Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/psi.h>
 26#include <linux/uio.h>
 27#include <linux/sched/task.h>
 
 
 28
 29void end_swap_bio_write(struct bio *bio)
 30{
 31	struct page *page = bio_first_page_all(bio);
 32
 33	if (bio->bi_status) {
 34		SetPageError(page);
 35		/*
 36		 * We failed to write the page out to swap-space.
 37		 * Re-dirty the page in order to avoid it being reclaimed.
 38		 * Also print a dire warning that things will go BAD (tm)
 39		 * very quickly.
 40		 *
 41		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
 42		 */
 43		set_page_dirty(page);
 44		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 45				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 46				     (unsigned long long)bio->bi_iter.bi_sector);
 47		ClearPageReclaim(page);
 48	}
 49	end_page_writeback(page);
 50	bio_put(bio);
 51}
 52
 53static void swap_slot_free_notify(struct page *page)
 54{
 55	struct swap_info_struct *sis;
 56	struct gendisk *disk;
 57	swp_entry_t entry;
 58
 59	/*
 60	 * There is no guarantee that the page is in swap cache - the software
 61	 * suspend code (at least) uses end_swap_bio_read() against a non-
 62	 * swapcache page.  So we must check PG_swapcache before proceeding with
 63	 * this optimization.
 64	 */
 65	if (unlikely(!PageSwapCache(page)))
 66		return;
 67
 68	sis = page_swap_info(page);
 69	if (data_race(!(sis->flags & SWP_BLKDEV)))
 70		return;
 71
 72	/*
 73	 * The swap subsystem performs lazy swap slot freeing,
 74	 * expecting that the page will be swapped out again.
 75	 * So we can avoid an unnecessary write if the page
 76	 * isn't redirtied.
 77	 * This is good for real swap storage because we can
 78	 * reduce unnecessary I/O and enhance wear-leveling
 79	 * if an SSD is used as the as swap device.
 80	 * But if in-memory swap device (eg zram) is used,
 81	 * this causes a duplicated copy between uncompressed
 82	 * data in VM-owned memory and compressed data in
 83	 * zram-owned memory.  So let's free zram-owned memory
 84	 * and make the VM-owned decompressed page *dirty*,
 85	 * so the page should be swapped out somewhere again if
 86	 * we again wish to reclaim it.
 87	 */
 88	disk = sis->bdev->bd_disk;
 89	entry.val = page_private(page);
 90	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
 91		unsigned long offset;
 92
 93		offset = swp_offset(entry);
 94
 95		SetPageDirty(page);
 96		disk->fops->swap_slot_free_notify(sis->bdev,
 97				offset);
 98	}
 99}
100
101static void end_swap_bio_read(struct bio *bio)
102{
103	struct page *page = bio_first_page_all(bio);
104	struct task_struct *waiter = bio->bi_private;
105
106	if (bio->bi_status) {
107		SetPageError(page);
108		ClearPageUptodate(page);
109		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
110				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
111				     (unsigned long long)bio->bi_iter.bi_sector);
112		goto out;
113	}
114
115	SetPageUptodate(page);
116	swap_slot_free_notify(page);
117out:
118	unlock_page(page);
119	WRITE_ONCE(bio->bi_private, NULL);
120	bio_put(bio);
121	if (waiter) {
122		blk_wake_io_task(waiter);
123		put_task_struct(waiter);
124	}
125}
126
127int generic_swapfile_activate(struct swap_info_struct *sis,
128				struct file *swap_file,
129				sector_t *span)
130{
131	struct address_space *mapping = swap_file->f_mapping;
132	struct inode *inode = mapping->host;
133	unsigned blocks_per_page;
134	unsigned long page_no;
135	unsigned blkbits;
136	sector_t probe_block;
137	sector_t last_block;
138	sector_t lowest_block = -1;
139	sector_t highest_block = 0;
140	int nr_extents = 0;
141	int ret;
142
143	blkbits = inode->i_blkbits;
144	blocks_per_page = PAGE_SIZE >> blkbits;
145
146	/*
147	 * Map all the blocks into the extent tree.  This code doesn't try
148	 * to be very smart.
149	 */
150	probe_block = 0;
151	page_no = 0;
152	last_block = i_size_read(inode) >> blkbits;
153	while ((probe_block + blocks_per_page) <= last_block &&
154			page_no < sis->max) {
155		unsigned block_in_page;
156		sector_t first_block;
157
158		cond_resched();
159
160		first_block = probe_block;
161		ret = bmap(inode, &first_block);
162		if (ret || !first_block)
163			goto bad_bmap;
164
165		/*
166		 * It must be PAGE_SIZE aligned on-disk
167		 */
168		if (first_block & (blocks_per_page - 1)) {
169			probe_block++;
170			goto reprobe;
171		}
172
173		for (block_in_page = 1; block_in_page < blocks_per_page;
174					block_in_page++) {
175			sector_t block;
176
177			block = probe_block + block_in_page;
178			ret = bmap(inode, &block);
179			if (ret || !block)
180				goto bad_bmap;
181
182			if (block != first_block + block_in_page) {
183				/* Discontiguity */
184				probe_block++;
185				goto reprobe;
186			}
187		}
188
189		first_block >>= (PAGE_SHIFT - blkbits);
190		if (page_no) {	/* exclude the header page */
191			if (first_block < lowest_block)
192				lowest_block = first_block;
193			if (first_block > highest_block)
194				highest_block = first_block;
195		}
196
197		/*
198		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
199		 */
200		ret = add_swap_extent(sis, page_no, 1, first_block);
201		if (ret < 0)
202			goto out;
203		nr_extents += ret;
204		page_no++;
205		probe_block += blocks_per_page;
206reprobe:
207		continue;
208	}
209	ret = nr_extents;
210	*span = 1 + highest_block - lowest_block;
211	if (page_no == 0)
212		page_no = 1;	/* force Empty message */
213	sis->max = page_no;
214	sis->pages = page_no - 1;
215	sis->highest_bit = page_no - 1;
216out:
217	return ret;
218bad_bmap:
219	pr_err("swapon: swapfile has holes\n");
220	ret = -EINVAL;
221	goto out;
222}
223
224/*
225 * We may have stale swap cache pages in memory: notice
226 * them here and get rid of the unnecessary final write.
227 */
228int swap_writepage(struct page *page, struct writeback_control *wbc)
229{
 
230	int ret = 0;
231
232	if (try_to_free_swap(page)) {
233		unlock_page(page);
234		goto out;
235	}
236	/*
237	 * Arch code may have to preserve more data than just the page
238	 * contents, e.g. memory tags.
239	 */
240	ret = arch_prepare_to_swap(page);
241	if (ret) {
242		set_page_dirty(page);
243		unlock_page(page);
244		goto out;
245	}
246	if (frontswap_store(page) == 0) {
247		set_page_writeback(page);
248		unlock_page(page);
249		end_page_writeback(page);
250		goto out;
251	}
252	ret = __swap_writepage(page, wbc, end_swap_bio_write);
253out:
254	return ret;
255}
256
257static inline void count_swpout_vm_event(struct page *page)
258{
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260	if (unlikely(PageTransHuge(page)))
261		count_vm_event(THP_SWPOUT);
262#endif
263	count_vm_events(PSWPOUT, thp_nr_pages(page));
264}
265
266#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
267static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
268{
269	struct cgroup_subsys_state *css;
270	struct mem_cgroup *memcg;
271
272	memcg = page_memcg(page);
273	if (!memcg)
274		return;
275
276	rcu_read_lock();
277	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
278	bio_associate_blkg_from_css(bio, css);
279	rcu_read_unlock();
280}
281#else
282#define bio_associate_blkg_from_page(bio, page)		do { } while (0)
283#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
284
285int __swap_writepage(struct page *page, struct writeback_control *wbc,
286		bio_end_io_t end_write_func)
 
 
 
 
 
 
 
287{
288	struct bio *bio;
289	int ret;
290	struct swap_info_struct *sis = page_swap_info(page);
 
 
 
 
 
 
 
291
292	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
293	if (data_race(sis->flags & SWP_FS_OPS)) {
294		struct kiocb kiocb;
295		struct file *swap_file = sis->swap_file;
296		struct address_space *mapping = swap_file->f_mapping;
297		struct bio_vec bv = {
298			.bv_page = page,
299			.bv_len  = PAGE_SIZE,
300			.bv_offset = 0
301		};
302		struct iov_iter from;
303
304		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
305		init_sync_kiocb(&kiocb, swap_file);
306		kiocb.ki_pos = page_file_offset(page);
307
308		set_page_writeback(page);
309		unlock_page(page);
310		ret = mapping->a_ops->direct_IO(&kiocb, &from);
311		if (ret == PAGE_SIZE) {
312			count_vm_event(PSWPOUT);
313			ret = 0;
314		} else {
315			/*
316			 * In the case of swap-over-nfs, this can be a
317			 * temporary failure if the system has limited
318			 * memory for allocating transmit buffers.
319			 * Mark the page dirty and avoid
320			 * rotate_reclaimable_page but rate-limit the
321			 * messages but do not flag PageError like
322			 * the normal direct-to-bio case as it could
323			 * be temporary.
324			 */
325			set_page_dirty(page);
326			ClearPageReclaim(page);
327			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
328					   page_file_offset(page));
329		}
330		end_page_writeback(page);
331		return ret;
 
332	}
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
335	if (!ret) {
336		count_swpout_vm_event(page);
337		return 0;
338	}
339
340	bio = bio_alloc(GFP_NOIO, 1);
341	bio_set_dev(bio, sis->bdev);
 
342	bio->bi_iter.bi_sector = swap_page_sector(page);
343	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
344	bio->bi_end_io = end_write_func;
345	bio_add_page(bio, page, thp_size(page), 0);
346
347	bio_associate_blkg_from_page(bio, page);
348	count_swpout_vm_event(page);
349	set_page_writeback(page);
350	unlock_page(page);
351	submit_bio(bio);
352
353	return 0;
354}
355
356int swap_readpage(struct page *page, bool synchronous)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357{
358	struct bio *bio;
359	int ret = 0;
360	struct swap_info_struct *sis = page_swap_info(page);
361	blk_qc_t qc;
362	struct gendisk *disk;
363	unsigned long pflags;
 
364
365	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
366	VM_BUG_ON_PAGE(!PageLocked(page), page);
367	VM_BUG_ON_PAGE(PageUptodate(page), page);
368
369	/*
370	 * Count submission time as memory stall. When the device is congested,
371	 * or the submitting cgroup IO-throttled, submission can be a
372	 * significant part of overall IO time.
373	 */
374	psi_memstall_enter(&pflags);
 
 
 
 
375
376	if (frontswap_load(page) == 0) {
377		SetPageUptodate(page);
378		unlock_page(page);
379		goto out;
380	}
381
382	if (data_race(sis->flags & SWP_FS_OPS)) {
383		struct file *swap_file = sis->swap_file;
384		struct address_space *mapping = swap_file->f_mapping;
385
386		ret = mapping->a_ops->readpage(swap_file, page);
387		if (!ret)
388			count_vm_event(PSWPIN);
389		goto out;
390	}
391
392	if (sis->flags & SWP_SYNCHRONOUS_IO) {
393		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
394		if (!ret) {
395			if (trylock_page(page)) {
396				swap_slot_free_notify(page);
397				unlock_page(page);
398			}
399
400			count_vm_event(PSWPIN);
401			goto out;
402		}
403	}
404
405	ret = 0;
406	bio = bio_alloc(GFP_KERNEL, 1);
407	bio_set_dev(bio, sis->bdev);
408	bio->bi_opf = REQ_OP_READ;
409	bio->bi_iter.bi_sector = swap_page_sector(page);
410	bio->bi_end_io = end_swap_bio_read;
411	bio_add_page(bio, page, thp_size(page), 0);
412
413	disk = bio->bi_bdev->bd_disk;
414	/*
415	 * Keep this task valid during swap readpage because the oom killer may
416	 * attempt to access it in the page fault retry time check.
417	 */
418	if (synchronous) {
419		bio->bi_opf |= REQ_HIPRI;
420		get_task_struct(current);
421		bio->bi_private = current;
422	}
423	count_vm_event(PSWPIN);
424	bio_get(bio);
425	qc = submit_bio(bio);
426	while (synchronous) {
427		set_current_state(TASK_UNINTERRUPTIBLE);
428		if (!READ_ONCE(bio->bi_private))
429			break;
430
431		if (!blk_poll(disk->queue, qc, true))
432			blk_io_schedule();
433	}
434	__set_current_state(TASK_RUNNING);
435	bio_put(bio);
436
437out:
438	psi_memstall_leave(&pflags);
 
 
 
 
439	return ret;
440}
441
442int swap_set_page_dirty(struct page *page)
443{
444	struct swap_info_struct *sis = page_swap_info(page);
445
446	if (data_race(sis->flags & SWP_FS_OPS)) {
447		struct address_space *mapping = sis->swap_file->f_mapping;
448
449		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
450		return mapping->a_ops->set_page_dirty(page);
451	} else {
452		return __set_page_dirty_no_writeback(page);
453	}
454}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/page_io.c
  4 *
  5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
  6 *
  7 *  Swap reorganised 29.12.95, 
  8 *  Asynchronous swapping added 30.12.95. Stephen Tweedie
  9 *  Removed race in async swapping. 14.4.1996. Bruno Haible
 10 *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
 11 *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
 12 */
 13
 14#include <linux/mm.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/gfp.h>
 17#include <linux/pagemap.h>
 18#include <linux/swap.h>
 19#include <linux/bio.h>
 20#include <linux/swapops.h>
 21#include <linux/buffer_head.h>
 22#include <linux/writeback.h>
 23#include <linux/frontswap.h>
 24#include <linux/blkdev.h>
 25#include <linux/psi.h>
 26#include <linux/uio.h>
 27#include <linux/sched/task.h>
 28#include <linux/delayacct.h>
 29#include "swap.h"
 30
 31static void end_swap_bio_write(struct bio *bio)
 32{
 33	struct page *page = bio_first_page_all(bio);
 34
 35	if (bio->bi_status) {
 36		SetPageError(page);
 37		/*
 38		 * We failed to write the page out to swap-space.
 39		 * Re-dirty the page in order to avoid it being reclaimed.
 40		 * Also print a dire warning that things will go BAD (tm)
 41		 * very quickly.
 42		 *
 43		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
 44		 */
 45		set_page_dirty(page);
 46		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
 47				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 48				     (unsigned long long)bio->bi_iter.bi_sector);
 49		ClearPageReclaim(page);
 50	}
 51	end_page_writeback(page);
 52	bio_put(bio);
 53}
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static void end_swap_bio_read(struct bio *bio)
 56{
 57	struct page *page = bio_first_page_all(bio);
 58	struct task_struct *waiter = bio->bi_private;
 59
 60	if (bio->bi_status) {
 61		SetPageError(page);
 62		ClearPageUptodate(page);
 63		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
 64				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 65				     (unsigned long long)bio->bi_iter.bi_sector);
 66		goto out;
 67	}
 68
 69	SetPageUptodate(page);
 
 70out:
 71	unlock_page(page);
 72	WRITE_ONCE(bio->bi_private, NULL);
 73	bio_put(bio);
 74	if (waiter) {
 75		blk_wake_io_task(waiter);
 76		put_task_struct(waiter);
 77	}
 78}
 79
 80int generic_swapfile_activate(struct swap_info_struct *sis,
 81				struct file *swap_file,
 82				sector_t *span)
 83{
 84	struct address_space *mapping = swap_file->f_mapping;
 85	struct inode *inode = mapping->host;
 86	unsigned blocks_per_page;
 87	unsigned long page_no;
 88	unsigned blkbits;
 89	sector_t probe_block;
 90	sector_t last_block;
 91	sector_t lowest_block = -1;
 92	sector_t highest_block = 0;
 93	int nr_extents = 0;
 94	int ret;
 95
 96	blkbits = inode->i_blkbits;
 97	blocks_per_page = PAGE_SIZE >> blkbits;
 98
 99	/*
100	 * Map all the blocks into the extent tree.  This code doesn't try
101	 * to be very smart.
102	 */
103	probe_block = 0;
104	page_no = 0;
105	last_block = i_size_read(inode) >> blkbits;
106	while ((probe_block + blocks_per_page) <= last_block &&
107			page_no < sis->max) {
108		unsigned block_in_page;
109		sector_t first_block;
110
111		cond_resched();
112
113		first_block = probe_block;
114		ret = bmap(inode, &first_block);
115		if (ret || !first_block)
116			goto bad_bmap;
117
118		/*
119		 * It must be PAGE_SIZE aligned on-disk
120		 */
121		if (first_block & (blocks_per_page - 1)) {
122			probe_block++;
123			goto reprobe;
124		}
125
126		for (block_in_page = 1; block_in_page < blocks_per_page;
127					block_in_page++) {
128			sector_t block;
129
130			block = probe_block + block_in_page;
131			ret = bmap(inode, &block);
132			if (ret || !block)
133				goto bad_bmap;
134
135			if (block != first_block + block_in_page) {
136				/* Discontiguity */
137				probe_block++;
138				goto reprobe;
139			}
140		}
141
142		first_block >>= (PAGE_SHIFT - blkbits);
143		if (page_no) {	/* exclude the header page */
144			if (first_block < lowest_block)
145				lowest_block = first_block;
146			if (first_block > highest_block)
147				highest_block = first_block;
148		}
149
150		/*
151		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
152		 */
153		ret = add_swap_extent(sis, page_no, 1, first_block);
154		if (ret < 0)
155			goto out;
156		nr_extents += ret;
157		page_no++;
158		probe_block += blocks_per_page;
159reprobe:
160		continue;
161	}
162	ret = nr_extents;
163	*span = 1 + highest_block - lowest_block;
164	if (page_no == 0)
165		page_no = 1;	/* force Empty message */
166	sis->max = page_no;
167	sis->pages = page_no - 1;
168	sis->highest_bit = page_no - 1;
169out:
170	return ret;
171bad_bmap:
172	pr_err("swapon: swapfile has holes\n");
173	ret = -EINVAL;
174	goto out;
175}
176
177/*
178 * We may have stale swap cache pages in memory: notice
179 * them here and get rid of the unnecessary final write.
180 */
181int swap_writepage(struct page *page, struct writeback_control *wbc)
182{
183	struct folio *folio = page_folio(page);
184	int ret = 0;
185
186	if (folio_free_swap(folio)) {
187		folio_unlock(folio);
188		goto out;
189	}
190	/*
191	 * Arch code may have to preserve more data than just the page
192	 * contents, e.g. memory tags.
193	 */
194	ret = arch_prepare_to_swap(&folio->page);
195	if (ret) {
196		folio_mark_dirty(folio);
197		folio_unlock(folio);
198		goto out;
199	}
200	if (frontswap_store(&folio->page) == 0) {
201		folio_start_writeback(folio);
202		folio_unlock(folio);
203		folio_end_writeback(folio);
204		goto out;
205	}
206	ret = __swap_writepage(&folio->page, wbc);
207out:
208	return ret;
209}
210
211static inline void count_swpout_vm_event(struct page *page)
212{
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214	if (unlikely(PageTransHuge(page)))
215		count_vm_event(THP_SWPOUT);
216#endif
217	count_vm_events(PSWPOUT, thp_nr_pages(page));
218}
219
220#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
221static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
222{
223	struct cgroup_subsys_state *css;
224	struct mem_cgroup *memcg;
225
226	memcg = page_memcg(page);
227	if (!memcg)
228		return;
229
230	rcu_read_lock();
231	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
232	bio_associate_blkg_from_css(bio, css);
233	rcu_read_unlock();
234}
235#else
236#define bio_associate_blkg_from_page(bio, page)		do { } while (0)
237#endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
238
239struct swap_iocb {
240	struct kiocb		iocb;
241	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
242	int			pages;
243	int			len;
244};
245static mempool_t *sio_pool;
246
247int sio_pool_init(void)
248{
249	if (!sio_pool) {
250		mempool_t *pool = mempool_create_kmalloc_pool(
251			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
252		if (cmpxchg(&sio_pool, NULL, pool))
253			mempool_destroy(pool);
254	}
255	if (!sio_pool)
256		return -ENOMEM;
257	return 0;
258}
259
260static void sio_write_complete(struct kiocb *iocb, long ret)
261{
262	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
263	struct page *page = sio->bvec[0].bv_page;
264	int p;
 
 
 
 
 
 
 
 
 
 
265
266	if (ret != sio->len) {
267		/*
268		 * In the case of swap-over-nfs, this can be a
269		 * temporary failure if the system has limited
270		 * memory for allocating transmit buffers.
271		 * Mark the page dirty and avoid
272		 * folio_rotate_reclaimable but rate-limit the
273		 * messages but do not flag PageError like
274		 * the normal direct-to-bio case as it could
275		 * be temporary.
276		 */
277		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
278				   ret, page_file_offset(page));
279		for (p = 0; p < sio->pages; p++) {
280			page = sio->bvec[p].bv_page;
 
 
281			set_page_dirty(page);
282			ClearPageReclaim(page);
 
 
283		}
284	} else {
285		for (p = 0; p < sio->pages; p++)
286			count_swpout_vm_event(sio->bvec[p].bv_page);
287	}
288
289	for (p = 0; p < sio->pages; p++)
290		end_page_writeback(sio->bvec[p].bv_page);
291
292	mempool_free(sio, sio_pool);
293}
294
295static int swap_writepage_fs(struct page *page, struct writeback_control *wbc)
296{
297	struct swap_iocb *sio = NULL;
298	struct swap_info_struct *sis = page_swap_info(page);
299	struct file *swap_file = sis->swap_file;
300	loff_t pos = page_file_offset(page);
301
302	set_page_writeback(page);
303	unlock_page(page);
304	if (wbc->swap_plug)
305		sio = *wbc->swap_plug;
306	if (sio) {
307		if (sio->iocb.ki_filp != swap_file ||
308		    sio->iocb.ki_pos + sio->len != pos) {
309			swap_write_unplug(sio);
310			sio = NULL;
311		}
312	}
313	if (!sio) {
314		sio = mempool_alloc(sio_pool, GFP_NOIO);
315		init_sync_kiocb(&sio->iocb, swap_file);
316		sio->iocb.ki_complete = sio_write_complete;
317		sio->iocb.ki_pos = pos;
318		sio->pages = 0;
319		sio->len = 0;
320	}
321	sio->bvec[sio->pages].bv_page = page;
322	sio->bvec[sio->pages].bv_len = thp_size(page);
323	sio->bvec[sio->pages].bv_offset = 0;
324	sio->len += thp_size(page);
325	sio->pages += 1;
326	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
327		swap_write_unplug(sio);
328		sio = NULL;
329	}
330	if (wbc->swap_plug)
331		*wbc->swap_plug = sio;
332
333	return 0;
334}
335
336int __swap_writepage(struct page *page, struct writeback_control *wbc)
337{
338	struct bio *bio;
339	int ret;
340	struct swap_info_struct *sis = page_swap_info(page);
341
342	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
343	/*
344	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
345	 * but that will never affect SWP_FS_OPS, so the data_race
346	 * is safe.
347	 */
348	if (data_race(sis->flags & SWP_FS_OPS))
349		return swap_writepage_fs(page, wbc);
350
351	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
352	if (!ret) {
353		count_swpout_vm_event(page);
354		return 0;
355	}
356
357	bio = bio_alloc(sis->bdev, 1,
358			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
359			GFP_NOIO);
360	bio->bi_iter.bi_sector = swap_page_sector(page);
361	bio->bi_end_io = end_swap_bio_write;
 
362	bio_add_page(bio, page, thp_size(page), 0);
363
364	bio_associate_blkg_from_page(bio, page);
365	count_swpout_vm_event(page);
366	set_page_writeback(page);
367	unlock_page(page);
368	submit_bio(bio);
369
370	return 0;
371}
372
373void swap_write_unplug(struct swap_iocb *sio)
374{
375	struct iov_iter from;
376	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
377	int ret;
378
379	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
380	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
381	if (ret != -EIOCBQUEUED)
382		sio_write_complete(&sio->iocb, ret);
383}
384
385static void sio_read_complete(struct kiocb *iocb, long ret)
386{
387	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
388	int p;
389
390	if (ret == sio->len) {
391		for (p = 0; p < sio->pages; p++) {
392			struct page *page = sio->bvec[p].bv_page;
393
394			SetPageUptodate(page);
395			unlock_page(page);
396		}
397		count_vm_events(PSWPIN, sio->pages);
398	} else {
399		for (p = 0; p < sio->pages; p++) {
400			struct page *page = sio->bvec[p].bv_page;
401
402			SetPageError(page);
403			ClearPageUptodate(page);
404			unlock_page(page);
405		}
406		pr_alert_ratelimited("Read-error on swap-device\n");
407	}
408	mempool_free(sio, sio_pool);
409}
410
411static void swap_readpage_fs(struct page *page,
412			     struct swap_iocb **plug)
413{
414	struct swap_info_struct *sis = page_swap_info(page);
415	struct swap_iocb *sio = NULL;
416	loff_t pos = page_file_offset(page);
417
418	if (plug)
419		sio = *plug;
420	if (sio) {
421		if (sio->iocb.ki_filp != sis->swap_file ||
422		    sio->iocb.ki_pos + sio->len != pos) {
423			swap_read_unplug(sio);
424			sio = NULL;
425		}
426	}
427	if (!sio) {
428		sio = mempool_alloc(sio_pool, GFP_KERNEL);
429		init_sync_kiocb(&sio->iocb, sis->swap_file);
430		sio->iocb.ki_pos = pos;
431		sio->iocb.ki_complete = sio_read_complete;
432		sio->pages = 0;
433		sio->len = 0;
434	}
435	sio->bvec[sio->pages].bv_page = page;
436	sio->bvec[sio->pages].bv_len = thp_size(page);
437	sio->bvec[sio->pages].bv_offset = 0;
438	sio->len += thp_size(page);
439	sio->pages += 1;
440	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
441		swap_read_unplug(sio);
442		sio = NULL;
443	}
444	if (plug)
445		*plug = sio;
446}
447
448int swap_readpage(struct page *page, bool synchronous,
449		  struct swap_iocb **plug)
450{
451	struct bio *bio;
452	int ret = 0;
453	struct swap_info_struct *sis = page_swap_info(page);
454	bool workingset = PageWorkingset(page);
 
455	unsigned long pflags;
456	bool in_thrashing;
457
458	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
459	VM_BUG_ON_PAGE(!PageLocked(page), page);
460	VM_BUG_ON_PAGE(PageUptodate(page), page);
461
462	/*
463	 * Count submission time as memory stall and delay. When the device
464	 * is congested, or the submitting cgroup IO-throttled, submission
465	 * can be a significant part of overall IO time.
466	 */
467	if (workingset) {
468		delayacct_thrashing_start(&in_thrashing);
469		psi_memstall_enter(&pflags);
470	}
471	delayacct_swapin_start();
472
473	if (frontswap_load(page) == 0) {
474		SetPageUptodate(page);
475		unlock_page(page);
476		goto out;
477	}
478
479	if (data_race(sis->flags & SWP_FS_OPS)) {
480		swap_readpage_fs(page, plug);
 
 
 
 
 
481		goto out;
482	}
483
484	if (sis->flags & SWP_SYNCHRONOUS_IO) {
485		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
486		if (!ret) {
 
 
 
 
 
487			count_vm_event(PSWPIN);
488			goto out;
489		}
490	}
491
492	ret = 0;
493	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
 
 
494	bio->bi_iter.bi_sector = swap_page_sector(page);
495	bio->bi_end_io = end_swap_bio_read;
496	bio_add_page(bio, page, thp_size(page), 0);
 
 
497	/*
498	 * Keep this task valid during swap readpage because the oom killer may
499	 * attempt to access it in the page fault retry time check.
500	 */
501	if (synchronous) {
 
502		get_task_struct(current);
503		bio->bi_private = current;
504	}
505	count_vm_event(PSWPIN);
506	bio_get(bio);
507	submit_bio(bio);
508	while (synchronous) {
509		set_current_state(TASK_UNINTERRUPTIBLE);
510		if (!READ_ONCE(bio->bi_private))
511			break;
512
513		blk_io_schedule();
 
514	}
515	__set_current_state(TASK_RUNNING);
516	bio_put(bio);
517
518out:
519	if (workingset) {
520		delayacct_thrashing_end(&in_thrashing);
521		psi_memstall_leave(&pflags);
522	}
523	delayacct_swapin_end();
524	return ret;
525}
526
527void __swap_read_unplug(struct swap_iocb *sio)
528{
529	struct iov_iter from;
530	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
531	int ret;
 
532
533	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
534	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
535	if (ret != -EIOCBQUEUED)
536		sio_read_complete(&sio->iocb, ret);
 
537}