * When passing buffers allocated with this function to sock_queue_err_skb
4749 * it is necessary to wrap the call with sock_hold/sock_put in order to
4750 * prevent the socket from being released prior to being enqueued on
4751 * the sk_error_queue.
4752 */
4753struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4754{
4755 struct sock *sk = skb->sk;
4756 struct sk_buff *clone;
4757
4758 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4759 return NULL;
4760
4761 clone = skb_clone(skb, GFP_ATOMIC);
4762 if (!clone) {
4763 sock_put(sk);
4764 return NULL;
4765 }
4766
4767 clone->sk = sk;
4768 clone->destructor = sock_efree;
4769
4770 return clone;
4771}
4772EXPORT_SYMBOL(skb_clone_sk);
4773
4774static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4775 struct sock *sk,
4776 int tstype,
4777 bool opt_stats)
4778{
4779 struct sock_exterr_skb *serr;
4780 int err;
4781
4782 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4783
4784 serr = SKB_EXT_ERR(skb);
4785 memset(serr, 0, sizeof(*serr));
4786 serr->ee.ee_errno = ENOMSG;
4787 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4788 serr->ee.ee_info = tstype;
4789 serr->opt_stats = opt_stats;
4790 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4791 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4792 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4793 if (sk->sk_protocol == IPPROTO_TCP &&
4794 sk->sk_type == SOCK_STREAM)
4795 serr->ee.ee_data -= sk->sk_tskey;
4796 }
4797
4798 err = sock_queue_err_skb(sk, skb);
4799
4800 if (err)
4801 kfree_skb(skb);
4802}
4803
4804static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4805{
4806 bool ret;
4807
4808 if (likely(sysctl_tstamp_allow_data || tsonly))
4809 return true;
4810
4811 read_lock_bh(&sk->sk_callback_lock);
4812 ret = sk->sk_socket && sk->sk_socket->file &&
4813 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4814 read_unlock_bh(&sk->sk_callback_lock);
4815 return ret;
4816}
4817
4818void skb_complete_tx_timestamp(struct sk_buff *skb,
4819 struct skb_shared_hwtstamps *hwtstamps)
4820{
4821 struct sock *sk = skb->sk;
4822
4823 if (!skb_may_tx_timestamp(sk, false))
4824 goto err;
4825
4826 /* Take a reference to prevent skb_orphan() from freeing the socket,
4827 * but only if the socket refcount is not zero.
4828 */
4829 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4830 *skb_hwtstamps(skb) = *hwtstamps;
4831 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4832 sock_put(sk);
4833 return;
4834 }
4835
4836err:
4837 kfree_skb(skb);
4838}
4839EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4840
4841void __skb_tstamp_tx(struct sk_buff *orig_skb,
4842 const struct sk_buff *ack_skb,
4843 struct skb_shared_hwtstamps *hwtstamps,
4844 struct sock *sk, int tstype)
4845{
4846 struct sk_buff *skb;
4847 bool tsonly, opt_stats = false;
4848
4849 if (!sk)
4850 return;
4851
4852 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4853 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4854 return;
4855
4856 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4857 if (!skb_may_tx_timestamp(sk, tsonly))
4858 return;
4859
4860 if (tsonly) {
4861#ifdef CONFIG_INET
4862 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4863 sk->sk_protocol == IPPROTO_TCP &&
4864 sk->sk_type == SOCK_STREAM) {
4865 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4866 ack_skb);
4867 opt_stats = true;
4868 } else
4869#endif
4870 skb = alloc_skb(0, GFP_ATOMIC);
4871 } else {
4872 skb = skb_clone(orig_skb, GFP_ATOMIC);
4873 }
4874 if (!skb)
4875 return;
4876
4877 if (tsonly) {
4878 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4879 SKBTX_ANY_TSTAMP;
4880 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4881 }
4882
4883 if (hwtstamps)
4884 *skb_hwtstamps(skb) = *hwtstamps;
4885 else
4886 skb->tstamp = ktime_get_real();
4887
4888 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4889}
4890EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4891
4892void skb_tstamp_tx(struct sk_buff *orig_skb,
4893 struct skb_shared_hwtstamps *hwtstamps)
4894{
4895 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4896 SCM_TSTAMP_SND);
4897}
4898EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4899
4900void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4901{
4902 struct sock *sk = skb->sk;
4903 struct sock_exterr_skb *serr;
4904 int err = 1;
4905
4906 skb->wifi_acked_valid = 1;
4907 skb->wifi_acked = acked;
4908
4909 serr = SKB_EXT_ERR(skb);
4910 memset(serr, 0, sizeof(*serr));
4911 serr->ee.ee_errno = ENOMSG;
4912 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4913
4914 /* Take a reference to prevent skb_orphan() from freeing the socket,
4915 * but only if the socket refcount is not zero.
4916 */
4917 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4918 err = sock_queue_err_skb(sk, skb);
4919 sock_put(sk);
4920 }
4921 if (err)
4922 kfree_skb(skb);
4923}
4924EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4925
4926/**
4927 * skb_partial_csum_set - set up and verify partial csum values for packet
4928 * @skb: the skb to set
4929 * @start: the number of bytes after skb->data to start checksumming.
4930 * @off: the offset from start to place the checksum.
4931 *
4932 * For untrusted partially-checksummed packets, we need to make sure the values
4933 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4934 *
4935 * This function checks and sets those values and skb->ip_summed: if this
4936 * returns false you should drop the packet.
4937 */
4938bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4939{
4940 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4941 u32 csum_start = skb_headroom(skb) + (u32)start;
4942
4943 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4944 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4945 start, off, skb_headroom(skb), skb_headlen(skb));
4946 return false;
4947 }
4948 skb->ip_summed = CHECKSUM_PARTIAL;
4949 skb->csum_start = csum_start;
4950 skb->csum_offset = off;
4951 skb_set_transport_header(skb, start);
4952 return true;
4953}
4954EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4955
4956static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4957 unsigned int max)
4958{
4959 if (skb_headlen(skb) >= len)
4960 return 0;
4961
4962 /* If we need to pullup then pullup to the max, so we
4963 * won't need to do it again.
4964 */
4965 if (max > skb->len)
4966 max = skb->len;
4967
4968 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4969 return -ENOMEM;
4970
4971 if (skb_headlen(skb) < len)
4972 return -EPROTO;
4973
4974 return 0;
4975}
4976
4977#define MAX_TCP_HDR_LEN (15 * 4)
4978
4979static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4980 typeof(IPPROTO_IP) proto,
4981 unsigned int off)
4982{
4983 int err;
4984
4985 switch (proto) {
4986 case IPPROTO_TCP:
4987 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4988 off + MAX_TCP_HDR_LEN);
4989 if (!err && !skb_partial_csum_set(skb, off,
4990 offsetof(struct tcphdr,
4991 check)))
4992 err = -EPROTO;
4993 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4994
4995 case IPPROTO_UDP:
4996 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4997 off + sizeof(struct udphdr));
4998 if (!err && !skb_partial_csum_set(skb, off,
4999 offsetof(struct udphdr,
5000 check)))
5001 err = -EPROTO;
5002 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5003 }
5004
5005 return ERR_PTR(-EPROTO);
5006}
5007
5008/* This value should be large enough to cover a tagged ethernet header plus
5009 * maximally sized IP and TCP or UDP headers.
5010 */
5011#define MAX_IP_HDR_LEN 128
5012
5013static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5014{
5015 unsigned int off;
5016 bool fragment;
5017 __sum16 *csum;
5018 int err;
5019
5020 fragment = false;
5021
5022 err = skb_maybe_pull_tail(skb,
5023 sizeof(struct iphdr),
5024 MAX_IP_HDR_LEN);
5025 if (err < 0)
5026 goto out;
5027
5028 if (ip_is_fragment(ip_hdr(skb)))
5029 fragment = true;
5030
5031 off = ip_hdrlen(skb);
5032
5033 err = -EPROTO;
5034
5035 if (fragment)
5036 goto out;
5037
5038 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5039 if (IS_ERR(csum))
5040 return PTR_ERR(csum);
5041
5042 if (recalculate)
5043 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5044 ip_hdr(skb)->daddr,
5045 skb->len - off,
5046 ip_hdr(skb)->protocol, 0);
5047 err = 0;
5048
5049out:
5050 return err;
5051}
5052
5053/* This value should be large enough to cover a tagged ethernet header plus
5054 * an IPv6 header, all options, and a maximal TCP or UDP header.
5055 */
5056#define MAX_IPV6_HDR_LEN 256
5057
5058#define OPT_HDR(type, skb, off) \
5059 (type *)(skb_network_header(skb) + (off))
5060
5061static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5062{
5063 int err;
5064 u8 nexthdr;
5065 unsigned int off;
5066 unsigned int len;
5067 bool fragment;
5068 bool done;
5069 __sum16 *csum;
5070
5071 fragment = false;
5072 done = false;
5073
5074 off = sizeof(struct ipv6hdr);
5075
5076 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5077 if (err < 0)
5078 goto out;
5079
5080 nexthdr = ipv6_hdr(skb)->nexthdr;
5081
5082 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5083 while (off <= len && !done) {
5084 switch (nexthdr) {
5085 case IPPROTO_DSTOPTS:
5086 case IPPROTO_HOPOPTS:
5087 case IPPROTO_ROUTING: {
5088 struct ipv6_opt_hdr *hp;
5089
5090 err = skb_maybe_pull_tail(skb,
5091 off +
5092 sizeof(struct ipv6_opt_hdr),
5093 MAX_IPV6_HDR_LEN);
5094 if (err < 0)
5095 goto out;
5096
5097 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5098 nexthdr = hp->nexthdr;
5099 off += ipv6_optlen(hp);
5100 break;
5101 }
5102 case IPPROTO_AH: {
5103 struct ip_auth_hdr *hp;
5104
5105 err = skb_maybe_pull_tail(skb,
5106 off +
5107 sizeof(struct ip_auth_hdr),
5108 MAX_IPV6_HDR_LEN);
5109 if (err < 0)
5110 goto out;
5111
5112 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5113 nexthdr = hp->nexthdr;
5114 off += ipv6_authlen(hp);
5115 break;
5116 }
5117 case IPPROTO_FRAGMENT: {
5118 struct frag_hdr *hp;
5119
5120 err = skb_maybe_pull_tail(skb,
5121 off +
5122 sizeof(struct frag_hdr),
5123 MAX_IPV6_HDR_LEN);
5124 if (err < 0)
5125 goto out;
5126
5127 hp = OPT_HDR(struct frag_hdr, skb, off);
5128
5129 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5130 fragment = true;
5131
5132 nexthdr = hp->nexthdr;
5133 off += sizeof(struct frag_hdr);
5134 break;
5135 }
5136 default:
5137 done = true;
5138 break;
5139 }
5140 }
5141
5142 err = -EPROTO;
5143
5144 if (!done || fragment)
5145 goto out;
5146
5147 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5148 if (IS_ERR(csum))
5149 return PTR_ERR(csum);
5150
5151 if (recalculate)
5152 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5153 &ipv6_hdr(skb)->daddr,
5154 skb->len - off, nexthdr, 0);
5155 err = 0;
5156
5157out:
5158 return err;
5159}
5160
5161/**
5162 * skb_checksum_setup - set up partial checksum offset
5163 * @skb: the skb to set up
5164 * @recalculate: if true the pseudo-header checksum will be recalculated
5165 */
5166int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5167{
5168 int err;
5169
5170 switch (skb->protocol) {
5171 case htons(ETH_P_IP):
5172 err = skb_checksum_setup_ipv4(skb, recalculate);
5173 break;
5174
5175 case htons(ETH_P_IPV6):
5176 err = skb_checksum_setup_ipv6(skb, recalculate);
5177 break;
5178
5179 default:
5180 err = -EPROTO;
5181 break;
5182 }
5183
5184 return err;
5185}
5186EXPORT_SYMBOL(skb_checksum_setup);
5187
5188/**
5189 * skb_checksum_maybe_trim - maybe trims the given skb
5190 * @skb: the skb to check
5191 * @transport_len: the data length beyond the network header
5192 *
5193 * Checks whether the given skb has data beyond the given transport length.
5194 * If so, returns a cloned skb trimmed to this transport length.
5195 * Otherwise returns the provided skb. Returns NULL in error cases
5196 * (e.g. transport_len exceeds skb length or out-of-memory).
5197 *
5198 * Caller needs to set the skb transport header and free any returned skb if it
5199 * differs from the provided skb.
5200 */
5201static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5202 unsigned int transport_len)
5203{
5204 struct sk_buff *skb_chk;
5205 unsigned int len = skb_transport_offset(skb) + transport_len;
5206 int ret;
5207
5208 if (skb->len < len)
5209 return NULL;
5210 else if (skb->len == len)
5211 return skb;
5212
5213 skb_chk = skb_clone(skb, GFP_ATOMIC);
5214 if (!skb_chk)
5215 return NULL;
5216
5217 ret = pskb_trim_rcsum(skb_chk, len);
5218 if (ret) {
5219 kfree_skb(skb_chk);
5220 return NULL;
5221 }
5222
5223 return skb_chk;
5224}
5225
5226/**
5227 * skb_checksum_trimmed - validate checksum of an skb
5228 * @skb: the skb to check
5229 * @transport_len: the data length beyond the network header
5230 * @skb_chkf: checksum function to use
5231 *
5232 * Applies the given checksum function skb_chkf to the provided skb.
5233 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5234 *
5235 * If the skb has data beyond the given transport length, then a
5236 * trimmed & cloned skb is checked and returned.
5237 *
5238 * Caller needs to set the skb transport header and free any returned skb if it
5239 * differs from the provided skb.
5240 */
5241struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5242 unsigned int transport_len,
5243 __sum16(*skb_chkf)(struct sk_buff *skb))
5244{
5245 struct sk_buff *skb_chk;
5246 unsigned int offset = skb_transport_offset(skb);
5247 __sum16 ret;
5248
5249 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5250 if (!skb_chk)
5251 goto err;
5252
5253 if (!pskb_may_pull(skb_chk, offset))
5254 goto err;
5255
5256 skb_pull_rcsum(skb_chk, offset);
5257 ret = skb_chkf(skb_chk);
5258 skb_push_rcsum(skb_chk, offset);
5259
5260 if (ret)
5261 goto err;
5262
5263 return skb_chk;
5264
5265err:
5266 if (skb_chk && skb_chk != skb)
5267 kfree_skb(skb_chk);
5268
5269 return NULL;
5270
5271}
5272EXPORT_SYMBOL(skb_checksum_trimmed);
5273
5274void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5275{
5276 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5277 skb->dev->name);
5278}
5279EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5280
5281void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5282{
5283 if (head_stolen) {
5284 skb_release_head_state(skb);
5285 kmem_cache_free(skbuff_head_cache, skb);
5286 } else {
5287 __kfree_skb(skb);
5288 }
5289}
5290EXPORT_SYMBOL(kfree_skb_partial);
5291
5292/**
5293 * skb_try_coalesce - try to merge skb to prior one
5294 * @to: prior buffer
5295 * @from: buffer to add
5296 * @fragstolen: pointer to boolean
5297 * @delta_truesize: how much more was allocated than was requested
5298 */
5299bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5300 bool *fragstolen, int *delta_truesize)
5301{
5302 struct skb_shared_info *to_shinfo, *from_shinfo;
5303 int i, delta, len = from->len;
5304
5305 *fragstolen = false;
5306
5307 if (skb_cloned(to))
5308 return false;
5309
5310 /* The page pool signature of struct page will eventually figure out
5311 * which pages can be recycled or not but for now let's prohibit slab
5312 * allocated and page_pool allocated SKBs from being coalesced.
5313 */
5314 if (to->pp_recycle != from->pp_recycle)
5315 return false;
5316
5317 if (len <= skb_tailroom(to)) {
5318 if (len)
5319 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5320 *delta_truesize = 0;
5321 return true;
5322 }
5323
5324 to_shinfo = skb_shinfo(to);
5325 from_shinfo = skb_shinfo(from);
5326 if (to_shinfo->frag_list || from_shinfo->frag_list)
5327 return false;
5328 if (skb_zcopy(to) || skb_zcopy(from))
5329 return false;
5330
5331 if (skb_headlen(from) != 0) {
5332 struct page *page;
5333 unsigned int offset;
5334
5335 if (to_shinfo->nr_frags +
5336 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5337 return false;
5338
5339 if (skb_head_is_locked(from))
5340 return false;
5341
5342 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5343
5344 page = virt_to_head_page(from->head);
5345 offset = from->data - (unsigned char *)page_address(page);
5346
5347 skb_fill_page_desc(to, to_shinfo->nr_frags,
5348 page, offset, skb_headlen(from));
5349 *fragstolen = true;
5350 } else {
5351 if (to_shinfo->nr_frags +
5352 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5353 return false;
5354
5355 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5356 }
5357
5358 WARN_ON_ONCE(delta < len);
5359
5360 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5361 from_shinfo->frags,
5362 from_shinfo->nr_frags * sizeof(skb_frag_t));
5363 to_shinfo->nr_frags += from_shinfo->nr_frags;
5364
5365 if (!skb_cloned(from))
5366 from_shinfo->nr_frags = 0;
5367
5368 /* if the skb is not cloned this does nothing
5369 * since we set nr_frags to 0.
5370 */
5371 for (i = 0; i < from_shinfo->nr_frags; i++)
5372 __skb_frag_ref(&from_shinfo->frags[i]);
5373
5374 to->truesize += delta;
5375 to->len += len;
5376 to->data_len += len;
5377
5378 *delta_truesize = delta;
5379 return true;
5380}
5381EXPORT_SYMBOL(skb_try_coalesce);
5382
5383/**
5384 * skb_scrub_packet - scrub an skb
5385 *
5386 * @skb: buffer to clean
5387 * @xnet: packet is crossing netns
5388 *
5389 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5390 * into/from a tunnel. Some information have to be cleared during these
5391 * operations.
5392 * skb_scrub_packet can also be used to clean a skb before injecting it in
5393 * another namespace (@xnet == true). We have to clear all information in the
5394 * skb that could impact namespace isolation.
5395 */
5396void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5397{
5398 skb->pkt_type = PACKET_HOST;
5399 skb->skb_iif = 0;
5400 skb->ignore_df = 0;
5401 skb_dst_drop(skb);
5402 skb_ext_reset(skb);
5403 nf_reset_ct(skb);
5404 nf_reset_trace(skb);
5405
5406#ifdef CONFIG_NET_SWITCHDEV
5407 skb->offload_fwd_mark = 0;
5408 skb->offload_l3_fwd_mark = 0;
5409#endif
5410
5411 if (!xnet)
5412 return;
5413
5414 ipvs_reset(skb);
5415 skb->mark = 0;
5416 skb->tstamp = 0;
5417}
5418EXPORT_SYMBOL_GPL(skb_scrub_packet);
5419
5420/**
5421 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5422 *
5423 * @skb: GSO skb
5424 *
5425 * skb_gso_transport_seglen is used to determine the real size of the
5426 * individual segments, including Layer4 headers (TCP/UDP).
5427 *
5428 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5429 */
5430static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5431{
5432 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5433 unsigned int thlen = 0;
5434
5435 if (skb->encapsulation) {
5436 thlen = skb_inner_transport_header(skb) -
5437 skb_transport_header(skb);
5438
5439 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5440 thlen += inner_tcp_hdrlen(skb);
5441 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5442 thlen = tcp_hdrlen(skb);
5443 } else if (unlikely(skb_is_gso_sctp(skb))) {
5444 thlen = sizeof(struct sctphdr);
5445 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5446 thlen = sizeof(struct udphdr);
5447 }
5448 /* UFO sets gso_size to the size of the fragmentation
5449 * payload, i.e. the size of the L4 (UDP) header is already
5450 * accounted for.
5451 */
5452 return thlen + shinfo->gso_size;
5453}
5454
5455/**
5456 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5457 *
5458 * @skb: GSO skb
5459 *
5460 * skb_gso_network_seglen is used to determine the real size of the
5461 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5462 *
5463 * The MAC/L2 header is not accounted for.
5464 */
5465static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5466{
5467 unsigned int hdr_len = skb_transport_header(skb) -
5468 skb_network_header(skb);
5469
5470 return hdr_len + skb_gso_transport_seglen(skb);
5471}
5472
5473/**
5474 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5475 *
5476 * @skb: GSO skb
5477 *
5478 * skb_gso_mac_seglen is used to determine the real size of the
5479 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5480 * headers (TCP/UDP).
5481 */
5482static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5483{
5484 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5485
5486 return hdr_len + skb_gso_transport_seglen(skb);
5487}
5488
5489/**
5490 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5491 *
5492 * There are a couple of instances where we have a GSO skb, and we
5493 * want to determine what size it would be after it is segmented.
5494 *
5495 * We might want to check:
5496 * - L3+L4+payload size (e.g. IP forwarding)
5497 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5498 *
5499 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5500 *
5501 * @skb: GSO skb
5502 *
5503 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5504 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5505 *
5506 * @max_len: The maximum permissible length.
5507 *
5508 * Returns true if the segmented length <= max length.
5509 */
5510static inline bool skb_gso_size_check(const struct sk_buff *skb,
5511 unsigned int seg_len,
5512 unsigned int max_len) {
5513 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5514 const struct sk_buff *iter;
5515
5516 if (shinfo->gso_size != GSO_BY_FRAGS)
5517 return seg_len <= max_len;
5518
5519 /* Undo this so we can re-use header sizes */
5520 seg_len -= GSO_BY_FRAGS;
5521
5522 skb_walk_frags(skb, iter) {
5523 if (seg_len + skb_headlen(iter) > max_len)
5524 return false;
5525 }
5526
5527 return true;
5528}
5529
5530/**
5531 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5532 *
5533 * @skb: GSO skb
5534 * @mtu: MTU to validate against
5535 *
5536 * skb_gso_validate_network_len validates if a given skb will fit a
5537 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5538 * payload.
5539 */
5540bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5541{
5542 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5543}
5544EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5545
5546/**
5547 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5548 *
5549 * @skb: GSO skb
5550 * @len: length to validate against
5551 *
5552 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5553 * length once split, including L2, L3 and L4 headers and the payload.
5554 */
5555bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5556{
5557 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5558}
5559EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5560
5561static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5562{
5563 int mac_len, meta_len;
5564 void *meta;
5565
5566 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5567 kfree_skb(skb);
5568 return NULL;
5569 }
5570
5571 mac_len = skb->data - skb_mac_header(skb);
5572 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5573 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5574 mac_len - VLAN_HLEN - ETH_TLEN);
5575 }
5576
5577 meta_len = skb_metadata_len(skb);
5578 if (meta_len) {
5579 meta = skb_metadata_end(skb) - meta_len;
5580 memmove(meta + VLAN_HLEN, meta, meta_len);
5581 }
5582
5583 skb->mac_header += VLAN_HLEN;
5584 return skb;
5585}
5586
5587struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5588{
5589 struct vlan_hdr *vhdr;
5590 u16 vlan_tci;
5591
5592 if (unlikely(skb_vlan_tag_present(skb))) {
5593 /* vlan_tci is already set-up so leave this for another time */
5594 return skb;
5595 }
5596
5597 skb = skb_share_check(skb, GFP_ATOMIC);
5598 if (unlikely(!skb))
5599 goto err_free;
5600 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5601 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5602 goto err_free;
5603
5604 vhdr = (struct vlan_hdr *)skb->data;
5605 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5606 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5607
5608 skb_pull_rcsum(skb, VLAN_HLEN);
5609 vlan_set_encap_proto(skb, vhdr);
5610
5611 skb = skb_reorder_vlan_header(skb);
5612 if (unlikely(!skb))
5613 goto err_free;
5614
5615 skb_reset_network_header(skb);
5616 if (!skb_transport_header_was_set(skb))
5617 skb_reset_transport_header(skb);
5618 skb_reset_mac_len(skb);
5619
5620 return skb;
5621
5622err_free:
5623 kfree_skb(skb);
5624 return NULL;
5625}
5626EXPORT_SYMBOL(skb_vlan_untag);
5627
5628int skb_ensure_writable(struct sk_buff *skb, int write_len)
5629{
5630 if (!pskb_may_pull(skb, write_len))
5631 return -ENOMEM;
5632
5633 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5634 return 0;
5635
5636 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5637}
5638EXPORT_SYMBOL(skb_ensure_writable);
5639
5640/* remove VLAN header from packet and update csum accordingly.
5641 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5642 */
5643int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5644{
5645 struct vlan_hdr *vhdr;
5646 int offset = skb->data - skb_mac_header(skb);
5647 int err;
5648
5649 if (WARN_ONCE(offset,
5650 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5651 offset)) {
5652 return -EINVAL;
5653 }
5654
5655 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5656 if (unlikely(err))
5657 return err;
5658
5659 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5660
5661 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5662 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5663
5664 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5665 __skb_pull(skb, VLAN_HLEN);
5666
5667 vlan_set_encap_proto(skb, vhdr);
5668 skb->mac_header += VLAN_HLEN;
5669
5670 if (skb_network_offset(skb) < ETH_HLEN)
5671 skb_set_network_header(skb, ETH_HLEN);
5672
5673 skb_reset_mac_len(skb);
5674
5675 return err;
5676}
5677EXPORT_SYMBOL(__skb_vlan_pop);
5678
5679/* Pop a vlan tag either from hwaccel or from payload.
5680 * Expects skb->data at mac header.
5681 */
5682int skb_vlan_pop(struct sk_buff *skb)
5683{
5684 u16 vlan_tci;
5685 __be16 vlan_proto;
5686 int err;
5687
5688 if (likely(skb_vlan_tag_present(skb))) {
5689 __vlan_hwaccel_clear_tag(skb);
5690 } else {
5691 if (unlikely(!eth_type_vlan(skb->protocol)))
5692 return 0;
5693
5694 err = __skb_vlan_pop(skb, &vlan_tci);
5695 if (err)
5696 return err;
5697 }
5698 /* move next vlan tag to hw accel tag */
5699 if (likely(!eth_type_vlan(skb->protocol)))
5700 return 0;
5701
5702 vlan_proto = skb->protocol;
5703 err = __skb_vlan_pop(skb, &vlan_tci);
5704 if (unlikely(err))
5705 return err;
5706
5707 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5708 return 0;
5709}
5710EXPORT_SYMBOL(skb_vlan_pop);
5711
5712/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5713 * Expects skb->data at mac header.
5714 */
5715int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5716{
5717 if (skb_vlan_tag_present(skb)) {
5718 int offset = skb->data - skb_mac_header(skb);
5719 int err;
5720
5721 if (WARN_ONCE(offset,
5722 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5723 offset)) {
5724 return -EINVAL;
5725 }
5726
5727 err = __vlan_insert_tag(skb, skb->vlan_proto,
5728 skb_vlan_tag_get(skb));
5729 if (err)
5730 return err;
5731
5732 skb->protocol = skb->vlan_proto;
5733 skb->mac_len += VLAN_HLEN;
5734
5735 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5736 }
5737 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5738 return 0;
5739}
5740EXPORT_SYMBOL(skb_vlan_push);
5741
5742/**
5743 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5744 *
5745 * @skb: Socket buffer to modify
5746 *
5747 * Drop the Ethernet header of @skb.
5748 *
5749 * Expects that skb->data points to the mac header and that no VLAN tags are
5750 * present.
5751 *
5752 * Returns 0 on success, -errno otherwise.
5753 */
5754int skb_eth_pop(struct sk_buff *skb)
5755{
5756 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5757 skb_network_offset(skb) < ETH_HLEN)
5758 return -EPROTO;
5759
5760 skb_pull_rcsum(skb, ETH_HLEN);
5761 skb_reset_mac_header(skb);
5762 skb_reset_mac_len(skb);
5763
5764 return 0;
5765}
5766EXPORT_SYMBOL(skb_eth_pop);
5767
5768/**
5769 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5770 *
5771 * @skb: Socket buffer to modify
5772 * @dst: Destination MAC address of the new header
5773 * @src: Source MAC address of the new header
5774 *
5775 * Prepend @skb with a new Ethernet header.
5776 *
5777 * Expects that skb->data points to the mac header, which must be empty.
5778 *
5779 * Returns 0 on success, -errno otherwise.
5780 */
5781int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5782 const unsigned char *src)
5783{
5784 struct ethhdr *eth;
5785 int err;
5786
5787 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5788 return -EPROTO;
5789
5790 err = skb_cow_head(skb, sizeof(*eth));
5791 if (err < 0)
5792 return err;
5793
5794 skb_push(skb, sizeof(*eth));
5795 skb_reset_mac_header(skb);
5796 skb_reset_mac_len(skb);
5797
5798 eth = eth_hdr(skb);
5799 ether_addr_copy(eth->h_dest, dst);
5800 ether_addr_copy(eth->h_source, src);
5801 eth->h_proto = skb->protocol;
5802
5803 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5804
5805 return 0;
5806}
5807EXPORT_SYMBOL(skb_eth_push);
5808
5809/* Update the ethertype of hdr and the skb csum value if required. */
5810static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5811 __be16 ethertype)
5812{
5813 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5814 __be16 diff[] = { ~hdr->h_proto, ethertype };
5815
5816 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5817 }
5818
5819 hdr->h_proto = ethertype;
5820}
5821
5822/**
5823 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5824 * the packet
5825 *
5826 * @skb: buffer
5827 * @mpls_lse: MPLS label stack entry to push
5828 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5829 * @mac_len: length of the MAC header
5830 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5831 * ethernet
5832 *
5833 * Expects skb->data at mac header.
5834 *
5835 * Returns 0 on success, -errno otherwise.
5836 */
5837int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5838 int mac_len, bool ethernet)
5839{
5840 struct mpls_shim_hdr *lse;
5841 int err;
5842
5843 if (unlikely(!eth_p_mpls(mpls_proto)))
5844 return -EINVAL;
5845
5846 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5847 if (skb->encapsulation)
5848 return -EINVAL;
5849
5850 err = skb_cow_head(skb, MPLS_HLEN);
5851 if (unlikely(err))
5852 return err;
5853
5854 if (!skb->inner_protocol) {
5855 skb_set_inner_network_header(skb, skb_network_offset(skb));
5856 skb_set_inner_protocol(skb, skb->protocol);
5857 }
5858
5859 skb_push(skb, MPLS_HLEN);
5860 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5861 mac_len);
5862 skb_reset_mac_header(skb);
5863 skb_set_network_header(skb, mac_len);
5864 skb_reset_mac_len(skb);
5865
5866 lse = mpls_hdr(skb);
5867 lse->label_stack_entry = mpls_lse;
5868 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5869
5870 if (ethernet && mac_len >= ETH_HLEN)
5871 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5872 skb->protocol = mpls_proto;
5873
5874 return 0;
5875}
5876EXPORT_SYMBOL_GPL(skb_mpls_push);
5877
5878/**
5879 * skb_mpls_pop() - pop the outermost MPLS header
5880 *
5881 * @skb: buffer
5882 * @next_proto: ethertype of header after popped MPLS header
5883 * @mac_len: length of the MAC header
5884 * @ethernet: flag to indicate if the packet is ethernet
5885 *
5886 * Expects skb->data at mac header.
5887 *
5888 * Returns 0 on success, -errno otherwise.
5889 */
5890int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5891 bool ethernet)
5892{
5893 int err;
5894
5895 if (unlikely(!eth_p_mpls(skb->protocol)))
5896 return 0;
5897
5898 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5899 if (unlikely(err))
5900 return err;
5901
5902 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5903 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5904 mac_len);
5905
5906 __skb_pull(skb, MPLS_HLEN);
5907 skb_reset_mac_header(skb);
5908 skb_set_network_header(skb, mac_len);
5909
5910 if (ethernet && mac_len >= ETH_HLEN) {
5911 struct ethhdr *hdr;
5912
5913 /* use mpls_hdr() to get ethertype to account for VLANs. */
5914 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5915 skb_mod_eth_type(skb, hdr, next_proto);
5916 }
5917 skb->protocol = next_proto;
5918
5919 return 0;
5920}
5921EXPORT_SYMBOL_GPL(skb_mpls_pop);
5922
5923/**
5924 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5925 *
5926 * @skb: buffer
5927 * @mpls_lse: new MPLS label stack entry to update to
5928 *
5929 * Expects skb->data at mac header.
5930 *
5931 * Returns 0 on success, -errno otherwise.
5932 */
5933int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5934{
5935 int err;
5936
5937 if (unlikely(!eth_p_mpls(skb->protocol)))
5938 return -EINVAL;
5939
5940 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5941 if (unlikely(err))
5942 return err;
5943
5944 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5945 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5946
5947 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5948 }
5949
5950 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5951
5952 return 0;
5953}
5954EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5955
5956/**
5957 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5958 *
5959 * @skb: buffer
5960 *
5961 * Expects skb->data at mac header.
5962 *
5963 * Returns 0 on success, -errno otherwise.
5964 */
5965int skb_mpls_dec_ttl(struct sk_buff *skb)
5966{
5967 u32 lse;
5968 u8 ttl;
5969
5970 if (unlikely(!eth_p_mpls(skb->protocol)))
5971 return -EINVAL;
5972
5973 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5974 return -ENOMEM;
5975
5976 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5977 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5978 if (!--ttl)
5979 return -EINVAL;
5980
5981 lse &= ~MPLS_LS_TTL_MASK;
5982 lse |= ttl << MPLS_LS_TTL_SHIFT;
5983
5984 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5985}
5986EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5987
5988/**
5989 * alloc_skb_with_frags - allocate skb with page frags
5990 *
5991 * @header_len: size of linear part
5992 * @data_len: needed length in frags
5993 * @max_page_order: max page order desired.
5994 * @errcode: pointer to error code if any
5995 * @gfp_mask: allocation mask
5996 *
5997 * This can be used to allocate a paged skb, given a maximal order for frags.
5998 */
5999struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6000 unsigned long data_len,
6001 int max_page_order,
6002 int *errcode,
6003 gfp_t gfp_mask)
6004{
6005 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6006 unsigned long chunk;
6007 struct sk_buff *skb;
6008 struct page *page;
6009 int i;
6010
6011 *errcode = -EMSGSIZE;
6012 /* Note this test could be relaxed, if we succeed to allocate
6013 * high order pages...
6014 */
6015 if (npages > MAX_SKB_FRAGS)
6016 return NULL;
6017
6018 *errcode = -ENOBUFS;
6019 skb = alloc_skb(header_len, gfp_mask);
6020 if (!skb)
6021 return NULL;
6022
6023 skb->truesize += npages << PAGE_SHIFT;
6024
6025 for (i = 0; npages > 0; i++) {
6026 int order = max_page_order;
6027
6028 while (order) {
6029 if (npages >= 1 << order) {
6030 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6031 __GFP_COMP |
6032 __GFP_NOWARN,
6033 order);
6034 if (page)
6035 goto fill_page;
6036 /* Do not retry other high order allocations */
6037 order = 1;
6038 max_page_order = 0;
6039 }
6040 order--;
6041 }
6042 page = alloc_page(gfp_mask);
6043 if (!page)
6044 goto failure;
6045fill_page:
6046 chunk = min_t(unsigned long, data_len,
6047 PAGE_SIZE << order);
6048 skb_fill_page_desc(skb, i, page, 0, chunk);
6049 data_len -= chunk;
6050 npages -= 1 << order;
6051 }
6052 return skb;
6053
6054failure:
6055 kfree_skb(skb);
6056 return NULL;
6057}
6058EXPORT_SYMBOL(alloc_skb_with_frags);
6059
6060/* carve out the first off bytes from skb when off < headlen */
6061static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6062 const int headlen, gfp_t gfp_mask)
6063{
6064 int i;
6065 int size = skb_end_offset(skb);
6066 int new_hlen = headlen - off;
6067 u8 *data;
6068
6069 size = SKB_DATA_ALIGN(size);
6070
6071 if (skb_pfmemalloc(skb))
6072 gfp_mask |= __GFP_MEMALLOC;
6073 data = kmalloc_reserve(size +
6074 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6075 gfp_mask, NUMA_NO_NODE, NULL);
6076 if (!data)
6077 return -ENOMEM;
6078
6079 size = SKB_WITH_OVERHEAD(ksize(data));
6080
6081 /* Copy real data, and all frags */
6082 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6083 skb->len -= off;
6084
6085 memcpy((struct skb_shared_info *)(data + size),
6086 skb_shinfo(skb),
6087 offsetof(struct skb_shared_info,
6088 frags[skb_shinfo(skb)->nr_frags]));
6089 if (skb_cloned(skb)) {
6090 /* drop the old head gracefully */
6091 if (skb_orphan_frags(skb, gfp_mask)) {
6092 kfree(data);
6093 return -ENOMEM;
6094 }
6095 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6096 skb_frag_ref(skb, i);
6097 if (skb_has_frag_list(skb))
6098 skb_clone_fraglist(skb);
6099 skb_release_data(skb);
6100 } else {
6101 /* we can reuse existing recount- all we did was
6102 * relocate values
6103 */
6104 skb_free_head(skb);
6105 }
6106
6107 skb->head = data;
6108 skb->data = data;
6109 skb->head_frag = 0;
6110#ifdef NET_SKBUFF_DATA_USES_OFFSET
6111 skb->end = size;
6112#else
6113 skb->end = skb->head + size;
6114#endif
6115 skb_set_tail_pointer(skb, skb_headlen(skb));
6116 skb_headers_offset_update(skb, 0);
6117 skb->cloned = 0;
6118 skb->hdr_len = 0;
6119 skb->nohdr = 0;
6120 atomic_set(&skb_shinfo(skb)->dataref, 1);
6121
6122 return 0;
6123}
6124
6125static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6126
6127/* carve out the first eat bytes from skb's frag_list. May recurse into
6128 * pskb_carve()
6129 */
6130static int pskb_carve_frag_list(struct sk_buff *skb,
6131 struct skb_shared_info *shinfo, int eat,
6132 gfp_t gfp_mask)
6133{
6134 struct sk_buff *list = shinfo->frag_list;
6135 struct sk_buff *clone = NULL;
6136 struct sk_buff *insp = NULL;
6137
6138 do {
6139 if (!list) {
6140 pr_err("Not enough bytes to eat. Want %d\n", eat);
6141 return -EFAULT;
6142 }
6143 if (list->len <= eat) {
6144 /* Eaten as whole. */
6145 eat -= list->len;
6146 list = list->next;
6147 insp = list;
6148 } else {
6149 /* Eaten partially. */
6150 if (skb_shared(list)) {
6151 clone = skb_clone(list, gfp_mask);
6152 if (!clone)
6153 return -ENOMEM;
6154 insp = list->next;
6155 list = clone;
6156 } else {
6157 /* This may be pulled without problems. */
6158 insp = list;
6159 }
6160 if (pskb_carve(list, eat, gfp_mask) < 0) {
6161 kfree_skb(clone);
6162 return -ENOMEM;
6163 }
6164 break;
6165 }
6166 } while (eat);
6167
6168 /* Free pulled out fragments. */
6169 while ((list = shinfo->frag_list) != insp) {
6170 shinfo->frag_list = list->next;
6171 kfree_skb(list);
6172 }
6173 /* And insert new clone at head. */
6174 if (clone) {
6175 clone->next = list;
6176 shinfo->frag_list = clone;
6177 }
6178 return 0;
6179}
6180
6181/* carve off first len bytes from skb. Split line (off) is in the
6182 * non-linear part of skb
6183 */
6184static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6185 int pos, gfp_t gfp_mask)
6186{
6187 int i, k = 0;
6188 int size = skb_end_offset(skb);
6189 u8 *data;
6190 const int nfrags = skb_shinfo(skb)->nr_frags;
6191 struct skb_shared_info *shinfo;
6192
6193 size = SKB_DATA_ALIGN(size);
6194
6195 if (skb_pfmemalloc(skb))
6196 gfp_mask |= __GFP_MEMALLOC;
6197 data = kmalloc_reserve(size +
6198 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6199 gfp_mask, NUMA_NO_NODE, NULL);
6200 if (!data)
6201 return -ENOMEM;
6202
6203 size = SKB_WITH_OVERHEAD(ksize(data));
6204
6205 memcpy((struct skb_shared_info *)(data + size),
6206 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6207 if (skb_orphan_frags(skb, gfp_mask)) {
6208 kfree(data);
6209 return -ENOMEM;
6210 }
6211 shinfo = (struct skb_shared_info *)(data + size);
6212 for (i = 0; i < nfrags; i++) {
6213 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6214
6215 if (pos + fsize > off) {
6216 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6217
6218 if (pos < off) {
6219 /* Split frag.
6220 * We have two variants in this case:
6221 * 1. Move all the frag to the second
6222 * part, if it is possible. F.e.
6223 * this approach is mandatory for TUX,
6224 * where splitting is expensive.
6225 * 2. Split is accurately. We make this.
6226 */
6227 skb_frag_off_add(&shinfo->frags[0], off - pos);
6228 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6229 }
6230 skb_frag_ref(skb, i);
6231 k++;
6232 }
6233 pos += fsize;
6234 }
6235 shinfo->nr_frags = k;
6236 if (skb_has_frag_list(skb))
6237 skb_clone_fraglist(skb);
6238
6239 /* split line is in frag list */
6240 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6241 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6242 if (skb_has_frag_list(skb))
6243 kfree_skb_list(skb_shinfo(skb)->frag_list);
6244 kfree(data);
6245 return -ENOMEM;
6246 }
6247 skb_release_data(skb);
6248
6249 skb->head = data;
6250 skb->head_frag = 0;
6251 skb->data = data;
6252#ifdef NET_SKBUFF_DATA_USES_OFFSET
6253 skb->end = size;
6254#else
6255 skb->end = skb->head + size;
6256#endif
6257 skb_reset_tail_pointer(skb);
6258 skb_headers_offset_update(skb, 0);
6259 skb->cloned = 0;
6260 skb->hdr_len = 0;
6261 skb->nohdr = 0;
6262 skb->len -= off;
6263 skb->data_len = skb->len;
6264 atomic_set(&skb_shinfo(skb)->dataref, 1);
6265 return 0;
6266}
6267
6268/* remove len bytes from the beginning of the skb */
6269static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6270{
6271 int headlen = skb_headlen(skb);
6272
6273 if (len < headlen)
6274 return pskb_carve_inside_header(skb, len, headlen, gfp);
6275 else
6276 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6277}
6278
6279/* Extract to_copy bytes starting at off from skb, and return this in
6280 * a new skb
6281 */
6282struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6283 int to_copy, gfp_t gfp)
6284{
6285 struct sk_buff *clone = skb_clone(skb, gfp);
6286
6287 if (!clone)
6288 return NULL;
6289
6290 if (pskb_carve(clone, off, gfp) < 0 ||
6291 pskb_trim(clone, to_copy)) {
6292 kfree_skb(clone);
6293 return NULL;
6294 }
6295 return clone;
6296}
6297EXPORT_SYMBOL(pskb_extract);
6298
6299/**
6300 * skb_condense - try to get rid of fragments/frag_list if possible
6301 * @skb: buffer
6302 *
6303 * Can be used to save memory before skb is added to a busy queue.
6304 * If packet has bytes in frags and enough tail room in skb->head,
6305 * pull all of them, so that we can free the frags right now and adjust
6306 * truesize.
6307 * Notes:
6308 * We do not reallocate skb->head thus can not fail.
6309 * Caller must re-evaluate skb->truesize if needed.
6310 */
6311void skb_condense(struct sk_buff *skb)
6312{
6313 if (skb->data_len) {
6314 if (skb->data_len > skb->end - skb->tail ||
6315 skb_cloned(skb))
6316 return;
6317
6318 /* Nice, we can free page frag(s) right now */
6319 __pskb_pull_tail(skb, skb->data_len);
6320 }
6321 /* At this point, skb->truesize might be over estimated,
6322 * because skb had a fragment, and fragments do not tell
6323 * their truesize.
6324 * When we pulled its content into skb->head, fragment
6325 * was freed, but __pskb_pull_tail() could not possibly
6326 * adjust skb->truesize, not knowing the frag truesize.
6327 */
6328 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6329}
6330
6331#ifdef CONFIG_SKB_EXTENSIONS
6332static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6333{
6334 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6335}
6336
6337/**
6338 * __skb_ext_alloc - allocate a new skb extensions storage
6339 *
6340 * @flags: See kmalloc().
6341 *
6342 * Returns the newly allocated pointer. The pointer can later attached to a
6343 * skb via __skb_ext_set().
6344 * Note: caller must handle the skb_ext as an opaque data.
6345 */
6346struct skb_ext *__skb_ext_alloc(gfp_t flags)
6347{
6348 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6349
6350 if (new) {
6351 memset(new->offset, 0, sizeof(new->offset));
6352 refcount_set(&new->refcnt, 1);
6353 }
6354
6355 return new;
6356}
6357
6358static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6359 unsigned int old_active)
6360{
6361 struct skb_ext *new;
6362
6363 if (refcount_read(&old->refcnt) == 1)
6364 return old;
6365
6366 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6367 if (!new)
6368 return NULL;
6369
6370 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6371 refcount_set(&new->refcnt, 1);
6372
6373#ifdef CONFIG_XFRM
6374 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6375 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6376 unsigned int i;
6377
6378 for (i = 0; i < sp->len; i++)
6379 xfrm_state_hold(sp->xvec[i]);
6380 }
6381#endif
6382 __skb_ext_put(old);
6383 return new;
6384}
6385
6386/**
6387 * __skb_ext_set - attach the specified extension storage to this skb
6388 * @skb: buffer
6389 * @id: extension id
6390 * @ext: extension storage previously allocated via __skb_ext_alloc()
6391 *
6392 * Existing extensions, if any, are cleared.
6393 *
6394 * Returns the pointer to the extension.
6395 */
6396void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6397 struct skb_ext *ext)
6398{
6399 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6400
6401 skb_ext_put(skb);
6402 newlen = newoff + skb_ext_type_len[id];
6403 ext->chunks = newlen;
6404 ext->offset[id] = newoff;
6405 skb->extensions = ext;
6406 skb->active_extensions = 1 << id;
6407 return skb_ext_get_ptr(ext, id);
6408}
6409
6410/**
6411 * skb_ext_add - allocate space for given extension, COW if needed
6412 * @skb: buffer
6413 * @id: extension to allocate space for
6414 *
6415 * Allocates enough space for the given extension.
6416 * If the extension is already present, a pointer to that extension
6417 * is returned.
6418 *
6419 * If the skb was cloned, COW applies and the returned memory can be
6420 * modified without changing the extension space of clones buffers.
6421 *
6422 * Returns pointer to the extension or NULL on allocation failure.
6423 */
6424void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6425{
6426 struct skb_ext *new, *old = NULL;
6427 unsigned int newlen, newoff;
6428
6429 if (skb->active_extensions) {
6430 old = skb->extensions;
6431
6432 new = skb_ext_maybe_cow(old, skb->active_extensions);
6433 if (!new)
6434 return NULL;
6435
6436 if (__skb_ext_exist(new, id))
6437 goto set_active;
6438
6439 newoff = new->chunks;
6440 } else {
6441 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6442
6443 new = __skb_ext_alloc(GFP_ATOMIC);
6444 if (!new)
6445 return NULL;
6446 }
6447
6448 newlen = newoff + skb_ext_type_len[id];
6449 new->chunks = newlen;
6450 new->offset[id] = newoff;
6451set_active:
6452 skb->extensions = new;
6453 skb->active_extensions |= 1 << id;
6454 return skb_ext_get_ptr(new, id);
6455}
6456EXPORT_SYMBOL(skb_ext_add);
6457
6458#ifdef CONFIG_XFRM
6459static void skb_ext_put_sp(struct sec_path *sp)
6460{
6461 unsigned int i;
6462
6463 for (i = 0; i < sp->len; i++)
6464 xfrm_state_put(sp->xvec[i]);
6465}
6466#endif
6467
6468void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6469{
6470 struct skb_ext *ext = skb->extensions;
6471
6472 skb->active_extensions &= ~(1 << id);
6473 if (skb->active_extensions == 0) {
6474 skb->extensions = NULL;
6475 __skb_ext_put(ext);
6476#ifdef CONFIG_XFRM
6477 } else if (id == SKB_EXT_SEC_PATH &&
6478 refcount_read(&ext->refcnt) == 1) {
6479 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6480
6481 skb_ext_put_sp(sp);
6482 sp->len = 0;
6483#endif
6484 }
6485}
6486EXPORT_SYMBOL(__skb_ext_del);
6487
6488void __skb_ext_put(struct skb_ext *ext)
6489{
6490 /* If this is last clone, nothing can increment
6491 * it after check passes. Avoids one atomic op.
6492 */
6493 if (refcount_read(&ext->refcnt) == 1)
6494 goto free_now;
6495
6496 if (!refcount_dec_and_test(&ext->refcnt))
6497 return;
6498free_now:
6499#ifdef CONFIG_XFRM
6500 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6501 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6502#endif
6503
6504 kmem_cache_free(skbuff_ext_cache, ext);
6505}
6506EXPORT_SYMBOL(__skb_ext_put);
6507#endif /* CONFIG_SKB_EXTENSIONS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/mctp.h>
74#include <net/page_pool.h>
75
76#include <linux/uaccess.h>
77#include <trace/events/skb.h>
78#include <linux/highmem.h>
79#include <linux/capability.h>
80#include <linux/user_namespace.h>
81#include <linux/indirect_call_wrapper.h>
82
83#include "dev.h"
84#include "sock_destructor.h"
85
86struct kmem_cache *skbuff_head_cache __ro_after_init;
87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88#ifdef CONFIG_SKB_EXTENSIONS
89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90#endif
91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94#undef FN
95#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96const char * const drop_reasons[] = {
97 [SKB_CONSUMED] = "CONSUMED",
98 DEFINE_DROP_REASON(FN, FN)
99};
100EXPORT_SYMBOL(drop_reasons);
101
102/**
103 * skb_panic - private function for out-of-line support
104 * @skb: buffer
105 * @sz: size
106 * @addr: address
107 * @msg: skb_over_panic or skb_under_panic
108 *
109 * Out-of-line support for skb_put() and skb_push().
110 * Called via the wrapper skb_over_panic() or skb_under_panic().
111 * Keep out of line to prevent kernel bloat.
112 * __builtin_return_address is not used because it is not always reliable.
113 */
114static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 const char msg[])
116{
117 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 msg, addr, skb->len, sz, skb->head, skb->data,
119 (unsigned long)skb->tail, (unsigned long)skb->end,
120 skb->dev ? skb->dev->name : "<NULL>");
121 BUG();
122}
123
124static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125{
126 skb_panic(skb, sz, addr, __func__);
127}
128
129static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130{
131 skb_panic(skb, sz, addr, __func__);
132}
133
134#define NAPI_SKB_CACHE_SIZE 64
135#define NAPI_SKB_CACHE_BULK 16
136#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
137
138#if PAGE_SIZE == SZ_4K
139
140#define NAPI_HAS_SMALL_PAGE_FRAG 1
141#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
142
143/* specialized page frag allocator using a single order 0 page
144 * and slicing it into 1K sized fragment. Constrained to systems
145 * with a very limited amount of 1K fragments fitting a single
146 * page - to avoid excessive truesize underestimation
147 */
148
149struct page_frag_1k {
150 void *va;
151 u16 offset;
152 bool pfmemalloc;
153};
154
155static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156{
157 struct page *page;
158 int offset;
159
160 offset = nc->offset - SZ_1K;
161 if (likely(offset >= 0))
162 goto use_frag;
163
164 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 if (!page)
166 return NULL;
167
168 nc->va = page_address(page);
169 nc->pfmemalloc = page_is_pfmemalloc(page);
170 offset = PAGE_SIZE - SZ_1K;
171 page_ref_add(page, offset / SZ_1K);
172
173use_frag:
174 nc->offset = offset;
175 return nc->va + offset;
176}
177#else
178
179/* the small page is actually unused in this build; add dummy helpers
180 * to please the compiler and avoid later preprocessor's conditionals
181 */
182#define NAPI_HAS_SMALL_PAGE_FRAG 0
183#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
184
185struct page_frag_1k {
186};
187
188static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189{
190 return NULL;
191}
192
193#endif
194
195struct napi_alloc_cache {
196 struct page_frag_cache page;
197 struct page_frag_1k page_small;
198 unsigned int skb_count;
199 void *skb_cache[NAPI_SKB_CACHE_SIZE];
200};
201
202static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204
205/* Double check that napi_get_frags() allocates skbs with
206 * skb->head being backed by slab, not a page fragment.
207 * This is to make sure bug fixed in 3226b158e67c
208 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209 * does not accidentally come back.
210 */
211void napi_get_frags_check(struct napi_struct *napi)
212{
213 struct sk_buff *skb;
214
215 local_bh_disable();
216 skb = napi_get_frags(napi);
217 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 napi_free_frags(napi);
219 local_bh_enable();
220}
221
222void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223{
224 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225
226 fragsz = SKB_DATA_ALIGN(fragsz);
227
228 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229}
230EXPORT_SYMBOL(__napi_alloc_frag_align);
231
232void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233{
234 void *data;
235
236 fragsz = SKB_DATA_ALIGN(fragsz);
237 if (in_hardirq() || irqs_disabled()) {
238 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239
240 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 } else {
242 struct napi_alloc_cache *nc;
243
244 local_bh_disable();
245 nc = this_cpu_ptr(&napi_alloc_cache);
246 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 local_bh_enable();
248 }
249 return data;
250}
251EXPORT_SYMBOL(__netdev_alloc_frag_align);
252
253static struct sk_buff *napi_skb_cache_get(void)
254{
255 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 struct sk_buff *skb;
257
258 if (unlikely(!nc->skb_count)) {
259 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 GFP_ATOMIC,
261 NAPI_SKB_CACHE_BULK,
262 nc->skb_cache);
263 if (unlikely(!nc->skb_count))
264 return NULL;
265 }
266
267 skb = nc->skb_cache[--nc->skb_count];
268 kasan_unpoison_object_data(skbuff_head_cache, skb);
269
270 return skb;
271}
272
273static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 unsigned int size)
275{
276 struct skb_shared_info *shinfo;
277
278 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279
280 /* Assumes caller memset cleared SKB */
281 skb->truesize = SKB_TRUESIZE(size);
282 refcount_set(&skb->users, 1);
283 skb->head = data;
284 skb->data = data;
285 skb_reset_tail_pointer(skb);
286 skb_set_end_offset(skb, size);
287 skb->mac_header = (typeof(skb->mac_header))~0U;
288 skb->transport_header = (typeof(skb->transport_header))~0U;
289 skb->alloc_cpu = raw_smp_processor_id();
290 /* make sure we initialize shinfo sequentially */
291 shinfo = skb_shinfo(skb);
292 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 atomic_set(&shinfo->dataref, 1);
294
295 skb_set_kcov_handle(skb, kcov_common_handle());
296}
297
298static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 unsigned int *size)
300{
301 void *resized;
302
303 /* Must find the allocation size (and grow it to match). */
304 *size = ksize(data);
305 /* krealloc() will immediately return "data" when
306 * "ksize(data)" is requested: it is the existing upper
307 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 * that this "new" pointer needs to be passed back to the
309 * caller for use so the __alloc_size hinting will be
310 * tracked correctly.
311 */
312 resized = krealloc(data, *size, GFP_ATOMIC);
313 WARN_ON_ONCE(resized != data);
314 return resized;
315}
316
317/* build_skb() variant which can operate on slab buffers.
318 * Note that this should be used sparingly as slab buffers
319 * cannot be combined efficiently by GRO!
320 */
321struct sk_buff *slab_build_skb(void *data)
322{
323 struct sk_buff *skb;
324 unsigned int size;
325
326 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 if (unlikely(!skb))
328 return NULL;
329
330 memset(skb, 0, offsetof(struct sk_buff, tail));
331 data = __slab_build_skb(skb, data, &size);
332 __finalize_skb_around(skb, data, size);
333
334 return skb;
335}
336EXPORT_SYMBOL(slab_build_skb);
337
338/* Caller must provide SKB that is memset cleared */
339static void __build_skb_around(struct sk_buff *skb, void *data,
340 unsigned int frag_size)
341{
342 unsigned int size = frag_size;
343
344 /* frag_size == 0 is considered deprecated now. Callers
345 * using slab buffer should use slab_build_skb() instead.
346 */
347 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 data = __slab_build_skb(skb, data, &size);
349
350 __finalize_skb_around(skb, data, size);
351}
352
353/**
354 * __build_skb - build a network buffer
355 * @data: data buffer provided by caller
356 * @frag_size: size of data (must not be 0)
357 *
358 * Allocate a new &sk_buff. Caller provides space holding head and
359 * skb_shared_info. @data must have been allocated from the page
360 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361 * allocation is deprecated, and callers should use slab_build_skb()
362 * instead.)
363 * The return is the new skb buffer.
364 * On a failure the return is %NULL, and @data is not freed.
365 * Notes :
366 * Before IO, driver allocates only data buffer where NIC put incoming frame
367 * Driver should add room at head (NET_SKB_PAD) and
368 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
370 * before giving packet to stack.
371 * RX rings only contains data buffers, not full skbs.
372 */
373struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374{
375 struct sk_buff *skb;
376
377 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 if (unlikely(!skb))
379 return NULL;
380
381 memset(skb, 0, offsetof(struct sk_buff, tail));
382 __build_skb_around(skb, data, frag_size);
383
384 return skb;
385}
386
387/* build_skb() is wrapper over __build_skb(), that specifically
388 * takes care of skb->head and skb->pfmemalloc
389 * This means that if @frag_size is not zero, then @data must be backed
390 * by a page fragment, not kmalloc() or vmalloc()
391 */
392struct sk_buff *build_skb(void *data, unsigned int frag_size)
393{
394 struct sk_buff *skb = __build_skb(data, frag_size);
395
396 if (skb && frag_size) {
397 skb->head_frag = 1;
398 if (page_is_pfmemalloc(virt_to_head_page(data)))
399 skb->pfmemalloc = 1;
400 }
401 return skb;
402}
403EXPORT_SYMBOL(build_skb);
404
405/**
406 * build_skb_around - build a network buffer around provided skb
407 * @skb: sk_buff provide by caller, must be memset cleared
408 * @data: data buffer provided by caller
409 * @frag_size: size of data, or 0 if head was kmalloced
410 */
411struct sk_buff *build_skb_around(struct sk_buff *skb,
412 void *data, unsigned int frag_size)
413{
414 if (unlikely(!skb))
415 return NULL;
416
417 __build_skb_around(skb, data, frag_size);
418
419 if (frag_size) {
420 skb->head_frag = 1;
421 if (page_is_pfmemalloc(virt_to_head_page(data)))
422 skb->pfmemalloc = 1;
423 }
424 return skb;
425}
426EXPORT_SYMBOL(build_skb_around);
427
428/**
429 * __napi_build_skb - build a network buffer
430 * @data: data buffer provided by caller
431 * @frag_size: size of data, or 0 if head was kmalloced
432 *
433 * Version of __build_skb() that uses NAPI percpu caches to obtain
434 * skbuff_head instead of inplace allocation.
435 *
436 * Returns a new &sk_buff on success, %NULL on allocation failure.
437 */
438static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
439{
440 struct sk_buff *skb;
441
442 skb = napi_skb_cache_get();
443 if (unlikely(!skb))
444 return NULL;
445
446 memset(skb, 0, offsetof(struct sk_buff, tail));
447 __build_skb_around(skb, data, frag_size);
448
449 return skb;
450}
451
452/**
453 * napi_build_skb - build a network buffer
454 * @data: data buffer provided by caller
455 * @frag_size: size of data, or 0 if head was kmalloced
456 *
457 * Version of __napi_build_skb() that takes care of skb->head_frag
458 * and skb->pfmemalloc when the data is a page or page fragment.
459 *
460 * Returns a new &sk_buff on success, %NULL on allocation failure.
461 */
462struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __napi_build_skb(data, frag_size);
465
466 if (likely(skb) && frag_size) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470
471 return skb;
472}
473EXPORT_SYMBOL(napi_build_skb);
474
475/*
476 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
477 * the caller if emergency pfmemalloc reserves are being used. If it is and
478 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
479 * may be used. Otherwise, the packet data may be discarded until enough
480 * memory is free
481 */
482static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
483 bool *pfmemalloc)
484{
485 void *obj;
486 bool ret_pfmemalloc = false;
487
488 /*
489 * Try a regular allocation, when that fails and we're not entitled
490 * to the reserves, fail.
491 */
492 obj = kmalloc_node_track_caller(size,
493 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
494 node);
495 if (obj || !(gfp_pfmemalloc_allowed(flags)))
496 goto out;
497
498 /* Try again but now we are using pfmemalloc reserves */
499 ret_pfmemalloc = true;
500 obj = kmalloc_node_track_caller(size, flags, node);
501
502out:
503 if (pfmemalloc)
504 *pfmemalloc = ret_pfmemalloc;
505
506 return obj;
507}
508
509/* Allocate a new skbuff. We do this ourselves so we can fill in a few
510 * 'private' fields and also do memory statistics to find all the
511 * [BEEP] leaks.
512 *
513 */
514
515/**
516 * __alloc_skb - allocate a network buffer
517 * @size: size to allocate
518 * @gfp_mask: allocation mask
519 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
520 * instead of head cache and allocate a cloned (child) skb.
521 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
522 * allocations in case the data is required for writeback
523 * @node: numa node to allocate memory on
524 *
525 * Allocate a new &sk_buff. The returned buffer has no headroom and a
526 * tail room of at least size bytes. The object has a reference count
527 * of one. The return is the buffer. On a failure the return is %NULL.
528 *
529 * Buffers may only be allocated from interrupts using a @gfp_mask of
530 * %GFP_ATOMIC.
531 */
532struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
533 int flags, int node)
534{
535 struct kmem_cache *cache;
536 struct sk_buff *skb;
537 unsigned int osize;
538 bool pfmemalloc;
539 u8 *data;
540
541 cache = (flags & SKB_ALLOC_FCLONE)
542 ? skbuff_fclone_cache : skbuff_head_cache;
543
544 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
545 gfp_mask |= __GFP_MEMALLOC;
546
547 /* Get the HEAD */
548 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
549 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
550 skb = napi_skb_cache_get();
551 else
552 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
553 if (unlikely(!skb))
554 return NULL;
555 prefetchw(skb);
556
557 /* We do our best to align skb_shared_info on a separate cache
558 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
559 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
560 * Both skb->head and skb_shared_info are cache line aligned.
561 */
562 size = SKB_DATA_ALIGN(size);
563 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
564 osize = kmalloc_size_roundup(size);
565 data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
566 if (unlikely(!data))
567 goto nodata;
568 /* kmalloc_size_roundup() might give us more room than requested.
569 * Put skb_shared_info exactly at the end of allocated zone,
570 * to allow max possible filling before reallocation.
571 */
572 size = SKB_WITH_OVERHEAD(osize);
573 prefetchw(data + size);
574
575 /*
576 * Only clear those fields we need to clear, not those that we will
577 * actually initialise below. Hence, don't put any more fields after
578 * the tail pointer in struct sk_buff!
579 */
580 memset(skb, 0, offsetof(struct sk_buff, tail));
581 __build_skb_around(skb, data, osize);
582 skb->pfmemalloc = pfmemalloc;
583
584 if (flags & SKB_ALLOC_FCLONE) {
585 struct sk_buff_fclones *fclones;
586
587 fclones = container_of(skb, struct sk_buff_fclones, skb1);
588
589 skb->fclone = SKB_FCLONE_ORIG;
590 refcount_set(&fclones->fclone_ref, 1);
591 }
592
593 return skb;
594
595nodata:
596 kmem_cache_free(cache, skb);
597 return NULL;
598}
599EXPORT_SYMBOL(__alloc_skb);
600
601/**
602 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
603 * @dev: network device to receive on
604 * @len: length to allocate
605 * @gfp_mask: get_free_pages mask, passed to alloc_skb
606 *
607 * Allocate a new &sk_buff and assign it a usage count of one. The
608 * buffer has NET_SKB_PAD headroom built in. Users should allocate
609 * the headroom they think they need without accounting for the
610 * built in space. The built in space is used for optimisations.
611 *
612 * %NULL is returned if there is no free memory.
613 */
614struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
615 gfp_t gfp_mask)
616{
617 struct page_frag_cache *nc;
618 struct sk_buff *skb;
619 bool pfmemalloc;
620 void *data;
621
622 len += NET_SKB_PAD;
623
624 /* If requested length is either too small or too big,
625 * we use kmalloc() for skb->head allocation.
626 */
627 if (len <= SKB_WITH_OVERHEAD(1024) ||
628 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
629 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
630 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
631 if (!skb)
632 goto skb_fail;
633 goto skb_success;
634 }
635
636 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
637 len = SKB_DATA_ALIGN(len);
638
639 if (sk_memalloc_socks())
640 gfp_mask |= __GFP_MEMALLOC;
641
642 if (in_hardirq() || irqs_disabled()) {
643 nc = this_cpu_ptr(&netdev_alloc_cache);
644 data = page_frag_alloc(nc, len, gfp_mask);
645 pfmemalloc = nc->pfmemalloc;
646 } else {
647 local_bh_disable();
648 nc = this_cpu_ptr(&napi_alloc_cache.page);
649 data = page_frag_alloc(nc, len, gfp_mask);
650 pfmemalloc = nc->pfmemalloc;
651 local_bh_enable();
652 }
653
654 if (unlikely(!data))
655 return NULL;
656
657 skb = __build_skb(data, len);
658 if (unlikely(!skb)) {
659 skb_free_frag(data);
660 return NULL;
661 }
662
663 if (pfmemalloc)
664 skb->pfmemalloc = 1;
665 skb->head_frag = 1;
666
667skb_success:
668 skb_reserve(skb, NET_SKB_PAD);
669 skb->dev = dev;
670
671skb_fail:
672 return skb;
673}
674EXPORT_SYMBOL(__netdev_alloc_skb);
675
676/**
677 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
678 * @napi: napi instance this buffer was allocated for
679 * @len: length to allocate
680 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
681 *
682 * Allocate a new sk_buff for use in NAPI receive. This buffer will
683 * attempt to allocate the head from a special reserved region used
684 * only for NAPI Rx allocation. By doing this we can save several
685 * CPU cycles by avoiding having to disable and re-enable IRQs.
686 *
687 * %NULL is returned if there is no free memory.
688 */
689struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
690 gfp_t gfp_mask)
691{
692 struct napi_alloc_cache *nc;
693 struct sk_buff *skb;
694 bool pfmemalloc;
695 void *data;
696
697 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
698 len += NET_SKB_PAD + NET_IP_ALIGN;
699
700 /* If requested length is either too small or too big,
701 * we use kmalloc() for skb->head allocation.
702 * When the small frag allocator is available, prefer it over kmalloc
703 * for small fragments
704 */
705 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
709 NUMA_NO_NODE);
710 if (!skb)
711 goto skb_fail;
712 goto skb_success;
713 }
714
715 nc = this_cpu_ptr(&napi_alloc_cache);
716
717 if (sk_memalloc_socks())
718 gfp_mask |= __GFP_MEMALLOC;
719
720 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
721 /* we are artificially inflating the allocation size, but
722 * that is not as bad as it may look like, as:
723 * - 'len' less than GRO_MAX_HEAD makes little sense
724 * - On most systems, larger 'len' values lead to fragment
725 * size above 512 bytes
726 * - kmalloc would use the kmalloc-1k slab for such values
727 * - Builds with smaller GRO_MAX_HEAD will very likely do
728 * little networking, as that implies no WiFi and no
729 * tunnels support, and 32 bits arches.
730 */
731 len = SZ_1K;
732
733 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
734 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
735 } else {
736 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
737 len = SKB_DATA_ALIGN(len);
738
739 data = page_frag_alloc(&nc->page, len, gfp_mask);
740 pfmemalloc = nc->page.pfmemalloc;
741 }
742
743 if (unlikely(!data))
744 return NULL;
745
746 skb = __napi_build_skb(data, len);
747 if (unlikely(!skb)) {
748 skb_free_frag(data);
749 return NULL;
750 }
751
752 if (pfmemalloc)
753 skb->pfmemalloc = 1;
754 skb->head_frag = 1;
755
756skb_success:
757 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
758 skb->dev = napi->dev;
759
760skb_fail:
761 return skb;
762}
763EXPORT_SYMBOL(__napi_alloc_skb);
764
765void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
766 int size, unsigned int truesize)
767{
768 skb_fill_page_desc(skb, i, page, off, size);
769 skb->len += size;
770 skb->data_len += size;
771 skb->truesize += truesize;
772}
773EXPORT_SYMBOL(skb_add_rx_frag);
774
775void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
776 unsigned int truesize)
777{
778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779
780 skb_frag_size_add(frag, size);
781 skb->len += size;
782 skb->data_len += size;
783 skb->truesize += truesize;
784}
785EXPORT_SYMBOL(skb_coalesce_rx_frag);
786
787static void skb_drop_list(struct sk_buff **listp)
788{
789 kfree_skb_list(*listp);
790 *listp = NULL;
791}
792
793static inline void skb_drop_fraglist(struct sk_buff *skb)
794{
795 skb_drop_list(&skb_shinfo(skb)->frag_list);
796}
797
798static void skb_clone_fraglist(struct sk_buff *skb)
799{
800 struct sk_buff *list;
801
802 skb_walk_frags(skb, list)
803 skb_get(list);
804}
805
806static bool skb_pp_recycle(struct sk_buff *skb, void *data)
807{
808 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
809 return false;
810 return page_pool_return_skb_page(virt_to_page(data));
811}
812
813static void skb_free_head(struct sk_buff *skb)
814{
815 unsigned char *head = skb->head;
816
817 if (skb->head_frag) {
818 if (skb_pp_recycle(skb, head))
819 return;
820 skb_free_frag(head);
821 } else {
822 kfree(head);
823 }
824}
825
826static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
827{
828 struct skb_shared_info *shinfo = skb_shinfo(skb);
829 int i;
830
831 if (skb->cloned &&
832 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
833 &shinfo->dataref))
834 goto exit;
835
836 if (skb_zcopy(skb)) {
837 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
838
839 skb_zcopy_clear(skb, true);
840 if (skip_unref)
841 goto free_head;
842 }
843
844 for (i = 0; i < shinfo->nr_frags; i++)
845 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
846
847free_head:
848 if (shinfo->frag_list)
849 kfree_skb_list_reason(shinfo->frag_list, reason);
850
851 skb_free_head(skb);
852exit:
853 /* When we clone an SKB we copy the reycling bit. The pp_recycle
854 * bit is only set on the head though, so in order to avoid races
855 * while trying to recycle fragments on __skb_frag_unref() we need
856 * to make one SKB responsible for triggering the recycle path.
857 * So disable the recycling bit if an SKB is cloned and we have
858 * additional references to the fragmented part of the SKB.
859 * Eventually the last SKB will have the recycling bit set and it's
860 * dataref set to 0, which will trigger the recycling
861 */
862 skb->pp_recycle = 0;
863}
864
865/*
866 * Free an skbuff by memory without cleaning the state.
867 */
868static void kfree_skbmem(struct sk_buff *skb)
869{
870 struct sk_buff_fclones *fclones;
871
872 switch (skb->fclone) {
873 case SKB_FCLONE_UNAVAILABLE:
874 kmem_cache_free(skbuff_head_cache, skb);
875 return;
876
877 case SKB_FCLONE_ORIG:
878 fclones = container_of(skb, struct sk_buff_fclones, skb1);
879
880 /* We usually free the clone (TX completion) before original skb
881 * This test would have no chance to be true for the clone,
882 * while here, branch prediction will be good.
883 */
884 if (refcount_read(&fclones->fclone_ref) == 1)
885 goto fastpath;
886 break;
887
888 default: /* SKB_FCLONE_CLONE */
889 fclones = container_of(skb, struct sk_buff_fclones, skb2);
890 break;
891 }
892 if (!refcount_dec_and_test(&fclones->fclone_ref))
893 return;
894fastpath:
895 kmem_cache_free(skbuff_fclone_cache, fclones);
896}
897
898void skb_release_head_state(struct sk_buff *skb)
899{
900 skb_dst_drop(skb);
901 if (skb->destructor) {
902 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
903 skb->destructor(skb);
904 }
905#if IS_ENABLED(CONFIG_NF_CONNTRACK)
906 nf_conntrack_put(skb_nfct(skb));
907#endif
908 skb_ext_put(skb);
909}
910
911/* Free everything but the sk_buff shell. */
912static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
913{
914 skb_release_head_state(skb);
915 if (likely(skb->head))
916 skb_release_data(skb, reason);
917}
918
919/**
920 * __kfree_skb - private function
921 * @skb: buffer
922 *
923 * Free an sk_buff. Release anything attached to the buffer.
924 * Clean the state. This is an internal helper function. Users should
925 * always call kfree_skb
926 */
927
928void __kfree_skb(struct sk_buff *skb)
929{
930 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
931 kfree_skbmem(skb);
932}
933EXPORT_SYMBOL(__kfree_skb);
934
935/**
936 * kfree_skb_reason - free an sk_buff with special reason
937 * @skb: buffer to free
938 * @reason: reason why this skb is dropped
939 *
940 * Drop a reference to the buffer and free it if the usage count has
941 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
942 * tracepoint.
943 */
944void __fix_address
945kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
946{
947 if (unlikely(!skb_unref(skb)))
948 return;
949
950 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
951
952 if (reason == SKB_CONSUMED)
953 trace_consume_skb(skb);
954 else
955 trace_kfree_skb(skb, __builtin_return_address(0), reason);
956 __kfree_skb(skb);
957}
958EXPORT_SYMBOL(kfree_skb_reason);
959
960void kfree_skb_list_reason(struct sk_buff *segs,
961 enum skb_drop_reason reason)
962{
963 while (segs) {
964 struct sk_buff *next = segs->next;
965
966 kfree_skb_reason(segs, reason);
967 segs = next;
968 }
969}
970EXPORT_SYMBOL(kfree_skb_list_reason);
971
972/* Dump skb information and contents.
973 *
974 * Must only be called from net_ratelimit()-ed paths.
975 *
976 * Dumps whole packets if full_pkt, only headers otherwise.
977 */
978void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
979{
980 struct skb_shared_info *sh = skb_shinfo(skb);
981 struct net_device *dev = skb->dev;
982 struct sock *sk = skb->sk;
983 struct sk_buff *list_skb;
984 bool has_mac, has_trans;
985 int headroom, tailroom;
986 int i, len, seg_len;
987
988 if (full_pkt)
989 len = skb->len;
990 else
991 len = min_t(int, skb->len, MAX_HEADER + 128);
992
993 headroom = skb_headroom(skb);
994 tailroom = skb_tailroom(skb);
995
996 has_mac = skb_mac_header_was_set(skb);
997 has_trans = skb_transport_header_was_set(skb);
998
999 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1000 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1001 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1002 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1003 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1004 level, skb->len, headroom, skb_headlen(skb), tailroom,
1005 has_mac ? skb->mac_header : -1,
1006 has_mac ? skb_mac_header_len(skb) : -1,
1007 skb->network_header,
1008 has_trans ? skb_network_header_len(skb) : -1,
1009 has_trans ? skb->transport_header : -1,
1010 sh->tx_flags, sh->nr_frags,
1011 sh->gso_size, sh->gso_type, sh->gso_segs,
1012 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1013 skb->csum_valid, skb->csum_level,
1014 skb->hash, skb->sw_hash, skb->l4_hash,
1015 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1016
1017 if (dev)
1018 printk("%sdev name=%s feat=%pNF\n",
1019 level, dev->name, &dev->features);
1020 if (sk)
1021 printk("%ssk family=%hu type=%u proto=%u\n",
1022 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1023
1024 if (full_pkt && headroom)
1025 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1026 16, 1, skb->head, headroom, false);
1027
1028 seg_len = min_t(int, skb_headlen(skb), len);
1029 if (seg_len)
1030 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1031 16, 1, skb->data, seg_len, false);
1032 len -= seg_len;
1033
1034 if (full_pkt && tailroom)
1035 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1036 16, 1, skb_tail_pointer(skb), tailroom, false);
1037
1038 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1040 u32 p_off, p_len, copied;
1041 struct page *p;
1042 u8 *vaddr;
1043
1044 skb_frag_foreach_page(frag, skb_frag_off(frag),
1045 skb_frag_size(frag), p, p_off, p_len,
1046 copied) {
1047 seg_len = min_t(int, p_len, len);
1048 vaddr = kmap_atomic(p);
1049 print_hex_dump(level, "skb frag: ",
1050 DUMP_PREFIX_OFFSET,
1051 16, 1, vaddr + p_off, seg_len, false);
1052 kunmap_atomic(vaddr);
1053 len -= seg_len;
1054 if (!len)
1055 break;
1056 }
1057 }
1058
1059 if (full_pkt && skb_has_frag_list(skb)) {
1060 printk("skb fraglist:\n");
1061 skb_walk_frags(skb, list_skb)
1062 skb_dump(level, list_skb, true);
1063 }
1064}
1065EXPORT_SYMBOL(skb_dump);
1066
1067/**
1068 * skb_tx_error - report an sk_buff xmit error
1069 * @skb: buffer that triggered an error
1070 *
1071 * Report xmit error if a device callback is tracking this skb.
1072 * skb must be freed afterwards.
1073 */
1074void skb_tx_error(struct sk_buff *skb)
1075{
1076 if (skb) {
1077 skb_zcopy_downgrade_managed(skb);
1078 skb_zcopy_clear(skb, true);
1079 }
1080}
1081EXPORT_SYMBOL(skb_tx_error);
1082
1083#ifdef CONFIG_TRACEPOINTS
1084/**
1085 * consume_skb - free an skbuff
1086 * @skb: buffer to free
1087 *
1088 * Drop a ref to the buffer and free it if the usage count has hit zero
1089 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1090 * is being dropped after a failure and notes that
1091 */
1092void consume_skb(struct sk_buff *skb)
1093{
1094 if (!skb_unref(skb))
1095 return;
1096
1097 trace_consume_skb(skb);
1098 __kfree_skb(skb);
1099}
1100EXPORT_SYMBOL(consume_skb);
1101#endif
1102
1103/**
1104 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1105 * @skb: buffer to free
1106 *
1107 * Alike consume_skb(), but this variant assumes that this is the last
1108 * skb reference and all the head states have been already dropped
1109 */
1110void __consume_stateless_skb(struct sk_buff *skb)
1111{
1112 trace_consume_skb(skb);
1113 skb_release_data(skb, SKB_CONSUMED);
1114 kfree_skbmem(skb);
1115}
1116
1117static void napi_skb_cache_put(struct sk_buff *skb)
1118{
1119 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1120 u32 i;
1121
1122 kasan_poison_object_data(skbuff_head_cache, skb);
1123 nc->skb_cache[nc->skb_count++] = skb;
1124
1125 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1126 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1127 kasan_unpoison_object_data(skbuff_head_cache,
1128 nc->skb_cache[i]);
1129
1130 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1131 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1132 nc->skb_count = NAPI_SKB_CACHE_HALF;
1133 }
1134}
1135
1136void __kfree_skb_defer(struct sk_buff *skb)
1137{
1138 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1139 napi_skb_cache_put(skb);
1140}
1141
1142void napi_skb_free_stolen_head(struct sk_buff *skb)
1143{
1144 if (unlikely(skb->slow_gro)) {
1145 nf_reset_ct(skb);
1146 skb_dst_drop(skb);
1147 skb_ext_put(skb);
1148 skb_orphan(skb);
1149 skb->slow_gro = 0;
1150 }
1151 napi_skb_cache_put(skb);
1152}
1153
1154void napi_consume_skb(struct sk_buff *skb, int budget)
1155{
1156 /* Zero budget indicate non-NAPI context called us, like netpoll */
1157 if (unlikely(!budget)) {
1158 dev_consume_skb_any(skb);
1159 return;
1160 }
1161
1162 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1163
1164 if (!skb_unref(skb))
1165 return;
1166
1167 /* if reaching here SKB is ready to free */
1168 trace_consume_skb(skb);
1169
1170 /* if SKB is a clone, don't handle this case */
1171 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1172 __kfree_skb(skb);
1173 return;
1174 }
1175
1176 skb_release_all(skb, SKB_CONSUMED);
1177 napi_skb_cache_put(skb);
1178}
1179EXPORT_SYMBOL(napi_consume_skb);
1180
1181/* Make sure a field is contained by headers group */
1182#define CHECK_SKB_FIELD(field) \
1183 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1184 offsetof(struct sk_buff, headers.field)); \
1185
1186static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1187{
1188 new->tstamp = old->tstamp;
1189 /* We do not copy old->sk */
1190 new->dev = old->dev;
1191 memcpy(new->cb, old->cb, sizeof(old->cb));
1192 skb_dst_copy(new, old);
1193 __skb_ext_copy(new, old);
1194 __nf_copy(new, old, false);
1195
1196 /* Note : this field could be in the headers group.
1197 * It is not yet because we do not want to have a 16 bit hole
1198 */
1199 new->queue_mapping = old->queue_mapping;
1200
1201 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1202 CHECK_SKB_FIELD(protocol);
1203 CHECK_SKB_FIELD(csum);
1204 CHECK_SKB_FIELD(hash);
1205 CHECK_SKB_FIELD(priority);
1206 CHECK_SKB_FIELD(skb_iif);
1207 CHECK_SKB_FIELD(vlan_proto);
1208 CHECK_SKB_FIELD(vlan_tci);
1209 CHECK_SKB_FIELD(transport_header);
1210 CHECK_SKB_FIELD(network_header);
1211 CHECK_SKB_FIELD(mac_header);
1212 CHECK_SKB_FIELD(inner_protocol);
1213 CHECK_SKB_FIELD(inner_transport_header);
1214 CHECK_SKB_FIELD(inner_network_header);
1215 CHECK_SKB_FIELD(inner_mac_header);
1216 CHECK_SKB_FIELD(mark);
1217#ifdef CONFIG_NETWORK_SECMARK
1218 CHECK_SKB_FIELD(secmark);
1219#endif
1220#ifdef CONFIG_NET_RX_BUSY_POLL
1221 CHECK_SKB_FIELD(napi_id);
1222#endif
1223 CHECK_SKB_FIELD(alloc_cpu);
1224#ifdef CONFIG_XPS
1225 CHECK_SKB_FIELD(sender_cpu);
1226#endif
1227#ifdef CONFIG_NET_SCHED
1228 CHECK_SKB_FIELD(tc_index);
1229#endif
1230
1231}
1232
1233/*
1234 * You should not add any new code to this function. Add it to
1235 * __copy_skb_header above instead.
1236 */
1237static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1238{
1239#define C(x) n->x = skb->x
1240
1241 n->next = n->prev = NULL;
1242 n->sk = NULL;
1243 __copy_skb_header(n, skb);
1244
1245 C(len);
1246 C(data_len);
1247 C(mac_len);
1248 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1249 n->cloned = 1;
1250 n->nohdr = 0;
1251 n->peeked = 0;
1252 C(pfmemalloc);
1253 C(pp_recycle);
1254 n->destructor = NULL;
1255 C(tail);
1256 C(end);
1257 C(head);
1258 C(head_frag);
1259 C(data);
1260 C(truesize);
1261 refcount_set(&n->users, 1);
1262
1263 atomic_inc(&(skb_shinfo(skb)->dataref));
1264 skb->cloned = 1;
1265
1266 return n;
1267#undef C
1268}
1269
1270/**
1271 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1272 * @first: first sk_buff of the msg
1273 */
1274struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1275{
1276 struct sk_buff *n;
1277
1278 n = alloc_skb(0, GFP_ATOMIC);
1279 if (!n)
1280 return NULL;
1281
1282 n->len = first->len;
1283 n->data_len = first->len;
1284 n->truesize = first->truesize;
1285
1286 skb_shinfo(n)->frag_list = first;
1287
1288 __copy_skb_header(n, first);
1289 n->destructor = NULL;
1290
1291 return n;
1292}
1293EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1294
1295/**
1296 * skb_morph - morph one skb into another
1297 * @dst: the skb to receive the contents
1298 * @src: the skb to supply the contents
1299 *
1300 * This is identical to skb_clone except that the target skb is
1301 * supplied by the user.
1302 *
1303 * The target skb is returned upon exit.
1304 */
1305struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1306{
1307 skb_release_all(dst, SKB_CONSUMED);
1308 return __skb_clone(dst, src);
1309}
1310EXPORT_SYMBOL_GPL(skb_morph);
1311
1312int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1313{
1314 unsigned long max_pg, num_pg, new_pg, old_pg;
1315 struct user_struct *user;
1316
1317 if (capable(CAP_IPC_LOCK) || !size)
1318 return 0;
1319
1320 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1321 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1322 user = mmp->user ? : current_user();
1323
1324 old_pg = atomic_long_read(&user->locked_vm);
1325 do {
1326 new_pg = old_pg + num_pg;
1327 if (new_pg > max_pg)
1328 return -ENOBUFS;
1329 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1330
1331 if (!mmp->user) {
1332 mmp->user = get_uid(user);
1333 mmp->num_pg = num_pg;
1334 } else {
1335 mmp->num_pg += num_pg;
1336 }
1337
1338 return 0;
1339}
1340EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1341
1342void mm_unaccount_pinned_pages(struct mmpin *mmp)
1343{
1344 if (mmp->user) {
1345 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1346 free_uid(mmp->user);
1347 }
1348}
1349EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1350
1351static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1352{
1353 struct ubuf_info_msgzc *uarg;
1354 struct sk_buff *skb;
1355
1356 WARN_ON_ONCE(!in_task());
1357
1358 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1359 if (!skb)
1360 return NULL;
1361
1362 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1363 uarg = (void *)skb->cb;
1364 uarg->mmp.user = NULL;
1365
1366 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1367 kfree_skb(skb);
1368 return NULL;
1369 }
1370
1371 uarg->ubuf.callback = msg_zerocopy_callback;
1372 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1373 uarg->len = 1;
1374 uarg->bytelen = size;
1375 uarg->zerocopy = 1;
1376 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1377 refcount_set(&uarg->ubuf.refcnt, 1);
1378 sock_hold(sk);
1379
1380 return &uarg->ubuf;
1381}
1382
1383static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1384{
1385 return container_of((void *)uarg, struct sk_buff, cb);
1386}
1387
1388struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1389 struct ubuf_info *uarg)
1390{
1391 if (uarg) {
1392 struct ubuf_info_msgzc *uarg_zc;
1393 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1394 u32 bytelen, next;
1395
1396 /* there might be non MSG_ZEROCOPY users */
1397 if (uarg->callback != msg_zerocopy_callback)
1398 return NULL;
1399
1400 /* realloc only when socket is locked (TCP, UDP cork),
1401 * so uarg->len and sk_zckey access is serialized
1402 */
1403 if (!sock_owned_by_user(sk)) {
1404 WARN_ON_ONCE(1);
1405 return NULL;
1406 }
1407
1408 uarg_zc = uarg_to_msgzc(uarg);
1409 bytelen = uarg_zc->bytelen + size;
1410 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1411 /* TCP can create new skb to attach new uarg */
1412 if (sk->sk_type == SOCK_STREAM)
1413 goto new_alloc;
1414 return NULL;
1415 }
1416
1417 next = (u32)atomic_read(&sk->sk_zckey);
1418 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1419 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1420 return NULL;
1421 uarg_zc->len++;
1422 uarg_zc->bytelen = bytelen;
1423 atomic_set(&sk->sk_zckey, ++next);
1424
1425 /* no extra ref when appending to datagram (MSG_MORE) */
1426 if (sk->sk_type == SOCK_STREAM)
1427 net_zcopy_get(uarg);
1428
1429 return uarg;
1430 }
1431 }
1432
1433new_alloc:
1434 return msg_zerocopy_alloc(sk, size);
1435}
1436EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1437
1438static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1439{
1440 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1441 u32 old_lo, old_hi;
1442 u64 sum_len;
1443
1444 old_lo = serr->ee.ee_info;
1445 old_hi = serr->ee.ee_data;
1446 sum_len = old_hi - old_lo + 1ULL + len;
1447
1448 if (sum_len >= (1ULL << 32))
1449 return false;
1450
1451 if (lo != old_hi + 1)
1452 return false;
1453
1454 serr->ee.ee_data += len;
1455 return true;
1456}
1457
1458static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1459{
1460 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1461 struct sock_exterr_skb *serr;
1462 struct sock *sk = skb->sk;
1463 struct sk_buff_head *q;
1464 unsigned long flags;
1465 bool is_zerocopy;
1466 u32 lo, hi;
1467 u16 len;
1468
1469 mm_unaccount_pinned_pages(&uarg->mmp);
1470
1471 /* if !len, there was only 1 call, and it was aborted
1472 * so do not queue a completion notification
1473 */
1474 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1475 goto release;
1476
1477 len = uarg->len;
1478 lo = uarg->id;
1479 hi = uarg->id + len - 1;
1480 is_zerocopy = uarg->zerocopy;
1481
1482 serr = SKB_EXT_ERR(skb);
1483 memset(serr, 0, sizeof(*serr));
1484 serr->ee.ee_errno = 0;
1485 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1486 serr->ee.ee_data = hi;
1487 serr->ee.ee_info = lo;
1488 if (!is_zerocopy)
1489 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1490
1491 q = &sk->sk_error_queue;
1492 spin_lock_irqsave(&q->lock, flags);
1493 tail = skb_peek_tail(q);
1494 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1495 !skb_zerocopy_notify_extend(tail, lo, len)) {
1496 __skb_queue_tail(q, skb);
1497 skb = NULL;
1498 }
1499 spin_unlock_irqrestore(&q->lock, flags);
1500
1501 sk_error_report(sk);
1502
1503release:
1504 consume_skb(skb);
1505 sock_put(sk);
1506}
1507
1508void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1509 bool success)
1510{
1511 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1512
1513 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1514
1515 if (refcount_dec_and_test(&uarg->refcnt))
1516 __msg_zerocopy_callback(uarg_zc);
1517}
1518EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1519
1520void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1521{
1522 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1523
1524 atomic_dec(&sk->sk_zckey);
1525 uarg_to_msgzc(uarg)->len--;
1526
1527 if (have_uref)
1528 msg_zerocopy_callback(NULL, uarg, true);
1529}
1530EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1531
1532int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1533 struct msghdr *msg, int len,
1534 struct ubuf_info *uarg)
1535{
1536 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1537 int err, orig_len = skb->len;
1538
1539 /* An skb can only point to one uarg. This edge case happens when
1540 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1541 */
1542 if (orig_uarg && uarg != orig_uarg)
1543 return -EEXIST;
1544
1545 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1546 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1547 struct sock *save_sk = skb->sk;
1548
1549 /* Streams do not free skb on error. Reset to prev state. */
1550 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1551 skb->sk = sk;
1552 ___pskb_trim(skb, orig_len);
1553 skb->sk = save_sk;
1554 return err;
1555 }
1556
1557 skb_zcopy_set(skb, uarg, NULL);
1558 return skb->len - orig_len;
1559}
1560EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1561
1562void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1563{
1564 int i;
1565
1566 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1568 skb_frag_ref(skb, i);
1569}
1570EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1571
1572static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1573 gfp_t gfp_mask)
1574{
1575 if (skb_zcopy(orig)) {
1576 if (skb_zcopy(nskb)) {
1577 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1578 if (!gfp_mask) {
1579 WARN_ON_ONCE(1);
1580 return -ENOMEM;
1581 }
1582 if (skb_uarg(nskb) == skb_uarg(orig))
1583 return 0;
1584 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1585 return -EIO;
1586 }
1587 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1588 }
1589 return 0;
1590}
1591
1592/**
1593 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1594 * @skb: the skb to modify
1595 * @gfp_mask: allocation priority
1596 *
1597 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1598 * It will copy all frags into kernel and drop the reference
1599 * to userspace pages.
1600 *
1601 * If this function is called from an interrupt gfp_mask() must be
1602 * %GFP_ATOMIC.
1603 *
1604 * Returns 0 on success or a negative error code on failure
1605 * to allocate kernel memory to copy to.
1606 */
1607int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1608{
1609 int num_frags = skb_shinfo(skb)->nr_frags;
1610 struct page *page, *head = NULL;
1611 int i, new_frags;
1612 u32 d_off;
1613
1614 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1615 return -EINVAL;
1616
1617 if (!num_frags)
1618 goto release;
1619
1620 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1621 for (i = 0; i < new_frags; i++) {
1622 page = alloc_page(gfp_mask);
1623 if (!page) {
1624 while (head) {
1625 struct page *next = (struct page *)page_private(head);
1626 put_page(head);
1627 head = next;
1628 }
1629 return -ENOMEM;
1630 }
1631 set_page_private(page, (unsigned long)head);
1632 head = page;
1633 }
1634
1635 page = head;
1636 d_off = 0;
1637 for (i = 0; i < num_frags; i++) {
1638 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1639 u32 p_off, p_len, copied;
1640 struct page *p;
1641 u8 *vaddr;
1642
1643 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1644 p, p_off, p_len, copied) {
1645 u32 copy, done = 0;
1646 vaddr = kmap_atomic(p);
1647
1648 while (done < p_len) {
1649 if (d_off == PAGE_SIZE) {
1650 d_off = 0;
1651 page = (struct page *)page_private(page);
1652 }
1653 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1654 memcpy(page_address(page) + d_off,
1655 vaddr + p_off + done, copy);
1656 done += copy;
1657 d_off += copy;
1658 }
1659 kunmap_atomic(vaddr);
1660 }
1661 }
1662
1663 /* skb frags release userspace buffers */
1664 for (i = 0; i < num_frags; i++)
1665 skb_frag_unref(skb, i);
1666
1667 /* skb frags point to kernel buffers */
1668 for (i = 0; i < new_frags - 1; i++) {
1669 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1670 head = (struct page *)page_private(head);
1671 }
1672 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1673 skb_shinfo(skb)->nr_frags = new_frags;
1674
1675release:
1676 skb_zcopy_clear(skb, false);
1677 return 0;
1678}
1679EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1680
1681/**
1682 * skb_clone - duplicate an sk_buff
1683 * @skb: buffer to clone
1684 * @gfp_mask: allocation priority
1685 *
1686 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1687 * copies share the same packet data but not structure. The new
1688 * buffer has a reference count of 1. If the allocation fails the
1689 * function returns %NULL otherwise the new buffer is returned.
1690 *
1691 * If this function is called from an interrupt gfp_mask() must be
1692 * %GFP_ATOMIC.
1693 */
1694
1695struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1696{
1697 struct sk_buff_fclones *fclones = container_of(skb,
1698 struct sk_buff_fclones,
1699 skb1);
1700 struct sk_buff *n;
1701
1702 if (skb_orphan_frags(skb, gfp_mask))
1703 return NULL;
1704
1705 if (skb->fclone == SKB_FCLONE_ORIG &&
1706 refcount_read(&fclones->fclone_ref) == 1) {
1707 n = &fclones->skb2;
1708 refcount_set(&fclones->fclone_ref, 2);
1709 n->fclone = SKB_FCLONE_CLONE;
1710 } else {
1711 if (skb_pfmemalloc(skb))
1712 gfp_mask |= __GFP_MEMALLOC;
1713
1714 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1715 if (!n)
1716 return NULL;
1717
1718 n->fclone = SKB_FCLONE_UNAVAILABLE;
1719 }
1720
1721 return __skb_clone(n, skb);
1722}
1723EXPORT_SYMBOL(skb_clone);
1724
1725void skb_headers_offset_update(struct sk_buff *skb, int off)
1726{
1727 /* Only adjust this if it actually is csum_start rather than csum */
1728 if (skb->ip_summed == CHECKSUM_PARTIAL)
1729 skb->csum_start += off;
1730 /* {transport,network,mac}_header and tail are relative to skb->head */
1731 skb->transport_header += off;
1732 skb->network_header += off;
1733 if (skb_mac_header_was_set(skb))
1734 skb->mac_header += off;
1735 skb->inner_transport_header += off;
1736 skb->inner_network_header += off;
1737 skb->inner_mac_header += off;
1738}
1739EXPORT_SYMBOL(skb_headers_offset_update);
1740
1741void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1742{
1743 __copy_skb_header(new, old);
1744
1745 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1746 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1747 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1748}
1749EXPORT_SYMBOL(skb_copy_header);
1750
1751static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1752{
1753 if (skb_pfmemalloc(skb))
1754 return SKB_ALLOC_RX;
1755 return 0;
1756}
1757
1758/**
1759 * skb_copy - create private copy of an sk_buff
1760 * @skb: buffer to copy
1761 * @gfp_mask: allocation priority
1762 *
1763 * Make a copy of both an &sk_buff and its data. This is used when the
1764 * caller wishes to modify the data and needs a private copy of the
1765 * data to alter. Returns %NULL on failure or the pointer to the buffer
1766 * on success. The returned buffer has a reference count of 1.
1767 *
1768 * As by-product this function converts non-linear &sk_buff to linear
1769 * one, so that &sk_buff becomes completely private and caller is allowed
1770 * to modify all the data of returned buffer. This means that this
1771 * function is not recommended for use in circumstances when only
1772 * header is going to be modified. Use pskb_copy() instead.
1773 */
1774
1775struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1776{
1777 int headerlen = skb_headroom(skb);
1778 unsigned int size = skb_end_offset(skb) + skb->data_len;
1779 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1780 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1781
1782 if (!n)
1783 return NULL;
1784
1785 /* Set the data pointer */
1786 skb_reserve(n, headerlen);
1787 /* Set the tail pointer and length */
1788 skb_put(n, skb->len);
1789
1790 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1791
1792 skb_copy_header(n, skb);
1793 return n;
1794}
1795EXPORT_SYMBOL(skb_copy);
1796
1797/**
1798 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1799 * @skb: buffer to copy
1800 * @headroom: headroom of new skb
1801 * @gfp_mask: allocation priority
1802 * @fclone: if true allocate the copy of the skb from the fclone
1803 * cache instead of the head cache; it is recommended to set this
1804 * to true for the cases where the copy will likely be cloned
1805 *
1806 * Make a copy of both an &sk_buff and part of its data, located
1807 * in header. Fragmented data remain shared. This is used when
1808 * the caller wishes to modify only header of &sk_buff and needs
1809 * private copy of the header to alter. Returns %NULL on failure
1810 * or the pointer to the buffer on success.
1811 * The returned buffer has a reference count of 1.
1812 */
1813
1814struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1815 gfp_t gfp_mask, bool fclone)
1816{
1817 unsigned int size = skb_headlen(skb) + headroom;
1818 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1819 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1820
1821 if (!n)
1822 goto out;
1823
1824 /* Set the data pointer */
1825 skb_reserve(n, headroom);
1826 /* Set the tail pointer and length */
1827 skb_put(n, skb_headlen(skb));
1828 /* Copy the bytes */
1829 skb_copy_from_linear_data(skb, n->data, n->len);
1830
1831 n->truesize += skb->data_len;
1832 n->data_len = skb->data_len;
1833 n->len = skb->len;
1834
1835 if (skb_shinfo(skb)->nr_frags) {
1836 int i;
1837
1838 if (skb_orphan_frags(skb, gfp_mask) ||
1839 skb_zerocopy_clone(n, skb, gfp_mask)) {
1840 kfree_skb(n);
1841 n = NULL;
1842 goto out;
1843 }
1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1846 skb_frag_ref(skb, i);
1847 }
1848 skb_shinfo(n)->nr_frags = i;
1849 }
1850
1851 if (skb_has_frag_list(skb)) {
1852 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1853 skb_clone_fraglist(n);
1854 }
1855
1856 skb_copy_header(n, skb);
1857out:
1858 return n;
1859}
1860EXPORT_SYMBOL(__pskb_copy_fclone);
1861
1862/**
1863 * pskb_expand_head - reallocate header of &sk_buff
1864 * @skb: buffer to reallocate
1865 * @nhead: room to add at head
1866 * @ntail: room to add at tail
1867 * @gfp_mask: allocation priority
1868 *
1869 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1870 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1871 * reference count of 1. Returns zero in the case of success or error,
1872 * if expansion failed. In the last case, &sk_buff is not changed.
1873 *
1874 * All the pointers pointing into skb header may change and must be
1875 * reloaded after call to this function.
1876 */
1877
1878int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1879 gfp_t gfp_mask)
1880{
1881 unsigned int osize = skb_end_offset(skb);
1882 unsigned int size = osize + nhead + ntail;
1883 long off;
1884 u8 *data;
1885 int i;
1886
1887 BUG_ON(nhead < 0);
1888
1889 BUG_ON(skb_shared(skb));
1890
1891 skb_zcopy_downgrade_managed(skb);
1892
1893 if (skb_pfmemalloc(skb))
1894 gfp_mask |= __GFP_MEMALLOC;
1895
1896 size = SKB_DATA_ALIGN(size);
1897 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1898 size = kmalloc_size_roundup(size);
1899 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1900 if (!data)
1901 goto nodata;
1902 size = SKB_WITH_OVERHEAD(size);
1903
1904 /* Copy only real data... and, alas, header. This should be
1905 * optimized for the cases when header is void.
1906 */
1907 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1908
1909 memcpy((struct skb_shared_info *)(data + size),
1910 skb_shinfo(skb),
1911 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1912
1913 /*
1914 * if shinfo is shared we must drop the old head gracefully, but if it
1915 * is not we can just drop the old head and let the existing refcount
1916 * be since all we did is relocate the values
1917 */
1918 if (skb_cloned(skb)) {
1919 if (skb_orphan_frags(skb, gfp_mask))
1920 goto nofrags;
1921 if (skb_zcopy(skb))
1922 refcount_inc(&skb_uarg(skb)->refcnt);
1923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1924 skb_frag_ref(skb, i);
1925
1926 if (skb_has_frag_list(skb))
1927 skb_clone_fraglist(skb);
1928
1929 skb_release_data(skb, SKB_CONSUMED);
1930 } else {
1931 skb_free_head(skb);
1932 }
1933 off = (data + nhead) - skb->head;
1934
1935 skb->head = data;
1936 skb->head_frag = 0;
1937 skb->data += off;
1938
1939 skb_set_end_offset(skb, size);
1940#ifdef NET_SKBUFF_DATA_USES_OFFSET
1941 off = nhead;
1942#endif
1943 skb->tail += off;
1944 skb_headers_offset_update(skb, nhead);
1945 skb->cloned = 0;
1946 skb->hdr_len = 0;
1947 skb->nohdr = 0;
1948 atomic_set(&skb_shinfo(skb)->dataref, 1);
1949
1950 skb_metadata_clear(skb);
1951
1952 /* It is not generally safe to change skb->truesize.
1953 * For the moment, we really care of rx path, or
1954 * when skb is orphaned (not attached to a socket).
1955 */
1956 if (!skb->sk || skb->destructor == sock_edemux)
1957 skb->truesize += size - osize;
1958
1959 return 0;
1960
1961nofrags:
1962 kfree(data);
1963nodata:
1964 return -ENOMEM;
1965}
1966EXPORT_SYMBOL(pskb_expand_head);
1967
1968/* Make private copy of skb with writable head and some headroom */
1969
1970struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1971{
1972 struct sk_buff *skb2;
1973 int delta = headroom - skb_headroom(skb);
1974
1975 if (delta <= 0)
1976 skb2 = pskb_copy(skb, GFP_ATOMIC);
1977 else {
1978 skb2 = skb_clone(skb, GFP_ATOMIC);
1979 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1980 GFP_ATOMIC)) {
1981 kfree_skb(skb2);
1982 skb2 = NULL;
1983 }
1984 }
1985 return skb2;
1986}
1987EXPORT_SYMBOL(skb_realloc_headroom);
1988
1989int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1990{
1991 unsigned int saved_end_offset, saved_truesize;
1992 struct skb_shared_info *shinfo;
1993 int res;
1994
1995 saved_end_offset = skb_end_offset(skb);
1996 saved_truesize = skb->truesize;
1997
1998 res = pskb_expand_head(skb, 0, 0, pri);
1999 if (res)
2000 return res;
2001
2002 skb->truesize = saved_truesize;
2003
2004 if (likely(skb_end_offset(skb) == saved_end_offset))
2005 return 0;
2006
2007 shinfo = skb_shinfo(skb);
2008
2009 /* We are about to change back skb->end,
2010 * we need to move skb_shinfo() to its new location.
2011 */
2012 memmove(skb->head + saved_end_offset,
2013 shinfo,
2014 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2015
2016 skb_set_end_offset(skb, saved_end_offset);
2017
2018 return 0;
2019}
2020
2021/**
2022 * skb_expand_head - reallocate header of &sk_buff
2023 * @skb: buffer to reallocate
2024 * @headroom: needed headroom
2025 *
2026 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2027 * if possible; copies skb->sk to new skb as needed
2028 * and frees original skb in case of failures.
2029 *
2030 * It expect increased headroom and generates warning otherwise.
2031 */
2032
2033struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2034{
2035 int delta = headroom - skb_headroom(skb);
2036 int osize = skb_end_offset(skb);
2037 struct sock *sk = skb->sk;
2038
2039 if (WARN_ONCE(delta <= 0,
2040 "%s is expecting an increase in the headroom", __func__))
2041 return skb;
2042
2043 delta = SKB_DATA_ALIGN(delta);
2044 /* pskb_expand_head() might crash, if skb is shared. */
2045 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2046 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2047
2048 if (unlikely(!nskb))
2049 goto fail;
2050
2051 if (sk)
2052 skb_set_owner_w(nskb, sk);
2053 consume_skb(skb);
2054 skb = nskb;
2055 }
2056 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2057 goto fail;
2058
2059 if (sk && is_skb_wmem(skb)) {
2060 delta = skb_end_offset(skb) - osize;
2061 refcount_add(delta, &sk->sk_wmem_alloc);
2062 skb->truesize += delta;
2063 }
2064 return skb;
2065
2066fail:
2067 kfree_skb(skb);
2068 return NULL;
2069}
2070EXPORT_SYMBOL(skb_expand_head);
2071
2072/**
2073 * skb_copy_expand - copy and expand sk_buff
2074 * @skb: buffer to copy
2075 * @newheadroom: new free bytes at head
2076 * @newtailroom: new free bytes at tail
2077 * @gfp_mask: allocation priority
2078 *
2079 * Make a copy of both an &sk_buff and its data and while doing so
2080 * allocate additional space.
2081 *
2082 * This is used when the caller wishes to modify the data and needs a
2083 * private copy of the data to alter as well as more space for new fields.
2084 * Returns %NULL on failure or the pointer to the buffer
2085 * on success. The returned buffer has a reference count of 1.
2086 *
2087 * You must pass %GFP_ATOMIC as the allocation priority if this function
2088 * is called from an interrupt.
2089 */
2090struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2091 int newheadroom, int newtailroom,
2092 gfp_t gfp_mask)
2093{
2094 /*
2095 * Allocate the copy buffer
2096 */
2097 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2098 gfp_mask, skb_alloc_rx_flag(skb),
2099 NUMA_NO_NODE);
2100 int oldheadroom = skb_headroom(skb);
2101 int head_copy_len, head_copy_off;
2102
2103 if (!n)
2104 return NULL;
2105
2106 skb_reserve(n, newheadroom);
2107
2108 /* Set the tail pointer and length */
2109 skb_put(n, skb->len);
2110
2111 head_copy_len = oldheadroom;
2112 head_copy_off = 0;
2113 if (newheadroom <= head_copy_len)
2114 head_copy_len = newheadroom;
2115 else
2116 head_copy_off = newheadroom - head_copy_len;
2117
2118 /* Copy the linear header and data. */
2119 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2120 skb->len + head_copy_len));
2121
2122 skb_copy_header(n, skb);
2123
2124 skb_headers_offset_update(n, newheadroom - oldheadroom);
2125
2126 return n;
2127}
2128EXPORT_SYMBOL(skb_copy_expand);
2129
2130/**
2131 * __skb_pad - zero pad the tail of an skb
2132 * @skb: buffer to pad
2133 * @pad: space to pad
2134 * @free_on_error: free buffer on error
2135 *
2136 * Ensure that a buffer is followed by a padding area that is zero
2137 * filled. Used by network drivers which may DMA or transfer data
2138 * beyond the buffer end onto the wire.
2139 *
2140 * May return error in out of memory cases. The skb is freed on error
2141 * if @free_on_error is true.
2142 */
2143
2144int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2145{
2146 int err;
2147 int ntail;
2148
2149 /* If the skbuff is non linear tailroom is always zero.. */
2150 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2151 memset(skb->data+skb->len, 0, pad);
2152 return 0;
2153 }
2154
2155 ntail = skb->data_len + pad - (skb->end - skb->tail);
2156 if (likely(skb_cloned(skb) || ntail > 0)) {
2157 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2158 if (unlikely(err))
2159 goto free_skb;
2160 }
2161
2162 /* FIXME: The use of this function with non-linear skb's really needs
2163 * to be audited.
2164 */
2165 err = skb_linearize(skb);
2166 if (unlikely(err))
2167 goto free_skb;
2168
2169 memset(skb->data + skb->len, 0, pad);
2170 return 0;
2171
2172free_skb:
2173 if (free_on_error)
2174 kfree_skb(skb);
2175 return err;
2176}
2177EXPORT_SYMBOL(__skb_pad);
2178
2179/**
2180 * pskb_put - add data to the tail of a potentially fragmented buffer
2181 * @skb: start of the buffer to use
2182 * @tail: tail fragment of the buffer to use
2183 * @len: amount of data to add
2184 *
2185 * This function extends the used data area of the potentially
2186 * fragmented buffer. @tail must be the last fragment of @skb -- or
2187 * @skb itself. If this would exceed the total buffer size the kernel
2188 * will panic. A pointer to the first byte of the extra data is
2189 * returned.
2190 */
2191
2192void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2193{
2194 if (tail != skb) {
2195 skb->data_len += len;
2196 skb->len += len;
2197 }
2198 return skb_put(tail, len);
2199}
2200EXPORT_SYMBOL_GPL(pskb_put);
2201
2202/**
2203 * skb_put - add data to a buffer
2204 * @skb: buffer to use
2205 * @len: amount of data to add
2206 *
2207 * This function extends the used data area of the buffer. If this would
2208 * exceed the total buffer size the kernel will panic. A pointer to the
2209 * first byte of the extra data is returned.
2210 */
2211void *skb_put(struct sk_buff *skb, unsigned int len)
2212{
2213 void *tmp = skb_tail_pointer(skb);
2214 SKB_LINEAR_ASSERT(skb);
2215 skb->tail += len;
2216 skb->len += len;
2217 if (unlikely(skb->tail > skb->end))
2218 skb_over_panic(skb, len, __builtin_return_address(0));
2219 return tmp;
2220}
2221EXPORT_SYMBOL(skb_put);
2222
2223/**
2224 * skb_push - add data to the start of a buffer
2225 * @skb: buffer to use
2226 * @len: amount of data to add
2227 *
2228 * This function extends the used data area of the buffer at the buffer
2229 * start. If this would exceed the total buffer headroom the kernel will
2230 * panic. A pointer to the first byte of the extra data is returned.
2231 */
2232void *skb_push(struct sk_buff *skb, unsigned int len)
2233{
2234 skb->data -= len;
2235 skb->len += len;
2236 if (unlikely(skb->data < skb->head))
2237 skb_under_panic(skb, len, __builtin_return_address(0));
2238 return skb->data;
2239}
2240EXPORT_SYMBOL(skb_push);
2241
2242/**
2243 * skb_pull - remove data from the start of a buffer
2244 * @skb: buffer to use
2245 * @len: amount of data to remove
2246 *
2247 * This function removes data from the start of a buffer, returning
2248 * the memory to the headroom. A pointer to the next data in the buffer
2249 * is returned. Once the data has been pulled future pushes will overwrite
2250 * the old data.
2251 */
2252void *skb_pull(struct sk_buff *skb, unsigned int len)
2253{
2254 return skb_pull_inline(skb, len);
2255}
2256EXPORT_SYMBOL(skb_pull);
2257
2258/**
2259 * skb_pull_data - remove data from the start of a buffer returning its
2260 * original position.
2261 * @skb: buffer to use
2262 * @len: amount of data to remove
2263 *
2264 * This function removes data from the start of a buffer, returning
2265 * the memory to the headroom. A pointer to the original data in the buffer
2266 * is returned after checking if there is enough data to pull. Once the
2267 * data has been pulled future pushes will overwrite the old data.
2268 */
2269void *skb_pull_data(struct sk_buff *skb, size_t len)
2270{
2271 void *data = skb->data;
2272
2273 if (skb->len < len)
2274 return NULL;
2275
2276 skb_pull(skb, len);
2277
2278 return data;
2279}
2280EXPORT_SYMBOL(skb_pull_data);
2281
2282/**
2283 * skb_trim - remove end from a buffer
2284 * @skb: buffer to alter
2285 * @len: new length
2286 *
2287 * Cut the length of a buffer down by removing data from the tail. If
2288 * the buffer is already under the length specified it is not modified.
2289 * The skb must be linear.
2290 */
2291void skb_trim(struct sk_buff *skb, unsigned int len)
2292{
2293 if (skb->len > len)
2294 __skb_trim(skb, len);
2295}
2296EXPORT_SYMBOL(skb_trim);
2297
2298/* Trims skb to length len. It can change skb pointers.
2299 */
2300
2301int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2302{
2303 struct sk_buff **fragp;
2304 struct sk_buff *frag;
2305 int offset = skb_headlen(skb);
2306 int nfrags = skb_shinfo(skb)->nr_frags;
2307 int i;
2308 int err;
2309
2310 if (skb_cloned(skb) &&
2311 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2312 return err;
2313
2314 i = 0;
2315 if (offset >= len)
2316 goto drop_pages;
2317
2318 for (; i < nfrags; i++) {
2319 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2320
2321 if (end < len) {
2322 offset = end;
2323 continue;
2324 }
2325
2326 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2327
2328drop_pages:
2329 skb_shinfo(skb)->nr_frags = i;
2330
2331 for (; i < nfrags; i++)
2332 skb_frag_unref(skb, i);
2333
2334 if (skb_has_frag_list(skb))
2335 skb_drop_fraglist(skb);
2336 goto done;
2337 }
2338
2339 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2340 fragp = &frag->next) {
2341 int end = offset + frag->len;
2342
2343 if (skb_shared(frag)) {
2344 struct sk_buff *nfrag;
2345
2346 nfrag = skb_clone(frag, GFP_ATOMIC);
2347 if (unlikely(!nfrag))
2348 return -ENOMEM;
2349
2350 nfrag->next = frag->next;
2351 consume_skb(frag);
2352 frag = nfrag;
2353 *fragp = frag;
2354 }
2355
2356 if (end < len) {
2357 offset = end;
2358 continue;
2359 }
2360
2361 if (end > len &&
2362 unlikely((err = pskb_trim(frag, len - offset))))
2363 return err;
2364
2365 if (frag->next)
2366 skb_drop_list(&frag->next);
2367 break;
2368 }
2369
2370done:
2371 if (len > skb_headlen(skb)) {
2372 skb->data_len -= skb->len - len;
2373 skb->len = len;
2374 } else {
2375 skb->len = len;
2376 skb->data_len = 0;
2377 skb_set_tail_pointer(skb, len);
2378 }
2379
2380 if (!skb->sk || skb->destructor == sock_edemux)
2381 skb_condense(skb);
2382 return 0;
2383}
2384EXPORT_SYMBOL(___pskb_trim);
2385
2386/* Note : use pskb_trim_rcsum() instead of calling this directly
2387 */
2388int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2389{
2390 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2391 int delta = skb->len - len;
2392
2393 skb->csum = csum_block_sub(skb->csum,
2394 skb_checksum(skb, len, delta, 0),
2395 len);
2396 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2397 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2398 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2399
2400 if (offset + sizeof(__sum16) > hdlen)
2401 return -EINVAL;
2402 }
2403 return __pskb_trim(skb, len);
2404}
2405EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2406
2407/**
2408 * __pskb_pull_tail - advance tail of skb header
2409 * @skb: buffer to reallocate
2410 * @delta: number of bytes to advance tail
2411 *
2412 * The function makes a sense only on a fragmented &sk_buff,
2413 * it expands header moving its tail forward and copying necessary
2414 * data from fragmented part.
2415 *
2416 * &sk_buff MUST have reference count of 1.
2417 *
2418 * Returns %NULL (and &sk_buff does not change) if pull failed
2419 * or value of new tail of skb in the case of success.
2420 *
2421 * All the pointers pointing into skb header may change and must be
2422 * reloaded after call to this function.
2423 */
2424
2425/* Moves tail of skb head forward, copying data from fragmented part,
2426 * when it is necessary.
2427 * 1. It may fail due to malloc failure.
2428 * 2. It may change skb pointers.
2429 *
2430 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2431 */
2432void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2433{
2434 /* If skb has not enough free space at tail, get new one
2435 * plus 128 bytes for future expansions. If we have enough
2436 * room at tail, reallocate without expansion only if skb is cloned.
2437 */
2438 int i, k, eat = (skb->tail + delta) - skb->end;
2439
2440 if (eat > 0 || skb_cloned(skb)) {
2441 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2442 GFP_ATOMIC))
2443 return NULL;
2444 }
2445
2446 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2447 skb_tail_pointer(skb), delta));
2448
2449 /* Optimization: no fragments, no reasons to preestimate
2450 * size of pulled pages. Superb.
2451 */
2452 if (!skb_has_frag_list(skb))
2453 goto pull_pages;
2454
2455 /* Estimate size of pulled pages. */
2456 eat = delta;
2457 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2459
2460 if (size >= eat)
2461 goto pull_pages;
2462 eat -= size;
2463 }
2464
2465 /* If we need update frag list, we are in troubles.
2466 * Certainly, it is possible to add an offset to skb data,
2467 * but taking into account that pulling is expected to
2468 * be very rare operation, it is worth to fight against
2469 * further bloating skb head and crucify ourselves here instead.
2470 * Pure masohism, indeed. 8)8)
2471 */
2472 if (eat) {
2473 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2474 struct sk_buff *clone = NULL;
2475 struct sk_buff *insp = NULL;
2476
2477 do {
2478 if (list->len <= eat) {
2479 /* Eaten as whole. */
2480 eat -= list->len;
2481 list = list->next;
2482 insp = list;
2483 } else {
2484 /* Eaten partially. */
2485 if (skb_is_gso(skb) && !list->head_frag &&
2486 skb_headlen(list))
2487 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2488
2489 if (skb_shared(list)) {
2490 /* Sucks! We need to fork list. :-( */
2491 clone = skb_clone(list, GFP_ATOMIC);
2492 if (!clone)
2493 return NULL;
2494 insp = list->next;
2495 list = clone;
2496 } else {
2497 /* This may be pulled without
2498 * problems. */
2499 insp = list;
2500 }
2501 if (!pskb_pull(list, eat)) {
2502 kfree_skb(clone);
2503 return NULL;
2504 }
2505 break;
2506 }
2507 } while (eat);
2508
2509 /* Free pulled out fragments. */
2510 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2511 skb_shinfo(skb)->frag_list = list->next;
2512 consume_skb(list);
2513 }
2514 /* And insert new clone at head. */
2515 if (clone) {
2516 clone->next = list;
2517 skb_shinfo(skb)->frag_list = clone;
2518 }
2519 }
2520 /* Success! Now we may commit changes to skb data. */
2521
2522pull_pages:
2523 eat = delta;
2524 k = 0;
2525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2526 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527
2528 if (size <= eat) {
2529 skb_frag_unref(skb, i);
2530 eat -= size;
2531 } else {
2532 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2533
2534 *frag = skb_shinfo(skb)->frags[i];
2535 if (eat) {
2536 skb_frag_off_add(frag, eat);
2537 skb_frag_size_sub(frag, eat);
2538 if (!i)
2539 goto end;
2540 eat = 0;
2541 }
2542 k++;
2543 }
2544 }
2545 skb_shinfo(skb)->nr_frags = k;
2546
2547end:
2548 skb->tail += delta;
2549 skb->data_len -= delta;
2550
2551 if (!skb->data_len)
2552 skb_zcopy_clear(skb, false);
2553
2554 return skb_tail_pointer(skb);
2555}
2556EXPORT_SYMBOL(__pskb_pull_tail);
2557
2558/**
2559 * skb_copy_bits - copy bits from skb to kernel buffer
2560 * @skb: source skb
2561 * @offset: offset in source
2562 * @to: destination buffer
2563 * @len: number of bytes to copy
2564 *
2565 * Copy the specified number of bytes from the source skb to the
2566 * destination buffer.
2567 *
2568 * CAUTION ! :
2569 * If its prototype is ever changed,
2570 * check arch/{*}/net/{*}.S files,
2571 * since it is called from BPF assembly code.
2572 */
2573int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2574{
2575 int start = skb_headlen(skb);
2576 struct sk_buff *frag_iter;
2577 int i, copy;
2578
2579 if (offset > (int)skb->len - len)
2580 goto fault;
2581
2582 /* Copy header. */
2583 if ((copy = start - offset) > 0) {
2584 if (copy > len)
2585 copy = len;
2586 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2587 if ((len -= copy) == 0)
2588 return 0;
2589 offset += copy;
2590 to += copy;
2591 }
2592
2593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2594 int end;
2595 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2596
2597 WARN_ON(start > offset + len);
2598
2599 end = start + skb_frag_size(f);
2600 if ((copy = end - offset) > 0) {
2601 u32 p_off, p_len, copied;
2602 struct page *p;
2603 u8 *vaddr;
2604
2605 if (copy > len)
2606 copy = len;
2607
2608 skb_frag_foreach_page(f,
2609 skb_frag_off(f) + offset - start,
2610 copy, p, p_off, p_len, copied) {
2611 vaddr = kmap_atomic(p);
2612 memcpy(to + copied, vaddr + p_off, p_len);
2613 kunmap_atomic(vaddr);
2614 }
2615
2616 if ((len -= copy) == 0)
2617 return 0;
2618 offset += copy;
2619 to += copy;
2620 }
2621 start = end;
2622 }
2623
2624 skb_walk_frags(skb, frag_iter) {
2625 int end;
2626
2627 WARN_ON(start > offset + len);
2628
2629 end = start + frag_iter->len;
2630 if ((copy = end - offset) > 0) {
2631 if (copy > len)
2632 copy = len;
2633 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2634 goto fault;
2635 if ((len -= copy) == 0)
2636 return 0;
2637 offset += copy;
2638 to += copy;
2639 }
2640 start = end;
2641 }
2642
2643 if (!len)
2644 return 0;
2645
2646fault:
2647 return -EFAULT;
2648}
2649EXPORT_SYMBOL(skb_copy_bits);
2650
2651/*
2652 * Callback from splice_to_pipe(), if we need to release some pages
2653 * at the end of the spd in case we error'ed out in filling the pipe.
2654 */
2655static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2656{
2657 put_page(spd->pages[i]);
2658}
2659
2660static struct page *linear_to_page(struct page *page, unsigned int *len,
2661 unsigned int *offset,
2662 struct sock *sk)
2663{
2664 struct page_frag *pfrag = sk_page_frag(sk);
2665
2666 if (!sk_page_frag_refill(sk, pfrag))
2667 return NULL;
2668
2669 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2670
2671 memcpy(page_address(pfrag->page) + pfrag->offset,
2672 page_address(page) + *offset, *len);
2673 *offset = pfrag->offset;
2674 pfrag->offset += *len;
2675
2676 return pfrag->page;
2677}
2678
2679static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2680 struct page *page,
2681 unsigned int offset)
2682{
2683 return spd->nr_pages &&
2684 spd->pages[spd->nr_pages - 1] == page &&
2685 (spd->partial[spd->nr_pages - 1].offset +
2686 spd->partial[spd->nr_pages - 1].len == offset);
2687}
2688
2689/*
2690 * Fill page/offset/length into spd, if it can hold more pages.
2691 */
2692static bool spd_fill_page(struct splice_pipe_desc *spd,
2693 struct pipe_inode_info *pipe, struct page *page,
2694 unsigned int *len, unsigned int offset,
2695 bool linear,
2696 struct sock *sk)
2697{
2698 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2699 return true;
2700
2701 if (linear) {
2702 page = linear_to_page(page, len, &offset, sk);
2703 if (!page)
2704 return true;
2705 }
2706 if (spd_can_coalesce(spd, page, offset)) {
2707 spd->partial[spd->nr_pages - 1].len += *len;
2708 return false;
2709 }
2710 get_page(page);
2711 spd->pages[spd->nr_pages] = page;
2712 spd->partial[spd->nr_pages].len = *len;
2713 spd->partial[spd->nr_pages].offset = offset;
2714 spd->nr_pages++;
2715
2716 return false;
2717}
2718
2719static bool __splice_segment(struct page *page, unsigned int poff,
2720 unsigned int plen, unsigned int *off,
2721 unsigned int *len,
2722 struct splice_pipe_desc *spd, bool linear,
2723 struct sock *sk,
2724 struct pipe_inode_info *pipe)
2725{
2726 if (!*len)
2727 return true;
2728
2729 /* skip this segment if already processed */
2730 if (*off >= plen) {
2731 *off -= plen;
2732 return false;
2733 }
2734
2735 /* ignore any bits we already processed */
2736 poff += *off;
2737 plen -= *off;
2738 *off = 0;
2739
2740 do {
2741 unsigned int flen = min(*len, plen);
2742
2743 if (spd_fill_page(spd, pipe, page, &flen, poff,
2744 linear, sk))
2745 return true;
2746 poff += flen;
2747 plen -= flen;
2748 *len -= flen;
2749 } while (*len && plen);
2750
2751 return false;
2752}
2753
2754/*
2755 * Map linear and fragment data from the skb to spd. It reports true if the
2756 * pipe is full or if we already spliced the requested length.
2757 */
2758static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2759 unsigned int *offset, unsigned int *len,
2760 struct splice_pipe_desc *spd, struct sock *sk)
2761{
2762 int seg;
2763 struct sk_buff *iter;
2764
2765 /* map the linear part :
2766 * If skb->head_frag is set, this 'linear' part is backed by a
2767 * fragment, and if the head is not shared with any clones then
2768 * we can avoid a copy since we own the head portion of this page.
2769 */
2770 if (__splice_segment(virt_to_page(skb->data),
2771 (unsigned long) skb->data & (PAGE_SIZE - 1),
2772 skb_headlen(skb),
2773 offset, len, spd,
2774 skb_head_is_locked(skb),
2775 sk, pipe))
2776 return true;
2777
2778 /*
2779 * then map the fragments
2780 */
2781 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2782 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2783
2784 if (__splice_segment(skb_frag_page(f),
2785 skb_frag_off(f), skb_frag_size(f),
2786 offset, len, spd, false, sk, pipe))
2787 return true;
2788 }
2789
2790 skb_walk_frags(skb, iter) {
2791 if (*offset >= iter->len) {
2792 *offset -= iter->len;
2793 continue;
2794 }
2795 /* __skb_splice_bits() only fails if the output has no room
2796 * left, so no point in going over the frag_list for the error
2797 * case.
2798 */
2799 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2800 return true;
2801 }
2802
2803 return false;
2804}
2805
2806/*
2807 * Map data from the skb to a pipe. Should handle both the linear part,
2808 * the fragments, and the frag list.
2809 */
2810int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2811 struct pipe_inode_info *pipe, unsigned int tlen,
2812 unsigned int flags)
2813{
2814 struct partial_page partial[MAX_SKB_FRAGS];
2815 struct page *pages[MAX_SKB_FRAGS];
2816 struct splice_pipe_desc spd = {
2817 .pages = pages,
2818 .partial = partial,
2819 .nr_pages_max = MAX_SKB_FRAGS,
2820 .ops = &nosteal_pipe_buf_ops,
2821 .spd_release = sock_spd_release,
2822 };
2823 int ret = 0;
2824
2825 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2826
2827 if (spd.nr_pages)
2828 ret = splice_to_pipe(pipe, &spd);
2829
2830 return ret;
2831}
2832EXPORT_SYMBOL_GPL(skb_splice_bits);
2833
2834static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2835 struct kvec *vec, size_t num, size_t size)
2836{
2837 struct socket *sock = sk->sk_socket;
2838
2839 if (!sock)
2840 return -EINVAL;
2841 return kernel_sendmsg(sock, msg, vec, num, size);
2842}
2843
2844static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2845 size_t size, int flags)
2846{
2847 struct socket *sock = sk->sk_socket;
2848
2849 if (!sock)
2850 return -EINVAL;
2851 return kernel_sendpage(sock, page, offset, size, flags);
2852}
2853
2854typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2855 struct kvec *vec, size_t num, size_t size);
2856typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2857 size_t size, int flags);
2858static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2859 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2860{
2861 unsigned int orig_len = len;
2862 struct sk_buff *head = skb;
2863 unsigned short fragidx;
2864 int slen, ret;
2865
2866do_frag_list:
2867
2868 /* Deal with head data */
2869 while (offset < skb_headlen(skb) && len) {
2870 struct kvec kv;
2871 struct msghdr msg;
2872
2873 slen = min_t(int, len, skb_headlen(skb) - offset);
2874 kv.iov_base = skb->data + offset;
2875 kv.iov_len = slen;
2876 memset(&msg, 0, sizeof(msg));
2877 msg.msg_flags = MSG_DONTWAIT;
2878
2879 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2880 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2881 if (ret <= 0)
2882 goto error;
2883
2884 offset += ret;
2885 len -= ret;
2886 }
2887
2888 /* All the data was skb head? */
2889 if (!len)
2890 goto out;
2891
2892 /* Make offset relative to start of frags */
2893 offset -= skb_headlen(skb);
2894
2895 /* Find where we are in frag list */
2896 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2897 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2898
2899 if (offset < skb_frag_size(frag))
2900 break;
2901
2902 offset -= skb_frag_size(frag);
2903 }
2904
2905 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2906 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2907
2908 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2909
2910 while (slen) {
2911 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2912 sendpage_unlocked, sk,
2913 skb_frag_page(frag),
2914 skb_frag_off(frag) + offset,
2915 slen, MSG_DONTWAIT);
2916 if (ret <= 0)
2917 goto error;
2918
2919 len -= ret;
2920 offset += ret;
2921 slen -= ret;
2922 }
2923
2924 offset = 0;
2925 }
2926
2927 if (len) {
2928 /* Process any frag lists */
2929
2930 if (skb == head) {
2931 if (skb_has_frag_list(skb)) {
2932 skb = skb_shinfo(skb)->frag_list;
2933 goto do_frag_list;
2934 }
2935 } else if (skb->next) {
2936 skb = skb->next;
2937 goto do_frag_list;
2938 }
2939 }
2940
2941out:
2942 return orig_len - len;
2943
2944error:
2945 return orig_len == len ? ret : orig_len - len;
2946}
2947
2948/* Send skb data on a socket. Socket must be locked. */
2949int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2950 int len)
2951{
2952 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2953 kernel_sendpage_locked);
2954}
2955EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2956
2957/* Send skb data on a socket. Socket must be unlocked. */
2958int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2959{
2960 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2961 sendpage_unlocked);
2962}
2963
2964/**
2965 * skb_store_bits - store bits from kernel buffer to skb
2966 * @skb: destination buffer
2967 * @offset: offset in destination
2968 * @from: source buffer
2969 * @len: number of bytes to copy
2970 *
2971 * Copy the specified number of bytes from the source buffer to the
2972 * destination skb. This function handles all the messy bits of
2973 * traversing fragment lists and such.
2974 */
2975
2976int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2977{
2978 int start = skb_headlen(skb);
2979 struct sk_buff *frag_iter;
2980 int i, copy;
2981
2982 if (offset > (int)skb->len - len)
2983 goto fault;
2984
2985 if ((copy = start - offset) > 0) {
2986 if (copy > len)
2987 copy = len;
2988 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2989 if ((len -= copy) == 0)
2990 return 0;
2991 offset += copy;
2992 from += copy;
2993 }
2994
2995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2996 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2997 int end;
2998
2999 WARN_ON(start > offset + len);
3000
3001 end = start + skb_frag_size(frag);
3002 if ((copy = end - offset) > 0) {
3003 u32 p_off, p_len, copied;
3004 struct page *p;
3005 u8 *vaddr;
3006
3007 if (copy > len)
3008 copy = len;
3009
3010 skb_frag_foreach_page(frag,
3011 skb_frag_off(frag) + offset - start,
3012 copy, p, p_off, p_len, copied) {
3013 vaddr = kmap_atomic(p);
3014 memcpy(vaddr + p_off, from + copied, p_len);
3015 kunmap_atomic(vaddr);
3016 }
3017
3018 if ((len -= copy) == 0)
3019 return 0;
3020 offset += copy;
3021 from += copy;
3022 }
3023 start = end;
3024 }
3025
3026 skb_walk_frags(skb, frag_iter) {
3027 int end;
3028
3029 WARN_ON(start > offset + len);
3030
3031 end = start + frag_iter->len;
3032 if ((copy = end - offset) > 0) {
3033 if (copy > len)
3034 copy = len;
3035 if (skb_store_bits(frag_iter, offset - start,
3036 from, copy))
3037 goto fault;
3038 if ((len -= copy) == 0)
3039 return 0;
3040 offset += copy;
3041 from += copy;
3042 }
3043 start = end;
3044 }
3045 if (!len)
3046 return 0;
3047
3048fault:
3049 return -EFAULT;
3050}
3051EXPORT_SYMBOL(skb_store_bits);
3052
3053/* Checksum skb data. */
3054__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3055 __wsum csum, const struct skb_checksum_ops *ops)
3056{
3057 int start = skb_headlen(skb);
3058 int i, copy = start - offset;
3059 struct sk_buff *frag_iter;
3060 int pos = 0;
3061
3062 /* Checksum header. */
3063 if (copy > 0) {
3064 if (copy > len)
3065 copy = len;
3066 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3067 skb->data + offset, copy, csum);
3068 if ((len -= copy) == 0)
3069 return csum;
3070 offset += copy;
3071 pos = copy;
3072 }
3073
3074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3075 int end;
3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077
3078 WARN_ON(start > offset + len);
3079
3080 end = start + skb_frag_size(frag);
3081 if ((copy = end - offset) > 0) {
3082 u32 p_off, p_len, copied;
3083 struct page *p;
3084 __wsum csum2;
3085 u8 *vaddr;
3086
3087 if (copy > len)
3088 copy = len;
3089
3090 skb_frag_foreach_page(frag,
3091 skb_frag_off(frag) + offset - start,
3092 copy, p, p_off, p_len, copied) {
3093 vaddr = kmap_atomic(p);
3094 csum2 = INDIRECT_CALL_1(ops->update,
3095 csum_partial_ext,
3096 vaddr + p_off, p_len, 0);
3097 kunmap_atomic(vaddr);
3098 csum = INDIRECT_CALL_1(ops->combine,
3099 csum_block_add_ext, csum,
3100 csum2, pos, p_len);
3101 pos += p_len;
3102 }
3103
3104 if (!(len -= copy))
3105 return csum;
3106 offset += copy;
3107 }
3108 start = end;
3109 }
3110
3111 skb_walk_frags(skb, frag_iter) {
3112 int end;
3113
3114 WARN_ON(start > offset + len);
3115
3116 end = start + frag_iter->len;
3117 if ((copy = end - offset) > 0) {
3118 __wsum csum2;
3119 if (copy > len)
3120 copy = len;
3121 csum2 = __skb_checksum(frag_iter, offset - start,
3122 copy, 0, ops);
3123 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3124 csum, csum2, pos, copy);
3125 if ((len -= copy) == 0)
3126 return csum;
3127 offset += copy;
3128 pos += copy;
3129 }
3130 start = end;
3131 }
3132 BUG_ON(len);
3133
3134 return csum;
3135}
3136EXPORT_SYMBOL(__skb_checksum);
3137
3138__wsum skb_checksum(const struct sk_buff *skb, int offset,
3139 int len, __wsum csum)
3140{
3141 const struct skb_checksum_ops ops = {
3142 .update = csum_partial_ext,
3143 .combine = csum_block_add_ext,
3144 };
3145
3146 return __skb_checksum(skb, offset, len, csum, &ops);
3147}
3148EXPORT_SYMBOL(skb_checksum);
3149
3150/* Both of above in one bottle. */
3151
3152__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3153 u8 *to, int len)
3154{
3155 int start = skb_headlen(skb);
3156 int i, copy = start - offset;
3157 struct sk_buff *frag_iter;
3158 int pos = 0;
3159 __wsum csum = 0;
3160
3161 /* Copy header. */
3162 if (copy > 0) {
3163 if (copy > len)
3164 copy = len;
3165 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3166 copy);
3167 if ((len -= copy) == 0)
3168 return csum;
3169 offset += copy;
3170 to += copy;
3171 pos = copy;
3172 }
3173
3174 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3175 int end;
3176
3177 WARN_ON(start > offset + len);
3178
3179 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3180 if ((copy = end - offset) > 0) {
3181 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3182 u32 p_off, p_len, copied;
3183 struct page *p;
3184 __wsum csum2;
3185 u8 *vaddr;
3186
3187 if (copy > len)
3188 copy = len;
3189
3190 skb_frag_foreach_page(frag,
3191 skb_frag_off(frag) + offset - start,
3192 copy, p, p_off, p_len, copied) {
3193 vaddr = kmap_atomic(p);
3194 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3195 to + copied,
3196 p_len);
3197 kunmap_atomic(vaddr);
3198 csum = csum_block_add(csum, csum2, pos);
3199 pos += p_len;
3200 }
3201
3202 if (!(len -= copy))
3203 return csum;
3204 offset += copy;
3205 to += copy;
3206 }
3207 start = end;
3208 }
3209
3210 skb_walk_frags(skb, frag_iter) {
3211 __wsum csum2;
3212 int end;
3213
3214 WARN_ON(start > offset + len);
3215
3216 end = start + frag_iter->len;
3217 if ((copy = end - offset) > 0) {
3218 if (copy > len)
3219 copy = len;
3220 csum2 = skb_copy_and_csum_bits(frag_iter,
3221 offset - start,
3222 to, copy);
3223 csum = csum_block_add(csum, csum2, pos);
3224 if ((len -= copy) == 0)
3225 return csum;
3226 offset += copy;
3227 to += copy;
3228 pos += copy;
3229 }
3230 start = end;
3231 }
3232 BUG_ON(len);
3233 return csum;
3234}
3235EXPORT_SYMBOL(skb_copy_and_csum_bits);
3236
3237__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3238{
3239 __sum16 sum;
3240
3241 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3242 /* See comments in __skb_checksum_complete(). */
3243 if (likely(!sum)) {
3244 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3245 !skb->csum_complete_sw)
3246 netdev_rx_csum_fault(skb->dev, skb);
3247 }
3248 if (!skb_shared(skb))
3249 skb->csum_valid = !sum;
3250 return sum;
3251}
3252EXPORT_SYMBOL(__skb_checksum_complete_head);
3253
3254/* This function assumes skb->csum already holds pseudo header's checksum,
3255 * which has been changed from the hardware checksum, for example, by
3256 * __skb_checksum_validate_complete(). And, the original skb->csum must
3257 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3258 *
3259 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3260 * zero. The new checksum is stored back into skb->csum unless the skb is
3261 * shared.
3262 */
3263__sum16 __skb_checksum_complete(struct sk_buff *skb)
3264{
3265 __wsum csum;
3266 __sum16 sum;
3267
3268 csum = skb_checksum(skb, 0, skb->len, 0);
3269
3270 sum = csum_fold(csum_add(skb->csum, csum));
3271 /* This check is inverted, because we already knew the hardware
3272 * checksum is invalid before calling this function. So, if the
3273 * re-computed checksum is valid instead, then we have a mismatch
3274 * between the original skb->csum and skb_checksum(). This means either
3275 * the original hardware checksum is incorrect or we screw up skb->csum
3276 * when moving skb->data around.
3277 */
3278 if (likely(!sum)) {
3279 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3280 !skb->csum_complete_sw)
3281 netdev_rx_csum_fault(skb->dev, skb);
3282 }
3283
3284 if (!skb_shared(skb)) {
3285 /* Save full packet checksum */
3286 skb->csum = csum;
3287 skb->ip_summed = CHECKSUM_COMPLETE;
3288 skb->csum_complete_sw = 1;
3289 skb->csum_valid = !sum;
3290 }
3291
3292 return sum;
3293}
3294EXPORT_SYMBOL(__skb_checksum_complete);
3295
3296static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3297{
3298 net_warn_ratelimited(
3299 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3300 __func__);
3301 return 0;
3302}
3303
3304static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3305 int offset, int len)
3306{
3307 net_warn_ratelimited(
3308 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3309 __func__);
3310 return 0;
3311}
3312
3313static const struct skb_checksum_ops default_crc32c_ops = {
3314 .update = warn_crc32c_csum_update,
3315 .combine = warn_crc32c_csum_combine,
3316};
3317
3318const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3319 &default_crc32c_ops;
3320EXPORT_SYMBOL(crc32c_csum_stub);
3321
3322 /**
3323 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3324 * @from: source buffer
3325 *
3326 * Calculates the amount of linear headroom needed in the 'to' skb passed
3327 * into skb_zerocopy().
3328 */
3329unsigned int
3330skb_zerocopy_headlen(const struct sk_buff *from)
3331{
3332 unsigned int hlen = 0;
3333
3334 if (!from->head_frag ||
3335 skb_headlen(from) < L1_CACHE_BYTES ||
3336 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3337 hlen = skb_headlen(from);
3338 if (!hlen)
3339 hlen = from->len;
3340 }
3341
3342 if (skb_has_frag_list(from))
3343 hlen = from->len;
3344
3345 return hlen;
3346}
3347EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3348
3349/**
3350 * skb_zerocopy - Zero copy skb to skb
3351 * @to: destination buffer
3352 * @from: source buffer
3353 * @len: number of bytes to copy from source buffer
3354 * @hlen: size of linear headroom in destination buffer
3355 *
3356 * Copies up to `len` bytes from `from` to `to` by creating references
3357 * to the frags in the source buffer.
3358 *
3359 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3360 * headroom in the `to` buffer.
3361 *
3362 * Return value:
3363 * 0: everything is OK
3364 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3365 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3366 */
3367int
3368skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3369{
3370 int i, j = 0;
3371 int plen = 0; /* length of skb->head fragment */
3372 int ret;
3373 struct page *page;
3374 unsigned int offset;
3375
3376 BUG_ON(!from->head_frag && !hlen);
3377
3378 /* dont bother with small payloads */
3379 if (len <= skb_tailroom(to))
3380 return skb_copy_bits(from, 0, skb_put(to, len), len);
3381
3382 if (hlen) {
3383 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3384 if (unlikely(ret))
3385 return ret;
3386 len -= hlen;
3387 } else {
3388 plen = min_t(int, skb_headlen(from), len);
3389 if (plen) {
3390 page = virt_to_head_page(from->head);
3391 offset = from->data - (unsigned char *)page_address(page);
3392 __skb_fill_page_desc(to, 0, page, offset, plen);
3393 get_page(page);
3394 j = 1;
3395 len -= plen;
3396 }
3397 }
3398
3399 skb_len_add(to, len + plen);
3400
3401 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3402 skb_tx_error(from);
3403 return -ENOMEM;
3404 }
3405 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3406
3407 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3408 int size;
3409
3410 if (!len)
3411 break;
3412 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3413 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3414 len);
3415 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3416 len -= size;
3417 skb_frag_ref(to, j);
3418 j++;
3419 }
3420 skb_shinfo(to)->nr_frags = j;
3421
3422 return 0;
3423}
3424EXPORT_SYMBOL_GPL(skb_zerocopy);
3425
3426void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3427{
3428 __wsum csum;
3429 long csstart;
3430
3431 if (skb->ip_summed == CHECKSUM_PARTIAL)
3432 csstart = skb_checksum_start_offset(skb);
3433 else
3434 csstart = skb_headlen(skb);
3435
3436 BUG_ON(csstart > skb_headlen(skb));
3437
3438 skb_copy_from_linear_data(skb, to, csstart);
3439
3440 csum = 0;
3441 if (csstart != skb->len)
3442 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3443 skb->len - csstart);
3444
3445 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3446 long csstuff = csstart + skb->csum_offset;
3447
3448 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3449 }
3450}
3451EXPORT_SYMBOL(skb_copy_and_csum_dev);
3452
3453/**
3454 * skb_dequeue - remove from the head of the queue
3455 * @list: list to dequeue from
3456 *
3457 * Remove the head of the list. The list lock is taken so the function
3458 * may be used safely with other locking list functions. The head item is
3459 * returned or %NULL if the list is empty.
3460 */
3461
3462struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3463{
3464 unsigned long flags;
3465 struct sk_buff *result;
3466
3467 spin_lock_irqsave(&list->lock, flags);
3468 result = __skb_dequeue(list);
3469 spin_unlock_irqrestore(&list->lock, flags);
3470 return result;
3471}
3472EXPORT_SYMBOL(skb_dequeue);
3473
3474/**
3475 * skb_dequeue_tail - remove from the tail of the queue
3476 * @list: list to dequeue from
3477 *
3478 * Remove the tail of the list. The list lock is taken so the function
3479 * may be used safely with other locking list functions. The tail item is
3480 * returned or %NULL if the list is empty.
3481 */
3482struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3483{
3484 unsigned long flags;
3485 struct sk_buff *result;
3486
3487 spin_lock_irqsave(&list->lock, flags);
3488 result = __skb_dequeue_tail(list);
3489 spin_unlock_irqrestore(&list->lock, flags);
3490 return result;
3491}
3492EXPORT_SYMBOL(skb_dequeue_tail);
3493
3494/**
3495 * skb_queue_purge - empty a list
3496 * @list: list to empty
3497 *
3498 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3499 * the list and one reference dropped. This function takes the list
3500 * lock and is atomic with respect to other list locking functions.
3501 */
3502void skb_queue_purge(struct sk_buff_head *list)
3503{
3504 struct sk_buff *skb;
3505 while ((skb = skb_dequeue(list)) != NULL)
3506 kfree_skb(skb);
3507}
3508EXPORT_SYMBOL(skb_queue_purge);
3509
3510/**
3511 * skb_rbtree_purge - empty a skb rbtree
3512 * @root: root of the rbtree to empty
3513 * Return value: the sum of truesizes of all purged skbs.
3514 *
3515 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3516 * the list and one reference dropped. This function does not take
3517 * any lock. Synchronization should be handled by the caller (e.g., TCP
3518 * out-of-order queue is protected by the socket lock).
3519 */
3520unsigned int skb_rbtree_purge(struct rb_root *root)
3521{
3522 struct rb_node *p = rb_first(root);
3523 unsigned int sum = 0;
3524
3525 while (p) {
3526 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3527
3528 p = rb_next(p);
3529 rb_erase(&skb->rbnode, root);
3530 sum += skb->truesize;
3531 kfree_skb(skb);
3532 }
3533 return sum;
3534}
3535
3536/**
3537 * skb_queue_head - queue a buffer at the list head
3538 * @list: list to use
3539 * @newsk: buffer to queue
3540 *
3541 * Queue a buffer at the start of the list. This function takes the
3542 * list lock and can be used safely with other locking &sk_buff functions
3543 * safely.
3544 *
3545 * A buffer cannot be placed on two lists at the same time.
3546 */
3547void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3548{
3549 unsigned long flags;
3550
3551 spin_lock_irqsave(&list->lock, flags);
3552 __skb_queue_head(list, newsk);
3553 spin_unlock_irqrestore(&list->lock, flags);
3554}
3555EXPORT_SYMBOL(skb_queue_head);
3556
3557/**
3558 * skb_queue_tail - queue a buffer at the list tail
3559 * @list: list to use
3560 * @newsk: buffer to queue
3561 *
3562 * Queue a buffer at the tail of the list. This function takes the
3563 * list lock and can be used safely with other locking &sk_buff functions
3564 * safely.
3565 *
3566 * A buffer cannot be placed on two lists at the same time.
3567 */
3568void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3569{
3570 unsigned long flags;
3571
3572 spin_lock_irqsave(&list->lock, flags);
3573 __skb_queue_tail(list, newsk);
3574 spin_unlock_irqrestore(&list->lock, flags);
3575}
3576EXPORT_SYMBOL(skb_queue_tail);
3577
3578/**
3579 * skb_unlink - remove a buffer from a list
3580 * @skb: buffer to remove
3581 * @list: list to use
3582 *
3583 * Remove a packet from a list. The list locks are taken and this
3584 * function is atomic with respect to other list locked calls
3585 *
3586 * You must know what list the SKB is on.
3587 */
3588void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3589{
3590 unsigned long flags;
3591
3592 spin_lock_irqsave(&list->lock, flags);
3593 __skb_unlink(skb, list);
3594 spin_unlock_irqrestore(&list->lock, flags);
3595}
3596EXPORT_SYMBOL(skb_unlink);
3597
3598/**
3599 * skb_append - append a buffer
3600 * @old: buffer to insert after
3601 * @newsk: buffer to insert
3602 * @list: list to use
3603 *
3604 * Place a packet after a given packet in a list. The list locks are taken
3605 * and this function is atomic with respect to other list locked calls.
3606 * A buffer cannot be placed on two lists at the same time.
3607 */
3608void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3609{
3610 unsigned long flags;
3611
3612 spin_lock_irqsave(&list->lock, flags);
3613 __skb_queue_after(list, old, newsk);
3614 spin_unlock_irqrestore(&list->lock, flags);
3615}
3616EXPORT_SYMBOL(skb_append);
3617
3618static inline void skb_split_inside_header(struct sk_buff *skb,
3619 struct sk_buff* skb1,
3620 const u32 len, const int pos)
3621{
3622 int i;
3623
3624 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3625 pos - len);
3626 /* And move data appendix as is. */
3627 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3628 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3629
3630 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3631 skb_shinfo(skb)->nr_frags = 0;
3632 skb1->data_len = skb->data_len;
3633 skb1->len += skb1->data_len;
3634 skb->data_len = 0;
3635 skb->len = len;
3636 skb_set_tail_pointer(skb, len);
3637}
3638
3639static inline void skb_split_no_header(struct sk_buff *skb,
3640 struct sk_buff* skb1,
3641 const u32 len, int pos)
3642{
3643 int i, k = 0;
3644 const int nfrags = skb_shinfo(skb)->nr_frags;
3645
3646 skb_shinfo(skb)->nr_frags = 0;
3647 skb1->len = skb1->data_len = skb->len - len;
3648 skb->len = len;
3649 skb->data_len = len - pos;
3650
3651 for (i = 0; i < nfrags; i++) {
3652 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3653
3654 if (pos + size > len) {
3655 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3656
3657 if (pos < len) {
3658 /* Split frag.
3659 * We have two variants in this case:
3660 * 1. Move all the frag to the second
3661 * part, if it is possible. F.e.
3662 * this approach is mandatory for TUX,
3663 * where splitting is expensive.
3664 * 2. Split is accurately. We make this.
3665 */
3666 skb_frag_ref(skb, i);
3667 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3668 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3669 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3670 skb_shinfo(skb)->nr_frags++;
3671 }
3672 k++;
3673 } else
3674 skb_shinfo(skb)->nr_frags++;
3675 pos += size;
3676 }
3677 skb_shinfo(skb1)->nr_frags = k;
3678}
3679
3680/**
3681 * skb_split - Split fragmented skb to two parts at length len.
3682 * @skb: the buffer to split
3683 * @skb1: the buffer to receive the second part
3684 * @len: new length for skb
3685 */
3686void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3687{
3688 int pos = skb_headlen(skb);
3689 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3690
3691 skb_zcopy_downgrade_managed(skb);
3692
3693 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3694 skb_zerocopy_clone(skb1, skb, 0);
3695 if (len < pos) /* Split line is inside header. */
3696 skb_split_inside_header(skb, skb1, len, pos);
3697 else /* Second chunk has no header, nothing to copy. */
3698 skb_split_no_header(skb, skb1, len, pos);
3699}
3700EXPORT_SYMBOL(skb_split);
3701
3702/* Shifting from/to a cloned skb is a no-go.
3703 *
3704 * Caller cannot keep skb_shinfo related pointers past calling here!
3705 */
3706static int skb_prepare_for_shift(struct sk_buff *skb)
3707{
3708 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3709}
3710
3711/**
3712 * skb_shift - Shifts paged data partially from skb to another
3713 * @tgt: buffer into which tail data gets added
3714 * @skb: buffer from which the paged data comes from
3715 * @shiftlen: shift up to this many bytes
3716 *
3717 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3718 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3719 * It's up to caller to free skb if everything was shifted.
3720 *
3721 * If @tgt runs out of frags, the whole operation is aborted.
3722 *
3723 * Skb cannot include anything else but paged data while tgt is allowed
3724 * to have non-paged data as well.
3725 *
3726 * TODO: full sized shift could be optimized but that would need
3727 * specialized skb free'er to handle frags without up-to-date nr_frags.
3728 */
3729int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3730{
3731 int from, to, merge, todo;
3732 skb_frag_t *fragfrom, *fragto;
3733
3734 BUG_ON(shiftlen > skb->len);
3735
3736 if (skb_headlen(skb))
3737 return 0;
3738 if (skb_zcopy(tgt) || skb_zcopy(skb))
3739 return 0;
3740
3741 todo = shiftlen;
3742 from = 0;
3743 to = skb_shinfo(tgt)->nr_frags;
3744 fragfrom = &skb_shinfo(skb)->frags[from];
3745
3746 /* Actual merge is delayed until the point when we know we can
3747 * commit all, so that we don't have to undo partial changes
3748 */
3749 if (!to ||
3750 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3751 skb_frag_off(fragfrom))) {
3752 merge = -1;
3753 } else {
3754 merge = to - 1;
3755
3756 todo -= skb_frag_size(fragfrom);
3757 if (todo < 0) {
3758 if (skb_prepare_for_shift(skb) ||
3759 skb_prepare_for_shift(tgt))
3760 return 0;
3761
3762 /* All previous frag pointers might be stale! */
3763 fragfrom = &skb_shinfo(skb)->frags[from];
3764 fragto = &skb_shinfo(tgt)->frags[merge];
3765
3766 skb_frag_size_add(fragto, shiftlen);
3767 skb_frag_size_sub(fragfrom, shiftlen);
3768 skb_frag_off_add(fragfrom, shiftlen);
3769
3770 goto onlymerged;
3771 }
3772
3773 from++;
3774 }
3775
3776 /* Skip full, not-fitting skb to avoid expensive operations */
3777 if ((shiftlen == skb->len) &&
3778 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3779 return 0;
3780
3781 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3782 return 0;
3783
3784 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3785 if (to == MAX_SKB_FRAGS)
3786 return 0;
3787
3788 fragfrom = &skb_shinfo(skb)->frags[from];
3789 fragto = &skb_shinfo(tgt)->frags[to];
3790
3791 if (todo >= skb_frag_size(fragfrom)) {
3792 *fragto = *fragfrom;
3793 todo -= skb_frag_size(fragfrom);
3794 from++;
3795 to++;
3796
3797 } else {
3798 __skb_frag_ref(fragfrom);
3799 skb_frag_page_copy(fragto, fragfrom);
3800 skb_frag_off_copy(fragto, fragfrom);
3801 skb_frag_size_set(fragto, todo);
3802
3803 skb_frag_off_add(fragfrom, todo);
3804 skb_frag_size_sub(fragfrom, todo);
3805 todo = 0;
3806
3807 to++;
3808 break;
3809 }
3810 }
3811
3812 /* Ready to "commit" this state change to tgt */
3813 skb_shinfo(tgt)->nr_frags = to;
3814
3815 if (merge >= 0) {
3816 fragfrom = &skb_shinfo(skb)->frags[0];
3817 fragto = &skb_shinfo(tgt)->frags[merge];
3818
3819 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3820 __skb_frag_unref(fragfrom, skb->pp_recycle);
3821 }
3822
3823 /* Reposition in the original skb */
3824 to = 0;
3825 while (from < skb_shinfo(skb)->nr_frags)
3826 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3827 skb_shinfo(skb)->nr_frags = to;
3828
3829 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3830
3831onlymerged:
3832 /* Most likely the tgt won't ever need its checksum anymore, skb on
3833 * the other hand might need it if it needs to be resent
3834 */
3835 tgt->ip_summed = CHECKSUM_PARTIAL;
3836 skb->ip_summed = CHECKSUM_PARTIAL;
3837
3838 skb_len_add(skb, -shiftlen);
3839 skb_len_add(tgt, shiftlen);
3840
3841 return shiftlen;
3842}
3843
3844/**
3845 * skb_prepare_seq_read - Prepare a sequential read of skb data
3846 * @skb: the buffer to read
3847 * @from: lower offset of data to be read
3848 * @to: upper offset of data to be read
3849 * @st: state variable
3850 *
3851 * Initializes the specified state variable. Must be called before
3852 * invoking skb_seq_read() for the first time.
3853 */
3854void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3855 unsigned int to, struct skb_seq_state *st)
3856{
3857 st->lower_offset = from;
3858 st->upper_offset = to;
3859 st->root_skb = st->cur_skb = skb;
3860 st->frag_idx = st->stepped_offset = 0;
3861 st->frag_data = NULL;
3862 st->frag_off = 0;
3863}
3864EXPORT_SYMBOL(skb_prepare_seq_read);
3865
3866/**
3867 * skb_seq_read - Sequentially read skb data
3868 * @consumed: number of bytes consumed by the caller so far
3869 * @data: destination pointer for data to be returned
3870 * @st: state variable
3871 *
3872 * Reads a block of skb data at @consumed relative to the
3873 * lower offset specified to skb_prepare_seq_read(). Assigns
3874 * the head of the data block to @data and returns the length
3875 * of the block or 0 if the end of the skb data or the upper
3876 * offset has been reached.
3877 *
3878 * The caller is not required to consume all of the data
3879 * returned, i.e. @consumed is typically set to the number
3880 * of bytes already consumed and the next call to
3881 * skb_seq_read() will return the remaining part of the block.
3882 *
3883 * Note 1: The size of each block of data returned can be arbitrary,
3884 * this limitation is the cost for zerocopy sequential
3885 * reads of potentially non linear data.
3886 *
3887 * Note 2: Fragment lists within fragments are not implemented
3888 * at the moment, state->root_skb could be replaced with
3889 * a stack for this purpose.
3890 */
3891unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3892 struct skb_seq_state *st)
3893{
3894 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3895 skb_frag_t *frag;
3896
3897 if (unlikely(abs_offset >= st->upper_offset)) {
3898 if (st->frag_data) {
3899 kunmap_atomic(st->frag_data);
3900 st->frag_data = NULL;
3901 }
3902 return 0;
3903 }
3904
3905next_skb:
3906 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3907
3908 if (abs_offset < block_limit && !st->frag_data) {
3909 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3910 return block_limit - abs_offset;
3911 }
3912
3913 if (st->frag_idx == 0 && !st->frag_data)
3914 st->stepped_offset += skb_headlen(st->cur_skb);
3915
3916 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3917 unsigned int pg_idx, pg_off, pg_sz;
3918
3919 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3920
3921 pg_idx = 0;
3922 pg_off = skb_frag_off(frag);
3923 pg_sz = skb_frag_size(frag);
3924
3925 if (skb_frag_must_loop(skb_frag_page(frag))) {
3926 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3927 pg_off = offset_in_page(pg_off + st->frag_off);
3928 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3929 PAGE_SIZE - pg_off);
3930 }
3931
3932 block_limit = pg_sz + st->stepped_offset;
3933 if (abs_offset < block_limit) {
3934 if (!st->frag_data)
3935 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3936
3937 *data = (u8 *)st->frag_data + pg_off +
3938 (abs_offset - st->stepped_offset);
3939
3940 return block_limit - abs_offset;
3941 }
3942
3943 if (st->frag_data) {
3944 kunmap_atomic(st->frag_data);
3945 st->frag_data = NULL;
3946 }
3947
3948 st->stepped_offset += pg_sz;
3949 st->frag_off += pg_sz;
3950 if (st->frag_off == skb_frag_size(frag)) {
3951 st->frag_off = 0;
3952 st->frag_idx++;
3953 }
3954 }
3955
3956 if (st->frag_data) {
3957 kunmap_atomic(st->frag_data);
3958 st->frag_data = NULL;
3959 }
3960
3961 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3962 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3963 st->frag_idx = 0;
3964 goto next_skb;
3965 } else if (st->cur_skb->next) {
3966 st->cur_skb = st->cur_skb->next;
3967 st->frag_idx = 0;
3968 goto next_skb;
3969 }
3970
3971 return 0;
3972}
3973EXPORT_SYMBOL(skb_seq_read);
3974
3975/**
3976 * skb_abort_seq_read - Abort a sequential read of skb data
3977 * @st: state variable
3978 *
3979 * Must be called if skb_seq_read() was not called until it
3980 * returned 0.
3981 */
3982void skb_abort_seq_read(struct skb_seq_state *st)
3983{
3984 if (st->frag_data)
3985 kunmap_atomic(st->frag_data);
3986}
3987EXPORT_SYMBOL(skb_abort_seq_read);
3988
3989#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3990
3991static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3992 struct ts_config *conf,
3993 struct ts_state *state)
3994{
3995 return skb_seq_read(offset, text, TS_SKB_CB(state));
3996}
3997
3998static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3999{
4000 skb_abort_seq_read(TS_SKB_CB(state));
4001}
4002
4003/**
4004 * skb_find_text - Find a text pattern in skb data
4005 * @skb: the buffer to look in
4006 * @from: search offset
4007 * @to: search limit
4008 * @config: textsearch configuration
4009 *
4010 * Finds a pattern in the skb data according to the specified
4011 * textsearch configuration. Use textsearch_next() to retrieve
4012 * subsequent occurrences of the pattern. Returns the offset
4013 * to the first occurrence or UINT_MAX if no match was found.
4014 */
4015unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4016 unsigned int to, struct ts_config *config)
4017{
4018 struct ts_state state;
4019 unsigned int ret;
4020
4021 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4022
4023 config->get_next_block = skb_ts_get_next_block;
4024 config->finish = skb_ts_finish;
4025
4026 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4027
4028 ret = textsearch_find(config, &state);
4029 return (ret <= to - from ? ret : UINT_MAX);
4030}
4031EXPORT_SYMBOL(skb_find_text);
4032
4033int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4034 int offset, size_t size)
4035{
4036 int i = skb_shinfo(skb)->nr_frags;
4037
4038 if (skb_can_coalesce(skb, i, page, offset)) {
4039 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4040 } else if (i < MAX_SKB_FRAGS) {
4041 skb_zcopy_downgrade_managed(skb);
4042 get_page(page);
4043 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4044 } else {
4045 return -EMSGSIZE;
4046 }
4047
4048 return 0;
4049}
4050EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4051
4052/**
4053 * skb_pull_rcsum - pull skb and update receive checksum
4054 * @skb: buffer to update
4055 * @len: length of data pulled
4056 *
4057 * This function performs an skb_pull on the packet and updates
4058 * the CHECKSUM_COMPLETE checksum. It should be used on
4059 * receive path processing instead of skb_pull unless you know
4060 * that the checksum difference is zero (e.g., a valid IP header)
4061 * or you are setting ip_summed to CHECKSUM_NONE.
4062 */
4063void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4064{
4065 unsigned char *data = skb->data;
4066
4067 BUG_ON(len > skb->len);
4068 __skb_pull(skb, len);
4069 skb_postpull_rcsum(skb, data, len);
4070 return skb->data;
4071}
4072EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4073
4074static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4075{
4076 skb_frag_t head_frag;
4077 struct page *page;
4078
4079 page = virt_to_head_page(frag_skb->head);
4080 __skb_frag_set_page(&head_frag, page);
4081 skb_frag_off_set(&head_frag, frag_skb->data -
4082 (unsigned char *)page_address(page));
4083 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4084 return head_frag;
4085}
4086
4087struct sk_buff *skb_segment_list(struct sk_buff *skb,
4088 netdev_features_t features,
4089 unsigned int offset)
4090{
4091 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4092 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4093 unsigned int delta_truesize = 0;
4094 unsigned int delta_len = 0;
4095 struct sk_buff *tail = NULL;
4096 struct sk_buff *nskb, *tmp;
4097 int len_diff, err;
4098
4099 skb_push(skb, -skb_network_offset(skb) + offset);
4100
4101 skb_shinfo(skb)->frag_list = NULL;
4102
4103 while (list_skb) {
4104 nskb = list_skb;
4105 list_skb = list_skb->next;
4106
4107 err = 0;
4108 delta_truesize += nskb->truesize;
4109 if (skb_shared(nskb)) {
4110 tmp = skb_clone(nskb, GFP_ATOMIC);
4111 if (tmp) {
4112 consume_skb(nskb);
4113 nskb = tmp;
4114 err = skb_unclone(nskb, GFP_ATOMIC);
4115 } else {
4116 err = -ENOMEM;
4117 }
4118 }
4119
4120 if (!tail)
4121 skb->next = nskb;
4122 else
4123 tail->next = nskb;
4124
4125 if (unlikely(err)) {
4126 nskb->next = list_skb;
4127 goto err_linearize;
4128 }
4129
4130 tail = nskb;
4131
4132 delta_len += nskb->len;
4133
4134 skb_push(nskb, -skb_network_offset(nskb) + offset);
4135
4136 skb_release_head_state(nskb);
4137 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4138 __copy_skb_header(nskb, skb);
4139
4140 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4141 nskb->transport_header += len_diff;
4142 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4143 nskb->data - tnl_hlen,
4144 offset + tnl_hlen);
4145
4146 if (skb_needs_linearize(nskb, features) &&
4147 __skb_linearize(nskb))
4148 goto err_linearize;
4149 }
4150
4151 skb->truesize = skb->truesize - delta_truesize;
4152 skb->data_len = skb->data_len - delta_len;
4153 skb->len = skb->len - delta_len;
4154
4155 skb_gso_reset(skb);
4156
4157 skb->prev = tail;
4158
4159 if (skb_needs_linearize(skb, features) &&
4160 __skb_linearize(skb))
4161 goto err_linearize;
4162
4163 skb_get(skb);
4164
4165 return skb;
4166
4167err_linearize:
4168 kfree_skb_list(skb->next);
4169 skb->next = NULL;
4170 return ERR_PTR(-ENOMEM);
4171}
4172EXPORT_SYMBOL_GPL(skb_segment_list);
4173
4174/**
4175 * skb_segment - Perform protocol segmentation on skb.
4176 * @head_skb: buffer to segment
4177 * @features: features for the output path (see dev->features)
4178 *
4179 * This function performs segmentation on the given skb. It returns
4180 * a pointer to the first in a list of new skbs for the segments.
4181 * In case of error it returns ERR_PTR(err).
4182 */
4183struct sk_buff *skb_segment(struct sk_buff *head_skb,
4184 netdev_features_t features)
4185{
4186 struct sk_buff *segs = NULL;
4187 struct sk_buff *tail = NULL;
4188 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4189 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4190 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4191 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4192 struct sk_buff *frag_skb = head_skb;
4193 unsigned int offset = doffset;
4194 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4195 unsigned int partial_segs = 0;
4196 unsigned int headroom;
4197 unsigned int len = head_skb->len;
4198 __be16 proto;
4199 bool csum, sg;
4200 int nfrags = skb_shinfo(head_skb)->nr_frags;
4201 int err = -ENOMEM;
4202 int i = 0;
4203 int pos;
4204
4205 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4206 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4207 struct sk_buff *check_skb;
4208
4209 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4210 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4211 /* gso_size is untrusted, and we have a frag_list with
4212 * a linear non head_frag item.
4213 *
4214 * If head_skb's headlen does not fit requested gso_size,
4215 * it means that the frag_list members do NOT terminate
4216 * on exact gso_size boundaries. Hence we cannot perform
4217 * skb_frag_t page sharing. Therefore we must fallback to
4218 * copying the frag_list skbs; we do so by disabling SG.
4219 */
4220 features &= ~NETIF_F_SG;
4221 break;
4222 }
4223 }
4224 }
4225
4226 __skb_push(head_skb, doffset);
4227 proto = skb_network_protocol(head_skb, NULL);
4228 if (unlikely(!proto))
4229 return ERR_PTR(-EINVAL);
4230
4231 sg = !!(features & NETIF_F_SG);
4232 csum = !!can_checksum_protocol(features, proto);
4233
4234 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4235 if (!(features & NETIF_F_GSO_PARTIAL)) {
4236 struct sk_buff *iter;
4237 unsigned int frag_len;
4238
4239 if (!list_skb ||
4240 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4241 goto normal;
4242
4243 /* If we get here then all the required
4244 * GSO features except frag_list are supported.
4245 * Try to split the SKB to multiple GSO SKBs
4246 * with no frag_list.
4247 * Currently we can do that only when the buffers don't
4248 * have a linear part and all the buffers except
4249 * the last are of the same length.
4250 */
4251 frag_len = list_skb->len;
4252 skb_walk_frags(head_skb, iter) {
4253 if (frag_len != iter->len && iter->next)
4254 goto normal;
4255 if (skb_headlen(iter) && !iter->head_frag)
4256 goto normal;
4257
4258 len -= iter->len;
4259 }
4260
4261 if (len != frag_len)
4262 goto normal;
4263 }
4264
4265 /* GSO partial only requires that we trim off any excess that
4266 * doesn't fit into an MSS sized block, so take care of that
4267 * now.
4268 */
4269 partial_segs = len / mss;
4270 if (partial_segs > 1)
4271 mss *= partial_segs;
4272 else
4273 partial_segs = 0;
4274 }
4275
4276normal:
4277 headroom = skb_headroom(head_skb);
4278 pos = skb_headlen(head_skb);
4279
4280 do {
4281 struct sk_buff *nskb;
4282 skb_frag_t *nskb_frag;
4283 int hsize;
4284 int size;
4285
4286 if (unlikely(mss == GSO_BY_FRAGS)) {
4287 len = list_skb->len;
4288 } else {
4289 len = head_skb->len - offset;
4290 if (len > mss)
4291 len = mss;
4292 }
4293
4294 hsize = skb_headlen(head_skb) - offset;
4295
4296 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4297 (skb_headlen(list_skb) == len || sg)) {
4298 BUG_ON(skb_headlen(list_skb) > len);
4299
4300 i = 0;
4301 nfrags = skb_shinfo(list_skb)->nr_frags;
4302 frag = skb_shinfo(list_skb)->frags;
4303 frag_skb = list_skb;
4304 pos += skb_headlen(list_skb);
4305
4306 while (pos < offset + len) {
4307 BUG_ON(i >= nfrags);
4308
4309 size = skb_frag_size(frag);
4310 if (pos + size > offset + len)
4311 break;
4312
4313 i++;
4314 pos += size;
4315 frag++;
4316 }
4317
4318 nskb = skb_clone(list_skb, GFP_ATOMIC);
4319 list_skb = list_skb->next;
4320
4321 if (unlikely(!nskb))
4322 goto err;
4323
4324 if (unlikely(pskb_trim(nskb, len))) {
4325 kfree_skb(nskb);
4326 goto err;
4327 }
4328
4329 hsize = skb_end_offset(nskb);
4330 if (skb_cow_head(nskb, doffset + headroom)) {
4331 kfree_skb(nskb);
4332 goto err;
4333 }
4334
4335 nskb->truesize += skb_end_offset(nskb) - hsize;
4336 skb_release_head_state(nskb);
4337 __skb_push(nskb, doffset);
4338 } else {
4339 if (hsize < 0)
4340 hsize = 0;
4341 if (hsize > len || !sg)
4342 hsize = len;
4343
4344 nskb = __alloc_skb(hsize + doffset + headroom,
4345 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4346 NUMA_NO_NODE);
4347
4348 if (unlikely(!nskb))
4349 goto err;
4350
4351 skb_reserve(nskb, headroom);
4352 __skb_put(nskb, doffset);
4353 }
4354
4355 if (segs)
4356 tail->next = nskb;
4357 else
4358 segs = nskb;
4359 tail = nskb;
4360
4361 __copy_skb_header(nskb, head_skb);
4362
4363 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4364 skb_reset_mac_len(nskb);
4365
4366 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4367 nskb->data - tnl_hlen,
4368 doffset + tnl_hlen);
4369
4370 if (nskb->len == len + doffset)
4371 goto perform_csum_check;
4372
4373 if (!sg) {
4374 if (!csum) {
4375 if (!nskb->remcsum_offload)
4376 nskb->ip_summed = CHECKSUM_NONE;
4377 SKB_GSO_CB(nskb)->csum =
4378 skb_copy_and_csum_bits(head_skb, offset,
4379 skb_put(nskb,
4380 len),
4381 len);
4382 SKB_GSO_CB(nskb)->csum_start =
4383 skb_headroom(nskb) + doffset;
4384 } else {
4385 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4386 goto err;
4387 }
4388 continue;
4389 }
4390
4391 nskb_frag = skb_shinfo(nskb)->frags;
4392
4393 skb_copy_from_linear_data_offset(head_skb, offset,
4394 skb_put(nskb, hsize), hsize);
4395
4396 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4397 SKBFL_SHARED_FRAG;
4398
4399 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4400 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4401 goto err;
4402
4403 while (pos < offset + len) {
4404 if (i >= nfrags) {
4405 i = 0;
4406 nfrags = skb_shinfo(list_skb)->nr_frags;
4407 frag = skb_shinfo(list_skb)->frags;
4408 frag_skb = list_skb;
4409 if (!skb_headlen(list_skb)) {
4410 BUG_ON(!nfrags);
4411 } else {
4412 BUG_ON(!list_skb->head_frag);
4413
4414 /* to make room for head_frag. */
4415 i--;
4416 frag--;
4417 }
4418 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4419 skb_zerocopy_clone(nskb, frag_skb,
4420 GFP_ATOMIC))
4421 goto err;
4422
4423 list_skb = list_skb->next;
4424 }
4425
4426 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4427 MAX_SKB_FRAGS)) {
4428 net_warn_ratelimited(
4429 "skb_segment: too many frags: %u %u\n",
4430 pos, mss);
4431 err = -EINVAL;
4432 goto err;
4433 }
4434
4435 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4436 __skb_frag_ref(nskb_frag);
4437 size = skb_frag_size(nskb_frag);
4438
4439 if (pos < offset) {
4440 skb_frag_off_add(nskb_frag, offset - pos);
4441 skb_frag_size_sub(nskb_frag, offset - pos);
4442 }
4443
4444 skb_shinfo(nskb)->nr_frags++;
4445
4446 if (pos + size <= offset + len) {
4447 i++;
4448 frag++;
4449 pos += size;
4450 } else {
4451 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4452 goto skip_fraglist;
4453 }
4454
4455 nskb_frag++;
4456 }
4457
4458skip_fraglist:
4459 nskb->data_len = len - hsize;
4460 nskb->len += nskb->data_len;
4461 nskb->truesize += nskb->data_len;
4462
4463perform_csum_check:
4464 if (!csum) {
4465 if (skb_has_shared_frag(nskb) &&
4466 __skb_linearize(nskb))
4467 goto err;
4468
4469 if (!nskb->remcsum_offload)
4470 nskb->ip_summed = CHECKSUM_NONE;
4471 SKB_GSO_CB(nskb)->csum =
4472 skb_checksum(nskb, doffset,
4473 nskb->len - doffset, 0);
4474 SKB_GSO_CB(nskb)->csum_start =
4475 skb_headroom(nskb) + doffset;
4476 }
4477 } while ((offset += len) < head_skb->len);
4478
4479 /* Some callers want to get the end of the list.
4480 * Put it in segs->prev to avoid walking the list.
4481 * (see validate_xmit_skb_list() for example)
4482 */
4483 segs->prev = tail;
4484
4485 if (partial_segs) {
4486 struct sk_buff *iter;
4487 int type = skb_shinfo(head_skb)->gso_type;
4488 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4489
4490 /* Update type to add partial and then remove dodgy if set */
4491 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4492 type &= ~SKB_GSO_DODGY;
4493
4494 /* Update GSO info and prepare to start updating headers on
4495 * our way back down the stack of protocols.
4496 */
4497 for (iter = segs; iter; iter = iter->next) {
4498 skb_shinfo(iter)->gso_size = gso_size;
4499 skb_shinfo(iter)->gso_segs = partial_segs;
4500 skb_shinfo(iter)->gso_type = type;
4501 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4502 }
4503
4504 if (tail->len - doffset <= gso_size)
4505 skb_shinfo(tail)->gso_size = 0;
4506 else if (tail != segs)
4507 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4508 }
4509
4510 /* Following permits correct backpressure, for protocols
4511 * using skb_set_owner_w().
4512 * Idea is to tranfert ownership from head_skb to last segment.
4513 */
4514 if (head_skb->destructor == sock_wfree) {
4515 swap(tail->truesize, head_skb->truesize);
4516 swap(tail->destructor, head_skb->destructor);
4517 swap(tail->sk, head_skb->sk);
4518 }
4519 return segs;
4520
4521err:
4522 kfree_skb_list(segs);
4523 return ERR_PTR(err);
4524}
4525EXPORT_SYMBOL_GPL(skb_segment);
4526
4527#ifdef CONFIG_SKB_EXTENSIONS
4528#define SKB_EXT_ALIGN_VALUE 8
4529#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4530
4531static const u8 skb_ext_type_len[] = {
4532#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4533 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4534#endif
4535#ifdef CONFIG_XFRM
4536 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4537#endif
4538#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4539 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4540#endif
4541#if IS_ENABLED(CONFIG_MPTCP)
4542 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4543#endif
4544#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4545 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4546#endif
4547};
4548
4549static __always_inline unsigned int skb_ext_total_length(void)
4550{
4551 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4552#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4553 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4554#endif
4555#ifdef CONFIG_XFRM
4556 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4557#endif
4558#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4559 skb_ext_type_len[TC_SKB_EXT] +
4560#endif
4561#if IS_ENABLED(CONFIG_MPTCP)
4562 skb_ext_type_len[SKB_EXT_MPTCP] +
4563#endif
4564#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4565 skb_ext_type_len[SKB_EXT_MCTP] +
4566#endif
4567 0;
4568}
4569
4570static void skb_extensions_init(void)
4571{
4572 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4573 BUILD_BUG_ON(skb_ext_total_length() > 255);
4574
4575 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4576 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4577 0,
4578 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4579 NULL);
4580}
4581#else
4582static void skb_extensions_init(void) {}
4583#endif
4584
4585void __init skb_init(void)
4586{
4587 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4588 sizeof(struct sk_buff),
4589 0,
4590 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4591 offsetof(struct sk_buff, cb),
4592 sizeof_field(struct sk_buff, cb),
4593 NULL);
4594 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4595 sizeof(struct sk_buff_fclones),
4596 0,
4597 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4598 NULL);
4599 skb_extensions_init();
4600}
4601
4602static int
4603__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4604 unsigned int recursion_level)
4605{
4606 int start = skb_headlen(skb);
4607 int i, copy = start - offset;
4608 struct sk_buff *frag_iter;
4609 int elt = 0;
4610
4611 if (unlikely(recursion_level >= 24))
4612 return -EMSGSIZE;
4613
4614 if (copy > 0) {
4615 if (copy > len)
4616 copy = len;
4617 sg_set_buf(sg, skb->data + offset, copy);
4618 elt++;
4619 if ((len -= copy) == 0)
4620 return elt;
4621 offset += copy;
4622 }
4623
4624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4625 int end;
4626
4627 WARN_ON(start > offset + len);
4628
4629 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4630 if ((copy = end - offset) > 0) {
4631 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4632 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4633 return -EMSGSIZE;
4634
4635 if (copy > len)
4636 copy = len;
4637 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4638 skb_frag_off(frag) + offset - start);
4639 elt++;
4640 if (!(len -= copy))
4641 return elt;
4642 offset += copy;
4643 }
4644 start = end;
4645 }
4646
4647 skb_walk_frags(skb, frag_iter) {
4648 int end, ret;
4649
4650 WARN_ON(start > offset + len);
4651
4652 end = start + frag_iter->len;
4653 if ((copy = end - offset) > 0) {
4654 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4655 return -EMSGSIZE;
4656
4657 if (copy > len)
4658 copy = len;
4659 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4660 copy, recursion_level + 1);
4661 if (unlikely(ret < 0))
4662 return ret;
4663 elt += ret;
4664 if ((len -= copy) == 0)
4665 return elt;
4666 offset += copy;
4667 }
4668 start = end;
4669 }
4670 BUG_ON(len);
4671 return elt;
4672}
4673
4674/**
4675 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4676 * @skb: Socket buffer containing the buffers to be mapped
4677 * @sg: The scatter-gather list to map into
4678 * @offset: The offset into the buffer's contents to start mapping
4679 * @len: Length of buffer space to be mapped
4680 *
4681 * Fill the specified scatter-gather list with mappings/pointers into a
4682 * region of the buffer space attached to a socket buffer. Returns either
4683 * the number of scatterlist items used, or -EMSGSIZE if the contents
4684 * could not fit.
4685 */
4686int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4687{
4688 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4689
4690 if (nsg <= 0)
4691 return nsg;
4692
4693 sg_mark_end(&sg[nsg - 1]);
4694
4695 return nsg;
4696}
4697EXPORT_SYMBOL_GPL(skb_to_sgvec);
4698
4699/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4700 * sglist without mark the sg which contain last skb data as the end.
4701 * So the caller can mannipulate sg list as will when padding new data after
4702 * the first call without calling sg_unmark_end to expend sg list.
4703 *
4704 * Scenario to use skb_to_sgvec_nomark:
4705 * 1. sg_init_table
4706 * 2. skb_to_sgvec_nomark(payload1)
4707 * 3. skb_to_sgvec_nomark(payload2)
4708 *
4709 * This is equivalent to:
4710 * 1. sg_init_table
4711 * 2. skb_to_sgvec(payload1)
4712 * 3. sg_unmark_end
4713 * 4. skb_to_sgvec(payload2)
4714 *
4715 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4716 * is more preferable.
4717 */
4718int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4719 int offset, int len)
4720{
4721 return __skb_to_sgvec(skb, sg, offset, len, 0);
4722}
4723EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4724
4725
4726
4727/**
4728 * skb_cow_data - Check that a socket buffer's data buffers are writable
4729 * @skb: The socket buffer to check.
4730 * @tailbits: Amount of trailing space to be added
4731 * @trailer: Returned pointer to the skb where the @tailbits space begins
4732 *
4733 * Make sure that the data buffers attached to a socket buffer are
4734 * writable. If they are not, private copies are made of the data buffers
4735 * and the socket buffer is set to use these instead.
4736 *
4737 * If @tailbits is given, make sure that there is space to write @tailbits
4738 * bytes of data beyond current end of socket buffer. @trailer will be
4739 * set to point to the skb in which this space begins.
4740 *
4741 * The number of scatterlist elements required to completely map the
4742 * COW'd and extended socket buffer will be returned.
4743 */
4744int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4745{
4746 int copyflag;
4747 int elt;
4748 struct sk_buff *skb1, **skb_p;
4749
4750 /* If skb is cloned or its head is paged, reallocate
4751 * head pulling out all the pages (pages are considered not writable
4752 * at the moment even if they are anonymous).
4753 */
4754 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4755 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4756 return -ENOMEM;
4757
4758 /* Easy case. Most of packets will go this way. */
4759 if (!skb_has_frag_list(skb)) {
4760 /* A little of trouble, not enough of space for trailer.
4761 * This should not happen, when stack is tuned to generate
4762 * good frames. OK, on miss we reallocate and reserve even more
4763 * space, 128 bytes is fair. */
4764
4765 if (skb_tailroom(skb) < tailbits &&
4766 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4767 return -ENOMEM;
4768
4769 /* Voila! */
4770 *trailer = skb;
4771 return 1;
4772 }
4773
4774 /* Misery. We are in troubles, going to mincer fragments... */
4775
4776 elt = 1;
4777 skb_p = &skb_shinfo(skb)->frag_list;
4778 copyflag = 0;
4779
4780 while ((skb1 = *skb_p) != NULL) {
4781 int ntail = 0;
4782
4783 /* The fragment is partially pulled by someone,
4784 * this can happen on input. Copy it and everything
4785 * after it. */
4786
4787 if (skb_shared(skb1))
4788 copyflag = 1;
4789
4790 /* If the skb is the last, worry about trailer. */
4791
4792 if (skb1->next == NULL && tailbits) {
4793 if (skb_shinfo(skb1)->nr_frags ||
4794 skb_has_frag_list(skb1) ||
4795 skb_tailroom(skb1) < tailbits)
4796 ntail = tailbits + 128;
4797 }
4798
4799 if (copyflag ||
4800 skb_cloned(skb1) ||
4801 ntail ||
4802 skb_shinfo(skb1)->nr_frags ||
4803 skb_has_frag_list(skb1)) {
4804 struct sk_buff *skb2;
4805
4806 /* Fuck, we are miserable poor guys... */
4807 if (ntail == 0)
4808 skb2 = skb_copy(skb1, GFP_ATOMIC);
4809 else
4810 skb2 = skb_copy_expand(skb1,
4811 skb_headroom(skb1),
4812 ntail,
4813 GFP_ATOMIC);
4814 if (unlikely(skb2 == NULL))
4815 return -ENOMEM;
4816
4817 if (skb1->sk)
4818 skb_set_owner_w(skb2, skb1->sk);
4819
4820 /* Looking around. Are we still alive?
4821 * OK, link new skb, drop old one */
4822
4823 skb2->next = skb1->next;
4824 *skb_p = skb2;
4825 kfree_skb(skb1);
4826 skb1 = skb2;
4827 }
4828 elt++;
4829 *trailer = skb1;
4830 skb_p = &skb1->next;
4831 }
4832
4833 return elt;
4834}
4835EXPORT_SYMBOL_GPL(skb_cow_data);
4836
4837static void sock_rmem_free(struct sk_buff *skb)
4838{
4839 struct sock *sk = skb->sk;
4840
4841 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4842}
4843
4844static void skb_set_err_queue(struct sk_buff *skb)
4845{
4846 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4847 * So, it is safe to (mis)use it to mark skbs on the error queue.
4848 */
4849 skb->pkt_type = PACKET_OUTGOING;
4850 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4851}
4852
4853/*
4854 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4855 */
4856int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4857{
4858 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4859 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4860 return -ENOMEM;
4861
4862 skb_orphan(skb);
4863 skb->sk = sk;
4864 skb->destructor = sock_rmem_free;
4865 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4866 skb_set_err_queue(skb);
4867
4868 /* before exiting rcu section, make sure dst is refcounted */
4869 skb_dst_force(skb);
4870
4871 skb_queue_tail(&sk->sk_error_queue, skb);
4872 if (!sock_flag(sk, SOCK_DEAD))
4873 sk_error_report(sk);
4874 return 0;
4875}
4876EXPORT_SYMBOL(sock_queue_err_skb);
4877
4878static bool is_icmp_err_skb(const struct sk_buff *skb)
4879{
4880 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4881 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4882}
4883
4884struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4885{
4886 struct sk_buff_head *q = &sk->sk_error_queue;
4887 struct sk_buff *skb, *skb_next = NULL;
4888 bool icmp_next = false;
4889 unsigned long flags;
4890
4891 spin_lock_irqsave(&q->lock, flags);
4892 skb = __skb_dequeue(q);
4893 if (skb && (skb_next = skb_peek(q))) {
4894 icmp_next = is_icmp_err_skb(skb_next);
4895 if (icmp_next)
4896 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4897 }
4898 spin_unlock_irqrestore(&q->lock, flags);
4899
4900 if (is_icmp_err_skb(skb) && !icmp_next)
4901 sk->sk_err = 0;
4902
4903 if (skb_next)
4904 sk_error_report(sk);
4905
4906 return skb;
4907}
4908EXPORT_SYMBOL(sock_dequeue_err_skb);
4909
4910/**
4911 * skb_clone_sk - create clone of skb, and take reference to socket
4912 * @skb: the skb to clone
4913 *
4914 * This function creates a clone of a buffer that holds a reference on
4915 * sk_refcnt. Buffers created via this function are meant to be
4916 * returned using sock_queue_err_skb, or free via kfree_skb.
4917 *
4918 * When passing buffers allocated with this function to sock_queue_err_skb
4919 * it is necessary to wrap the call with sock_hold/sock_put in order to
4920 * prevent the socket from being released prior to being enqueued on
4921 * the sk_error_queue.
4922 */
4923struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4924{
4925 struct sock *sk = skb->sk;
4926 struct sk_buff *clone;
4927
4928 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4929 return NULL;
4930
4931 clone = skb_clone(skb, GFP_ATOMIC);
4932 if (!clone) {
4933 sock_put(sk);
4934 return NULL;
4935 }
4936
4937 clone->sk = sk;
4938 clone->destructor = sock_efree;
4939
4940 return clone;
4941}
4942EXPORT_SYMBOL(skb_clone_sk);
4943
4944static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4945 struct sock *sk,
4946 int tstype,
4947 bool opt_stats)
4948{
4949 struct sock_exterr_skb *serr;
4950 int err;
4951
4952 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4953
4954 serr = SKB_EXT_ERR(skb);
4955 memset(serr, 0, sizeof(*serr));
4956 serr->ee.ee_errno = ENOMSG;
4957 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4958 serr->ee.ee_info = tstype;
4959 serr->opt_stats = opt_stats;
4960 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4961 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4962 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4963 if (sk_is_tcp(sk))
4964 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4965 }
4966
4967 err = sock_queue_err_skb(sk, skb);
4968
4969 if (err)
4970 kfree_skb(skb);
4971}
4972
4973static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4974{
4975 bool ret;
4976
4977 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4978 return true;
4979
4980 read_lock_bh(&sk->sk_callback_lock);
4981 ret = sk->sk_socket && sk->sk_socket->file &&
4982 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4983 read_unlock_bh(&sk->sk_callback_lock);
4984 return ret;
4985}
4986
4987void skb_complete_tx_timestamp(struct sk_buff *skb,
4988 struct skb_shared_hwtstamps *hwtstamps)
4989{
4990 struct sock *sk = skb->sk;
4991
4992 if (!skb_may_tx_timestamp(sk, false))
4993 goto err;
4994
4995 /* Take a reference to prevent skb_orphan() from freeing the socket,
4996 * but only if the socket refcount is not zero.
4997 */
4998 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4999 *skb_hwtstamps(skb) = *hwtstamps;
5000 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5001 sock_put(sk);
5002 return;
5003 }
5004
5005err:
5006 kfree_skb(skb);
5007}
5008EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5009
5010void __skb_tstamp_tx(struct sk_buff *orig_skb,
5011 const struct sk_buff *ack_skb,
5012 struct skb_shared_hwtstamps *hwtstamps,
5013 struct sock *sk, int tstype)
5014{
5015 struct sk_buff *skb;
5016 bool tsonly, opt_stats = false;
5017
5018 if (!sk)
5019 return;
5020
5021 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5022 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5023 return;
5024
5025 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5026 if (!skb_may_tx_timestamp(sk, tsonly))
5027 return;
5028
5029 if (tsonly) {
5030#ifdef CONFIG_INET
5031 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5032 sk_is_tcp(sk)) {
5033 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5034 ack_skb);
5035 opt_stats = true;
5036 } else
5037#endif
5038 skb = alloc_skb(0, GFP_ATOMIC);
5039 } else {
5040 skb = skb_clone(orig_skb, GFP_ATOMIC);
5041 }
5042 if (!skb)
5043 return;
5044
5045 if (tsonly) {
5046 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5047 SKBTX_ANY_TSTAMP;
5048 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5049 }
5050
5051 if (hwtstamps)
5052 *skb_hwtstamps(skb) = *hwtstamps;
5053 else
5054 __net_timestamp(skb);
5055
5056 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5057}
5058EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5059
5060void skb_tstamp_tx(struct sk_buff *orig_skb,
5061 struct skb_shared_hwtstamps *hwtstamps)
5062{
5063 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5064 SCM_TSTAMP_SND);
5065}
5066EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5067
5068void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5069{
5070 struct sock *sk = skb->sk;
5071 struct sock_exterr_skb *serr;
5072 int err = 1;
5073
5074 skb->wifi_acked_valid = 1;
5075 skb->wifi_acked = acked;
5076
5077 serr = SKB_EXT_ERR(skb);
5078 memset(serr, 0, sizeof(*serr));
5079 serr->ee.ee_errno = ENOMSG;
5080 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5081
5082 /* Take a reference to prevent skb_orphan() from freeing the socket,
5083 * but only if the socket refcount is not zero.
5084 */
5085 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5086 err = sock_queue_err_skb(sk, skb);
5087 sock_put(sk);
5088 }
5089 if (err)
5090 kfree_skb(skb);
5091}
5092EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5093
5094/**
5095 * skb_partial_csum_set - set up and verify partial csum values for packet
5096 * @skb: the skb to set
5097 * @start: the number of bytes after skb->data to start checksumming.
5098 * @off: the offset from start to place the checksum.
5099 *
5100 * For untrusted partially-checksummed packets, we need to make sure the values
5101 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5102 *
5103 * This function checks and sets those values and skb->ip_summed: if this
5104 * returns false you should drop the packet.
5105 */
5106bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5107{
5108 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5109 u32 csum_start = skb_headroom(skb) + (u32)start;
5110
5111 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5112 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5113 start, off, skb_headroom(skb), skb_headlen(skb));
5114 return false;
5115 }
5116 skb->ip_summed = CHECKSUM_PARTIAL;
5117 skb->csum_start = csum_start;
5118 skb->csum_offset = off;
5119 skb_set_transport_header(skb, start);
5120 return true;
5121}
5122EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5123
5124static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5125 unsigned int max)
5126{
5127 if (skb_headlen(skb) >= len)
5128 return 0;
5129
5130 /* If we need to pullup then pullup to the max, so we
5131 * won't need to do it again.
5132 */
5133 if (max > skb->len)
5134 max = skb->len;
5135
5136 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5137 return -ENOMEM;
5138
5139 if (skb_headlen(skb) < len)
5140 return -EPROTO;
5141
5142 return 0;
5143}
5144
5145#define MAX_TCP_HDR_LEN (15 * 4)
5146
5147static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5148 typeof(IPPROTO_IP) proto,
5149 unsigned int off)
5150{
5151 int err;
5152
5153 switch (proto) {
5154 case IPPROTO_TCP:
5155 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5156 off + MAX_TCP_HDR_LEN);
5157 if (!err && !skb_partial_csum_set(skb, off,
5158 offsetof(struct tcphdr,
5159 check)))
5160 err = -EPROTO;
5161 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5162
5163 case IPPROTO_UDP:
5164 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5165 off + sizeof(struct udphdr));
5166 if (!err && !skb_partial_csum_set(skb, off,
5167 offsetof(struct udphdr,
5168 check)))
5169 err = -EPROTO;
5170 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5171 }
5172
5173 return ERR_PTR(-EPROTO);
5174}
5175
5176/* This value should be large enough to cover a tagged ethernet header plus
5177 * maximally sized IP and TCP or UDP headers.
5178 */
5179#define MAX_IP_HDR_LEN 128
5180
5181static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5182{
5183 unsigned int off;
5184 bool fragment;
5185 __sum16 *csum;
5186 int err;
5187
5188 fragment = false;
5189
5190 err = skb_maybe_pull_tail(skb,
5191 sizeof(struct iphdr),
5192 MAX_IP_HDR_LEN);
5193 if (err < 0)
5194 goto out;
5195
5196 if (ip_is_fragment(ip_hdr(skb)))
5197 fragment = true;
5198
5199 off = ip_hdrlen(skb);
5200
5201 err = -EPROTO;
5202
5203 if (fragment)
5204 goto out;
5205
5206 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5207 if (IS_ERR(csum))
5208 return PTR_ERR(csum);
5209
5210 if (recalculate)
5211 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5212 ip_hdr(skb)->daddr,
5213 skb->len - off,
5214 ip_hdr(skb)->protocol, 0);
5215 err = 0;
5216
5217out:
5218 return err;
5219}
5220
5221/* This value should be large enough to cover a tagged ethernet header plus
5222 * an IPv6 header, all options, and a maximal TCP or UDP header.
5223 */
5224#define MAX_IPV6_HDR_LEN 256
5225
5226#define OPT_HDR(type, skb, off) \
5227 (type *)(skb_network_header(skb) + (off))
5228
5229static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5230{
5231 int err;
5232 u8 nexthdr;
5233 unsigned int off;
5234 unsigned int len;
5235 bool fragment;
5236 bool done;
5237 __sum16 *csum;
5238
5239 fragment = false;
5240 done = false;
5241
5242 off = sizeof(struct ipv6hdr);
5243
5244 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5245 if (err < 0)
5246 goto out;
5247
5248 nexthdr = ipv6_hdr(skb)->nexthdr;
5249
5250 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5251 while (off <= len && !done) {
5252 switch (nexthdr) {
5253 case IPPROTO_DSTOPTS:
5254 case IPPROTO_HOPOPTS:
5255 case IPPROTO_ROUTING: {
5256 struct ipv6_opt_hdr *hp;
5257
5258 err = skb_maybe_pull_tail(skb,
5259 off +
5260 sizeof(struct ipv6_opt_hdr),
5261 MAX_IPV6_HDR_LEN);
5262 if (err < 0)
5263 goto out;
5264
5265 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5266 nexthdr = hp->nexthdr;
5267 off += ipv6_optlen(hp);
5268 break;
5269 }
5270 case IPPROTO_AH: {
5271 struct ip_auth_hdr *hp;
5272
5273 err = skb_maybe_pull_tail(skb,
5274 off +
5275 sizeof(struct ip_auth_hdr),
5276 MAX_IPV6_HDR_LEN);
5277 if (err < 0)
5278 goto out;
5279
5280 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5281 nexthdr = hp->nexthdr;
5282 off += ipv6_authlen(hp);
5283 break;
5284 }
5285 case IPPROTO_FRAGMENT: {
5286 struct frag_hdr *hp;
5287
5288 err = skb_maybe_pull_tail(skb,
5289 off +
5290 sizeof(struct frag_hdr),
5291 MAX_IPV6_HDR_LEN);
5292 if (err < 0)
5293 goto out;
5294
5295 hp = OPT_HDR(struct frag_hdr, skb, off);
5296
5297 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5298 fragment = true;
5299
5300 nexthdr = hp->nexthdr;
5301 off += sizeof(struct frag_hdr);
5302 break;
5303 }
5304 default:
5305 done = true;
5306 break;
5307 }
5308 }
5309
5310 err = -EPROTO;
5311
5312 if (!done || fragment)
5313 goto out;
5314
5315 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5316 if (IS_ERR(csum))
5317 return PTR_ERR(csum);
5318
5319 if (recalculate)
5320 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5321 &ipv6_hdr(skb)->daddr,
5322 skb->len - off, nexthdr, 0);
5323 err = 0;
5324
5325out:
5326 return err;
5327}
5328
5329/**
5330 * skb_checksum_setup - set up partial checksum offset
5331 * @skb: the skb to set up
5332 * @recalculate: if true the pseudo-header checksum will be recalculated
5333 */
5334int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5335{
5336 int err;
5337
5338 switch (skb->protocol) {
5339 case htons(ETH_P_IP):
5340 err = skb_checksum_setup_ipv4(skb, recalculate);
5341 break;
5342
5343 case htons(ETH_P_IPV6):
5344 err = skb_checksum_setup_ipv6(skb, recalculate);
5345 break;
5346
5347 default:
5348 err = -EPROTO;
5349 break;
5350 }
5351
5352 return err;
5353}
5354EXPORT_SYMBOL(skb_checksum_setup);
5355
5356/**
5357 * skb_checksum_maybe_trim - maybe trims the given skb
5358 * @skb: the skb to check
5359 * @transport_len: the data length beyond the network header
5360 *
5361 * Checks whether the given skb has data beyond the given transport length.
5362 * If so, returns a cloned skb trimmed to this transport length.
5363 * Otherwise returns the provided skb. Returns NULL in error cases
5364 * (e.g. transport_len exceeds skb length or out-of-memory).
5365 *
5366 * Caller needs to set the skb transport header and free any returned skb if it
5367 * differs from the provided skb.
5368 */
5369static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5370 unsigned int transport_len)
5371{
5372 struct sk_buff *skb_chk;
5373 unsigned int len = skb_transport_offset(skb) + transport_len;
5374 int ret;
5375
5376 if (skb->len < len)
5377 return NULL;
5378 else if (skb->len == len)
5379 return skb;
5380
5381 skb_chk = skb_clone(skb, GFP_ATOMIC);
5382 if (!skb_chk)
5383 return NULL;
5384
5385 ret = pskb_trim_rcsum(skb_chk, len);
5386 if (ret) {
5387 kfree_skb(skb_chk);
5388 return NULL;
5389 }
5390
5391 return skb_chk;
5392}
5393
5394/**
5395 * skb_checksum_trimmed - validate checksum of an skb
5396 * @skb: the skb to check
5397 * @transport_len: the data length beyond the network header
5398 * @skb_chkf: checksum function to use
5399 *
5400 * Applies the given checksum function skb_chkf to the provided skb.
5401 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5402 *
5403 * If the skb has data beyond the given transport length, then a
5404 * trimmed & cloned skb is checked and returned.
5405 *
5406 * Caller needs to set the skb transport header and free any returned skb if it
5407 * differs from the provided skb.
5408 */
5409struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5410 unsigned int transport_len,
5411 __sum16(*skb_chkf)(struct sk_buff *skb))
5412{
5413 struct sk_buff *skb_chk;
5414 unsigned int offset = skb_transport_offset(skb);
5415 __sum16 ret;
5416
5417 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5418 if (!skb_chk)
5419 goto err;
5420
5421 if (!pskb_may_pull(skb_chk, offset))
5422 goto err;
5423
5424 skb_pull_rcsum(skb_chk, offset);
5425 ret = skb_chkf(skb_chk);
5426 skb_push_rcsum(skb_chk, offset);
5427
5428 if (ret)
5429 goto err;
5430
5431 return skb_chk;
5432
5433err:
5434 if (skb_chk && skb_chk != skb)
5435 kfree_skb(skb_chk);
5436
5437 return NULL;
5438
5439}
5440EXPORT_SYMBOL(skb_checksum_trimmed);
5441
5442void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5443{
5444 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5445 skb->dev->name);
5446}
5447EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5448
5449void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5450{
5451 if (head_stolen) {
5452 skb_release_head_state(skb);
5453 kmem_cache_free(skbuff_head_cache, skb);
5454 } else {
5455 __kfree_skb(skb);
5456 }
5457}
5458EXPORT_SYMBOL(kfree_skb_partial);
5459
5460/**
5461 * skb_try_coalesce - try to merge skb to prior one
5462 * @to: prior buffer
5463 * @from: buffer to add
5464 * @fragstolen: pointer to boolean
5465 * @delta_truesize: how much more was allocated than was requested
5466 */
5467bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5468 bool *fragstolen, int *delta_truesize)
5469{
5470 struct skb_shared_info *to_shinfo, *from_shinfo;
5471 int i, delta, len = from->len;
5472
5473 *fragstolen = false;
5474
5475 if (skb_cloned(to))
5476 return false;
5477
5478 /* In general, avoid mixing slab allocated and page_pool allocated
5479 * pages within the same SKB. However when @to is not pp_recycle and
5480 * @from is cloned, we can transition frag pages from page_pool to
5481 * reference counted.
5482 *
5483 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5484 * @from is cloned, in case the SKB is using page_pool fragment
5485 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5486 * references for cloned SKBs at the moment that would result in
5487 * inconsistent reference counts.
5488 */
5489 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5490 return false;
5491
5492 if (len <= skb_tailroom(to)) {
5493 if (len)
5494 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5495 *delta_truesize = 0;
5496 return true;
5497 }
5498
5499 to_shinfo = skb_shinfo(to);
5500 from_shinfo = skb_shinfo(from);
5501 if (to_shinfo->frag_list || from_shinfo->frag_list)
5502 return false;
5503 if (skb_zcopy(to) || skb_zcopy(from))
5504 return false;
5505
5506 if (skb_headlen(from) != 0) {
5507 struct page *page;
5508 unsigned int offset;
5509
5510 if (to_shinfo->nr_frags +
5511 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5512 return false;
5513
5514 if (skb_head_is_locked(from))
5515 return false;
5516
5517 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5518
5519 page = virt_to_head_page(from->head);
5520 offset = from->data - (unsigned char *)page_address(page);
5521
5522 skb_fill_page_desc(to, to_shinfo->nr_frags,
5523 page, offset, skb_headlen(from));
5524 *fragstolen = true;
5525 } else {
5526 if (to_shinfo->nr_frags +
5527 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5528 return false;
5529
5530 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5531 }
5532
5533 WARN_ON_ONCE(delta < len);
5534
5535 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5536 from_shinfo->frags,
5537 from_shinfo->nr_frags * sizeof(skb_frag_t));
5538 to_shinfo->nr_frags += from_shinfo->nr_frags;
5539
5540 if (!skb_cloned(from))
5541 from_shinfo->nr_frags = 0;
5542
5543 /* if the skb is not cloned this does nothing
5544 * since we set nr_frags to 0.
5545 */
5546 for (i = 0; i < from_shinfo->nr_frags; i++)
5547 __skb_frag_ref(&from_shinfo->frags[i]);
5548
5549 to->truesize += delta;
5550 to->len += len;
5551 to->data_len += len;
5552
5553 *delta_truesize = delta;
5554 return true;
5555}
5556EXPORT_SYMBOL(skb_try_coalesce);
5557
5558/**
5559 * skb_scrub_packet - scrub an skb
5560 *
5561 * @skb: buffer to clean
5562 * @xnet: packet is crossing netns
5563 *
5564 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5565 * into/from a tunnel. Some information have to be cleared during these
5566 * operations.
5567 * skb_scrub_packet can also be used to clean a skb before injecting it in
5568 * another namespace (@xnet == true). We have to clear all information in the
5569 * skb that could impact namespace isolation.
5570 */
5571void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5572{
5573 skb->pkt_type = PACKET_HOST;
5574 skb->skb_iif = 0;
5575 skb->ignore_df = 0;
5576 skb_dst_drop(skb);
5577 skb_ext_reset(skb);
5578 nf_reset_ct(skb);
5579 nf_reset_trace(skb);
5580
5581#ifdef CONFIG_NET_SWITCHDEV
5582 skb->offload_fwd_mark = 0;
5583 skb->offload_l3_fwd_mark = 0;
5584#endif
5585
5586 if (!xnet)
5587 return;
5588
5589 ipvs_reset(skb);
5590 skb->mark = 0;
5591 skb_clear_tstamp(skb);
5592}
5593EXPORT_SYMBOL_GPL(skb_scrub_packet);
5594
5595/**
5596 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5597 *
5598 * @skb: GSO skb
5599 *
5600 * skb_gso_transport_seglen is used to determine the real size of the
5601 * individual segments, including Layer4 headers (TCP/UDP).
5602 *
5603 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5604 */
5605static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5606{
5607 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5608 unsigned int thlen = 0;
5609
5610 if (skb->encapsulation) {
5611 thlen = skb_inner_transport_header(skb) -
5612 skb_transport_header(skb);
5613
5614 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5615 thlen += inner_tcp_hdrlen(skb);
5616 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5617 thlen = tcp_hdrlen(skb);
5618 } else if (unlikely(skb_is_gso_sctp(skb))) {
5619 thlen = sizeof(struct sctphdr);
5620 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5621 thlen = sizeof(struct udphdr);
5622 }
5623 /* UFO sets gso_size to the size of the fragmentation
5624 * payload, i.e. the size of the L4 (UDP) header is already
5625 * accounted for.
5626 */
5627 return thlen + shinfo->gso_size;
5628}
5629
5630/**
5631 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5632 *
5633 * @skb: GSO skb
5634 *
5635 * skb_gso_network_seglen is used to determine the real size of the
5636 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5637 *
5638 * The MAC/L2 header is not accounted for.
5639 */
5640static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5641{
5642 unsigned int hdr_len = skb_transport_header(skb) -
5643 skb_network_header(skb);
5644
5645 return hdr_len + skb_gso_transport_seglen(skb);
5646}
5647
5648/**
5649 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5650 *
5651 * @skb: GSO skb
5652 *
5653 * skb_gso_mac_seglen is used to determine the real size of the
5654 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5655 * headers (TCP/UDP).
5656 */
5657static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5658{
5659 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5660
5661 return hdr_len + skb_gso_transport_seglen(skb);
5662}
5663
5664/**
5665 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5666 *
5667 * There are a couple of instances where we have a GSO skb, and we
5668 * want to determine what size it would be after it is segmented.
5669 *
5670 * We might want to check:
5671 * - L3+L4+payload size (e.g. IP forwarding)
5672 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5673 *
5674 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5675 *
5676 * @skb: GSO skb
5677 *
5678 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5679 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5680 *
5681 * @max_len: The maximum permissible length.
5682 *
5683 * Returns true if the segmented length <= max length.
5684 */
5685static inline bool skb_gso_size_check(const struct sk_buff *skb,
5686 unsigned int seg_len,
5687 unsigned int max_len) {
5688 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5689 const struct sk_buff *iter;
5690
5691 if (shinfo->gso_size != GSO_BY_FRAGS)
5692 return seg_len <= max_len;
5693
5694 /* Undo this so we can re-use header sizes */
5695 seg_len -= GSO_BY_FRAGS;
5696
5697 skb_walk_frags(skb, iter) {
5698 if (seg_len + skb_headlen(iter) > max_len)
5699 return false;
5700 }
5701
5702 return true;
5703}
5704
5705/**
5706 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5707 *
5708 * @skb: GSO skb
5709 * @mtu: MTU to validate against
5710 *
5711 * skb_gso_validate_network_len validates if a given skb will fit a
5712 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5713 * payload.
5714 */
5715bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5716{
5717 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5718}
5719EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5720
5721/**
5722 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5723 *
5724 * @skb: GSO skb
5725 * @len: length to validate against
5726 *
5727 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5728 * length once split, including L2, L3 and L4 headers and the payload.
5729 */
5730bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5731{
5732 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5733}
5734EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5735
5736static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5737{
5738 int mac_len, meta_len;
5739 void *meta;
5740
5741 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5742 kfree_skb(skb);
5743 return NULL;
5744 }
5745
5746 mac_len = skb->data - skb_mac_header(skb);
5747 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5748 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5749 mac_len - VLAN_HLEN - ETH_TLEN);
5750 }
5751
5752 meta_len = skb_metadata_len(skb);
5753 if (meta_len) {
5754 meta = skb_metadata_end(skb) - meta_len;
5755 memmove(meta + VLAN_HLEN, meta, meta_len);
5756 }
5757
5758 skb->mac_header += VLAN_HLEN;
5759 return skb;
5760}
5761
5762struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5763{
5764 struct vlan_hdr *vhdr;
5765 u16 vlan_tci;
5766
5767 if (unlikely(skb_vlan_tag_present(skb))) {
5768 /* vlan_tci is already set-up so leave this for another time */
5769 return skb;
5770 }
5771
5772 skb = skb_share_check(skb, GFP_ATOMIC);
5773 if (unlikely(!skb))
5774 goto err_free;
5775 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5776 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5777 goto err_free;
5778
5779 vhdr = (struct vlan_hdr *)skb->data;
5780 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5781 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5782
5783 skb_pull_rcsum(skb, VLAN_HLEN);
5784 vlan_set_encap_proto(skb, vhdr);
5785
5786 skb = skb_reorder_vlan_header(skb);
5787 if (unlikely(!skb))
5788 goto err_free;
5789
5790 skb_reset_network_header(skb);
5791 if (!skb_transport_header_was_set(skb))
5792 skb_reset_transport_header(skb);
5793 skb_reset_mac_len(skb);
5794
5795 return skb;
5796
5797err_free:
5798 kfree_skb(skb);
5799 return NULL;
5800}
5801EXPORT_SYMBOL(skb_vlan_untag);
5802
5803int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5804{
5805 if (!pskb_may_pull(skb, write_len))
5806 return -ENOMEM;
5807
5808 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5809 return 0;
5810
5811 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5812}
5813EXPORT_SYMBOL(skb_ensure_writable);
5814
5815/* remove VLAN header from packet and update csum accordingly.
5816 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5817 */
5818int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5819{
5820 struct vlan_hdr *vhdr;
5821 int offset = skb->data - skb_mac_header(skb);
5822 int err;
5823
5824 if (WARN_ONCE(offset,
5825 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5826 offset)) {
5827 return -EINVAL;
5828 }
5829
5830 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5831 if (unlikely(err))
5832 return err;
5833
5834 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5835
5836 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5837 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5838
5839 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5840 __skb_pull(skb, VLAN_HLEN);
5841
5842 vlan_set_encap_proto(skb, vhdr);
5843 skb->mac_header += VLAN_HLEN;
5844
5845 if (skb_network_offset(skb) < ETH_HLEN)
5846 skb_set_network_header(skb, ETH_HLEN);
5847
5848 skb_reset_mac_len(skb);
5849
5850 return err;
5851}
5852EXPORT_SYMBOL(__skb_vlan_pop);
5853
5854/* Pop a vlan tag either from hwaccel or from payload.
5855 * Expects skb->data at mac header.
5856 */
5857int skb_vlan_pop(struct sk_buff *skb)
5858{
5859 u16 vlan_tci;
5860 __be16 vlan_proto;
5861 int err;
5862
5863 if (likely(skb_vlan_tag_present(skb))) {
5864 __vlan_hwaccel_clear_tag(skb);
5865 } else {
5866 if (unlikely(!eth_type_vlan(skb->protocol)))
5867 return 0;
5868
5869 err = __skb_vlan_pop(skb, &vlan_tci);
5870 if (err)
5871 return err;
5872 }
5873 /* move next vlan tag to hw accel tag */
5874 if (likely(!eth_type_vlan(skb->protocol)))
5875 return 0;
5876
5877 vlan_proto = skb->protocol;
5878 err = __skb_vlan_pop(skb, &vlan_tci);
5879 if (unlikely(err))
5880 return err;
5881
5882 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5883 return 0;
5884}
5885EXPORT_SYMBOL(skb_vlan_pop);
5886
5887/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5888 * Expects skb->data at mac header.
5889 */
5890int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5891{
5892 if (skb_vlan_tag_present(skb)) {
5893 int offset = skb->data - skb_mac_header(skb);
5894 int err;
5895
5896 if (WARN_ONCE(offset,
5897 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5898 offset)) {
5899 return -EINVAL;
5900 }
5901
5902 err = __vlan_insert_tag(skb, skb->vlan_proto,
5903 skb_vlan_tag_get(skb));
5904 if (err)
5905 return err;
5906
5907 skb->protocol = skb->vlan_proto;
5908 skb->mac_len += VLAN_HLEN;
5909
5910 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5911 }
5912 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5913 return 0;
5914}
5915EXPORT_SYMBOL(skb_vlan_push);
5916
5917/**
5918 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5919 *
5920 * @skb: Socket buffer to modify
5921 *
5922 * Drop the Ethernet header of @skb.
5923 *
5924 * Expects that skb->data points to the mac header and that no VLAN tags are
5925 * present.
5926 *
5927 * Returns 0 on success, -errno otherwise.
5928 */
5929int skb_eth_pop(struct sk_buff *skb)
5930{
5931 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5932 skb_network_offset(skb) < ETH_HLEN)
5933 return -EPROTO;
5934
5935 skb_pull_rcsum(skb, ETH_HLEN);
5936 skb_reset_mac_header(skb);
5937 skb_reset_mac_len(skb);
5938
5939 return 0;
5940}
5941EXPORT_SYMBOL(skb_eth_pop);
5942
5943/**
5944 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5945 *
5946 * @skb: Socket buffer to modify
5947 * @dst: Destination MAC address of the new header
5948 * @src: Source MAC address of the new header
5949 *
5950 * Prepend @skb with a new Ethernet header.
5951 *
5952 * Expects that skb->data points to the mac header, which must be empty.
5953 *
5954 * Returns 0 on success, -errno otherwise.
5955 */
5956int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5957 const unsigned char *src)
5958{
5959 struct ethhdr *eth;
5960 int err;
5961
5962 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5963 return -EPROTO;
5964
5965 err = skb_cow_head(skb, sizeof(*eth));
5966 if (err < 0)
5967 return err;
5968
5969 skb_push(skb, sizeof(*eth));
5970 skb_reset_mac_header(skb);
5971 skb_reset_mac_len(skb);
5972
5973 eth = eth_hdr(skb);
5974 ether_addr_copy(eth->h_dest, dst);
5975 ether_addr_copy(eth->h_source, src);
5976 eth->h_proto = skb->protocol;
5977
5978 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5979
5980 return 0;
5981}
5982EXPORT_SYMBOL(skb_eth_push);
5983
5984/* Update the ethertype of hdr and the skb csum value if required. */
5985static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5986 __be16 ethertype)
5987{
5988 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5989 __be16 diff[] = { ~hdr->h_proto, ethertype };
5990
5991 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5992 }
5993
5994 hdr->h_proto = ethertype;
5995}
5996
5997/**
5998 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5999 * the packet
6000 *
6001 * @skb: buffer
6002 * @mpls_lse: MPLS label stack entry to push
6003 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6004 * @mac_len: length of the MAC header
6005 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6006 * ethernet
6007 *
6008 * Expects skb->data at mac header.
6009 *
6010 * Returns 0 on success, -errno otherwise.
6011 */
6012int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6013 int mac_len, bool ethernet)
6014{
6015 struct mpls_shim_hdr *lse;
6016 int err;
6017
6018 if (unlikely(!eth_p_mpls(mpls_proto)))
6019 return -EINVAL;
6020
6021 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6022 if (skb->encapsulation)
6023 return -EINVAL;
6024
6025 err = skb_cow_head(skb, MPLS_HLEN);
6026 if (unlikely(err))
6027 return err;
6028
6029 if (!skb->inner_protocol) {
6030 skb_set_inner_network_header(skb, skb_network_offset(skb));
6031 skb_set_inner_protocol(skb, skb->protocol);
6032 }
6033
6034 skb_push(skb, MPLS_HLEN);
6035 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6036 mac_len);
6037 skb_reset_mac_header(skb);
6038 skb_set_network_header(skb, mac_len);
6039 skb_reset_mac_len(skb);
6040
6041 lse = mpls_hdr(skb);
6042 lse->label_stack_entry = mpls_lse;
6043 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6044
6045 if (ethernet && mac_len >= ETH_HLEN)
6046 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6047 skb->protocol = mpls_proto;
6048
6049 return 0;
6050}
6051EXPORT_SYMBOL_GPL(skb_mpls_push);
6052
6053/**
6054 * skb_mpls_pop() - pop the outermost MPLS header
6055 *
6056 * @skb: buffer
6057 * @next_proto: ethertype of header after popped MPLS header
6058 * @mac_len: length of the MAC header
6059 * @ethernet: flag to indicate if the packet is ethernet
6060 *
6061 * Expects skb->data at mac header.
6062 *
6063 * Returns 0 on success, -errno otherwise.
6064 */
6065int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6066 bool ethernet)
6067{
6068 int err;
6069
6070 if (unlikely(!eth_p_mpls(skb->protocol)))
6071 return 0;
6072
6073 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6074 if (unlikely(err))
6075 return err;
6076
6077 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6078 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6079 mac_len);
6080
6081 __skb_pull(skb, MPLS_HLEN);
6082 skb_reset_mac_header(skb);
6083 skb_set_network_header(skb, mac_len);
6084
6085 if (ethernet && mac_len >= ETH_HLEN) {
6086 struct ethhdr *hdr;
6087
6088 /* use mpls_hdr() to get ethertype to account for VLANs. */
6089 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6090 skb_mod_eth_type(skb, hdr, next_proto);
6091 }
6092 skb->protocol = next_proto;
6093
6094 return 0;
6095}
6096EXPORT_SYMBOL_GPL(skb_mpls_pop);
6097
6098/**
6099 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6100 *
6101 * @skb: buffer
6102 * @mpls_lse: new MPLS label stack entry to update to
6103 *
6104 * Expects skb->data at mac header.
6105 *
6106 * Returns 0 on success, -errno otherwise.
6107 */
6108int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6109{
6110 int err;
6111
6112 if (unlikely(!eth_p_mpls(skb->protocol)))
6113 return -EINVAL;
6114
6115 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6116 if (unlikely(err))
6117 return err;
6118
6119 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6120 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6121
6122 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6123 }
6124
6125 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6126
6127 return 0;
6128}
6129EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6130
6131/**
6132 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6133 *
6134 * @skb: buffer
6135 *
6136 * Expects skb->data at mac header.
6137 *
6138 * Returns 0 on success, -errno otherwise.
6139 */
6140int skb_mpls_dec_ttl(struct sk_buff *skb)
6141{
6142 u32 lse;
6143 u8 ttl;
6144
6145 if (unlikely(!eth_p_mpls(skb->protocol)))
6146 return -EINVAL;
6147
6148 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6149 return -ENOMEM;
6150
6151 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6152 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6153 if (!--ttl)
6154 return -EINVAL;
6155
6156 lse &= ~MPLS_LS_TTL_MASK;
6157 lse |= ttl << MPLS_LS_TTL_SHIFT;
6158
6159 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6160}
6161EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6162
6163/**
6164 * alloc_skb_with_frags - allocate skb with page frags
6165 *
6166 * @header_len: size of linear part
6167 * @data_len: needed length in frags
6168 * @max_page_order: max page order desired.
6169 * @errcode: pointer to error code if any
6170 * @gfp_mask: allocation mask
6171 *
6172 * This can be used to allocate a paged skb, given a maximal order for frags.
6173 */
6174struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6175 unsigned long data_len,
6176 int max_page_order,
6177 int *errcode,
6178 gfp_t gfp_mask)
6179{
6180 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6181 unsigned long chunk;
6182 struct sk_buff *skb;
6183 struct page *page;
6184 int i;
6185
6186 *errcode = -EMSGSIZE;
6187 /* Note this test could be relaxed, if we succeed to allocate
6188 * high order pages...
6189 */
6190 if (npages > MAX_SKB_FRAGS)
6191 return NULL;
6192
6193 *errcode = -ENOBUFS;
6194 skb = alloc_skb(header_len, gfp_mask);
6195 if (!skb)
6196 return NULL;
6197
6198 skb->truesize += npages << PAGE_SHIFT;
6199
6200 for (i = 0; npages > 0; i++) {
6201 int order = max_page_order;
6202
6203 while (order) {
6204 if (npages >= 1 << order) {
6205 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6206 __GFP_COMP |
6207 __GFP_NOWARN,
6208 order);
6209 if (page)
6210 goto fill_page;
6211 /* Do not retry other high order allocations */
6212 order = 1;
6213 max_page_order = 0;
6214 }
6215 order--;
6216 }
6217 page = alloc_page(gfp_mask);
6218 if (!page)
6219 goto failure;
6220fill_page:
6221 chunk = min_t(unsigned long, data_len,
6222 PAGE_SIZE << order);
6223 skb_fill_page_desc(skb, i, page, 0, chunk);
6224 data_len -= chunk;
6225 npages -= 1 << order;
6226 }
6227 return skb;
6228
6229failure:
6230 kfree_skb(skb);
6231 return NULL;
6232}
6233EXPORT_SYMBOL(alloc_skb_with_frags);
6234
6235/* carve out the first off bytes from skb when off < headlen */
6236static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6237 const int headlen, gfp_t gfp_mask)
6238{
6239 int i;
6240 unsigned int size = skb_end_offset(skb);
6241 int new_hlen = headlen - off;
6242 u8 *data;
6243
6244 if (skb_pfmemalloc(skb))
6245 gfp_mask |= __GFP_MEMALLOC;
6246
6247 size = SKB_DATA_ALIGN(size);
6248 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6249 size = kmalloc_size_roundup(size);
6250 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6251 if (!data)
6252 return -ENOMEM;
6253 size = SKB_WITH_OVERHEAD(size);
6254
6255 /* Copy real data, and all frags */
6256 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6257 skb->len -= off;
6258
6259 memcpy((struct skb_shared_info *)(data + size),
6260 skb_shinfo(skb),
6261 offsetof(struct skb_shared_info,
6262 frags[skb_shinfo(skb)->nr_frags]));
6263 if (skb_cloned(skb)) {
6264 /* drop the old head gracefully */
6265 if (skb_orphan_frags(skb, gfp_mask)) {
6266 kfree(data);
6267 return -ENOMEM;
6268 }
6269 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6270 skb_frag_ref(skb, i);
6271 if (skb_has_frag_list(skb))
6272 skb_clone_fraglist(skb);
6273 skb_release_data(skb, SKB_CONSUMED);
6274 } else {
6275 /* we can reuse existing recount- all we did was
6276 * relocate values
6277 */
6278 skb_free_head(skb);
6279 }
6280
6281 skb->head = data;
6282 skb->data = data;
6283 skb->head_frag = 0;
6284 skb_set_end_offset(skb, size);
6285 skb_set_tail_pointer(skb, skb_headlen(skb));
6286 skb_headers_offset_update(skb, 0);
6287 skb->cloned = 0;
6288 skb->hdr_len = 0;
6289 skb->nohdr = 0;
6290 atomic_set(&skb_shinfo(skb)->dataref, 1);
6291
6292 return 0;
6293}
6294
6295static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6296
6297/* carve out the first eat bytes from skb's frag_list. May recurse into
6298 * pskb_carve()
6299 */
6300static int pskb_carve_frag_list(struct sk_buff *skb,
6301 struct skb_shared_info *shinfo, int eat,
6302 gfp_t gfp_mask)
6303{
6304 struct sk_buff *list = shinfo->frag_list;
6305 struct sk_buff *clone = NULL;
6306 struct sk_buff *insp = NULL;
6307
6308 do {
6309 if (!list) {
6310 pr_err("Not enough bytes to eat. Want %d\n", eat);
6311 return -EFAULT;
6312 }
6313 if (list->len <= eat) {
6314 /* Eaten as whole. */
6315 eat -= list->len;
6316 list = list->next;
6317 insp = list;
6318 } else {
6319 /* Eaten partially. */
6320 if (skb_shared(list)) {
6321 clone = skb_clone(list, gfp_mask);
6322 if (!clone)
6323 return -ENOMEM;
6324 insp = list->next;
6325 list = clone;
6326 } else {
6327 /* This may be pulled without problems. */
6328 insp = list;
6329 }
6330 if (pskb_carve(list, eat, gfp_mask) < 0) {
6331 kfree_skb(clone);
6332 return -ENOMEM;
6333 }
6334 break;
6335 }
6336 } while (eat);
6337
6338 /* Free pulled out fragments. */
6339 while ((list = shinfo->frag_list) != insp) {
6340 shinfo->frag_list = list->next;
6341 consume_skb(list);
6342 }
6343 /* And insert new clone at head. */
6344 if (clone) {
6345 clone->next = list;
6346 shinfo->frag_list = clone;
6347 }
6348 return 0;
6349}
6350
6351/* carve off first len bytes from skb. Split line (off) is in the
6352 * non-linear part of skb
6353 */
6354static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6355 int pos, gfp_t gfp_mask)
6356{
6357 int i, k = 0;
6358 unsigned int size = skb_end_offset(skb);
6359 u8 *data;
6360 const int nfrags = skb_shinfo(skb)->nr_frags;
6361 struct skb_shared_info *shinfo;
6362
6363 if (skb_pfmemalloc(skb))
6364 gfp_mask |= __GFP_MEMALLOC;
6365
6366 size = SKB_DATA_ALIGN(size);
6367 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6368 size = kmalloc_size_roundup(size);
6369 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6370 if (!data)
6371 return -ENOMEM;
6372 size = SKB_WITH_OVERHEAD(size);
6373
6374 memcpy((struct skb_shared_info *)(data + size),
6375 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6376 if (skb_orphan_frags(skb, gfp_mask)) {
6377 kfree(data);
6378 return -ENOMEM;
6379 }
6380 shinfo = (struct skb_shared_info *)(data + size);
6381 for (i = 0; i < nfrags; i++) {
6382 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6383
6384 if (pos + fsize > off) {
6385 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6386
6387 if (pos < off) {
6388 /* Split frag.
6389 * We have two variants in this case:
6390 * 1. Move all the frag to the second
6391 * part, if it is possible. F.e.
6392 * this approach is mandatory for TUX,
6393 * where splitting is expensive.
6394 * 2. Split is accurately. We make this.
6395 */
6396 skb_frag_off_add(&shinfo->frags[0], off - pos);
6397 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6398 }
6399 skb_frag_ref(skb, i);
6400 k++;
6401 }
6402 pos += fsize;
6403 }
6404 shinfo->nr_frags = k;
6405 if (skb_has_frag_list(skb))
6406 skb_clone_fraglist(skb);
6407
6408 /* split line is in frag list */
6409 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6410 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6411 if (skb_has_frag_list(skb))
6412 kfree_skb_list(skb_shinfo(skb)->frag_list);
6413 kfree(data);
6414 return -ENOMEM;
6415 }
6416 skb_release_data(skb, SKB_CONSUMED);
6417
6418 skb->head = data;
6419 skb->head_frag = 0;
6420 skb->data = data;
6421 skb_set_end_offset(skb, size);
6422 skb_reset_tail_pointer(skb);
6423 skb_headers_offset_update(skb, 0);
6424 skb->cloned = 0;
6425 skb->hdr_len = 0;
6426 skb->nohdr = 0;
6427 skb->len -= off;
6428 skb->data_len = skb->len;
6429 atomic_set(&skb_shinfo(skb)->dataref, 1);
6430 return 0;
6431}
6432
6433/* remove len bytes from the beginning of the skb */
6434static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6435{
6436 int headlen = skb_headlen(skb);
6437
6438 if (len < headlen)
6439 return pskb_carve_inside_header(skb, len, headlen, gfp);
6440 else
6441 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6442}
6443
6444/* Extract to_copy bytes starting at off from skb, and return this in
6445 * a new skb
6446 */
6447struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6448 int to_copy, gfp_t gfp)
6449{
6450 struct sk_buff *clone = skb_clone(skb, gfp);
6451
6452 if (!clone)
6453 return NULL;
6454
6455 if (pskb_carve(clone, off, gfp) < 0 ||
6456 pskb_trim(clone, to_copy)) {
6457 kfree_skb(clone);
6458 return NULL;
6459 }
6460 return clone;
6461}
6462EXPORT_SYMBOL(pskb_extract);
6463
6464/**
6465 * skb_condense - try to get rid of fragments/frag_list if possible
6466 * @skb: buffer
6467 *
6468 * Can be used to save memory before skb is added to a busy queue.
6469 * If packet has bytes in frags and enough tail room in skb->head,
6470 * pull all of them, so that we can free the frags right now and adjust
6471 * truesize.
6472 * Notes:
6473 * We do not reallocate skb->head thus can not fail.
6474 * Caller must re-evaluate skb->truesize if needed.
6475 */
6476void skb_condense(struct sk_buff *skb)
6477{
6478 if (skb->data_len) {
6479 if (skb->data_len > skb->end - skb->tail ||
6480 skb_cloned(skb))
6481 return;
6482
6483 /* Nice, we can free page frag(s) right now */
6484 __pskb_pull_tail(skb, skb->data_len);
6485 }
6486 /* At this point, skb->truesize might be over estimated,
6487 * because skb had a fragment, and fragments do not tell
6488 * their truesize.
6489 * When we pulled its content into skb->head, fragment
6490 * was freed, but __pskb_pull_tail() could not possibly
6491 * adjust skb->truesize, not knowing the frag truesize.
6492 */
6493 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6494}
6495EXPORT_SYMBOL(skb_condense);
6496
6497#ifdef CONFIG_SKB_EXTENSIONS
6498static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6499{
6500 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6501}
6502
6503/**
6504 * __skb_ext_alloc - allocate a new skb extensions storage
6505 *
6506 * @flags: See kmalloc().
6507 *
6508 * Returns the newly allocated pointer. The pointer can later attached to a
6509 * skb via __skb_ext_set().
6510 * Note: caller must handle the skb_ext as an opaque data.
6511 */
6512struct skb_ext *__skb_ext_alloc(gfp_t flags)
6513{
6514 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6515
6516 if (new) {
6517 memset(new->offset, 0, sizeof(new->offset));
6518 refcount_set(&new->refcnt, 1);
6519 }
6520
6521 return new;
6522}
6523
6524static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6525 unsigned int old_active)
6526{
6527 struct skb_ext *new;
6528
6529 if (refcount_read(&old->refcnt) == 1)
6530 return old;
6531
6532 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6533 if (!new)
6534 return NULL;
6535
6536 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6537 refcount_set(&new->refcnt, 1);
6538
6539#ifdef CONFIG_XFRM
6540 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6541 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6542 unsigned int i;
6543
6544 for (i = 0; i < sp->len; i++)
6545 xfrm_state_hold(sp->xvec[i]);
6546 }
6547#endif
6548 __skb_ext_put(old);
6549 return new;
6550}
6551
6552/**
6553 * __skb_ext_set - attach the specified extension storage to this skb
6554 * @skb: buffer
6555 * @id: extension id
6556 * @ext: extension storage previously allocated via __skb_ext_alloc()
6557 *
6558 * Existing extensions, if any, are cleared.
6559 *
6560 * Returns the pointer to the extension.
6561 */
6562void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6563 struct skb_ext *ext)
6564{
6565 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6566
6567 skb_ext_put(skb);
6568 newlen = newoff + skb_ext_type_len[id];
6569 ext->chunks = newlen;
6570 ext->offset[id] = newoff;
6571 skb->extensions = ext;
6572 skb->active_extensions = 1 << id;
6573 return skb_ext_get_ptr(ext, id);
6574}
6575
6576/**
6577 * skb_ext_add - allocate space for given extension, COW if needed
6578 * @skb: buffer
6579 * @id: extension to allocate space for
6580 *
6581 * Allocates enough space for the given extension.
6582 * If the extension is already present, a pointer to that extension
6583 * is returned.
6584 *
6585 * If the skb was cloned, COW applies and the returned memory can be
6586 * modified without changing the extension space of clones buffers.
6587 *
6588 * Returns pointer to the extension or NULL on allocation failure.
6589 */
6590void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6591{
6592 struct skb_ext *new, *old = NULL;
6593 unsigned int newlen, newoff;
6594
6595 if (skb->active_extensions) {
6596 old = skb->extensions;
6597
6598 new = skb_ext_maybe_cow(old, skb->active_extensions);
6599 if (!new)
6600 return NULL;
6601
6602 if (__skb_ext_exist(new, id))
6603 goto set_active;
6604
6605 newoff = new->chunks;
6606 } else {
6607 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6608
6609 new = __skb_ext_alloc(GFP_ATOMIC);
6610 if (!new)
6611 return NULL;
6612 }
6613
6614 newlen = newoff + skb_ext_type_len[id];
6615 new->chunks = newlen;
6616 new->offset[id] = newoff;
6617set_active:
6618 skb->slow_gro = 1;
6619 skb->extensions = new;
6620 skb->active_extensions |= 1 << id;
6621 return skb_ext_get_ptr(new, id);
6622}
6623EXPORT_SYMBOL(skb_ext_add);
6624
6625#ifdef CONFIG_XFRM
6626static void skb_ext_put_sp(struct sec_path *sp)
6627{
6628 unsigned int i;
6629
6630 for (i = 0; i < sp->len; i++)
6631 xfrm_state_put(sp->xvec[i]);
6632}
6633#endif
6634
6635#ifdef CONFIG_MCTP_FLOWS
6636static void skb_ext_put_mctp(struct mctp_flow *flow)
6637{
6638 if (flow->key)
6639 mctp_key_unref(flow->key);
6640}
6641#endif
6642
6643void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6644{
6645 struct skb_ext *ext = skb->extensions;
6646
6647 skb->active_extensions &= ~(1 << id);
6648 if (skb->active_extensions == 0) {
6649 skb->extensions = NULL;
6650 __skb_ext_put(ext);
6651#ifdef CONFIG_XFRM
6652 } else if (id == SKB_EXT_SEC_PATH &&
6653 refcount_read(&ext->refcnt) == 1) {
6654 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6655
6656 skb_ext_put_sp(sp);
6657 sp->len = 0;
6658#endif
6659 }
6660}
6661EXPORT_SYMBOL(__skb_ext_del);
6662
6663void __skb_ext_put(struct skb_ext *ext)
6664{
6665 /* If this is last clone, nothing can increment
6666 * it after check passes. Avoids one atomic op.
6667 */
6668 if (refcount_read(&ext->refcnt) == 1)
6669 goto free_now;
6670
6671 if (!refcount_dec_and_test(&ext->refcnt))
6672 return;
6673free_now:
6674#ifdef CONFIG_XFRM
6675 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6676 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6677#endif
6678#ifdef CONFIG_MCTP_FLOWS
6679 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6680 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6681#endif
6682
6683 kmem_cache_free(skbuff_ext_cache, ext);
6684}
6685EXPORT_SYMBOL(__skb_ext_put);
6686#endif /* CONFIG_SKB_EXTENSIONS */
6687
6688/**
6689 * skb_attempt_defer_free - queue skb for remote freeing
6690 * @skb: buffer
6691 *
6692 * Put @skb in a per-cpu list, using the cpu which
6693 * allocated the skb/pages to reduce false sharing
6694 * and memory zone spinlock contention.
6695 */
6696void skb_attempt_defer_free(struct sk_buff *skb)
6697{
6698 int cpu = skb->alloc_cpu;
6699 struct softnet_data *sd;
6700 unsigned long flags;
6701 unsigned int defer_max;
6702 bool kick;
6703
6704 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6705 !cpu_online(cpu) ||
6706 cpu == raw_smp_processor_id()) {
6707nodefer: __kfree_skb(skb);
6708 return;
6709 }
6710
6711 sd = &per_cpu(softnet_data, cpu);
6712 defer_max = READ_ONCE(sysctl_skb_defer_max);
6713 if (READ_ONCE(sd->defer_count) >= defer_max)
6714 goto nodefer;
6715
6716 spin_lock_irqsave(&sd->defer_lock, flags);
6717 /* Send an IPI every time queue reaches half capacity. */
6718 kick = sd->defer_count == (defer_max >> 1);
6719 /* Paired with the READ_ONCE() few lines above */
6720 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6721
6722 skb->next = sd->defer_list;
6723 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6724 WRITE_ONCE(sd->defer_list, skb);
6725 spin_unlock_irqrestore(&sd->defer_lock, flags);
6726
6727 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6728 * if we are unlucky enough (this seems very unlikely).
6729 */
6730 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6731 smp_call_function_single_async(cpu, &sd->defer_csd);
6732}