Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
12#include <linux/dax.h>
13#include <linux/gfp.h>
14#include <linux/export.h>
15#include <linux/blkdev.h>
16#include <linux/backing-dev.h>
17#include <linux/task_io_accounting_ops.h>
18#include <linux/pagevec.h>
19#include <linux/pagemap.h>
20#include <linux/syscalls.h>
21#include <linux/file.h>
22#include <linux/mm_inline.h>
23#include <linux/blk-cgroup.h>
24#include <linux/fadvise.h>
25#include <linux/sched/mm.h>
26
27#include "internal.h"
28
29/*
30 * Initialise a struct file's readahead state. Assumes that the caller has
31 * memset *ra to zero.
32 */
33void
34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
35{
36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
37 ra->prev_pos = -1;
38}
39EXPORT_SYMBOL_GPL(file_ra_state_init);
40
41/*
42 * see if a page needs releasing upon read_cache_pages() failure
43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44 * before calling, such as the NFS fs marking pages that are cached locally
45 * on disk, thus we need to give the fs a chance to clean up in the event of
46 * an error
47 */
48static void read_cache_pages_invalidate_page(struct address_space *mapping,
49 struct page *page)
50{
51 if (page_has_private(page)) {
52 if (!trylock_page(page))
53 BUG();
54 page->mapping = mapping;
55 do_invalidatepage(page, 0, PAGE_SIZE);
56 page->mapping = NULL;
57 unlock_page(page);
58 }
59 put_page(page);
60}
61
62/*
63 * release a list of pages, invalidating them first if need be
64 */
65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 struct list_head *pages)
67{
68 struct page *victim;
69
70 while (!list_empty(pages)) {
71 victim = lru_to_page(pages);
72 list_del(&victim->lru);
73 read_cache_pages_invalidate_page(mapping, victim);
74 }
75}
76
77/**
78 * read_cache_pages - populate an address space with some pages & start reads against them
79 * @mapping: the address_space
80 * @pages: The address of a list_head which contains the target pages. These
81 * pages have their ->index populated and are otherwise uninitialised.
82 * @filler: callback routine for filling a single page.
83 * @data: private data for the callback routine.
84 *
85 * Hides the details of the LRU cache etc from the filesystems.
86 *
87 * Returns: %0 on success, error return by @filler otherwise
88 */
89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 int (*filler)(void *, struct page *), void *data)
91{
92 struct page *page;
93 int ret = 0;
94
95 while (!list_empty(pages)) {
96 page = lru_to_page(pages);
97 list_del(&page->lru);
98 if (add_to_page_cache_lru(page, mapping, page->index,
99 readahead_gfp_mask(mapping))) {
100 read_cache_pages_invalidate_page(mapping, page);
101 continue;
102 }
103 put_page(page);
104
105 ret = filler(data, page);
106 if (unlikely(ret)) {
107 read_cache_pages_invalidate_pages(mapping, pages);
108 break;
109 }
110 task_io_account_read(PAGE_SIZE);
111 }
112 return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118 bool skip_page)
119{
120 const struct address_space_operations *aops = rac->mapping->a_ops;
121 struct page *page;
122 struct blk_plug plug;
123
124 if (!readahead_count(rac))
125 goto out;
126
127 blk_start_plug(&plug);
128
129 if (aops->readahead) {
130 aops->readahead(rac);
131 /* Clean up the remaining pages */
132 while ((page = readahead_page(rac))) {
133 unlock_page(page);
134 put_page(page);
135 }
136 } else if (aops->readpages) {
137 aops->readpages(rac->file, rac->mapping, pages,
138 readahead_count(rac));
139 /* Clean up the remaining pages */
140 put_pages_list(pages);
141 rac->_index += rac->_nr_pages;
142 rac->_nr_pages = 0;
143 } else {
144 while ((page = readahead_page(rac))) {
145 aops->readpage(rac->file, page);
146 put_page(page);
147 }
148 }
149
150 blk_finish_plug(&plug);
151
152 BUG_ON(!list_empty(pages));
153 BUG_ON(readahead_count(rac));
154
155out:
156 if (skip_page)
157 rac->_index++;
158}
159
160/**
161 * page_cache_ra_unbounded - Start unchecked readahead.
162 * @ractl: Readahead control.
163 * @nr_to_read: The number of pages to read.
164 * @lookahead_size: Where to start the next readahead.
165 *
166 * This function is for filesystems to call when they want to start
167 * readahead beyond a file's stated i_size. This is almost certainly
168 * not the function you want to call. Use page_cache_async_readahead()
169 * or page_cache_sync_readahead() instead.
170 *
171 * Context: File is referenced by caller. Mutexes may be held by caller.
172 * May sleep, but will not reenter filesystem to reclaim memory.
173 */
174void page_cache_ra_unbounded(struct readahead_control *ractl,
175 unsigned long nr_to_read, unsigned long lookahead_size)
176{
177 struct address_space *mapping = ractl->mapping;
178 unsigned long index = readahead_index(ractl);
179 LIST_HEAD(page_pool);
180 gfp_t gfp_mask = readahead_gfp_mask(mapping);
181 unsigned long i;
182
183 /*
184 * Partway through the readahead operation, we will have added
185 * locked pages to the page cache, but will not yet have submitted
186 * them for I/O. Adding another page may need to allocate memory,
187 * which can trigger memory reclaim. Telling the VM we're in
188 * the middle of a filesystem operation will cause it to not
189 * touch file-backed pages, preventing a deadlock. Most (all?)
190 * filesystems already specify __GFP_NOFS in their mapping's
191 * gfp_mask, but let's be explicit here.
192 */
193 unsigned int nofs = memalloc_nofs_save();
194
195 /*
196 * Preallocate as many pages as we will need.
197 */
198 for (i = 0; i < nr_to_read; i++) {
199 struct page *page = xa_load(&mapping->i_pages, index + i);
200
201 if (page && !xa_is_value(page)) {
202 /*
203 * Page already present? Kick off the current batch
204 * of contiguous pages before continuing with the
205 * next batch. This page may be the one we would
206 * have intended to mark as Readahead, but we don't
207 * have a stable reference to this page, and it's
208 * not worth getting one just for that.
209 */
210 read_pages(ractl, &page_pool, true);
211 i = ractl->_index + ractl->_nr_pages - index - 1;
212 continue;
213 }
214
215 page = __page_cache_alloc(gfp_mask);
216 if (!page)
217 break;
218 if (mapping->a_ops->readpages) {
219 page->index = index + i;
220 list_add(&page->lru, &page_pool);
221 } else if (add_to_page_cache_lru(page, mapping, index + i,
222 gfp_mask) < 0) {
223 put_page(page);
224 read_pages(ractl, &page_pool, true);
225 i = ractl->_index + ractl->_nr_pages - index - 1;
226 continue;
227 }
228 if (i == nr_to_read - lookahead_size)
229 SetPageReadahead(page);
230 ractl->_nr_pages++;
231 }
232
233 /*
234 * Now start the IO. We ignore I/O errors - if the page is not
235 * uptodate then the caller will launch readpage again, and
236 * will then handle the error.
237 */
238 read_pages(ractl, &page_pool, false);
239 memalloc_nofs_restore(nofs);
240}
241EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
242
243/*
244 * do_page_cache_ra() actually reads a chunk of disk. It allocates
245 * the pages first, then submits them for I/O. This avoids the very bad
246 * behaviour which would occur if page allocations are causing VM writeback.
247 * We really don't want to intermingle reads and writes like that.
248 */
249void do_page_cache_ra(struct readahead_control *ractl,
250 unsigned long nr_to_read, unsigned long lookahead_size)
251{
252 struct inode *inode = ractl->mapping->host;
253 unsigned long index = readahead_index(ractl);
254 loff_t isize = i_size_read(inode);
255 pgoff_t end_index; /* The last page we want to read */
256
257 if (isize == 0)
258 return;
259
260 end_index = (isize - 1) >> PAGE_SHIFT;
261 if (index > end_index)
262 return;
263 /* Don't read past the page containing the last byte of the file */
264 if (nr_to_read > end_index - index)
265 nr_to_read = end_index - index + 1;
266
267 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
268}
269
270/*
271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
272 * memory at once.
273 */
274void force_page_cache_ra(struct readahead_control *ractl,
275 unsigned long nr_to_read)
276{
277 struct address_space *mapping = ractl->mapping;
278 struct file_ra_state *ra = ractl->ra;
279 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
280 unsigned long max_pages, index;
281
282 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
283 !mapping->a_ops->readahead))
284 return;
285
286 /*
287 * If the request exceeds the readahead window, allow the read to
288 * be up to the optimal hardware IO size
289 */
290 index = readahead_index(ractl);
291 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
292 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
293 while (nr_to_read) {
294 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
295
296 if (this_chunk > nr_to_read)
297 this_chunk = nr_to_read;
298 ractl->_index = index;
299 do_page_cache_ra(ractl, this_chunk, 0);
300
301 index += this_chunk;
302 nr_to_read -= this_chunk;
303 }
304}
305
306/*
307 * Set the initial window size, round to next power of 2 and square
308 * for small size, x 4 for medium, and x 2 for large
309 * for 128k (32 page) max ra
310 * 1-8 page = 32k initial, > 8 page = 128k initial
311 */
312static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
313{
314 unsigned long newsize = roundup_pow_of_two(size);
315
316 if (newsize <= max / 32)
317 newsize = newsize * 4;
318 else if (newsize <= max / 4)
319 newsize = newsize * 2;
320 else
321 newsize = max;
322
323 return newsize;
324}
325
326/*
327 * Get the previous window size, ramp it up, and
328 * return it as the new window size.
329 */
330static unsigned long get_next_ra_size(struct file_ra_state *ra,
331 unsigned long max)
332{
333 unsigned long cur = ra->size;
334
335 if (cur < max / 16)
336 return 4 * cur;
337 if (cur <= max / 2)
338 return 2 * cur;
339 return max;
340}
341
342/*
343 * On-demand readahead design.
344 *
345 * The fields in struct file_ra_state represent the most-recently-executed
346 * readahead attempt:
347 *
348 * |<----- async_size ---------|
349 * |------------------- size -------------------->|
350 * |==================#===========================|
351 * ^start ^page marked with PG_readahead
352 *
353 * To overlap application thinking time and disk I/O time, we do
354 * `readahead pipelining': Do not wait until the application consumed all
355 * readahead pages and stalled on the missing page at readahead_index;
356 * Instead, submit an asynchronous readahead I/O as soon as there are
357 * only async_size pages left in the readahead window. Normally async_size
358 * will be equal to size, for maximum pipelining.
359 *
360 * In interleaved sequential reads, concurrent streams on the same fd can
361 * be invalidating each other's readahead state. So we flag the new readahead
362 * page at (start+size-async_size) with PG_readahead, and use it as readahead
363 * indicator. The flag won't be set on already cached pages, to avoid the
364 * readahead-for-nothing fuss, saving pointless page cache lookups.
365 *
366 * prev_pos tracks the last visited byte in the _previous_ read request.
367 * It should be maintained by the caller, and will be used for detecting
368 * small random reads. Note that the readahead algorithm checks loosely
369 * for sequential patterns. Hence interleaved reads might be served as
370 * sequential ones.
371 *
372 * There is a special-case: if the first page which the application tries to
373 * read happens to be the first page of the file, it is assumed that a linear
374 * read is about to happen and the window is immediately set to the initial size
375 * based on I/O request size and the max_readahead.
376 *
377 * The code ramps up the readahead size aggressively at first, but slow down as
378 * it approaches max_readhead.
379 */
380
381/*
382 * Count contiguously cached pages from @index-1 to @index-@max,
383 * this count is a conservative estimation of
384 * - length of the sequential read sequence, or
385 * - thrashing threshold in memory tight systems
386 */
387static pgoff_t count_history_pages(struct address_space *mapping,
388 pgoff_t index, unsigned long max)
389{
390 pgoff_t head;
391
392 rcu_read_lock();
393 head = page_cache_prev_miss(mapping, index - 1, max);
394 rcu_read_unlock();
395
396 return index - 1 - head;
397}
398
399/*
400 * page cache context based read-ahead
401 */
402static int try_context_readahead(struct address_space *mapping,
403 struct file_ra_state *ra,
404 pgoff_t index,
405 unsigned long req_size,
406 unsigned long max)
407{
408 pgoff_t size;
409
410 size = count_history_pages(mapping, index, max);
411
412 /*
413 * not enough history pages:
414 * it could be a random read
415 */
416 if (size <= req_size)
417 return 0;
418
419 /*
420 * starts from beginning of file:
421 * it is a strong indication of long-run stream (or whole-file-read)
422 */
423 if (size >= index)
424 size *= 2;
425
426 ra->start = index;
427 ra->size = min(size + req_size, max);
428 ra->async_size = 1;
429
430 return 1;
431}
432
433/*
434 * A minimal readahead algorithm for trivial sequential/random reads.
435 */
436static void ondemand_readahead(struct readahead_control *ractl,
437 bool hit_readahead_marker, unsigned long req_size)
438{
439 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
440 struct file_ra_state *ra = ractl->ra;
441 unsigned long max_pages = ra->ra_pages;
442 unsigned long add_pages;
443 unsigned long index = readahead_index(ractl);
444 pgoff_t prev_index;
445
446 /*
447 * If the request exceeds the readahead window, allow the read to
448 * be up to the optimal hardware IO size
449 */
450 if (req_size > max_pages && bdi->io_pages > max_pages)
451 max_pages = min(req_size, bdi->io_pages);
452
453 /*
454 * start of file
455 */
456 if (!index)
457 goto initial_readahead;
458
459 /*
460 * It's the expected callback index, assume sequential access.
461 * Ramp up sizes, and push forward the readahead window.
462 */
463 if ((index == (ra->start + ra->size - ra->async_size) ||
464 index == (ra->start + ra->size))) {
465 ra->start += ra->size;
466 ra->size = get_next_ra_size(ra, max_pages);
467 ra->async_size = ra->size;
468 goto readit;
469 }
470
471 /*
472 * Hit a marked page without valid readahead state.
473 * E.g. interleaved reads.
474 * Query the pagecache for async_size, which normally equals to
475 * readahead size. Ramp it up and use it as the new readahead size.
476 */
477 if (hit_readahead_marker) {
478 pgoff_t start;
479
480 rcu_read_lock();
481 start = page_cache_next_miss(ractl->mapping, index + 1,
482 max_pages);
483 rcu_read_unlock();
484
485 if (!start || start - index > max_pages)
486 return;
487
488 ra->start = start;
489 ra->size = start - index; /* old async_size */
490 ra->size += req_size;
491 ra->size = get_next_ra_size(ra, max_pages);
492 ra->async_size = ra->size;
493 goto readit;
494 }
495
496 /*
497 * oversize read
498 */
499 if (req_size > max_pages)
500 goto initial_readahead;
501
502 /*
503 * sequential cache miss
504 * trivial case: (index - prev_index) == 1
505 * unaligned reads: (index - prev_index) == 0
506 */
507 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
508 if (index - prev_index <= 1UL)
509 goto initial_readahead;
510
511 /*
512 * Query the page cache and look for the traces(cached history pages)
513 * that a sequential stream would leave behind.
514 */
515 if (try_context_readahead(ractl->mapping, ra, index, req_size,
516 max_pages))
517 goto readit;
518
519 /*
520 * standalone, small random read
521 * Read as is, and do not pollute the readahead state.
522 */
523 do_page_cache_ra(ractl, req_size, 0);
524 return;
525
526initial_readahead:
527 ra->start = index;
528 ra->size = get_init_ra_size(req_size, max_pages);
529 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
530
531readit:
532 /*
533 * Will this read hit the readahead marker made by itself?
534 * If so, trigger the readahead marker hit now, and merge
535 * the resulted next readahead window into the current one.
536 * Take care of maximum IO pages as above.
537 */
538 if (index == ra->start && ra->size == ra->async_size) {
539 add_pages = get_next_ra_size(ra, max_pages);
540 if (ra->size + add_pages <= max_pages) {
541 ra->async_size = add_pages;
542 ra->size += add_pages;
543 } else {
544 ra->size = max_pages;
545 ra->async_size = max_pages >> 1;
546 }
547 }
548
549 ractl->_index = ra->start;
550 do_page_cache_ra(ractl, ra->size, ra->async_size);
551}
552
553void page_cache_sync_ra(struct readahead_control *ractl,
554 unsigned long req_count)
555{
556 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
557
558 /*
559 * Even if read-ahead is disabled, issue this request as read-ahead
560 * as we'll need it to satisfy the requested range. The forced
561 * read-ahead will do the right thing and limit the read to just the
562 * requested range, which we'll set to 1 page for this case.
563 */
564 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
565 if (!ractl->file)
566 return;
567 req_count = 1;
568 do_forced_ra = true;
569 }
570
571 /* be dumb */
572 if (do_forced_ra) {
573 force_page_cache_ra(ractl, req_count);
574 return;
575 }
576
577 /* do read-ahead */
578 ondemand_readahead(ractl, false, req_count);
579}
580EXPORT_SYMBOL_GPL(page_cache_sync_ra);
581
582void page_cache_async_ra(struct readahead_control *ractl,
583 struct page *page, unsigned long req_count)
584{
585 /* no read-ahead */
586 if (!ractl->ra->ra_pages)
587 return;
588
589 /*
590 * Same bit is used for PG_readahead and PG_reclaim.
591 */
592 if (PageWriteback(page))
593 return;
594
595 ClearPageReadahead(page);
596
597 /*
598 * Defer asynchronous read-ahead on IO congestion.
599 */
600 if (inode_read_congested(ractl->mapping->host))
601 return;
602
603 if (blk_cgroup_congested())
604 return;
605
606 /* do read-ahead */
607 ondemand_readahead(ractl, true, req_count);
608}
609EXPORT_SYMBOL_GPL(page_cache_async_ra);
610
611ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
612{
613 ssize_t ret;
614 struct fd f;
615
616 ret = -EBADF;
617 f = fdget(fd);
618 if (!f.file || !(f.file->f_mode & FMODE_READ))
619 goto out;
620
621 /*
622 * The readahead() syscall is intended to run only on files
623 * that can execute readahead. If readahead is not possible
624 * on this file, then we must return -EINVAL.
625 */
626 ret = -EINVAL;
627 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
628 !S_ISREG(file_inode(f.file)->i_mode))
629 goto out;
630
631 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
632out:
633 fdput(f);
634 return ret;
635}
636
637SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
638{
639 return ksys_readahead(fd, offset, count);
640}
641
642/**
643 * readahead_expand - Expand a readahead request
644 * @ractl: The request to be expanded
645 * @new_start: The revised start
646 * @new_len: The revised size of the request
647 *
648 * Attempt to expand a readahead request outwards from the current size to the
649 * specified size by inserting locked pages before and after the current window
650 * to increase the size to the new window. This may involve the insertion of
651 * THPs, in which case the window may get expanded even beyond what was
652 * requested.
653 *
654 * The algorithm will stop if it encounters a conflicting page already in the
655 * pagecache and leave a smaller expansion than requested.
656 *
657 * The caller must check for this by examining the revised @ractl object for a
658 * different expansion than was requested.
659 */
660void readahead_expand(struct readahead_control *ractl,
661 loff_t new_start, size_t new_len)
662{
663 struct address_space *mapping = ractl->mapping;
664 struct file_ra_state *ra = ractl->ra;
665 pgoff_t new_index, new_nr_pages;
666 gfp_t gfp_mask = readahead_gfp_mask(mapping);
667
668 new_index = new_start / PAGE_SIZE;
669
670 /* Expand the leading edge downwards */
671 while (ractl->_index > new_index) {
672 unsigned long index = ractl->_index - 1;
673 struct page *page = xa_load(&mapping->i_pages, index);
674
675 if (page && !xa_is_value(page))
676 return; /* Page apparently present */
677
678 page = __page_cache_alloc(gfp_mask);
679 if (!page)
680 return;
681 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
682 put_page(page);
683 return;
684 }
685
686 ractl->_nr_pages++;
687 ractl->_index = page->index;
688 }
689
690 new_len += new_start - readahead_pos(ractl);
691 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
692
693 /* Expand the trailing edge upwards */
694 while (ractl->_nr_pages < new_nr_pages) {
695 unsigned long index = ractl->_index + ractl->_nr_pages;
696 struct page *page = xa_load(&mapping->i_pages, index);
697
698 if (page && !xa_is_value(page))
699 return; /* Page apparently present */
700
701 page = __page_cache_alloc(gfp_mask);
702 if (!page)
703 return;
704 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
705 put_page(page);
706 return;
707 }
708 ractl->_nr_pages++;
709 if (ra) {
710 ra->size++;
711 ra->async_size++;
712 }
713 }
714}
715EXPORT_SYMBOL(readahead_expand);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11/**
12 * DOC: Readahead Overview
13 *
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
19 *
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
26 *
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
35 *
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
39 *
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
43 *
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
49 *
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
60 *
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
67 *
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
72 *
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
76 *
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
84 *
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
88 *
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
92 *
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
95 *
96 * * getting an error during subsequent processing of a request.
97 *
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116#include <linux/blkdev.h>
117#include <linux/kernel.h>
118#include <linux/dax.h>
119#include <linux/gfp.h>
120#include <linux/export.h>
121#include <linux/backing-dev.h>
122#include <linux/task_io_accounting_ops.h>
123#include <linux/pagevec.h>
124#include <linux/pagemap.h>
125#include <linux/psi.h>
126#include <linux/syscalls.h>
127#include <linux/file.h>
128#include <linux/mm_inline.h>
129#include <linux/blk-cgroup.h>
130#include <linux/fadvise.h>
131#include <linux/sched/mm.h>
132
133#include "internal.h"
134
135/*
136 * Initialise a struct file's readahead state. Assumes that the caller has
137 * memset *ra to zero.
138 */
139void
140file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141{
142 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143 ra->prev_pos = -1;
144}
145EXPORT_SYMBOL_GPL(file_ra_state_init);
146
147static void read_pages(struct readahead_control *rac)
148{
149 const struct address_space_operations *aops = rac->mapping->a_ops;
150 struct folio *folio;
151 struct blk_plug plug;
152
153 if (!readahead_count(rac))
154 return;
155
156 if (unlikely(rac->_workingset))
157 psi_memstall_enter(&rac->_pflags);
158 blk_start_plug(&plug);
159
160 if (aops->readahead) {
161 aops->readahead(rac);
162 /*
163 * Clean up the remaining folios. The sizes in ->ra
164 * may be used to size the next readahead, so make sure
165 * they accurately reflect what happened.
166 */
167 while ((folio = readahead_folio(rac)) != NULL) {
168 unsigned long nr = folio_nr_pages(folio);
169
170 folio_get(folio);
171 rac->ra->size -= nr;
172 if (rac->ra->async_size >= nr) {
173 rac->ra->async_size -= nr;
174 filemap_remove_folio(folio);
175 }
176 folio_unlock(folio);
177 folio_put(folio);
178 }
179 } else {
180 while ((folio = readahead_folio(rac)) != NULL)
181 aops->read_folio(rac->file, folio);
182 }
183
184 blk_finish_plug(&plug);
185 if (unlikely(rac->_workingset))
186 psi_memstall_leave(&rac->_pflags);
187 rac->_workingset = false;
188
189 BUG_ON(readahead_count(rac));
190}
191
192/**
193 * page_cache_ra_unbounded - Start unchecked readahead.
194 * @ractl: Readahead control.
195 * @nr_to_read: The number of pages to read.
196 * @lookahead_size: Where to start the next readahead.
197 *
198 * This function is for filesystems to call when they want to start
199 * readahead beyond a file's stated i_size. This is almost certainly
200 * not the function you want to call. Use page_cache_async_readahead()
201 * or page_cache_sync_readahead() instead.
202 *
203 * Context: File is referenced by caller. Mutexes may be held by caller.
204 * May sleep, but will not reenter filesystem to reclaim memory.
205 */
206void page_cache_ra_unbounded(struct readahead_control *ractl,
207 unsigned long nr_to_read, unsigned long lookahead_size)
208{
209 struct address_space *mapping = ractl->mapping;
210 unsigned long index = readahead_index(ractl);
211 gfp_t gfp_mask = readahead_gfp_mask(mapping);
212 unsigned long i;
213
214 /*
215 * Partway through the readahead operation, we will have added
216 * locked pages to the page cache, but will not yet have submitted
217 * them for I/O. Adding another page may need to allocate memory,
218 * which can trigger memory reclaim. Telling the VM we're in
219 * the middle of a filesystem operation will cause it to not
220 * touch file-backed pages, preventing a deadlock. Most (all?)
221 * filesystems already specify __GFP_NOFS in their mapping's
222 * gfp_mask, but let's be explicit here.
223 */
224 unsigned int nofs = memalloc_nofs_save();
225
226 filemap_invalidate_lock_shared(mapping);
227 /*
228 * Preallocate as many pages as we will need.
229 */
230 for (i = 0; i < nr_to_read; i++) {
231 struct folio *folio = xa_load(&mapping->i_pages, index + i);
232
233 if (folio && !xa_is_value(folio)) {
234 /*
235 * Page already present? Kick off the current batch
236 * of contiguous pages before continuing with the
237 * next batch. This page may be the one we would
238 * have intended to mark as Readahead, but we don't
239 * have a stable reference to this page, and it's
240 * not worth getting one just for that.
241 */
242 read_pages(ractl);
243 ractl->_index++;
244 i = ractl->_index + ractl->_nr_pages - index - 1;
245 continue;
246 }
247
248 folio = filemap_alloc_folio(gfp_mask, 0);
249 if (!folio)
250 break;
251 if (filemap_add_folio(mapping, folio, index + i,
252 gfp_mask) < 0) {
253 folio_put(folio);
254 read_pages(ractl);
255 ractl->_index++;
256 i = ractl->_index + ractl->_nr_pages - index - 1;
257 continue;
258 }
259 if (i == nr_to_read - lookahead_size)
260 folio_set_readahead(folio);
261 ractl->_workingset |= folio_test_workingset(folio);
262 ractl->_nr_pages++;
263 }
264
265 /*
266 * Now start the IO. We ignore I/O errors - if the folio is not
267 * uptodate then the caller will launch read_folio again, and
268 * will then handle the error.
269 */
270 read_pages(ractl);
271 filemap_invalidate_unlock_shared(mapping);
272 memalloc_nofs_restore(nofs);
273}
274EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
275
276/*
277 * do_page_cache_ra() actually reads a chunk of disk. It allocates
278 * the pages first, then submits them for I/O. This avoids the very bad
279 * behaviour which would occur if page allocations are causing VM writeback.
280 * We really don't want to intermingle reads and writes like that.
281 */
282static void do_page_cache_ra(struct readahead_control *ractl,
283 unsigned long nr_to_read, unsigned long lookahead_size)
284{
285 struct inode *inode = ractl->mapping->host;
286 unsigned long index = readahead_index(ractl);
287 loff_t isize = i_size_read(inode);
288 pgoff_t end_index; /* The last page we want to read */
289
290 if (isize == 0)
291 return;
292
293 end_index = (isize - 1) >> PAGE_SHIFT;
294 if (index > end_index)
295 return;
296 /* Don't read past the page containing the last byte of the file */
297 if (nr_to_read > end_index - index)
298 nr_to_read = end_index - index + 1;
299
300 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
301}
302
303/*
304 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
305 * memory at once.
306 */
307void force_page_cache_ra(struct readahead_control *ractl,
308 unsigned long nr_to_read)
309{
310 struct address_space *mapping = ractl->mapping;
311 struct file_ra_state *ra = ractl->ra;
312 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
313 unsigned long max_pages, index;
314
315 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
316 return;
317
318 /*
319 * If the request exceeds the readahead window, allow the read to
320 * be up to the optimal hardware IO size
321 */
322 index = readahead_index(ractl);
323 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
324 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
325 while (nr_to_read) {
326 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
327
328 if (this_chunk > nr_to_read)
329 this_chunk = nr_to_read;
330 ractl->_index = index;
331 do_page_cache_ra(ractl, this_chunk, 0);
332
333 index += this_chunk;
334 nr_to_read -= this_chunk;
335 }
336}
337
338/*
339 * Set the initial window size, round to next power of 2 and square
340 * for small size, x 4 for medium, and x 2 for large
341 * for 128k (32 page) max ra
342 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
343 */
344static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
345{
346 unsigned long newsize = roundup_pow_of_two(size);
347
348 if (newsize <= max / 32)
349 newsize = newsize * 4;
350 else if (newsize <= max / 4)
351 newsize = newsize * 2;
352 else
353 newsize = max;
354
355 return newsize;
356}
357
358/*
359 * Get the previous window size, ramp it up, and
360 * return it as the new window size.
361 */
362static unsigned long get_next_ra_size(struct file_ra_state *ra,
363 unsigned long max)
364{
365 unsigned long cur = ra->size;
366
367 if (cur < max / 16)
368 return 4 * cur;
369 if (cur <= max / 2)
370 return 2 * cur;
371 return max;
372}
373
374/*
375 * On-demand readahead design.
376 *
377 * The fields in struct file_ra_state represent the most-recently-executed
378 * readahead attempt:
379 *
380 * |<----- async_size ---------|
381 * |------------------- size -------------------->|
382 * |==================#===========================|
383 * ^start ^page marked with PG_readahead
384 *
385 * To overlap application thinking time and disk I/O time, we do
386 * `readahead pipelining': Do not wait until the application consumed all
387 * readahead pages and stalled on the missing page at readahead_index;
388 * Instead, submit an asynchronous readahead I/O as soon as there are
389 * only async_size pages left in the readahead window. Normally async_size
390 * will be equal to size, for maximum pipelining.
391 *
392 * In interleaved sequential reads, concurrent streams on the same fd can
393 * be invalidating each other's readahead state. So we flag the new readahead
394 * page at (start+size-async_size) with PG_readahead, and use it as readahead
395 * indicator. The flag won't be set on already cached pages, to avoid the
396 * readahead-for-nothing fuss, saving pointless page cache lookups.
397 *
398 * prev_pos tracks the last visited byte in the _previous_ read request.
399 * It should be maintained by the caller, and will be used for detecting
400 * small random reads. Note that the readahead algorithm checks loosely
401 * for sequential patterns. Hence interleaved reads might be served as
402 * sequential ones.
403 *
404 * There is a special-case: if the first page which the application tries to
405 * read happens to be the first page of the file, it is assumed that a linear
406 * read is about to happen and the window is immediately set to the initial size
407 * based on I/O request size and the max_readahead.
408 *
409 * The code ramps up the readahead size aggressively at first, but slow down as
410 * it approaches max_readhead.
411 */
412
413/*
414 * Count contiguously cached pages from @index-1 to @index-@max,
415 * this count is a conservative estimation of
416 * - length of the sequential read sequence, or
417 * - thrashing threshold in memory tight systems
418 */
419static pgoff_t count_history_pages(struct address_space *mapping,
420 pgoff_t index, unsigned long max)
421{
422 pgoff_t head;
423
424 rcu_read_lock();
425 head = page_cache_prev_miss(mapping, index - 1, max);
426 rcu_read_unlock();
427
428 return index - 1 - head;
429}
430
431/*
432 * page cache context based readahead
433 */
434static int try_context_readahead(struct address_space *mapping,
435 struct file_ra_state *ra,
436 pgoff_t index,
437 unsigned long req_size,
438 unsigned long max)
439{
440 pgoff_t size;
441
442 size = count_history_pages(mapping, index, max);
443
444 /*
445 * not enough history pages:
446 * it could be a random read
447 */
448 if (size <= req_size)
449 return 0;
450
451 /*
452 * starts from beginning of file:
453 * it is a strong indication of long-run stream (or whole-file-read)
454 */
455 if (size >= index)
456 size *= 2;
457
458 ra->start = index;
459 ra->size = min(size + req_size, max);
460 ra->async_size = 1;
461
462 return 1;
463}
464
465/*
466 * There are some parts of the kernel which assume that PMD entries
467 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
468 * limit the maximum allocation order to PMD size. I'm not aware of any
469 * assumptions about maximum order if THP are disabled, but 8 seems like
470 * a good order (that's 1MB if you're using 4kB pages)
471 */
472#ifdef CONFIG_TRANSPARENT_HUGEPAGE
473#define MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
474#else
475#define MAX_PAGECACHE_ORDER 8
476#endif
477
478static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
479 pgoff_t mark, unsigned int order, gfp_t gfp)
480{
481 int err;
482 struct folio *folio = filemap_alloc_folio(gfp, order);
483
484 if (!folio)
485 return -ENOMEM;
486 mark = round_up(mark, 1UL << order);
487 if (index == mark)
488 folio_set_readahead(folio);
489 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
490 if (err) {
491 folio_put(folio);
492 return err;
493 }
494
495 ractl->_nr_pages += 1UL << order;
496 ractl->_workingset |= folio_test_workingset(folio);
497 return 0;
498}
499
500void page_cache_ra_order(struct readahead_control *ractl,
501 struct file_ra_state *ra, unsigned int new_order)
502{
503 struct address_space *mapping = ractl->mapping;
504 pgoff_t index = readahead_index(ractl);
505 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
506 pgoff_t mark = index + ra->size - ra->async_size;
507 int err = 0;
508 gfp_t gfp = readahead_gfp_mask(mapping);
509
510 if (!mapping_large_folio_support(mapping) || ra->size < 4)
511 goto fallback;
512
513 limit = min(limit, index + ra->size - 1);
514
515 if (new_order < MAX_PAGECACHE_ORDER) {
516 new_order += 2;
517 if (new_order > MAX_PAGECACHE_ORDER)
518 new_order = MAX_PAGECACHE_ORDER;
519 while ((1 << new_order) > ra->size)
520 new_order--;
521 }
522
523 filemap_invalidate_lock_shared(mapping);
524 while (index <= limit) {
525 unsigned int order = new_order;
526
527 /* Align with smaller pages if needed */
528 if (index & ((1UL << order) - 1)) {
529 order = __ffs(index);
530 if (order == 1)
531 order = 0;
532 }
533 /* Don't allocate pages past EOF */
534 while (index + (1UL << order) - 1 > limit) {
535 if (--order == 1)
536 order = 0;
537 }
538 err = ra_alloc_folio(ractl, index, mark, order, gfp);
539 if (err)
540 break;
541 index += 1UL << order;
542 }
543
544 if (index > limit) {
545 ra->size += index - limit - 1;
546 ra->async_size += index - limit - 1;
547 }
548
549 read_pages(ractl);
550 filemap_invalidate_unlock_shared(mapping);
551
552 /*
553 * If there were already pages in the page cache, then we may have
554 * left some gaps. Let the regular readahead code take care of this
555 * situation.
556 */
557 if (!err)
558 return;
559fallback:
560 do_page_cache_ra(ractl, ra->size, ra->async_size);
561}
562
563/*
564 * A minimal readahead algorithm for trivial sequential/random reads.
565 */
566static void ondemand_readahead(struct readahead_control *ractl,
567 struct folio *folio, unsigned long req_size)
568{
569 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
570 struct file_ra_state *ra = ractl->ra;
571 unsigned long max_pages = ra->ra_pages;
572 unsigned long add_pages;
573 pgoff_t index = readahead_index(ractl);
574 pgoff_t expected, prev_index;
575 unsigned int order = folio ? folio_order(folio) : 0;
576
577 /*
578 * If the request exceeds the readahead window, allow the read to
579 * be up to the optimal hardware IO size
580 */
581 if (req_size > max_pages && bdi->io_pages > max_pages)
582 max_pages = min(req_size, bdi->io_pages);
583
584 /*
585 * start of file
586 */
587 if (!index)
588 goto initial_readahead;
589
590 /*
591 * It's the expected callback index, assume sequential access.
592 * Ramp up sizes, and push forward the readahead window.
593 */
594 expected = round_up(ra->start + ra->size - ra->async_size,
595 1UL << order);
596 if (index == expected || index == (ra->start + ra->size)) {
597 ra->start += ra->size;
598 ra->size = get_next_ra_size(ra, max_pages);
599 ra->async_size = ra->size;
600 goto readit;
601 }
602
603 /*
604 * Hit a marked folio without valid readahead state.
605 * E.g. interleaved reads.
606 * Query the pagecache for async_size, which normally equals to
607 * readahead size. Ramp it up and use it as the new readahead size.
608 */
609 if (folio) {
610 pgoff_t start;
611
612 rcu_read_lock();
613 start = page_cache_next_miss(ractl->mapping, index + 1,
614 max_pages);
615 rcu_read_unlock();
616
617 if (!start || start - index > max_pages)
618 return;
619
620 ra->start = start;
621 ra->size = start - index; /* old async_size */
622 ra->size += req_size;
623 ra->size = get_next_ra_size(ra, max_pages);
624 ra->async_size = ra->size;
625 goto readit;
626 }
627
628 /*
629 * oversize read
630 */
631 if (req_size > max_pages)
632 goto initial_readahead;
633
634 /*
635 * sequential cache miss
636 * trivial case: (index - prev_index) == 1
637 * unaligned reads: (index - prev_index) == 0
638 */
639 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
640 if (index - prev_index <= 1UL)
641 goto initial_readahead;
642
643 /*
644 * Query the page cache and look for the traces(cached history pages)
645 * that a sequential stream would leave behind.
646 */
647 if (try_context_readahead(ractl->mapping, ra, index, req_size,
648 max_pages))
649 goto readit;
650
651 /*
652 * standalone, small random read
653 * Read as is, and do not pollute the readahead state.
654 */
655 do_page_cache_ra(ractl, req_size, 0);
656 return;
657
658initial_readahead:
659 ra->start = index;
660 ra->size = get_init_ra_size(req_size, max_pages);
661 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
662
663readit:
664 /*
665 * Will this read hit the readahead marker made by itself?
666 * If so, trigger the readahead marker hit now, and merge
667 * the resulted next readahead window into the current one.
668 * Take care of maximum IO pages as above.
669 */
670 if (index == ra->start && ra->size == ra->async_size) {
671 add_pages = get_next_ra_size(ra, max_pages);
672 if (ra->size + add_pages <= max_pages) {
673 ra->async_size = add_pages;
674 ra->size += add_pages;
675 } else {
676 ra->size = max_pages;
677 ra->async_size = max_pages >> 1;
678 }
679 }
680
681 ractl->_index = ra->start;
682 page_cache_ra_order(ractl, ra, order);
683}
684
685void page_cache_sync_ra(struct readahead_control *ractl,
686 unsigned long req_count)
687{
688 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
689
690 /*
691 * Even if readahead is disabled, issue this request as readahead
692 * as we'll need it to satisfy the requested range. The forced
693 * readahead will do the right thing and limit the read to just the
694 * requested range, which we'll set to 1 page for this case.
695 */
696 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
697 if (!ractl->file)
698 return;
699 req_count = 1;
700 do_forced_ra = true;
701 }
702
703 /* be dumb */
704 if (do_forced_ra) {
705 force_page_cache_ra(ractl, req_count);
706 return;
707 }
708
709 ondemand_readahead(ractl, NULL, req_count);
710}
711EXPORT_SYMBOL_GPL(page_cache_sync_ra);
712
713void page_cache_async_ra(struct readahead_control *ractl,
714 struct folio *folio, unsigned long req_count)
715{
716 /* no readahead */
717 if (!ractl->ra->ra_pages)
718 return;
719
720 /*
721 * Same bit is used for PG_readahead and PG_reclaim.
722 */
723 if (folio_test_writeback(folio))
724 return;
725
726 folio_clear_readahead(folio);
727
728 if (blk_cgroup_congested())
729 return;
730
731 ondemand_readahead(ractl, folio, req_count);
732}
733EXPORT_SYMBOL_GPL(page_cache_async_ra);
734
735ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
736{
737 ssize_t ret;
738 struct fd f;
739
740 ret = -EBADF;
741 f = fdget(fd);
742 if (!f.file || !(f.file->f_mode & FMODE_READ))
743 goto out;
744
745 /*
746 * The readahead() syscall is intended to run only on files
747 * that can execute readahead. If readahead is not possible
748 * on this file, then we must return -EINVAL.
749 */
750 ret = -EINVAL;
751 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
752 !S_ISREG(file_inode(f.file)->i_mode))
753 goto out;
754
755 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
756out:
757 fdput(f);
758 return ret;
759}
760
761SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
762{
763 return ksys_readahead(fd, offset, count);
764}
765
766#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
767COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
768{
769 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
770}
771#endif
772
773/**
774 * readahead_expand - Expand a readahead request
775 * @ractl: The request to be expanded
776 * @new_start: The revised start
777 * @new_len: The revised size of the request
778 *
779 * Attempt to expand a readahead request outwards from the current size to the
780 * specified size by inserting locked pages before and after the current window
781 * to increase the size to the new window. This may involve the insertion of
782 * THPs, in which case the window may get expanded even beyond what was
783 * requested.
784 *
785 * The algorithm will stop if it encounters a conflicting page already in the
786 * pagecache and leave a smaller expansion than requested.
787 *
788 * The caller must check for this by examining the revised @ractl object for a
789 * different expansion than was requested.
790 */
791void readahead_expand(struct readahead_control *ractl,
792 loff_t new_start, size_t new_len)
793{
794 struct address_space *mapping = ractl->mapping;
795 struct file_ra_state *ra = ractl->ra;
796 pgoff_t new_index, new_nr_pages;
797 gfp_t gfp_mask = readahead_gfp_mask(mapping);
798
799 new_index = new_start / PAGE_SIZE;
800
801 /* Expand the leading edge downwards */
802 while (ractl->_index > new_index) {
803 unsigned long index = ractl->_index - 1;
804 struct page *page = xa_load(&mapping->i_pages, index);
805
806 if (page && !xa_is_value(page))
807 return; /* Page apparently present */
808
809 page = __page_cache_alloc(gfp_mask);
810 if (!page)
811 return;
812 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
813 put_page(page);
814 return;
815 }
816
817 ractl->_nr_pages++;
818 ractl->_index = page->index;
819 }
820
821 new_len += new_start - readahead_pos(ractl);
822 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
823
824 /* Expand the trailing edge upwards */
825 while (ractl->_nr_pages < new_nr_pages) {
826 unsigned long index = ractl->_index + ractl->_nr_pages;
827 struct page *page = xa_load(&mapping->i_pages, index);
828
829 if (page && !xa_is_value(page))
830 return; /* Page apparently present */
831
832 page = __page_cache_alloc(gfp_mask);
833 if (!page)
834 return;
835 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
836 put_page(page);
837 return;
838 }
839 if (unlikely(PageWorkingset(page)) && !ractl->_workingset) {
840 ractl->_workingset = true;
841 psi_memstall_enter(&ractl->_pflags);
842 }
843 ractl->_nr_pages++;
844 if (ra) {
845 ra->size++;
846 ra->async_size++;
847 }
848 }
849}
850EXPORT_SYMBOL(readahead_expand);