Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
 
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39#include <linux/frontswap.h>
  40#include <linux/fs_parser.h>
  41
  42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
 
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
  63#include <linux/blkdev.h>
  64#include <linux/pagevec.h>
  65#include <linux/percpu_counter.h>
  66#include <linux/falloc.h>
  67#include <linux/splice.h>
  68#include <linux/security.h>
  69#include <linux/swapops.h>
  70#include <linux/mempolicy.h>
  71#include <linux/namei.h>
  72#include <linux/ctype.h>
  73#include <linux/migrate.h>
  74#include <linux/highmem.h>
  75#include <linux/seq_file.h>
  76#include <linux/magic.h>
  77#include <linux/syscalls.h>
  78#include <linux/fcntl.h>
  79#include <uapi/linux/memfd.h>
  80#include <linux/userfaultfd_k.h>
  81#include <linux/rmap.h>
  82#include <linux/uuid.h>
  83
  84#include <linux/uaccess.h>
  85
  86#include "internal.h"
  87
  88#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  89#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  90
  91/* Pretend that each entry is of this size in directory's i_size */
  92#define BOGO_DIRENT_SIZE 20
  93
  94/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  95#define SHORT_SYMLINK_LEN 128
  96
  97/*
  98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  99 * inode->i_private (with i_mutex making sure that it has only one user at
 100 * a time): we would prefer not to enlarge the shmem inode just for that.
 101 */
 102struct shmem_falloc {
 103	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 104	pgoff_t start;		/* start of range currently being fallocated */
 105	pgoff_t next;		/* the next page offset to be fallocated */
 106	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 107	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 108};
 109
 110struct shmem_options {
 111	unsigned long long blocks;
 112	unsigned long long inodes;
 113	struct mempolicy *mpol;
 114	kuid_t uid;
 115	kgid_t gid;
 116	umode_t mode;
 117	bool full_inums;
 118	int huge;
 119	int seen;
 120#define SHMEM_SEEN_BLOCKS 1
 121#define SHMEM_SEEN_INODES 2
 122#define SHMEM_SEEN_HUGE 4
 123#define SHMEM_SEEN_INUMS 8
 124};
 125
 126#ifdef CONFIG_TMPFS
 127static unsigned long shmem_default_max_blocks(void)
 128{
 129	return totalram_pages() / 2;
 130}
 131
 132static unsigned long shmem_default_max_inodes(void)
 133{
 134	unsigned long nr_pages = totalram_pages();
 135
 136	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 137}
 138#endif
 139
 140static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 141static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 142				struct shmem_inode_info *info, pgoff_t index);
 143static int shmem_swapin_page(struct inode *inode, pgoff_t index,
 144			     struct page **pagep, enum sgp_type sgp,
 145			     gfp_t gfp, struct vm_area_struct *vma,
 146			     vm_fault_t *fault_type);
 147static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 148		struct page **pagep, enum sgp_type sgp,
 149		gfp_t gfp, struct vm_area_struct *vma,
 150		struct vm_fault *vmf, vm_fault_t *fault_type);
 151
 152int shmem_getpage(struct inode *inode, pgoff_t index,
 153		struct page **pagep, enum sgp_type sgp)
 154{
 155	return shmem_getpage_gfp(inode, index, pagep, sgp,
 156		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 157}
 158
 159static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 160{
 161	return sb->s_fs_info;
 162}
 163
 164/*
 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 166 * for shared memory and for shared anonymous (/dev/zero) mappings
 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 168 * consistent with the pre-accounting of private mappings ...
 169 */
 170static inline int shmem_acct_size(unsigned long flags, loff_t size)
 171{
 172	return (flags & VM_NORESERVE) ?
 173		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 174}
 175
 176static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 177{
 178	if (!(flags & VM_NORESERVE))
 179		vm_unacct_memory(VM_ACCT(size));
 180}
 181
 182static inline int shmem_reacct_size(unsigned long flags,
 183		loff_t oldsize, loff_t newsize)
 184{
 185	if (!(flags & VM_NORESERVE)) {
 186		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 187			return security_vm_enough_memory_mm(current->mm,
 188					VM_ACCT(newsize) - VM_ACCT(oldsize));
 189		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 190			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 191	}
 192	return 0;
 193}
 194
 195/*
 196 * ... whereas tmpfs objects are accounted incrementally as
 197 * pages are allocated, in order to allow large sparse files.
 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 200 */
 201static inline int shmem_acct_block(unsigned long flags, long pages)
 202{
 203	if (!(flags & VM_NORESERVE))
 204		return 0;
 205
 206	return security_vm_enough_memory_mm(current->mm,
 207			pages * VM_ACCT(PAGE_SIZE));
 208}
 209
 210static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 211{
 212	if (flags & VM_NORESERVE)
 213		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 214}
 215
 216static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 217{
 218	struct shmem_inode_info *info = SHMEM_I(inode);
 219	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 220
 221	if (shmem_acct_block(info->flags, pages))
 222		return false;
 223
 224	if (sbinfo->max_blocks) {
 225		if (percpu_counter_compare(&sbinfo->used_blocks,
 226					   sbinfo->max_blocks - pages) > 0)
 227			goto unacct;
 228		percpu_counter_add(&sbinfo->used_blocks, pages);
 229	}
 230
 231	return true;
 232
 233unacct:
 234	shmem_unacct_blocks(info->flags, pages);
 235	return false;
 236}
 237
 238static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 239{
 240	struct shmem_inode_info *info = SHMEM_I(inode);
 241	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 242
 243	if (sbinfo->max_blocks)
 244		percpu_counter_sub(&sbinfo->used_blocks, pages);
 245	shmem_unacct_blocks(info->flags, pages);
 246}
 247
 248static const struct super_operations shmem_ops;
 249const struct address_space_operations shmem_aops;
 250static const struct file_operations shmem_file_operations;
 251static const struct inode_operations shmem_inode_operations;
 252static const struct inode_operations shmem_dir_inode_operations;
 253static const struct inode_operations shmem_special_inode_operations;
 254static const struct vm_operations_struct shmem_vm_ops;
 
 255static struct file_system_type shmem_fs_type;
 256
 
 
 
 
 
 257bool vma_is_shmem(struct vm_area_struct *vma)
 258{
 259	return vma->vm_ops == &shmem_vm_ops;
 260}
 261
 262static LIST_HEAD(shmem_swaplist);
 263static DEFINE_MUTEX(shmem_swaplist_mutex);
 264
 265/*
 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 267 * produces a novel ino for the newly allocated inode.
 268 *
 269 * It may also be called when making a hard link to permit the space needed by
 270 * each dentry. However, in that case, no new inode number is needed since that
 271 * internally draws from another pool of inode numbers (currently global
 272 * get_next_ino()). This case is indicated by passing NULL as inop.
 273 */
 274#define SHMEM_INO_BATCH 1024
 275static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 276{
 277	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 278	ino_t ino;
 279
 280	if (!(sb->s_flags & SB_KERNMOUNT)) {
 281		spin_lock(&sbinfo->stat_lock);
 282		if (sbinfo->max_inodes) {
 283			if (!sbinfo->free_inodes) {
 284				spin_unlock(&sbinfo->stat_lock);
 285				return -ENOSPC;
 286			}
 287			sbinfo->free_inodes--;
 288		}
 289		if (inop) {
 290			ino = sbinfo->next_ino++;
 291			if (unlikely(is_zero_ino(ino)))
 292				ino = sbinfo->next_ino++;
 293			if (unlikely(!sbinfo->full_inums &&
 294				     ino > UINT_MAX)) {
 295				/*
 296				 * Emulate get_next_ino uint wraparound for
 297				 * compatibility
 298				 */
 299				if (IS_ENABLED(CONFIG_64BIT))
 300					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 301						__func__, MINOR(sb->s_dev));
 302				sbinfo->next_ino = 1;
 303				ino = sbinfo->next_ino++;
 304			}
 305			*inop = ino;
 306		}
 307		spin_unlock(&sbinfo->stat_lock);
 308	} else if (inop) {
 309		/*
 310		 * __shmem_file_setup, one of our callers, is lock-free: it
 311		 * doesn't hold stat_lock in shmem_reserve_inode since
 312		 * max_inodes is always 0, and is called from potentially
 313		 * unknown contexts. As such, use a per-cpu batched allocator
 314		 * which doesn't require the per-sb stat_lock unless we are at
 315		 * the batch boundary.
 316		 *
 317		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 318		 * shmem mounts are not exposed to userspace, so we don't need
 319		 * to worry about things like glibc compatibility.
 320		 */
 321		ino_t *next_ino;
 
 322		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 323		ino = *next_ino;
 324		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 325			spin_lock(&sbinfo->stat_lock);
 326			ino = sbinfo->next_ino;
 327			sbinfo->next_ino += SHMEM_INO_BATCH;
 328			spin_unlock(&sbinfo->stat_lock);
 329			if (unlikely(is_zero_ino(ino)))
 330				ino++;
 331		}
 332		*inop = ino;
 333		*next_ino = ++ino;
 334		put_cpu();
 335	}
 336
 337	return 0;
 338}
 339
 340static void shmem_free_inode(struct super_block *sb)
 341{
 342	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 343	if (sbinfo->max_inodes) {
 344		spin_lock(&sbinfo->stat_lock);
 345		sbinfo->free_inodes++;
 346		spin_unlock(&sbinfo->stat_lock);
 347	}
 348}
 349
 350/**
 351 * shmem_recalc_inode - recalculate the block usage of an inode
 352 * @inode: inode to recalc
 353 *
 354 * We have to calculate the free blocks since the mm can drop
 355 * undirtied hole pages behind our back.
 356 *
 357 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 359 *
 360 * It has to be called with the spinlock held.
 361 */
 362static void shmem_recalc_inode(struct inode *inode)
 363{
 364	struct shmem_inode_info *info = SHMEM_I(inode);
 365	long freed;
 366
 367	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 368	if (freed > 0) {
 369		info->alloced -= freed;
 370		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 371		shmem_inode_unacct_blocks(inode, freed);
 372	}
 373}
 374
 375bool shmem_charge(struct inode *inode, long pages)
 376{
 377	struct shmem_inode_info *info = SHMEM_I(inode);
 378	unsigned long flags;
 379
 380	if (!shmem_inode_acct_block(inode, pages))
 381		return false;
 382
 383	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 384	inode->i_mapping->nrpages += pages;
 385
 386	spin_lock_irqsave(&info->lock, flags);
 387	info->alloced += pages;
 388	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 389	shmem_recalc_inode(inode);
 390	spin_unlock_irqrestore(&info->lock, flags);
 391
 392	return true;
 393}
 394
 395void shmem_uncharge(struct inode *inode, long pages)
 396{
 397	struct shmem_inode_info *info = SHMEM_I(inode);
 398	unsigned long flags;
 399
 400	/* nrpages adjustment done by __delete_from_page_cache() or caller */
 401
 402	spin_lock_irqsave(&info->lock, flags);
 403	info->alloced -= pages;
 404	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 405	shmem_recalc_inode(inode);
 406	spin_unlock_irqrestore(&info->lock, flags);
 407
 408	shmem_inode_unacct_blocks(inode, pages);
 409}
 410
 411/*
 412 * Replace item expected in xarray by a new item, while holding xa_lock.
 413 */
 414static int shmem_replace_entry(struct address_space *mapping,
 415			pgoff_t index, void *expected, void *replacement)
 416{
 417	XA_STATE(xas, &mapping->i_pages, index);
 418	void *item;
 419
 420	VM_BUG_ON(!expected);
 421	VM_BUG_ON(!replacement);
 422	item = xas_load(&xas);
 423	if (item != expected)
 424		return -ENOENT;
 425	xas_store(&xas, replacement);
 426	return 0;
 427}
 428
 429/*
 430 * Sometimes, before we decide whether to proceed or to fail, we must check
 431 * that an entry was not already brought back from swap by a racing thread.
 432 *
 433 * Checking page is not enough: by the time a SwapCache page is locked, it
 434 * might be reused, and again be SwapCache, using the same swap as before.
 435 */
 436static bool shmem_confirm_swap(struct address_space *mapping,
 437			       pgoff_t index, swp_entry_t swap)
 438{
 439	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 440}
 441
 442/*
 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 444 *
 445 * SHMEM_HUGE_NEVER:
 446 *	disables huge pages for the mount;
 447 * SHMEM_HUGE_ALWAYS:
 448 *	enables huge pages for the mount;
 449 * SHMEM_HUGE_WITHIN_SIZE:
 450 *	only allocate huge pages if the page will be fully within i_size,
 451 *	also respect fadvise()/madvise() hints;
 452 * SHMEM_HUGE_ADVISE:
 453 *	only allocate huge pages if requested with fadvise()/madvise();
 454 */
 455
 456#define SHMEM_HUGE_NEVER	0
 457#define SHMEM_HUGE_ALWAYS	1
 458#define SHMEM_HUGE_WITHIN_SIZE	2
 459#define SHMEM_HUGE_ADVISE	3
 460
 461/*
 462 * Special values.
 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 464 *
 465 * SHMEM_HUGE_DENY:
 466 *	disables huge on shm_mnt and all mounts, for emergency use;
 467 * SHMEM_HUGE_FORCE:
 468 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 469 *
 470 */
 471#define SHMEM_HUGE_DENY		(-1)
 472#define SHMEM_HUGE_FORCE	(-2)
 473
 474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 475/* ifdef here to avoid bloating shmem.o when not necessary */
 476
 477static int shmem_huge __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479#if defined(CONFIG_SYSFS)
 480static int shmem_parse_huge(const char *str)
 481{
 482	if (!strcmp(str, "never"))
 483		return SHMEM_HUGE_NEVER;
 484	if (!strcmp(str, "always"))
 485		return SHMEM_HUGE_ALWAYS;
 486	if (!strcmp(str, "within_size"))
 487		return SHMEM_HUGE_WITHIN_SIZE;
 488	if (!strcmp(str, "advise"))
 489		return SHMEM_HUGE_ADVISE;
 490	if (!strcmp(str, "deny"))
 491		return SHMEM_HUGE_DENY;
 492	if (!strcmp(str, "force"))
 493		return SHMEM_HUGE_FORCE;
 494	return -EINVAL;
 495}
 496#endif
 497
 498#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 499static const char *shmem_format_huge(int huge)
 500{
 501	switch (huge) {
 502	case SHMEM_HUGE_NEVER:
 503		return "never";
 504	case SHMEM_HUGE_ALWAYS:
 505		return "always";
 506	case SHMEM_HUGE_WITHIN_SIZE:
 507		return "within_size";
 508	case SHMEM_HUGE_ADVISE:
 509		return "advise";
 510	case SHMEM_HUGE_DENY:
 511		return "deny";
 512	case SHMEM_HUGE_FORCE:
 513		return "force";
 514	default:
 515		VM_BUG_ON(1);
 516		return "bad_val";
 517	}
 518}
 519#endif
 520
 521static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 522		struct shrink_control *sc, unsigned long nr_to_split)
 523{
 524	LIST_HEAD(list), *pos, *next;
 525	LIST_HEAD(to_remove);
 526	struct inode *inode;
 527	struct shmem_inode_info *info;
 528	struct page *page;
 529	unsigned long batch = sc ? sc->nr_to_scan : 128;
 530	int removed = 0, split = 0;
 531
 532	if (list_empty(&sbinfo->shrinklist))
 533		return SHRINK_STOP;
 534
 535	spin_lock(&sbinfo->shrinklist_lock);
 536	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 537		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 538
 539		/* pin the inode */
 540		inode = igrab(&info->vfs_inode);
 541
 542		/* inode is about to be evicted */
 543		if (!inode) {
 544			list_del_init(&info->shrinklist);
 545			removed++;
 546			goto next;
 547		}
 548
 549		/* Check if there's anything to gain */
 550		if (round_up(inode->i_size, PAGE_SIZE) ==
 551				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 552			list_move(&info->shrinklist, &to_remove);
 553			removed++;
 554			goto next;
 555		}
 556
 557		list_move(&info->shrinklist, &list);
 558next:
 
 559		if (!--batch)
 560			break;
 561	}
 562	spin_unlock(&sbinfo->shrinklist_lock);
 563
 564	list_for_each_safe(pos, next, &to_remove) {
 565		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 566		inode = &info->vfs_inode;
 567		list_del_init(&info->shrinklist);
 568		iput(inode);
 569	}
 570
 571	list_for_each_safe(pos, next, &list) {
 572		int ret;
 
 573
 574		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 575		inode = &info->vfs_inode;
 576
 577		if (nr_to_split && split >= nr_to_split)
 578			goto leave;
 579
 580		page = find_get_page(inode->i_mapping,
 581				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 582		if (!page)
 583			goto drop;
 584
 585		/* No huge page at the end of the file: nothing to split */
 586		if (!PageTransHuge(page)) {
 587			put_page(page);
 588			goto drop;
 589		}
 590
 591		/*
 592		 * Leave the inode on the list if we failed to lock
 593		 * the page at this time.
 594		 *
 595		 * Waiting for the lock may lead to deadlock in the
 596		 * reclaim path.
 597		 */
 598		if (!trylock_page(page)) {
 599			put_page(page);
 600			goto leave;
 601		}
 602
 603		ret = split_huge_page(page);
 604		unlock_page(page);
 605		put_page(page);
 606
 607		/* If split failed leave the inode on the list */
 608		if (ret)
 609			goto leave;
 610
 611		split++;
 612drop:
 613		list_del_init(&info->shrinklist);
 614		removed++;
 615leave:
 
 
 
 
 
 
 
 
 
 
 
 616		iput(inode);
 617	}
 618
 619	spin_lock(&sbinfo->shrinklist_lock);
 620	list_splice_tail(&list, &sbinfo->shrinklist);
 621	sbinfo->shrinklist_len -= removed;
 622	spin_unlock(&sbinfo->shrinklist_lock);
 623
 624	return split;
 625}
 626
 627static long shmem_unused_huge_scan(struct super_block *sb,
 628		struct shrink_control *sc)
 629{
 630	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 631
 632	if (!READ_ONCE(sbinfo->shrinklist_len))
 633		return SHRINK_STOP;
 634
 635	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 636}
 637
 638static long shmem_unused_huge_count(struct super_block *sb,
 639		struct shrink_control *sc)
 640{
 641	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 642	return READ_ONCE(sbinfo->shrinklist_len);
 643}
 644#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 645
 646#define shmem_huge SHMEM_HUGE_DENY
 647
 
 
 
 
 
 
 648static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 649		struct shrink_control *sc, unsigned long nr_to_split)
 650{
 651	return 0;
 652}
 653#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 654
 655static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 656{
 657	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 658	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 659	    shmem_huge != SHMEM_HUGE_DENY)
 660		return true;
 661	return false;
 662}
 663
 664/*
 665 * Like add_to_page_cache_locked, but error if expected item has gone.
 666 */
 667static int shmem_add_to_page_cache(struct page *page,
 668				   struct address_space *mapping,
 669				   pgoff_t index, void *expected, gfp_t gfp,
 670				   struct mm_struct *charge_mm)
 671{
 672	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
 673	unsigned long i = 0;
 674	unsigned long nr = compound_nr(page);
 675	int error;
 676
 677	VM_BUG_ON_PAGE(PageTail(page), page);
 678	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 679	VM_BUG_ON_PAGE(!PageLocked(page), page);
 680	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 681	VM_BUG_ON(expected && PageTransHuge(page));
 682
 683	page_ref_add(page, nr);
 684	page->mapping = mapping;
 685	page->index = index;
 686
 687	if (!PageSwapCache(page)) {
 688		error = mem_cgroup_charge(page, charge_mm, gfp);
 689		if (error) {
 690			if (PageTransHuge(page)) {
 691				count_vm_event(THP_FILE_FALLBACK);
 692				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 693			}
 694			goto error;
 695		}
 696	}
 697	cgroup_throttle_swaprate(page, gfp);
 698
 699	do {
 700		void *entry;
 701		xas_lock_irq(&xas);
 702		entry = xas_find_conflict(&xas);
 703		if (entry != expected)
 704			xas_set_err(&xas, -EEXIST);
 705		xas_create_range(&xas);
 706		if (xas_error(&xas))
 707			goto unlock;
 708next:
 709		xas_store(&xas, page);
 710		if (++i < nr) {
 711			xas_next(&xas);
 712			goto next;
 713		}
 714		if (PageTransHuge(page)) {
 
 
 
 
 
 
 
 715			count_vm_event(THP_FILE_ALLOC);
 716			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
 717		}
 718		mapping->nrpages += nr;
 719		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
 720		__mod_lruvec_page_state(page, NR_SHMEM, nr);
 721unlock:
 722		xas_unlock_irq(&xas);
 723	} while (xas_nomem(&xas, gfp));
 724
 725	if (xas_error(&xas)) {
 726		error = xas_error(&xas);
 727		goto error;
 728	}
 729
 730	return 0;
 731error:
 732	page->mapping = NULL;
 733	page_ref_sub(page, nr);
 734	return error;
 735}
 736
 737/*
 738 * Like delete_from_page_cache, but substitutes swap for page.
 739 */
 740static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 741{
 742	struct address_space *mapping = page->mapping;
 
 743	int error;
 744
 745	VM_BUG_ON_PAGE(PageCompound(page), page);
 746
 747	xa_lock_irq(&mapping->i_pages);
 748	error = shmem_replace_entry(mapping, page->index, page, radswap);
 749	page->mapping = NULL;
 750	mapping->nrpages--;
 751	__dec_lruvec_page_state(page, NR_FILE_PAGES);
 752	__dec_lruvec_page_state(page, NR_SHMEM);
 753	xa_unlock_irq(&mapping->i_pages);
 754	put_page(page);
 755	BUG_ON(error);
 756}
 757
 758/*
 759 * Remove swap entry from page cache, free the swap and its page cache.
 760 */
 761static int shmem_free_swap(struct address_space *mapping,
 762			   pgoff_t index, void *radswap)
 763{
 764	void *old;
 765
 766	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 767	if (old != radswap)
 768		return -ENOENT;
 769	free_swap_and_cache(radix_to_swp_entry(radswap));
 770	return 0;
 771}
 772
 773/*
 774 * Determine (in bytes) how many of the shmem object's pages mapped by the
 775 * given offsets are swapped out.
 776 *
 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 778 * as long as the inode doesn't go away and racy results are not a problem.
 779 */
 780unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 781						pgoff_t start, pgoff_t end)
 782{
 783	XA_STATE(xas, &mapping->i_pages, start);
 784	struct page *page;
 785	unsigned long swapped = 0;
 786
 787	rcu_read_lock();
 788	xas_for_each(&xas, page, end - 1) {
 789		if (xas_retry(&xas, page))
 790			continue;
 791		if (xa_is_value(page))
 792			swapped++;
 793
 794		if (need_resched()) {
 795			xas_pause(&xas);
 796			cond_resched_rcu();
 797		}
 798	}
 799
 800	rcu_read_unlock();
 801
 802	return swapped << PAGE_SHIFT;
 803}
 804
 805/*
 806 * Determine (in bytes) how many of the shmem object's pages mapped by the
 807 * given vma is swapped out.
 808 *
 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 810 * as long as the inode doesn't go away and racy results are not a problem.
 811 */
 812unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 813{
 814	struct inode *inode = file_inode(vma->vm_file);
 815	struct shmem_inode_info *info = SHMEM_I(inode);
 816	struct address_space *mapping = inode->i_mapping;
 817	unsigned long swapped;
 818
 819	/* Be careful as we don't hold info->lock */
 820	swapped = READ_ONCE(info->swapped);
 821
 822	/*
 823	 * The easier cases are when the shmem object has nothing in swap, or
 824	 * the vma maps it whole. Then we can simply use the stats that we
 825	 * already track.
 826	 */
 827	if (!swapped)
 828		return 0;
 829
 830	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 831		return swapped << PAGE_SHIFT;
 832
 833	/* Here comes the more involved part */
 834	return shmem_partial_swap_usage(mapping,
 835			linear_page_index(vma, vma->vm_start),
 836			linear_page_index(vma, vma->vm_end));
 837}
 838
 839/*
 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 841 */
 842void shmem_unlock_mapping(struct address_space *mapping)
 843{
 844	struct pagevec pvec;
 845	pgoff_t index = 0;
 846
 847	pagevec_init(&pvec);
 848	/*
 849	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 850	 */
 851	while (!mapping_unevictable(mapping)) {
 852		if (!pagevec_lookup(&pvec, mapping, &index))
 853			break;
 854		check_move_unevictable_pages(&pvec);
 855		pagevec_release(&pvec);
 856		cond_resched();
 857	}
 858}
 859
 860/*
 861 * Check whether a hole-punch or truncation needs to split a huge page,
 862 * returning true if no split was required, or the split has been successful.
 863 *
 864 * Eviction (or truncation to 0 size) should never need to split a huge page;
 865 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
 866 * head, and then succeeded to trylock on tail.
 867 *
 868 * A split can only succeed when there are no additional references on the
 869 * huge page: so the split below relies upon find_get_entries() having stopped
 870 * when it found a subpage of the huge page, without getting further references.
 871 */
 872static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
 873{
 874	if (!PageTransCompound(page))
 875		return true;
 876
 877	/* Just proceed to delete a huge page wholly within the range punched */
 878	if (PageHead(page) &&
 879	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
 880		return true;
 881
 882	/* Try to split huge page, so we can truly punch the hole or truncate */
 883	return split_huge_page(page) >= 0;
 
 
 
 
 
 
 
 
 884}
 885
 886/*
 887 * Remove range of pages and swap entries from page cache, and free them.
 888 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 889 */
 890static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 891								 bool unfalloc)
 892{
 893	struct address_space *mapping = inode->i_mapping;
 894	struct shmem_inode_info *info = SHMEM_I(inode);
 895	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 896	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 897	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 898	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 899	struct pagevec pvec;
 900	pgoff_t indices[PAGEVEC_SIZE];
 
 
 901	long nr_swaps_freed = 0;
 902	pgoff_t index;
 903	int i;
 904
 905	if (lend == -1)
 906		end = -1;	/* unsigned, so actually very big */
 907
 908	pagevec_init(&pvec);
 909	index = start;
 910	while (index < end && find_lock_entries(mapping, index, end - 1,
 911			&pvec, indices)) {
 912		for (i = 0; i < pagevec_count(&pvec); i++) {
 913			struct page *page = pvec.pages[i];
 914
 915			index = indices[i];
 
 
 
 
 
 916
 917			if (xa_is_value(page)) {
 918				if (unfalloc)
 919					continue;
 920				nr_swaps_freed += !shmem_free_swap(mapping,
 921								index, page);
 922				continue;
 923			}
 924			index += thp_nr_pages(page) - 1;
 925
 926			if (!unfalloc || !PageUptodate(page))
 927				truncate_inode_page(mapping, page);
 928			unlock_page(page);
 929		}
 930		pagevec_remove_exceptionals(&pvec);
 931		pagevec_release(&pvec);
 932		cond_resched();
 933		index++;
 934	}
 935
 936	if (partial_start) {
 937		struct page *page = NULL;
 938		shmem_getpage(inode, start - 1, &page, SGP_READ);
 939		if (page) {
 940			unsigned int top = PAGE_SIZE;
 941			if (start > end) {
 942				top = partial_end;
 943				partial_end = 0;
 944			}
 945			zero_user_segment(page, partial_start, top);
 946			set_page_dirty(page);
 947			unlock_page(page);
 948			put_page(page);
 949		}
 950	}
 951	if (partial_end) {
 952		struct page *page = NULL;
 953		shmem_getpage(inode, end, &page, SGP_READ);
 954		if (page) {
 955			zero_user_segment(page, 0, partial_end);
 956			set_page_dirty(page);
 957			unlock_page(page);
 958			put_page(page);
 959		}
 
 
 
 
 
 
 
 
 960	}
 961	if (start >= end)
 962		return;
 963
 964	index = start;
 965	while (index < end) {
 966		cond_resched();
 967
 968		if (!find_get_entries(mapping, index, end - 1, &pvec,
 969				indices)) {
 970			/* If all gone or hole-punch or unfalloc, we're done */
 971			if (index == start || end != -1)
 972				break;
 973			/* But if truncating, restart to make sure all gone */
 974			index = start;
 975			continue;
 976		}
 977		for (i = 0; i < pagevec_count(&pvec); i++) {
 978			struct page *page = pvec.pages[i];
 979
 980			index = indices[i];
 981			if (xa_is_value(page)) {
 982				if (unfalloc)
 983					continue;
 984				if (shmem_free_swap(mapping, index, page)) {
 985					/* Swap was replaced by page: retry */
 986					index--;
 987					break;
 988				}
 989				nr_swaps_freed++;
 990				continue;
 991			}
 992
 993			lock_page(page);
 994
 995			if (!unfalloc || !PageUptodate(page)) {
 996				if (page_mapping(page) != mapping) {
 997					/* Page was replaced by swap: retry */
 998					unlock_page(page);
 999					index--;
1000					break;
1001				}
1002				VM_BUG_ON_PAGE(PageWriteback(page), page);
1003				if (shmem_punch_compound(page, start, end))
1004					truncate_inode_page(mapping, page);
1005				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1006					/* Wipe the page and don't get stuck */
1007					clear_highpage(page);
1008					flush_dcache_page(page);
1009					set_page_dirty(page);
1010					if (index <
1011					    round_up(start, HPAGE_PMD_NR))
1012						start = index + 1;
1013				}
1014			}
1015			unlock_page(page);
1016		}
1017		pagevec_remove_exceptionals(&pvec);
1018		pagevec_release(&pvec);
1019		index++;
1020	}
1021
1022	spin_lock_irq(&info->lock);
1023	info->swapped -= nr_swaps_freed;
1024	shmem_recalc_inode(inode);
1025	spin_unlock_irq(&info->lock);
1026}
1027
1028void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1029{
1030	shmem_undo_range(inode, lstart, lend, false);
1031	inode->i_ctime = inode->i_mtime = current_time(inode);
 
1032}
1033EXPORT_SYMBOL_GPL(shmem_truncate_range);
1034
1035static int shmem_getattr(struct user_namespace *mnt_userns,
1036			 const struct path *path, struct kstat *stat,
1037			 u32 request_mask, unsigned int query_flags)
1038{
1039	struct inode *inode = path->dentry->d_inode;
1040	struct shmem_inode_info *info = SHMEM_I(inode);
1041	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1042
1043	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1044		spin_lock_irq(&info->lock);
1045		shmem_recalc_inode(inode);
1046		spin_unlock_irq(&info->lock);
1047	}
 
 
 
 
 
 
 
 
 
1048	generic_fillattr(&init_user_ns, inode, stat);
1049
1050	if (is_huge_enabled(sb_info))
1051		stat->blksize = HPAGE_PMD_SIZE;
1052
 
 
 
 
 
 
1053	return 0;
1054}
1055
1056static int shmem_setattr(struct user_namespace *mnt_userns,
1057			 struct dentry *dentry, struct iattr *attr)
1058{
1059	struct inode *inode = d_inode(dentry);
1060	struct shmem_inode_info *info = SHMEM_I(inode);
1061	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062	int error;
 
 
1063
1064	error = setattr_prepare(&init_user_ns, dentry, attr);
1065	if (error)
1066		return error;
1067
1068	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1069		loff_t oldsize = inode->i_size;
1070		loff_t newsize = attr->ia_size;
1071
1072		/* protected by i_mutex */
1073		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1074		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1075			return -EPERM;
1076
1077		if (newsize != oldsize) {
1078			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1079					oldsize, newsize);
1080			if (error)
1081				return error;
1082			i_size_write(inode, newsize);
1083			inode->i_ctime = inode->i_mtime = current_time(inode);
 
 
1084		}
1085		if (newsize <= oldsize) {
1086			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1087			if (oldsize > holebegin)
1088				unmap_mapping_range(inode->i_mapping,
1089							holebegin, 0, 1);
1090			if (info->alloced)
1091				shmem_truncate_range(inode,
1092							newsize, (loff_t)-1);
1093			/* unmap again to remove racily COWed private pages */
1094			if (oldsize > holebegin)
1095				unmap_mapping_range(inode->i_mapping,
1096							holebegin, 0, 1);
1097
1098			/*
1099			 * Part of the huge page can be beyond i_size: subject
1100			 * to shrink under memory pressure.
1101			 */
1102			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1103				spin_lock(&sbinfo->shrinklist_lock);
1104				/*
1105				 * _careful to defend against unlocked access to
1106				 * ->shrink_list in shmem_unused_huge_shrink()
1107				 */
1108				if (list_empty_careful(&info->shrinklist)) {
1109					list_add_tail(&info->shrinklist,
1110							&sbinfo->shrinklist);
1111					sbinfo->shrinklist_len++;
1112				}
1113				spin_unlock(&sbinfo->shrinklist_lock);
1114			}
1115		}
1116	}
1117
1118	setattr_copy(&init_user_ns, inode, attr);
1119	if (attr->ia_valid & ATTR_MODE)
1120		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
 
 
 
 
 
 
1121	return error;
1122}
1123
1124static void shmem_evict_inode(struct inode *inode)
1125{
1126	struct shmem_inode_info *info = SHMEM_I(inode);
1127	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128
1129	if (shmem_mapping(inode->i_mapping)) {
1130		shmem_unacct_size(info->flags, inode->i_size);
1131		inode->i_size = 0;
 
1132		shmem_truncate_range(inode, 0, (loff_t)-1);
1133		if (!list_empty(&info->shrinklist)) {
1134			spin_lock(&sbinfo->shrinklist_lock);
1135			if (!list_empty(&info->shrinklist)) {
1136				list_del_init(&info->shrinklist);
1137				sbinfo->shrinklist_len--;
1138			}
1139			spin_unlock(&sbinfo->shrinklist_lock);
1140		}
1141		while (!list_empty(&info->swaplist)) {
1142			/* Wait while shmem_unuse() is scanning this inode... */
1143			wait_var_event(&info->stop_eviction,
1144				       !atomic_read(&info->stop_eviction));
1145			mutex_lock(&shmem_swaplist_mutex);
1146			/* ...but beware of the race if we peeked too early */
1147			if (!atomic_read(&info->stop_eviction))
1148				list_del_init(&info->swaplist);
1149			mutex_unlock(&shmem_swaplist_mutex);
1150		}
1151	}
1152
1153	simple_xattrs_free(&info->xattrs);
1154	WARN_ON(inode->i_blocks);
1155	shmem_free_inode(inode->i_sb);
1156	clear_inode(inode);
1157}
1158
1159extern struct swap_info_struct *swap_info[];
1160
1161static int shmem_find_swap_entries(struct address_space *mapping,
1162				   pgoff_t start, unsigned int nr_entries,
1163				   struct page **entries, pgoff_t *indices,
1164				   unsigned int type, bool frontswap)
1165{
1166	XA_STATE(xas, &mapping->i_pages, start);
1167	struct page *page;
1168	swp_entry_t entry;
1169	unsigned int ret = 0;
1170
1171	if (!nr_entries)
1172		return 0;
1173
1174	rcu_read_lock();
1175	xas_for_each(&xas, page, ULONG_MAX) {
1176		if (xas_retry(&xas, page))
1177			continue;
1178
1179		if (!xa_is_value(page))
1180			continue;
1181
1182		entry = radix_to_swp_entry(page);
 
 
 
 
1183		if (swp_type(entry) != type)
1184			continue;
1185		if (frontswap &&
1186		    !frontswap_test(swap_info[type], swp_offset(entry)))
1187			continue;
1188
1189		indices[ret] = xas.xa_index;
1190		entries[ret] = page;
 
1191
1192		if (need_resched()) {
1193			xas_pause(&xas);
1194			cond_resched_rcu();
1195		}
1196		if (++ret == nr_entries)
1197			break;
1198	}
1199	rcu_read_unlock();
1200
1201	return ret;
1202}
1203
1204/*
1205 * Move the swapped pages for an inode to page cache. Returns the count
1206 * of pages swapped in, or the error in case of failure.
1207 */
1208static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1209				    pgoff_t *indices)
1210{
1211	int i = 0;
1212	int ret = 0;
1213	int error = 0;
1214	struct address_space *mapping = inode->i_mapping;
1215
1216	for (i = 0; i < pvec.nr; i++) {
1217		struct page *page = pvec.pages[i];
1218
1219		if (!xa_is_value(page))
1220			continue;
1221		error = shmem_swapin_page(inode, indices[i],
1222					  &page, SGP_CACHE,
1223					  mapping_gfp_mask(mapping),
1224					  NULL, NULL);
1225		if (error == 0) {
1226			unlock_page(page);
1227			put_page(page);
1228			ret++;
1229		}
1230		if (error == -ENOMEM)
1231			break;
1232		error = 0;
1233	}
1234	return error ? error : ret;
1235}
1236
1237/*
1238 * If swap found in inode, free it and move page from swapcache to filecache.
1239 */
1240static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1241			     bool frontswap, unsigned long *fs_pages_to_unuse)
1242{
1243	struct address_space *mapping = inode->i_mapping;
1244	pgoff_t start = 0;
1245	struct pagevec pvec;
1246	pgoff_t indices[PAGEVEC_SIZE];
1247	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1248	int ret = 0;
1249
1250	pagevec_init(&pvec);
1251	do {
1252		unsigned int nr_entries = PAGEVEC_SIZE;
1253
1254		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1255			nr_entries = *fs_pages_to_unuse;
1256
1257		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1258						  pvec.pages, indices,
1259						  type, frontswap);
1260		if (pvec.nr == 0) {
1261			ret = 0;
1262			break;
1263		}
1264
1265		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1266		if (ret < 0)
1267			break;
1268
1269		if (frontswap_partial) {
1270			*fs_pages_to_unuse -= ret;
1271			if (*fs_pages_to_unuse == 0) {
1272				ret = FRONTSWAP_PAGES_UNUSED;
1273				break;
1274			}
1275		}
1276
1277		start = indices[pvec.nr - 1];
1278	} while (true);
1279
1280	return ret;
1281}
1282
1283/*
1284 * Read all the shared memory data that resides in the swap
1285 * device 'type' back into memory, so the swap device can be
1286 * unused.
1287 */
1288int shmem_unuse(unsigned int type, bool frontswap,
1289		unsigned long *fs_pages_to_unuse)
1290{
1291	struct shmem_inode_info *info, *next;
1292	int error = 0;
1293
1294	if (list_empty(&shmem_swaplist))
1295		return 0;
1296
1297	mutex_lock(&shmem_swaplist_mutex);
1298	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299		if (!info->swapped) {
1300			list_del_init(&info->swaplist);
1301			continue;
1302		}
1303		/*
1304		 * Drop the swaplist mutex while searching the inode for swap;
1305		 * but before doing so, make sure shmem_evict_inode() will not
1306		 * remove placeholder inode from swaplist, nor let it be freed
1307		 * (igrab() would protect from unlink, but not from unmount).
1308		 */
1309		atomic_inc(&info->stop_eviction);
1310		mutex_unlock(&shmem_swaplist_mutex);
1311
1312		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1313					  fs_pages_to_unuse);
1314		cond_resched();
1315
1316		mutex_lock(&shmem_swaplist_mutex);
1317		next = list_next_entry(info, swaplist);
1318		if (!info->swapped)
1319			list_del_init(&info->swaplist);
1320		if (atomic_dec_and_test(&info->stop_eviction))
1321			wake_up_var(&info->stop_eviction);
1322		if (error)
1323			break;
1324	}
1325	mutex_unlock(&shmem_swaplist_mutex);
1326
1327	return error;
1328}
1329
1330/*
1331 * Move the page from the page cache to the swap cache.
1332 */
1333static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1334{
 
1335	struct shmem_inode_info *info;
1336	struct address_space *mapping;
1337	struct inode *inode;
1338	swp_entry_t swap;
1339	pgoff_t index;
1340
1341	VM_BUG_ON_PAGE(PageCompound(page), page);
1342	BUG_ON(!PageLocked(page));
1343	mapping = page->mapping;
1344	index = page->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
1345	inode = mapping->host;
1346	info = SHMEM_I(inode);
1347	if (info->flags & VM_LOCKED)
1348		goto redirty;
1349	if (!total_swap_pages)
1350		goto redirty;
1351
1352	/*
1353	 * Our capabilities prevent regular writeback or sync from ever calling
1354	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1355	 * its underlying filesystem, in which case tmpfs should write out to
1356	 * swap only in response to memory pressure, and not for the writeback
1357	 * threads or sync.
1358	 */
1359	if (!wbc->for_reclaim) {
1360		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1361		goto redirty;
1362	}
1363
1364	/*
1365	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1366	 * value into swapfile.c, the only way we can correctly account for a
1367	 * fallocated page arriving here is now to initialize it and write it.
1368	 *
1369	 * That's okay for a page already fallocated earlier, but if we have
1370	 * not yet completed the fallocation, then (a) we want to keep track
1371	 * of this page in case we have to undo it, and (b) it may not be a
1372	 * good idea to continue anyway, once we're pushing into swap.  So
1373	 * reactivate the page, and let shmem_fallocate() quit when too many.
1374	 */
1375	if (!PageUptodate(page)) {
1376		if (inode->i_private) {
1377			struct shmem_falloc *shmem_falloc;
1378			spin_lock(&inode->i_lock);
1379			shmem_falloc = inode->i_private;
1380			if (shmem_falloc &&
1381			    !shmem_falloc->waitq &&
1382			    index >= shmem_falloc->start &&
1383			    index < shmem_falloc->next)
1384				shmem_falloc->nr_unswapped++;
1385			else
1386				shmem_falloc = NULL;
1387			spin_unlock(&inode->i_lock);
1388			if (shmem_falloc)
1389				goto redirty;
1390		}
1391		clear_highpage(page);
1392		flush_dcache_page(page);
1393		SetPageUptodate(page);
1394	}
1395
1396	swap = get_swap_page(page);
1397	if (!swap.val)
1398		goto redirty;
1399
1400	/*
1401	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1402	 * if it's not already there.  Do it now before the page is
1403	 * moved to swap cache, when its pagelock no longer protects
1404	 * the inode from eviction.  But don't unlock the mutex until
1405	 * we've incremented swapped, because shmem_unuse_inode() will
1406	 * prune a !swapped inode from the swaplist under this mutex.
1407	 */
1408	mutex_lock(&shmem_swaplist_mutex);
1409	if (list_empty(&info->swaplist))
1410		list_add(&info->swaplist, &shmem_swaplist);
1411
1412	if (add_to_swap_cache(page, swap,
1413			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1414			NULL) == 0) {
1415		spin_lock_irq(&info->lock);
1416		shmem_recalc_inode(inode);
1417		info->swapped++;
1418		spin_unlock_irq(&info->lock);
1419
1420		swap_shmem_alloc(swap);
1421		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1422
1423		mutex_unlock(&shmem_swaplist_mutex);
1424		BUG_ON(page_mapped(page));
1425		swap_writepage(page, wbc);
1426		return 0;
1427	}
1428
1429	mutex_unlock(&shmem_swaplist_mutex);
1430	put_swap_page(page, swap);
1431redirty:
1432	set_page_dirty(page);
1433	if (wbc->for_reclaim)
1434		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1435	unlock_page(page);
1436	return 0;
1437}
1438
1439#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1440static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1441{
1442	char buffer[64];
1443
1444	if (!mpol || mpol->mode == MPOL_DEFAULT)
1445		return;		/* show nothing */
1446
1447	mpol_to_str(buffer, sizeof(buffer), mpol);
1448
1449	seq_printf(seq, ",mpol=%s", buffer);
1450}
1451
1452static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1453{
1454	struct mempolicy *mpol = NULL;
1455	if (sbinfo->mpol) {
1456		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1457		mpol = sbinfo->mpol;
1458		mpol_get(mpol);
1459		spin_unlock(&sbinfo->stat_lock);
1460	}
1461	return mpol;
1462}
1463#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1464static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465{
1466}
1467static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1468{
1469	return NULL;
1470}
1471#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1472#ifndef CONFIG_NUMA
1473#define vm_policy vm_private_data
1474#endif
1475
1476static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1477		struct shmem_inode_info *info, pgoff_t index)
1478{
1479	/* Create a pseudo vma that just contains the policy */
1480	vma_init(vma, NULL);
1481	/* Bias interleave by inode number to distribute better across nodes */
1482	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1483	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1484}
1485
1486static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1487{
1488	/* Drop reference taken by mpol_shared_policy_lookup() */
1489	mpol_cond_put(vma->vm_policy);
1490}
1491
1492static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1493			struct shmem_inode_info *info, pgoff_t index)
1494{
1495	struct vm_area_struct pvma;
1496	struct page *page;
1497	struct vm_fault vmf = {
1498		.vma = &pvma,
1499	};
1500
1501	shmem_pseudo_vma_init(&pvma, info, index);
1502	page = swap_cluster_readahead(swap, gfp, &vmf);
1503	shmem_pseudo_vma_destroy(&pvma);
1504
1505	return page;
 
 
1506}
1507
1508/*
1509 * Make sure huge_gfp is always more limited than limit_gfp.
1510 * Some of the flags set permissions, while others set limitations.
1511 */
1512static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1513{
1514	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1515	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1516	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1517	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1518
1519	/* Allow allocations only from the originally specified zones. */
1520	result |= zoneflags;
1521
1522	/*
1523	 * Minimize the result gfp by taking the union with the deny flags,
1524	 * and the intersection of the allow flags.
1525	 */
1526	result |= (limit_gfp & denyflags);
1527	result |= (huge_gfp & limit_gfp) & allowflags;
1528
1529	return result;
1530}
1531
1532static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533		struct shmem_inode_info *info, pgoff_t index)
1534{
1535	struct vm_area_struct pvma;
1536	struct address_space *mapping = info->vfs_inode.i_mapping;
1537	pgoff_t hindex;
1538	struct page *page;
1539
1540	hindex = round_down(index, HPAGE_PMD_NR);
1541	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542								XA_PRESENT))
1543		return NULL;
1544
1545	shmem_pseudo_vma_init(&pvma, info, hindex);
1546	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1547			       true);
1548	shmem_pseudo_vma_destroy(&pvma);
1549	if (page)
1550		prep_transhuge_page(page);
1551	else
1552		count_vm_event(THP_FILE_FALLBACK);
1553	return page;
1554}
1555
1556static struct page *shmem_alloc_page(gfp_t gfp,
1557			struct shmem_inode_info *info, pgoff_t index)
1558{
1559	struct vm_area_struct pvma;
1560	struct page *page;
1561
1562	shmem_pseudo_vma_init(&pvma, info, index);
1563	page = alloc_page_vma(gfp, &pvma, 0);
1564	shmem_pseudo_vma_destroy(&pvma);
1565
1566	return page;
1567}
1568
1569static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570		struct inode *inode,
1571		pgoff_t index, bool huge)
1572{
1573	struct shmem_inode_info *info = SHMEM_I(inode);
1574	struct page *page;
1575	int nr;
1576	int err = -ENOSPC;
1577
1578	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579		huge = false;
1580	nr = huge ? HPAGE_PMD_NR : 1;
1581
1582	if (!shmem_inode_acct_block(inode, nr))
1583		goto failed;
1584
1585	if (huge)
1586		page = shmem_alloc_hugepage(gfp, info, index);
1587	else
1588		page = shmem_alloc_page(gfp, info, index);
1589	if (page) {
1590		__SetPageLocked(page);
1591		__SetPageSwapBacked(page);
1592		return page;
1593	}
1594
1595	err = -ENOMEM;
1596	shmem_inode_unacct_blocks(inode, nr);
1597failed:
1598	return ERR_PTR(err);
1599}
1600
1601/*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to.  If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614{
1615	return page_zonenum(page) > gfp_zone(gfp);
1616}
1617
1618static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619				struct shmem_inode_info *info, pgoff_t index)
1620{
1621	struct page *oldpage, *newpage;
1622	struct address_space *swap_mapping;
1623	swp_entry_t entry;
1624	pgoff_t swap_index;
1625	int error;
1626
1627	oldpage = *pagep;
1628	entry.val = page_private(oldpage);
1629	swap_index = swp_offset(entry);
1630	swap_mapping = page_mapping(oldpage);
1631
1632	/*
1633	 * We have arrived here because our zones are constrained, so don't
1634	 * limit chance of success by further cpuset and node constraints.
1635	 */
1636	gfp &= ~GFP_CONSTRAINT_MASK;
1637	newpage = shmem_alloc_page(gfp, info, index);
1638	if (!newpage)
 
1639		return -ENOMEM;
1640
1641	get_page(newpage);
1642	copy_highpage(newpage, oldpage);
1643	flush_dcache_page(newpage);
1644
1645	__SetPageLocked(newpage);
1646	__SetPageSwapBacked(newpage);
1647	SetPageUptodate(newpage);
1648	set_page_private(newpage, entry.val);
1649	SetPageSwapCache(newpage);
1650
1651	/*
1652	 * Our caller will very soon move newpage out of swapcache, but it's
1653	 * a nice clean interface for us to replace oldpage by newpage there.
1654	 */
1655	xa_lock_irq(&swap_mapping->i_pages);
1656	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657	if (!error) {
1658		mem_cgroup_migrate(oldpage, newpage);
1659		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
 
 
1661	}
1662	xa_unlock_irq(&swap_mapping->i_pages);
1663
1664	if (unlikely(error)) {
1665		/*
1666		 * Is this possible?  I think not, now that our callers check
1667		 * both PageSwapCache and page_private after getting page lock;
1668		 * but be defensive.  Reverse old to newpage for clear and free.
1669		 */
1670		oldpage = newpage;
1671	} else {
1672		lru_cache_add(newpage);
1673		*pagep = newpage;
1674	}
1675
1676	ClearPageSwapCache(oldpage);
1677	set_page_private(oldpage, 0);
1678
1679	unlock_page(oldpage);
1680	put_page(oldpage);
1681	put_page(oldpage);
1682	return error;
1683}
1684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685/*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692			     struct page **pagep, enum sgp_type sgp,
1693			     gfp_t gfp, struct vm_area_struct *vma,
1694			     vm_fault_t *fault_type)
1695{
1696	struct address_space *mapping = inode->i_mapping;
1697	struct shmem_inode_info *info = SHMEM_I(inode);
1698	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1699	struct page *page;
1700	swp_entry_t swap;
1701	int error;
1702
1703	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704	swap = radix_to_swp_entry(*pagep);
1705	*pagep = NULL;
 
 
 
1706
1707	/* Look it up and read it in.. */
1708	page = lookup_swap_cache(swap, NULL, 0);
1709	if (!page) {
1710		/* Or update major stats only when swapin succeeds?? */
1711		if (fault_type) {
1712			*fault_type |= VM_FAULT_MAJOR;
1713			count_vm_event(PGMAJFAULT);
1714			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715		}
1716		/* Here we actually start the io */
1717		page = shmem_swapin(swap, gfp, info, index);
1718		if (!page) {
1719			error = -ENOMEM;
1720			goto failed;
1721		}
1722	}
1723
1724	/* We have to do this with page locked to prevent races */
1725	lock_page(page);
1726	if (!PageSwapCache(page) || page_private(page) != swap.val ||
 
1727	    !shmem_confirm_swap(mapping, index, swap)) {
1728		error = -EEXIST;
1729		goto unlock;
1730	}
1731	if (!PageUptodate(page)) {
1732		error = -EIO;
1733		goto failed;
1734	}
1735	wait_on_page_writeback(page);
1736
1737	/*
1738	 * Some architectures may have to restore extra metadata to the
1739	 * physical page after reading from swap.
1740	 */
1741	arch_swap_restore(swap, page);
1742
1743	if (shmem_should_replace_page(page, gfp)) {
1744		error = shmem_replace_page(&page, gfp, info, index);
1745		if (error)
1746			goto failed;
1747	}
1748
1749	error = shmem_add_to_page_cache(page, mapping, index,
1750					swp_to_radix_entry(swap), gfp,
1751					charge_mm);
1752	if (error)
1753		goto failed;
1754
1755	spin_lock_irq(&info->lock);
1756	info->swapped--;
1757	shmem_recalc_inode(inode);
1758	spin_unlock_irq(&info->lock);
1759
1760	if (sgp == SGP_WRITE)
1761		mark_page_accessed(page);
1762
1763	delete_from_swap_cache(page);
1764	set_page_dirty(page);
1765	swap_free(swap);
1766
1767	*pagep = page;
1768	return 0;
1769failed:
1770	if (!shmem_confirm_swap(mapping, index, swap))
1771		error = -EEXIST;
 
 
1772unlock:
1773	if (page) {
1774		unlock_page(page);
1775		put_page(page);
1776	}
1777
1778	return error;
1779}
1780
1781/*
1782 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1783 *
1784 * If we allocate a new one we do not mark it dirty. That's up to the
1785 * vm. If we swap it in we mark it dirty since we also free the swap
1786 * entry since a page cannot live in both the swap and page cache.
1787 *
1788 * vma, vmf, and fault_type are only supplied by shmem_fault:
1789 * otherwise they are NULL.
1790 */
1791static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1792	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1793	struct vm_area_struct *vma, struct vm_fault *vmf,
1794			vm_fault_t *fault_type)
1795{
1796	struct address_space *mapping = inode->i_mapping;
1797	struct shmem_inode_info *info = SHMEM_I(inode);
1798	struct shmem_sb_info *sbinfo;
1799	struct mm_struct *charge_mm;
1800	struct page *page;
1801	enum sgp_type sgp_huge = sgp;
1802	pgoff_t hindex = index;
1803	gfp_t huge_gfp;
1804	int error;
1805	int once = 0;
1806	int alloced = 0;
1807
1808	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1809		return -EFBIG;
1810	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1811		sgp = SGP_CACHE;
1812repeat:
1813	if (sgp <= SGP_CACHE &&
1814	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1815		return -EINVAL;
1816	}
1817
1818	sbinfo = SHMEM_SB(inode->i_sb);
1819	charge_mm = vma ? vma->vm_mm : NULL;
1820
1821	page = pagecache_get_page(mapping, index,
1822					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1823
1824	if (page && vma && userfaultfd_minor(vma)) {
1825		if (!xa_is_value(page)) {
1826			unlock_page(page);
1827			put_page(page);
1828		}
1829		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1830		return 0;
1831	}
1832
1833	if (xa_is_value(page)) {
1834		error = shmem_swapin_page(inode, index, &page,
1835					  sgp, gfp, vma, fault_type);
1836		if (error == -EEXIST)
1837			goto repeat;
1838
1839		*pagep = page;
1840		return error;
1841	}
1842
1843	if (page)
1844		hindex = page->index;
1845	if (page && sgp == SGP_WRITE)
1846		mark_page_accessed(page);
1847
1848	/* fallocated page? */
1849	if (page && !PageUptodate(page)) {
1850		if (sgp != SGP_READ)
1851			goto clear;
1852		unlock_page(page);
1853		put_page(page);
1854		page = NULL;
1855		hindex = index;
1856	}
1857	if (page || sgp == SGP_READ)
1858		goto out;
1859
1860	/*
1861	 * Fast cache lookup did not find it:
1862	 * bring it back from swap or allocate.
 
 
 
 
 
 
 
 
 
1863	 */
1864
1865	if (vma && userfaultfd_missing(vma)) {
1866		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1867		return 0;
1868	}
1869
1870	/* shmem_symlink() */
1871	if (!shmem_mapping(mapping))
1872		goto alloc_nohuge;
1873	if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1874		goto alloc_nohuge;
1875	if (shmem_huge == SHMEM_HUGE_FORCE)
1876		goto alloc_huge;
1877	switch (sbinfo->huge) {
1878	case SHMEM_HUGE_NEVER:
1879		goto alloc_nohuge;
1880	case SHMEM_HUGE_WITHIN_SIZE: {
1881		loff_t i_size;
1882		pgoff_t off;
1883
1884		off = round_up(index, HPAGE_PMD_NR);
1885		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1886		if (i_size >= HPAGE_PMD_SIZE &&
1887		    i_size >> PAGE_SHIFT >= off)
1888			goto alloc_huge;
1889
1890		fallthrough;
1891	}
1892	case SHMEM_HUGE_ADVISE:
1893		if (sgp_huge == SGP_HUGE)
1894			goto alloc_huge;
1895		/* TODO: implement fadvise() hints */
1896		goto alloc_nohuge;
1897	}
1898
1899alloc_huge:
1900	huge_gfp = vma_thp_gfp_mask(vma);
1901	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1902	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1903	if (IS_ERR(page)) {
1904alloc_nohuge:
1905		page = shmem_alloc_and_acct_page(gfp, inode,
1906						 index, false);
1907	}
1908	if (IS_ERR(page)) {
1909		int retry = 5;
1910
1911		error = PTR_ERR(page);
1912		page = NULL;
1913		if (error != -ENOSPC)
1914			goto unlock;
1915		/*
1916		 * Try to reclaim some space by splitting a huge page
1917		 * beyond i_size on the filesystem.
1918		 */
1919		while (retry--) {
1920			int ret;
1921
1922			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1923			if (ret == SHRINK_STOP)
1924				break;
1925			if (ret)
1926				goto alloc_nohuge;
1927		}
1928		goto unlock;
1929	}
1930
1931	if (PageTransHuge(page))
1932		hindex = round_down(index, HPAGE_PMD_NR);
1933	else
1934		hindex = index;
1935
1936	if (sgp == SGP_WRITE)
1937		__SetPageReferenced(page);
1938
1939	error = shmem_add_to_page_cache(page, mapping, hindex,
1940					NULL, gfp & GFP_RECLAIM_MASK,
1941					charge_mm);
1942	if (error)
1943		goto unacct;
1944	lru_cache_add(page);
1945
1946	spin_lock_irq(&info->lock);
1947	info->alloced += compound_nr(page);
1948	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1949	shmem_recalc_inode(inode);
1950	spin_unlock_irq(&info->lock);
1951	alloced = true;
1952
1953	if (PageTransHuge(page) &&
1954	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1955			hindex + HPAGE_PMD_NR - 1) {
1956		/*
1957		 * Part of the huge page is beyond i_size: subject
1958		 * to shrink under memory pressure.
1959		 */
1960		spin_lock(&sbinfo->shrinklist_lock);
1961		/*
1962		 * _careful to defend against unlocked access to
1963		 * ->shrink_list in shmem_unused_huge_shrink()
1964		 */
1965		if (list_empty_careful(&info->shrinklist)) {
1966			list_add_tail(&info->shrinklist,
1967				      &sbinfo->shrinklist);
1968			sbinfo->shrinklist_len++;
1969		}
1970		spin_unlock(&sbinfo->shrinklist_lock);
1971	}
1972
1973	/*
1974	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1975	 */
1976	if (sgp == SGP_FALLOC)
1977		sgp = SGP_WRITE;
1978clear:
1979	/*
1980	 * Let SGP_WRITE caller clear ends if write does not fill page;
1981	 * but SGP_FALLOC on a page fallocated earlier must initialize
1982	 * it now, lest undo on failure cancel our earlier guarantee.
1983	 */
1984	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1985		int i;
1986
1987		for (i = 0; i < compound_nr(page); i++) {
1988			clear_highpage(page + i);
1989			flush_dcache_page(page + i);
1990		}
1991		SetPageUptodate(page);
1992	}
1993
1994	/* Perhaps the file has been truncated since we checked */
1995	if (sgp <= SGP_CACHE &&
1996	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1997		if (alloced) {
1998			ClearPageDirty(page);
1999			delete_from_page_cache(page);
2000			spin_lock_irq(&info->lock);
2001			shmem_recalc_inode(inode);
2002			spin_unlock_irq(&info->lock);
2003		}
2004		error = -EINVAL;
2005		goto unlock;
2006	}
2007out:
2008	*pagep = page + index - hindex;
2009	return 0;
2010
2011	/*
2012	 * Error recovery.
2013	 */
2014unacct:
2015	shmem_inode_unacct_blocks(inode, compound_nr(page));
2016
2017	if (PageTransHuge(page)) {
2018		unlock_page(page);
2019		put_page(page);
2020		goto alloc_nohuge;
2021	}
2022unlock:
2023	if (page) {
2024		unlock_page(page);
2025		put_page(page);
2026	}
2027	if (error == -ENOSPC && !once++) {
2028		spin_lock_irq(&info->lock);
2029		shmem_recalc_inode(inode);
2030		spin_unlock_irq(&info->lock);
2031		goto repeat;
2032	}
2033	if (error == -EEXIST)
2034		goto repeat;
2035	return error;
2036}
2037
 
 
 
 
 
 
 
2038/*
2039 * This is like autoremove_wake_function, but it removes the wait queue
2040 * entry unconditionally - even if something else had already woken the
2041 * target.
2042 */
2043static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2044{
2045	int ret = default_wake_function(wait, mode, sync, key);
2046	list_del_init(&wait->entry);
2047	return ret;
2048}
2049
2050static vm_fault_t shmem_fault(struct vm_fault *vmf)
2051{
2052	struct vm_area_struct *vma = vmf->vma;
2053	struct inode *inode = file_inode(vma->vm_file);
2054	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2055	enum sgp_type sgp;
2056	int err;
2057	vm_fault_t ret = VM_FAULT_LOCKED;
2058
2059	/*
2060	 * Trinity finds that probing a hole which tmpfs is punching can
2061	 * prevent the hole-punch from ever completing: which in turn
2062	 * locks writers out with its hold on i_mutex.  So refrain from
2063	 * faulting pages into the hole while it's being punched.  Although
2064	 * shmem_undo_range() does remove the additions, it may be unable to
2065	 * keep up, as each new page needs its own unmap_mapping_range() call,
2066	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2067	 *
2068	 * It does not matter if we sometimes reach this check just before the
2069	 * hole-punch begins, so that one fault then races with the punch:
2070	 * we just need to make racing faults a rare case.
2071	 *
2072	 * The implementation below would be much simpler if we just used a
2073	 * standard mutex or completion: but we cannot take i_mutex in fault,
2074	 * and bloating every shmem inode for this unlikely case would be sad.
2075	 */
2076	if (unlikely(inode->i_private)) {
2077		struct shmem_falloc *shmem_falloc;
2078
2079		spin_lock(&inode->i_lock);
2080		shmem_falloc = inode->i_private;
2081		if (shmem_falloc &&
2082		    shmem_falloc->waitq &&
2083		    vmf->pgoff >= shmem_falloc->start &&
2084		    vmf->pgoff < shmem_falloc->next) {
2085			struct file *fpin;
2086			wait_queue_head_t *shmem_falloc_waitq;
2087			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2088
2089			ret = VM_FAULT_NOPAGE;
2090			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2091			if (fpin)
2092				ret = VM_FAULT_RETRY;
2093
2094			shmem_falloc_waitq = shmem_falloc->waitq;
2095			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2096					TASK_UNINTERRUPTIBLE);
2097			spin_unlock(&inode->i_lock);
2098			schedule();
2099
2100			/*
2101			 * shmem_falloc_waitq points into the shmem_fallocate()
2102			 * stack of the hole-punching task: shmem_falloc_waitq
2103			 * is usually invalid by the time we reach here, but
2104			 * finish_wait() does not dereference it in that case;
2105			 * though i_lock needed lest racing with wake_up_all().
2106			 */
2107			spin_lock(&inode->i_lock);
2108			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2109			spin_unlock(&inode->i_lock);
2110
2111			if (fpin)
2112				fput(fpin);
2113			return ret;
2114		}
2115		spin_unlock(&inode->i_lock);
2116	}
2117
2118	sgp = SGP_CACHE;
2119
2120	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2121	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2122		sgp = SGP_NOHUGE;
2123	else if (vma->vm_flags & VM_HUGEPAGE)
2124		sgp = SGP_HUGE;
2125
2126	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2127				  gfp, vma, vmf, &ret);
2128	if (err)
2129		return vmf_error(err);
 
 
2130	return ret;
2131}
2132
2133unsigned long shmem_get_unmapped_area(struct file *file,
2134				      unsigned long uaddr, unsigned long len,
2135				      unsigned long pgoff, unsigned long flags)
2136{
2137	unsigned long (*get_area)(struct file *,
2138		unsigned long, unsigned long, unsigned long, unsigned long);
2139	unsigned long addr;
2140	unsigned long offset;
2141	unsigned long inflated_len;
2142	unsigned long inflated_addr;
2143	unsigned long inflated_offset;
2144
2145	if (len > TASK_SIZE)
2146		return -ENOMEM;
2147
2148	get_area = current->mm->get_unmapped_area;
2149	addr = get_area(file, uaddr, len, pgoff, flags);
2150
2151	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2152		return addr;
2153	if (IS_ERR_VALUE(addr))
2154		return addr;
2155	if (addr & ~PAGE_MASK)
2156		return addr;
2157	if (addr > TASK_SIZE - len)
2158		return addr;
2159
2160	if (shmem_huge == SHMEM_HUGE_DENY)
2161		return addr;
2162	if (len < HPAGE_PMD_SIZE)
2163		return addr;
2164	if (flags & MAP_FIXED)
2165		return addr;
2166	/*
2167	 * Our priority is to support MAP_SHARED mapped hugely;
2168	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2169	 * But if caller specified an address hint and we allocated area there
2170	 * successfully, respect that as before.
2171	 */
2172	if (uaddr == addr)
2173		return addr;
2174
2175	if (shmem_huge != SHMEM_HUGE_FORCE) {
2176		struct super_block *sb;
2177
2178		if (file) {
2179			VM_BUG_ON(file->f_op != &shmem_file_operations);
2180			sb = file_inode(file)->i_sb;
2181		} else {
2182			/*
2183			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2184			 * for "/dev/zero", to create a shared anonymous object.
2185			 */
2186			if (IS_ERR(shm_mnt))
2187				return addr;
2188			sb = shm_mnt->mnt_sb;
2189		}
2190		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2191			return addr;
2192	}
2193
2194	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2195	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2196		return addr;
2197	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2198		return addr;
2199
2200	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2201	if (inflated_len > TASK_SIZE)
2202		return addr;
2203	if (inflated_len < len)
2204		return addr;
2205
2206	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2207	if (IS_ERR_VALUE(inflated_addr))
2208		return addr;
2209	if (inflated_addr & ~PAGE_MASK)
2210		return addr;
2211
2212	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2213	inflated_addr += offset - inflated_offset;
2214	if (inflated_offset > offset)
2215		inflated_addr += HPAGE_PMD_SIZE;
2216
2217	if (inflated_addr > TASK_SIZE - len)
2218		return addr;
2219	return inflated_addr;
2220}
2221
2222#ifdef CONFIG_NUMA
2223static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2224{
2225	struct inode *inode = file_inode(vma->vm_file);
2226	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2227}
2228
2229static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2230					  unsigned long addr)
2231{
2232	struct inode *inode = file_inode(vma->vm_file);
2233	pgoff_t index;
2234
2235	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2236	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2237}
2238#endif
2239
2240int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2241{
2242	struct inode *inode = file_inode(file);
2243	struct shmem_inode_info *info = SHMEM_I(inode);
2244	int retval = -ENOMEM;
2245
2246	/*
2247	 * What serializes the accesses to info->flags?
2248	 * ipc_lock_object() when called from shmctl_do_lock(),
2249	 * no serialization needed when called from shm_destroy().
2250	 */
2251	if (lock && !(info->flags & VM_LOCKED)) {
2252		if (!user_shm_lock(inode->i_size, ucounts))
2253			goto out_nomem;
2254		info->flags |= VM_LOCKED;
2255		mapping_set_unevictable(file->f_mapping);
2256	}
2257	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2258		user_shm_unlock(inode->i_size, ucounts);
2259		info->flags &= ~VM_LOCKED;
2260		mapping_clear_unevictable(file->f_mapping);
2261	}
2262	retval = 0;
2263
2264out_nomem:
2265	return retval;
2266}
2267
2268static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2269{
2270	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
 
2271	int ret;
2272
2273	ret = seal_check_future_write(info->seals, vma);
2274	if (ret)
2275		return ret;
2276
2277	/* arm64 - allow memory tagging on RAM-based files */
2278	vma->vm_flags |= VM_MTE_ALLOWED;
2279
2280	file_accessed(file);
2281	vma->vm_ops = &shmem_vm_ops;
2282	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2283			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2284			(vma->vm_end & HPAGE_PMD_MASK)) {
2285		khugepaged_enter(vma, vma->vm_flags);
2286	}
2287	return 0;
2288}
2289
2290static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291				     umode_t mode, dev_t dev, unsigned long flags)
2292{
2293	struct inode *inode;
2294	struct shmem_inode_info *info;
2295	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2296	ino_t ino;
2297
2298	if (shmem_reserve_inode(sb, &ino))
2299		return NULL;
2300
2301	inode = new_inode(sb);
2302	if (inode) {
2303		inode->i_ino = ino;
2304		inode_init_owner(&init_user_ns, inode, dir, mode);
2305		inode->i_blocks = 0;
2306		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2307		inode->i_generation = prandom_u32();
2308		info = SHMEM_I(inode);
2309		memset(info, 0, (char *)inode - (char *)info);
2310		spin_lock_init(&info->lock);
2311		atomic_set(&info->stop_eviction, 0);
2312		info->seals = F_SEAL_SEAL;
2313		info->flags = flags & VM_NORESERVE;
 
 
 
 
 
2314		INIT_LIST_HEAD(&info->shrinklist);
2315		INIT_LIST_HEAD(&info->swaplist);
2316		simple_xattrs_init(&info->xattrs);
2317		cache_no_acl(inode);
 
2318
2319		switch (mode & S_IFMT) {
2320		default:
2321			inode->i_op = &shmem_special_inode_operations;
2322			init_special_inode(inode, mode, dev);
2323			break;
2324		case S_IFREG:
2325			inode->i_mapping->a_ops = &shmem_aops;
2326			inode->i_op = &shmem_inode_operations;
2327			inode->i_fop = &shmem_file_operations;
2328			mpol_shared_policy_init(&info->policy,
2329						 shmem_get_sbmpol(sbinfo));
2330			break;
2331		case S_IFDIR:
2332			inc_nlink(inode);
2333			/* Some things misbehave if size == 0 on a directory */
2334			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2335			inode->i_op = &shmem_dir_inode_operations;
2336			inode->i_fop = &simple_dir_operations;
2337			break;
2338		case S_IFLNK:
2339			/*
2340			 * Must not load anything in the rbtree,
2341			 * mpol_free_shared_policy will not be called.
2342			 */
2343			mpol_shared_policy_init(&info->policy, NULL);
2344			break;
2345		}
2346
2347		lockdep_annotate_inode_mutex_key(inode);
2348	} else
2349		shmem_free_inode(sb);
2350	return inode;
2351}
2352
2353#ifdef CONFIG_USERFAULTFD
2354int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2355			   pmd_t *dst_pmd,
2356			   struct vm_area_struct *dst_vma,
2357			   unsigned long dst_addr,
2358			   unsigned long src_addr,
2359			   bool zeropage,
2360			   struct page **pagep)
2361{
2362	struct inode *inode = file_inode(dst_vma->vm_file);
2363	struct shmem_inode_info *info = SHMEM_I(inode);
2364	struct address_space *mapping = inode->i_mapping;
2365	gfp_t gfp = mapping_gfp_mask(mapping);
2366	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2367	void *page_kaddr;
2368	struct page *page;
2369	int ret;
2370	pgoff_t max_off;
2371
2372	if (!shmem_inode_acct_block(inode, 1)) {
2373		/*
2374		 * We may have got a page, returned -ENOENT triggering a retry,
2375		 * and now we find ourselves with -ENOMEM. Release the page, to
2376		 * avoid a BUG_ON in our caller.
2377		 */
2378		if (unlikely(*pagep)) {
2379			put_page(*pagep);
2380			*pagep = NULL;
2381		}
2382		return -ENOMEM;
2383	}
2384
2385	if (!*pagep) {
2386		ret = -ENOMEM;
2387		page = shmem_alloc_page(gfp, info, pgoff);
2388		if (!page)
2389			goto out_unacct_blocks;
2390
2391		if (!zeropage) {	/* COPY */
2392			page_kaddr = kmap_atomic(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393			ret = copy_from_user(page_kaddr,
2394					     (const void __user *)src_addr,
2395					     PAGE_SIZE);
2396			kunmap_atomic(page_kaddr);
 
2397
2398			/* fallback to copy_from_user outside mmap_lock */
2399			if (unlikely(ret)) {
2400				*pagep = page;
2401				ret = -ENOENT;
2402				/* don't free the page */
2403				goto out_unacct_blocks;
2404			}
 
 
2405		} else {		/* ZEROPAGE */
2406			clear_highpage(page);
2407		}
2408	} else {
2409		page = *pagep;
 
2410		*pagep = NULL;
2411	}
2412
2413	VM_BUG_ON(PageLocked(page));
2414	VM_BUG_ON(PageSwapBacked(page));
2415	__SetPageLocked(page);
2416	__SetPageSwapBacked(page);
2417	__SetPageUptodate(page);
2418
2419	ret = -EFAULT;
2420	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421	if (unlikely(pgoff >= max_off))
2422		goto out_release;
2423
2424	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2425				      gfp & GFP_RECLAIM_MASK, dst_mm);
2426	if (ret)
2427		goto out_release;
2428
2429	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2430				       page, true, false);
2431	if (ret)
2432		goto out_delete_from_cache;
2433
2434	spin_lock_irq(&info->lock);
2435	info->alloced++;
2436	inode->i_blocks += BLOCKS_PER_PAGE;
2437	shmem_recalc_inode(inode);
2438	spin_unlock_irq(&info->lock);
2439
2440	SetPageDirty(page);
2441	unlock_page(page);
2442	return 0;
2443out_delete_from_cache:
2444	delete_from_page_cache(page);
2445out_release:
2446	unlock_page(page);
2447	put_page(page);
2448out_unacct_blocks:
2449	shmem_inode_unacct_blocks(inode, 1);
2450	return ret;
2451}
2452#endif /* CONFIG_USERFAULTFD */
2453
2454#ifdef CONFIG_TMPFS
2455static const struct inode_operations shmem_symlink_inode_operations;
2456static const struct inode_operations shmem_short_symlink_operations;
2457
2458#ifdef CONFIG_TMPFS_XATTR
2459static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2460#else
2461#define shmem_initxattrs NULL
2462#endif
2463
2464static int
2465shmem_write_begin(struct file *file, struct address_space *mapping,
2466			loff_t pos, unsigned len, unsigned flags,
2467			struct page **pagep, void **fsdata)
2468{
2469	struct inode *inode = mapping->host;
2470	struct shmem_inode_info *info = SHMEM_I(inode);
2471	pgoff_t index = pos >> PAGE_SHIFT;
 
 
2472
2473	/* i_mutex is held by caller */
2474	if (unlikely(info->seals & (F_SEAL_GROW |
2475				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2476		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2477			return -EPERM;
2478		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2479			return -EPERM;
2480	}
2481
2482	return shmem_getpage(inode, index, pagep, SGP_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
2483}
2484
2485static int
2486shmem_write_end(struct file *file, struct address_space *mapping,
2487			loff_t pos, unsigned len, unsigned copied,
2488			struct page *page, void *fsdata)
2489{
2490	struct inode *inode = mapping->host;
2491
2492	if (pos + copied > inode->i_size)
2493		i_size_write(inode, pos + copied);
2494
2495	if (!PageUptodate(page)) {
2496		struct page *head = compound_head(page);
2497		if (PageTransCompound(page)) {
2498			int i;
2499
2500			for (i = 0; i < HPAGE_PMD_NR; i++) {
2501				if (head + i == page)
2502					continue;
2503				clear_highpage(head + i);
2504				flush_dcache_page(head + i);
2505			}
2506		}
2507		if (copied < PAGE_SIZE) {
2508			unsigned from = pos & (PAGE_SIZE - 1);
2509			zero_user_segments(page, 0, from,
2510					from + copied, PAGE_SIZE);
2511		}
2512		SetPageUptodate(head);
2513	}
2514	set_page_dirty(page);
2515	unlock_page(page);
2516	put_page(page);
2517
2518	return copied;
2519}
2520
2521static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2522{
2523	struct file *file = iocb->ki_filp;
2524	struct inode *inode = file_inode(file);
2525	struct address_space *mapping = inode->i_mapping;
2526	pgoff_t index;
2527	unsigned long offset;
2528	enum sgp_type sgp = SGP_READ;
2529	int error = 0;
2530	ssize_t retval = 0;
2531	loff_t *ppos = &iocb->ki_pos;
2532
2533	/*
2534	 * Might this read be for a stacking filesystem?  Then when reading
2535	 * holes of a sparse file, we actually need to allocate those pages,
2536	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2537	 */
2538	if (!iter_is_iovec(to))
2539		sgp = SGP_CACHE;
2540
2541	index = *ppos >> PAGE_SHIFT;
2542	offset = *ppos & ~PAGE_MASK;
2543
2544	for (;;) {
 
2545		struct page *page = NULL;
2546		pgoff_t end_index;
2547		unsigned long nr, ret;
2548		loff_t i_size = i_size_read(inode);
2549
2550		end_index = i_size >> PAGE_SHIFT;
2551		if (index > end_index)
2552			break;
2553		if (index == end_index) {
2554			nr = i_size & ~PAGE_MASK;
2555			if (nr <= offset)
2556				break;
2557		}
2558
2559		error = shmem_getpage(inode, index, &page, sgp);
2560		if (error) {
2561			if (error == -EINVAL)
2562				error = 0;
2563			break;
2564		}
2565		if (page) {
2566			if (sgp == SGP_CACHE)
2567				set_page_dirty(page);
2568			unlock_page(page);
 
 
 
 
 
2569		}
2570
2571		/*
2572		 * We must evaluate after, since reads (unlike writes)
2573		 * are called without i_mutex protection against truncate
2574		 */
2575		nr = PAGE_SIZE;
2576		i_size = i_size_read(inode);
2577		end_index = i_size >> PAGE_SHIFT;
2578		if (index == end_index) {
2579			nr = i_size & ~PAGE_MASK;
2580			if (nr <= offset) {
2581				if (page)
2582					put_page(page);
2583				break;
2584			}
2585		}
2586		nr -= offset;
2587
2588		if (page) {
2589			/*
2590			 * If users can be writing to this page using arbitrary
2591			 * virtual addresses, take care about potential aliasing
2592			 * before reading the page on the kernel side.
2593			 */
2594			if (mapping_writably_mapped(mapping))
2595				flush_dcache_page(page);
2596			/*
2597			 * Mark the page accessed if we read the beginning.
2598			 */
2599			if (!offset)
2600				mark_page_accessed(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2601		} else {
2602			page = ZERO_PAGE(0);
2603			get_page(page);
 
 
 
 
2604		}
2605
2606		/*
2607		 * Ok, we have the page, and it's up-to-date, so
2608		 * now we can copy it to user space...
2609		 */
2610		ret = copy_page_to_iter(page, offset, nr, to);
2611		retval += ret;
2612		offset += ret;
2613		index += offset >> PAGE_SHIFT;
2614		offset &= ~PAGE_MASK;
2615
2616		put_page(page);
2617		if (!iov_iter_count(to))
2618			break;
2619		if (ret < nr) {
2620			error = -EFAULT;
2621			break;
2622		}
2623		cond_resched();
2624	}
2625
2626	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2627	file_accessed(file);
2628	return retval ? retval : error;
2629}
2630
2631static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2632{
2633	struct address_space *mapping = file->f_mapping;
2634	struct inode *inode = mapping->host;
2635
2636	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2637		return generic_file_llseek_size(file, offset, whence,
2638					MAX_LFS_FILESIZE, i_size_read(inode));
2639	if (offset < 0)
2640		return -ENXIO;
2641
2642	inode_lock(inode);
2643	/* We're holding i_mutex so we can access i_size directly */
2644	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2645	if (offset >= 0)
2646		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2647	inode_unlock(inode);
2648	return offset;
2649}
2650
2651static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2652							 loff_t len)
2653{
2654	struct inode *inode = file_inode(file);
2655	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2656	struct shmem_inode_info *info = SHMEM_I(inode);
2657	struct shmem_falloc shmem_falloc;
2658	pgoff_t start, index, end;
2659	int error;
2660
2661	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2662		return -EOPNOTSUPP;
2663
2664	inode_lock(inode);
2665
2666	if (mode & FALLOC_FL_PUNCH_HOLE) {
2667		struct address_space *mapping = file->f_mapping;
2668		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2669		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2670		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2671
2672		/* protected by i_mutex */
2673		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2674			error = -EPERM;
2675			goto out;
2676		}
2677
2678		shmem_falloc.waitq = &shmem_falloc_waitq;
2679		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2680		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2681		spin_lock(&inode->i_lock);
2682		inode->i_private = &shmem_falloc;
2683		spin_unlock(&inode->i_lock);
2684
2685		if ((u64)unmap_end > (u64)unmap_start)
2686			unmap_mapping_range(mapping, unmap_start,
2687					    1 + unmap_end - unmap_start, 0);
2688		shmem_truncate_range(inode, offset, offset + len - 1);
2689		/* No need to unmap again: hole-punching leaves COWed pages */
2690
2691		spin_lock(&inode->i_lock);
2692		inode->i_private = NULL;
2693		wake_up_all(&shmem_falloc_waitq);
2694		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2695		spin_unlock(&inode->i_lock);
2696		error = 0;
2697		goto out;
2698	}
2699
2700	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2701	error = inode_newsize_ok(inode, offset + len);
2702	if (error)
2703		goto out;
2704
2705	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2706		error = -EPERM;
2707		goto out;
2708	}
2709
2710	start = offset >> PAGE_SHIFT;
2711	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2712	/* Try to avoid a swapstorm if len is impossible to satisfy */
2713	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2714		error = -ENOSPC;
2715		goto out;
2716	}
2717
2718	shmem_falloc.waitq = NULL;
2719	shmem_falloc.start = start;
2720	shmem_falloc.next  = start;
2721	shmem_falloc.nr_falloced = 0;
2722	shmem_falloc.nr_unswapped = 0;
2723	spin_lock(&inode->i_lock);
2724	inode->i_private = &shmem_falloc;
2725	spin_unlock(&inode->i_lock);
2726
2727	for (index = start; index < end; index++) {
2728		struct page *page;
 
 
 
 
 
 
 
 
 
2729
2730		/*
2731		 * Good, the fallocate(2) manpage permits EINTR: we may have
2732		 * been interrupted because we are using up too much memory.
2733		 */
2734		if (signal_pending(current))
2735			error = -EINTR;
2736		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2737			error = -ENOMEM;
2738		else
2739			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
 
2740		if (error) {
2741			/* Remove the !PageUptodate pages we added */
 
2742			if (index > start) {
2743				shmem_undo_range(inode,
2744				    (loff_t)start << PAGE_SHIFT,
2745				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2746			}
2747			goto undone;
2748		}
2749
2750		/*
 
 
 
 
 
 
 
 
 
 
2751		 * Inform shmem_writepage() how far we have reached.
2752		 * No need for lock or barrier: we have the page lock.
2753		 */
2754		shmem_falloc.next++;
2755		if (!PageUptodate(page))
2756			shmem_falloc.nr_falloced++;
2757
2758		/*
2759		 * If !PageUptodate, leave it that way so that freeable pages
2760		 * can be recognized if we need to rollback on error later.
2761		 * But set_page_dirty so that memory pressure will swap rather
2762		 * than free the pages we are allocating (and SGP_CACHE pages
2763		 * might still be clean: we now need to mark those dirty too).
2764		 */
2765		set_page_dirty(page);
2766		unlock_page(page);
2767		put_page(page);
2768		cond_resched();
2769	}
2770
2771	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2772		i_size_write(inode, offset + len);
2773	inode->i_ctime = current_time(inode);
2774undone:
2775	spin_lock(&inode->i_lock);
2776	inode->i_private = NULL;
2777	spin_unlock(&inode->i_lock);
2778out:
 
 
2779	inode_unlock(inode);
2780	return error;
2781}
2782
2783static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2784{
2785	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2786
2787	buf->f_type = TMPFS_MAGIC;
2788	buf->f_bsize = PAGE_SIZE;
2789	buf->f_namelen = NAME_MAX;
2790	if (sbinfo->max_blocks) {
2791		buf->f_blocks = sbinfo->max_blocks;
2792		buf->f_bavail =
2793		buf->f_bfree  = sbinfo->max_blocks -
2794				percpu_counter_sum(&sbinfo->used_blocks);
2795	}
2796	if (sbinfo->max_inodes) {
2797		buf->f_files = sbinfo->max_inodes;
2798		buf->f_ffree = sbinfo->free_inodes;
2799	}
2800	/* else leave those fields 0 like simple_statfs */
2801
2802	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2803
2804	return 0;
2805}
2806
2807/*
2808 * File creation. Allocate an inode, and we're done..
2809 */
2810static int
2811shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2812	    struct dentry *dentry, umode_t mode, dev_t dev)
2813{
2814	struct inode *inode;
2815	int error = -ENOSPC;
2816
2817	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2818	if (inode) {
2819		error = simple_acl_create(dir, inode);
2820		if (error)
2821			goto out_iput;
2822		error = security_inode_init_security(inode, dir,
2823						     &dentry->d_name,
2824						     shmem_initxattrs, NULL);
2825		if (error && error != -EOPNOTSUPP)
2826			goto out_iput;
2827
2828		error = 0;
2829		dir->i_size += BOGO_DIRENT_SIZE;
2830		dir->i_ctime = dir->i_mtime = current_time(dir);
 
2831		d_instantiate(dentry, inode);
2832		dget(dentry); /* Extra count - pin the dentry in core */
2833	}
2834	return error;
2835out_iput:
2836	iput(inode);
2837	return error;
2838}
2839
2840static int
2841shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2842	      struct dentry *dentry, umode_t mode)
2843{
2844	struct inode *inode;
2845	int error = -ENOSPC;
2846
2847	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2848	if (inode) {
2849		error = security_inode_init_security(inode, dir,
2850						     NULL,
2851						     shmem_initxattrs, NULL);
2852		if (error && error != -EOPNOTSUPP)
2853			goto out_iput;
2854		error = simple_acl_create(dir, inode);
2855		if (error)
2856			goto out_iput;
2857		d_tmpfile(dentry, inode);
2858	}
2859	return error;
2860out_iput:
2861	iput(inode);
2862	return error;
2863}
2864
2865static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2866		       struct dentry *dentry, umode_t mode)
2867{
2868	int error;
2869
2870	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2871				 mode | S_IFDIR, 0)))
2872		return error;
2873	inc_nlink(dir);
2874	return 0;
2875}
2876
2877static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2878			struct dentry *dentry, umode_t mode, bool excl)
2879{
2880	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2881}
2882
2883/*
2884 * Link a file..
2885 */
2886static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2887{
2888	struct inode *inode = d_inode(old_dentry);
2889	int ret = 0;
2890
2891	/*
2892	 * No ordinary (disk based) filesystem counts links as inodes;
2893	 * but each new link needs a new dentry, pinning lowmem, and
2894	 * tmpfs dentries cannot be pruned until they are unlinked.
2895	 * But if an O_TMPFILE file is linked into the tmpfs, the
2896	 * first link must skip that, to get the accounting right.
2897	 */
2898	if (inode->i_nlink) {
2899		ret = shmem_reserve_inode(inode->i_sb, NULL);
2900		if (ret)
2901			goto out;
2902	}
2903
2904	dir->i_size += BOGO_DIRENT_SIZE;
2905	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
2906	inc_nlink(inode);
2907	ihold(inode);	/* New dentry reference */
2908	dget(dentry);		/* Extra pinning count for the created dentry */
2909	d_instantiate(dentry, inode);
2910out:
2911	return ret;
2912}
2913
2914static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2915{
2916	struct inode *inode = d_inode(dentry);
2917
2918	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2919		shmem_free_inode(inode->i_sb);
2920
2921	dir->i_size -= BOGO_DIRENT_SIZE;
2922	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
 
2923	drop_nlink(inode);
2924	dput(dentry);	/* Undo the count from "create" - this does all the work */
2925	return 0;
2926}
2927
2928static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2929{
2930	if (!simple_empty(dentry))
2931		return -ENOTEMPTY;
2932
2933	drop_nlink(d_inode(dentry));
2934	drop_nlink(dir);
2935	return shmem_unlink(dir, dentry);
2936}
2937
2938static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2939{
2940	bool old_is_dir = d_is_dir(old_dentry);
2941	bool new_is_dir = d_is_dir(new_dentry);
2942
2943	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2944		if (old_is_dir) {
2945			drop_nlink(old_dir);
2946			inc_nlink(new_dir);
2947		} else {
2948			drop_nlink(new_dir);
2949			inc_nlink(old_dir);
2950		}
2951	}
2952	old_dir->i_ctime = old_dir->i_mtime =
2953	new_dir->i_ctime = new_dir->i_mtime =
2954	d_inode(old_dentry)->i_ctime =
2955	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2956
2957	return 0;
2958}
2959
2960static int shmem_whiteout(struct user_namespace *mnt_userns,
2961			  struct inode *old_dir, struct dentry *old_dentry)
2962{
2963	struct dentry *whiteout;
2964	int error;
2965
2966	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2967	if (!whiteout)
2968		return -ENOMEM;
2969
2970	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2971			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2972	dput(whiteout);
2973	if (error)
2974		return error;
2975
2976	/*
2977	 * Cheat and hash the whiteout while the old dentry is still in
2978	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2979	 *
2980	 * d_lookup() will consistently find one of them at this point,
2981	 * not sure which one, but that isn't even important.
2982	 */
2983	d_rehash(whiteout);
2984	return 0;
2985}
2986
2987/*
2988 * The VFS layer already does all the dentry stuff for rename,
2989 * we just have to decrement the usage count for the target if
2990 * it exists so that the VFS layer correctly free's it when it
2991 * gets overwritten.
2992 */
2993static int shmem_rename2(struct user_namespace *mnt_userns,
2994			 struct inode *old_dir, struct dentry *old_dentry,
2995			 struct inode *new_dir, struct dentry *new_dentry,
2996			 unsigned int flags)
2997{
2998	struct inode *inode = d_inode(old_dentry);
2999	int they_are_dirs = S_ISDIR(inode->i_mode);
3000
3001	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3002		return -EINVAL;
3003
3004	if (flags & RENAME_EXCHANGE)
3005		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3006
3007	if (!simple_empty(new_dentry))
3008		return -ENOTEMPTY;
3009
3010	if (flags & RENAME_WHITEOUT) {
3011		int error;
3012
3013		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3014		if (error)
3015			return error;
3016	}
3017
3018	if (d_really_is_positive(new_dentry)) {
3019		(void) shmem_unlink(new_dir, new_dentry);
3020		if (they_are_dirs) {
3021			drop_nlink(d_inode(new_dentry));
3022			drop_nlink(old_dir);
3023		}
3024	} else if (they_are_dirs) {
3025		drop_nlink(old_dir);
3026		inc_nlink(new_dir);
3027	}
3028
3029	old_dir->i_size -= BOGO_DIRENT_SIZE;
3030	new_dir->i_size += BOGO_DIRENT_SIZE;
3031	old_dir->i_ctime = old_dir->i_mtime =
3032	new_dir->i_ctime = new_dir->i_mtime =
3033	inode->i_ctime = current_time(old_dir);
 
 
3034	return 0;
3035}
3036
3037static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3038			 struct dentry *dentry, const char *symname)
3039{
3040	int error;
3041	int len;
3042	struct inode *inode;
3043	struct page *page;
3044
3045	len = strlen(symname) + 1;
3046	if (len > PAGE_SIZE)
3047		return -ENAMETOOLONG;
3048
3049	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3050				VM_NORESERVE);
3051	if (!inode)
3052		return -ENOSPC;
3053
3054	error = security_inode_init_security(inode, dir, &dentry->d_name,
3055					     shmem_initxattrs, NULL);
3056	if (error && error != -EOPNOTSUPP) {
3057		iput(inode);
3058		return error;
3059	}
3060
3061	inode->i_size = len-1;
3062	if (len <= SHORT_SYMLINK_LEN) {
3063		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3064		if (!inode->i_link) {
3065			iput(inode);
3066			return -ENOMEM;
3067		}
3068		inode->i_op = &shmem_short_symlink_operations;
3069	} else {
3070		inode_nohighmem(inode);
3071		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3072		if (error) {
3073			iput(inode);
3074			return error;
3075		}
3076		inode->i_mapping->a_ops = &shmem_aops;
3077		inode->i_op = &shmem_symlink_inode_operations;
3078		memcpy(page_address(page), symname, len);
3079		SetPageUptodate(page);
3080		set_page_dirty(page);
3081		unlock_page(page);
3082		put_page(page);
3083	}
3084	dir->i_size += BOGO_DIRENT_SIZE;
3085	dir->i_ctime = dir->i_mtime = current_time(dir);
 
3086	d_instantiate(dentry, inode);
3087	dget(dentry);
3088	return 0;
3089}
3090
3091static void shmem_put_link(void *arg)
3092{
3093	mark_page_accessed(arg);
3094	put_page(arg);
3095}
3096
3097static const char *shmem_get_link(struct dentry *dentry,
3098				  struct inode *inode,
3099				  struct delayed_call *done)
3100{
3101	struct page *page = NULL;
3102	int error;
 
3103	if (!dentry) {
3104		page = find_get_page(inode->i_mapping, 0);
3105		if (!page)
3106			return ERR_PTR(-ECHILD);
3107		if (!PageUptodate(page)) {
3108			put_page(page);
 
3109			return ERR_PTR(-ECHILD);
3110		}
3111	} else {
3112		error = shmem_getpage(inode, 0, &page, SGP_READ);
3113		if (error)
3114			return ERR_PTR(error);
3115		unlock_page(page);
 
 
 
 
 
 
 
3116	}
3117	set_delayed_call(done, shmem_put_link, page);
3118	return page_address(page);
3119}
3120
3121#ifdef CONFIG_TMPFS_XATTR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122/*
3123 * Superblocks without xattr inode operations may get some security.* xattr
3124 * support from the LSM "for free". As soon as we have any other xattrs
3125 * like ACLs, we also need to implement the security.* handlers at
3126 * filesystem level, though.
3127 */
3128
3129/*
3130 * Callback for security_inode_init_security() for acquiring xattrs.
3131 */
3132static int shmem_initxattrs(struct inode *inode,
3133			    const struct xattr *xattr_array,
3134			    void *fs_info)
3135{
3136	struct shmem_inode_info *info = SHMEM_I(inode);
3137	const struct xattr *xattr;
3138	struct simple_xattr *new_xattr;
3139	size_t len;
3140
3141	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3142		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3143		if (!new_xattr)
3144			return -ENOMEM;
3145
3146		len = strlen(xattr->name) + 1;
3147		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3148					  GFP_KERNEL);
3149		if (!new_xattr->name) {
3150			kvfree(new_xattr);
3151			return -ENOMEM;
3152		}
3153
3154		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3155		       XATTR_SECURITY_PREFIX_LEN);
3156		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3157		       xattr->name, len);
3158
3159		simple_xattr_list_add(&info->xattrs, new_xattr);
3160	}
3161
3162	return 0;
3163}
3164
3165static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3166				   struct dentry *unused, struct inode *inode,
3167				   const char *name, void *buffer, size_t size)
3168{
3169	struct shmem_inode_info *info = SHMEM_I(inode);
3170
3171	name = xattr_full_name(handler, name);
3172	return simple_xattr_get(&info->xattrs, name, buffer, size);
3173}
3174
3175static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3176				   struct user_namespace *mnt_userns,
3177				   struct dentry *unused, struct inode *inode,
3178				   const char *name, const void *value,
3179				   size_t size, int flags)
3180{
3181	struct shmem_inode_info *info = SHMEM_I(inode);
 
3182
3183	name = xattr_full_name(handler, name);
3184	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
 
 
 
 
 
3185}
3186
3187static const struct xattr_handler shmem_security_xattr_handler = {
3188	.prefix = XATTR_SECURITY_PREFIX,
3189	.get = shmem_xattr_handler_get,
3190	.set = shmem_xattr_handler_set,
3191};
3192
3193static const struct xattr_handler shmem_trusted_xattr_handler = {
3194	.prefix = XATTR_TRUSTED_PREFIX,
3195	.get = shmem_xattr_handler_get,
3196	.set = shmem_xattr_handler_set,
3197};
3198
3199static const struct xattr_handler *shmem_xattr_handlers[] = {
3200#ifdef CONFIG_TMPFS_POSIX_ACL
3201	&posix_acl_access_xattr_handler,
3202	&posix_acl_default_xattr_handler,
3203#endif
3204	&shmem_security_xattr_handler,
3205	&shmem_trusted_xattr_handler,
3206	NULL
3207};
3208
3209static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3210{
3211	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3212	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3213}
3214#endif /* CONFIG_TMPFS_XATTR */
3215
3216static const struct inode_operations shmem_short_symlink_operations = {
 
3217	.get_link	= simple_get_link,
3218#ifdef CONFIG_TMPFS_XATTR
3219	.listxattr	= shmem_listxattr,
3220#endif
3221};
3222
3223static const struct inode_operations shmem_symlink_inode_operations = {
 
3224	.get_link	= shmem_get_link,
3225#ifdef CONFIG_TMPFS_XATTR
3226	.listxattr	= shmem_listxattr,
3227#endif
3228};
3229
3230static struct dentry *shmem_get_parent(struct dentry *child)
3231{
3232	return ERR_PTR(-ESTALE);
3233}
3234
3235static int shmem_match(struct inode *ino, void *vfh)
3236{
3237	__u32 *fh = vfh;
3238	__u64 inum = fh[2];
3239	inum = (inum << 32) | fh[1];
3240	return ino->i_ino == inum && fh[0] == ino->i_generation;
3241}
3242
3243/* Find any alias of inode, but prefer a hashed alias */
3244static struct dentry *shmem_find_alias(struct inode *inode)
3245{
3246	struct dentry *alias = d_find_alias(inode);
3247
3248	return alias ?: d_find_any_alias(inode);
3249}
3250
3251
3252static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3253		struct fid *fid, int fh_len, int fh_type)
3254{
3255	struct inode *inode;
3256	struct dentry *dentry = NULL;
3257	u64 inum;
3258
3259	if (fh_len < 3)
3260		return NULL;
3261
3262	inum = fid->raw[2];
3263	inum = (inum << 32) | fid->raw[1];
3264
3265	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3266			shmem_match, fid->raw);
3267	if (inode) {
3268		dentry = shmem_find_alias(inode);
3269		iput(inode);
3270	}
3271
3272	return dentry;
3273}
3274
3275static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3276				struct inode *parent)
3277{
3278	if (*len < 3) {
3279		*len = 3;
3280		return FILEID_INVALID;
3281	}
3282
3283	if (inode_unhashed(inode)) {
3284		/* Unfortunately insert_inode_hash is not idempotent,
3285		 * so as we hash inodes here rather than at creation
3286		 * time, we need a lock to ensure we only try
3287		 * to do it once
3288		 */
3289		static DEFINE_SPINLOCK(lock);
3290		spin_lock(&lock);
3291		if (inode_unhashed(inode))
3292			__insert_inode_hash(inode,
3293					    inode->i_ino + inode->i_generation);
3294		spin_unlock(&lock);
3295	}
3296
3297	fh[0] = inode->i_generation;
3298	fh[1] = inode->i_ino;
3299	fh[2] = ((__u64)inode->i_ino) >> 32;
3300
3301	*len = 3;
3302	return 1;
3303}
3304
3305static const struct export_operations shmem_export_ops = {
3306	.get_parent     = shmem_get_parent,
3307	.encode_fh      = shmem_encode_fh,
3308	.fh_to_dentry	= shmem_fh_to_dentry,
3309};
3310
3311enum shmem_param {
3312	Opt_gid,
3313	Opt_huge,
3314	Opt_mode,
3315	Opt_mpol,
3316	Opt_nr_blocks,
3317	Opt_nr_inodes,
3318	Opt_size,
3319	Opt_uid,
3320	Opt_inode32,
3321	Opt_inode64,
3322};
3323
3324static const struct constant_table shmem_param_enums_huge[] = {
3325	{"never",	SHMEM_HUGE_NEVER },
3326	{"always",	SHMEM_HUGE_ALWAYS },
3327	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3328	{"advise",	SHMEM_HUGE_ADVISE },
3329	{}
3330};
3331
3332const struct fs_parameter_spec shmem_fs_parameters[] = {
3333	fsparam_u32   ("gid",		Opt_gid),
3334	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3335	fsparam_u32oct("mode",		Opt_mode),
3336	fsparam_string("mpol",		Opt_mpol),
3337	fsparam_string("nr_blocks",	Opt_nr_blocks),
3338	fsparam_string("nr_inodes",	Opt_nr_inodes),
3339	fsparam_string("size",		Opt_size),
3340	fsparam_u32   ("uid",		Opt_uid),
3341	fsparam_flag  ("inode32",	Opt_inode32),
3342	fsparam_flag  ("inode64",	Opt_inode64),
3343	{}
3344};
3345
3346static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3347{
3348	struct shmem_options *ctx = fc->fs_private;
3349	struct fs_parse_result result;
3350	unsigned long long size;
3351	char *rest;
3352	int opt;
3353
3354	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3355	if (opt < 0)
3356		return opt;
3357
3358	switch (opt) {
3359	case Opt_size:
3360		size = memparse(param->string, &rest);
3361		if (*rest == '%') {
3362			size <<= PAGE_SHIFT;
3363			size *= totalram_pages();
3364			do_div(size, 100);
3365			rest++;
3366		}
3367		if (*rest)
3368			goto bad_value;
3369		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3370		ctx->seen |= SHMEM_SEEN_BLOCKS;
3371		break;
3372	case Opt_nr_blocks:
3373		ctx->blocks = memparse(param->string, &rest);
3374		if (*rest)
3375			goto bad_value;
3376		ctx->seen |= SHMEM_SEEN_BLOCKS;
3377		break;
3378	case Opt_nr_inodes:
3379		ctx->inodes = memparse(param->string, &rest);
3380		if (*rest)
3381			goto bad_value;
3382		ctx->seen |= SHMEM_SEEN_INODES;
3383		break;
3384	case Opt_mode:
3385		ctx->mode = result.uint_32 & 07777;
3386		break;
3387	case Opt_uid:
3388		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3389		if (!uid_valid(ctx->uid))
3390			goto bad_value;
3391		break;
3392	case Opt_gid:
3393		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3394		if (!gid_valid(ctx->gid))
3395			goto bad_value;
3396		break;
3397	case Opt_huge:
3398		ctx->huge = result.uint_32;
3399		if (ctx->huge != SHMEM_HUGE_NEVER &&
3400		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3401		      has_transparent_hugepage()))
3402			goto unsupported_parameter;
3403		ctx->seen |= SHMEM_SEEN_HUGE;
3404		break;
3405	case Opt_mpol:
3406		if (IS_ENABLED(CONFIG_NUMA)) {
3407			mpol_put(ctx->mpol);
3408			ctx->mpol = NULL;
3409			if (mpol_parse_str(param->string, &ctx->mpol))
3410				goto bad_value;
3411			break;
3412		}
3413		goto unsupported_parameter;
3414	case Opt_inode32:
3415		ctx->full_inums = false;
3416		ctx->seen |= SHMEM_SEEN_INUMS;
3417		break;
3418	case Opt_inode64:
3419		if (sizeof(ino_t) < 8) {
3420			return invalfc(fc,
3421				       "Cannot use inode64 with <64bit inums in kernel\n");
3422		}
3423		ctx->full_inums = true;
3424		ctx->seen |= SHMEM_SEEN_INUMS;
3425		break;
3426	}
3427	return 0;
3428
3429unsupported_parameter:
3430	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3431bad_value:
3432	return invalfc(fc, "Bad value for '%s'", param->key);
3433}
3434
3435static int shmem_parse_options(struct fs_context *fc, void *data)
3436{
3437	char *options = data;
3438
3439	if (options) {
3440		int err = security_sb_eat_lsm_opts(options, &fc->security);
3441		if (err)
3442			return err;
3443	}
3444
3445	while (options != NULL) {
3446		char *this_char = options;
3447		for (;;) {
3448			/*
3449			 * NUL-terminate this option: unfortunately,
3450			 * mount options form a comma-separated list,
3451			 * but mpol's nodelist may also contain commas.
3452			 */
3453			options = strchr(options, ',');
3454			if (options == NULL)
3455				break;
3456			options++;
3457			if (!isdigit(*options)) {
3458				options[-1] = '\0';
3459				break;
3460			}
3461		}
3462		if (*this_char) {
3463			char *value = strchr(this_char, '=');
3464			size_t len = 0;
3465			int err;
3466
3467			if (value) {
3468				*value++ = '\0';
3469				len = strlen(value);
3470			}
3471			err = vfs_parse_fs_string(fc, this_char, value, len);
3472			if (err < 0)
3473				return err;
3474		}
3475	}
3476	return 0;
3477}
3478
3479/*
3480 * Reconfigure a shmem filesystem.
3481 *
3482 * Note that we disallow change from limited->unlimited blocks/inodes while any
3483 * are in use; but we must separately disallow unlimited->limited, because in
3484 * that case we have no record of how much is already in use.
3485 */
3486static int shmem_reconfigure(struct fs_context *fc)
3487{
3488	struct shmem_options *ctx = fc->fs_private;
3489	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3490	unsigned long inodes;
 
3491	const char *err;
3492
3493	spin_lock(&sbinfo->stat_lock);
3494	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
 
3495	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3496		if (!sbinfo->max_blocks) {
3497			err = "Cannot retroactively limit size";
3498			goto out;
3499		}
3500		if (percpu_counter_compare(&sbinfo->used_blocks,
3501					   ctx->blocks) > 0) {
3502			err = "Too small a size for current use";
3503			goto out;
3504		}
3505	}
3506	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3507		if (!sbinfo->max_inodes) {
3508			err = "Cannot retroactively limit inodes";
3509			goto out;
3510		}
3511		if (ctx->inodes < inodes) {
3512			err = "Too few inodes for current use";
3513			goto out;
3514		}
3515	}
3516
3517	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3518	    sbinfo->next_ino > UINT_MAX) {
3519		err = "Current inum too high to switch to 32-bit inums";
3520		goto out;
3521	}
3522
3523	if (ctx->seen & SHMEM_SEEN_HUGE)
3524		sbinfo->huge = ctx->huge;
3525	if (ctx->seen & SHMEM_SEEN_INUMS)
3526		sbinfo->full_inums = ctx->full_inums;
3527	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3528		sbinfo->max_blocks  = ctx->blocks;
3529	if (ctx->seen & SHMEM_SEEN_INODES) {
3530		sbinfo->max_inodes  = ctx->inodes;
3531		sbinfo->free_inodes = ctx->inodes - inodes;
3532	}
3533
3534	/*
3535	 * Preserve previous mempolicy unless mpol remount option was specified.
3536	 */
3537	if (ctx->mpol) {
3538		mpol_put(sbinfo->mpol);
3539		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3540		ctx->mpol = NULL;
3541	}
3542	spin_unlock(&sbinfo->stat_lock);
 
3543	return 0;
3544out:
3545	spin_unlock(&sbinfo->stat_lock);
3546	return invalfc(fc, "%s", err);
3547}
3548
3549static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3550{
3551	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3552
3553	if (sbinfo->max_blocks != shmem_default_max_blocks())
3554		seq_printf(seq, ",size=%luk",
3555			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3556	if (sbinfo->max_inodes != shmem_default_max_inodes())
3557		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3558	if (sbinfo->mode != (0777 | S_ISVTX))
3559		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3560	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3561		seq_printf(seq, ",uid=%u",
3562				from_kuid_munged(&init_user_ns, sbinfo->uid));
3563	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3564		seq_printf(seq, ",gid=%u",
3565				from_kgid_munged(&init_user_ns, sbinfo->gid));
3566
3567	/*
3568	 * Showing inode{64,32} might be useful even if it's the system default,
3569	 * since then people don't have to resort to checking both here and
3570	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3571	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3572	 *
3573	 * We hide it when inode64 isn't the default and we are using 32-bit
3574	 * inodes, since that probably just means the feature isn't even under
3575	 * consideration.
3576	 *
3577	 * As such:
3578	 *
3579	 *                     +-----------------+-----------------+
3580	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3581	 *  +------------------+-----------------+-----------------+
3582	 *  | full_inums=true  | show            | show            |
3583	 *  | full_inums=false | show            | hide            |
3584	 *  +------------------+-----------------+-----------------+
3585	 *
3586	 */
3587	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3588		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3589#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3590	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3591	if (sbinfo->huge)
3592		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3593#endif
3594	shmem_show_mpol(seq, sbinfo->mpol);
3595	return 0;
3596}
3597
3598#endif /* CONFIG_TMPFS */
3599
3600static void shmem_put_super(struct super_block *sb)
3601{
3602	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3603
3604	free_percpu(sbinfo->ino_batch);
3605	percpu_counter_destroy(&sbinfo->used_blocks);
3606	mpol_put(sbinfo->mpol);
3607	kfree(sbinfo);
3608	sb->s_fs_info = NULL;
3609}
3610
3611static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3612{
3613	struct shmem_options *ctx = fc->fs_private;
3614	struct inode *inode;
3615	struct shmem_sb_info *sbinfo;
3616	int err = -ENOMEM;
3617
3618	/* Round up to L1_CACHE_BYTES to resist false sharing */
3619	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3620				L1_CACHE_BYTES), GFP_KERNEL);
3621	if (!sbinfo)
3622		return -ENOMEM;
3623
3624	sb->s_fs_info = sbinfo;
3625
3626#ifdef CONFIG_TMPFS
3627	/*
3628	 * Per default we only allow half of the physical ram per
3629	 * tmpfs instance, limiting inodes to one per page of lowmem;
3630	 * but the internal instance is left unlimited.
3631	 */
3632	if (!(sb->s_flags & SB_KERNMOUNT)) {
3633		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3634			ctx->blocks = shmem_default_max_blocks();
3635		if (!(ctx->seen & SHMEM_SEEN_INODES))
3636			ctx->inodes = shmem_default_max_inodes();
3637		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3638			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3639	} else {
3640		sb->s_flags |= SB_NOUSER;
3641	}
3642	sb->s_export_op = &shmem_export_ops;
3643	sb->s_flags |= SB_NOSEC;
3644#else
3645	sb->s_flags |= SB_NOUSER;
3646#endif
3647	sbinfo->max_blocks = ctx->blocks;
3648	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3649	if (sb->s_flags & SB_KERNMOUNT) {
3650		sbinfo->ino_batch = alloc_percpu(ino_t);
3651		if (!sbinfo->ino_batch)
3652			goto failed;
3653	}
3654	sbinfo->uid = ctx->uid;
3655	sbinfo->gid = ctx->gid;
3656	sbinfo->full_inums = ctx->full_inums;
3657	sbinfo->mode = ctx->mode;
3658	sbinfo->huge = ctx->huge;
3659	sbinfo->mpol = ctx->mpol;
3660	ctx->mpol = NULL;
3661
3662	spin_lock_init(&sbinfo->stat_lock);
3663	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3664		goto failed;
3665	spin_lock_init(&sbinfo->shrinklist_lock);
3666	INIT_LIST_HEAD(&sbinfo->shrinklist);
3667
3668	sb->s_maxbytes = MAX_LFS_FILESIZE;
3669	sb->s_blocksize = PAGE_SIZE;
3670	sb->s_blocksize_bits = PAGE_SHIFT;
3671	sb->s_magic = TMPFS_MAGIC;
3672	sb->s_op = &shmem_ops;
3673	sb->s_time_gran = 1;
3674#ifdef CONFIG_TMPFS_XATTR
3675	sb->s_xattr = shmem_xattr_handlers;
3676#endif
3677#ifdef CONFIG_TMPFS_POSIX_ACL
3678	sb->s_flags |= SB_POSIXACL;
3679#endif
3680	uuid_gen(&sb->s_uuid);
3681
3682	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3683	if (!inode)
3684		goto failed;
3685	inode->i_uid = sbinfo->uid;
3686	inode->i_gid = sbinfo->gid;
3687	sb->s_root = d_make_root(inode);
3688	if (!sb->s_root)
3689		goto failed;
3690	return 0;
3691
3692failed:
3693	shmem_put_super(sb);
3694	return err;
3695}
3696
3697static int shmem_get_tree(struct fs_context *fc)
3698{
3699	return get_tree_nodev(fc, shmem_fill_super);
3700}
3701
3702static void shmem_free_fc(struct fs_context *fc)
3703{
3704	struct shmem_options *ctx = fc->fs_private;
3705
3706	if (ctx) {
3707		mpol_put(ctx->mpol);
3708		kfree(ctx);
3709	}
3710}
3711
3712static const struct fs_context_operations shmem_fs_context_ops = {
3713	.free			= shmem_free_fc,
3714	.get_tree		= shmem_get_tree,
3715#ifdef CONFIG_TMPFS
3716	.parse_monolithic	= shmem_parse_options,
3717	.parse_param		= shmem_parse_one,
3718	.reconfigure		= shmem_reconfigure,
3719#endif
3720};
3721
3722static struct kmem_cache *shmem_inode_cachep;
3723
3724static struct inode *shmem_alloc_inode(struct super_block *sb)
3725{
3726	struct shmem_inode_info *info;
3727	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3728	if (!info)
3729		return NULL;
3730	return &info->vfs_inode;
3731}
3732
3733static void shmem_free_in_core_inode(struct inode *inode)
3734{
3735	if (S_ISLNK(inode->i_mode))
3736		kfree(inode->i_link);
3737	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3738}
3739
3740static void shmem_destroy_inode(struct inode *inode)
3741{
3742	if (S_ISREG(inode->i_mode))
3743		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3744}
3745
3746static void shmem_init_inode(void *foo)
3747{
3748	struct shmem_inode_info *info = foo;
3749	inode_init_once(&info->vfs_inode);
3750}
3751
3752static void shmem_init_inodecache(void)
3753{
3754	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3755				sizeof(struct shmem_inode_info),
3756				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3757}
3758
3759static void shmem_destroy_inodecache(void)
3760{
3761	kmem_cache_destroy(shmem_inode_cachep);
3762}
3763
 
 
 
 
 
 
 
3764const struct address_space_operations shmem_aops = {
3765	.writepage	= shmem_writepage,
3766	.set_page_dirty	= __set_page_dirty_no_writeback,
3767#ifdef CONFIG_TMPFS
3768	.write_begin	= shmem_write_begin,
3769	.write_end	= shmem_write_end,
3770#endif
3771#ifdef CONFIG_MIGRATION
3772	.migratepage	= migrate_page,
3773#endif
3774	.error_remove_page = generic_error_remove_page,
3775};
3776EXPORT_SYMBOL(shmem_aops);
3777
3778static const struct file_operations shmem_file_operations = {
3779	.mmap		= shmem_mmap,
 
3780	.get_unmapped_area = shmem_get_unmapped_area,
3781#ifdef CONFIG_TMPFS
3782	.llseek		= shmem_file_llseek,
3783	.read_iter	= shmem_file_read_iter,
3784	.write_iter	= generic_file_write_iter,
3785	.fsync		= noop_fsync,
3786	.splice_read	= generic_file_splice_read,
3787	.splice_write	= iter_file_splice_write,
3788	.fallocate	= shmem_fallocate,
3789#endif
3790};
3791
3792static const struct inode_operations shmem_inode_operations = {
3793	.getattr	= shmem_getattr,
3794	.setattr	= shmem_setattr,
3795#ifdef CONFIG_TMPFS_XATTR
3796	.listxattr	= shmem_listxattr,
3797	.set_acl	= simple_set_acl,
 
 
3798#endif
3799};
3800
3801static const struct inode_operations shmem_dir_inode_operations = {
3802#ifdef CONFIG_TMPFS
 
3803	.create		= shmem_create,
3804	.lookup		= simple_lookup,
3805	.link		= shmem_link,
3806	.unlink		= shmem_unlink,
3807	.symlink	= shmem_symlink,
3808	.mkdir		= shmem_mkdir,
3809	.rmdir		= shmem_rmdir,
3810	.mknod		= shmem_mknod,
3811	.rename		= shmem_rename2,
3812	.tmpfile	= shmem_tmpfile,
3813#endif
3814#ifdef CONFIG_TMPFS_XATTR
3815	.listxattr	= shmem_listxattr,
 
 
3816#endif
3817#ifdef CONFIG_TMPFS_POSIX_ACL
3818	.setattr	= shmem_setattr,
3819	.set_acl	= simple_set_acl,
3820#endif
3821};
3822
3823static const struct inode_operations shmem_special_inode_operations = {
 
3824#ifdef CONFIG_TMPFS_XATTR
3825	.listxattr	= shmem_listxattr,
3826#endif
3827#ifdef CONFIG_TMPFS_POSIX_ACL
3828	.setattr	= shmem_setattr,
3829	.set_acl	= simple_set_acl,
3830#endif
3831};
3832
3833static const struct super_operations shmem_ops = {
3834	.alloc_inode	= shmem_alloc_inode,
3835	.free_inode	= shmem_free_in_core_inode,
3836	.destroy_inode	= shmem_destroy_inode,
3837#ifdef CONFIG_TMPFS
3838	.statfs		= shmem_statfs,
3839	.show_options	= shmem_show_options,
3840#endif
3841	.evict_inode	= shmem_evict_inode,
3842	.drop_inode	= generic_delete_inode,
3843	.put_super	= shmem_put_super,
3844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3845	.nr_cached_objects	= shmem_unused_huge_count,
3846	.free_cached_objects	= shmem_unused_huge_scan,
3847#endif
3848};
3849
3850static const struct vm_operations_struct shmem_vm_ops = {
3851	.fault		= shmem_fault,
3852	.map_pages	= filemap_map_pages,
3853#ifdef CONFIG_NUMA
3854	.set_policy     = shmem_set_policy,
3855	.get_policy     = shmem_get_policy,
3856#endif
3857};
3858
 
 
 
 
 
 
 
 
 
3859int shmem_init_fs_context(struct fs_context *fc)
3860{
3861	struct shmem_options *ctx;
3862
3863	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3864	if (!ctx)
3865		return -ENOMEM;
3866
3867	ctx->mode = 0777 | S_ISVTX;
3868	ctx->uid = current_fsuid();
3869	ctx->gid = current_fsgid();
3870
3871	fc->fs_private = ctx;
3872	fc->ops = &shmem_fs_context_ops;
3873	return 0;
3874}
3875
3876static struct file_system_type shmem_fs_type = {
3877	.owner		= THIS_MODULE,
3878	.name		= "tmpfs",
3879	.init_fs_context = shmem_init_fs_context,
3880#ifdef CONFIG_TMPFS
3881	.parameters	= shmem_fs_parameters,
3882#endif
3883	.kill_sb	= kill_litter_super,
3884	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3885};
3886
3887int __init shmem_init(void)
3888{
3889	int error;
3890
3891	shmem_init_inodecache();
3892
3893	error = register_filesystem(&shmem_fs_type);
3894	if (error) {
3895		pr_err("Could not register tmpfs\n");
3896		goto out2;
3897	}
3898
3899	shm_mnt = kern_mount(&shmem_fs_type);
3900	if (IS_ERR(shm_mnt)) {
3901		error = PTR_ERR(shm_mnt);
3902		pr_err("Could not kern_mount tmpfs\n");
3903		goto out1;
3904	}
3905
3906#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3907	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3908		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3909	else
3910		shmem_huge = 0; /* just in case it was patched */
3911#endif
3912	return 0;
3913
3914out1:
3915	unregister_filesystem(&shmem_fs_type);
3916out2:
3917	shmem_destroy_inodecache();
3918	shm_mnt = ERR_PTR(error);
3919	return error;
3920}
3921
3922#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3923static ssize_t shmem_enabled_show(struct kobject *kobj,
3924				  struct kobj_attribute *attr, char *buf)
3925{
3926	static const int values[] = {
3927		SHMEM_HUGE_ALWAYS,
3928		SHMEM_HUGE_WITHIN_SIZE,
3929		SHMEM_HUGE_ADVISE,
3930		SHMEM_HUGE_NEVER,
3931		SHMEM_HUGE_DENY,
3932		SHMEM_HUGE_FORCE,
3933	};
3934	int len = 0;
3935	int i;
3936
3937	for (i = 0; i < ARRAY_SIZE(values); i++) {
3938		len += sysfs_emit_at(buf, len,
3939				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3940				     i ? " " : "",
3941				     shmem_format_huge(values[i]));
3942	}
3943
3944	len += sysfs_emit_at(buf, len, "\n");
3945
3946	return len;
3947}
3948
3949static ssize_t shmem_enabled_store(struct kobject *kobj,
3950		struct kobj_attribute *attr, const char *buf, size_t count)
3951{
3952	char tmp[16];
3953	int huge;
3954
3955	if (count + 1 > sizeof(tmp))
3956		return -EINVAL;
3957	memcpy(tmp, buf, count);
3958	tmp[count] = '\0';
3959	if (count && tmp[count - 1] == '\n')
3960		tmp[count - 1] = '\0';
3961
3962	huge = shmem_parse_huge(tmp);
3963	if (huge == -EINVAL)
3964		return -EINVAL;
3965	if (!has_transparent_hugepage() &&
3966			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3967		return -EINVAL;
3968
3969	shmem_huge = huge;
3970	if (shmem_huge > SHMEM_HUGE_DENY)
3971		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3972	return count;
3973}
3974
3975struct kobj_attribute shmem_enabled_attr =
3976	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3977#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3978
3979#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980bool shmem_huge_enabled(struct vm_area_struct *vma)
3981{
3982	struct inode *inode = file_inode(vma->vm_file);
3983	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3984	loff_t i_size;
3985	pgoff_t off;
3986
3987	if (!transhuge_vma_enabled(vma, vma->vm_flags))
3988		return false;
3989	if (shmem_huge == SHMEM_HUGE_FORCE)
3990		return true;
3991	if (shmem_huge == SHMEM_HUGE_DENY)
3992		return false;
3993	switch (sbinfo->huge) {
3994		case SHMEM_HUGE_NEVER:
3995			return false;
3996		case SHMEM_HUGE_ALWAYS:
3997			return true;
3998		case SHMEM_HUGE_WITHIN_SIZE:
3999			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4000			i_size = round_up(i_size_read(inode), PAGE_SIZE);
4001			if (i_size >= HPAGE_PMD_SIZE &&
4002					i_size >> PAGE_SHIFT >= off)
4003				return true;
4004			fallthrough;
4005		case SHMEM_HUGE_ADVISE:
4006			/* TODO: implement fadvise() hints */
4007			return (vma->vm_flags & VM_HUGEPAGE);
4008		default:
4009			VM_BUG_ON(1);
4010			return false;
4011	}
4012}
4013#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4014
4015#else /* !CONFIG_SHMEM */
4016
4017/*
4018 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4019 *
4020 * This is intended for small system where the benefits of the full
4021 * shmem code (swap-backed and resource-limited) are outweighed by
4022 * their complexity. On systems without swap this code should be
4023 * effectively equivalent, but much lighter weight.
4024 */
4025
4026static struct file_system_type shmem_fs_type = {
4027	.name		= "tmpfs",
4028	.init_fs_context = ramfs_init_fs_context,
4029	.parameters	= ramfs_fs_parameters,
4030	.kill_sb	= kill_litter_super,
4031	.fs_flags	= FS_USERNS_MOUNT,
4032};
4033
4034int __init shmem_init(void)
4035{
4036	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4037
4038	shm_mnt = kern_mount(&shmem_fs_type);
4039	BUG_ON(IS_ERR(shm_mnt));
4040
4041	return 0;
4042}
4043
4044int shmem_unuse(unsigned int type, bool frontswap,
4045		unsigned long *fs_pages_to_unuse)
4046{
4047	return 0;
4048}
4049
4050int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4051{
4052	return 0;
4053}
4054
4055void shmem_unlock_mapping(struct address_space *mapping)
4056{
4057}
4058
4059#ifdef CONFIG_MMU
4060unsigned long shmem_get_unmapped_area(struct file *file,
4061				      unsigned long addr, unsigned long len,
4062				      unsigned long pgoff, unsigned long flags)
4063{
4064	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4065}
4066#endif
4067
4068void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4069{
4070	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4071}
4072EXPORT_SYMBOL_GPL(shmem_truncate_range);
4073
4074#define shmem_vm_ops				generic_file_vm_ops
 
4075#define shmem_file_operations			ramfs_file_operations
4076#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4077#define shmem_acct_size(flags, size)		0
4078#define shmem_unacct_size(flags, size)		do {} while (0)
4079
4080#endif /* CONFIG_SHMEM */
4081
4082/* common code */
4083
4084static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4085				       unsigned long flags, unsigned int i_flags)
4086{
4087	struct inode *inode;
4088	struct file *res;
4089
4090	if (IS_ERR(mnt))
4091		return ERR_CAST(mnt);
4092
4093	if (size < 0 || size > MAX_LFS_FILESIZE)
4094		return ERR_PTR(-EINVAL);
4095
4096	if (shmem_acct_size(flags, size))
4097		return ERR_PTR(-ENOMEM);
4098
4099	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4100				flags);
4101	if (unlikely(!inode)) {
4102		shmem_unacct_size(flags, size);
4103		return ERR_PTR(-ENOSPC);
4104	}
4105	inode->i_flags |= i_flags;
4106	inode->i_size = size;
4107	clear_nlink(inode);	/* It is unlinked */
4108	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4109	if (!IS_ERR(res))
4110		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4111				&shmem_file_operations);
4112	if (IS_ERR(res))
4113		iput(inode);
4114	return res;
4115}
4116
4117/**
4118 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4119 * 	kernel internal.  There will be NO LSM permission checks against the
4120 * 	underlying inode.  So users of this interface must do LSM checks at a
4121 *	higher layer.  The users are the big_key and shm implementations.  LSM
4122 *	checks are provided at the key or shm level rather than the inode.
4123 * @name: name for dentry (to be seen in /proc/<pid>/maps
4124 * @size: size to be set for the file
4125 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4126 */
4127struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4128{
4129	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4130}
4131
4132/**
4133 * shmem_file_setup - get an unlinked file living in tmpfs
4134 * @name: name for dentry (to be seen in /proc/<pid>/maps
4135 * @size: size to be set for the file
4136 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4137 */
4138struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4139{
4140	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4141}
4142EXPORT_SYMBOL_GPL(shmem_file_setup);
4143
4144/**
4145 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4146 * @mnt: the tmpfs mount where the file will be created
4147 * @name: name for dentry (to be seen in /proc/<pid>/maps
4148 * @size: size to be set for the file
4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4150 */
4151struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4152				       loff_t size, unsigned long flags)
4153{
4154	return __shmem_file_setup(mnt, name, size, flags, 0);
4155}
4156EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4157
4158/**
4159 * shmem_zero_setup - setup a shared anonymous mapping
4160 * @vma: the vma to be mmapped is prepared by do_mmap
4161 */
4162int shmem_zero_setup(struct vm_area_struct *vma)
4163{
4164	struct file *file;
4165	loff_t size = vma->vm_end - vma->vm_start;
4166
4167	/*
4168	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4169	 * between XFS directory reading and selinux: since this file is only
4170	 * accessible to the user through its mapping, use S_PRIVATE flag to
4171	 * bypass file security, in the same way as shmem_kernel_file_setup().
4172	 */
4173	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4174	if (IS_ERR(file))
4175		return PTR_ERR(file);
4176
4177	if (vma->vm_file)
4178		fput(vma->vm_file);
4179	vma->vm_file = file;
4180	vma->vm_ops = &shmem_vm_ops;
4181
4182	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4183			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4184			(vma->vm_end & HPAGE_PMD_MASK)) {
4185		khugepaged_enter(vma, vma->vm_flags);
4186	}
4187
4188	return 0;
4189}
4190
4191/**
4192 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4193 * @mapping:	the page's address_space
4194 * @index:	the page index
4195 * @gfp:	the page allocator flags to use if allocating
4196 *
4197 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4198 * with any new page allocations done using the specified allocation flags.
4199 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4200 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4201 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4202 *
4203 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4204 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4205 */
4206struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4207					 pgoff_t index, gfp_t gfp)
4208{
4209#ifdef CONFIG_SHMEM
4210	struct inode *inode = mapping->host;
 
4211	struct page *page;
4212	int error;
4213
4214	BUG_ON(!shmem_mapping(mapping));
4215	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4216				  gfp, NULL, NULL, NULL);
4217	if (error)
4218		page = ERR_PTR(error);
4219	else
4220		unlock_page(page);
 
 
 
 
 
 
4221	return page;
4222#else
4223	/*
4224	 * The tiny !SHMEM case uses ramfs without swap
4225	 */
4226	return read_cache_page_gfp(mapping, index, gfp);
4227#endif
4228}
4229EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
v6.2
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *		 2000 Transmeta Corp.
   6 *		 2000-2001 Christoph Rohland
   7 *		 2000-2001 SAP AG
   8 *		 2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/fileattr.h>
  32#include <linux/mm.h>
  33#include <linux/random.h>
  34#include <linux/sched/signal.h>
  35#include <linux/export.h>
  36#include <linux/swap.h>
  37#include <linux/uio.h>
 
  38#include <linux/hugetlb.h>
 
  39#include <linux/fs_parser.h>
  40#include <linux/swapfile.h>
  41#include <linux/iversion.h>
  42#include "swap.h"
  43
  44static struct vfsmount *shm_mnt;
  45
  46#ifdef CONFIG_SHMEM
  47/*
  48 * This virtual memory filesystem is heavily based on the ramfs. It
  49 * extends ramfs by the ability to use swap and honor resource limits
  50 * which makes it a completely usable filesystem.
  51 */
  52
  53#include <linux/xattr.h>
  54#include <linux/exportfs.h>
  55#include <linux/posix_acl.h>
  56#include <linux/posix_acl_xattr.h>
  57#include <linux/mman.h>
  58#include <linux/string.h>
  59#include <linux/slab.h>
  60#include <linux/backing-dev.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/writeback.h>
 
  63#include <linux/pagevec.h>
  64#include <linux/percpu_counter.h>
  65#include <linux/falloc.h>
  66#include <linux/splice.h>
  67#include <linux/security.h>
  68#include <linux/swapops.h>
  69#include <linux/mempolicy.h>
  70#include <linux/namei.h>
  71#include <linux/ctype.h>
  72#include <linux/migrate.h>
  73#include <linux/highmem.h>
  74#include <linux/seq_file.h>
  75#include <linux/magic.h>
  76#include <linux/syscalls.h>
  77#include <linux/fcntl.h>
  78#include <uapi/linux/memfd.h>
  79#include <linux/userfaultfd_k.h>
  80#include <linux/rmap.h>
  81#include <linux/uuid.h>
  82
  83#include <linux/uaccess.h>
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_rwsem making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103	pgoff_t start;		/* start of range currently being fallocated */
 104	pgoff_t next;		/* the next page offset to be fallocated */
 105	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
 106	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
 107};
 108
 109struct shmem_options {
 110	unsigned long long blocks;
 111	unsigned long long inodes;
 112	struct mempolicy *mpol;
 113	kuid_t uid;
 114	kgid_t gid;
 115	umode_t mode;
 116	bool full_inums;
 117	int huge;
 118	int seen;
 119#define SHMEM_SEEN_BLOCKS 1
 120#define SHMEM_SEEN_INODES 2
 121#define SHMEM_SEEN_HUGE 4
 122#define SHMEM_SEEN_INUMS 8
 123};
 124
 125#ifdef CONFIG_TMPFS
 126static unsigned long shmem_default_max_blocks(void)
 127{
 128	return totalram_pages() / 2;
 129}
 130
 131static unsigned long shmem_default_max_inodes(void)
 132{
 133	unsigned long nr_pages = totalram_pages();
 134
 135	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
 136}
 137#endif
 138
 139static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
 140			     struct folio **foliop, enum sgp_type sgp,
 
 
 
 141			     gfp_t gfp, struct vm_area_struct *vma,
 142			     vm_fault_t *fault_type);
 
 
 
 
 
 
 
 
 
 
 
 143
 144static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 145{
 146	return sb->s_fs_info;
 147}
 148
 149/*
 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 151 * for shared memory and for shared anonymous (/dev/zero) mappings
 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 153 * consistent with the pre-accounting of private mappings ...
 154 */
 155static inline int shmem_acct_size(unsigned long flags, loff_t size)
 156{
 157	return (flags & VM_NORESERVE) ?
 158		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 159}
 160
 161static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 162{
 163	if (!(flags & VM_NORESERVE))
 164		vm_unacct_memory(VM_ACCT(size));
 165}
 166
 167static inline int shmem_reacct_size(unsigned long flags,
 168		loff_t oldsize, loff_t newsize)
 169{
 170	if (!(flags & VM_NORESERVE)) {
 171		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 172			return security_vm_enough_memory_mm(current->mm,
 173					VM_ACCT(newsize) - VM_ACCT(oldsize));
 174		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 175			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 176	}
 177	return 0;
 178}
 179
 180/*
 181 * ... whereas tmpfs objects are accounted incrementally as
 182 * pages are allocated, in order to allow large sparse files.
 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 185 */
 186static inline int shmem_acct_block(unsigned long flags, long pages)
 187{
 188	if (!(flags & VM_NORESERVE))
 189		return 0;
 190
 191	return security_vm_enough_memory_mm(current->mm,
 192			pages * VM_ACCT(PAGE_SIZE));
 193}
 194
 195static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 196{
 197	if (flags & VM_NORESERVE)
 198		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 199}
 200
 201static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 202{
 203	struct shmem_inode_info *info = SHMEM_I(inode);
 204	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 205
 206	if (shmem_acct_block(info->flags, pages))
 207		return false;
 208
 209	if (sbinfo->max_blocks) {
 210		if (percpu_counter_compare(&sbinfo->used_blocks,
 211					   sbinfo->max_blocks - pages) > 0)
 212			goto unacct;
 213		percpu_counter_add(&sbinfo->used_blocks, pages);
 214	}
 215
 216	return true;
 217
 218unacct:
 219	shmem_unacct_blocks(info->flags, pages);
 220	return false;
 221}
 222
 223static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 224{
 225	struct shmem_inode_info *info = SHMEM_I(inode);
 226	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 227
 228	if (sbinfo->max_blocks)
 229		percpu_counter_sub(&sbinfo->used_blocks, pages);
 230	shmem_unacct_blocks(info->flags, pages);
 231}
 232
 233static const struct super_operations shmem_ops;
 234const struct address_space_operations shmem_aops;
 235static const struct file_operations shmem_file_operations;
 236static const struct inode_operations shmem_inode_operations;
 237static const struct inode_operations shmem_dir_inode_operations;
 238static const struct inode_operations shmem_special_inode_operations;
 239static const struct vm_operations_struct shmem_vm_ops;
 240static const struct vm_operations_struct shmem_anon_vm_ops;
 241static struct file_system_type shmem_fs_type;
 242
 243bool vma_is_anon_shmem(struct vm_area_struct *vma)
 244{
 245	return vma->vm_ops == &shmem_anon_vm_ops;
 246}
 247
 248bool vma_is_shmem(struct vm_area_struct *vma)
 249{
 250	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
 251}
 252
 253static LIST_HEAD(shmem_swaplist);
 254static DEFINE_MUTEX(shmem_swaplist_mutex);
 255
 256/*
 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
 258 * produces a novel ino for the newly allocated inode.
 259 *
 260 * It may also be called when making a hard link to permit the space needed by
 261 * each dentry. However, in that case, no new inode number is needed since that
 262 * internally draws from another pool of inode numbers (currently global
 263 * get_next_ino()). This case is indicated by passing NULL as inop.
 264 */
 265#define SHMEM_INO_BATCH 1024
 266static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
 267{
 268	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 269	ino_t ino;
 270
 271	if (!(sb->s_flags & SB_KERNMOUNT)) {
 272		raw_spin_lock(&sbinfo->stat_lock);
 273		if (sbinfo->max_inodes) {
 274			if (!sbinfo->free_inodes) {
 275				raw_spin_unlock(&sbinfo->stat_lock);
 276				return -ENOSPC;
 277			}
 278			sbinfo->free_inodes--;
 279		}
 280		if (inop) {
 281			ino = sbinfo->next_ino++;
 282			if (unlikely(is_zero_ino(ino)))
 283				ino = sbinfo->next_ino++;
 284			if (unlikely(!sbinfo->full_inums &&
 285				     ino > UINT_MAX)) {
 286				/*
 287				 * Emulate get_next_ino uint wraparound for
 288				 * compatibility
 289				 */
 290				if (IS_ENABLED(CONFIG_64BIT))
 291					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
 292						__func__, MINOR(sb->s_dev));
 293				sbinfo->next_ino = 1;
 294				ino = sbinfo->next_ino++;
 295			}
 296			*inop = ino;
 297		}
 298		raw_spin_unlock(&sbinfo->stat_lock);
 299	} else if (inop) {
 300		/*
 301		 * __shmem_file_setup, one of our callers, is lock-free: it
 302		 * doesn't hold stat_lock in shmem_reserve_inode since
 303		 * max_inodes is always 0, and is called from potentially
 304		 * unknown contexts. As such, use a per-cpu batched allocator
 305		 * which doesn't require the per-sb stat_lock unless we are at
 306		 * the batch boundary.
 307		 *
 308		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
 309		 * shmem mounts are not exposed to userspace, so we don't need
 310		 * to worry about things like glibc compatibility.
 311		 */
 312		ino_t *next_ino;
 313
 314		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
 315		ino = *next_ino;
 316		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
 317			raw_spin_lock(&sbinfo->stat_lock);
 318			ino = sbinfo->next_ino;
 319			sbinfo->next_ino += SHMEM_INO_BATCH;
 320			raw_spin_unlock(&sbinfo->stat_lock);
 321			if (unlikely(is_zero_ino(ino)))
 322				ino++;
 323		}
 324		*inop = ino;
 325		*next_ino = ++ino;
 326		put_cpu();
 327	}
 328
 329	return 0;
 330}
 331
 332static void shmem_free_inode(struct super_block *sb)
 333{
 334	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 335	if (sbinfo->max_inodes) {
 336		raw_spin_lock(&sbinfo->stat_lock);
 337		sbinfo->free_inodes++;
 338		raw_spin_unlock(&sbinfo->stat_lock);
 339	}
 340}
 341
 342/**
 343 * shmem_recalc_inode - recalculate the block usage of an inode
 344 * @inode: inode to recalc
 345 *
 346 * We have to calculate the free blocks since the mm can drop
 347 * undirtied hole pages behind our back.
 348 *
 349 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 351 *
 352 * It has to be called with the spinlock held.
 353 */
 354static void shmem_recalc_inode(struct inode *inode)
 355{
 356	struct shmem_inode_info *info = SHMEM_I(inode);
 357	long freed;
 358
 359	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 360	if (freed > 0) {
 361		info->alloced -= freed;
 362		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 363		shmem_inode_unacct_blocks(inode, freed);
 364	}
 365}
 366
 367bool shmem_charge(struct inode *inode, long pages)
 368{
 369	struct shmem_inode_info *info = SHMEM_I(inode);
 370	unsigned long flags;
 371
 372	if (!shmem_inode_acct_block(inode, pages))
 373		return false;
 374
 375	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
 376	inode->i_mapping->nrpages += pages;
 377
 378	spin_lock_irqsave(&info->lock, flags);
 379	info->alloced += pages;
 380	inode->i_blocks += pages * BLOCKS_PER_PAGE;
 381	shmem_recalc_inode(inode);
 382	spin_unlock_irqrestore(&info->lock, flags);
 383
 384	return true;
 385}
 386
 387void shmem_uncharge(struct inode *inode, long pages)
 388{
 389	struct shmem_inode_info *info = SHMEM_I(inode);
 390	unsigned long flags;
 391
 392	/* nrpages adjustment done by __filemap_remove_folio() or caller */
 393
 394	spin_lock_irqsave(&info->lock, flags);
 395	info->alloced -= pages;
 396	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 397	shmem_recalc_inode(inode);
 398	spin_unlock_irqrestore(&info->lock, flags);
 399
 400	shmem_inode_unacct_blocks(inode, pages);
 401}
 402
 403/*
 404 * Replace item expected in xarray by a new item, while holding xa_lock.
 405 */
 406static int shmem_replace_entry(struct address_space *mapping,
 407			pgoff_t index, void *expected, void *replacement)
 408{
 409	XA_STATE(xas, &mapping->i_pages, index);
 410	void *item;
 411
 412	VM_BUG_ON(!expected);
 413	VM_BUG_ON(!replacement);
 414	item = xas_load(&xas);
 415	if (item != expected)
 416		return -ENOENT;
 417	xas_store(&xas, replacement);
 418	return 0;
 419}
 420
 421/*
 422 * Sometimes, before we decide whether to proceed or to fail, we must check
 423 * that an entry was not already brought back from swap by a racing thread.
 424 *
 425 * Checking page is not enough: by the time a SwapCache page is locked, it
 426 * might be reused, and again be SwapCache, using the same swap as before.
 427 */
 428static bool shmem_confirm_swap(struct address_space *mapping,
 429			       pgoff_t index, swp_entry_t swap)
 430{
 431	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
 432}
 433
 434/*
 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 436 *
 437 * SHMEM_HUGE_NEVER:
 438 *	disables huge pages for the mount;
 439 * SHMEM_HUGE_ALWAYS:
 440 *	enables huge pages for the mount;
 441 * SHMEM_HUGE_WITHIN_SIZE:
 442 *	only allocate huge pages if the page will be fully within i_size,
 443 *	also respect fadvise()/madvise() hints;
 444 * SHMEM_HUGE_ADVISE:
 445 *	only allocate huge pages if requested with fadvise()/madvise();
 446 */
 447
 448#define SHMEM_HUGE_NEVER	0
 449#define SHMEM_HUGE_ALWAYS	1
 450#define SHMEM_HUGE_WITHIN_SIZE	2
 451#define SHMEM_HUGE_ADVISE	3
 452
 453/*
 454 * Special values.
 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 456 *
 457 * SHMEM_HUGE_DENY:
 458 *	disables huge on shm_mnt and all mounts, for emergency use;
 459 * SHMEM_HUGE_FORCE:
 460 *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 461 *
 462 */
 463#define SHMEM_HUGE_DENY		(-1)
 464#define SHMEM_HUGE_FORCE	(-2)
 465
 466#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 467/* ifdef here to avoid bloating shmem.o when not necessary */
 468
 469static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
 470
 471bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 472		   pgoff_t index, bool shmem_huge_force)
 473{
 474	loff_t i_size;
 475
 476	if (!S_ISREG(inode->i_mode))
 477		return false;
 478	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
 479	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
 480		return false;
 481	if (shmem_huge == SHMEM_HUGE_DENY)
 482		return false;
 483	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
 484		return true;
 485
 486	switch (SHMEM_SB(inode->i_sb)->huge) {
 487	case SHMEM_HUGE_ALWAYS:
 488		return true;
 489	case SHMEM_HUGE_WITHIN_SIZE:
 490		index = round_up(index + 1, HPAGE_PMD_NR);
 491		i_size = round_up(i_size_read(inode), PAGE_SIZE);
 492		if (i_size >> PAGE_SHIFT >= index)
 493			return true;
 494		fallthrough;
 495	case SHMEM_HUGE_ADVISE:
 496		if (vma && (vma->vm_flags & VM_HUGEPAGE))
 497			return true;
 498		fallthrough;
 499	default:
 500		return false;
 501	}
 502}
 503
 504#if defined(CONFIG_SYSFS)
 505static int shmem_parse_huge(const char *str)
 506{
 507	if (!strcmp(str, "never"))
 508		return SHMEM_HUGE_NEVER;
 509	if (!strcmp(str, "always"))
 510		return SHMEM_HUGE_ALWAYS;
 511	if (!strcmp(str, "within_size"))
 512		return SHMEM_HUGE_WITHIN_SIZE;
 513	if (!strcmp(str, "advise"))
 514		return SHMEM_HUGE_ADVISE;
 515	if (!strcmp(str, "deny"))
 516		return SHMEM_HUGE_DENY;
 517	if (!strcmp(str, "force"))
 518		return SHMEM_HUGE_FORCE;
 519	return -EINVAL;
 520}
 521#endif
 522
 523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 524static const char *shmem_format_huge(int huge)
 525{
 526	switch (huge) {
 527	case SHMEM_HUGE_NEVER:
 528		return "never";
 529	case SHMEM_HUGE_ALWAYS:
 530		return "always";
 531	case SHMEM_HUGE_WITHIN_SIZE:
 532		return "within_size";
 533	case SHMEM_HUGE_ADVISE:
 534		return "advise";
 535	case SHMEM_HUGE_DENY:
 536		return "deny";
 537	case SHMEM_HUGE_FORCE:
 538		return "force";
 539	default:
 540		VM_BUG_ON(1);
 541		return "bad_val";
 542	}
 543}
 544#endif
 545
 546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 547		struct shrink_control *sc, unsigned long nr_to_split)
 548{
 549	LIST_HEAD(list), *pos, *next;
 550	LIST_HEAD(to_remove);
 551	struct inode *inode;
 552	struct shmem_inode_info *info;
 553	struct folio *folio;
 554	unsigned long batch = sc ? sc->nr_to_scan : 128;
 555	int split = 0;
 556
 557	if (list_empty(&sbinfo->shrinklist))
 558		return SHRINK_STOP;
 559
 560	spin_lock(&sbinfo->shrinklist_lock);
 561	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 562		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 563
 564		/* pin the inode */
 565		inode = igrab(&info->vfs_inode);
 566
 567		/* inode is about to be evicted */
 568		if (!inode) {
 569			list_del_init(&info->shrinklist);
 
 570			goto next;
 571		}
 572
 573		/* Check if there's anything to gain */
 574		if (round_up(inode->i_size, PAGE_SIZE) ==
 575				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 576			list_move(&info->shrinklist, &to_remove);
 
 577			goto next;
 578		}
 579
 580		list_move(&info->shrinklist, &list);
 581next:
 582		sbinfo->shrinklist_len--;
 583		if (!--batch)
 584			break;
 585	}
 586	spin_unlock(&sbinfo->shrinklist_lock);
 587
 588	list_for_each_safe(pos, next, &to_remove) {
 589		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 590		inode = &info->vfs_inode;
 591		list_del_init(&info->shrinklist);
 592		iput(inode);
 593	}
 594
 595	list_for_each_safe(pos, next, &list) {
 596		int ret;
 597		pgoff_t index;
 598
 599		info = list_entry(pos, struct shmem_inode_info, shrinklist);
 600		inode = &info->vfs_inode;
 601
 602		if (nr_to_split && split >= nr_to_split)
 603			goto move_back;
 604
 605		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
 606		folio = filemap_get_folio(inode->i_mapping, index);
 607		if (!folio)
 608			goto drop;
 609
 610		/* No huge page at the end of the file: nothing to split */
 611		if (!folio_test_large(folio)) {
 612			folio_put(folio);
 613			goto drop;
 614		}
 615
 616		/*
 617		 * Move the inode on the list back to shrinklist if we failed
 618		 * to lock the page at this time.
 619		 *
 620		 * Waiting for the lock may lead to deadlock in the
 621		 * reclaim path.
 622		 */
 623		if (!folio_trylock(folio)) {
 624			folio_put(folio);
 625			goto move_back;
 626		}
 627
 628		ret = split_folio(folio);
 629		folio_unlock(folio);
 630		folio_put(folio);
 631
 632		/* If split failed move the inode on the list back to shrinklist */
 633		if (ret)
 634			goto move_back;
 635
 636		split++;
 637drop:
 638		list_del_init(&info->shrinklist);
 639		goto put;
 640move_back:
 641		/*
 642		 * Make sure the inode is either on the global list or deleted
 643		 * from any local list before iput() since it could be deleted
 644		 * in another thread once we put the inode (then the local list
 645		 * is corrupted).
 646		 */
 647		spin_lock(&sbinfo->shrinklist_lock);
 648		list_move(&info->shrinklist, &sbinfo->shrinklist);
 649		sbinfo->shrinklist_len++;
 650		spin_unlock(&sbinfo->shrinklist_lock);
 651put:
 652		iput(inode);
 653	}
 654
 
 
 
 
 
 655	return split;
 656}
 657
 658static long shmem_unused_huge_scan(struct super_block *sb,
 659		struct shrink_control *sc)
 660{
 661	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 662
 663	if (!READ_ONCE(sbinfo->shrinklist_len))
 664		return SHRINK_STOP;
 665
 666	return shmem_unused_huge_shrink(sbinfo, sc, 0);
 667}
 668
 669static long shmem_unused_huge_count(struct super_block *sb,
 670		struct shrink_control *sc)
 671{
 672	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 673	return READ_ONCE(sbinfo->shrinklist_len);
 674}
 675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
 676
 677#define shmem_huge SHMEM_HUGE_DENY
 678
 679bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
 680		   pgoff_t index, bool shmem_huge_force)
 681{
 682	return false;
 683}
 684
 685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 686		struct shrink_control *sc, unsigned long nr_to_split)
 687{
 688	return 0;
 689}
 690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 691
 
 
 
 
 
 
 
 
 
 692/*
 693 * Like filemap_add_folio, but error if expected item has gone.
 694 */
 695static int shmem_add_to_page_cache(struct folio *folio,
 696				   struct address_space *mapping,
 697				   pgoff_t index, void *expected, gfp_t gfp,
 698				   struct mm_struct *charge_mm)
 699{
 700	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
 701	long nr = folio_nr_pages(folio);
 
 702	int error;
 703
 704	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
 705	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
 706	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
 707	VM_BUG_ON(expected && folio_test_large(folio));
 708
 709	folio_ref_add(folio, nr);
 710	folio->mapping = mapping;
 711	folio->index = index;
 
 712
 713	if (!folio_test_swapcache(folio)) {
 714		error = mem_cgroup_charge(folio, charge_mm, gfp);
 715		if (error) {
 716			if (folio_test_pmd_mappable(folio)) {
 717				count_vm_event(THP_FILE_FALLBACK);
 718				count_vm_event(THP_FILE_FALLBACK_CHARGE);
 719			}
 720			goto error;
 721		}
 722	}
 723	folio_throttle_swaprate(folio, gfp);
 724
 725	do {
 
 726		xas_lock_irq(&xas);
 727		if (expected != xas_find_conflict(&xas)) {
 
 728			xas_set_err(&xas, -EEXIST);
 
 
 729			goto unlock;
 
 
 
 
 
 730		}
 731		if (expected && xas_find_conflict(&xas)) {
 732			xas_set_err(&xas, -EEXIST);
 733			goto unlock;
 734		}
 735		xas_store(&xas, folio);
 736		if (xas_error(&xas))
 737			goto unlock;
 738		if (folio_test_pmd_mappable(folio)) {
 739			count_vm_event(THP_FILE_ALLOC);
 740			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
 741		}
 742		mapping->nrpages += nr;
 743		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
 744		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
 745unlock:
 746		xas_unlock_irq(&xas);
 747	} while (xas_nomem(&xas, gfp));
 748
 749	if (xas_error(&xas)) {
 750		error = xas_error(&xas);
 751		goto error;
 752	}
 753
 754	return 0;
 755error:
 756	folio->mapping = NULL;
 757	folio_ref_sub(folio, nr);
 758	return error;
 759}
 760
 761/*
 762 * Like delete_from_page_cache, but substitutes swap for @folio.
 763 */
 764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
 765{
 766	struct address_space *mapping = folio->mapping;
 767	long nr = folio_nr_pages(folio);
 768	int error;
 769
 
 
 770	xa_lock_irq(&mapping->i_pages);
 771	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
 772	folio->mapping = NULL;
 773	mapping->nrpages -= nr;
 774	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
 775	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
 776	xa_unlock_irq(&mapping->i_pages);
 777	folio_put(folio);
 778	BUG_ON(error);
 779}
 780
 781/*
 782 * Remove swap entry from page cache, free the swap and its page cache.
 783 */
 784static int shmem_free_swap(struct address_space *mapping,
 785			   pgoff_t index, void *radswap)
 786{
 787	void *old;
 788
 789	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
 790	if (old != radswap)
 791		return -ENOENT;
 792	free_swap_and_cache(radix_to_swp_entry(radswap));
 793	return 0;
 794}
 795
 796/*
 797 * Determine (in bytes) how many of the shmem object's pages mapped by the
 798 * given offsets are swapped out.
 799 *
 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 801 * as long as the inode doesn't go away and racy results are not a problem.
 802 */
 803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 804						pgoff_t start, pgoff_t end)
 805{
 806	XA_STATE(xas, &mapping->i_pages, start);
 807	struct page *page;
 808	unsigned long swapped = 0;
 809
 810	rcu_read_lock();
 811	xas_for_each(&xas, page, end - 1) {
 812		if (xas_retry(&xas, page))
 813			continue;
 814		if (xa_is_value(page))
 815			swapped++;
 816
 817		if (need_resched()) {
 818			xas_pause(&xas);
 819			cond_resched_rcu();
 820		}
 821	}
 822
 823	rcu_read_unlock();
 824
 825	return swapped << PAGE_SHIFT;
 826}
 827
 828/*
 829 * Determine (in bytes) how many of the shmem object's pages mapped by the
 830 * given vma is swapped out.
 831 *
 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
 833 * as long as the inode doesn't go away and racy results are not a problem.
 834 */
 835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 836{
 837	struct inode *inode = file_inode(vma->vm_file);
 838	struct shmem_inode_info *info = SHMEM_I(inode);
 839	struct address_space *mapping = inode->i_mapping;
 840	unsigned long swapped;
 841
 842	/* Be careful as we don't hold info->lock */
 843	swapped = READ_ONCE(info->swapped);
 844
 845	/*
 846	 * The easier cases are when the shmem object has nothing in swap, or
 847	 * the vma maps it whole. Then we can simply use the stats that we
 848	 * already track.
 849	 */
 850	if (!swapped)
 851		return 0;
 852
 853	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 854		return swapped << PAGE_SHIFT;
 855
 856	/* Here comes the more involved part */
 857	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
 858					vma->vm_pgoff + vma_pages(vma));
 
 859}
 860
 861/*
 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 863 */
 864void shmem_unlock_mapping(struct address_space *mapping)
 865{
 866	struct folio_batch fbatch;
 867	pgoff_t index = 0;
 868
 869	folio_batch_init(&fbatch);
 870	/*
 871	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 872	 */
 873	while (!mapping_unevictable(mapping) &&
 874	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
 875		check_move_unevictable_folios(&fbatch);
 876		folio_batch_release(&fbatch);
 
 877		cond_resched();
 878	}
 879}
 880
 881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
 
 
 
 
 
 
 
 
 
 
 
 
 882{
 883	struct folio *folio;
 
 884
 885	/*
 886	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
 887	 * beyond i_size, and reports fallocated pages as holes.
 888	 */
 889	folio = __filemap_get_folio(inode->i_mapping, index,
 890					FGP_ENTRY | FGP_LOCK, 0);
 891	if (!xa_is_value(folio))
 892		return folio;
 893	/*
 894	 * But read a page back from swap if any of it is within i_size
 895	 * (although in some cases this is just a waste of time).
 896	 */
 897	folio = NULL;
 898	shmem_get_folio(inode, index, &folio, SGP_READ);
 899	return folio;
 900}
 901
 902/*
 903 * Remove range of pages and swap entries from page cache, and free them.
 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 905 */
 906static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 907								 bool unfalloc)
 908{
 909	struct address_space *mapping = inode->i_mapping;
 910	struct shmem_inode_info *info = SHMEM_I(inode);
 911	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 912	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 913	struct folio_batch fbatch;
 
 
 914	pgoff_t indices[PAGEVEC_SIZE];
 915	struct folio *folio;
 916	bool same_folio;
 917	long nr_swaps_freed = 0;
 918	pgoff_t index;
 919	int i;
 920
 921	if (lend == -1)
 922		end = -1;	/* unsigned, so actually very big */
 923
 924	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
 925		info->fallocend = start;
 
 
 
 
 926
 927	folio_batch_init(&fbatch);
 928	index = start;
 929	while (index < end && find_lock_entries(mapping, &index, end - 1,
 930			&fbatch, indices)) {
 931		for (i = 0; i < folio_batch_count(&fbatch); i++) {
 932			folio = fbatch.folios[i];
 933
 934			if (xa_is_value(folio)) {
 935				if (unfalloc)
 936					continue;
 937				nr_swaps_freed += !shmem_free_swap(mapping,
 938							indices[i], folio);
 939				continue;
 940			}
 
 941
 942			if (!unfalloc || !folio_test_uptodate(folio))
 943				truncate_inode_folio(mapping, folio);
 944			folio_unlock(folio);
 945		}
 946		folio_batch_remove_exceptionals(&fbatch);
 947		folio_batch_release(&fbatch);
 948		cond_resched();
 
 949	}
 950
 951	/*
 952	 * When undoing a failed fallocate, we want none of the partial folio
 953	 * zeroing and splitting below, but shall want to truncate the whole
 954	 * folio when !uptodate indicates that it was added by this fallocate,
 955	 * even when [lstart, lend] covers only a part of the folio.
 956	 */
 957	if (unfalloc)
 958		goto whole_folios;
 959
 960	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
 961	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
 962	if (folio) {
 963		same_folio = lend < folio_pos(folio) + folio_size(folio);
 964		folio_mark_dirty(folio);
 965		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
 966			start = folio->index + folio_nr_pages(folio);
 967			if (same_folio)
 968				end = folio->index;
 969		}
 970		folio_unlock(folio);
 971		folio_put(folio);
 972		folio = NULL;
 973	}
 974
 975	if (!same_folio)
 976		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
 977	if (folio) {
 978		folio_mark_dirty(folio);
 979		if (!truncate_inode_partial_folio(folio, lstart, lend))
 980			end = folio->index;
 981		folio_unlock(folio);
 982		folio_put(folio);
 983	}
 984
 985whole_folios:
 986
 987	index = start;
 988	while (index < end) {
 989		cond_resched();
 990
 991		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
 992				indices)) {
 993			/* If all gone or hole-punch or unfalloc, we're done */
 994			if (index == start || end != -1)
 995				break;
 996			/* But if truncating, restart to make sure all gone */
 997			index = start;
 998			continue;
 999		}
1000		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001			folio = fbatch.folios[i];
1002
1003			if (xa_is_value(folio)) {
 
1004				if (unfalloc)
1005					continue;
1006				if (shmem_free_swap(mapping, indices[i], folio)) {
1007					/* Swap was replaced by page: retry */
1008					index = indices[i];
1009					break;
1010				}
1011				nr_swaps_freed++;
1012				continue;
1013			}
1014
1015			folio_lock(folio);
1016
1017			if (!unfalloc || !folio_test_uptodate(folio)) {
1018				if (folio_mapping(folio) != mapping) {
1019					/* Page was replaced by swap: retry */
1020					folio_unlock(folio);
1021					index = indices[i];
1022					break;
1023				}
1024				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025						folio);
1026				truncate_inode_folio(mapping, folio);
 
 
 
 
 
 
 
 
 
1027			}
1028			folio_unlock(folio);
1029		}
1030		folio_batch_remove_exceptionals(&fbatch);
1031		folio_batch_release(&fbatch);
 
1032	}
1033
1034	spin_lock_irq(&info->lock);
1035	info->swapped -= nr_swaps_freed;
1036	shmem_recalc_inode(inode);
1037	spin_unlock_irq(&info->lock);
1038}
1039
1040void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041{
1042	shmem_undo_range(inode, lstart, lend, false);
1043	inode->i_ctime = inode->i_mtime = current_time(inode);
1044	inode_inc_iversion(inode);
1045}
1046EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047
1048static int shmem_getattr(struct user_namespace *mnt_userns,
1049			 const struct path *path, struct kstat *stat,
1050			 u32 request_mask, unsigned int query_flags)
1051{
1052	struct inode *inode = path->dentry->d_inode;
1053	struct shmem_inode_info *info = SHMEM_I(inode);
 
1054
1055	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056		spin_lock_irq(&info->lock);
1057		shmem_recalc_inode(inode);
1058		spin_unlock_irq(&info->lock);
1059	}
1060	if (info->fsflags & FS_APPEND_FL)
1061		stat->attributes |= STATX_ATTR_APPEND;
1062	if (info->fsflags & FS_IMMUTABLE_FL)
1063		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064	if (info->fsflags & FS_NODUMP_FL)
1065		stat->attributes |= STATX_ATTR_NODUMP;
1066	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067			STATX_ATTR_IMMUTABLE |
1068			STATX_ATTR_NODUMP);
1069	generic_fillattr(&init_user_ns, inode, stat);
1070
1071	if (shmem_is_huge(NULL, inode, 0, false))
1072		stat->blksize = HPAGE_PMD_SIZE;
1073
1074	if (request_mask & STATX_BTIME) {
1075		stat->result_mask |= STATX_BTIME;
1076		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078	}
1079
1080	return 0;
1081}
1082
1083static int shmem_setattr(struct user_namespace *mnt_userns,
1084			 struct dentry *dentry, struct iattr *attr)
1085{
1086	struct inode *inode = d_inode(dentry);
1087	struct shmem_inode_info *info = SHMEM_I(inode);
 
1088	int error;
1089	bool update_mtime = false;
1090	bool update_ctime = true;
1091
1092	error = setattr_prepare(&init_user_ns, dentry, attr);
1093	if (error)
1094		return error;
1095
1096	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1097		loff_t oldsize = inode->i_size;
1098		loff_t newsize = attr->ia_size;
1099
1100		/* protected by i_rwsem */
1101		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1102		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1103			return -EPERM;
1104
1105		if (newsize != oldsize) {
1106			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1107					oldsize, newsize);
1108			if (error)
1109				return error;
1110			i_size_write(inode, newsize);
1111			update_mtime = true;
1112		} else {
1113			update_ctime = false;
1114		}
1115		if (newsize <= oldsize) {
1116			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1117			if (oldsize > holebegin)
1118				unmap_mapping_range(inode->i_mapping,
1119							holebegin, 0, 1);
1120			if (info->alloced)
1121				shmem_truncate_range(inode,
1122							newsize, (loff_t)-1);
1123			/* unmap again to remove racily COWed private pages */
1124			if (oldsize > holebegin)
1125				unmap_mapping_range(inode->i_mapping,
1126							holebegin, 0, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127		}
1128	}
1129
1130	setattr_copy(&init_user_ns, inode, attr);
1131	if (attr->ia_valid & ATTR_MODE)
1132		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1133	if (!error && update_ctime) {
1134		inode->i_ctime = current_time(inode);
1135		if (update_mtime)
1136			inode->i_mtime = inode->i_ctime;
1137		inode_inc_iversion(inode);
1138	}
1139	return error;
1140}
1141
1142static void shmem_evict_inode(struct inode *inode)
1143{
1144	struct shmem_inode_info *info = SHMEM_I(inode);
1145	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1146
1147	if (shmem_mapping(inode->i_mapping)) {
1148		shmem_unacct_size(info->flags, inode->i_size);
1149		inode->i_size = 0;
1150		mapping_set_exiting(inode->i_mapping);
1151		shmem_truncate_range(inode, 0, (loff_t)-1);
1152		if (!list_empty(&info->shrinklist)) {
1153			spin_lock(&sbinfo->shrinklist_lock);
1154			if (!list_empty(&info->shrinklist)) {
1155				list_del_init(&info->shrinklist);
1156				sbinfo->shrinklist_len--;
1157			}
1158			spin_unlock(&sbinfo->shrinklist_lock);
1159		}
1160		while (!list_empty(&info->swaplist)) {
1161			/* Wait while shmem_unuse() is scanning this inode... */
1162			wait_var_event(&info->stop_eviction,
1163				       !atomic_read(&info->stop_eviction));
1164			mutex_lock(&shmem_swaplist_mutex);
1165			/* ...but beware of the race if we peeked too early */
1166			if (!atomic_read(&info->stop_eviction))
1167				list_del_init(&info->swaplist);
1168			mutex_unlock(&shmem_swaplist_mutex);
1169		}
1170	}
1171
1172	simple_xattrs_free(&info->xattrs);
1173	WARN_ON(inode->i_blocks);
1174	shmem_free_inode(inode->i_sb);
1175	clear_inode(inode);
1176}
1177
 
 
1178static int shmem_find_swap_entries(struct address_space *mapping,
1179				   pgoff_t start, struct folio_batch *fbatch,
1180				   pgoff_t *indices, unsigned int type)
 
1181{
1182	XA_STATE(xas, &mapping->i_pages, start);
1183	struct folio *folio;
1184	swp_entry_t entry;
 
 
 
 
1185
1186	rcu_read_lock();
1187	xas_for_each(&xas, folio, ULONG_MAX) {
1188		if (xas_retry(&xas, folio))
1189			continue;
1190
1191		if (!xa_is_value(folio))
1192			continue;
1193
1194		entry = radix_to_swp_entry(folio);
1195		/*
1196		 * swapin error entries can be found in the mapping. But they're
1197		 * deliberately ignored here as we've done everything we can do.
1198		 */
1199		if (swp_type(entry) != type)
1200			continue;
 
 
 
1201
1202		indices[folio_batch_count(fbatch)] = xas.xa_index;
1203		if (!folio_batch_add(fbatch, folio))
1204			break;
1205
1206		if (need_resched()) {
1207			xas_pause(&xas);
1208			cond_resched_rcu();
1209		}
 
 
1210	}
1211	rcu_read_unlock();
1212
1213	return xas.xa_index;
1214}
1215
1216/*
1217 * Move the swapped pages for an inode to page cache. Returns the count
1218 * of pages swapped in, or the error in case of failure.
1219 */
1220static int shmem_unuse_swap_entries(struct inode *inode,
1221		struct folio_batch *fbatch, pgoff_t *indices)
1222{
1223	int i = 0;
1224	int ret = 0;
1225	int error = 0;
1226	struct address_space *mapping = inode->i_mapping;
1227
1228	for (i = 0; i < folio_batch_count(fbatch); i++) {
1229		struct folio *folio = fbatch->folios[i];
1230
1231		if (!xa_is_value(folio))
1232			continue;
1233		error = shmem_swapin_folio(inode, indices[i],
1234					  &folio, SGP_CACHE,
1235					  mapping_gfp_mask(mapping),
1236					  NULL, NULL);
1237		if (error == 0) {
1238			folio_unlock(folio);
1239			folio_put(folio);
1240			ret++;
1241		}
1242		if (error == -ENOMEM)
1243			break;
1244		error = 0;
1245	}
1246	return error ? error : ret;
1247}
1248
1249/*
1250 * If swap found in inode, free it and move page from swapcache to filecache.
1251 */
1252static int shmem_unuse_inode(struct inode *inode, unsigned int type)
 
1253{
1254	struct address_space *mapping = inode->i_mapping;
1255	pgoff_t start = 0;
1256	struct folio_batch fbatch;
1257	pgoff_t indices[PAGEVEC_SIZE];
 
1258	int ret = 0;
1259
 
1260	do {
1261		folio_batch_init(&fbatch);
1262		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1263		if (folio_batch_count(&fbatch) == 0) {
 
 
 
 
 
 
1264			ret = 0;
1265			break;
1266		}
1267
1268		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1269		if (ret < 0)
1270			break;
1271
1272		start = indices[folio_batch_count(&fbatch) - 1];
 
 
 
 
 
 
 
 
1273	} while (true);
1274
1275	return ret;
1276}
1277
1278/*
1279 * Read all the shared memory data that resides in the swap
1280 * device 'type' back into memory, so the swap device can be
1281 * unused.
1282 */
1283int shmem_unuse(unsigned int type)
 
1284{
1285	struct shmem_inode_info *info, *next;
1286	int error = 0;
1287
1288	if (list_empty(&shmem_swaplist))
1289		return 0;
1290
1291	mutex_lock(&shmem_swaplist_mutex);
1292	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1293		if (!info->swapped) {
1294			list_del_init(&info->swaplist);
1295			continue;
1296		}
1297		/*
1298		 * Drop the swaplist mutex while searching the inode for swap;
1299		 * but before doing so, make sure shmem_evict_inode() will not
1300		 * remove placeholder inode from swaplist, nor let it be freed
1301		 * (igrab() would protect from unlink, but not from unmount).
1302		 */
1303		atomic_inc(&info->stop_eviction);
1304		mutex_unlock(&shmem_swaplist_mutex);
1305
1306		error = shmem_unuse_inode(&info->vfs_inode, type);
 
1307		cond_resched();
1308
1309		mutex_lock(&shmem_swaplist_mutex);
1310		next = list_next_entry(info, swaplist);
1311		if (!info->swapped)
1312			list_del_init(&info->swaplist);
1313		if (atomic_dec_and_test(&info->stop_eviction))
1314			wake_up_var(&info->stop_eviction);
1315		if (error)
1316			break;
1317	}
1318	mutex_unlock(&shmem_swaplist_mutex);
1319
1320	return error;
1321}
1322
1323/*
1324 * Move the page from the page cache to the swap cache.
1325 */
1326static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1327{
1328	struct folio *folio = page_folio(page);
1329	struct shmem_inode_info *info;
1330	struct address_space *mapping;
1331	struct inode *inode;
1332	swp_entry_t swap;
1333	pgoff_t index;
1334
1335	/*
1336	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1337	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1338	 * and its shmem_writeback() needs them to be split when swapping.
1339	 */
1340	if (folio_test_large(folio)) {
1341		/* Ensure the subpages are still dirty */
1342		folio_test_set_dirty(folio);
1343		if (split_huge_page(page) < 0)
1344			goto redirty;
1345		folio = page_folio(page);
1346		folio_clear_dirty(folio);
1347	}
1348
1349	BUG_ON(!folio_test_locked(folio));
1350	mapping = folio->mapping;
1351	index = folio->index;
1352	inode = mapping->host;
1353	info = SHMEM_I(inode);
1354	if (info->flags & VM_LOCKED)
1355		goto redirty;
1356	if (!total_swap_pages)
1357		goto redirty;
1358
1359	/*
1360	 * Our capabilities prevent regular writeback or sync from ever calling
1361	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1362	 * its underlying filesystem, in which case tmpfs should write out to
1363	 * swap only in response to memory pressure, and not for the writeback
1364	 * threads or sync.
1365	 */
1366	if (!wbc->for_reclaim) {
1367		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1368		goto redirty;
1369	}
1370
1371	/*
1372	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1373	 * value into swapfile.c, the only way we can correctly account for a
1374	 * fallocated folio arriving here is now to initialize it and write it.
1375	 *
1376	 * That's okay for a folio already fallocated earlier, but if we have
1377	 * not yet completed the fallocation, then (a) we want to keep track
1378	 * of this folio in case we have to undo it, and (b) it may not be a
1379	 * good idea to continue anyway, once we're pushing into swap.  So
1380	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1381	 */
1382	if (!folio_test_uptodate(folio)) {
1383		if (inode->i_private) {
1384			struct shmem_falloc *shmem_falloc;
1385			spin_lock(&inode->i_lock);
1386			shmem_falloc = inode->i_private;
1387			if (shmem_falloc &&
1388			    !shmem_falloc->waitq &&
1389			    index >= shmem_falloc->start &&
1390			    index < shmem_falloc->next)
1391				shmem_falloc->nr_unswapped++;
1392			else
1393				shmem_falloc = NULL;
1394			spin_unlock(&inode->i_lock);
1395			if (shmem_falloc)
1396				goto redirty;
1397		}
1398		folio_zero_range(folio, 0, folio_size(folio));
1399		flush_dcache_folio(folio);
1400		folio_mark_uptodate(folio);
1401	}
1402
1403	swap = folio_alloc_swap(folio);
1404	if (!swap.val)
1405		goto redirty;
1406
1407	/*
1408	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1409	 * if it's not already there.  Do it now before the folio is
1410	 * moved to swap cache, when its pagelock no longer protects
1411	 * the inode from eviction.  But don't unlock the mutex until
1412	 * we've incremented swapped, because shmem_unuse_inode() will
1413	 * prune a !swapped inode from the swaplist under this mutex.
1414	 */
1415	mutex_lock(&shmem_swaplist_mutex);
1416	if (list_empty(&info->swaplist))
1417		list_add(&info->swaplist, &shmem_swaplist);
1418
1419	if (add_to_swap_cache(folio, swap,
1420			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1421			NULL) == 0) {
1422		spin_lock_irq(&info->lock);
1423		shmem_recalc_inode(inode);
1424		info->swapped++;
1425		spin_unlock_irq(&info->lock);
1426
1427		swap_shmem_alloc(swap);
1428		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1429
1430		mutex_unlock(&shmem_swaplist_mutex);
1431		BUG_ON(folio_mapped(folio));
1432		swap_writepage(&folio->page, wbc);
1433		return 0;
1434	}
1435
1436	mutex_unlock(&shmem_swaplist_mutex);
1437	put_swap_folio(folio, swap);
1438redirty:
1439	folio_mark_dirty(folio);
1440	if (wbc->for_reclaim)
1441		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1442	folio_unlock(folio);
1443	return 0;
1444}
1445
1446#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1447static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1448{
1449	char buffer[64];
1450
1451	if (!mpol || mpol->mode == MPOL_DEFAULT)
1452		return;		/* show nothing */
1453
1454	mpol_to_str(buffer, sizeof(buffer), mpol);
1455
1456	seq_printf(seq, ",mpol=%s", buffer);
1457}
1458
1459static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460{
1461	struct mempolicy *mpol = NULL;
1462	if (sbinfo->mpol) {
1463		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1464		mpol = sbinfo->mpol;
1465		mpol_get(mpol);
1466		raw_spin_unlock(&sbinfo->stat_lock);
1467	}
1468	return mpol;
1469}
1470#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1471static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1472{
1473}
1474static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1475{
1476	return NULL;
1477}
1478#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1479#ifndef CONFIG_NUMA
1480#define vm_policy vm_private_data
1481#endif
1482
1483static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1484		struct shmem_inode_info *info, pgoff_t index)
1485{
1486	/* Create a pseudo vma that just contains the policy */
1487	vma_init(vma, NULL);
1488	/* Bias interleave by inode number to distribute better across nodes */
1489	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1490	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1491}
1492
1493static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1494{
1495	/* Drop reference taken by mpol_shared_policy_lookup() */
1496	mpol_cond_put(vma->vm_policy);
1497}
1498
1499static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1500			struct shmem_inode_info *info, pgoff_t index)
1501{
1502	struct vm_area_struct pvma;
1503	struct page *page;
1504	struct vm_fault vmf = {
1505		.vma = &pvma,
1506	};
1507
1508	shmem_pseudo_vma_init(&pvma, info, index);
1509	page = swap_cluster_readahead(swap, gfp, &vmf);
1510	shmem_pseudo_vma_destroy(&pvma);
1511
1512	if (!page)
1513		return NULL;
1514	return page_folio(page);
1515}
1516
1517/*
1518 * Make sure huge_gfp is always more limited than limit_gfp.
1519 * Some of the flags set permissions, while others set limitations.
1520 */
1521static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1522{
1523	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1524	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1525	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1526	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1527
1528	/* Allow allocations only from the originally specified zones. */
1529	result |= zoneflags;
1530
1531	/*
1532	 * Minimize the result gfp by taking the union with the deny flags,
1533	 * and the intersection of the allow flags.
1534	 */
1535	result |= (limit_gfp & denyflags);
1536	result |= (huge_gfp & limit_gfp) & allowflags;
1537
1538	return result;
1539}
1540
1541static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1542		struct shmem_inode_info *info, pgoff_t index)
1543{
1544	struct vm_area_struct pvma;
1545	struct address_space *mapping = info->vfs_inode.i_mapping;
1546	pgoff_t hindex;
1547	struct folio *folio;
1548
1549	hindex = round_down(index, HPAGE_PMD_NR);
1550	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1551								XA_PRESENT))
1552		return NULL;
1553
1554	shmem_pseudo_vma_init(&pvma, info, hindex);
1555	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
 
1556	shmem_pseudo_vma_destroy(&pvma);
1557	if (!folio)
 
 
1558		count_vm_event(THP_FILE_FALLBACK);
1559	return folio;
1560}
1561
1562static struct folio *shmem_alloc_folio(gfp_t gfp,
1563			struct shmem_inode_info *info, pgoff_t index)
1564{
1565	struct vm_area_struct pvma;
1566	struct folio *folio;
1567
1568	shmem_pseudo_vma_init(&pvma, info, index);
1569	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1570	shmem_pseudo_vma_destroy(&pvma);
1571
1572	return folio;
1573}
1574
1575static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
 
1576		pgoff_t index, bool huge)
1577{
1578	struct shmem_inode_info *info = SHMEM_I(inode);
1579	struct folio *folio;
1580	int nr;
1581	int err = -ENOSPC;
1582
1583	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1584		huge = false;
1585	nr = huge ? HPAGE_PMD_NR : 1;
1586
1587	if (!shmem_inode_acct_block(inode, nr))
1588		goto failed;
1589
1590	if (huge)
1591		folio = shmem_alloc_hugefolio(gfp, info, index);
1592	else
1593		folio = shmem_alloc_folio(gfp, info, index);
1594	if (folio) {
1595		__folio_set_locked(folio);
1596		__folio_set_swapbacked(folio);
1597		return folio;
1598	}
1599
1600	err = -ENOMEM;
1601	shmem_inode_unacct_blocks(inode, nr);
1602failed:
1603	return ERR_PTR(err);
1604}
1605
1606/*
1607 * When a page is moved from swapcache to shmem filecache (either by the
1608 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1609 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1610 * ignorance of the mapping it belongs to.  If that mapping has special
1611 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1612 * we may need to copy to a suitable page before moving to filecache.
1613 *
1614 * In a future release, this may well be extended to respect cpuset and
1615 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1616 * but for now it is a simple matter of zone.
1617 */
1618static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1619{
1620	return folio_zonenum(folio) > gfp_zone(gfp);
1621}
1622
1623static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1624				struct shmem_inode_info *info, pgoff_t index)
1625{
1626	struct folio *old, *new;
1627	struct address_space *swap_mapping;
1628	swp_entry_t entry;
1629	pgoff_t swap_index;
1630	int error;
1631
1632	old = *foliop;
1633	entry = folio_swap_entry(old);
1634	swap_index = swp_offset(entry);
1635	swap_mapping = swap_address_space(entry);
1636
1637	/*
1638	 * We have arrived here because our zones are constrained, so don't
1639	 * limit chance of success by further cpuset and node constraints.
1640	 */
1641	gfp &= ~GFP_CONSTRAINT_MASK;
1642	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1643	new = shmem_alloc_folio(gfp, info, index);
1644	if (!new)
1645		return -ENOMEM;
1646
1647	folio_get(new);
1648	folio_copy(new, old);
1649	flush_dcache_folio(new);
1650
1651	__folio_set_locked(new);
1652	__folio_set_swapbacked(new);
1653	folio_mark_uptodate(new);
1654	folio_set_swap_entry(new, entry);
1655	folio_set_swapcache(new);
1656
1657	/*
1658	 * Our caller will very soon move newpage out of swapcache, but it's
1659	 * a nice clean interface for us to replace oldpage by newpage there.
1660	 */
1661	xa_lock_irq(&swap_mapping->i_pages);
1662	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1663	if (!error) {
1664		mem_cgroup_migrate(old, new);
1665		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1666		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1667		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1668		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1669	}
1670	xa_unlock_irq(&swap_mapping->i_pages);
1671
1672	if (unlikely(error)) {
1673		/*
1674		 * Is this possible?  I think not, now that our callers check
1675		 * both PageSwapCache and page_private after getting page lock;
1676		 * but be defensive.  Reverse old to newpage for clear and free.
1677		 */
1678		old = new;
1679	} else {
1680		folio_add_lru(new);
1681		*foliop = new;
1682	}
1683
1684	folio_clear_swapcache(old);
1685	old->private = NULL;
1686
1687	folio_unlock(old);
1688	folio_put_refs(old, 2);
 
1689	return error;
1690}
1691
1692static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1693					 struct folio *folio, swp_entry_t swap)
1694{
1695	struct address_space *mapping = inode->i_mapping;
1696	struct shmem_inode_info *info = SHMEM_I(inode);
1697	swp_entry_t swapin_error;
1698	void *old;
1699
1700	swapin_error = make_swapin_error_entry();
1701	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1702			     swp_to_radix_entry(swap),
1703			     swp_to_radix_entry(swapin_error), 0);
1704	if (old != swp_to_radix_entry(swap))
1705		return;
1706
1707	folio_wait_writeback(folio);
1708	delete_from_swap_cache(folio);
1709	spin_lock_irq(&info->lock);
1710	/*
1711	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1712	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1713	 * shmem_evict_inode.
1714	 */
1715	info->alloced--;
1716	info->swapped--;
1717	shmem_recalc_inode(inode);
1718	spin_unlock_irq(&info->lock);
1719	swap_free(swap);
1720}
1721
1722/*
1723 * Swap in the folio pointed to by *foliop.
1724 * Caller has to make sure that *foliop contains a valid swapped folio.
1725 * Returns 0 and the folio in foliop if success. On failure, returns the
1726 * error code and NULL in *foliop.
1727 */
1728static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1729			     struct folio **foliop, enum sgp_type sgp,
1730			     gfp_t gfp, struct vm_area_struct *vma,
1731			     vm_fault_t *fault_type)
1732{
1733	struct address_space *mapping = inode->i_mapping;
1734	struct shmem_inode_info *info = SHMEM_I(inode);
1735	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1736	struct folio *folio = NULL;
1737	swp_entry_t swap;
1738	int error;
1739
1740	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1741	swap = radix_to_swp_entry(*foliop);
1742	*foliop = NULL;
1743
1744	if (is_swapin_error_entry(swap))
1745		return -EIO;
1746
1747	/* Look it up and read it in.. */
1748	folio = swap_cache_get_folio(swap, NULL, 0);
1749	if (!folio) {
1750		/* Or update major stats only when swapin succeeds?? */
1751		if (fault_type) {
1752			*fault_type |= VM_FAULT_MAJOR;
1753			count_vm_event(PGMAJFAULT);
1754			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1755		}
1756		/* Here we actually start the io */
1757		folio = shmem_swapin(swap, gfp, info, index);
1758		if (!folio) {
1759			error = -ENOMEM;
1760			goto failed;
1761		}
1762	}
1763
1764	/* We have to do this with folio locked to prevent races */
1765	folio_lock(folio);
1766	if (!folio_test_swapcache(folio) ||
1767	    folio_swap_entry(folio).val != swap.val ||
1768	    !shmem_confirm_swap(mapping, index, swap)) {
1769		error = -EEXIST;
1770		goto unlock;
1771	}
1772	if (!folio_test_uptodate(folio)) {
1773		error = -EIO;
1774		goto failed;
1775	}
1776	folio_wait_writeback(folio);
1777
1778	/*
1779	 * Some architectures may have to restore extra metadata to the
1780	 * folio after reading from swap.
1781	 */
1782	arch_swap_restore(swap, folio);
1783
1784	if (shmem_should_replace_folio(folio, gfp)) {
1785		error = shmem_replace_folio(&folio, gfp, info, index);
1786		if (error)
1787			goto failed;
1788	}
1789
1790	error = shmem_add_to_page_cache(folio, mapping, index,
1791					swp_to_radix_entry(swap), gfp,
1792					charge_mm);
1793	if (error)
1794		goto failed;
1795
1796	spin_lock_irq(&info->lock);
1797	info->swapped--;
1798	shmem_recalc_inode(inode);
1799	spin_unlock_irq(&info->lock);
1800
1801	if (sgp == SGP_WRITE)
1802		folio_mark_accessed(folio);
1803
1804	delete_from_swap_cache(folio);
1805	folio_mark_dirty(folio);
1806	swap_free(swap);
1807
1808	*foliop = folio;
1809	return 0;
1810failed:
1811	if (!shmem_confirm_swap(mapping, index, swap))
1812		error = -EEXIST;
1813	if (error == -EIO)
1814		shmem_set_folio_swapin_error(inode, index, folio, swap);
1815unlock:
1816	if (folio) {
1817		folio_unlock(folio);
1818		folio_put(folio);
1819	}
1820
1821	return error;
1822}
1823
1824/*
1825 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1826 *
1827 * If we allocate a new one we do not mark it dirty. That's up to the
1828 * vm. If we swap it in we mark it dirty since we also free the swap
1829 * entry since a page cannot live in both the swap and page cache.
1830 *
1831 * vma, vmf, and fault_type are only supplied by shmem_fault:
1832 * otherwise they are NULL.
1833 */
1834static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1835		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1836		struct vm_area_struct *vma, struct vm_fault *vmf,
1837		vm_fault_t *fault_type)
1838{
1839	struct address_space *mapping = inode->i_mapping;
1840	struct shmem_inode_info *info = SHMEM_I(inode);
1841	struct shmem_sb_info *sbinfo;
1842	struct mm_struct *charge_mm;
1843	struct folio *folio;
1844	pgoff_t hindex;
 
1845	gfp_t huge_gfp;
1846	int error;
1847	int once = 0;
1848	int alloced = 0;
1849
1850	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1851		return -EFBIG;
 
 
1852repeat:
1853	if (sgp <= SGP_CACHE &&
1854	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855		return -EINVAL;
1856	}
1857
1858	sbinfo = SHMEM_SB(inode->i_sb);
1859	charge_mm = vma ? vma->vm_mm : NULL;
1860
1861	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1862	if (folio && vma && userfaultfd_minor(vma)) {
1863		if (!xa_is_value(folio)) {
1864			folio_unlock(folio);
1865			folio_put(folio);
 
 
1866		}
1867		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1868		return 0;
1869	}
1870
1871	if (xa_is_value(folio)) {
1872		error = shmem_swapin_folio(inode, index, &folio,
1873					  sgp, gfp, vma, fault_type);
1874		if (error == -EEXIST)
1875			goto repeat;
1876
1877		*foliop = folio;
1878		return error;
1879	}
1880
1881	if (folio) {
1882		if (sgp == SGP_WRITE)
1883			folio_mark_accessed(folio);
1884		if (folio_test_uptodate(folio))
1885			goto out;
1886		/* fallocated folio */
 
1887		if (sgp != SGP_READ)
1888			goto clear;
1889		folio_unlock(folio);
1890		folio_put(folio);
 
 
1891	}
 
 
1892
1893	/*
1894	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1895	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1896	 */
1897	*foliop = NULL;
1898	if (sgp == SGP_READ)
1899		return 0;
1900	if (sgp == SGP_NOALLOC)
1901		return -ENOENT;
1902
1903	/*
1904	 * Fast cache lookup and swap lookup did not find it: allocate.
1905	 */
1906
1907	if (vma && userfaultfd_missing(vma)) {
1908		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1909		return 0;
1910	}
1911
1912	if (!shmem_is_huge(vma, inode, index, false))
 
 
 
 
 
 
 
 
1913		goto alloc_nohuge;
 
 
 
1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915	huge_gfp = vma_thp_gfp_mask(vma);
1916	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1917	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1918	if (IS_ERR(folio)) {
1919alloc_nohuge:
1920		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
 
1921	}
1922	if (IS_ERR(folio)) {
1923		int retry = 5;
1924
1925		error = PTR_ERR(folio);
1926		folio = NULL;
1927		if (error != -ENOSPC)
1928			goto unlock;
1929		/*
1930		 * Try to reclaim some space by splitting a large folio
1931		 * beyond i_size on the filesystem.
1932		 */
1933		while (retry--) {
1934			int ret;
1935
1936			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1937			if (ret == SHRINK_STOP)
1938				break;
1939			if (ret)
1940				goto alloc_nohuge;
1941		}
1942		goto unlock;
1943	}
1944
1945	hindex = round_down(index, folio_nr_pages(folio));
 
 
 
1946
1947	if (sgp == SGP_WRITE)
1948		__folio_set_referenced(folio);
1949
1950	error = shmem_add_to_page_cache(folio, mapping, hindex,
1951					NULL, gfp & GFP_RECLAIM_MASK,
1952					charge_mm);
1953	if (error)
1954		goto unacct;
1955	folio_add_lru(folio);
1956
1957	spin_lock_irq(&info->lock);
1958	info->alloced += folio_nr_pages(folio);
1959	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1960	shmem_recalc_inode(inode);
1961	spin_unlock_irq(&info->lock);
1962	alloced = true;
1963
1964	if (folio_test_pmd_mappable(folio) &&
1965	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1966					folio_next_index(folio) - 1) {
1967		/*
1968		 * Part of the large folio is beyond i_size: subject
1969		 * to shrink under memory pressure.
1970		 */
1971		spin_lock(&sbinfo->shrinklist_lock);
1972		/*
1973		 * _careful to defend against unlocked access to
1974		 * ->shrink_list in shmem_unused_huge_shrink()
1975		 */
1976		if (list_empty_careful(&info->shrinklist)) {
1977			list_add_tail(&info->shrinklist,
1978				      &sbinfo->shrinklist);
1979			sbinfo->shrinklist_len++;
1980		}
1981		spin_unlock(&sbinfo->shrinklist_lock);
1982	}
1983
1984	/*
1985	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1986	 */
1987	if (sgp == SGP_FALLOC)
1988		sgp = SGP_WRITE;
1989clear:
1990	/*
1991	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1992	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1993	 * it now, lest undo on failure cancel our earlier guarantee.
1994	 */
1995	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1996		long i, n = folio_nr_pages(folio);
1997
1998		for (i = 0; i < n; i++)
1999			clear_highpage(folio_page(folio, i));
2000		flush_dcache_folio(folio);
2001		folio_mark_uptodate(folio);
 
2002	}
2003
2004	/* Perhaps the file has been truncated since we checked */
2005	if (sgp <= SGP_CACHE &&
2006	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2007		if (alloced) {
2008			folio_clear_dirty(folio);
2009			filemap_remove_folio(folio);
2010			spin_lock_irq(&info->lock);
2011			shmem_recalc_inode(inode);
2012			spin_unlock_irq(&info->lock);
2013		}
2014		error = -EINVAL;
2015		goto unlock;
2016	}
2017out:
2018	*foliop = folio;
2019	return 0;
2020
2021	/*
2022	 * Error recovery.
2023	 */
2024unacct:
2025	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2026
2027	if (folio_test_large(folio)) {
2028		folio_unlock(folio);
2029		folio_put(folio);
2030		goto alloc_nohuge;
2031	}
2032unlock:
2033	if (folio) {
2034		folio_unlock(folio);
2035		folio_put(folio);
2036	}
2037	if (error == -ENOSPC && !once++) {
2038		spin_lock_irq(&info->lock);
2039		shmem_recalc_inode(inode);
2040		spin_unlock_irq(&info->lock);
2041		goto repeat;
2042	}
2043	if (error == -EEXIST)
2044		goto repeat;
2045	return error;
2046}
2047
2048int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2049		enum sgp_type sgp)
2050{
2051	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2052			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2053}
2054
2055/*
2056 * This is like autoremove_wake_function, but it removes the wait queue
2057 * entry unconditionally - even if something else had already woken the
2058 * target.
2059 */
2060static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2061{
2062	int ret = default_wake_function(wait, mode, sync, key);
2063	list_del_init(&wait->entry);
2064	return ret;
2065}
2066
2067static vm_fault_t shmem_fault(struct vm_fault *vmf)
2068{
2069	struct vm_area_struct *vma = vmf->vma;
2070	struct inode *inode = file_inode(vma->vm_file);
2071	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2072	struct folio *folio = NULL;
2073	int err;
2074	vm_fault_t ret = VM_FAULT_LOCKED;
2075
2076	/*
2077	 * Trinity finds that probing a hole which tmpfs is punching can
2078	 * prevent the hole-punch from ever completing: which in turn
2079	 * locks writers out with its hold on i_rwsem.  So refrain from
2080	 * faulting pages into the hole while it's being punched.  Although
2081	 * shmem_undo_range() does remove the additions, it may be unable to
2082	 * keep up, as each new page needs its own unmap_mapping_range() call,
2083	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2084	 *
2085	 * It does not matter if we sometimes reach this check just before the
2086	 * hole-punch begins, so that one fault then races with the punch:
2087	 * we just need to make racing faults a rare case.
2088	 *
2089	 * The implementation below would be much simpler if we just used a
2090	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2091	 * and bloating every shmem inode for this unlikely case would be sad.
2092	 */
2093	if (unlikely(inode->i_private)) {
2094		struct shmem_falloc *shmem_falloc;
2095
2096		spin_lock(&inode->i_lock);
2097		shmem_falloc = inode->i_private;
2098		if (shmem_falloc &&
2099		    shmem_falloc->waitq &&
2100		    vmf->pgoff >= shmem_falloc->start &&
2101		    vmf->pgoff < shmem_falloc->next) {
2102			struct file *fpin;
2103			wait_queue_head_t *shmem_falloc_waitq;
2104			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2105
2106			ret = VM_FAULT_NOPAGE;
2107			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2108			if (fpin)
2109				ret = VM_FAULT_RETRY;
2110
2111			shmem_falloc_waitq = shmem_falloc->waitq;
2112			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2113					TASK_UNINTERRUPTIBLE);
2114			spin_unlock(&inode->i_lock);
2115			schedule();
2116
2117			/*
2118			 * shmem_falloc_waitq points into the shmem_fallocate()
2119			 * stack of the hole-punching task: shmem_falloc_waitq
2120			 * is usually invalid by the time we reach here, but
2121			 * finish_wait() does not dereference it in that case;
2122			 * though i_lock needed lest racing with wake_up_all().
2123			 */
2124			spin_lock(&inode->i_lock);
2125			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2126			spin_unlock(&inode->i_lock);
2127
2128			if (fpin)
2129				fput(fpin);
2130			return ret;
2131		}
2132		spin_unlock(&inode->i_lock);
2133	}
2134
2135	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
 
 
 
 
 
 
 
 
2136				  gfp, vma, vmf, &ret);
2137	if (err)
2138		return vmf_error(err);
2139	if (folio)
2140		vmf->page = folio_file_page(folio, vmf->pgoff);
2141	return ret;
2142}
2143
2144unsigned long shmem_get_unmapped_area(struct file *file,
2145				      unsigned long uaddr, unsigned long len,
2146				      unsigned long pgoff, unsigned long flags)
2147{
2148	unsigned long (*get_area)(struct file *,
2149		unsigned long, unsigned long, unsigned long, unsigned long);
2150	unsigned long addr;
2151	unsigned long offset;
2152	unsigned long inflated_len;
2153	unsigned long inflated_addr;
2154	unsigned long inflated_offset;
2155
2156	if (len > TASK_SIZE)
2157		return -ENOMEM;
2158
2159	get_area = current->mm->get_unmapped_area;
2160	addr = get_area(file, uaddr, len, pgoff, flags);
2161
2162	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2163		return addr;
2164	if (IS_ERR_VALUE(addr))
2165		return addr;
2166	if (addr & ~PAGE_MASK)
2167		return addr;
2168	if (addr > TASK_SIZE - len)
2169		return addr;
2170
2171	if (shmem_huge == SHMEM_HUGE_DENY)
2172		return addr;
2173	if (len < HPAGE_PMD_SIZE)
2174		return addr;
2175	if (flags & MAP_FIXED)
2176		return addr;
2177	/*
2178	 * Our priority is to support MAP_SHARED mapped hugely;
2179	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2180	 * But if caller specified an address hint and we allocated area there
2181	 * successfully, respect that as before.
2182	 */
2183	if (uaddr == addr)
2184		return addr;
2185
2186	if (shmem_huge != SHMEM_HUGE_FORCE) {
2187		struct super_block *sb;
2188
2189		if (file) {
2190			VM_BUG_ON(file->f_op != &shmem_file_operations);
2191			sb = file_inode(file)->i_sb;
2192		} else {
2193			/*
2194			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2195			 * for "/dev/zero", to create a shared anonymous object.
2196			 */
2197			if (IS_ERR(shm_mnt))
2198				return addr;
2199			sb = shm_mnt->mnt_sb;
2200		}
2201		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2202			return addr;
2203	}
2204
2205	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2206	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2207		return addr;
2208	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2209		return addr;
2210
2211	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2212	if (inflated_len > TASK_SIZE)
2213		return addr;
2214	if (inflated_len < len)
2215		return addr;
2216
2217	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2218	if (IS_ERR_VALUE(inflated_addr))
2219		return addr;
2220	if (inflated_addr & ~PAGE_MASK)
2221		return addr;
2222
2223	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2224	inflated_addr += offset - inflated_offset;
2225	if (inflated_offset > offset)
2226		inflated_addr += HPAGE_PMD_SIZE;
2227
2228	if (inflated_addr > TASK_SIZE - len)
2229		return addr;
2230	return inflated_addr;
2231}
2232
2233#ifdef CONFIG_NUMA
2234static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2235{
2236	struct inode *inode = file_inode(vma->vm_file);
2237	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2238}
2239
2240static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2241					  unsigned long addr)
2242{
2243	struct inode *inode = file_inode(vma->vm_file);
2244	pgoff_t index;
2245
2246	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2247	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2248}
2249#endif
2250
2251int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2252{
2253	struct inode *inode = file_inode(file);
2254	struct shmem_inode_info *info = SHMEM_I(inode);
2255	int retval = -ENOMEM;
2256
2257	/*
2258	 * What serializes the accesses to info->flags?
2259	 * ipc_lock_object() when called from shmctl_do_lock(),
2260	 * no serialization needed when called from shm_destroy().
2261	 */
2262	if (lock && !(info->flags & VM_LOCKED)) {
2263		if (!user_shm_lock(inode->i_size, ucounts))
2264			goto out_nomem;
2265		info->flags |= VM_LOCKED;
2266		mapping_set_unevictable(file->f_mapping);
2267	}
2268	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2269		user_shm_unlock(inode->i_size, ucounts);
2270		info->flags &= ~VM_LOCKED;
2271		mapping_clear_unevictable(file->f_mapping);
2272	}
2273	retval = 0;
2274
2275out_nomem:
2276	return retval;
2277}
2278
2279static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2280{
2281	struct inode *inode = file_inode(file);
2282	struct shmem_inode_info *info = SHMEM_I(inode);
2283	int ret;
2284
2285	ret = seal_check_future_write(info->seals, vma);
2286	if (ret)
2287		return ret;
2288
2289	/* arm64 - allow memory tagging on RAM-based files */
2290	vma->vm_flags |= VM_MTE_ALLOWED;
2291
2292	file_accessed(file);
2293	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2294	if (inode->i_nlink)
2295		vma->vm_ops = &shmem_vm_ops;
2296	else
2297		vma->vm_ops = &shmem_anon_vm_ops;
 
2298	return 0;
2299}
2300
2301#ifdef CONFIG_TMPFS_XATTR
2302static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2303
2304/*
2305 * chattr's fsflags are unrelated to extended attributes,
2306 * but tmpfs has chosen to enable them under the same config option.
2307 */
2308static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2309{
2310	unsigned int i_flags = 0;
2311
2312	if (fsflags & FS_NOATIME_FL)
2313		i_flags |= S_NOATIME;
2314	if (fsflags & FS_APPEND_FL)
2315		i_flags |= S_APPEND;
2316	if (fsflags & FS_IMMUTABLE_FL)
2317		i_flags |= S_IMMUTABLE;
2318	/*
2319	 * But FS_NODUMP_FL does not require any action in i_flags.
2320	 */
2321	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2322}
2323#else
2324static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2325{
2326}
2327#define shmem_initxattrs NULL
2328#endif
2329
2330static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2331				     umode_t mode, dev_t dev, unsigned long flags)
2332{
2333	struct inode *inode;
2334	struct shmem_inode_info *info;
2335	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2336	ino_t ino;
2337
2338	if (shmem_reserve_inode(sb, &ino))
2339		return NULL;
2340
2341	inode = new_inode(sb);
2342	if (inode) {
2343		inode->i_ino = ino;
2344		inode_init_owner(&init_user_ns, inode, dir, mode);
2345		inode->i_blocks = 0;
2346		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2347		inode->i_generation = get_random_u32();
2348		info = SHMEM_I(inode);
2349		memset(info, 0, (char *)inode - (char *)info);
2350		spin_lock_init(&info->lock);
2351		atomic_set(&info->stop_eviction, 0);
2352		info->seals = F_SEAL_SEAL;
2353		info->flags = flags & VM_NORESERVE;
2354		info->i_crtime = inode->i_mtime;
2355		info->fsflags = (dir == NULL) ? 0 :
2356			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2357		if (info->fsflags)
2358			shmem_set_inode_flags(inode, info->fsflags);
2359		INIT_LIST_HEAD(&info->shrinklist);
2360		INIT_LIST_HEAD(&info->swaplist);
2361		simple_xattrs_init(&info->xattrs);
2362		cache_no_acl(inode);
2363		mapping_set_large_folios(inode->i_mapping);
2364
2365		switch (mode & S_IFMT) {
2366		default:
2367			inode->i_op = &shmem_special_inode_operations;
2368			init_special_inode(inode, mode, dev);
2369			break;
2370		case S_IFREG:
2371			inode->i_mapping->a_ops = &shmem_aops;
2372			inode->i_op = &shmem_inode_operations;
2373			inode->i_fop = &shmem_file_operations;
2374			mpol_shared_policy_init(&info->policy,
2375						 shmem_get_sbmpol(sbinfo));
2376			break;
2377		case S_IFDIR:
2378			inc_nlink(inode);
2379			/* Some things misbehave if size == 0 on a directory */
2380			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2381			inode->i_op = &shmem_dir_inode_operations;
2382			inode->i_fop = &simple_dir_operations;
2383			break;
2384		case S_IFLNK:
2385			/*
2386			 * Must not load anything in the rbtree,
2387			 * mpol_free_shared_policy will not be called.
2388			 */
2389			mpol_shared_policy_init(&info->policy, NULL);
2390			break;
2391		}
2392
2393		lockdep_annotate_inode_mutex_key(inode);
2394	} else
2395		shmem_free_inode(sb);
2396	return inode;
2397}
2398
2399#ifdef CONFIG_USERFAULTFD
2400int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2401			   pmd_t *dst_pmd,
2402			   struct vm_area_struct *dst_vma,
2403			   unsigned long dst_addr,
2404			   unsigned long src_addr,
2405			   bool zeropage, bool wp_copy,
2406			   struct page **pagep)
2407{
2408	struct inode *inode = file_inode(dst_vma->vm_file);
2409	struct shmem_inode_info *info = SHMEM_I(inode);
2410	struct address_space *mapping = inode->i_mapping;
2411	gfp_t gfp = mapping_gfp_mask(mapping);
2412	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2413	void *page_kaddr;
2414	struct folio *folio;
2415	int ret;
2416	pgoff_t max_off;
2417
2418	if (!shmem_inode_acct_block(inode, 1)) {
2419		/*
2420		 * We may have got a page, returned -ENOENT triggering a retry,
2421		 * and now we find ourselves with -ENOMEM. Release the page, to
2422		 * avoid a BUG_ON in our caller.
2423		 */
2424		if (unlikely(*pagep)) {
2425			put_page(*pagep);
2426			*pagep = NULL;
2427		}
2428		return -ENOMEM;
2429	}
2430
2431	if (!*pagep) {
2432		ret = -ENOMEM;
2433		folio = shmem_alloc_folio(gfp, info, pgoff);
2434		if (!folio)
2435			goto out_unacct_blocks;
2436
2437		if (!zeropage) {	/* COPY */
2438			page_kaddr = kmap_local_folio(folio, 0);
2439			/*
2440			 * The read mmap_lock is held here.  Despite the
2441			 * mmap_lock being read recursive a deadlock is still
2442			 * possible if a writer has taken a lock.  For example:
2443			 *
2444			 * process A thread 1 takes read lock on own mmap_lock
2445			 * process A thread 2 calls mmap, blocks taking write lock
2446			 * process B thread 1 takes page fault, read lock on own mmap lock
2447			 * process B thread 2 calls mmap, blocks taking write lock
2448			 * process A thread 1 blocks taking read lock on process B
2449			 * process B thread 1 blocks taking read lock on process A
2450			 *
2451			 * Disable page faults to prevent potential deadlock
2452			 * and retry the copy outside the mmap_lock.
2453			 */
2454			pagefault_disable();
2455			ret = copy_from_user(page_kaddr,
2456					     (const void __user *)src_addr,
2457					     PAGE_SIZE);
2458			pagefault_enable();
2459			kunmap_local(page_kaddr);
2460
2461			/* fallback to copy_from_user outside mmap_lock */
2462			if (unlikely(ret)) {
2463				*pagep = &folio->page;
2464				ret = -ENOENT;
2465				/* don't free the page */
2466				goto out_unacct_blocks;
2467			}
2468
2469			flush_dcache_folio(folio);
2470		} else {		/* ZEROPAGE */
2471			clear_user_highpage(&folio->page, dst_addr);
2472		}
2473	} else {
2474		folio = page_folio(*pagep);
2475		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2476		*pagep = NULL;
2477	}
2478
2479	VM_BUG_ON(folio_test_locked(folio));
2480	VM_BUG_ON(folio_test_swapbacked(folio));
2481	__folio_set_locked(folio);
2482	__folio_set_swapbacked(folio);
2483	__folio_mark_uptodate(folio);
2484
2485	ret = -EFAULT;
2486	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2487	if (unlikely(pgoff >= max_off))
2488		goto out_release;
2489
2490	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2491				      gfp & GFP_RECLAIM_MASK, dst_mm);
2492	if (ret)
2493		goto out_release;
2494
2495	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2496				       &folio->page, true, wp_copy);
2497	if (ret)
2498		goto out_delete_from_cache;
2499
2500	spin_lock_irq(&info->lock);
2501	info->alloced++;
2502	inode->i_blocks += BLOCKS_PER_PAGE;
2503	shmem_recalc_inode(inode);
2504	spin_unlock_irq(&info->lock);
2505
2506	folio_unlock(folio);
 
2507	return 0;
2508out_delete_from_cache:
2509	filemap_remove_folio(folio);
2510out_release:
2511	folio_unlock(folio);
2512	folio_put(folio);
2513out_unacct_blocks:
2514	shmem_inode_unacct_blocks(inode, 1);
2515	return ret;
2516}
2517#endif /* CONFIG_USERFAULTFD */
2518
2519#ifdef CONFIG_TMPFS
2520static const struct inode_operations shmem_symlink_inode_operations;
2521static const struct inode_operations shmem_short_symlink_operations;
2522
 
 
 
 
 
 
2523static int
2524shmem_write_begin(struct file *file, struct address_space *mapping,
2525			loff_t pos, unsigned len,
2526			struct page **pagep, void **fsdata)
2527{
2528	struct inode *inode = mapping->host;
2529	struct shmem_inode_info *info = SHMEM_I(inode);
2530	pgoff_t index = pos >> PAGE_SHIFT;
2531	struct folio *folio;
2532	int ret = 0;
2533
2534	/* i_rwsem is held by caller */
2535	if (unlikely(info->seals & (F_SEAL_GROW |
2536				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2537		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2538			return -EPERM;
2539		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2540			return -EPERM;
2541	}
2542
2543	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2544
2545	if (ret)
2546		return ret;
2547
2548	*pagep = folio_file_page(folio, index);
2549	if (PageHWPoison(*pagep)) {
2550		folio_unlock(folio);
2551		folio_put(folio);
2552		*pagep = NULL;
2553		return -EIO;
2554	}
2555
2556	return 0;
2557}
2558
2559static int
2560shmem_write_end(struct file *file, struct address_space *mapping,
2561			loff_t pos, unsigned len, unsigned copied,
2562			struct page *page, void *fsdata)
2563{
2564	struct inode *inode = mapping->host;
2565
2566	if (pos + copied > inode->i_size)
2567		i_size_write(inode, pos + copied);
2568
2569	if (!PageUptodate(page)) {
2570		struct page *head = compound_head(page);
2571		if (PageTransCompound(page)) {
2572			int i;
2573
2574			for (i = 0; i < HPAGE_PMD_NR; i++) {
2575				if (head + i == page)
2576					continue;
2577				clear_highpage(head + i);
2578				flush_dcache_page(head + i);
2579			}
2580		}
2581		if (copied < PAGE_SIZE) {
2582			unsigned from = pos & (PAGE_SIZE - 1);
2583			zero_user_segments(page, 0, from,
2584					from + copied, PAGE_SIZE);
2585		}
2586		SetPageUptodate(head);
2587	}
2588	set_page_dirty(page);
2589	unlock_page(page);
2590	put_page(page);
2591
2592	return copied;
2593}
2594
2595static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2596{
2597	struct file *file = iocb->ki_filp;
2598	struct inode *inode = file_inode(file);
2599	struct address_space *mapping = inode->i_mapping;
2600	pgoff_t index;
2601	unsigned long offset;
 
2602	int error = 0;
2603	ssize_t retval = 0;
2604	loff_t *ppos = &iocb->ki_pos;
2605
 
 
 
 
 
 
 
 
2606	index = *ppos >> PAGE_SHIFT;
2607	offset = *ppos & ~PAGE_MASK;
2608
2609	for (;;) {
2610		struct folio *folio = NULL;
2611		struct page *page = NULL;
2612		pgoff_t end_index;
2613		unsigned long nr, ret;
2614		loff_t i_size = i_size_read(inode);
2615
2616		end_index = i_size >> PAGE_SHIFT;
2617		if (index > end_index)
2618			break;
2619		if (index == end_index) {
2620			nr = i_size & ~PAGE_MASK;
2621			if (nr <= offset)
2622				break;
2623		}
2624
2625		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2626		if (error) {
2627			if (error == -EINVAL)
2628				error = 0;
2629			break;
2630		}
2631		if (folio) {
2632			folio_unlock(folio);
2633
2634			page = folio_file_page(folio, index);
2635			if (PageHWPoison(page)) {
2636				folio_put(folio);
2637				error = -EIO;
2638				break;
2639			}
2640		}
2641
2642		/*
2643		 * We must evaluate after, since reads (unlike writes)
2644		 * are called without i_rwsem protection against truncate
2645		 */
2646		nr = PAGE_SIZE;
2647		i_size = i_size_read(inode);
2648		end_index = i_size >> PAGE_SHIFT;
2649		if (index == end_index) {
2650			nr = i_size & ~PAGE_MASK;
2651			if (nr <= offset) {
2652				if (folio)
2653					folio_put(folio);
2654				break;
2655			}
2656		}
2657		nr -= offset;
2658
2659		if (folio) {
2660			/*
2661			 * If users can be writing to this page using arbitrary
2662			 * virtual addresses, take care about potential aliasing
2663			 * before reading the page on the kernel side.
2664			 */
2665			if (mapping_writably_mapped(mapping))
2666				flush_dcache_page(page);
2667			/*
2668			 * Mark the page accessed if we read the beginning.
2669			 */
2670			if (!offset)
2671				folio_mark_accessed(folio);
2672			/*
2673			 * Ok, we have the page, and it's up-to-date, so
2674			 * now we can copy it to user space...
2675			 */
2676			ret = copy_page_to_iter(page, offset, nr, to);
2677			folio_put(folio);
2678
2679		} else if (user_backed_iter(to)) {
2680			/*
2681			 * Copy to user tends to be so well optimized, but
2682			 * clear_user() not so much, that it is noticeably
2683			 * faster to copy the zero page instead of clearing.
2684			 */
2685			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2686		} else {
2687			/*
2688			 * But submitting the same page twice in a row to
2689			 * splice() - or others? - can result in confusion:
2690			 * so don't attempt that optimization on pipes etc.
2691			 */
2692			ret = iov_iter_zero(nr, to);
2693		}
2694
 
 
 
 
 
2695		retval += ret;
2696		offset += ret;
2697		index += offset >> PAGE_SHIFT;
2698		offset &= ~PAGE_MASK;
2699
 
2700		if (!iov_iter_count(to))
2701			break;
2702		if (ret < nr) {
2703			error = -EFAULT;
2704			break;
2705		}
2706		cond_resched();
2707	}
2708
2709	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2710	file_accessed(file);
2711	return retval ? retval : error;
2712}
2713
2714static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2715{
2716	struct address_space *mapping = file->f_mapping;
2717	struct inode *inode = mapping->host;
2718
2719	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720		return generic_file_llseek_size(file, offset, whence,
2721					MAX_LFS_FILESIZE, i_size_read(inode));
2722	if (offset < 0)
2723		return -ENXIO;
2724
2725	inode_lock(inode);
2726	/* We're holding i_rwsem so we can access i_size directly */
2727	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2728	if (offset >= 0)
2729		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2730	inode_unlock(inode);
2731	return offset;
2732}
2733
2734static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2735							 loff_t len)
2736{
2737	struct inode *inode = file_inode(file);
2738	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2739	struct shmem_inode_info *info = SHMEM_I(inode);
2740	struct shmem_falloc shmem_falloc;
2741	pgoff_t start, index, end, undo_fallocend;
2742	int error;
2743
2744	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2745		return -EOPNOTSUPP;
2746
2747	inode_lock(inode);
2748
2749	if (mode & FALLOC_FL_PUNCH_HOLE) {
2750		struct address_space *mapping = file->f_mapping;
2751		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2752		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2753		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2754
2755		/* protected by i_rwsem */
2756		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2757			error = -EPERM;
2758			goto out;
2759		}
2760
2761		shmem_falloc.waitq = &shmem_falloc_waitq;
2762		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2763		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2764		spin_lock(&inode->i_lock);
2765		inode->i_private = &shmem_falloc;
2766		spin_unlock(&inode->i_lock);
2767
2768		if ((u64)unmap_end > (u64)unmap_start)
2769			unmap_mapping_range(mapping, unmap_start,
2770					    1 + unmap_end - unmap_start, 0);
2771		shmem_truncate_range(inode, offset, offset + len - 1);
2772		/* No need to unmap again: hole-punching leaves COWed pages */
2773
2774		spin_lock(&inode->i_lock);
2775		inode->i_private = NULL;
2776		wake_up_all(&shmem_falloc_waitq);
2777		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2778		spin_unlock(&inode->i_lock);
2779		error = 0;
2780		goto out;
2781	}
2782
2783	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2784	error = inode_newsize_ok(inode, offset + len);
2785	if (error)
2786		goto out;
2787
2788	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2789		error = -EPERM;
2790		goto out;
2791	}
2792
2793	start = offset >> PAGE_SHIFT;
2794	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2795	/* Try to avoid a swapstorm if len is impossible to satisfy */
2796	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2797		error = -ENOSPC;
2798		goto out;
2799	}
2800
2801	shmem_falloc.waitq = NULL;
2802	shmem_falloc.start = start;
2803	shmem_falloc.next  = start;
2804	shmem_falloc.nr_falloced = 0;
2805	shmem_falloc.nr_unswapped = 0;
2806	spin_lock(&inode->i_lock);
2807	inode->i_private = &shmem_falloc;
2808	spin_unlock(&inode->i_lock);
2809
2810	/*
2811	 * info->fallocend is only relevant when huge pages might be
2812	 * involved: to prevent split_huge_page() freeing fallocated
2813	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2814	 */
2815	undo_fallocend = info->fallocend;
2816	if (info->fallocend < end)
2817		info->fallocend = end;
2818
2819	for (index = start; index < end; ) {
2820		struct folio *folio;
2821
2822		/*
2823		 * Good, the fallocate(2) manpage permits EINTR: we may have
2824		 * been interrupted because we are using up too much memory.
2825		 */
2826		if (signal_pending(current))
2827			error = -EINTR;
2828		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2829			error = -ENOMEM;
2830		else
2831			error = shmem_get_folio(inode, index, &folio,
2832						SGP_FALLOC);
2833		if (error) {
2834			info->fallocend = undo_fallocend;
2835			/* Remove the !uptodate folios we added */
2836			if (index > start) {
2837				shmem_undo_range(inode,
2838				    (loff_t)start << PAGE_SHIFT,
2839				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2840			}
2841			goto undone;
2842		}
2843
2844		/*
2845		 * Here is a more important optimization than it appears:
2846		 * a second SGP_FALLOC on the same large folio will clear it,
2847		 * making it uptodate and un-undoable if we fail later.
2848		 */
2849		index = folio_next_index(folio);
2850		/* Beware 32-bit wraparound */
2851		if (!index)
2852			index--;
2853
2854		/*
2855		 * Inform shmem_writepage() how far we have reached.
2856		 * No need for lock or barrier: we have the page lock.
2857		 */
2858		if (!folio_test_uptodate(folio))
2859			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2860		shmem_falloc.next = index;
2861
2862		/*
2863		 * If !uptodate, leave it that way so that freeable folios
2864		 * can be recognized if we need to rollback on error later.
2865		 * But mark it dirty so that memory pressure will swap rather
2866		 * than free the folios we are allocating (and SGP_CACHE folios
2867		 * might still be clean: we now need to mark those dirty too).
2868		 */
2869		folio_mark_dirty(folio);
2870		folio_unlock(folio);
2871		folio_put(folio);
2872		cond_resched();
2873	}
2874
2875	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2876		i_size_write(inode, offset + len);
 
2877undone:
2878	spin_lock(&inode->i_lock);
2879	inode->i_private = NULL;
2880	spin_unlock(&inode->i_lock);
2881out:
2882	if (!error)
2883		file_modified(file);
2884	inode_unlock(inode);
2885	return error;
2886}
2887
2888static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889{
2890	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892	buf->f_type = TMPFS_MAGIC;
2893	buf->f_bsize = PAGE_SIZE;
2894	buf->f_namelen = NAME_MAX;
2895	if (sbinfo->max_blocks) {
2896		buf->f_blocks = sbinfo->max_blocks;
2897		buf->f_bavail =
2898		buf->f_bfree  = sbinfo->max_blocks -
2899				percpu_counter_sum(&sbinfo->used_blocks);
2900	}
2901	if (sbinfo->max_inodes) {
2902		buf->f_files = sbinfo->max_inodes;
2903		buf->f_ffree = sbinfo->free_inodes;
2904	}
2905	/* else leave those fields 0 like simple_statfs */
2906
2907	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2908
2909	return 0;
2910}
2911
2912/*
2913 * File creation. Allocate an inode, and we're done..
2914 */
2915static int
2916shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2917	    struct dentry *dentry, umode_t mode, dev_t dev)
2918{
2919	struct inode *inode;
2920	int error = -ENOSPC;
2921
2922	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2923	if (inode) {
2924		error = simple_acl_create(dir, inode);
2925		if (error)
2926			goto out_iput;
2927		error = security_inode_init_security(inode, dir,
2928						     &dentry->d_name,
2929						     shmem_initxattrs, NULL);
2930		if (error && error != -EOPNOTSUPP)
2931			goto out_iput;
2932
2933		error = 0;
2934		dir->i_size += BOGO_DIRENT_SIZE;
2935		dir->i_ctime = dir->i_mtime = current_time(dir);
2936		inode_inc_iversion(dir);
2937		d_instantiate(dentry, inode);
2938		dget(dentry); /* Extra count - pin the dentry in core */
2939	}
2940	return error;
2941out_iput:
2942	iput(inode);
2943	return error;
2944}
2945
2946static int
2947shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2948	      struct file *file, umode_t mode)
2949{
2950	struct inode *inode;
2951	int error = -ENOSPC;
2952
2953	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2954	if (inode) {
2955		error = security_inode_init_security(inode, dir,
2956						     NULL,
2957						     shmem_initxattrs, NULL);
2958		if (error && error != -EOPNOTSUPP)
2959			goto out_iput;
2960		error = simple_acl_create(dir, inode);
2961		if (error)
2962			goto out_iput;
2963		d_tmpfile(file, inode);
2964	}
2965	return finish_open_simple(file, error);
2966out_iput:
2967	iput(inode);
2968	return error;
2969}
2970
2971static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2972		       struct dentry *dentry, umode_t mode)
2973{
2974	int error;
2975
2976	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2977				 mode | S_IFDIR, 0)))
2978		return error;
2979	inc_nlink(dir);
2980	return 0;
2981}
2982
2983static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2984			struct dentry *dentry, umode_t mode, bool excl)
2985{
2986	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2987}
2988
2989/*
2990 * Link a file..
2991 */
2992static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2993{
2994	struct inode *inode = d_inode(old_dentry);
2995	int ret = 0;
2996
2997	/*
2998	 * No ordinary (disk based) filesystem counts links as inodes;
2999	 * but each new link needs a new dentry, pinning lowmem, and
3000	 * tmpfs dentries cannot be pruned until they are unlinked.
3001	 * But if an O_TMPFILE file is linked into the tmpfs, the
3002	 * first link must skip that, to get the accounting right.
3003	 */
3004	if (inode->i_nlink) {
3005		ret = shmem_reserve_inode(inode->i_sb, NULL);
3006		if (ret)
3007			goto out;
3008	}
3009
3010	dir->i_size += BOGO_DIRENT_SIZE;
3011	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3012	inode_inc_iversion(dir);
3013	inc_nlink(inode);
3014	ihold(inode);	/* New dentry reference */
3015	dget(dentry);		/* Extra pinning count for the created dentry */
3016	d_instantiate(dentry, inode);
3017out:
3018	return ret;
3019}
3020
3021static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3022{
3023	struct inode *inode = d_inode(dentry);
3024
3025	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3026		shmem_free_inode(inode->i_sb);
3027
3028	dir->i_size -= BOGO_DIRENT_SIZE;
3029	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3030	inode_inc_iversion(dir);
3031	drop_nlink(inode);
3032	dput(dentry);	/* Undo the count from "create" - this does all the work */
3033	return 0;
3034}
3035
3036static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3037{
3038	if (!simple_empty(dentry))
3039		return -ENOTEMPTY;
3040
3041	drop_nlink(d_inode(dentry));
3042	drop_nlink(dir);
3043	return shmem_unlink(dir, dentry);
3044}
3045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046static int shmem_whiteout(struct user_namespace *mnt_userns,
3047			  struct inode *old_dir, struct dentry *old_dentry)
3048{
3049	struct dentry *whiteout;
3050	int error;
3051
3052	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3053	if (!whiteout)
3054		return -ENOMEM;
3055
3056	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3057			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3058	dput(whiteout);
3059	if (error)
3060		return error;
3061
3062	/*
3063	 * Cheat and hash the whiteout while the old dentry is still in
3064	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3065	 *
3066	 * d_lookup() will consistently find one of them at this point,
3067	 * not sure which one, but that isn't even important.
3068	 */
3069	d_rehash(whiteout);
3070	return 0;
3071}
3072
3073/*
3074 * The VFS layer already does all the dentry stuff for rename,
3075 * we just have to decrement the usage count for the target if
3076 * it exists so that the VFS layer correctly free's it when it
3077 * gets overwritten.
3078 */
3079static int shmem_rename2(struct user_namespace *mnt_userns,
3080			 struct inode *old_dir, struct dentry *old_dentry,
3081			 struct inode *new_dir, struct dentry *new_dentry,
3082			 unsigned int flags)
3083{
3084	struct inode *inode = d_inode(old_dentry);
3085	int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088		return -EINVAL;
3089
3090	if (flags & RENAME_EXCHANGE)
3091		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093	if (!simple_empty(new_dentry))
3094		return -ENOTEMPTY;
3095
3096	if (flags & RENAME_WHITEOUT) {
3097		int error;
3098
3099		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3100		if (error)
3101			return error;
3102	}
3103
3104	if (d_really_is_positive(new_dentry)) {
3105		(void) shmem_unlink(new_dir, new_dentry);
3106		if (they_are_dirs) {
3107			drop_nlink(d_inode(new_dentry));
3108			drop_nlink(old_dir);
3109		}
3110	} else if (they_are_dirs) {
3111		drop_nlink(old_dir);
3112		inc_nlink(new_dir);
3113	}
3114
3115	old_dir->i_size -= BOGO_DIRENT_SIZE;
3116	new_dir->i_size += BOGO_DIRENT_SIZE;
3117	old_dir->i_ctime = old_dir->i_mtime =
3118	new_dir->i_ctime = new_dir->i_mtime =
3119	inode->i_ctime = current_time(old_dir);
3120	inode_inc_iversion(old_dir);
3121	inode_inc_iversion(new_dir);
3122	return 0;
3123}
3124
3125static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3126			 struct dentry *dentry, const char *symname)
3127{
3128	int error;
3129	int len;
3130	struct inode *inode;
3131	struct folio *folio;
3132
3133	len = strlen(symname) + 1;
3134	if (len > PAGE_SIZE)
3135		return -ENAMETOOLONG;
3136
3137	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3138				VM_NORESERVE);
3139	if (!inode)
3140		return -ENOSPC;
3141
3142	error = security_inode_init_security(inode, dir, &dentry->d_name,
3143					     shmem_initxattrs, NULL);
3144	if (error && error != -EOPNOTSUPP) {
3145		iput(inode);
3146		return error;
3147	}
3148
3149	inode->i_size = len-1;
3150	if (len <= SHORT_SYMLINK_LEN) {
3151		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152		if (!inode->i_link) {
3153			iput(inode);
3154			return -ENOMEM;
3155		}
3156		inode->i_op = &shmem_short_symlink_operations;
3157	} else {
3158		inode_nohighmem(inode);
3159		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3160		if (error) {
3161			iput(inode);
3162			return error;
3163		}
3164		inode->i_mapping->a_ops = &shmem_aops;
3165		inode->i_op = &shmem_symlink_inode_operations;
3166		memcpy(folio_address(folio), symname, len);
3167		folio_mark_uptodate(folio);
3168		folio_mark_dirty(folio);
3169		folio_unlock(folio);
3170		folio_put(folio);
3171	}
3172	dir->i_size += BOGO_DIRENT_SIZE;
3173	dir->i_ctime = dir->i_mtime = current_time(dir);
3174	inode_inc_iversion(dir);
3175	d_instantiate(dentry, inode);
3176	dget(dentry);
3177	return 0;
3178}
3179
3180static void shmem_put_link(void *arg)
3181{
3182	folio_mark_accessed(arg);
3183	folio_put(arg);
3184}
3185
3186static const char *shmem_get_link(struct dentry *dentry,
3187				  struct inode *inode,
3188				  struct delayed_call *done)
3189{
3190	struct folio *folio = NULL;
3191	int error;
3192
3193	if (!dentry) {
3194		folio = filemap_get_folio(inode->i_mapping, 0);
3195		if (!folio)
3196			return ERR_PTR(-ECHILD);
3197		if (PageHWPoison(folio_page(folio, 0)) ||
3198		    !folio_test_uptodate(folio)) {
3199			folio_put(folio);
3200			return ERR_PTR(-ECHILD);
3201		}
3202	} else {
3203		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3204		if (error)
3205			return ERR_PTR(error);
3206		if (!folio)
3207			return ERR_PTR(-ECHILD);
3208		if (PageHWPoison(folio_page(folio, 0))) {
3209			folio_unlock(folio);
3210			folio_put(folio);
3211			return ERR_PTR(-ECHILD);
3212		}
3213		folio_unlock(folio);
3214	}
3215	set_delayed_call(done, shmem_put_link, folio);
3216	return folio_address(folio);
3217}
3218
3219#ifdef CONFIG_TMPFS_XATTR
3220
3221static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3222{
3223	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224
3225	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3226
3227	return 0;
3228}
3229
3230static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3231			      struct dentry *dentry, struct fileattr *fa)
3232{
3233	struct inode *inode = d_inode(dentry);
3234	struct shmem_inode_info *info = SHMEM_I(inode);
3235
3236	if (fileattr_has_fsx(fa))
3237		return -EOPNOTSUPP;
3238	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3239		return -EOPNOTSUPP;
3240
3241	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3242		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3243
3244	shmem_set_inode_flags(inode, info->fsflags);
3245	inode->i_ctime = current_time(inode);
3246	inode_inc_iversion(inode);
3247	return 0;
3248}
3249
3250/*
3251 * Superblocks without xattr inode operations may get some security.* xattr
3252 * support from the LSM "for free". As soon as we have any other xattrs
3253 * like ACLs, we also need to implement the security.* handlers at
3254 * filesystem level, though.
3255 */
3256
3257/*
3258 * Callback for security_inode_init_security() for acquiring xattrs.
3259 */
3260static int shmem_initxattrs(struct inode *inode,
3261			    const struct xattr *xattr_array,
3262			    void *fs_info)
3263{
3264	struct shmem_inode_info *info = SHMEM_I(inode);
3265	const struct xattr *xattr;
3266	struct simple_xattr *new_xattr;
3267	size_t len;
3268
3269	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3270		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3271		if (!new_xattr)
3272			return -ENOMEM;
3273
3274		len = strlen(xattr->name) + 1;
3275		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3276					  GFP_KERNEL);
3277		if (!new_xattr->name) {
3278			kvfree(new_xattr);
3279			return -ENOMEM;
3280		}
3281
3282		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3283		       XATTR_SECURITY_PREFIX_LEN);
3284		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3285		       xattr->name, len);
3286
3287		simple_xattr_add(&info->xattrs, new_xattr);
3288	}
3289
3290	return 0;
3291}
3292
3293static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3294				   struct dentry *unused, struct inode *inode,
3295				   const char *name, void *buffer, size_t size)
3296{
3297	struct shmem_inode_info *info = SHMEM_I(inode);
3298
3299	name = xattr_full_name(handler, name);
3300	return simple_xattr_get(&info->xattrs, name, buffer, size);
3301}
3302
3303static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3304				   struct user_namespace *mnt_userns,
3305				   struct dentry *unused, struct inode *inode,
3306				   const char *name, const void *value,
3307				   size_t size, int flags)
3308{
3309	struct shmem_inode_info *info = SHMEM_I(inode);
3310	int err;
3311
3312	name = xattr_full_name(handler, name);
3313	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3314	if (!err) {
3315		inode->i_ctime = current_time(inode);
3316		inode_inc_iversion(inode);
3317	}
3318	return err;
3319}
3320
3321static const struct xattr_handler shmem_security_xattr_handler = {
3322	.prefix = XATTR_SECURITY_PREFIX,
3323	.get = shmem_xattr_handler_get,
3324	.set = shmem_xattr_handler_set,
3325};
3326
3327static const struct xattr_handler shmem_trusted_xattr_handler = {
3328	.prefix = XATTR_TRUSTED_PREFIX,
3329	.get = shmem_xattr_handler_get,
3330	.set = shmem_xattr_handler_set,
3331};
3332
3333static const struct xattr_handler *shmem_xattr_handlers[] = {
3334#ifdef CONFIG_TMPFS_POSIX_ACL
3335	&posix_acl_access_xattr_handler,
3336	&posix_acl_default_xattr_handler,
3337#endif
3338	&shmem_security_xattr_handler,
3339	&shmem_trusted_xattr_handler,
3340	NULL
3341};
3342
3343static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3344{
3345	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3346	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3347}
3348#endif /* CONFIG_TMPFS_XATTR */
3349
3350static const struct inode_operations shmem_short_symlink_operations = {
3351	.getattr	= shmem_getattr,
3352	.get_link	= simple_get_link,
3353#ifdef CONFIG_TMPFS_XATTR
3354	.listxattr	= shmem_listxattr,
3355#endif
3356};
3357
3358static const struct inode_operations shmem_symlink_inode_operations = {
3359	.getattr	= shmem_getattr,
3360	.get_link	= shmem_get_link,
3361#ifdef CONFIG_TMPFS_XATTR
3362	.listxattr	= shmem_listxattr,
3363#endif
3364};
3365
3366static struct dentry *shmem_get_parent(struct dentry *child)
3367{
3368	return ERR_PTR(-ESTALE);
3369}
3370
3371static int shmem_match(struct inode *ino, void *vfh)
3372{
3373	__u32 *fh = vfh;
3374	__u64 inum = fh[2];
3375	inum = (inum << 32) | fh[1];
3376	return ino->i_ino == inum && fh[0] == ino->i_generation;
3377}
3378
3379/* Find any alias of inode, but prefer a hashed alias */
3380static struct dentry *shmem_find_alias(struct inode *inode)
3381{
3382	struct dentry *alias = d_find_alias(inode);
3383
3384	return alias ?: d_find_any_alias(inode);
3385}
3386
3387
3388static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3389		struct fid *fid, int fh_len, int fh_type)
3390{
3391	struct inode *inode;
3392	struct dentry *dentry = NULL;
3393	u64 inum;
3394
3395	if (fh_len < 3)
3396		return NULL;
3397
3398	inum = fid->raw[2];
3399	inum = (inum << 32) | fid->raw[1];
3400
3401	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3402			shmem_match, fid->raw);
3403	if (inode) {
3404		dentry = shmem_find_alias(inode);
3405		iput(inode);
3406	}
3407
3408	return dentry;
3409}
3410
3411static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3412				struct inode *parent)
3413{
3414	if (*len < 3) {
3415		*len = 3;
3416		return FILEID_INVALID;
3417	}
3418
3419	if (inode_unhashed(inode)) {
3420		/* Unfortunately insert_inode_hash is not idempotent,
3421		 * so as we hash inodes here rather than at creation
3422		 * time, we need a lock to ensure we only try
3423		 * to do it once
3424		 */
3425		static DEFINE_SPINLOCK(lock);
3426		spin_lock(&lock);
3427		if (inode_unhashed(inode))
3428			__insert_inode_hash(inode,
3429					    inode->i_ino + inode->i_generation);
3430		spin_unlock(&lock);
3431	}
3432
3433	fh[0] = inode->i_generation;
3434	fh[1] = inode->i_ino;
3435	fh[2] = ((__u64)inode->i_ino) >> 32;
3436
3437	*len = 3;
3438	return 1;
3439}
3440
3441static const struct export_operations shmem_export_ops = {
3442	.get_parent     = shmem_get_parent,
3443	.encode_fh      = shmem_encode_fh,
3444	.fh_to_dentry	= shmem_fh_to_dentry,
3445};
3446
3447enum shmem_param {
3448	Opt_gid,
3449	Opt_huge,
3450	Opt_mode,
3451	Opt_mpol,
3452	Opt_nr_blocks,
3453	Opt_nr_inodes,
3454	Opt_size,
3455	Opt_uid,
3456	Opt_inode32,
3457	Opt_inode64,
3458};
3459
3460static const struct constant_table shmem_param_enums_huge[] = {
3461	{"never",	SHMEM_HUGE_NEVER },
3462	{"always",	SHMEM_HUGE_ALWAYS },
3463	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3464	{"advise",	SHMEM_HUGE_ADVISE },
3465	{}
3466};
3467
3468const struct fs_parameter_spec shmem_fs_parameters[] = {
3469	fsparam_u32   ("gid",		Opt_gid),
3470	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3471	fsparam_u32oct("mode",		Opt_mode),
3472	fsparam_string("mpol",		Opt_mpol),
3473	fsparam_string("nr_blocks",	Opt_nr_blocks),
3474	fsparam_string("nr_inodes",	Opt_nr_inodes),
3475	fsparam_string("size",		Opt_size),
3476	fsparam_u32   ("uid",		Opt_uid),
3477	fsparam_flag  ("inode32",	Opt_inode32),
3478	fsparam_flag  ("inode64",	Opt_inode64),
3479	{}
3480};
3481
3482static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3483{
3484	struct shmem_options *ctx = fc->fs_private;
3485	struct fs_parse_result result;
3486	unsigned long long size;
3487	char *rest;
3488	int opt;
3489
3490	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3491	if (opt < 0)
3492		return opt;
3493
3494	switch (opt) {
3495	case Opt_size:
3496		size = memparse(param->string, &rest);
3497		if (*rest == '%') {
3498			size <<= PAGE_SHIFT;
3499			size *= totalram_pages();
3500			do_div(size, 100);
3501			rest++;
3502		}
3503		if (*rest)
3504			goto bad_value;
3505		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3506		ctx->seen |= SHMEM_SEEN_BLOCKS;
3507		break;
3508	case Opt_nr_blocks:
3509		ctx->blocks = memparse(param->string, &rest);
3510		if (*rest || ctx->blocks > S64_MAX)
3511			goto bad_value;
3512		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513		break;
3514	case Opt_nr_inodes:
3515		ctx->inodes = memparse(param->string, &rest);
3516		if (*rest)
3517			goto bad_value;
3518		ctx->seen |= SHMEM_SEEN_INODES;
3519		break;
3520	case Opt_mode:
3521		ctx->mode = result.uint_32 & 07777;
3522		break;
3523	case Opt_uid:
3524		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3525		if (!uid_valid(ctx->uid))
3526			goto bad_value;
3527		break;
3528	case Opt_gid:
3529		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3530		if (!gid_valid(ctx->gid))
3531			goto bad_value;
3532		break;
3533	case Opt_huge:
3534		ctx->huge = result.uint_32;
3535		if (ctx->huge != SHMEM_HUGE_NEVER &&
3536		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3537		      has_transparent_hugepage()))
3538			goto unsupported_parameter;
3539		ctx->seen |= SHMEM_SEEN_HUGE;
3540		break;
3541	case Opt_mpol:
3542		if (IS_ENABLED(CONFIG_NUMA)) {
3543			mpol_put(ctx->mpol);
3544			ctx->mpol = NULL;
3545			if (mpol_parse_str(param->string, &ctx->mpol))
3546				goto bad_value;
3547			break;
3548		}
3549		goto unsupported_parameter;
3550	case Opt_inode32:
3551		ctx->full_inums = false;
3552		ctx->seen |= SHMEM_SEEN_INUMS;
3553		break;
3554	case Opt_inode64:
3555		if (sizeof(ino_t) < 8) {
3556			return invalfc(fc,
3557				       "Cannot use inode64 with <64bit inums in kernel\n");
3558		}
3559		ctx->full_inums = true;
3560		ctx->seen |= SHMEM_SEEN_INUMS;
3561		break;
3562	}
3563	return 0;
3564
3565unsupported_parameter:
3566	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3567bad_value:
3568	return invalfc(fc, "Bad value for '%s'", param->key);
3569}
3570
3571static int shmem_parse_options(struct fs_context *fc, void *data)
3572{
3573	char *options = data;
3574
3575	if (options) {
3576		int err = security_sb_eat_lsm_opts(options, &fc->security);
3577		if (err)
3578			return err;
3579	}
3580
3581	while (options != NULL) {
3582		char *this_char = options;
3583		for (;;) {
3584			/*
3585			 * NUL-terminate this option: unfortunately,
3586			 * mount options form a comma-separated list,
3587			 * but mpol's nodelist may also contain commas.
3588			 */
3589			options = strchr(options, ',');
3590			if (options == NULL)
3591				break;
3592			options++;
3593			if (!isdigit(*options)) {
3594				options[-1] = '\0';
3595				break;
3596			}
3597		}
3598		if (*this_char) {
3599			char *value = strchr(this_char, '=');
3600			size_t len = 0;
3601			int err;
3602
3603			if (value) {
3604				*value++ = '\0';
3605				len = strlen(value);
3606			}
3607			err = vfs_parse_fs_string(fc, this_char, value, len);
3608			if (err < 0)
3609				return err;
3610		}
3611	}
3612	return 0;
3613}
3614
3615/*
3616 * Reconfigure a shmem filesystem.
3617 *
3618 * Note that we disallow change from limited->unlimited blocks/inodes while any
3619 * are in use; but we must separately disallow unlimited->limited, because in
3620 * that case we have no record of how much is already in use.
3621 */
3622static int shmem_reconfigure(struct fs_context *fc)
3623{
3624	struct shmem_options *ctx = fc->fs_private;
3625	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3626	unsigned long inodes;
3627	struct mempolicy *mpol = NULL;
3628	const char *err;
3629
3630	raw_spin_lock(&sbinfo->stat_lock);
3631	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3632
3633	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3634		if (!sbinfo->max_blocks) {
3635			err = "Cannot retroactively limit size";
3636			goto out;
3637		}
3638		if (percpu_counter_compare(&sbinfo->used_blocks,
3639					   ctx->blocks) > 0) {
3640			err = "Too small a size for current use";
3641			goto out;
3642		}
3643	}
3644	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3645		if (!sbinfo->max_inodes) {
3646			err = "Cannot retroactively limit inodes";
3647			goto out;
3648		}
3649		if (ctx->inodes < inodes) {
3650			err = "Too few inodes for current use";
3651			goto out;
3652		}
3653	}
3654
3655	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3656	    sbinfo->next_ino > UINT_MAX) {
3657		err = "Current inum too high to switch to 32-bit inums";
3658		goto out;
3659	}
3660
3661	if (ctx->seen & SHMEM_SEEN_HUGE)
3662		sbinfo->huge = ctx->huge;
3663	if (ctx->seen & SHMEM_SEEN_INUMS)
3664		sbinfo->full_inums = ctx->full_inums;
3665	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3666		sbinfo->max_blocks  = ctx->blocks;
3667	if (ctx->seen & SHMEM_SEEN_INODES) {
3668		sbinfo->max_inodes  = ctx->inodes;
3669		sbinfo->free_inodes = ctx->inodes - inodes;
3670	}
3671
3672	/*
3673	 * Preserve previous mempolicy unless mpol remount option was specified.
3674	 */
3675	if (ctx->mpol) {
3676		mpol = sbinfo->mpol;
3677		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3678		ctx->mpol = NULL;
3679	}
3680	raw_spin_unlock(&sbinfo->stat_lock);
3681	mpol_put(mpol);
3682	return 0;
3683out:
3684	raw_spin_unlock(&sbinfo->stat_lock);
3685	return invalfc(fc, "%s", err);
3686}
3687
3688static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3689{
3690	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3691
3692	if (sbinfo->max_blocks != shmem_default_max_blocks())
3693		seq_printf(seq, ",size=%luk",
3694			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3695	if (sbinfo->max_inodes != shmem_default_max_inodes())
3696		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3697	if (sbinfo->mode != (0777 | S_ISVTX))
3698		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3699	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3700		seq_printf(seq, ",uid=%u",
3701				from_kuid_munged(&init_user_ns, sbinfo->uid));
3702	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3703		seq_printf(seq, ",gid=%u",
3704				from_kgid_munged(&init_user_ns, sbinfo->gid));
3705
3706	/*
3707	 * Showing inode{64,32} might be useful even if it's the system default,
3708	 * since then people don't have to resort to checking both here and
3709	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3710	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3711	 *
3712	 * We hide it when inode64 isn't the default and we are using 32-bit
3713	 * inodes, since that probably just means the feature isn't even under
3714	 * consideration.
3715	 *
3716	 * As such:
3717	 *
3718	 *                     +-----------------+-----------------+
3719	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3720	 *  +------------------+-----------------+-----------------+
3721	 *  | full_inums=true  | show            | show            |
3722	 *  | full_inums=false | show            | hide            |
3723	 *  +------------------+-----------------+-----------------+
3724	 *
3725	 */
3726	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3727		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3729	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3730	if (sbinfo->huge)
3731		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3732#endif
3733	shmem_show_mpol(seq, sbinfo->mpol);
3734	return 0;
3735}
3736
3737#endif /* CONFIG_TMPFS */
3738
3739static void shmem_put_super(struct super_block *sb)
3740{
3741	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3742
3743	free_percpu(sbinfo->ino_batch);
3744	percpu_counter_destroy(&sbinfo->used_blocks);
3745	mpol_put(sbinfo->mpol);
3746	kfree(sbinfo);
3747	sb->s_fs_info = NULL;
3748}
3749
3750static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3751{
3752	struct shmem_options *ctx = fc->fs_private;
3753	struct inode *inode;
3754	struct shmem_sb_info *sbinfo;
 
3755
3756	/* Round up to L1_CACHE_BYTES to resist false sharing */
3757	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3758				L1_CACHE_BYTES), GFP_KERNEL);
3759	if (!sbinfo)
3760		return -ENOMEM;
3761
3762	sb->s_fs_info = sbinfo;
3763
3764#ifdef CONFIG_TMPFS
3765	/*
3766	 * Per default we only allow half of the physical ram per
3767	 * tmpfs instance, limiting inodes to one per page of lowmem;
3768	 * but the internal instance is left unlimited.
3769	 */
3770	if (!(sb->s_flags & SB_KERNMOUNT)) {
3771		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3772			ctx->blocks = shmem_default_max_blocks();
3773		if (!(ctx->seen & SHMEM_SEEN_INODES))
3774			ctx->inodes = shmem_default_max_inodes();
3775		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3776			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3777	} else {
3778		sb->s_flags |= SB_NOUSER;
3779	}
3780	sb->s_export_op = &shmem_export_ops;
3781	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3782#else
3783	sb->s_flags |= SB_NOUSER;
3784#endif
3785	sbinfo->max_blocks = ctx->blocks;
3786	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3787	if (sb->s_flags & SB_KERNMOUNT) {
3788		sbinfo->ino_batch = alloc_percpu(ino_t);
3789		if (!sbinfo->ino_batch)
3790			goto failed;
3791	}
3792	sbinfo->uid = ctx->uid;
3793	sbinfo->gid = ctx->gid;
3794	sbinfo->full_inums = ctx->full_inums;
3795	sbinfo->mode = ctx->mode;
3796	sbinfo->huge = ctx->huge;
3797	sbinfo->mpol = ctx->mpol;
3798	ctx->mpol = NULL;
3799
3800	raw_spin_lock_init(&sbinfo->stat_lock);
3801	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3802		goto failed;
3803	spin_lock_init(&sbinfo->shrinklist_lock);
3804	INIT_LIST_HEAD(&sbinfo->shrinklist);
3805
3806	sb->s_maxbytes = MAX_LFS_FILESIZE;
3807	sb->s_blocksize = PAGE_SIZE;
3808	sb->s_blocksize_bits = PAGE_SHIFT;
3809	sb->s_magic = TMPFS_MAGIC;
3810	sb->s_op = &shmem_ops;
3811	sb->s_time_gran = 1;
3812#ifdef CONFIG_TMPFS_XATTR
3813	sb->s_xattr = shmem_xattr_handlers;
3814#endif
3815#ifdef CONFIG_TMPFS_POSIX_ACL
3816	sb->s_flags |= SB_POSIXACL;
3817#endif
3818	uuid_gen(&sb->s_uuid);
3819
3820	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3821	if (!inode)
3822		goto failed;
3823	inode->i_uid = sbinfo->uid;
3824	inode->i_gid = sbinfo->gid;
3825	sb->s_root = d_make_root(inode);
3826	if (!sb->s_root)
3827		goto failed;
3828	return 0;
3829
3830failed:
3831	shmem_put_super(sb);
3832	return -ENOMEM;
3833}
3834
3835static int shmem_get_tree(struct fs_context *fc)
3836{
3837	return get_tree_nodev(fc, shmem_fill_super);
3838}
3839
3840static void shmem_free_fc(struct fs_context *fc)
3841{
3842	struct shmem_options *ctx = fc->fs_private;
3843
3844	if (ctx) {
3845		mpol_put(ctx->mpol);
3846		kfree(ctx);
3847	}
3848}
3849
3850static const struct fs_context_operations shmem_fs_context_ops = {
3851	.free			= shmem_free_fc,
3852	.get_tree		= shmem_get_tree,
3853#ifdef CONFIG_TMPFS
3854	.parse_monolithic	= shmem_parse_options,
3855	.parse_param		= shmem_parse_one,
3856	.reconfigure		= shmem_reconfigure,
3857#endif
3858};
3859
3860static struct kmem_cache *shmem_inode_cachep;
3861
3862static struct inode *shmem_alloc_inode(struct super_block *sb)
3863{
3864	struct shmem_inode_info *info;
3865	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3866	if (!info)
3867		return NULL;
3868	return &info->vfs_inode;
3869}
3870
3871static void shmem_free_in_core_inode(struct inode *inode)
3872{
3873	if (S_ISLNK(inode->i_mode))
3874		kfree(inode->i_link);
3875	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3876}
3877
3878static void shmem_destroy_inode(struct inode *inode)
3879{
3880	if (S_ISREG(inode->i_mode))
3881		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3882}
3883
3884static void shmem_init_inode(void *foo)
3885{
3886	struct shmem_inode_info *info = foo;
3887	inode_init_once(&info->vfs_inode);
3888}
3889
3890static void shmem_init_inodecache(void)
3891{
3892	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3893				sizeof(struct shmem_inode_info),
3894				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3895}
3896
3897static void shmem_destroy_inodecache(void)
3898{
3899	kmem_cache_destroy(shmem_inode_cachep);
3900}
3901
3902/* Keep the page in page cache instead of truncating it */
3903static int shmem_error_remove_page(struct address_space *mapping,
3904				   struct page *page)
3905{
3906	return 0;
3907}
3908
3909const struct address_space_operations shmem_aops = {
3910	.writepage	= shmem_writepage,
3911	.dirty_folio	= noop_dirty_folio,
3912#ifdef CONFIG_TMPFS
3913	.write_begin	= shmem_write_begin,
3914	.write_end	= shmem_write_end,
3915#endif
3916#ifdef CONFIG_MIGRATION
3917	.migrate_folio	= migrate_folio,
3918#endif
3919	.error_remove_page = shmem_error_remove_page,
3920};
3921EXPORT_SYMBOL(shmem_aops);
3922
3923static const struct file_operations shmem_file_operations = {
3924	.mmap		= shmem_mmap,
3925	.open		= generic_file_open,
3926	.get_unmapped_area = shmem_get_unmapped_area,
3927#ifdef CONFIG_TMPFS
3928	.llseek		= shmem_file_llseek,
3929	.read_iter	= shmem_file_read_iter,
3930	.write_iter	= generic_file_write_iter,
3931	.fsync		= noop_fsync,
3932	.splice_read	= generic_file_splice_read,
3933	.splice_write	= iter_file_splice_write,
3934	.fallocate	= shmem_fallocate,
3935#endif
3936};
3937
3938static const struct inode_operations shmem_inode_operations = {
3939	.getattr	= shmem_getattr,
3940	.setattr	= shmem_setattr,
3941#ifdef CONFIG_TMPFS_XATTR
3942	.listxattr	= shmem_listxattr,
3943	.set_acl	= simple_set_acl,
3944	.fileattr_get	= shmem_fileattr_get,
3945	.fileattr_set	= shmem_fileattr_set,
3946#endif
3947};
3948
3949static const struct inode_operations shmem_dir_inode_operations = {
3950#ifdef CONFIG_TMPFS
3951	.getattr	= shmem_getattr,
3952	.create		= shmem_create,
3953	.lookup		= simple_lookup,
3954	.link		= shmem_link,
3955	.unlink		= shmem_unlink,
3956	.symlink	= shmem_symlink,
3957	.mkdir		= shmem_mkdir,
3958	.rmdir		= shmem_rmdir,
3959	.mknod		= shmem_mknod,
3960	.rename		= shmem_rename2,
3961	.tmpfile	= shmem_tmpfile,
3962#endif
3963#ifdef CONFIG_TMPFS_XATTR
3964	.listxattr	= shmem_listxattr,
3965	.fileattr_get	= shmem_fileattr_get,
3966	.fileattr_set	= shmem_fileattr_set,
3967#endif
3968#ifdef CONFIG_TMPFS_POSIX_ACL
3969	.setattr	= shmem_setattr,
3970	.set_acl	= simple_set_acl,
3971#endif
3972};
3973
3974static const struct inode_operations shmem_special_inode_operations = {
3975	.getattr	= shmem_getattr,
3976#ifdef CONFIG_TMPFS_XATTR
3977	.listxattr	= shmem_listxattr,
3978#endif
3979#ifdef CONFIG_TMPFS_POSIX_ACL
3980	.setattr	= shmem_setattr,
3981	.set_acl	= simple_set_acl,
3982#endif
3983};
3984
3985static const struct super_operations shmem_ops = {
3986	.alloc_inode	= shmem_alloc_inode,
3987	.free_inode	= shmem_free_in_core_inode,
3988	.destroy_inode	= shmem_destroy_inode,
3989#ifdef CONFIG_TMPFS
3990	.statfs		= shmem_statfs,
3991	.show_options	= shmem_show_options,
3992#endif
3993	.evict_inode	= shmem_evict_inode,
3994	.drop_inode	= generic_delete_inode,
3995	.put_super	= shmem_put_super,
3996#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3997	.nr_cached_objects	= shmem_unused_huge_count,
3998	.free_cached_objects	= shmem_unused_huge_scan,
3999#endif
4000};
4001
4002static const struct vm_operations_struct shmem_vm_ops = {
4003	.fault		= shmem_fault,
4004	.map_pages	= filemap_map_pages,
4005#ifdef CONFIG_NUMA
4006	.set_policy     = shmem_set_policy,
4007	.get_policy     = shmem_get_policy,
4008#endif
4009};
4010
4011static const struct vm_operations_struct shmem_anon_vm_ops = {
4012	.fault		= shmem_fault,
4013	.map_pages	= filemap_map_pages,
4014#ifdef CONFIG_NUMA
4015	.set_policy     = shmem_set_policy,
4016	.get_policy     = shmem_get_policy,
4017#endif
4018};
4019
4020int shmem_init_fs_context(struct fs_context *fc)
4021{
4022	struct shmem_options *ctx;
4023
4024	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4025	if (!ctx)
4026		return -ENOMEM;
4027
4028	ctx->mode = 0777 | S_ISVTX;
4029	ctx->uid = current_fsuid();
4030	ctx->gid = current_fsgid();
4031
4032	fc->fs_private = ctx;
4033	fc->ops = &shmem_fs_context_ops;
4034	return 0;
4035}
4036
4037static struct file_system_type shmem_fs_type = {
4038	.owner		= THIS_MODULE,
4039	.name		= "tmpfs",
4040	.init_fs_context = shmem_init_fs_context,
4041#ifdef CONFIG_TMPFS
4042	.parameters	= shmem_fs_parameters,
4043#endif
4044	.kill_sb	= kill_litter_super,
4045	.fs_flags	= FS_USERNS_MOUNT,
4046};
4047
4048void __init shmem_init(void)
4049{
4050	int error;
4051
4052	shmem_init_inodecache();
4053
4054	error = register_filesystem(&shmem_fs_type);
4055	if (error) {
4056		pr_err("Could not register tmpfs\n");
4057		goto out2;
4058	}
4059
4060	shm_mnt = kern_mount(&shmem_fs_type);
4061	if (IS_ERR(shm_mnt)) {
4062		error = PTR_ERR(shm_mnt);
4063		pr_err("Could not kern_mount tmpfs\n");
4064		goto out1;
4065	}
4066
4067#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4069		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4070	else
4071		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4072#endif
4073	return;
4074
4075out1:
4076	unregister_filesystem(&shmem_fs_type);
4077out2:
4078	shmem_destroy_inodecache();
4079	shm_mnt = ERR_PTR(error);
 
4080}
4081
4082#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4083static ssize_t shmem_enabled_show(struct kobject *kobj,
4084				  struct kobj_attribute *attr, char *buf)
4085{
4086	static const int values[] = {
4087		SHMEM_HUGE_ALWAYS,
4088		SHMEM_HUGE_WITHIN_SIZE,
4089		SHMEM_HUGE_ADVISE,
4090		SHMEM_HUGE_NEVER,
4091		SHMEM_HUGE_DENY,
4092		SHMEM_HUGE_FORCE,
4093	};
4094	int len = 0;
4095	int i;
4096
4097	for (i = 0; i < ARRAY_SIZE(values); i++) {
4098		len += sysfs_emit_at(buf, len,
4099				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4100				     i ? " " : "",
4101				     shmem_format_huge(values[i]));
4102	}
4103
4104	len += sysfs_emit_at(buf, len, "\n");
4105
4106	return len;
4107}
4108
4109static ssize_t shmem_enabled_store(struct kobject *kobj,
4110		struct kobj_attribute *attr, const char *buf, size_t count)
4111{
4112	char tmp[16];
4113	int huge;
4114
4115	if (count + 1 > sizeof(tmp))
4116		return -EINVAL;
4117	memcpy(tmp, buf, count);
4118	tmp[count] = '\0';
4119	if (count && tmp[count - 1] == '\n')
4120		tmp[count - 1] = '\0';
4121
4122	huge = shmem_parse_huge(tmp);
4123	if (huge == -EINVAL)
4124		return -EINVAL;
4125	if (!has_transparent_hugepage() &&
4126			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4127		return -EINVAL;
4128
4129	shmem_huge = huge;
4130	if (shmem_huge > SHMEM_HUGE_DENY)
4131		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4132	return count;
4133}
4134
4135struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
 
4136#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4138#else /* !CONFIG_SHMEM */
4139
4140/*
4141 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4142 *
4143 * This is intended for small system where the benefits of the full
4144 * shmem code (swap-backed and resource-limited) are outweighed by
4145 * their complexity. On systems without swap this code should be
4146 * effectively equivalent, but much lighter weight.
4147 */
4148
4149static struct file_system_type shmem_fs_type = {
4150	.name		= "tmpfs",
4151	.init_fs_context = ramfs_init_fs_context,
4152	.parameters	= ramfs_fs_parameters,
4153	.kill_sb	= kill_litter_super,
4154	.fs_flags	= FS_USERNS_MOUNT,
4155};
4156
4157void __init shmem_init(void)
4158{
4159	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4160
4161	shm_mnt = kern_mount(&shmem_fs_type);
4162	BUG_ON(IS_ERR(shm_mnt));
 
 
4163}
4164
4165int shmem_unuse(unsigned int type)
 
4166{
4167	return 0;
4168}
4169
4170int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4171{
4172	return 0;
4173}
4174
4175void shmem_unlock_mapping(struct address_space *mapping)
4176{
4177}
4178
4179#ifdef CONFIG_MMU
4180unsigned long shmem_get_unmapped_area(struct file *file,
4181				      unsigned long addr, unsigned long len,
4182				      unsigned long pgoff, unsigned long flags)
4183{
4184	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4185}
4186#endif
4187
4188void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4189{
4190	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4191}
4192EXPORT_SYMBOL_GPL(shmem_truncate_range);
4193
4194#define shmem_vm_ops				generic_file_vm_ops
4195#define shmem_anon_vm_ops			generic_file_vm_ops
4196#define shmem_file_operations			ramfs_file_operations
4197#define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4198#define shmem_acct_size(flags, size)		0
4199#define shmem_unacct_size(flags, size)		do {} while (0)
4200
4201#endif /* CONFIG_SHMEM */
4202
4203/* common code */
4204
4205static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4206				       unsigned long flags, unsigned int i_flags)
4207{
4208	struct inode *inode;
4209	struct file *res;
4210
4211	if (IS_ERR(mnt))
4212		return ERR_CAST(mnt);
4213
4214	if (size < 0 || size > MAX_LFS_FILESIZE)
4215		return ERR_PTR(-EINVAL);
4216
4217	if (shmem_acct_size(flags, size))
4218		return ERR_PTR(-ENOMEM);
4219
4220	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4221				flags);
4222	if (unlikely(!inode)) {
4223		shmem_unacct_size(flags, size);
4224		return ERR_PTR(-ENOSPC);
4225	}
4226	inode->i_flags |= i_flags;
4227	inode->i_size = size;
4228	clear_nlink(inode);	/* It is unlinked */
4229	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4230	if (!IS_ERR(res))
4231		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4232				&shmem_file_operations);
4233	if (IS_ERR(res))
4234		iput(inode);
4235	return res;
4236}
4237
4238/**
4239 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4240 * 	kernel internal.  There will be NO LSM permission checks against the
4241 * 	underlying inode.  So users of this interface must do LSM checks at a
4242 *	higher layer.  The users are the big_key and shm implementations.  LSM
4243 *	checks are provided at the key or shm level rather than the inode.
4244 * @name: name for dentry (to be seen in /proc/<pid>/maps
4245 * @size: size to be set for the file
4246 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 */
4248struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4249{
4250	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4251}
4252
4253/**
4254 * shmem_file_setup - get an unlinked file living in tmpfs
4255 * @name: name for dentry (to be seen in /proc/<pid>/maps
4256 * @size: size to be set for the file
4257 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 */
4259struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4260{
4261	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4262}
4263EXPORT_SYMBOL_GPL(shmem_file_setup);
4264
4265/**
4266 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4267 * @mnt: the tmpfs mount where the file will be created
4268 * @name: name for dentry (to be seen in /proc/<pid>/maps
4269 * @size: size to be set for the file
4270 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 */
4272struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4273				       loff_t size, unsigned long flags)
4274{
4275	return __shmem_file_setup(mnt, name, size, flags, 0);
4276}
4277EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4278
4279/**
4280 * shmem_zero_setup - setup a shared anonymous mapping
4281 * @vma: the vma to be mmapped is prepared by do_mmap
4282 */
4283int shmem_zero_setup(struct vm_area_struct *vma)
4284{
4285	struct file *file;
4286	loff_t size = vma->vm_end - vma->vm_start;
4287
4288	/*
4289	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4290	 * between XFS directory reading and selinux: since this file is only
4291	 * accessible to the user through its mapping, use S_PRIVATE flag to
4292	 * bypass file security, in the same way as shmem_kernel_file_setup().
4293	 */
4294	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4295	if (IS_ERR(file))
4296		return PTR_ERR(file);
4297
4298	if (vma->vm_file)
4299		fput(vma->vm_file);
4300	vma->vm_file = file;
4301	vma->vm_ops = &shmem_anon_vm_ops;
 
 
 
 
 
 
4302
4303	return 0;
4304}
4305
4306/**
4307 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4308 * @mapping:	the page's address_space
4309 * @index:	the page index
4310 * @gfp:	the page allocator flags to use if allocating
4311 *
4312 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4313 * with any new page allocations done using the specified allocation flags.
4314 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4315 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4316 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4317 *
4318 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4319 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4320 */
4321struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4322					 pgoff_t index, gfp_t gfp)
4323{
4324#ifdef CONFIG_SHMEM
4325	struct inode *inode = mapping->host;
4326	struct folio *folio;
4327	struct page *page;
4328	int error;
4329
4330	BUG_ON(!shmem_mapping(mapping));
4331	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4332				  gfp, NULL, NULL, NULL);
4333	if (error)
4334		return ERR_PTR(error);
4335
4336	folio_unlock(folio);
4337	page = folio_file_page(folio, index);
4338	if (PageHWPoison(page)) {
4339		folio_put(folio);
4340		return ERR_PTR(-EIO);
4341	}
4342
4343	return page;
4344#else
4345	/*
4346	 * The tiny !SHMEM case uses ramfs without swap
4347	 */
4348	return read_cache_page_gfp(mapping, index, gfp);
4349#endif
4350}
4351EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);