Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/mmzone.h>
  4#include <linux/memblock.h>
  5#include <linux/page_ext.h>
  6#include <linux/memory.h>
  7#include <linux/vmalloc.h>
  8#include <linux/kmemleak.h>
  9#include <linux/page_owner.h>
 10#include <linux/page_idle.h>
 
 
 11
 12/*
 13 * struct page extension
 14 *
 15 * This is the feature to manage memory for extended data per page.
 16 *
 17 * Until now, we must modify struct page itself to store extra data per page.
 18 * This requires rebuilding the kernel and it is really time consuming process.
 19 * And, sometimes, rebuild is impossible due to third party module dependency.
 20 * At last, enlarging struct page could cause un-wanted system behaviour change.
 21 *
 22 * This feature is intended to overcome above mentioned problems. This feature
 23 * allocates memory for extended data per page in certain place rather than
 24 * the struct page itself. This memory can be accessed by the accessor
 25 * functions provided by this code. During the boot process, it checks whether
 26 * allocation of huge chunk of memory is needed or not. If not, it avoids
 27 * allocating memory at all. With this advantage, we can include this feature
 28 * into the kernel in default and can avoid rebuild and solve related problems.
 29 *
 30 * To help these things to work well, there are two callbacks for clients. One
 31 * is the need callback which is mandatory if user wants to avoid useless
 32 * memory allocation at boot-time. The other is optional, init callback, which
 33 * is used to do proper initialization after memory is allocated.
 34 *
 35 * The need callback is used to decide whether extended memory allocation is
 36 * needed or not. Sometimes users want to deactivate some features in this
 37 * boot and extra memory would be unnecessary. In this case, to avoid
 38 * allocating huge chunk of memory, each clients represent their need of
 39 * extra memory through the need callback. If one of the need callbacks
 40 * returns true, it means that someone needs extra memory so that
 41 * page extension core should allocates memory for page extension. If
 42 * none of need callbacks return true, memory isn't needed at all in this boot
 43 * and page extension core can skip to allocate memory. As result,
 44 * none of memory is wasted.
 45 *
 46 * When need callback returns true, page_ext checks if there is a request for
 47 * extra memory through size in struct page_ext_operations. If it is non-zero,
 48 * extra space is allocated for each page_ext entry and offset is returned to
 49 * user through offset in struct page_ext_operations.
 50 *
 51 * The init callback is used to do proper initialization after page extension
 52 * is completely initialized. In sparse memory system, extra memory is
 53 * allocated some time later than memmap is allocated. In other words, lifetime
 54 * of memory for page extension isn't same with memmap for struct page.
 55 * Therefore, clients can't store extra data until page extension is
 56 * initialized, even if pages are allocated and used freely. This could
 57 * cause inadequate state of extra data per page, so, to prevent it, client
 58 * can utilize this callback to initialize the state of it correctly.
 59 */
 60
 61static struct page_ext_operations *page_ext_ops[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62#ifdef CONFIG_PAGE_OWNER
 63	&page_owner_ops,
 64#endif
 65#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
 66	&page_idle_ops,
 67#endif
 
 
 
 68};
 69
 70unsigned long page_ext_size = sizeof(struct page_ext);
 71
 72static unsigned long total_usage;
 
 
 
 
 
 
 
 
 
 73
 74static bool __init invoke_need_callbacks(void)
 75{
 76	int i;
 77	int entries = ARRAY_SIZE(page_ext_ops);
 78	bool need = false;
 79
 80	for (i = 0; i < entries; i++) {
 81		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
 82			page_ext_ops[i]->offset = page_ext_size;
 83			page_ext_size += page_ext_ops[i]->size;
 84			need = true;
 85		}
 86	}
 87
 88	return need;
 89}
 90
 91static void __init invoke_init_callbacks(void)
 92{
 93	int i;
 94	int entries = ARRAY_SIZE(page_ext_ops);
 95
 96	for (i = 0; i < entries; i++) {
 97		if (page_ext_ops[i]->init)
 98			page_ext_ops[i]->init();
 99	}
100}
101
102#ifndef CONFIG_SPARSEMEM
103void __init page_ext_init_flatmem_late(void)
104{
105	invoke_init_callbacks();
106}
107#endif
108
109static inline struct page_ext *get_entry(void *base, unsigned long index)
110{
111	return base + page_ext_size * index;
112}
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114#ifndef CONFIG_SPARSEMEM
115
116
117void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
118{
119	pgdat->node_page_ext = NULL;
120}
121
122struct page_ext *lookup_page_ext(const struct page *page)
123{
124	unsigned long pfn = page_to_pfn(page);
125	unsigned long index;
126	struct page_ext *base;
127
 
128	base = NODE_DATA(page_to_nid(page))->node_page_ext;
129	/*
130	 * The sanity checks the page allocator does upon freeing a
131	 * page can reach here before the page_ext arrays are
132	 * allocated when feeding a range of pages to the allocator
133	 * for the first time during bootup or memory hotplug.
134	 */
135	if (unlikely(!base))
136		return NULL;
137	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
138					MAX_ORDER_NR_PAGES);
139	return get_entry(base, index);
140}
141
142static int __init alloc_node_page_ext(int nid)
143{
144	struct page_ext *base;
145	unsigned long table_size;
146	unsigned long nr_pages;
147
148	nr_pages = NODE_DATA(nid)->node_spanned_pages;
149	if (!nr_pages)
150		return 0;
151
152	/*
153	 * Need extra space if node range is not aligned with
154	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
155	 * checks buddy's status, range could be out of exact node range.
156	 */
157	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
158		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
159		nr_pages += MAX_ORDER_NR_PAGES;
160
161	table_size = page_ext_size * nr_pages;
162
163	base = memblock_alloc_try_nid(
164			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
165			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
166	if (!base)
167		return -ENOMEM;
168	NODE_DATA(nid)->node_page_ext = base;
169	total_usage += table_size;
170	return 0;
171}
172
173void __init page_ext_init_flatmem(void)
174{
175
176	int nid, fail;
177
178	if (!invoke_need_callbacks())
179		return;
180
181	for_each_online_node(nid)  {
182		fail = alloc_node_page_ext(nid);
183		if (fail)
184			goto fail;
185	}
186	pr_info("allocated %ld bytes of page_ext\n", total_usage);
187	return;
188
189fail:
190	pr_crit("allocation of page_ext failed.\n");
191	panic("Out of memory");
192}
193
194#else /* CONFIG_FLATMEM */
 
 
 
 
195
196struct page_ext *lookup_page_ext(const struct page *page)
197{
198	unsigned long pfn = page_to_pfn(page);
199	struct mem_section *section = __pfn_to_section(pfn);
 
 
 
200	/*
201	 * The sanity checks the page allocator does upon freeing a
202	 * page can reach here before the page_ext arrays are
203	 * allocated when feeding a range of pages to the allocator
204	 * for the first time during bootup or memory hotplug.
205	 */
206	if (!section->page_ext)
207		return NULL;
208	return get_entry(section->page_ext, pfn);
209}
210
211static void *__meminit alloc_page_ext(size_t size, int nid)
212{
213	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
214	void *addr = NULL;
215
216	addr = alloc_pages_exact_nid(nid, size, flags);
217	if (addr) {
218		kmemleak_alloc(addr, size, 1, flags);
219		return addr;
220	}
221
222	addr = vzalloc_node(size, nid);
223
224	return addr;
225}
226
227static int __meminit init_section_page_ext(unsigned long pfn, int nid)
228{
229	struct mem_section *section;
230	struct page_ext *base;
231	unsigned long table_size;
232
233	section = __pfn_to_section(pfn);
234
235	if (section->page_ext)
236		return 0;
237
238	table_size = page_ext_size * PAGES_PER_SECTION;
239	base = alloc_page_ext(table_size, nid);
240
241	/*
242	 * The value stored in section->page_ext is (base - pfn)
243	 * and it does not point to the memory block allocated above,
244	 * causing kmemleak false positives.
245	 */
246	kmemleak_not_leak(base);
247
248	if (!base) {
249		pr_err("page ext allocation failure\n");
250		return -ENOMEM;
251	}
252
253	/*
254	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
255	 * we need to apply a mask.
256	 */
257	pfn &= PAGE_SECTION_MASK;
258	section->page_ext = (void *)base - page_ext_size * pfn;
259	total_usage += table_size;
260	return 0;
261}
262#ifdef CONFIG_MEMORY_HOTPLUG
263static void free_page_ext(void *addr)
264{
265	if (is_vmalloc_addr(addr)) {
266		vfree(addr);
267	} else {
268		struct page *page = virt_to_page(addr);
269		size_t table_size;
270
271		table_size = page_ext_size * PAGES_PER_SECTION;
272
273		BUG_ON(PageReserved(page));
274		kmemleak_free(addr);
275		free_pages_exact(addr, table_size);
276	}
277}
278
279static void __free_page_ext(unsigned long pfn)
280{
281	struct mem_section *ms;
282	struct page_ext *base;
283
284	ms = __pfn_to_section(pfn);
285	if (!ms || !ms->page_ext)
286		return;
287	base = get_entry(ms->page_ext, pfn);
 
 
 
 
 
 
 
 
 
 
288	free_page_ext(base);
289	ms->page_ext = NULL;
 
 
 
 
 
 
 
 
 
 
 
290}
291
292static int __meminit online_page_ext(unsigned long start_pfn,
293				unsigned long nr_pages,
294				int nid)
295{
296	unsigned long start, end, pfn;
297	int fail = 0;
298
299	start = SECTION_ALIGN_DOWN(start_pfn);
300	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
301
302	if (nid == NUMA_NO_NODE) {
303		/*
304		 * In this case, "nid" already exists and contains valid memory.
305		 * "start_pfn" passed to us is a pfn which is an arg for
306		 * online__pages(), and start_pfn should exist.
307		 */
308		nid = pfn_to_nid(start_pfn);
309		VM_BUG_ON(!node_state(nid, N_ONLINE));
310	}
311
312	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
313		fail = init_section_page_ext(pfn, nid);
314	if (!fail)
315		return 0;
316
317	/* rollback */
318	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
319		__free_page_ext(pfn);
320
321	return -ENOMEM;
322}
323
324static int __meminit offline_page_ext(unsigned long start_pfn,
325				unsigned long nr_pages, int nid)
326{
327	unsigned long start, end, pfn;
328
329	start = SECTION_ALIGN_DOWN(start_pfn);
330	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
333		__free_page_ext(pfn);
334	return 0;
335
336}
337
338static int __meminit page_ext_callback(struct notifier_block *self,
339			       unsigned long action, void *arg)
340{
341	struct memory_notify *mn = arg;
342	int ret = 0;
343
344	switch (action) {
345	case MEM_GOING_ONLINE:
346		ret = online_page_ext(mn->start_pfn,
347				   mn->nr_pages, mn->status_change_nid);
348		break;
349	case MEM_OFFLINE:
350		offline_page_ext(mn->start_pfn,
351				mn->nr_pages, mn->status_change_nid);
352		break;
353	case MEM_CANCEL_ONLINE:
354		offline_page_ext(mn->start_pfn,
355				mn->nr_pages, mn->status_change_nid);
356		break;
357	case MEM_GOING_OFFLINE:
358		break;
359	case MEM_ONLINE:
360	case MEM_CANCEL_OFFLINE:
361		break;
362	}
363
364	return notifier_from_errno(ret);
365}
366
367#endif
368
369void __init page_ext_init(void)
370{
371	unsigned long pfn;
372	int nid;
373
374	if (!invoke_need_callbacks())
375		return;
376
377	for_each_node_state(nid, N_MEMORY) {
378		unsigned long start_pfn, end_pfn;
379
380		start_pfn = node_start_pfn(nid);
381		end_pfn = node_end_pfn(nid);
382		/*
383		 * start_pfn and end_pfn may not be aligned to SECTION and the
384		 * page->flags of out of node pages are not initialized.  So we
385		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
386		 */
387		for (pfn = start_pfn; pfn < end_pfn;
388			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
389
390			if (!pfn_valid(pfn))
391				continue;
392			/*
393			 * Nodes's pfns can be overlapping.
394			 * We know some arch can have a nodes layout such as
395			 * -------------pfn-------------->
396			 * N0 | N1 | N2 | N0 | N1 | N2|....
397			 */
398			if (pfn_to_nid(pfn) != nid)
399				continue;
400			if (init_section_page_ext(pfn, nid))
401				goto oom;
402			cond_resched();
403		}
404	}
405	hotplug_memory_notifier(page_ext_callback, 0);
406	pr_info("allocated %ld bytes of page_ext\n", total_usage);
407	invoke_init_callbacks();
408	return;
409
410oom:
411	panic("Out of memory");
412}
413
414void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
415{
416}
417
418#endif
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/mm.h>
  3#include <linux/mmzone.h>
  4#include <linux/memblock.h>
  5#include <linux/page_ext.h>
  6#include <linux/memory.h>
  7#include <linux/vmalloc.h>
  8#include <linux/kmemleak.h>
  9#include <linux/page_owner.h>
 10#include <linux/page_idle.h>
 11#include <linux/page_table_check.h>
 12#include <linux/rcupdate.h>
 13
 14/*
 15 * struct page extension
 16 *
 17 * This is the feature to manage memory for extended data per page.
 18 *
 19 * Until now, we must modify struct page itself to store extra data per page.
 20 * This requires rebuilding the kernel and it is really time consuming process.
 21 * And, sometimes, rebuild is impossible due to third party module dependency.
 22 * At last, enlarging struct page could cause un-wanted system behaviour change.
 23 *
 24 * This feature is intended to overcome above mentioned problems. This feature
 25 * allocates memory for extended data per page in certain place rather than
 26 * the struct page itself. This memory can be accessed by the accessor
 27 * functions provided by this code. During the boot process, it checks whether
 28 * allocation of huge chunk of memory is needed or not. If not, it avoids
 29 * allocating memory at all. With this advantage, we can include this feature
 30 * into the kernel in default and can avoid rebuild and solve related problems.
 31 *
 32 * To help these things to work well, there are two callbacks for clients. One
 33 * is the need callback which is mandatory if user wants to avoid useless
 34 * memory allocation at boot-time. The other is optional, init callback, which
 35 * is used to do proper initialization after memory is allocated.
 36 *
 37 * The need callback is used to decide whether extended memory allocation is
 38 * needed or not. Sometimes users want to deactivate some features in this
 39 * boot and extra memory would be unnecessary. In this case, to avoid
 40 * allocating huge chunk of memory, each clients represent their need of
 41 * extra memory through the need callback. If one of the need callbacks
 42 * returns true, it means that someone needs extra memory so that
 43 * page extension core should allocates memory for page extension. If
 44 * none of need callbacks return true, memory isn't needed at all in this boot
 45 * and page extension core can skip to allocate memory. As result,
 46 * none of memory is wasted.
 47 *
 48 * When need callback returns true, page_ext checks if there is a request for
 49 * extra memory through size in struct page_ext_operations. If it is non-zero,
 50 * extra space is allocated for each page_ext entry and offset is returned to
 51 * user through offset in struct page_ext_operations.
 52 *
 53 * The init callback is used to do proper initialization after page extension
 54 * is completely initialized. In sparse memory system, extra memory is
 55 * allocated some time later than memmap is allocated. In other words, lifetime
 56 * of memory for page extension isn't same with memmap for struct page.
 57 * Therefore, clients can't store extra data until page extension is
 58 * initialized, even if pages are allocated and used freely. This could
 59 * cause inadequate state of extra data per page, so, to prevent it, client
 60 * can utilize this callback to initialize the state of it correctly.
 61 */
 62
 63#ifdef CONFIG_SPARSEMEM
 64#define PAGE_EXT_INVALID       (0x1)
 65#endif
 66
 67#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 68static bool need_page_idle(void)
 69{
 70	return true;
 71}
 72static struct page_ext_operations page_idle_ops __initdata = {
 73	.need = need_page_idle,
 74};
 75#endif
 76
 77static struct page_ext_operations *page_ext_ops[] __initdata = {
 78#ifdef CONFIG_PAGE_OWNER
 79	&page_owner_ops,
 80#endif
 81#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
 82	&page_idle_ops,
 83#endif
 84#ifdef CONFIG_PAGE_TABLE_CHECK
 85	&page_table_check_ops,
 86#endif
 87};
 88
 89unsigned long page_ext_size = sizeof(struct page_ext);
 90
 91static unsigned long total_usage;
 92static struct page_ext *lookup_page_ext(const struct page *page);
 93
 94bool early_page_ext;
 95static int __init setup_early_page_ext(char *str)
 96{
 97	early_page_ext = true;
 98	return 0;
 99}
100early_param("early_page_ext", setup_early_page_ext);
101
102static bool __init invoke_need_callbacks(void)
103{
104	int i;
105	int entries = ARRAY_SIZE(page_ext_ops);
106	bool need = false;
107
108	for (i = 0; i < entries; i++) {
109		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
110			page_ext_ops[i]->offset = page_ext_size;
111			page_ext_size += page_ext_ops[i]->size;
112			need = true;
113		}
114	}
115
116	return need;
117}
118
119static void __init invoke_init_callbacks(void)
120{
121	int i;
122	int entries = ARRAY_SIZE(page_ext_ops);
123
124	for (i = 0; i < entries; i++) {
125		if (page_ext_ops[i]->init)
126			page_ext_ops[i]->init();
127	}
128}
129
130#ifndef CONFIG_SPARSEMEM
131void __init page_ext_init_flatmem_late(void)
132{
133	invoke_init_callbacks();
134}
135#endif
136
137static inline struct page_ext *get_entry(void *base, unsigned long index)
138{
139	return base + page_ext_size * index;
140}
141
142/**
143 * page_ext_get() - Get the extended information for a page.
144 * @page: The page we're interested in.
145 *
146 * Ensures that the page_ext will remain valid until page_ext_put()
147 * is called.
148 *
149 * Return: NULL if no page_ext exists for this page.
150 * Context: Any context.  Caller may not sleep until they have called
151 * page_ext_put().
152 */
153struct page_ext *page_ext_get(struct page *page)
154{
155	struct page_ext *page_ext;
156
157	rcu_read_lock();
158	page_ext = lookup_page_ext(page);
159	if (!page_ext) {
160		rcu_read_unlock();
161		return NULL;
162	}
163
164	return page_ext;
165}
166
167/**
168 * page_ext_put() - Working with page extended information is done.
169 * @page_ext: Page extended information received from page_ext_get().
170 *
171 * The page extended information of the page may not be valid after this
172 * function is called.
173 *
174 * Return: None.
175 * Context: Any context with corresponding page_ext_get() is called.
176 */
177void page_ext_put(struct page_ext *page_ext)
178{
179	if (unlikely(!page_ext))
180		return;
181
182	rcu_read_unlock();
183}
184#ifndef CONFIG_SPARSEMEM
185
186
187void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
188{
189	pgdat->node_page_ext = NULL;
190}
191
192static struct page_ext *lookup_page_ext(const struct page *page)
193{
194	unsigned long pfn = page_to_pfn(page);
195	unsigned long index;
196	struct page_ext *base;
197
198	WARN_ON_ONCE(!rcu_read_lock_held());
199	base = NODE_DATA(page_to_nid(page))->node_page_ext;
200	/*
201	 * The sanity checks the page allocator does upon freeing a
202	 * page can reach here before the page_ext arrays are
203	 * allocated when feeding a range of pages to the allocator
204	 * for the first time during bootup or memory hotplug.
205	 */
206	if (unlikely(!base))
207		return NULL;
208	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
209					MAX_ORDER_NR_PAGES);
210	return get_entry(base, index);
211}
212
213static int __init alloc_node_page_ext(int nid)
214{
215	struct page_ext *base;
216	unsigned long table_size;
217	unsigned long nr_pages;
218
219	nr_pages = NODE_DATA(nid)->node_spanned_pages;
220	if (!nr_pages)
221		return 0;
222
223	/*
224	 * Need extra space if node range is not aligned with
225	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
226	 * checks buddy's status, range could be out of exact node range.
227	 */
228	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
229		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
230		nr_pages += MAX_ORDER_NR_PAGES;
231
232	table_size = page_ext_size * nr_pages;
233
234	base = memblock_alloc_try_nid(
235			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
236			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
237	if (!base)
238		return -ENOMEM;
239	NODE_DATA(nid)->node_page_ext = base;
240	total_usage += table_size;
241	return 0;
242}
243
244void __init page_ext_init_flatmem(void)
245{
246
247	int nid, fail;
248
249	if (!invoke_need_callbacks())
250		return;
251
252	for_each_online_node(nid)  {
253		fail = alloc_node_page_ext(nid);
254		if (fail)
255			goto fail;
256	}
257	pr_info("allocated %ld bytes of page_ext\n", total_usage);
258	return;
259
260fail:
261	pr_crit("allocation of page_ext failed.\n");
262	panic("Out of memory");
263}
264
265#else /* CONFIG_SPARSEMEM */
266static bool page_ext_invalid(struct page_ext *page_ext)
267{
268	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
269}
270
271static struct page_ext *lookup_page_ext(const struct page *page)
272{
273	unsigned long pfn = page_to_pfn(page);
274	struct mem_section *section = __pfn_to_section(pfn);
275	struct page_ext *page_ext = READ_ONCE(section->page_ext);
276
277	WARN_ON_ONCE(!rcu_read_lock_held());
278	/*
279	 * The sanity checks the page allocator does upon freeing a
280	 * page can reach here before the page_ext arrays are
281	 * allocated when feeding a range of pages to the allocator
282	 * for the first time during bootup or memory hotplug.
283	 */
284	if (page_ext_invalid(page_ext))
285		return NULL;
286	return get_entry(page_ext, pfn);
287}
288
289static void *__meminit alloc_page_ext(size_t size, int nid)
290{
291	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
292	void *addr = NULL;
293
294	addr = alloc_pages_exact_nid(nid, size, flags);
295	if (addr) {
296		kmemleak_alloc(addr, size, 1, flags);
297		return addr;
298	}
299
300	addr = vzalloc_node(size, nid);
301
302	return addr;
303}
304
305static int __meminit init_section_page_ext(unsigned long pfn, int nid)
306{
307	struct mem_section *section;
308	struct page_ext *base;
309	unsigned long table_size;
310
311	section = __pfn_to_section(pfn);
312
313	if (section->page_ext)
314		return 0;
315
316	table_size = page_ext_size * PAGES_PER_SECTION;
317	base = alloc_page_ext(table_size, nid);
318
319	/*
320	 * The value stored in section->page_ext is (base - pfn)
321	 * and it does not point to the memory block allocated above,
322	 * causing kmemleak false positives.
323	 */
324	kmemleak_not_leak(base);
325
326	if (!base) {
327		pr_err("page ext allocation failure\n");
328		return -ENOMEM;
329	}
330
331	/*
332	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
333	 * we need to apply a mask.
334	 */
335	pfn &= PAGE_SECTION_MASK;
336	section->page_ext = (void *)base - page_ext_size * pfn;
337	total_usage += table_size;
338	return 0;
339}
340
341static void free_page_ext(void *addr)
342{
343	if (is_vmalloc_addr(addr)) {
344		vfree(addr);
345	} else {
346		struct page *page = virt_to_page(addr);
347		size_t table_size;
348
349		table_size = page_ext_size * PAGES_PER_SECTION;
350
351		BUG_ON(PageReserved(page));
352		kmemleak_free(addr);
353		free_pages_exact(addr, table_size);
354	}
355}
356
357static void __free_page_ext(unsigned long pfn)
358{
359	struct mem_section *ms;
360	struct page_ext *base;
361
362	ms = __pfn_to_section(pfn);
363	if (!ms || !ms->page_ext)
364		return;
365
366	base = READ_ONCE(ms->page_ext);
367	/*
368	 * page_ext here can be valid while doing the roll back
369	 * operation in online_page_ext().
370	 */
371	if (page_ext_invalid(base))
372		base = (void *)base - PAGE_EXT_INVALID;
373	WRITE_ONCE(ms->page_ext, NULL);
374
375	base = get_entry(base, pfn);
376	free_page_ext(base);
377}
378
379static void __invalidate_page_ext(unsigned long pfn)
380{
381	struct mem_section *ms;
382	void *val;
383
384	ms = __pfn_to_section(pfn);
385	if (!ms || !ms->page_ext)
386		return;
387	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
388	WRITE_ONCE(ms->page_ext, val);
389}
390
391static int __meminit online_page_ext(unsigned long start_pfn,
392				unsigned long nr_pages,
393				int nid)
394{
395	unsigned long start, end, pfn;
396	int fail = 0;
397
398	start = SECTION_ALIGN_DOWN(start_pfn);
399	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
400
401	if (nid == NUMA_NO_NODE) {
402		/*
403		 * In this case, "nid" already exists and contains valid memory.
404		 * "start_pfn" passed to us is a pfn which is an arg for
405		 * online__pages(), and start_pfn should exist.
406		 */
407		nid = pfn_to_nid(start_pfn);
408		VM_BUG_ON(!node_online(nid));
409	}
410
411	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
412		fail = init_section_page_ext(pfn, nid);
413	if (!fail)
414		return 0;
415
416	/* rollback */
417	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
418		__free_page_ext(pfn);
419
420	return -ENOMEM;
421}
422
423static int __meminit offline_page_ext(unsigned long start_pfn,
424				unsigned long nr_pages)
425{
426	unsigned long start, end, pfn;
427
428	start = SECTION_ALIGN_DOWN(start_pfn);
429	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
430
431	/*
432	 * Freeing of page_ext is done in 3 steps to avoid
433	 * use-after-free of it:
434	 * 1) Traverse all the sections and mark their page_ext
435	 *    as invalid.
436	 * 2) Wait for all the existing users of page_ext who
437	 *    started before invalidation to finish.
438	 * 3) Free the page_ext.
439	 */
440	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
441		__invalidate_page_ext(pfn);
442
443	synchronize_rcu();
444
445	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
446		__free_page_ext(pfn);
447	return 0;
448
449}
450
451static int __meminit page_ext_callback(struct notifier_block *self,
452			       unsigned long action, void *arg)
453{
454	struct memory_notify *mn = arg;
455	int ret = 0;
456
457	switch (action) {
458	case MEM_GOING_ONLINE:
459		ret = online_page_ext(mn->start_pfn,
460				   mn->nr_pages, mn->status_change_nid);
461		break;
462	case MEM_OFFLINE:
463		offline_page_ext(mn->start_pfn,
464				mn->nr_pages);
465		break;
466	case MEM_CANCEL_ONLINE:
467		offline_page_ext(mn->start_pfn,
468				mn->nr_pages);
469		break;
470	case MEM_GOING_OFFLINE:
471		break;
472	case MEM_ONLINE:
473	case MEM_CANCEL_OFFLINE:
474		break;
475	}
476
477	return notifier_from_errno(ret);
478}
479
 
 
480void __init page_ext_init(void)
481{
482	unsigned long pfn;
483	int nid;
484
485	if (!invoke_need_callbacks())
486		return;
487
488	for_each_node_state(nid, N_MEMORY) {
489		unsigned long start_pfn, end_pfn;
490
491		start_pfn = node_start_pfn(nid);
492		end_pfn = node_end_pfn(nid);
493		/*
494		 * start_pfn and end_pfn may not be aligned to SECTION and the
495		 * page->flags of out of node pages are not initialized.  So we
496		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
497		 */
498		for (pfn = start_pfn; pfn < end_pfn;
499			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
500
501			if (!pfn_valid(pfn))
502				continue;
503			/*
504			 * Nodes's pfns can be overlapping.
505			 * We know some arch can have a nodes layout such as
506			 * -------------pfn-------------->
507			 * N0 | N1 | N2 | N0 | N1 | N2|....
508			 */
509			if (pfn_to_nid(pfn) != nid)
510				continue;
511			if (init_section_page_ext(pfn, nid))
512				goto oom;
513			cond_resched();
514		}
515	}
516	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
517	pr_info("allocated %ld bytes of page_ext\n", total_usage);
518	invoke_init_callbacks();
519	return;
520
521oom:
522	panic("Out of memory");
523}
524
525void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
526{
527}
528
529#endif