Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
 
  16#include <linux/export.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/mm.h>
  20#include <linux/swap.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/writeback.h>
  24#include <linux/init.h>
  25#include <linux/backing-dev.h>
  26#include <linux/task_io_accounting_ops.h>
  27#include <linux/blkdev.h>
  28#include <linux/mpage.h>
  29#include <linux/rmap.h>
  30#include <linux/percpu.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/pagevec.h>
  36#include <linux/timer.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/signal.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 112 * a full sync is triggered after this time elapses without any disk activity.
 113 */
 114int laptop_mode;
 115
 116EXPORT_SYMBOL(laptop_mode);
 117
 118/* End of sysctl-exported parameters */
 119
 120struct wb_domain global_wb_domain;
 121
 122/* consolidated parameters for balance_dirty_pages() and its subroutines */
 123struct dirty_throttle_control {
 124#ifdef CONFIG_CGROUP_WRITEBACK
 125	struct wb_domain	*dom;
 126	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 127#endif
 128	struct bdi_writeback	*wb;
 129	struct fprop_local_percpu *wb_completions;
 130
 131	unsigned long		avail;		/* dirtyable */
 132	unsigned long		dirty;		/* file_dirty + write + nfs */
 133	unsigned long		thresh;		/* dirty threshold */
 134	unsigned long		bg_thresh;	/* dirty background threshold */
 135
 136	unsigned long		wb_dirty;	/* per-wb counterparts */
 137	unsigned long		wb_thresh;
 138	unsigned long		wb_bg_thresh;
 139
 140	unsigned long		pos_ratio;
 141};
 142
 143/*
 144 * Length of period for aging writeout fractions of bdis. This is an
 145 * arbitrarily chosen number. The longer the period, the slower fractions will
 146 * reflect changes in current writeout rate.
 147 */
 148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 149
 150#ifdef CONFIG_CGROUP_WRITEBACK
 151
 152#define GDTC_INIT(__wb)		.wb = (__wb),				\
 153				.dom = &global_wb_domain,		\
 154				.wb_completions = &(__wb)->completions
 155
 156#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 157
 158#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 159				.dom = mem_cgroup_wb_domain(__wb),	\
 160				.wb_completions = &(__wb)->memcg_completions, \
 161				.gdtc = __gdtc
 162
 163static bool mdtc_valid(struct dirty_throttle_control *dtc)
 164{
 165	return dtc->dom;
 166}
 167
 168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 174{
 175	return mdtc->gdtc;
 176}
 177
 178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 179{
 180	return &wb->memcg_completions;
 181}
 182
 183static void wb_min_max_ratio(struct bdi_writeback *wb,
 184			     unsigned long *minp, unsigned long *maxp)
 185{
 186	unsigned long this_bw = wb->avg_write_bandwidth;
 187	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 188	unsigned long long min = wb->bdi->min_ratio;
 189	unsigned long long max = wb->bdi->max_ratio;
 190
 191	/*
 192	 * @wb may already be clean by the time control reaches here and
 193	 * the total may not include its bw.
 194	 */
 195	if (this_bw < tot_bw) {
 196		if (min) {
 197			min *= this_bw;
 198			min = div64_ul(min, tot_bw);
 199		}
 200		if (max < 100) {
 201			max *= this_bw;
 202			max = div64_ul(max, tot_bw);
 203		}
 204	}
 205
 206	*minp = min;
 207	*maxp = max;
 208}
 209
 210#else	/* CONFIG_CGROUP_WRITEBACK */
 211
 212#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 213				.wb_completions = &(__wb)->completions
 214#define GDTC_INIT_NO_WB
 215#define MDTC_INIT(__wb, __gdtc)
 216
 217static bool mdtc_valid(struct dirty_throttle_control *dtc)
 218{
 219	return false;
 220}
 221
 222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 223{
 224	return &global_wb_domain;
 225}
 226
 227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 228{
 229	return NULL;
 230}
 231
 232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 233{
 234	return NULL;
 235}
 236
 237static void wb_min_max_ratio(struct bdi_writeback *wb,
 238			     unsigned long *minp, unsigned long *maxp)
 239{
 240	*minp = wb->bdi->min_ratio;
 241	*maxp = wb->bdi->max_ratio;
 242}
 243
 244#endif	/* CONFIG_CGROUP_WRITEBACK */
 245
 246/*
 247 * In a memory zone, there is a certain amount of pages we consider
 248 * available for the page cache, which is essentially the number of
 249 * free and reclaimable pages, minus some zone reserves to protect
 250 * lowmem and the ability to uphold the zone's watermarks without
 251 * requiring writeback.
 252 *
 253 * This number of dirtyable pages is the base value of which the
 254 * user-configurable dirty ratio is the effective number of pages that
 255 * are allowed to be actually dirtied.  Per individual zone, or
 256 * globally by using the sum of dirtyable pages over all zones.
 257 *
 258 * Because the user is allowed to specify the dirty limit globally as
 259 * absolute number of bytes, calculating the per-zone dirty limit can
 260 * require translating the configured limit into a percentage of
 261 * global dirtyable memory first.
 262 */
 263
 264/**
 265 * node_dirtyable_memory - number of dirtyable pages in a node
 266 * @pgdat: the node
 267 *
 268 * Return: the node's number of pages potentially available for dirty
 269 * page cache.  This is the base value for the per-node dirty limits.
 270 */
 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 272{
 273	unsigned long nr_pages = 0;
 274	int z;
 275
 276	for (z = 0; z < MAX_NR_ZONES; z++) {
 277		struct zone *zone = pgdat->node_zones + z;
 278
 279		if (!populated_zone(zone))
 280			continue;
 281
 282		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 283	}
 284
 285	/*
 286	 * Pages reserved for the kernel should not be considered
 287	 * dirtyable, to prevent a situation where reclaim has to
 288	 * clean pages in order to balance the zones.
 289	 */
 290	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 291
 292	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 293	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 294
 295	return nr_pages;
 296}
 297
 298static unsigned long highmem_dirtyable_memory(unsigned long total)
 299{
 300#ifdef CONFIG_HIGHMEM
 301	int node;
 302	unsigned long x = 0;
 303	int i;
 304
 305	for_each_node_state(node, N_HIGH_MEMORY) {
 306		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 307			struct zone *z;
 308			unsigned long nr_pages;
 309
 310			if (!is_highmem_idx(i))
 311				continue;
 312
 313			z = &NODE_DATA(node)->node_zones[i];
 314			if (!populated_zone(z))
 315				continue;
 316
 317			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 318			/* watch for underflows */
 319			nr_pages -= min(nr_pages, high_wmark_pages(z));
 320			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 321			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 322			x += nr_pages;
 323		}
 324	}
 325
 326	/*
 327	 * Unreclaimable memory (kernel memory or anonymous memory
 328	 * without swap) can bring down the dirtyable pages below
 329	 * the zone's dirty balance reserve and the above calculation
 330	 * will underflow.  However we still want to add in nodes
 331	 * which are below threshold (negative values) to get a more
 332	 * accurate calculation but make sure that the total never
 333	 * underflows.
 334	 */
 335	if ((long)x < 0)
 336		x = 0;
 337
 338	/*
 339	 * Make sure that the number of highmem pages is never larger
 340	 * than the number of the total dirtyable memory. This can only
 341	 * occur in very strange VM situations but we want to make sure
 342	 * that this does not occur.
 343	 */
 344	return min(x, total);
 345#else
 346	return 0;
 347#endif
 348}
 349
 350/**
 351 * global_dirtyable_memory - number of globally dirtyable pages
 352 *
 353 * Return: the global number of pages potentially available for dirty
 354 * page cache.  This is the base value for the global dirty limits.
 355 */
 356static unsigned long global_dirtyable_memory(void)
 357{
 358	unsigned long x;
 359
 360	x = global_zone_page_state(NR_FREE_PAGES);
 361	/*
 362	 * Pages reserved for the kernel should not be considered
 363	 * dirtyable, to prevent a situation where reclaim has to
 364	 * clean pages in order to balance the zones.
 365	 */
 366	x -= min(x, totalreserve_pages);
 367
 368	x += global_node_page_state(NR_INACTIVE_FILE);
 369	x += global_node_page_state(NR_ACTIVE_FILE);
 370
 371	if (!vm_highmem_is_dirtyable)
 372		x -= highmem_dirtyable_memory(x);
 373
 374	return x + 1;	/* Ensure that we never return 0 */
 375}
 376
 377/**
 378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 379 * @dtc: dirty_throttle_control of interest
 380 *
 381 * Calculate @dtc->thresh and ->bg_thresh considering
 382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 383 * must ensure that @dtc->avail is set before calling this function.  The
 384 * dirty limits will be lifted by 1/4 for real-time tasks.
 385 */
 386static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 387{
 388	const unsigned long available_memory = dtc->avail;
 389	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 390	unsigned long bytes = vm_dirty_bytes;
 391	unsigned long bg_bytes = dirty_background_bytes;
 392	/* convert ratios to per-PAGE_SIZE for higher precision */
 393	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 394	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 395	unsigned long thresh;
 396	unsigned long bg_thresh;
 397	struct task_struct *tsk;
 398
 399	/* gdtc is !NULL iff @dtc is for memcg domain */
 400	if (gdtc) {
 401		unsigned long global_avail = gdtc->avail;
 402
 403		/*
 404		 * The byte settings can't be applied directly to memcg
 405		 * domains.  Convert them to ratios by scaling against
 406		 * globally available memory.  As the ratios are in
 407		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 408		 * number of pages.
 409		 */
 410		if (bytes)
 411			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 412				    PAGE_SIZE);
 413		if (bg_bytes)
 414			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 415				       PAGE_SIZE);
 416		bytes = bg_bytes = 0;
 417	}
 418
 419	if (bytes)
 420		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 421	else
 422		thresh = (ratio * available_memory) / PAGE_SIZE;
 423
 424	if (bg_bytes)
 425		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 426	else
 427		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 428
 429	if (bg_thresh >= thresh)
 430		bg_thresh = thresh / 2;
 431	tsk = current;
 432	if (rt_task(tsk)) {
 433		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 434		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 435	}
 436	dtc->thresh = thresh;
 437	dtc->bg_thresh = bg_thresh;
 438
 439	/* we should eventually report the domain in the TP */
 440	if (!gdtc)
 441		trace_global_dirty_state(bg_thresh, thresh);
 442}
 443
 444/**
 445 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 446 * @pbackground: out parameter for bg_thresh
 447 * @pdirty: out parameter for thresh
 448 *
 449 * Calculate bg_thresh and thresh for global_wb_domain.  See
 450 * domain_dirty_limits() for details.
 451 */
 452void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 453{
 454	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 455
 456	gdtc.avail = global_dirtyable_memory();
 457	domain_dirty_limits(&gdtc);
 458
 459	*pbackground = gdtc.bg_thresh;
 460	*pdirty = gdtc.thresh;
 461}
 462
 463/**
 464 * node_dirty_limit - maximum number of dirty pages allowed in a node
 465 * @pgdat: the node
 466 *
 467 * Return: the maximum number of dirty pages allowed in a node, based
 468 * on the node's dirtyable memory.
 469 */
 470static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 471{
 472	unsigned long node_memory = node_dirtyable_memory(pgdat);
 473	struct task_struct *tsk = current;
 474	unsigned long dirty;
 475
 476	if (vm_dirty_bytes)
 477		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 478			node_memory / global_dirtyable_memory();
 479	else
 480		dirty = vm_dirty_ratio * node_memory / 100;
 481
 482	if (rt_task(tsk))
 483		dirty += dirty / 4;
 484
 485	return dirty;
 486}
 487
 488/**
 489 * node_dirty_ok - tells whether a node is within its dirty limits
 490 * @pgdat: the node to check
 491 *
 492 * Return: %true when the dirty pages in @pgdat are within the node's
 493 * dirty limit, %false if the limit is exceeded.
 494 */
 495bool node_dirty_ok(struct pglist_data *pgdat)
 496{
 497	unsigned long limit = node_dirty_limit(pgdat);
 498	unsigned long nr_pages = 0;
 499
 500	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 501	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 502
 503	return nr_pages <= limit;
 504}
 505
 506int dirty_background_ratio_handler(struct ctl_table *table, int write,
 
 507		void *buffer, size_t *lenp, loff_t *ppos)
 508{
 509	int ret;
 510
 511	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 512	if (ret == 0 && write)
 513		dirty_background_bytes = 0;
 514	return ret;
 515}
 516
 517int dirty_background_bytes_handler(struct ctl_table *table, int write,
 518		void *buffer, size_t *lenp, loff_t *ppos)
 519{
 520	int ret;
 521
 522	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 523	if (ret == 0 && write)
 524		dirty_background_ratio = 0;
 525	return ret;
 526}
 527
 528int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 529		size_t *lenp, loff_t *ppos)
 530{
 531	int old_ratio = vm_dirty_ratio;
 532	int ret;
 533
 534	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 535	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 536		writeback_set_ratelimit();
 537		vm_dirty_bytes = 0;
 538	}
 539	return ret;
 540}
 541
 542int dirty_bytes_handler(struct ctl_table *table, int write,
 543		void *buffer, size_t *lenp, loff_t *ppos)
 544{
 545	unsigned long old_bytes = vm_dirty_bytes;
 546	int ret;
 547
 548	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 549	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 550		writeback_set_ratelimit();
 551		vm_dirty_ratio = 0;
 552	}
 553	return ret;
 554}
 
 555
 556static unsigned long wp_next_time(unsigned long cur_time)
 557{
 558	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 559	/* 0 has a special meaning... */
 560	if (!cur_time)
 561		return 1;
 562	return cur_time;
 563}
 564
 565static void wb_domain_writeout_inc(struct wb_domain *dom,
 566				   struct fprop_local_percpu *completions,
 567				   unsigned int max_prop_frac)
 568{
 569	__fprop_inc_percpu_max(&dom->completions, completions,
 570			       max_prop_frac);
 571	/* First event after period switching was turned off? */
 572	if (unlikely(!dom->period_time)) {
 573		/*
 574		 * We can race with other __bdi_writeout_inc calls here but
 575		 * it does not cause any harm since the resulting time when
 576		 * timer will fire and what is in writeout_period_time will be
 577		 * roughly the same.
 578		 */
 579		dom->period_time = wp_next_time(jiffies);
 580		mod_timer(&dom->period_timer, dom->period_time);
 581	}
 582}
 583
 584/*
 585 * Increment @wb's writeout completion count and the global writeout
 586 * completion count. Called from test_clear_page_writeback().
 587 */
 588static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 589{
 590	struct wb_domain *cgdom;
 591
 592	inc_wb_stat(wb, WB_WRITTEN);
 593	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 594			       wb->bdi->max_prop_frac);
 595
 596	cgdom = mem_cgroup_wb_domain(wb);
 597	if (cgdom)
 598		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 599				       wb->bdi->max_prop_frac);
 600}
 601
 602void wb_writeout_inc(struct bdi_writeback *wb)
 603{
 604	unsigned long flags;
 605
 606	local_irq_save(flags);
 607	__wb_writeout_inc(wb);
 608	local_irq_restore(flags);
 609}
 610EXPORT_SYMBOL_GPL(wb_writeout_inc);
 611
 612/*
 613 * On idle system, we can be called long after we scheduled because we use
 614 * deferred timers so count with missed periods.
 615 */
 616static void writeout_period(struct timer_list *t)
 617{
 618	struct wb_domain *dom = from_timer(dom, t, period_timer);
 619	int miss_periods = (jiffies - dom->period_time) /
 620						 VM_COMPLETIONS_PERIOD_LEN;
 621
 622	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 623		dom->period_time = wp_next_time(dom->period_time +
 624				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 625		mod_timer(&dom->period_timer, dom->period_time);
 626	} else {
 627		/*
 628		 * Aging has zeroed all fractions. Stop wasting CPU on period
 629		 * updates.
 630		 */
 631		dom->period_time = 0;
 632	}
 633}
 634
 635int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 636{
 637	memset(dom, 0, sizeof(*dom));
 638
 639	spin_lock_init(&dom->lock);
 640
 641	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 642
 643	dom->dirty_limit_tstamp = jiffies;
 644
 645	return fprop_global_init(&dom->completions, gfp);
 646}
 647
 648#ifdef CONFIG_CGROUP_WRITEBACK
 649void wb_domain_exit(struct wb_domain *dom)
 650{
 651	del_timer_sync(&dom->period_timer);
 652	fprop_global_destroy(&dom->completions);
 653}
 654#endif
 655
 656/*
 657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 658 * registered backing devices, which, for obvious reasons, can not
 659 * exceed 100%.
 660 */
 661static unsigned int bdi_min_ratio;
 662
 663int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664{
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	int ret = 0;
 666
 
 
 
 
 667	spin_lock_bh(&bdi_lock);
 668	if (min_ratio > bdi->max_ratio) {
 669		ret = -EINVAL;
 670	} else {
 671		min_ratio -= bdi->min_ratio;
 672		if (bdi_min_ratio + min_ratio < 100) {
 673			bdi_min_ratio += min_ratio;
 674			bdi->min_ratio += min_ratio;
 675		} else {
 676			ret = -EINVAL;
 
 
 
 
 
 
 677		}
 678	}
 679	spin_unlock_bh(&bdi_lock);
 680
 681	return ret;
 682}
 683
 684int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 685{
 686	int ret = 0;
 687
 688	if (max_ratio > 100)
 689		return -EINVAL;
 690
 691	spin_lock_bh(&bdi_lock);
 692	if (bdi->min_ratio > max_ratio) {
 693		ret = -EINVAL;
 694	} else {
 695		bdi->max_ratio = max_ratio;
 696		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 697	}
 698	spin_unlock_bh(&bdi_lock);
 699
 700	return ret;
 701}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702EXPORT_SYMBOL(bdi_set_max_ratio);
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 705					   unsigned long bg_thresh)
 706{
 707	return (thresh + bg_thresh) / 2;
 708}
 709
 710static unsigned long hard_dirty_limit(struct wb_domain *dom,
 711				      unsigned long thresh)
 712{
 713	return max(thresh, dom->dirty_limit);
 714}
 715
 716/*
 717 * Memory which can be further allocated to a memcg domain is capped by
 718 * system-wide clean memory excluding the amount being used in the domain.
 719 */
 720static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 721			    unsigned long filepages, unsigned long headroom)
 722{
 723	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 724	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 725	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 726	unsigned long other_clean = global_clean - min(global_clean, clean);
 727
 728	mdtc->avail = filepages + min(headroom, other_clean);
 729}
 730
 731/**
 732 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 733 * @dtc: dirty_throttle_context of interest
 734 *
 735 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 736 * when sleeping max_pause per page is not enough to keep the dirty pages under
 737 * control. For example, when the device is completely stalled due to some error
 738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 739 * In the other normal situations, it acts more gently by throttling the tasks
 740 * more (rather than completely block them) when the wb dirty pages go high.
 741 *
 742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 743 * - starving fast devices
 744 * - piling up dirty pages (that will take long time to sync) on slow devices
 745 *
 746 * The wb's share of dirty limit will be adapting to its throughput and
 747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 748 *
 749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 750 * dirty balancing includes all PG_dirty and PG_writeback pages.
 751 */
 752static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 753{
 754	struct wb_domain *dom = dtc_dom(dtc);
 755	unsigned long thresh = dtc->thresh;
 756	u64 wb_thresh;
 757	unsigned long numerator, denominator;
 758	unsigned long wb_min_ratio, wb_max_ratio;
 759
 760	/*
 761	 * Calculate this BDI's share of the thresh ratio.
 762	 */
 763	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 764			      &numerator, &denominator);
 765
 766	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 767	wb_thresh *= numerator;
 768	wb_thresh = div64_ul(wb_thresh, denominator);
 769
 770	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 771
 772	wb_thresh += (thresh * wb_min_ratio) / 100;
 773	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 774		wb_thresh = thresh * wb_max_ratio / 100;
 775
 776	return wb_thresh;
 777}
 778
 779unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 780{
 781	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 782					       .thresh = thresh };
 783	return __wb_calc_thresh(&gdtc);
 784}
 785
 786/*
 787 *                           setpoint - dirty 3
 788 *        f(dirty) := 1.0 + (----------------)
 789 *                           limit - setpoint
 790 *
 791 * it's a 3rd order polynomial that subjects to
 792 *
 793 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 794 * (2) f(setpoint) = 1.0 => the balance point
 795 * (3) f(limit)    = 0   => the hard limit
 796 * (4) df/dx      <= 0	 => negative feedback control
 797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 798 *     => fast response on large errors; small oscillation near setpoint
 799 */
 800static long long pos_ratio_polynom(unsigned long setpoint,
 801					  unsigned long dirty,
 802					  unsigned long limit)
 803{
 804	long long pos_ratio;
 805	long x;
 806
 807	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 808		      (limit - setpoint) | 1);
 809	pos_ratio = x;
 810	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 811	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 812	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 813
 814	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 815}
 816
 817/*
 818 * Dirty position control.
 819 *
 820 * (o) global/bdi setpoints
 821 *
 822 * We want the dirty pages be balanced around the global/wb setpoints.
 823 * When the number of dirty pages is higher/lower than the setpoint, the
 824 * dirty position control ratio (and hence task dirty ratelimit) will be
 825 * decreased/increased to bring the dirty pages back to the setpoint.
 826 *
 827 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 828 *
 829 *     if (dirty < setpoint) scale up   pos_ratio
 830 *     if (dirty > setpoint) scale down pos_ratio
 831 *
 832 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 833 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 834 *
 835 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 836 *
 837 * (o) global control line
 838 *
 839 *     ^ pos_ratio
 840 *     |
 841 *     |            |<===== global dirty control scope ======>|
 842 * 2.0  * * * * * * *
 843 *     |            .*
 844 *     |            . *
 845 *     |            .   *
 846 *     |            .     *
 847 *     |            .        *
 848 *     |            .            *
 849 * 1.0 ................................*
 850 *     |            .                  .     *
 851 *     |            .                  .          *
 852 *     |            .                  .              *
 853 *     |            .                  .                 *
 854 *     |            .                  .                    *
 855 *   0 +------------.------------------.----------------------*------------->
 856 *           freerun^          setpoint^                 limit^   dirty pages
 857 *
 858 * (o) wb control line
 859 *
 860 *     ^ pos_ratio
 861 *     |
 862 *     |            *
 863 *     |              *
 864 *     |                *
 865 *     |                  *
 866 *     |                    * |<=========== span ============>|
 867 * 1.0 .......................*
 868 *     |                      . *
 869 *     |                      .   *
 870 *     |                      .     *
 871 *     |                      .       *
 872 *     |                      .         *
 873 *     |                      .           *
 874 *     |                      .             *
 875 *     |                      .               *
 876 *     |                      .                 *
 877 *     |                      .                   *
 878 *     |                      .                     *
 879 * 1/4 ...............................................* * * * * * * * * * * *
 880 *     |                      .                         .
 881 *     |                      .                           .
 882 *     |                      .                             .
 883 *   0 +----------------------.-------------------------------.------------->
 884 *                wb_setpoint^                    x_intercept^
 885 *
 886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 887 * be smoothly throttled down to normal if it starts high in situations like
 888 * - start writing to a slow SD card and a fast disk at the same time. The SD
 889 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 890 * - the wb dirty thresh drops quickly due to change of JBOD workload
 891 */
 892static void wb_position_ratio(struct dirty_throttle_control *dtc)
 893{
 894	struct bdi_writeback *wb = dtc->wb;
 895	unsigned long write_bw = wb->avg_write_bandwidth;
 896	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 897	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 898	unsigned long wb_thresh = dtc->wb_thresh;
 899	unsigned long x_intercept;
 900	unsigned long setpoint;		/* dirty pages' target balance point */
 901	unsigned long wb_setpoint;
 902	unsigned long span;
 903	long long pos_ratio;		/* for scaling up/down the rate limit */
 904	long x;
 905
 906	dtc->pos_ratio = 0;
 907
 908	if (unlikely(dtc->dirty >= limit))
 909		return;
 910
 911	/*
 912	 * global setpoint
 913	 *
 914	 * See comment for pos_ratio_polynom().
 915	 */
 916	setpoint = (freerun + limit) / 2;
 917	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 918
 919	/*
 920	 * The strictlimit feature is a tool preventing mistrusted filesystems
 921	 * from growing a large number of dirty pages before throttling. For
 922	 * such filesystems balance_dirty_pages always checks wb counters
 923	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 924	 * This is especially important for fuse which sets bdi->max_ratio to
 925	 * 1% by default. Without strictlimit feature, fuse writeback may
 926	 * consume arbitrary amount of RAM because it is accounted in
 927	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 928	 *
 929	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 930	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 931	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 932	 * limits are set by default to 10% and 20% (background and throttle).
 933	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 934	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 935	 * about ~6K pages (as the average of background and throttle wb
 936	 * limits). The 3rd order polynomial will provide positive feedback if
 937	 * wb_dirty is under wb_setpoint and vice versa.
 938	 *
 939	 * Note, that we cannot use global counters in these calculations
 940	 * because we want to throttle process writing to a strictlimit wb
 941	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 942	 * in the example above).
 943	 */
 944	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 945		long long wb_pos_ratio;
 946
 947		if (dtc->wb_dirty < 8) {
 948			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 949					   2 << RATELIMIT_CALC_SHIFT);
 950			return;
 951		}
 952
 953		if (dtc->wb_dirty >= wb_thresh)
 954			return;
 955
 956		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 957						    dtc->wb_bg_thresh);
 958
 959		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 960			return;
 961
 962		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 963						 wb_thresh);
 964
 965		/*
 966		 * Typically, for strictlimit case, wb_setpoint << setpoint
 967		 * and pos_ratio >> wb_pos_ratio. In the other words global
 968		 * state ("dirty") is not limiting factor and we have to
 969		 * make decision based on wb counters. But there is an
 970		 * important case when global pos_ratio should get precedence:
 971		 * global limits are exceeded (e.g. due to activities on other
 972		 * wb's) while given strictlimit wb is below limit.
 973		 *
 974		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 975		 * but it would look too non-natural for the case of all
 976		 * activity in the system coming from a single strictlimit wb
 977		 * with bdi->max_ratio == 100%.
 978		 *
 979		 * Note that min() below somewhat changes the dynamics of the
 980		 * control system. Normally, pos_ratio value can be well over 3
 981		 * (when globally we are at freerun and wb is well below wb
 982		 * setpoint). Now the maximum pos_ratio in the same situation
 983		 * is 2. We might want to tweak this if we observe the control
 984		 * system is too slow to adapt.
 985		 */
 986		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 987		return;
 988	}
 989
 990	/*
 991	 * We have computed basic pos_ratio above based on global situation. If
 992	 * the wb is over/under its share of dirty pages, we want to scale
 993	 * pos_ratio further down/up. That is done by the following mechanism.
 994	 */
 995
 996	/*
 997	 * wb setpoint
 998	 *
 999	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1000	 *
1001	 *                        x_intercept - wb_dirty
1002	 *                     := --------------------------
1003	 *                        x_intercept - wb_setpoint
1004	 *
1005	 * The main wb control line is a linear function that subjects to
1006	 *
1007	 * (1) f(wb_setpoint) = 1.0
1008	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1009	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1010	 *
1011	 * For single wb case, the dirty pages are observed to fluctuate
1012	 * regularly within range
1013	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1014	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1015	 * fluctuation range for pos_ratio.
1016	 *
1017	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1018	 * own size, so move the slope over accordingly and choose a slope that
1019	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1020	 */
1021	if (unlikely(wb_thresh > dtc->thresh))
1022		wb_thresh = dtc->thresh;
1023	/*
1024	 * It's very possible that wb_thresh is close to 0 not because the
1025	 * device is slow, but that it has remained inactive for long time.
1026	 * Honour such devices a reasonable good (hopefully IO efficient)
1027	 * threshold, so that the occasional writes won't be blocked and active
1028	 * writes can rampup the threshold quickly.
1029	 */
1030	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1031	/*
1032	 * scale global setpoint to wb's:
1033	 *	wb_setpoint = setpoint * wb_thresh / thresh
1034	 */
1035	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1036	wb_setpoint = setpoint * (u64)x >> 16;
1037	/*
1038	 * Use span=(8*write_bw) in single wb case as indicated by
1039	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1040	 *
1041	 *        wb_thresh                    thresh - wb_thresh
1042	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1043	 *         thresh                           thresh
1044	 */
1045	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1046	x_intercept = wb_setpoint + span;
1047
1048	if (dtc->wb_dirty < x_intercept - span / 4) {
1049		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1050				      (x_intercept - wb_setpoint) | 1);
1051	} else
1052		pos_ratio /= 4;
1053
1054	/*
1055	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1056	 * It may push the desired control point of global dirty pages higher
1057	 * than setpoint.
1058	 */
1059	x_intercept = wb_thresh / 2;
1060	if (dtc->wb_dirty < x_intercept) {
1061		if (dtc->wb_dirty > x_intercept / 8)
1062			pos_ratio = div_u64(pos_ratio * x_intercept,
1063					    dtc->wb_dirty);
1064		else
1065			pos_ratio *= 8;
1066	}
1067
1068	dtc->pos_ratio = pos_ratio;
1069}
1070
1071static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1072				      unsigned long elapsed,
1073				      unsigned long written)
1074{
1075	const unsigned long period = roundup_pow_of_two(3 * HZ);
1076	unsigned long avg = wb->avg_write_bandwidth;
1077	unsigned long old = wb->write_bandwidth;
1078	u64 bw;
1079
1080	/*
1081	 * bw = written * HZ / elapsed
1082	 *
1083	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1084	 * write_bandwidth = ---------------------------------------------------
1085	 *                                          period
1086	 *
1087	 * @written may have decreased due to account_page_redirty().
1088	 * Avoid underflowing @bw calculation.
1089	 */
1090	bw = written - min(written, wb->written_stamp);
1091	bw *= HZ;
1092	if (unlikely(elapsed > period)) {
1093		bw = div64_ul(bw, elapsed);
1094		avg = bw;
1095		goto out;
1096	}
1097	bw += (u64)wb->write_bandwidth * (period - elapsed);
1098	bw >>= ilog2(period);
1099
1100	/*
1101	 * one more level of smoothing, for filtering out sudden spikes
1102	 */
1103	if (avg > old && old >= (unsigned long)bw)
1104		avg -= (avg - old) >> 3;
1105
1106	if (avg < old && old <= (unsigned long)bw)
1107		avg += (old - avg) >> 3;
1108
1109out:
1110	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1111	avg = max(avg, 1LU);
1112	if (wb_has_dirty_io(wb)) {
1113		long delta = avg - wb->avg_write_bandwidth;
1114		WARN_ON_ONCE(atomic_long_add_return(delta,
1115					&wb->bdi->tot_write_bandwidth) <= 0);
1116	}
1117	wb->write_bandwidth = bw;
1118	wb->avg_write_bandwidth = avg;
1119}
1120
1121static void update_dirty_limit(struct dirty_throttle_control *dtc)
1122{
1123	struct wb_domain *dom = dtc_dom(dtc);
1124	unsigned long thresh = dtc->thresh;
1125	unsigned long limit = dom->dirty_limit;
1126
1127	/*
1128	 * Follow up in one step.
1129	 */
1130	if (limit < thresh) {
1131		limit = thresh;
1132		goto update;
1133	}
1134
1135	/*
1136	 * Follow down slowly. Use the higher one as the target, because thresh
1137	 * may drop below dirty. This is exactly the reason to introduce
1138	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1139	 */
1140	thresh = max(thresh, dtc->dirty);
1141	if (limit > thresh) {
1142		limit -= (limit - thresh) >> 5;
1143		goto update;
1144	}
1145	return;
1146update:
1147	dom->dirty_limit = limit;
1148}
1149
1150static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1151				    unsigned long now)
1152{
1153	struct wb_domain *dom = dtc_dom(dtc);
1154
1155	/*
1156	 * check locklessly first to optimize away locking for the most time
1157	 */
1158	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1159		return;
1160
1161	spin_lock(&dom->lock);
1162	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1163		update_dirty_limit(dtc);
1164		dom->dirty_limit_tstamp = now;
1165	}
1166	spin_unlock(&dom->lock);
1167}
1168
1169/*
1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1171 *
1172 * Normal wb tasks will be curbed at or below it in long term.
1173 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1174 */
1175static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1176				      unsigned long dirtied,
1177				      unsigned long elapsed)
1178{
1179	struct bdi_writeback *wb = dtc->wb;
1180	unsigned long dirty = dtc->dirty;
1181	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1182	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1183	unsigned long setpoint = (freerun + limit) / 2;
1184	unsigned long write_bw = wb->avg_write_bandwidth;
1185	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1186	unsigned long dirty_rate;
1187	unsigned long task_ratelimit;
1188	unsigned long balanced_dirty_ratelimit;
1189	unsigned long step;
1190	unsigned long x;
1191	unsigned long shift;
1192
1193	/*
1194	 * The dirty rate will match the writeout rate in long term, except
1195	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1196	 */
1197	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1198
1199	/*
1200	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1201	 */
1202	task_ratelimit = (u64)dirty_ratelimit *
1203					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1204	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1205
1206	/*
1207	 * A linear estimation of the "balanced" throttle rate. The theory is,
1208	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1209	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1210	 * formula will yield the balanced rate limit (write_bw / N).
1211	 *
1212	 * Note that the expanded form is not a pure rate feedback:
1213	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1214	 * but also takes pos_ratio into account:
1215	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1216	 *
1217	 * (1) is not realistic because pos_ratio also takes part in balancing
1218	 * the dirty rate.  Consider the state
1219	 *	pos_ratio = 0.5						     (3)
1220	 *	rate = 2 * (write_bw / N)				     (4)
1221	 * If (1) is used, it will stuck in that state! Because each dd will
1222	 * be throttled at
1223	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1224	 * yielding
1225	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1226	 * put (6) into (1) we get
1227	 *	rate_(i+1) = rate_(i)					     (7)
1228	 *
1229	 * So we end up using (2) to always keep
1230	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1231	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1232	 * pos_ratio is able to drive itself to 1.0, which is not only where
1233	 * the dirty count meet the setpoint, but also where the slope of
1234	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1235	 */
1236	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1237					   dirty_rate | 1);
1238	/*
1239	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1240	 */
1241	if (unlikely(balanced_dirty_ratelimit > write_bw))
1242		balanced_dirty_ratelimit = write_bw;
1243
1244	/*
1245	 * We could safely do this and return immediately:
1246	 *
1247	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1248	 *
1249	 * However to get a more stable dirty_ratelimit, the below elaborated
1250	 * code makes use of task_ratelimit to filter out singular points and
1251	 * limit the step size.
1252	 *
1253	 * The below code essentially only uses the relative value of
1254	 *
1255	 *	task_ratelimit - dirty_ratelimit
1256	 *	= (pos_ratio - 1) * dirty_ratelimit
1257	 *
1258	 * which reflects the direction and size of dirty position error.
1259	 */
1260
1261	/*
1262	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1263	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1264	 * For example, when
1265	 * - dirty_ratelimit > balanced_dirty_ratelimit
1266	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1267	 * lowering dirty_ratelimit will help meet both the position and rate
1268	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1269	 * only help meet the rate target. After all, what the users ultimately
1270	 * feel and care are stable dirty rate and small position error.
1271	 *
1272	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1273	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1274	 * keeps jumping around randomly and can even leap far away at times
1275	 * due to the small 200ms estimation period of dirty_rate (we want to
1276	 * keep that period small to reduce time lags).
1277	 */
1278	step = 0;
1279
1280	/*
1281	 * For strictlimit case, calculations above were based on wb counters
1282	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1283	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1284	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1285	 * "dirty" and wb_setpoint as "setpoint".
1286	 *
1287	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1288	 * it's possible that wb_thresh is close to zero due to inactivity
1289	 * of backing device.
1290	 */
1291	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1292		dirty = dtc->wb_dirty;
1293		if (dtc->wb_dirty < 8)
1294			setpoint = dtc->wb_dirty + 1;
1295		else
1296			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1297	}
1298
1299	if (dirty < setpoint) {
1300		x = min3(wb->balanced_dirty_ratelimit,
1301			 balanced_dirty_ratelimit, task_ratelimit);
1302		if (dirty_ratelimit < x)
1303			step = x - dirty_ratelimit;
1304	} else {
1305		x = max3(wb->balanced_dirty_ratelimit,
1306			 balanced_dirty_ratelimit, task_ratelimit);
1307		if (dirty_ratelimit > x)
1308			step = dirty_ratelimit - x;
1309	}
1310
1311	/*
1312	 * Don't pursue 100% rate matching. It's impossible since the balanced
1313	 * rate itself is constantly fluctuating. So decrease the track speed
1314	 * when it gets close to the target. Helps eliminate pointless tremors.
1315	 */
1316	shift = dirty_ratelimit / (2 * step + 1);
1317	if (shift < BITS_PER_LONG)
1318		step = DIV_ROUND_UP(step >> shift, 8);
1319	else
1320		step = 0;
1321
1322	if (dirty_ratelimit < balanced_dirty_ratelimit)
1323		dirty_ratelimit += step;
1324	else
1325		dirty_ratelimit -= step;
1326
1327	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1328	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1329
1330	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1331}
1332
1333static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1334				  struct dirty_throttle_control *mdtc,
1335				  unsigned long start_time,
1336				  bool update_ratelimit)
1337{
1338	struct bdi_writeback *wb = gdtc->wb;
1339	unsigned long now = jiffies;
1340	unsigned long elapsed = now - wb->bw_time_stamp;
1341	unsigned long dirtied;
1342	unsigned long written;
1343
1344	lockdep_assert_held(&wb->list_lock);
1345
1346	/*
1347	 * rate-limit, only update once every 200ms.
 
 
 
1348	 */
1349	if (elapsed < BANDWIDTH_INTERVAL)
1350		return;
1351
1352	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1353	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1354
1355	/*
1356	 * Skip quiet periods when disk bandwidth is under-utilized.
1357	 * (at least 1s idle time between two flusher runs)
1358	 */
1359	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1360		goto snapshot;
1361
1362	if (update_ratelimit) {
1363		domain_update_bandwidth(gdtc, now);
1364		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1365
1366		/*
1367		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1368		 * compiler has no way to figure that out.  Help it.
1369		 */
1370		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1371			domain_update_bandwidth(mdtc, now);
1372			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1373		}
1374	}
1375	wb_update_write_bandwidth(wb, elapsed, written);
1376
1377snapshot:
1378	wb->dirtied_stamp = dirtied;
1379	wb->written_stamp = written;
1380	wb->bw_time_stamp = now;
 
1381}
1382
1383void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1384{
1385	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1386
1387	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388}
1389
1390/*
1391 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1392 * will look to see if it needs to start dirty throttling.
1393 *
1394 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1395 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1396 * (the number of pages we may dirty without exceeding the dirty limits).
1397 */
1398static unsigned long dirty_poll_interval(unsigned long dirty,
1399					 unsigned long thresh)
1400{
1401	if (thresh > dirty)
1402		return 1UL << (ilog2(thresh - dirty) >> 1);
1403
1404	return 1;
1405}
1406
1407static unsigned long wb_max_pause(struct bdi_writeback *wb,
1408				  unsigned long wb_dirty)
1409{
1410	unsigned long bw = wb->avg_write_bandwidth;
1411	unsigned long t;
1412
1413	/*
1414	 * Limit pause time for small memory systems. If sleeping for too long
1415	 * time, a small pool of dirty/writeback pages may go empty and disk go
1416	 * idle.
1417	 *
1418	 * 8 serves as the safety ratio.
1419	 */
1420	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1421	t++;
1422
1423	return min_t(unsigned long, t, MAX_PAUSE);
1424}
1425
1426static long wb_min_pause(struct bdi_writeback *wb,
1427			 long max_pause,
1428			 unsigned long task_ratelimit,
1429			 unsigned long dirty_ratelimit,
1430			 int *nr_dirtied_pause)
1431{
1432	long hi = ilog2(wb->avg_write_bandwidth);
1433	long lo = ilog2(wb->dirty_ratelimit);
1434	long t;		/* target pause */
1435	long pause;	/* estimated next pause */
1436	int pages;	/* target nr_dirtied_pause */
1437
1438	/* target for 10ms pause on 1-dd case */
1439	t = max(1, HZ / 100);
1440
1441	/*
1442	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1443	 * overheads.
1444	 *
1445	 * (N * 10ms) on 2^N concurrent tasks.
1446	 */
1447	if (hi > lo)
1448		t += (hi - lo) * (10 * HZ) / 1024;
1449
1450	/*
1451	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1452	 * on the much more stable dirty_ratelimit. However the next pause time
1453	 * will be computed based on task_ratelimit and the two rate limits may
1454	 * depart considerably at some time. Especially if task_ratelimit goes
1455	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1456	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1457	 * result task_ratelimit won't be executed faithfully, which could
1458	 * eventually bring down dirty_ratelimit.
1459	 *
1460	 * We apply two rules to fix it up:
1461	 * 1) try to estimate the next pause time and if necessary, use a lower
1462	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1463	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1464	 * 2) limit the target pause time to max_pause/2, so that the normal
1465	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1466	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1467	 */
1468	t = min(t, 1 + max_pause / 2);
1469	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1470
1471	/*
1472	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1473	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1474	 * When the 16 consecutive reads are often interrupted by some dirty
1475	 * throttling pause during the async writes, cfq will go into idles
1476	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1477	 * until reaches DIRTY_POLL_THRESH=32 pages.
1478	 */
1479	if (pages < DIRTY_POLL_THRESH) {
1480		t = max_pause;
1481		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482		if (pages > DIRTY_POLL_THRESH) {
1483			pages = DIRTY_POLL_THRESH;
1484			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1485		}
1486	}
1487
1488	pause = HZ * pages / (task_ratelimit + 1);
1489	if (pause > max_pause) {
1490		t = max_pause;
1491		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1492	}
1493
1494	*nr_dirtied_pause = pages;
1495	/*
1496	 * The minimal pause time will normally be half the target pause time.
1497	 */
1498	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1499}
1500
1501static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1502{
1503	struct bdi_writeback *wb = dtc->wb;
1504	unsigned long wb_reclaimable;
1505
1506	/*
1507	 * wb_thresh is not treated as some limiting factor as
1508	 * dirty_thresh, due to reasons
1509	 * - in JBOD setup, wb_thresh can fluctuate a lot
1510	 * - in a system with HDD and USB key, the USB key may somehow
1511	 *   go into state (wb_dirty >> wb_thresh) either because
1512	 *   wb_dirty starts high, or because wb_thresh drops low.
1513	 *   In this case we don't want to hard throttle the USB key
1514	 *   dirtiers for 100 seconds until wb_dirty drops under
1515	 *   wb_thresh. Instead the auxiliary wb control line in
1516	 *   wb_position_ratio() will let the dirtier task progress
1517	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1518	 */
1519	dtc->wb_thresh = __wb_calc_thresh(dtc);
1520	dtc->wb_bg_thresh = dtc->thresh ?
1521		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1522
1523	/*
1524	 * In order to avoid the stacked BDI deadlock we need
1525	 * to ensure we accurately count the 'dirty' pages when
1526	 * the threshold is low.
1527	 *
1528	 * Otherwise it would be possible to get thresh+n pages
1529	 * reported dirty, even though there are thresh-m pages
1530	 * actually dirty; with m+n sitting in the percpu
1531	 * deltas.
1532	 */
1533	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1534		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1535		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1536	} else {
1537		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1538		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1539	}
1540}
1541
1542/*
1543 * balance_dirty_pages() must be called by processes which are generating dirty
1544 * data.  It looks at the number of dirty pages in the machine and will force
1545 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1546 * If we're over `background_thresh' then the writeback threads are woken to
1547 * perform some writeout.
1548 */
1549static void balance_dirty_pages(struct bdi_writeback *wb,
1550				unsigned long pages_dirtied)
1551{
1552	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1553	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1554	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1555	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1556						     &mdtc_stor : NULL;
1557	struct dirty_throttle_control *sdtc;
1558	unsigned long nr_reclaimable;	/* = file_dirty */
1559	long period;
1560	long pause;
1561	long max_pause;
1562	long min_pause;
1563	int nr_dirtied_pause;
1564	bool dirty_exceeded = false;
1565	unsigned long task_ratelimit;
1566	unsigned long dirty_ratelimit;
1567	struct backing_dev_info *bdi = wb->bdi;
1568	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1569	unsigned long start_time = jiffies;
 
1570
1571	for (;;) {
1572		unsigned long now = jiffies;
1573		unsigned long dirty, thresh, bg_thresh;
1574		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1575		unsigned long m_thresh = 0;
1576		unsigned long m_bg_thresh = 0;
1577
1578		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1579		gdtc->avail = global_dirtyable_memory();
1580		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1581
1582		domain_dirty_limits(gdtc);
1583
1584		if (unlikely(strictlimit)) {
1585			wb_dirty_limits(gdtc);
1586
1587			dirty = gdtc->wb_dirty;
1588			thresh = gdtc->wb_thresh;
1589			bg_thresh = gdtc->wb_bg_thresh;
1590		} else {
1591			dirty = gdtc->dirty;
1592			thresh = gdtc->thresh;
1593			bg_thresh = gdtc->bg_thresh;
1594		}
1595
1596		if (mdtc) {
1597			unsigned long filepages, headroom, writeback;
1598
1599			/*
1600			 * If @wb belongs to !root memcg, repeat the same
1601			 * basic calculations for the memcg domain.
1602			 */
1603			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1604					    &mdtc->dirty, &writeback);
1605			mdtc->dirty += writeback;
1606			mdtc_calc_avail(mdtc, filepages, headroom);
1607
1608			domain_dirty_limits(mdtc);
1609
1610			if (unlikely(strictlimit)) {
1611				wb_dirty_limits(mdtc);
1612				m_dirty = mdtc->wb_dirty;
1613				m_thresh = mdtc->wb_thresh;
1614				m_bg_thresh = mdtc->wb_bg_thresh;
1615			} else {
1616				m_dirty = mdtc->dirty;
1617				m_thresh = mdtc->thresh;
1618				m_bg_thresh = mdtc->bg_thresh;
1619			}
1620		}
1621
1622		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1623		 * Throttle it only when the background writeback cannot
1624		 * catch-up. This avoids (excessively) small writeouts
1625		 * when the wb limits are ramping up in case of !strictlimit.
1626		 *
1627		 * In strictlimit case make decision based on the wb counters
1628		 * and limits. Small writeouts when the wb limits are ramping
1629		 * up are the price we consciously pay for strictlimit-ing.
1630		 *
1631		 * If memcg domain is in effect, @dirty should be under
1632		 * both global and memcg freerun ceilings.
1633		 */
1634		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1635		    (!mdtc ||
1636		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1637			unsigned long intv;
1638			unsigned long m_intv;
1639
1640free_running:
1641			intv = dirty_poll_interval(dirty, thresh);
1642			m_intv = ULONG_MAX;
1643
1644			current->dirty_paused_when = now;
1645			current->nr_dirtied = 0;
1646			if (mdtc)
1647				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1648			current->nr_dirtied_pause = min(intv, m_intv);
1649			break;
1650		}
1651
 
1652		if (unlikely(!writeback_in_progress(wb)))
1653			wb_start_background_writeback(wb);
1654
1655		mem_cgroup_flush_foreign(wb);
1656
1657		/*
1658		 * Calculate global domain's pos_ratio and select the
1659		 * global dtc by default.
1660		 */
1661		if (!strictlimit) {
1662			wb_dirty_limits(gdtc);
1663
1664			if ((current->flags & PF_LOCAL_THROTTLE) &&
1665			    gdtc->wb_dirty <
1666			    dirty_freerun_ceiling(gdtc->wb_thresh,
1667						  gdtc->wb_bg_thresh))
1668				/*
1669				 * LOCAL_THROTTLE tasks must not be throttled
1670				 * when below the per-wb freerun ceiling.
1671				 */
1672				goto free_running;
1673		}
1674
1675		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1676			((gdtc->dirty > gdtc->thresh) || strictlimit);
1677
1678		wb_position_ratio(gdtc);
1679		sdtc = gdtc;
1680
1681		if (mdtc) {
1682			/*
1683			 * If memcg domain is in effect, calculate its
1684			 * pos_ratio.  @wb should satisfy constraints from
1685			 * both global and memcg domains.  Choose the one
1686			 * w/ lower pos_ratio.
1687			 */
1688			if (!strictlimit) {
1689				wb_dirty_limits(mdtc);
1690
1691				if ((current->flags & PF_LOCAL_THROTTLE) &&
1692				    mdtc->wb_dirty <
1693				    dirty_freerun_ceiling(mdtc->wb_thresh,
1694							  mdtc->wb_bg_thresh))
1695					/*
1696					 * LOCAL_THROTTLE tasks must not be
1697					 * throttled when below the per-wb
1698					 * freerun ceiling.
1699					 */
1700					goto free_running;
1701			}
1702			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1703				((mdtc->dirty > mdtc->thresh) || strictlimit);
1704
1705			wb_position_ratio(mdtc);
1706			if (mdtc->pos_ratio < gdtc->pos_ratio)
1707				sdtc = mdtc;
1708		}
1709
1710		if (dirty_exceeded && !wb->dirty_exceeded)
1711			wb->dirty_exceeded = 1;
1712
1713		if (time_is_before_jiffies(wb->bw_time_stamp +
1714					   BANDWIDTH_INTERVAL)) {
1715			spin_lock(&wb->list_lock);
1716			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1717			spin_unlock(&wb->list_lock);
1718		}
1719
1720		/* throttle according to the chosen dtc */
1721		dirty_ratelimit = wb->dirty_ratelimit;
1722		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1723							RATELIMIT_CALC_SHIFT;
1724		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1725		min_pause = wb_min_pause(wb, max_pause,
1726					 task_ratelimit, dirty_ratelimit,
1727					 &nr_dirtied_pause);
1728
1729		if (unlikely(task_ratelimit == 0)) {
1730			period = max_pause;
1731			pause = max_pause;
1732			goto pause;
1733		}
1734		period = HZ * pages_dirtied / task_ratelimit;
1735		pause = period;
1736		if (current->dirty_paused_when)
1737			pause -= now - current->dirty_paused_when;
1738		/*
1739		 * For less than 1s think time (ext3/4 may block the dirtier
1740		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1741		 * however at much less frequency), try to compensate it in
1742		 * future periods by updating the virtual time; otherwise just
1743		 * do a reset, as it may be a light dirtier.
1744		 */
1745		if (pause < min_pause) {
1746			trace_balance_dirty_pages(wb,
1747						  sdtc->thresh,
1748						  sdtc->bg_thresh,
1749						  sdtc->dirty,
1750						  sdtc->wb_thresh,
1751						  sdtc->wb_dirty,
1752						  dirty_ratelimit,
1753						  task_ratelimit,
1754						  pages_dirtied,
1755						  period,
1756						  min(pause, 0L),
1757						  start_time);
1758			if (pause < -HZ) {
1759				current->dirty_paused_when = now;
1760				current->nr_dirtied = 0;
1761			} else if (period) {
1762				current->dirty_paused_when += period;
1763				current->nr_dirtied = 0;
1764			} else if (current->nr_dirtied_pause <= pages_dirtied)
1765				current->nr_dirtied_pause += pages_dirtied;
1766			break;
1767		}
1768		if (unlikely(pause > max_pause)) {
1769			/* for occasional dropped task_ratelimit */
1770			now += min(pause - max_pause, max_pause);
1771			pause = max_pause;
1772		}
1773
1774pause:
1775		trace_balance_dirty_pages(wb,
1776					  sdtc->thresh,
1777					  sdtc->bg_thresh,
1778					  sdtc->dirty,
1779					  sdtc->wb_thresh,
1780					  sdtc->wb_dirty,
1781					  dirty_ratelimit,
1782					  task_ratelimit,
1783					  pages_dirtied,
1784					  period,
1785					  pause,
1786					  start_time);
 
 
 
 
1787		__set_current_state(TASK_KILLABLE);
1788		wb->dirty_sleep = now;
1789		io_schedule_timeout(pause);
1790
1791		current->dirty_paused_when = now + pause;
1792		current->nr_dirtied = 0;
1793		current->nr_dirtied_pause = nr_dirtied_pause;
1794
1795		/*
1796		 * This is typically equal to (dirty < thresh) and can also
1797		 * keep "1000+ dd on a slow USB stick" under control.
1798		 */
1799		if (task_ratelimit)
1800			break;
1801
1802		/*
1803		 * In the case of an unresponsive NFS server and the NFS dirty
1804		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1805		 * to go through, so that tasks on them still remain responsive.
1806		 *
1807		 * In theory 1 page is enough to keep the consumer-producer
1808		 * pipe going: the flusher cleans 1 page => the task dirties 1
1809		 * more page. However wb_dirty has accounting errors.  So use
1810		 * the larger and more IO friendly wb_stat_error.
1811		 */
1812		if (sdtc->wb_dirty <= wb_stat_error())
1813			break;
1814
1815		if (fatal_signal_pending(current))
1816			break;
1817	}
1818
1819	if (!dirty_exceeded && wb->dirty_exceeded)
1820		wb->dirty_exceeded = 0;
1821
1822	if (writeback_in_progress(wb))
1823		return;
1824
1825	/*
1826	 * In laptop mode, we wait until hitting the higher threshold before
1827	 * starting background writeout, and then write out all the way down
1828	 * to the lower threshold.  So slow writers cause minimal disk activity.
1829	 *
1830	 * In normal mode, we start background writeout at the lower
1831	 * background_thresh, to keep the amount of dirty memory low.
1832	 */
1833	if (laptop_mode)
1834		return;
1835
1836	if (nr_reclaimable > gdtc->bg_thresh)
1837		wb_start_background_writeback(wb);
1838}
1839
1840static DEFINE_PER_CPU(int, bdp_ratelimits);
1841
1842/*
1843 * Normal tasks are throttled by
1844 *	loop {
1845 *		dirty tsk->nr_dirtied_pause pages;
1846 *		take a snap in balance_dirty_pages();
1847 *	}
1848 * However there is a worst case. If every task exit immediately when dirtied
1849 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1850 * called to throttle the page dirties. The solution is to save the not yet
1851 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1852 * randomly into the running tasks. This works well for the above worst case,
1853 * as the new task will pick up and accumulate the old task's leaked dirty
1854 * count and eventually get throttled.
1855 */
1856DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1857
1858/**
1859 * balance_dirty_pages_ratelimited - balance dirty memory state
1860 * @mapping: address_space which was dirtied
 
1861 *
1862 * Processes which are dirtying memory should call in here once for each page
1863 * which was newly dirtied.  The function will periodically check the system's
1864 * dirty state and will initiate writeback if needed.
1865 *
1866 * Once we're over the dirty memory limit we decrease the ratelimiting
1867 * by a lot, to prevent individual processes from overshooting the limit
1868 * by (ratelimit_pages) each.
 
 
 
 
1869 */
1870void balance_dirty_pages_ratelimited(struct address_space *mapping)
 
1871{
1872	struct inode *inode = mapping->host;
1873	struct backing_dev_info *bdi = inode_to_bdi(inode);
1874	struct bdi_writeback *wb = NULL;
1875	int ratelimit;
 
1876	int *p;
1877
1878	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1879		return;
1880
1881	if (inode_cgwb_enabled(inode))
1882		wb = wb_get_create_current(bdi, GFP_KERNEL);
1883	if (!wb)
1884		wb = &bdi->wb;
1885
1886	ratelimit = current->nr_dirtied_pause;
1887	if (wb->dirty_exceeded)
1888		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1889
1890	preempt_disable();
1891	/*
1892	 * This prevents one CPU to accumulate too many dirtied pages without
1893	 * calling into balance_dirty_pages(), which can happen when there are
1894	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1895	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1896	 */
1897	p =  this_cpu_ptr(&bdp_ratelimits);
1898	if (unlikely(current->nr_dirtied >= ratelimit))
1899		*p = 0;
1900	else if (unlikely(*p >= ratelimit_pages)) {
1901		*p = 0;
1902		ratelimit = 0;
1903	}
1904	/*
1905	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1906	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1907	 * the dirty throttling and livelock other long-run dirtiers.
1908	 */
1909	p = this_cpu_ptr(&dirty_throttle_leaks);
1910	if (*p > 0 && current->nr_dirtied < ratelimit) {
1911		unsigned long nr_pages_dirtied;
1912		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1913		*p -= nr_pages_dirtied;
1914		current->nr_dirtied += nr_pages_dirtied;
1915	}
1916	preempt_enable();
1917
1918	if (unlikely(current->nr_dirtied >= ratelimit))
1919		balance_dirty_pages(wb, current->nr_dirtied);
1920
1921	wb_put(wb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922}
1923EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1924
1925/**
1926 * wb_over_bg_thresh - does @wb need to be written back?
1927 * @wb: bdi_writeback of interest
1928 *
1929 * Determines whether background writeback should keep writing @wb or it's
1930 * clean enough.
1931 *
1932 * Return: %true if writeback should continue.
1933 */
1934bool wb_over_bg_thresh(struct bdi_writeback *wb)
1935{
1936	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1937	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1938	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1939	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1940						     &mdtc_stor : NULL;
1941	unsigned long reclaimable;
1942	unsigned long thresh;
1943
1944	/*
1945	 * Similar to balance_dirty_pages() but ignores pages being written
1946	 * as we're trying to decide whether to put more under writeback.
1947	 */
1948	gdtc->avail = global_dirtyable_memory();
1949	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1950	domain_dirty_limits(gdtc);
1951
1952	if (gdtc->dirty > gdtc->bg_thresh)
1953		return true;
1954
1955	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1956	if (thresh < 2 * wb_stat_error())
1957		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1958	else
1959		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1960
1961	if (reclaimable > thresh)
1962		return true;
1963
1964	if (mdtc) {
1965		unsigned long filepages, headroom, writeback;
1966
1967		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968				    &writeback);
1969		mdtc_calc_avail(mdtc, filepages, headroom);
1970		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1971
1972		if (mdtc->dirty > mdtc->bg_thresh)
1973			return true;
1974
1975		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1976		if (thresh < 2 * wb_stat_error())
1977			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1978		else
1979			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1980
1981		if (reclaimable > thresh)
1982			return true;
1983	}
1984
1985	return false;
1986}
1987
 
1988/*
1989 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1990 */
1991int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1992		void *buffer, size_t *length, loff_t *ppos)
1993{
1994	unsigned int old_interval = dirty_writeback_interval;
1995	int ret;
1996
1997	ret = proc_dointvec(table, write, buffer, length, ppos);
1998
1999	/*
2000	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2001	 * and a different non-zero value will wakeup the writeback threads.
2002	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2003	 * iterate over all bdis and wbs.
2004	 * The reason we do this is to make the change take effect immediately.
2005	 */
2006	if (!ret && write && dirty_writeback_interval &&
2007		dirty_writeback_interval != old_interval)
2008		wakeup_flusher_threads(WB_REASON_PERIODIC);
2009
2010	return ret;
2011}
 
2012
2013#ifdef CONFIG_BLOCK
2014void laptop_mode_timer_fn(struct timer_list *t)
2015{
2016	struct backing_dev_info *backing_dev_info =
2017		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2018
2019	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2020}
2021
2022/*
2023 * We've spun up the disk and we're in laptop mode: schedule writeback
2024 * of all dirty data a few seconds from now.  If the flush is already scheduled
2025 * then push it back - the user is still using the disk.
2026 */
2027void laptop_io_completion(struct backing_dev_info *info)
2028{
2029	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2030}
2031
2032/*
2033 * We're in laptop mode and we've just synced. The sync's writes will have
2034 * caused another writeback to be scheduled by laptop_io_completion.
2035 * Nothing needs to be written back anymore, so we unschedule the writeback.
2036 */
2037void laptop_sync_completion(void)
2038{
2039	struct backing_dev_info *bdi;
2040
2041	rcu_read_lock();
2042
2043	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2044		del_timer(&bdi->laptop_mode_wb_timer);
2045
2046	rcu_read_unlock();
2047}
2048#endif
2049
2050/*
2051 * If ratelimit_pages is too high then we can get into dirty-data overload
2052 * if a large number of processes all perform writes at the same time.
2053 *
2054 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2055 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2056 * thresholds.
2057 */
2058
2059void writeback_set_ratelimit(void)
2060{
2061	struct wb_domain *dom = &global_wb_domain;
2062	unsigned long background_thresh;
2063	unsigned long dirty_thresh;
2064
2065	global_dirty_limits(&background_thresh, &dirty_thresh);
2066	dom->dirty_limit = dirty_thresh;
2067	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2068	if (ratelimit_pages < 16)
2069		ratelimit_pages = 16;
2070}
2071
2072static int page_writeback_cpu_online(unsigned int cpu)
2073{
2074	writeback_set_ratelimit();
2075	return 0;
2076}
2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078/*
2079 * Called early on to tune the page writeback dirty limits.
2080 *
2081 * We used to scale dirty pages according to how total memory
2082 * related to pages that could be allocated for buffers.
2083 *
2084 * However, that was when we used "dirty_ratio" to scale with
2085 * all memory, and we don't do that any more. "dirty_ratio"
2086 * is now applied to total non-HIGHPAGE memory, and as such we can't
2087 * get into the old insane situation any more where we had
2088 * large amounts of dirty pages compared to a small amount of
2089 * non-HIGHMEM memory.
2090 *
2091 * But we might still want to scale the dirty_ratio by how
2092 * much memory the box has..
2093 */
2094void __init page_writeback_init(void)
2095{
2096	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2097
2098	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2099			  page_writeback_cpu_online, NULL);
2100	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2101			  page_writeback_cpu_online);
 
 
 
2102}
2103
2104/**
2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2106 * @mapping: address space structure to write
2107 * @start: starting page index
2108 * @end: ending page index (inclusive)
2109 *
2110 * This function scans the page range from @start to @end (inclusive) and tags
2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2112 * that write_cache_pages (or whoever calls this function) will then use
2113 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2114 * used to avoid livelocking of writeback by a process steadily creating new
2115 * dirty pages in the file (thus it is important for this function to be quick
2116 * so that it can tag pages faster than a dirtying process can create them).
2117 */
2118void tag_pages_for_writeback(struct address_space *mapping,
2119			     pgoff_t start, pgoff_t end)
2120{
2121	XA_STATE(xas, &mapping->i_pages, start);
2122	unsigned int tagged = 0;
2123	void *page;
2124
2125	xas_lock_irq(&xas);
2126	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2127		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2128		if (++tagged % XA_CHECK_SCHED)
2129			continue;
2130
2131		xas_pause(&xas);
2132		xas_unlock_irq(&xas);
2133		cond_resched();
2134		xas_lock_irq(&xas);
2135	}
2136	xas_unlock_irq(&xas);
2137}
2138EXPORT_SYMBOL(tag_pages_for_writeback);
2139
2140/**
2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142 * @mapping: address space structure to write
2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144 * @writepage: function called for each page
2145 * @data: data passed to writepage function
2146 *
2147 * If a page is already under I/O, write_cache_pages() skips it, even
2148 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2149 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2150 * and msync() need to guarantee that all the data which was dirty at the time
2151 * the call was made get new I/O started against them.  If wbc->sync_mode is
2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2153 * existing IO to complete.
2154 *
2155 * To avoid livelocks (when other process dirties new pages), we first tag
2156 * pages which should be written back with TOWRITE tag and only then start
2157 * writing them. For data-integrity sync we have to be careful so that we do
2158 * not miss some pages (e.g., because some other process has cleared TOWRITE
2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2160 * by the process clearing the DIRTY tag (and submitting the page for IO).
2161 *
2162 * To avoid deadlocks between range_cyclic writeback and callers that hold
2163 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2164 * we do not loop back to the start of the file. Doing so causes a page
2165 * lock/page writeback access order inversion - we should only ever lock
2166 * multiple pages in ascending page->index order, and looping back to the start
2167 * of the file violates that rule and causes deadlocks.
2168 *
2169 * Return: %0 on success, negative error code otherwise
2170 */
2171int write_cache_pages(struct address_space *mapping,
2172		      struct writeback_control *wbc, writepage_t writepage,
2173		      void *data)
2174{
2175	int ret = 0;
2176	int done = 0;
2177	int error;
2178	struct pagevec pvec;
2179	int nr_pages;
2180	pgoff_t index;
2181	pgoff_t end;		/* Inclusive */
2182	pgoff_t done_index;
2183	int range_whole = 0;
2184	xa_mark_t tag;
2185
2186	pagevec_init(&pvec);
2187	if (wbc->range_cyclic) {
2188		index = mapping->writeback_index; /* prev offset */
2189		end = -1;
2190	} else {
2191		index = wbc->range_start >> PAGE_SHIFT;
2192		end = wbc->range_end >> PAGE_SHIFT;
2193		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2194			range_whole = 1;
2195	}
2196	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2197		tag_pages_for_writeback(mapping, index, end);
2198		tag = PAGECACHE_TAG_TOWRITE;
2199	} else {
2200		tag = PAGECACHE_TAG_DIRTY;
2201	}
2202	done_index = index;
2203	while (!done && (index <= end)) {
2204		int i;
2205
2206		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2207				tag);
2208		if (nr_pages == 0)
2209			break;
2210
2211		for (i = 0; i < nr_pages; i++) {
2212			struct page *page = pvec.pages[i];
2213
2214			done_index = page->index;
2215
2216			lock_page(page);
2217
2218			/*
2219			 * Page truncated or invalidated. We can freely skip it
2220			 * then, even for data integrity operations: the page
2221			 * has disappeared concurrently, so there could be no
2222			 * real expectation of this data integrity operation
2223			 * even if there is now a new, dirty page at the same
2224			 * pagecache address.
2225			 */
2226			if (unlikely(page->mapping != mapping)) {
2227continue_unlock:
2228				unlock_page(page);
2229				continue;
2230			}
2231
2232			if (!PageDirty(page)) {
2233				/* someone wrote it for us */
2234				goto continue_unlock;
2235			}
2236
2237			if (PageWriteback(page)) {
2238				if (wbc->sync_mode != WB_SYNC_NONE)
2239					wait_on_page_writeback(page);
2240				else
2241					goto continue_unlock;
2242			}
2243
2244			BUG_ON(PageWriteback(page));
2245			if (!clear_page_dirty_for_io(page))
2246				goto continue_unlock;
2247
2248			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2249			error = (*writepage)(page, wbc, data);
2250			if (unlikely(error)) {
2251				/*
2252				 * Handle errors according to the type of
2253				 * writeback. There's no need to continue for
2254				 * background writeback. Just push done_index
2255				 * past this page so media errors won't choke
2256				 * writeout for the entire file. For integrity
2257				 * writeback, we must process the entire dirty
2258				 * set regardless of errors because the fs may
2259				 * still have state to clear for each page. In
2260				 * that case we continue processing and return
2261				 * the first error.
2262				 */
2263				if (error == AOP_WRITEPAGE_ACTIVATE) {
2264					unlock_page(page);
2265					error = 0;
2266				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2267					ret = error;
2268					done_index = page->index + 1;
2269					done = 1;
2270					break;
2271				}
2272				if (!ret)
2273					ret = error;
2274			}
2275
2276			/*
2277			 * We stop writing back only if we are not doing
2278			 * integrity sync. In case of integrity sync we have to
2279			 * keep going until we have written all the pages
2280			 * we tagged for writeback prior to entering this loop.
2281			 */
2282			if (--wbc->nr_to_write <= 0 &&
2283			    wbc->sync_mode == WB_SYNC_NONE) {
2284				done = 1;
2285				break;
2286			}
2287		}
2288		pagevec_release(&pvec);
2289		cond_resched();
2290	}
2291
2292	/*
2293	 * If we hit the last page and there is more work to be done: wrap
2294	 * back the index back to the start of the file for the next
2295	 * time we are called.
2296	 */
2297	if (wbc->range_cyclic && !done)
2298		done_index = 0;
2299	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2300		mapping->writeback_index = done_index;
2301
2302	return ret;
2303}
2304EXPORT_SYMBOL(write_cache_pages);
2305
2306/*
2307 * Function used by generic_writepages to call the real writepage
2308 * function and set the mapping flags on error
2309 */
2310static int __writepage(struct page *page, struct writeback_control *wbc,
2311		       void *data)
2312{
2313	struct address_space *mapping = data;
2314	int ret = mapping->a_ops->writepage(page, wbc);
2315	mapping_set_error(mapping, ret);
2316	return ret;
2317}
2318
2319/**
2320 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2321 * @mapping: address space structure to write
2322 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2323 *
2324 * This is a library function, which implements the writepages()
2325 * address_space_operation.
2326 *
2327 * Return: %0 on success, negative error code otherwise
2328 */
2329int generic_writepages(struct address_space *mapping,
2330		       struct writeback_control *wbc)
2331{
2332	struct blk_plug plug;
2333	int ret;
2334
2335	/* deal with chardevs and other special file */
2336	if (!mapping->a_ops->writepage)
2337		return 0;
2338
2339	blk_start_plug(&plug);
2340	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2341	blk_finish_plug(&plug);
2342	return ret;
2343}
2344
2345EXPORT_SYMBOL(generic_writepages);
2346
2347int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2348{
2349	int ret;
 
2350
2351	if (wbc->nr_to_write <= 0)
2352		return 0;
 
 
2353	while (1) {
2354		if (mapping->a_ops->writepages)
2355			ret = mapping->a_ops->writepages(mapping, wbc);
2356		else
2357			ret = generic_writepages(mapping, wbc);
2358		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2359			break;
2360		cond_resched();
2361		congestion_wait(BLK_RW_ASYNC, HZ/50);
 
 
 
 
 
 
 
2362	}
 
 
 
 
 
 
 
 
2363	return ret;
2364}
2365
2366/**
2367 * write_one_page - write out a single page and wait on I/O
2368 * @page: the page to write
2369 *
2370 * The page must be locked by the caller and will be unlocked upon return.
2371 *
2372 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2373 * function returns.
2374 *
2375 * Return: %0 on success, negative error code otherwise
2376 */
2377int write_one_page(struct page *page)
2378{
2379	struct address_space *mapping = page->mapping;
2380	int ret = 0;
2381	struct writeback_control wbc = {
2382		.sync_mode = WB_SYNC_ALL,
2383		.nr_to_write = 1,
2384	};
2385
2386	BUG_ON(!PageLocked(page));
2387
2388	wait_on_page_writeback(page);
2389
2390	if (clear_page_dirty_for_io(page)) {
2391		get_page(page);
2392		ret = mapping->a_ops->writepage(page, &wbc);
2393		if (ret == 0)
2394			wait_on_page_writeback(page);
2395		put_page(page);
2396	} else {
2397		unlock_page(page);
2398	}
2399
2400	if (!ret)
2401		ret = filemap_check_errors(mapping);
2402	return ret;
2403}
2404EXPORT_SYMBOL(write_one_page);
2405
2406/*
2407 * For address_spaces which do not use buffers nor write back.
2408 */
2409int __set_page_dirty_no_writeback(struct page *page)
2410{
2411	if (!PageDirty(page))
2412		return !TestSetPageDirty(page);
2413	return 0;
2414}
2415EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2416
2417/*
2418 * Helper function for set_page_dirty family.
2419 *
2420 * Caller must hold lock_page_memcg().
2421 *
2422 * NOTE: This relies on being atomic wrt interrupts.
2423 */
2424static void account_page_dirtied(struct page *page,
2425		struct address_space *mapping)
2426{
2427	struct inode *inode = mapping->host;
2428
2429	trace_writeback_dirty_page(page, mapping);
2430
2431	if (mapping_can_writeback(mapping)) {
2432		struct bdi_writeback *wb;
 
2433
2434		inode_attach_wb(inode, page);
2435		wb = inode_to_wb(inode);
2436
2437		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2438		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2439		__inc_node_page_state(page, NR_DIRTIED);
2440		inc_wb_stat(wb, WB_RECLAIMABLE);
2441		inc_wb_stat(wb, WB_DIRTIED);
2442		task_io_account_write(PAGE_SIZE);
2443		current->nr_dirtied++;
2444		__this_cpu_inc(bdp_ratelimits);
2445
2446		mem_cgroup_track_foreign_dirty(page, wb);
2447	}
2448}
2449
2450/*
2451 * Helper function for deaccounting dirty page without writeback.
2452 *
2453 * Caller must hold lock_page_memcg().
2454 */
2455void account_page_cleaned(struct page *page, struct address_space *mapping,
2456			  struct bdi_writeback *wb)
2457{
2458	if (mapping_can_writeback(mapping)) {
2459		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2460		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2461		dec_wb_stat(wb, WB_RECLAIMABLE);
2462		task_io_account_cancelled_write(PAGE_SIZE);
2463	}
2464}
2465
2466/*
2467 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2468 * dirty.
2469 *
2470 * If warn is true, then emit a warning if the page is not uptodate and has
2471 * not been truncated.
2472 *
2473 * The caller must hold lock_page_memcg().
 
 
 
 
2474 */
2475void __set_page_dirty(struct page *page, struct address_space *mapping,
2476			     int warn)
2477{
2478	unsigned long flags;
2479
2480	xa_lock_irqsave(&mapping->i_pages, flags);
2481	if (page->mapping) {	/* Race with truncate? */
2482		WARN_ON_ONCE(warn && !PageUptodate(page));
2483		account_page_dirtied(page, mapping);
2484		__xa_set_mark(&mapping->i_pages, page_index(page),
2485				PAGECACHE_TAG_DIRTY);
2486	}
2487	xa_unlock_irqrestore(&mapping->i_pages, flags);
2488}
2489
2490/*
2491 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2492 * the xarray.
 
2493 *
2494 * This is also used when a single buffer is being dirtied: we want to set the
2495 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2496 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2497 *
2498 * The caller must ensure this doesn't race with truncation.  Most will simply
2499 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2500 * the pte lock held, which also locks out truncation.
2501 */
2502int __set_page_dirty_nobuffers(struct page *page)
2503{
2504	lock_page_memcg(page);
2505	if (!TestSetPageDirty(page)) {
2506		struct address_space *mapping = page_mapping(page);
2507
2508		if (!mapping) {
2509			unlock_page_memcg(page);
2510			return 1;
2511		}
2512		__set_page_dirty(page, mapping, !PagePrivate(page));
2513		unlock_page_memcg(page);
 
2514
2515		if (mapping->host) {
2516			/* !PageAnon && !swapper_space */
2517			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2518		}
2519		return 1;
 
2520	}
2521	unlock_page_memcg(page);
2522	return 0;
2523}
2524EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2525
2526/*
2527 * Call this whenever redirtying a page, to de-account the dirty counters
2528 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2529 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2530 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2531 * control.
 
 
 
 
 
2532 */
2533void account_page_redirty(struct page *page)
2534{
2535	struct address_space *mapping = page->mapping;
2536
2537	if (mapping && mapping_can_writeback(mapping)) {
2538		struct inode *inode = mapping->host;
2539		struct bdi_writeback *wb;
2540		struct wb_lock_cookie cookie = {};
 
2541
2542		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2543		current->nr_dirtied--;
2544		dec_node_page_state(page, NR_DIRTIED);
2545		dec_wb_stat(wb, WB_DIRTIED);
2546		unlocked_inode_to_wb_end(inode, &cookie);
2547	}
2548}
2549EXPORT_SYMBOL(account_page_redirty);
2550
2551/*
2552 * When a writepage implementation decides that it doesn't want to write this
2553 * page for some reason, it should redirty the locked page via
2554 * redirty_page_for_writepage() and it should then unlock the page and return 0
2555 */
2556int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2557{
2558	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2559
2560	wbc->pages_skipped++;
2561	ret = __set_page_dirty_nobuffers(page);
2562	account_page_redirty(page);
2563	return ret;
2564}
2565EXPORT_SYMBOL(redirty_page_for_writepage);
2566
2567/*
2568 * Dirty a page.
 
 
 
 
 
 
 
 
2569 *
2570 * For pages with a mapping this should be done under the page lock for the
2571 * benefit of asynchronous memory errors who prefer a consistent dirty state.
2572 * This rule can be broken in some special cases, but should be better not to.
2573 */
2574int set_page_dirty(struct page *page)
2575{
2576	struct address_space *mapping = page_mapping(page);
2577
2578	page = compound_head(page);
2579	if (likely(mapping)) {
2580		/*
2581		 * readahead/lru_deactivate_page could remain
2582		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2583		 * About readahead, if the page is written, the flags would be
2584		 * reset. So no problem.
2585		 * About lru_deactivate_page, if the page is redirty, the flag
2586		 * will be reset. So no problem. but if the page is used by readahead
2587		 * it will confuse readahead and make it restart the size rampup
2588		 * process. But it's a trivial problem.
 
2589		 */
2590		if (PageReclaim(page))
2591			ClearPageReclaim(page);
2592		return mapping->a_ops->set_page_dirty(page);
2593	}
2594	if (!PageDirty(page)) {
2595		if (!TestSetPageDirty(page))
2596			return 1;
2597	}
2598	return 0;
 
2599}
2600EXPORT_SYMBOL(set_page_dirty);
2601
2602/*
2603 * set_page_dirty() is racy if the caller has no reference against
2604 * page->mapping->host, and if the page is unlocked.  This is because another
2605 * CPU could truncate the page off the mapping and then free the mapping.
2606 *
2607 * Usually, the page _is_ locked, or the caller is a user-space process which
2608 * holds a reference on the inode by having an open file.
2609 *
2610 * In other cases, the page should be locked before running set_page_dirty().
2611 */
2612int set_page_dirty_lock(struct page *page)
2613{
2614	int ret;
2615
2616	lock_page(page);
2617	ret = set_page_dirty(page);
2618	unlock_page(page);
2619	return ret;
2620}
2621EXPORT_SYMBOL(set_page_dirty_lock);
2622
2623/*
2624 * This cancels just the dirty bit on the kernel page itself, it does NOT
2625 * actually remove dirty bits on any mmap's that may be around. It also
2626 * leaves the page tagged dirty, so any sync activity will still find it on
2627 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2628 * look at the dirty bits in the VM.
2629 *
2630 * Doing this should *normally* only ever be done when a page is truncated,
2631 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2632 * this when it notices that somebody has cleaned out all the buffers on a
2633 * page without actually doing it through the VM. Can you say "ext3 is
2634 * horribly ugly"? Thought you could.
2635 */
2636void __cancel_dirty_page(struct page *page)
2637{
2638	struct address_space *mapping = page_mapping(page);
2639
2640	if (mapping_can_writeback(mapping)) {
2641		struct inode *inode = mapping->host;
2642		struct bdi_writeback *wb;
2643		struct wb_lock_cookie cookie = {};
2644
2645		lock_page_memcg(page);
2646		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2647
2648		if (TestClearPageDirty(page))
2649			account_page_cleaned(page, mapping, wb);
2650
2651		unlocked_inode_to_wb_end(inode, &cookie);
2652		unlock_page_memcg(page);
2653	} else {
2654		ClearPageDirty(page);
2655	}
2656}
2657EXPORT_SYMBOL(__cancel_dirty_page);
2658
2659/*
2660 * Clear a page's dirty flag, while caring for dirty memory accounting.
2661 * Returns true if the page was previously dirty.
2662 *
2663 * This is for preparing to put the page under writeout.  We leave the page
2664 * tagged as dirty in the xarray so that a concurrent write-for-sync
2665 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2666 * implementation will run either set_page_writeback() or set_page_dirty(),
2667 * at which stage we bring the page's dirty flag and xarray dirty tag
2668 * back into sync.
2669 *
2670 * This incoherency between the page's dirty flag and xarray tag is
2671 * unfortunate, but it only exists while the page is locked.
2672 */
2673int clear_page_dirty_for_io(struct page *page)
2674{
2675	struct address_space *mapping = page_mapping(page);
2676	int ret = 0;
2677
2678	VM_BUG_ON_PAGE(!PageLocked(page), page);
2679
2680	if (mapping && mapping_can_writeback(mapping)) {
2681		struct inode *inode = mapping->host;
2682		struct bdi_writeback *wb;
2683		struct wb_lock_cookie cookie = {};
2684
2685		/*
2686		 * Yes, Virginia, this is indeed insane.
2687		 *
2688		 * We use this sequence to make sure that
2689		 *  (a) we account for dirty stats properly
2690		 *  (b) we tell the low-level filesystem to
2691		 *      mark the whole page dirty if it was
2692		 *      dirty in a pagetable. Only to then
2693		 *  (c) clean the page again and return 1 to
2694		 *      cause the writeback.
2695		 *
2696		 * This way we avoid all nasty races with the
2697		 * dirty bit in multiple places and clearing
2698		 * them concurrently from different threads.
2699		 *
2700		 * Note! Normally the "set_page_dirty(page)"
2701		 * has no effect on the actual dirty bit - since
2702		 * that will already usually be set. But we
2703		 * need the side effects, and it can help us
2704		 * avoid races.
2705		 *
2706		 * We basically use the page "master dirty bit"
2707		 * as a serialization point for all the different
2708		 * threads doing their things.
2709		 */
2710		if (page_mkclean(page))
2711			set_page_dirty(page);
2712		/*
2713		 * We carefully synchronise fault handlers against
2714		 * installing a dirty pte and marking the page dirty
2715		 * at this point.  We do this by having them hold the
2716		 * page lock while dirtying the page, and pages are
2717		 * always locked coming in here, so we get the desired
2718		 * exclusion.
2719		 */
2720		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2721		if (TestClearPageDirty(page)) {
2722			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2723			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2724			dec_wb_stat(wb, WB_RECLAIMABLE);
2725			ret = 1;
 
2726		}
2727		unlocked_inode_to_wb_end(inode, &cookie);
2728		return ret;
2729	}
2730	return TestClearPageDirty(page);
2731}
2732EXPORT_SYMBOL(clear_page_dirty_for_io);
2733
2734int test_clear_page_writeback(struct page *page)
2735{
2736	struct address_space *mapping = page_mapping(page);
2737	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738
2739	lock_page_memcg(page);
 
 
 
 
 
 
2740	if (mapping && mapping_use_writeback_tags(mapping)) {
2741		struct inode *inode = mapping->host;
2742		struct backing_dev_info *bdi = inode_to_bdi(inode);
2743		unsigned long flags;
2744
2745		xa_lock_irqsave(&mapping->i_pages, flags);
2746		ret = TestClearPageWriteback(page);
2747		if (ret) {
2748			__xa_clear_mark(&mapping->i_pages, page_index(page),
2749						PAGECACHE_TAG_WRITEBACK);
2750			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2751				struct bdi_writeback *wb = inode_to_wb(inode);
2752
2753				dec_wb_stat(wb, WB_WRITEBACK);
2754				__wb_writeout_inc(wb);
 
 
 
2755			}
2756		}
2757
2758		if (mapping->host && !mapping_tagged(mapping,
2759						     PAGECACHE_TAG_WRITEBACK))
2760			sb_clear_inode_writeback(mapping->host);
2761
2762		xa_unlock_irqrestore(&mapping->i_pages, flags);
2763	} else {
2764		ret = TestClearPageWriteback(page);
2765	}
2766	if (ret) {
2767		dec_lruvec_page_state(page, NR_WRITEBACK);
2768		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2769		inc_node_page_state(page, NR_WRITTEN);
2770	}
2771	unlock_page_memcg(page);
2772	return ret;
2773}
2774
2775int __test_set_page_writeback(struct page *page, bool keep_write)
2776{
2777	struct address_space *mapping = page_mapping(page);
2778	int ret, access_ret;
 
 
2779
2780	lock_page_memcg(page);
2781	if (mapping && mapping_use_writeback_tags(mapping)) {
2782		XA_STATE(xas, &mapping->i_pages, page_index(page));
2783		struct inode *inode = mapping->host;
2784		struct backing_dev_info *bdi = inode_to_bdi(inode);
2785		unsigned long flags;
2786
2787		xas_lock_irqsave(&xas, flags);
2788		xas_load(&xas);
2789		ret = TestSetPageWriteback(page);
2790		if (!ret) {
2791			bool on_wblist;
2792
2793			on_wblist = mapping_tagged(mapping,
2794						   PAGECACHE_TAG_WRITEBACK);
2795
2796			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2797			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2798				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
 
 
 
 
 
2799
2800			/*
2801			 * We can come through here when swapping anonymous
2802			 * pages, so we don't necessarily have an inode to track
2803			 * for sync.
2804			 */
2805			if (mapping->host && !on_wblist)
2806				sb_mark_inode_writeback(mapping->host);
2807		}
2808		if (!PageDirty(page))
2809			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2810		if (!keep_write)
2811			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2812		xas_unlock_irqrestore(&xas, flags);
2813	} else {
2814		ret = TestSetPageWriteback(page);
2815	}
2816	if (!ret) {
2817		inc_lruvec_page_state(page, NR_WRITEBACK);
2818		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2819	}
2820	unlock_page_memcg(page);
2821	access_ret = arch_make_page_accessible(page);
2822	/*
2823	 * If writeback has been triggered on a page that cannot be made
2824	 * accessible, it is too late to recover here.
2825	 */
2826	VM_BUG_ON_PAGE(access_ret != 0, page);
2827
2828	return ret;
2829
2830}
2831EXPORT_SYMBOL(__test_set_page_writeback);
2832
2833/*
2834 * Wait for a page to complete writeback
 
 
 
 
 
 
 
 
 
2835 */
2836void wait_on_page_writeback(struct page *page)
2837{
2838	while (PageWriteback(page)) {
2839		trace_wait_on_page_writeback(page, page_mapping(page));
2840		wait_on_page_bit(page, PG_writeback);
2841	}
2842}
2843EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2844
2845/*
2846 * Wait for a page to complete writeback.  Returns -EINTR if we get a
2847 * fatal signal while waiting.
2848 */
2849int wait_on_page_writeback_killable(struct page *page)
2850{
2851	while (PageWriteback(page)) {
2852		trace_wait_on_page_writeback(page, page_mapping(page));
2853		if (wait_on_page_bit_killable(page, PG_writeback))
 
 
 
 
 
 
 
 
 
2854			return -EINTR;
2855	}
2856
2857	return 0;
2858}
2859EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2860
2861/**
2862 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2863 * @page:	The page to wait on.
 
 
 
 
2864 *
2865 * This function determines if the given page is related to a backing device
2866 * that requires page contents to be held stable during writeback.  If so, then
2867 * it will wait for any pending writeback to complete.
 
2868 */
2869void wait_for_stable_page(struct page *page)
2870{
2871	page = thp_head(page);
2872	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2873		wait_on_page_writeback(page);
2874}
2875EXPORT_SYMBOL_GPL(wait_for_stable_page);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/math64.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/slab.h>
  23#include <linux/pagemap.h>
  24#include <linux/writeback.h>
  25#include <linux/init.h>
  26#include <linux/backing-dev.h>
  27#include <linux/task_io_accounting_ops.h>
  28#include <linux/blkdev.h>
  29#include <linux/mpage.h>
  30#include <linux/rmap.h>
  31#include <linux/percpu.h>
  32#include <linux/smp.h>
  33#include <linux/sysctl.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE		max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT	10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74static int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80static unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86static int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91static int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97static unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 113 * a full sync is triggered after this time elapses without any disk activity.
 114 */
 115int laptop_mode;
 116
 117EXPORT_SYMBOL(laptop_mode);
 118
 119/* End of sysctl-exported parameters */
 120
 121struct wb_domain global_wb_domain;
 122
 123/* consolidated parameters for balance_dirty_pages() and its subroutines */
 124struct dirty_throttle_control {
 125#ifdef CONFIG_CGROUP_WRITEBACK
 126	struct wb_domain	*dom;
 127	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 128#endif
 129	struct bdi_writeback	*wb;
 130	struct fprop_local_percpu *wb_completions;
 131
 132	unsigned long		avail;		/* dirtyable */
 133	unsigned long		dirty;		/* file_dirty + write + nfs */
 134	unsigned long		thresh;		/* dirty threshold */
 135	unsigned long		bg_thresh;	/* dirty background threshold */
 136
 137	unsigned long		wb_dirty;	/* per-wb counterparts */
 138	unsigned long		wb_thresh;
 139	unsigned long		wb_bg_thresh;
 140
 141	unsigned long		pos_ratio;
 142};
 143
 144/*
 145 * Length of period for aging writeout fractions of bdis. This is an
 146 * arbitrarily chosen number. The longer the period, the slower fractions will
 147 * reflect changes in current writeout rate.
 148 */
 149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 150
 151#ifdef CONFIG_CGROUP_WRITEBACK
 152
 153#define GDTC_INIT(__wb)		.wb = (__wb),				\
 154				.dom = &global_wb_domain,		\
 155				.wb_completions = &(__wb)->completions
 156
 157#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 158
 159#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 160				.dom = mem_cgroup_wb_domain(__wb),	\
 161				.wb_completions = &(__wb)->memcg_completions, \
 162				.gdtc = __gdtc
 163
 164static bool mdtc_valid(struct dirty_throttle_control *dtc)
 165{
 166	return dtc->dom;
 167}
 168
 169static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 170{
 171	return dtc->dom;
 172}
 173
 174static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 175{
 176	return mdtc->gdtc;
 177}
 178
 179static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 180{
 181	return &wb->memcg_completions;
 182}
 183
 184static void wb_min_max_ratio(struct bdi_writeback *wb,
 185			     unsigned long *minp, unsigned long *maxp)
 186{
 187	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
 188	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 189	unsigned long long min = wb->bdi->min_ratio;
 190	unsigned long long max = wb->bdi->max_ratio;
 191
 192	/*
 193	 * @wb may already be clean by the time control reaches here and
 194	 * the total may not include its bw.
 195	 */
 196	if (this_bw < tot_bw) {
 197		if (min) {
 198			min *= this_bw;
 199			min = div64_ul(min, tot_bw);
 200		}
 201		if (max < 100 * BDI_RATIO_SCALE) {
 202			max *= this_bw;
 203			max = div64_ul(max, tot_bw);
 204		}
 205	}
 206
 207	*minp = min;
 208	*maxp = max;
 209}
 210
 211#else	/* CONFIG_CGROUP_WRITEBACK */
 212
 213#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 214				.wb_completions = &(__wb)->completions
 215#define GDTC_INIT_NO_WB
 216#define MDTC_INIT(__wb, __gdtc)
 217
 218static bool mdtc_valid(struct dirty_throttle_control *dtc)
 219{
 220	return false;
 221}
 222
 223static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 224{
 225	return &global_wb_domain;
 226}
 227
 228static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 229{
 230	return NULL;
 231}
 232
 233static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 234{
 235	return NULL;
 236}
 237
 238static void wb_min_max_ratio(struct bdi_writeback *wb,
 239			     unsigned long *minp, unsigned long *maxp)
 240{
 241	*minp = wb->bdi->min_ratio;
 242	*maxp = wb->bdi->max_ratio;
 243}
 244
 245#endif	/* CONFIG_CGROUP_WRITEBACK */
 246
 247/*
 248 * In a memory zone, there is a certain amount of pages we consider
 249 * available for the page cache, which is essentially the number of
 250 * free and reclaimable pages, minus some zone reserves to protect
 251 * lowmem and the ability to uphold the zone's watermarks without
 252 * requiring writeback.
 253 *
 254 * This number of dirtyable pages is the base value of which the
 255 * user-configurable dirty ratio is the effective number of pages that
 256 * are allowed to be actually dirtied.  Per individual zone, or
 257 * globally by using the sum of dirtyable pages over all zones.
 258 *
 259 * Because the user is allowed to specify the dirty limit globally as
 260 * absolute number of bytes, calculating the per-zone dirty limit can
 261 * require translating the configured limit into a percentage of
 262 * global dirtyable memory first.
 263 */
 264
 265/**
 266 * node_dirtyable_memory - number of dirtyable pages in a node
 267 * @pgdat: the node
 268 *
 269 * Return: the node's number of pages potentially available for dirty
 270 * page cache.  This is the base value for the per-node dirty limits.
 271 */
 272static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 273{
 274	unsigned long nr_pages = 0;
 275	int z;
 276
 277	for (z = 0; z < MAX_NR_ZONES; z++) {
 278		struct zone *zone = pgdat->node_zones + z;
 279
 280		if (!populated_zone(zone))
 281			continue;
 282
 283		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 284	}
 285
 286	/*
 287	 * Pages reserved for the kernel should not be considered
 288	 * dirtyable, to prevent a situation where reclaim has to
 289	 * clean pages in order to balance the zones.
 290	 */
 291	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 292
 293	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 294	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 295
 296	return nr_pages;
 297}
 298
 299static unsigned long highmem_dirtyable_memory(unsigned long total)
 300{
 301#ifdef CONFIG_HIGHMEM
 302	int node;
 303	unsigned long x = 0;
 304	int i;
 305
 306	for_each_node_state(node, N_HIGH_MEMORY) {
 307		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 308			struct zone *z;
 309			unsigned long nr_pages;
 310
 311			if (!is_highmem_idx(i))
 312				continue;
 313
 314			z = &NODE_DATA(node)->node_zones[i];
 315			if (!populated_zone(z))
 316				continue;
 317
 318			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 319			/* watch for underflows */
 320			nr_pages -= min(nr_pages, high_wmark_pages(z));
 321			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 322			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 323			x += nr_pages;
 324		}
 325	}
 326
 327	/*
 
 
 
 
 
 
 
 
 
 
 
 
 328	 * Make sure that the number of highmem pages is never larger
 329	 * than the number of the total dirtyable memory. This can only
 330	 * occur in very strange VM situations but we want to make sure
 331	 * that this does not occur.
 332	 */
 333	return min(x, total);
 334#else
 335	return 0;
 336#endif
 337}
 338
 339/**
 340 * global_dirtyable_memory - number of globally dirtyable pages
 341 *
 342 * Return: the global number of pages potentially available for dirty
 343 * page cache.  This is the base value for the global dirty limits.
 344 */
 345static unsigned long global_dirtyable_memory(void)
 346{
 347	unsigned long x;
 348
 349	x = global_zone_page_state(NR_FREE_PAGES);
 350	/*
 351	 * Pages reserved for the kernel should not be considered
 352	 * dirtyable, to prevent a situation where reclaim has to
 353	 * clean pages in order to balance the zones.
 354	 */
 355	x -= min(x, totalreserve_pages);
 356
 357	x += global_node_page_state(NR_INACTIVE_FILE);
 358	x += global_node_page_state(NR_ACTIVE_FILE);
 359
 360	if (!vm_highmem_is_dirtyable)
 361		x -= highmem_dirtyable_memory(x);
 362
 363	return x + 1;	/* Ensure that we never return 0 */
 364}
 365
 366/**
 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 368 * @dtc: dirty_throttle_control of interest
 369 *
 370 * Calculate @dtc->thresh and ->bg_thresh considering
 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 372 * must ensure that @dtc->avail is set before calling this function.  The
 373 * dirty limits will be lifted by 1/4 for real-time tasks.
 374 */
 375static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 376{
 377	const unsigned long available_memory = dtc->avail;
 378	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 379	unsigned long bytes = vm_dirty_bytes;
 380	unsigned long bg_bytes = dirty_background_bytes;
 381	/* convert ratios to per-PAGE_SIZE for higher precision */
 382	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 383	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 384	unsigned long thresh;
 385	unsigned long bg_thresh;
 386	struct task_struct *tsk;
 387
 388	/* gdtc is !NULL iff @dtc is for memcg domain */
 389	if (gdtc) {
 390		unsigned long global_avail = gdtc->avail;
 391
 392		/*
 393		 * The byte settings can't be applied directly to memcg
 394		 * domains.  Convert them to ratios by scaling against
 395		 * globally available memory.  As the ratios are in
 396		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 397		 * number of pages.
 398		 */
 399		if (bytes)
 400			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 401				    PAGE_SIZE);
 402		if (bg_bytes)
 403			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 404				       PAGE_SIZE);
 405		bytes = bg_bytes = 0;
 406	}
 407
 408	if (bytes)
 409		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 410	else
 411		thresh = (ratio * available_memory) / PAGE_SIZE;
 412
 413	if (bg_bytes)
 414		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 415	else
 416		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 417
 418	if (bg_thresh >= thresh)
 419		bg_thresh = thresh / 2;
 420	tsk = current;
 421	if (rt_task(tsk)) {
 422		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 423		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 424	}
 425	dtc->thresh = thresh;
 426	dtc->bg_thresh = bg_thresh;
 427
 428	/* we should eventually report the domain in the TP */
 429	if (!gdtc)
 430		trace_global_dirty_state(bg_thresh, thresh);
 431}
 432
 433/**
 434 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 435 * @pbackground: out parameter for bg_thresh
 436 * @pdirty: out parameter for thresh
 437 *
 438 * Calculate bg_thresh and thresh for global_wb_domain.  See
 439 * domain_dirty_limits() for details.
 440 */
 441void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 442{
 443	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 444
 445	gdtc.avail = global_dirtyable_memory();
 446	domain_dirty_limits(&gdtc);
 447
 448	*pbackground = gdtc.bg_thresh;
 449	*pdirty = gdtc.thresh;
 450}
 451
 452/**
 453 * node_dirty_limit - maximum number of dirty pages allowed in a node
 454 * @pgdat: the node
 455 *
 456 * Return: the maximum number of dirty pages allowed in a node, based
 457 * on the node's dirtyable memory.
 458 */
 459static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 460{
 461	unsigned long node_memory = node_dirtyable_memory(pgdat);
 462	struct task_struct *tsk = current;
 463	unsigned long dirty;
 464
 465	if (vm_dirty_bytes)
 466		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 467			node_memory / global_dirtyable_memory();
 468	else
 469		dirty = vm_dirty_ratio * node_memory / 100;
 470
 471	if (rt_task(tsk))
 472		dirty += dirty / 4;
 473
 474	return dirty;
 475}
 476
 477/**
 478 * node_dirty_ok - tells whether a node is within its dirty limits
 479 * @pgdat: the node to check
 480 *
 481 * Return: %true when the dirty pages in @pgdat are within the node's
 482 * dirty limit, %false if the limit is exceeded.
 483 */
 484bool node_dirty_ok(struct pglist_data *pgdat)
 485{
 486	unsigned long limit = node_dirty_limit(pgdat);
 487	unsigned long nr_pages = 0;
 488
 489	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 490	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 491
 492	return nr_pages <= limit;
 493}
 494
 495#ifdef CONFIG_SYSCTL
 496static int dirty_background_ratio_handler(struct ctl_table *table, int write,
 497		void *buffer, size_t *lenp, loff_t *ppos)
 498{
 499	int ret;
 500
 501	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 502	if (ret == 0 && write)
 503		dirty_background_bytes = 0;
 504	return ret;
 505}
 506
 507static int dirty_background_bytes_handler(struct ctl_table *table, int write,
 508		void *buffer, size_t *lenp, loff_t *ppos)
 509{
 510	int ret;
 511
 512	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 513	if (ret == 0 && write)
 514		dirty_background_ratio = 0;
 515	return ret;
 516}
 517
 518static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
 519		size_t *lenp, loff_t *ppos)
 520{
 521	int old_ratio = vm_dirty_ratio;
 522	int ret;
 523
 524	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 525	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 526		writeback_set_ratelimit();
 527		vm_dirty_bytes = 0;
 528	}
 529	return ret;
 530}
 531
 532static int dirty_bytes_handler(struct ctl_table *table, int write,
 533		void *buffer, size_t *lenp, loff_t *ppos)
 534{
 535	unsigned long old_bytes = vm_dirty_bytes;
 536	int ret;
 537
 538	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 539	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 540		writeback_set_ratelimit();
 541		vm_dirty_ratio = 0;
 542	}
 543	return ret;
 544}
 545#endif
 546
 547static unsigned long wp_next_time(unsigned long cur_time)
 548{
 549	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 550	/* 0 has a special meaning... */
 551	if (!cur_time)
 552		return 1;
 553	return cur_time;
 554}
 555
 556static void wb_domain_writeout_add(struct wb_domain *dom,
 557				   struct fprop_local_percpu *completions,
 558				   unsigned int max_prop_frac, long nr)
 559{
 560	__fprop_add_percpu_max(&dom->completions, completions,
 561			       max_prop_frac, nr);
 562	/* First event after period switching was turned off? */
 563	if (unlikely(!dom->period_time)) {
 564		/*
 565		 * We can race with other __bdi_writeout_inc calls here but
 566		 * it does not cause any harm since the resulting time when
 567		 * timer will fire and what is in writeout_period_time will be
 568		 * roughly the same.
 569		 */
 570		dom->period_time = wp_next_time(jiffies);
 571		mod_timer(&dom->period_timer, dom->period_time);
 572	}
 573}
 574
 575/*
 576 * Increment @wb's writeout completion count and the global writeout
 577 * completion count. Called from __folio_end_writeback().
 578 */
 579static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
 580{
 581	struct wb_domain *cgdom;
 582
 583	wb_stat_mod(wb, WB_WRITTEN, nr);
 584	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
 585			       wb->bdi->max_prop_frac, nr);
 586
 587	cgdom = mem_cgroup_wb_domain(wb);
 588	if (cgdom)
 589		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
 590				       wb->bdi->max_prop_frac, nr);
 591}
 592
 593void wb_writeout_inc(struct bdi_writeback *wb)
 594{
 595	unsigned long flags;
 596
 597	local_irq_save(flags);
 598	__wb_writeout_add(wb, 1);
 599	local_irq_restore(flags);
 600}
 601EXPORT_SYMBOL_GPL(wb_writeout_inc);
 602
 603/*
 604 * On idle system, we can be called long after we scheduled because we use
 605 * deferred timers so count with missed periods.
 606 */
 607static void writeout_period(struct timer_list *t)
 608{
 609	struct wb_domain *dom = from_timer(dom, t, period_timer);
 610	int miss_periods = (jiffies - dom->period_time) /
 611						 VM_COMPLETIONS_PERIOD_LEN;
 612
 613	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 614		dom->period_time = wp_next_time(dom->period_time +
 615				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 616		mod_timer(&dom->period_timer, dom->period_time);
 617	} else {
 618		/*
 619		 * Aging has zeroed all fractions. Stop wasting CPU on period
 620		 * updates.
 621		 */
 622		dom->period_time = 0;
 623	}
 624}
 625
 626int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 627{
 628	memset(dom, 0, sizeof(*dom));
 629
 630	spin_lock_init(&dom->lock);
 631
 632	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 633
 634	dom->dirty_limit_tstamp = jiffies;
 635
 636	return fprop_global_init(&dom->completions, gfp);
 637}
 638
 639#ifdef CONFIG_CGROUP_WRITEBACK
 640void wb_domain_exit(struct wb_domain *dom)
 641{
 642	del_timer_sync(&dom->period_timer);
 643	fprop_global_destroy(&dom->completions);
 644}
 645#endif
 646
 647/*
 648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 649 * registered backing devices, which, for obvious reasons, can not
 650 * exceed 100%.
 651 */
 652static unsigned int bdi_min_ratio;
 653
 654static int bdi_check_pages_limit(unsigned long pages)
 655{
 656	unsigned long max_dirty_pages = global_dirtyable_memory();
 657
 658	if (pages > max_dirty_pages)
 659		return -EINVAL;
 660
 661	return 0;
 662}
 663
 664static unsigned long bdi_ratio_from_pages(unsigned long pages)
 665{
 666	unsigned long background_thresh;
 667	unsigned long dirty_thresh;
 668	unsigned long ratio;
 669
 670	global_dirty_limits(&background_thresh, &dirty_thresh);
 671	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
 672
 673	return ratio;
 674}
 675
 676static u64 bdi_get_bytes(unsigned int ratio)
 677{
 678	unsigned long background_thresh;
 679	unsigned long dirty_thresh;
 680	u64 bytes;
 681
 682	global_dirty_limits(&background_thresh, &dirty_thresh);
 683	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
 684
 685	return bytes;
 686}
 687
 688static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 689{
 690	unsigned int delta;
 691	int ret = 0;
 692
 693	if (min_ratio > 100 * BDI_RATIO_SCALE)
 694		return -EINVAL;
 695	min_ratio *= BDI_RATIO_SCALE;
 696
 697	spin_lock_bh(&bdi_lock);
 698	if (min_ratio > bdi->max_ratio) {
 699		ret = -EINVAL;
 700	} else {
 701		if (min_ratio < bdi->min_ratio) {
 702			delta = bdi->min_ratio - min_ratio;
 703			bdi_min_ratio -= delta;
 704			bdi->min_ratio = min_ratio;
 705		} else {
 706			delta = min_ratio - bdi->min_ratio;
 707			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
 708				bdi_min_ratio += delta;
 709				bdi->min_ratio = min_ratio;
 710			} else {
 711				ret = -EINVAL;
 712			}
 713		}
 714	}
 715	spin_unlock_bh(&bdi_lock);
 716
 717	return ret;
 718}
 719
 720static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
 721{
 722	int ret = 0;
 723
 724	if (max_ratio > 100 * BDI_RATIO_SCALE)
 725		return -EINVAL;
 726
 727	spin_lock_bh(&bdi_lock);
 728	if (bdi->min_ratio > max_ratio) {
 729		ret = -EINVAL;
 730	} else {
 731		bdi->max_ratio = max_ratio;
 732		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 733	}
 734	spin_unlock_bh(&bdi_lock);
 735
 736	return ret;
 737}
 738
 739int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
 740{
 741	return __bdi_set_min_ratio(bdi, min_ratio);
 742}
 743
 744int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
 745{
 746	return __bdi_set_max_ratio(bdi, max_ratio);
 747}
 748
 749int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 750{
 751	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
 752}
 753
 754int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
 755{
 756	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
 757}
 758EXPORT_SYMBOL(bdi_set_max_ratio);
 759
 760u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
 761{
 762	return bdi_get_bytes(bdi->min_ratio);
 763}
 764
 765int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
 766{
 767	int ret;
 768	unsigned long pages = min_bytes >> PAGE_SHIFT;
 769	unsigned long min_ratio;
 770
 771	ret = bdi_check_pages_limit(pages);
 772	if (ret)
 773		return ret;
 774
 775	min_ratio = bdi_ratio_from_pages(pages);
 776	return __bdi_set_min_ratio(bdi, min_ratio);
 777}
 778
 779u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
 780{
 781	return bdi_get_bytes(bdi->max_ratio);
 782}
 783
 784int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
 785{
 786	int ret;
 787	unsigned long pages = max_bytes >> PAGE_SHIFT;
 788	unsigned long max_ratio;
 789
 790	ret = bdi_check_pages_limit(pages);
 791	if (ret)
 792		return ret;
 793
 794	max_ratio = bdi_ratio_from_pages(pages);
 795	return __bdi_set_max_ratio(bdi, max_ratio);
 796}
 797
 798int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
 799{
 800	if (strict_limit > 1)
 801		return -EINVAL;
 802
 803	spin_lock_bh(&bdi_lock);
 804	if (strict_limit)
 805		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
 806	else
 807		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
 808	spin_unlock_bh(&bdi_lock);
 809
 810	return 0;
 811}
 812
 813static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 814					   unsigned long bg_thresh)
 815{
 816	return (thresh + bg_thresh) / 2;
 817}
 818
 819static unsigned long hard_dirty_limit(struct wb_domain *dom,
 820				      unsigned long thresh)
 821{
 822	return max(thresh, dom->dirty_limit);
 823}
 824
 825/*
 826 * Memory which can be further allocated to a memcg domain is capped by
 827 * system-wide clean memory excluding the amount being used in the domain.
 828 */
 829static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 830			    unsigned long filepages, unsigned long headroom)
 831{
 832	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 833	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 834	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 835	unsigned long other_clean = global_clean - min(global_clean, clean);
 836
 837	mdtc->avail = filepages + min(headroom, other_clean);
 838}
 839
 840/**
 841 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 842 * @dtc: dirty_throttle_context of interest
 843 *
 844 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 845 * when sleeping max_pause per page is not enough to keep the dirty pages under
 846 * control. For example, when the device is completely stalled due to some error
 847 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 848 * In the other normal situations, it acts more gently by throttling the tasks
 849 * more (rather than completely block them) when the wb dirty pages go high.
 850 *
 851 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 852 * - starving fast devices
 853 * - piling up dirty pages (that will take long time to sync) on slow devices
 854 *
 855 * The wb's share of dirty limit will be adapting to its throughput and
 856 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 857 *
 858 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
 859 * dirty balancing includes all PG_dirty and PG_writeback pages.
 860 */
 861static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 862{
 863	struct wb_domain *dom = dtc_dom(dtc);
 864	unsigned long thresh = dtc->thresh;
 865	u64 wb_thresh;
 866	unsigned long numerator, denominator;
 867	unsigned long wb_min_ratio, wb_max_ratio;
 868
 869	/*
 870	 * Calculate this BDI's share of the thresh ratio.
 871	 */
 872	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 873			      &numerator, &denominator);
 874
 875	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
 876	wb_thresh *= numerator;
 877	wb_thresh = div64_ul(wb_thresh, denominator);
 878
 879	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 880
 881	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
 882	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
 883		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
 884
 885	return wb_thresh;
 886}
 887
 888unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 889{
 890	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 891					       .thresh = thresh };
 892	return __wb_calc_thresh(&gdtc);
 893}
 894
 895/*
 896 *                           setpoint - dirty 3
 897 *        f(dirty) := 1.0 + (----------------)
 898 *                           limit - setpoint
 899 *
 900 * it's a 3rd order polynomial that subjects to
 901 *
 902 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 903 * (2) f(setpoint) = 1.0 => the balance point
 904 * (3) f(limit)    = 0   => the hard limit
 905 * (4) df/dx      <= 0	 => negative feedback control
 906 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 907 *     => fast response on large errors; small oscillation near setpoint
 908 */
 909static long long pos_ratio_polynom(unsigned long setpoint,
 910					  unsigned long dirty,
 911					  unsigned long limit)
 912{
 913	long long pos_ratio;
 914	long x;
 915
 916	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 917		      (limit - setpoint) | 1);
 918	pos_ratio = x;
 919	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 920	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 921	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 922
 923	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 924}
 925
 926/*
 927 * Dirty position control.
 928 *
 929 * (o) global/bdi setpoints
 930 *
 931 * We want the dirty pages be balanced around the global/wb setpoints.
 932 * When the number of dirty pages is higher/lower than the setpoint, the
 933 * dirty position control ratio (and hence task dirty ratelimit) will be
 934 * decreased/increased to bring the dirty pages back to the setpoint.
 935 *
 936 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 937 *
 938 *     if (dirty < setpoint) scale up   pos_ratio
 939 *     if (dirty > setpoint) scale down pos_ratio
 940 *
 941 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 942 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 943 *
 944 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 945 *
 946 * (o) global control line
 947 *
 948 *     ^ pos_ratio
 949 *     |
 950 *     |            |<===== global dirty control scope ======>|
 951 * 2.0  * * * * * * *
 952 *     |            .*
 953 *     |            . *
 954 *     |            .   *
 955 *     |            .     *
 956 *     |            .        *
 957 *     |            .            *
 958 * 1.0 ................................*
 959 *     |            .                  .     *
 960 *     |            .                  .          *
 961 *     |            .                  .              *
 962 *     |            .                  .                 *
 963 *     |            .                  .                    *
 964 *   0 +------------.------------------.----------------------*------------->
 965 *           freerun^          setpoint^                 limit^   dirty pages
 966 *
 967 * (o) wb control line
 968 *
 969 *     ^ pos_ratio
 970 *     |
 971 *     |            *
 972 *     |              *
 973 *     |                *
 974 *     |                  *
 975 *     |                    * |<=========== span ============>|
 976 * 1.0 .......................*
 977 *     |                      . *
 978 *     |                      .   *
 979 *     |                      .     *
 980 *     |                      .       *
 981 *     |                      .         *
 982 *     |                      .           *
 983 *     |                      .             *
 984 *     |                      .               *
 985 *     |                      .                 *
 986 *     |                      .                   *
 987 *     |                      .                     *
 988 * 1/4 ...............................................* * * * * * * * * * * *
 989 *     |                      .                         .
 990 *     |                      .                           .
 991 *     |                      .                             .
 992 *   0 +----------------------.-------------------------------.------------->
 993 *                wb_setpoint^                    x_intercept^
 994 *
 995 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 996 * be smoothly throttled down to normal if it starts high in situations like
 997 * - start writing to a slow SD card and a fast disk at the same time. The SD
 998 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 999 * - the wb dirty thresh drops quickly due to change of JBOD workload
1000 */
1001static void wb_position_ratio(struct dirty_throttle_control *dtc)
1002{
1003	struct bdi_writeback *wb = dtc->wb;
1004	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1005	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1006	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1007	unsigned long wb_thresh = dtc->wb_thresh;
1008	unsigned long x_intercept;
1009	unsigned long setpoint;		/* dirty pages' target balance point */
1010	unsigned long wb_setpoint;
1011	unsigned long span;
1012	long long pos_ratio;		/* for scaling up/down the rate limit */
1013	long x;
1014
1015	dtc->pos_ratio = 0;
1016
1017	if (unlikely(dtc->dirty >= limit))
1018		return;
1019
1020	/*
1021	 * global setpoint
1022	 *
1023	 * See comment for pos_ratio_polynom().
1024	 */
1025	setpoint = (freerun + limit) / 2;
1026	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1027
1028	/*
1029	 * The strictlimit feature is a tool preventing mistrusted filesystems
1030	 * from growing a large number of dirty pages before throttling. For
1031	 * such filesystems balance_dirty_pages always checks wb counters
1032	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1033	 * This is especially important for fuse which sets bdi->max_ratio to
1034	 * 1% by default. Without strictlimit feature, fuse writeback may
1035	 * consume arbitrary amount of RAM because it is accounted in
1036	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1037	 *
1038	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1039	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1040	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1041	 * limits are set by default to 10% and 20% (background and throttle).
1042	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1043	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1044	 * about ~6K pages (as the average of background and throttle wb
1045	 * limits). The 3rd order polynomial will provide positive feedback if
1046	 * wb_dirty is under wb_setpoint and vice versa.
1047	 *
1048	 * Note, that we cannot use global counters in these calculations
1049	 * because we want to throttle process writing to a strictlimit wb
1050	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1051	 * in the example above).
1052	 */
1053	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1054		long long wb_pos_ratio;
1055
1056		if (dtc->wb_dirty < 8) {
1057			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1058					   2 << RATELIMIT_CALC_SHIFT);
1059			return;
1060		}
1061
1062		if (dtc->wb_dirty >= wb_thresh)
1063			return;
1064
1065		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1066						    dtc->wb_bg_thresh);
1067
1068		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1069			return;
1070
1071		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1072						 wb_thresh);
1073
1074		/*
1075		 * Typically, for strictlimit case, wb_setpoint << setpoint
1076		 * and pos_ratio >> wb_pos_ratio. In the other words global
1077		 * state ("dirty") is not limiting factor and we have to
1078		 * make decision based on wb counters. But there is an
1079		 * important case when global pos_ratio should get precedence:
1080		 * global limits are exceeded (e.g. due to activities on other
1081		 * wb's) while given strictlimit wb is below limit.
1082		 *
1083		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1084		 * but it would look too non-natural for the case of all
1085		 * activity in the system coming from a single strictlimit wb
1086		 * with bdi->max_ratio == 100%.
1087		 *
1088		 * Note that min() below somewhat changes the dynamics of the
1089		 * control system. Normally, pos_ratio value can be well over 3
1090		 * (when globally we are at freerun and wb is well below wb
1091		 * setpoint). Now the maximum pos_ratio in the same situation
1092		 * is 2. We might want to tweak this if we observe the control
1093		 * system is too slow to adapt.
1094		 */
1095		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1096		return;
1097	}
1098
1099	/*
1100	 * We have computed basic pos_ratio above based on global situation. If
1101	 * the wb is over/under its share of dirty pages, we want to scale
1102	 * pos_ratio further down/up. That is done by the following mechanism.
1103	 */
1104
1105	/*
1106	 * wb setpoint
1107	 *
1108	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1109	 *
1110	 *                        x_intercept - wb_dirty
1111	 *                     := --------------------------
1112	 *                        x_intercept - wb_setpoint
1113	 *
1114	 * The main wb control line is a linear function that subjects to
1115	 *
1116	 * (1) f(wb_setpoint) = 1.0
1117	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1118	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1119	 *
1120	 * For single wb case, the dirty pages are observed to fluctuate
1121	 * regularly within range
1122	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1123	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1124	 * fluctuation range for pos_ratio.
1125	 *
1126	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1127	 * own size, so move the slope over accordingly and choose a slope that
1128	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1129	 */
1130	if (unlikely(wb_thresh > dtc->thresh))
1131		wb_thresh = dtc->thresh;
1132	/*
1133	 * It's very possible that wb_thresh is close to 0 not because the
1134	 * device is slow, but that it has remained inactive for long time.
1135	 * Honour such devices a reasonable good (hopefully IO efficient)
1136	 * threshold, so that the occasional writes won't be blocked and active
1137	 * writes can rampup the threshold quickly.
1138	 */
1139	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1140	/*
1141	 * scale global setpoint to wb's:
1142	 *	wb_setpoint = setpoint * wb_thresh / thresh
1143	 */
1144	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1145	wb_setpoint = setpoint * (u64)x >> 16;
1146	/*
1147	 * Use span=(8*write_bw) in single wb case as indicated by
1148	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1149	 *
1150	 *        wb_thresh                    thresh - wb_thresh
1151	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1152	 *         thresh                           thresh
1153	 */
1154	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1155	x_intercept = wb_setpoint + span;
1156
1157	if (dtc->wb_dirty < x_intercept - span / 4) {
1158		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1159				      (x_intercept - wb_setpoint) | 1);
1160	} else
1161		pos_ratio /= 4;
1162
1163	/*
1164	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1165	 * It may push the desired control point of global dirty pages higher
1166	 * than setpoint.
1167	 */
1168	x_intercept = wb_thresh / 2;
1169	if (dtc->wb_dirty < x_intercept) {
1170		if (dtc->wb_dirty > x_intercept / 8)
1171			pos_ratio = div_u64(pos_ratio * x_intercept,
1172					    dtc->wb_dirty);
1173		else
1174			pos_ratio *= 8;
1175	}
1176
1177	dtc->pos_ratio = pos_ratio;
1178}
1179
1180static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1181				      unsigned long elapsed,
1182				      unsigned long written)
1183{
1184	const unsigned long period = roundup_pow_of_two(3 * HZ);
1185	unsigned long avg = wb->avg_write_bandwidth;
1186	unsigned long old = wb->write_bandwidth;
1187	u64 bw;
1188
1189	/*
1190	 * bw = written * HZ / elapsed
1191	 *
1192	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1193	 * write_bandwidth = ---------------------------------------------------
1194	 *                                          period
1195	 *
1196	 * @written may have decreased due to folio_account_redirty().
1197	 * Avoid underflowing @bw calculation.
1198	 */
1199	bw = written - min(written, wb->written_stamp);
1200	bw *= HZ;
1201	if (unlikely(elapsed > period)) {
1202		bw = div64_ul(bw, elapsed);
1203		avg = bw;
1204		goto out;
1205	}
1206	bw += (u64)wb->write_bandwidth * (period - elapsed);
1207	bw >>= ilog2(period);
1208
1209	/*
1210	 * one more level of smoothing, for filtering out sudden spikes
1211	 */
1212	if (avg > old && old >= (unsigned long)bw)
1213		avg -= (avg - old) >> 3;
1214
1215	if (avg < old && old <= (unsigned long)bw)
1216		avg += (old - avg) >> 3;
1217
1218out:
1219	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1220	avg = max(avg, 1LU);
1221	if (wb_has_dirty_io(wb)) {
1222		long delta = avg - wb->avg_write_bandwidth;
1223		WARN_ON_ONCE(atomic_long_add_return(delta,
1224					&wb->bdi->tot_write_bandwidth) <= 0);
1225	}
1226	wb->write_bandwidth = bw;
1227	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1228}
1229
1230static void update_dirty_limit(struct dirty_throttle_control *dtc)
1231{
1232	struct wb_domain *dom = dtc_dom(dtc);
1233	unsigned long thresh = dtc->thresh;
1234	unsigned long limit = dom->dirty_limit;
1235
1236	/*
1237	 * Follow up in one step.
1238	 */
1239	if (limit < thresh) {
1240		limit = thresh;
1241		goto update;
1242	}
1243
1244	/*
1245	 * Follow down slowly. Use the higher one as the target, because thresh
1246	 * may drop below dirty. This is exactly the reason to introduce
1247	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1248	 */
1249	thresh = max(thresh, dtc->dirty);
1250	if (limit > thresh) {
1251		limit -= (limit - thresh) >> 5;
1252		goto update;
1253	}
1254	return;
1255update:
1256	dom->dirty_limit = limit;
1257}
1258
1259static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1260				      unsigned long now)
1261{
1262	struct wb_domain *dom = dtc_dom(dtc);
1263
1264	/*
1265	 * check locklessly first to optimize away locking for the most time
1266	 */
1267	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1268		return;
1269
1270	spin_lock(&dom->lock);
1271	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1272		update_dirty_limit(dtc);
1273		dom->dirty_limit_tstamp = now;
1274	}
1275	spin_unlock(&dom->lock);
1276}
1277
1278/*
1279 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1280 *
1281 * Normal wb tasks will be curbed at or below it in long term.
1282 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1283 */
1284static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1285				      unsigned long dirtied,
1286				      unsigned long elapsed)
1287{
1288	struct bdi_writeback *wb = dtc->wb;
1289	unsigned long dirty = dtc->dirty;
1290	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1291	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1292	unsigned long setpoint = (freerun + limit) / 2;
1293	unsigned long write_bw = wb->avg_write_bandwidth;
1294	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1295	unsigned long dirty_rate;
1296	unsigned long task_ratelimit;
1297	unsigned long balanced_dirty_ratelimit;
1298	unsigned long step;
1299	unsigned long x;
1300	unsigned long shift;
1301
1302	/*
1303	 * The dirty rate will match the writeout rate in long term, except
1304	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1305	 */
1306	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1307
1308	/*
1309	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1310	 */
1311	task_ratelimit = (u64)dirty_ratelimit *
1312					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1313	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1314
1315	/*
1316	 * A linear estimation of the "balanced" throttle rate. The theory is,
1317	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1318	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1319	 * formula will yield the balanced rate limit (write_bw / N).
1320	 *
1321	 * Note that the expanded form is not a pure rate feedback:
1322	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1323	 * but also takes pos_ratio into account:
1324	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1325	 *
1326	 * (1) is not realistic because pos_ratio also takes part in balancing
1327	 * the dirty rate.  Consider the state
1328	 *	pos_ratio = 0.5						     (3)
1329	 *	rate = 2 * (write_bw / N)				     (4)
1330	 * If (1) is used, it will stuck in that state! Because each dd will
1331	 * be throttled at
1332	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1333	 * yielding
1334	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1335	 * put (6) into (1) we get
1336	 *	rate_(i+1) = rate_(i)					     (7)
1337	 *
1338	 * So we end up using (2) to always keep
1339	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1340	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1341	 * pos_ratio is able to drive itself to 1.0, which is not only where
1342	 * the dirty count meet the setpoint, but also where the slope of
1343	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1344	 */
1345	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1346					   dirty_rate | 1);
1347	/*
1348	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1349	 */
1350	if (unlikely(balanced_dirty_ratelimit > write_bw))
1351		balanced_dirty_ratelimit = write_bw;
1352
1353	/*
1354	 * We could safely do this and return immediately:
1355	 *
1356	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1357	 *
1358	 * However to get a more stable dirty_ratelimit, the below elaborated
1359	 * code makes use of task_ratelimit to filter out singular points and
1360	 * limit the step size.
1361	 *
1362	 * The below code essentially only uses the relative value of
1363	 *
1364	 *	task_ratelimit - dirty_ratelimit
1365	 *	= (pos_ratio - 1) * dirty_ratelimit
1366	 *
1367	 * which reflects the direction and size of dirty position error.
1368	 */
1369
1370	/*
1371	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1372	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1373	 * For example, when
1374	 * - dirty_ratelimit > balanced_dirty_ratelimit
1375	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1376	 * lowering dirty_ratelimit will help meet both the position and rate
1377	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1378	 * only help meet the rate target. After all, what the users ultimately
1379	 * feel and care are stable dirty rate and small position error.
1380	 *
1381	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1382	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1383	 * keeps jumping around randomly and can even leap far away at times
1384	 * due to the small 200ms estimation period of dirty_rate (we want to
1385	 * keep that period small to reduce time lags).
1386	 */
1387	step = 0;
1388
1389	/*
1390	 * For strictlimit case, calculations above were based on wb counters
1391	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1392	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1393	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1394	 * "dirty" and wb_setpoint as "setpoint".
1395	 *
1396	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1397	 * it's possible that wb_thresh is close to zero due to inactivity
1398	 * of backing device.
1399	 */
1400	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1401		dirty = dtc->wb_dirty;
1402		if (dtc->wb_dirty < 8)
1403			setpoint = dtc->wb_dirty + 1;
1404		else
1405			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1406	}
1407
1408	if (dirty < setpoint) {
1409		x = min3(wb->balanced_dirty_ratelimit,
1410			 balanced_dirty_ratelimit, task_ratelimit);
1411		if (dirty_ratelimit < x)
1412			step = x - dirty_ratelimit;
1413	} else {
1414		x = max3(wb->balanced_dirty_ratelimit,
1415			 balanced_dirty_ratelimit, task_ratelimit);
1416		if (dirty_ratelimit > x)
1417			step = dirty_ratelimit - x;
1418	}
1419
1420	/*
1421	 * Don't pursue 100% rate matching. It's impossible since the balanced
1422	 * rate itself is constantly fluctuating. So decrease the track speed
1423	 * when it gets close to the target. Helps eliminate pointless tremors.
1424	 */
1425	shift = dirty_ratelimit / (2 * step + 1);
1426	if (shift < BITS_PER_LONG)
1427		step = DIV_ROUND_UP(step >> shift, 8);
1428	else
1429		step = 0;
1430
1431	if (dirty_ratelimit < balanced_dirty_ratelimit)
1432		dirty_ratelimit += step;
1433	else
1434		dirty_ratelimit -= step;
1435
1436	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1437	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1438
1439	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1440}
1441
1442static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1443				  struct dirty_throttle_control *mdtc,
 
1444				  bool update_ratelimit)
1445{
1446	struct bdi_writeback *wb = gdtc->wb;
1447	unsigned long now = jiffies;
1448	unsigned long elapsed;
1449	unsigned long dirtied;
1450	unsigned long written;
1451
1452	spin_lock(&wb->list_lock);
1453
1454	/*
1455	 * Lockless checks for elapsed time are racy and delayed update after
1456	 * IO completion doesn't do it at all (to make sure written pages are
1457	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1458	 * division errors.
1459	 */
1460	elapsed = max(now - wb->bw_time_stamp, 1UL);
 
 
1461	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1462	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1463
 
 
 
 
 
 
 
1464	if (update_ratelimit) {
1465		domain_update_dirty_limit(gdtc, now);
1466		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1467
1468		/*
1469		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1470		 * compiler has no way to figure that out.  Help it.
1471		 */
1472		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1473			domain_update_dirty_limit(mdtc, now);
1474			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1475		}
1476	}
1477	wb_update_write_bandwidth(wb, elapsed, written);
1478
 
1479	wb->dirtied_stamp = dirtied;
1480	wb->written_stamp = written;
1481	WRITE_ONCE(wb->bw_time_stamp, now);
1482	spin_unlock(&wb->list_lock);
1483}
1484
1485void wb_update_bandwidth(struct bdi_writeback *wb)
1486{
1487	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1488
1489	__wb_update_bandwidth(&gdtc, NULL, false);
1490}
1491
1492/* Interval after which we consider wb idle and don't estimate bandwidth */
1493#define WB_BANDWIDTH_IDLE_JIF (HZ)
1494
1495static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1496{
1497	unsigned long now = jiffies;
1498	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1499
1500	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1501	    !atomic_read(&wb->writeback_inodes)) {
1502		spin_lock(&wb->list_lock);
1503		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1504		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1505		WRITE_ONCE(wb->bw_time_stamp, now);
1506		spin_unlock(&wb->list_lock);
1507	}
1508}
1509
1510/*
1511 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1512 * will look to see if it needs to start dirty throttling.
1513 *
1514 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1515 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1516 * (the number of pages we may dirty without exceeding the dirty limits).
1517 */
1518static unsigned long dirty_poll_interval(unsigned long dirty,
1519					 unsigned long thresh)
1520{
1521	if (thresh > dirty)
1522		return 1UL << (ilog2(thresh - dirty) >> 1);
1523
1524	return 1;
1525}
1526
1527static unsigned long wb_max_pause(struct bdi_writeback *wb,
1528				  unsigned long wb_dirty)
1529{
1530	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1531	unsigned long t;
1532
1533	/*
1534	 * Limit pause time for small memory systems. If sleeping for too long
1535	 * time, a small pool of dirty/writeback pages may go empty and disk go
1536	 * idle.
1537	 *
1538	 * 8 serves as the safety ratio.
1539	 */
1540	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1541	t++;
1542
1543	return min_t(unsigned long, t, MAX_PAUSE);
1544}
1545
1546static long wb_min_pause(struct bdi_writeback *wb,
1547			 long max_pause,
1548			 unsigned long task_ratelimit,
1549			 unsigned long dirty_ratelimit,
1550			 int *nr_dirtied_pause)
1551{
1552	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1553	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1554	long t;		/* target pause */
1555	long pause;	/* estimated next pause */
1556	int pages;	/* target nr_dirtied_pause */
1557
1558	/* target for 10ms pause on 1-dd case */
1559	t = max(1, HZ / 100);
1560
1561	/*
1562	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1563	 * overheads.
1564	 *
1565	 * (N * 10ms) on 2^N concurrent tasks.
1566	 */
1567	if (hi > lo)
1568		t += (hi - lo) * (10 * HZ) / 1024;
1569
1570	/*
1571	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1572	 * on the much more stable dirty_ratelimit. However the next pause time
1573	 * will be computed based on task_ratelimit and the two rate limits may
1574	 * depart considerably at some time. Especially if task_ratelimit goes
1575	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1576	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1577	 * result task_ratelimit won't be executed faithfully, which could
1578	 * eventually bring down dirty_ratelimit.
1579	 *
1580	 * We apply two rules to fix it up:
1581	 * 1) try to estimate the next pause time and if necessary, use a lower
1582	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1583	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1584	 * 2) limit the target pause time to max_pause/2, so that the normal
1585	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1586	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1587	 */
1588	t = min(t, 1 + max_pause / 2);
1589	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1590
1591	/*
1592	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1593	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1594	 * When the 16 consecutive reads are often interrupted by some dirty
1595	 * throttling pause during the async writes, cfq will go into idles
1596	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1597	 * until reaches DIRTY_POLL_THRESH=32 pages.
1598	 */
1599	if (pages < DIRTY_POLL_THRESH) {
1600		t = max_pause;
1601		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1602		if (pages > DIRTY_POLL_THRESH) {
1603			pages = DIRTY_POLL_THRESH;
1604			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1605		}
1606	}
1607
1608	pause = HZ * pages / (task_ratelimit + 1);
1609	if (pause > max_pause) {
1610		t = max_pause;
1611		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1612	}
1613
1614	*nr_dirtied_pause = pages;
1615	/*
1616	 * The minimal pause time will normally be half the target pause time.
1617	 */
1618	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1619}
1620
1621static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1622{
1623	struct bdi_writeback *wb = dtc->wb;
1624	unsigned long wb_reclaimable;
1625
1626	/*
1627	 * wb_thresh is not treated as some limiting factor as
1628	 * dirty_thresh, due to reasons
1629	 * - in JBOD setup, wb_thresh can fluctuate a lot
1630	 * - in a system with HDD and USB key, the USB key may somehow
1631	 *   go into state (wb_dirty >> wb_thresh) either because
1632	 *   wb_dirty starts high, or because wb_thresh drops low.
1633	 *   In this case we don't want to hard throttle the USB key
1634	 *   dirtiers for 100 seconds until wb_dirty drops under
1635	 *   wb_thresh. Instead the auxiliary wb control line in
1636	 *   wb_position_ratio() will let the dirtier task progress
1637	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1638	 */
1639	dtc->wb_thresh = __wb_calc_thresh(dtc);
1640	dtc->wb_bg_thresh = dtc->thresh ?
1641		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1642
1643	/*
1644	 * In order to avoid the stacked BDI deadlock we need
1645	 * to ensure we accurately count the 'dirty' pages when
1646	 * the threshold is low.
1647	 *
1648	 * Otherwise it would be possible to get thresh+n pages
1649	 * reported dirty, even though there are thresh-m pages
1650	 * actually dirty; with m+n sitting in the percpu
1651	 * deltas.
1652	 */
1653	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1654		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1655		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1656	} else {
1657		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1658		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1659	}
1660}
1661
1662/*
1663 * balance_dirty_pages() must be called by processes which are generating dirty
1664 * data.  It looks at the number of dirty pages in the machine and will force
1665 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1666 * If we're over `background_thresh' then the writeback threads are woken to
1667 * perform some writeout.
1668 */
1669static int balance_dirty_pages(struct bdi_writeback *wb,
1670			       unsigned long pages_dirtied, unsigned int flags)
1671{
1672	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1673	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1674	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1675	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1676						     &mdtc_stor : NULL;
1677	struct dirty_throttle_control *sdtc;
1678	unsigned long nr_reclaimable;	/* = file_dirty */
1679	long period;
1680	long pause;
1681	long max_pause;
1682	long min_pause;
1683	int nr_dirtied_pause;
1684	bool dirty_exceeded = false;
1685	unsigned long task_ratelimit;
1686	unsigned long dirty_ratelimit;
1687	struct backing_dev_info *bdi = wb->bdi;
1688	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1689	unsigned long start_time = jiffies;
1690	int ret = 0;
1691
1692	for (;;) {
1693		unsigned long now = jiffies;
1694		unsigned long dirty, thresh, bg_thresh;
1695		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1696		unsigned long m_thresh = 0;
1697		unsigned long m_bg_thresh = 0;
1698
1699		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1700		gdtc->avail = global_dirtyable_memory();
1701		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1702
1703		domain_dirty_limits(gdtc);
1704
1705		if (unlikely(strictlimit)) {
1706			wb_dirty_limits(gdtc);
1707
1708			dirty = gdtc->wb_dirty;
1709			thresh = gdtc->wb_thresh;
1710			bg_thresh = gdtc->wb_bg_thresh;
1711		} else {
1712			dirty = gdtc->dirty;
1713			thresh = gdtc->thresh;
1714			bg_thresh = gdtc->bg_thresh;
1715		}
1716
1717		if (mdtc) {
1718			unsigned long filepages, headroom, writeback;
1719
1720			/*
1721			 * If @wb belongs to !root memcg, repeat the same
1722			 * basic calculations for the memcg domain.
1723			 */
1724			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1725					    &mdtc->dirty, &writeback);
1726			mdtc->dirty += writeback;
1727			mdtc_calc_avail(mdtc, filepages, headroom);
1728
1729			domain_dirty_limits(mdtc);
1730
1731			if (unlikely(strictlimit)) {
1732				wb_dirty_limits(mdtc);
1733				m_dirty = mdtc->wb_dirty;
1734				m_thresh = mdtc->wb_thresh;
1735				m_bg_thresh = mdtc->wb_bg_thresh;
1736			} else {
1737				m_dirty = mdtc->dirty;
1738				m_thresh = mdtc->thresh;
1739				m_bg_thresh = mdtc->bg_thresh;
1740			}
1741		}
1742
1743		/*
1744		 * In laptop mode, we wait until hitting the higher threshold
1745		 * before starting background writeout, and then write out all
1746		 * the way down to the lower threshold.  So slow writers cause
1747		 * minimal disk activity.
1748		 *
1749		 * In normal mode, we start background writeout at the lower
1750		 * background_thresh, to keep the amount of dirty memory low.
1751		 */
1752		if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1753		    !writeback_in_progress(wb))
1754			wb_start_background_writeback(wb);
1755
1756		/*
1757		 * Throttle it only when the background writeback cannot
1758		 * catch-up. This avoids (excessively) small writeouts
1759		 * when the wb limits are ramping up in case of !strictlimit.
1760		 *
1761		 * In strictlimit case make decision based on the wb counters
1762		 * and limits. Small writeouts when the wb limits are ramping
1763		 * up are the price we consciously pay for strictlimit-ing.
1764		 *
1765		 * If memcg domain is in effect, @dirty should be under
1766		 * both global and memcg freerun ceilings.
1767		 */
1768		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1769		    (!mdtc ||
1770		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1771			unsigned long intv;
1772			unsigned long m_intv;
1773
1774free_running:
1775			intv = dirty_poll_interval(dirty, thresh);
1776			m_intv = ULONG_MAX;
1777
1778			current->dirty_paused_when = now;
1779			current->nr_dirtied = 0;
1780			if (mdtc)
1781				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1782			current->nr_dirtied_pause = min(intv, m_intv);
1783			break;
1784		}
1785
1786		/* Start writeback even when in laptop mode */
1787		if (unlikely(!writeback_in_progress(wb)))
1788			wb_start_background_writeback(wb);
1789
1790		mem_cgroup_flush_foreign(wb);
1791
1792		/*
1793		 * Calculate global domain's pos_ratio and select the
1794		 * global dtc by default.
1795		 */
1796		if (!strictlimit) {
1797			wb_dirty_limits(gdtc);
1798
1799			if ((current->flags & PF_LOCAL_THROTTLE) &&
1800			    gdtc->wb_dirty <
1801			    dirty_freerun_ceiling(gdtc->wb_thresh,
1802						  gdtc->wb_bg_thresh))
1803				/*
1804				 * LOCAL_THROTTLE tasks must not be throttled
1805				 * when below the per-wb freerun ceiling.
1806				 */
1807				goto free_running;
1808		}
1809
1810		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1811			((gdtc->dirty > gdtc->thresh) || strictlimit);
1812
1813		wb_position_ratio(gdtc);
1814		sdtc = gdtc;
1815
1816		if (mdtc) {
1817			/*
1818			 * If memcg domain is in effect, calculate its
1819			 * pos_ratio.  @wb should satisfy constraints from
1820			 * both global and memcg domains.  Choose the one
1821			 * w/ lower pos_ratio.
1822			 */
1823			if (!strictlimit) {
1824				wb_dirty_limits(mdtc);
1825
1826				if ((current->flags & PF_LOCAL_THROTTLE) &&
1827				    mdtc->wb_dirty <
1828				    dirty_freerun_ceiling(mdtc->wb_thresh,
1829							  mdtc->wb_bg_thresh))
1830					/*
1831					 * LOCAL_THROTTLE tasks must not be
1832					 * throttled when below the per-wb
1833					 * freerun ceiling.
1834					 */
1835					goto free_running;
1836			}
1837			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1838				((mdtc->dirty > mdtc->thresh) || strictlimit);
1839
1840			wb_position_ratio(mdtc);
1841			if (mdtc->pos_ratio < gdtc->pos_ratio)
1842				sdtc = mdtc;
1843		}
1844
1845		if (dirty_exceeded != wb->dirty_exceeded)
1846			wb->dirty_exceeded = dirty_exceeded;
1847
1848		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1849					   BANDWIDTH_INTERVAL))
1850			__wb_update_bandwidth(gdtc, mdtc, true);
 
 
 
1851
1852		/* throttle according to the chosen dtc */
1853		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1854		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1855							RATELIMIT_CALC_SHIFT;
1856		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1857		min_pause = wb_min_pause(wb, max_pause,
1858					 task_ratelimit, dirty_ratelimit,
1859					 &nr_dirtied_pause);
1860
1861		if (unlikely(task_ratelimit == 0)) {
1862			period = max_pause;
1863			pause = max_pause;
1864			goto pause;
1865		}
1866		period = HZ * pages_dirtied / task_ratelimit;
1867		pause = period;
1868		if (current->dirty_paused_when)
1869			pause -= now - current->dirty_paused_when;
1870		/*
1871		 * For less than 1s think time (ext3/4 may block the dirtier
1872		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1873		 * however at much less frequency), try to compensate it in
1874		 * future periods by updating the virtual time; otherwise just
1875		 * do a reset, as it may be a light dirtier.
1876		 */
1877		if (pause < min_pause) {
1878			trace_balance_dirty_pages(wb,
1879						  sdtc->thresh,
1880						  sdtc->bg_thresh,
1881						  sdtc->dirty,
1882						  sdtc->wb_thresh,
1883						  sdtc->wb_dirty,
1884						  dirty_ratelimit,
1885						  task_ratelimit,
1886						  pages_dirtied,
1887						  period,
1888						  min(pause, 0L),
1889						  start_time);
1890			if (pause < -HZ) {
1891				current->dirty_paused_when = now;
1892				current->nr_dirtied = 0;
1893			} else if (period) {
1894				current->dirty_paused_when += period;
1895				current->nr_dirtied = 0;
1896			} else if (current->nr_dirtied_pause <= pages_dirtied)
1897				current->nr_dirtied_pause += pages_dirtied;
1898			break;
1899		}
1900		if (unlikely(pause > max_pause)) {
1901			/* for occasional dropped task_ratelimit */
1902			now += min(pause - max_pause, max_pause);
1903			pause = max_pause;
1904		}
1905
1906pause:
1907		trace_balance_dirty_pages(wb,
1908					  sdtc->thresh,
1909					  sdtc->bg_thresh,
1910					  sdtc->dirty,
1911					  sdtc->wb_thresh,
1912					  sdtc->wb_dirty,
1913					  dirty_ratelimit,
1914					  task_ratelimit,
1915					  pages_dirtied,
1916					  period,
1917					  pause,
1918					  start_time);
1919		if (flags & BDP_ASYNC) {
1920			ret = -EAGAIN;
1921			break;
1922		}
1923		__set_current_state(TASK_KILLABLE);
1924		wb->dirty_sleep = now;
1925		io_schedule_timeout(pause);
1926
1927		current->dirty_paused_when = now + pause;
1928		current->nr_dirtied = 0;
1929		current->nr_dirtied_pause = nr_dirtied_pause;
1930
1931		/*
1932		 * This is typically equal to (dirty < thresh) and can also
1933		 * keep "1000+ dd on a slow USB stick" under control.
1934		 */
1935		if (task_ratelimit)
1936			break;
1937
1938		/*
1939		 * In the case of an unresponsive NFS server and the NFS dirty
1940		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1941		 * to go through, so that tasks on them still remain responsive.
1942		 *
1943		 * In theory 1 page is enough to keep the consumer-producer
1944		 * pipe going: the flusher cleans 1 page => the task dirties 1
1945		 * more page. However wb_dirty has accounting errors.  So use
1946		 * the larger and more IO friendly wb_stat_error.
1947		 */
1948		if (sdtc->wb_dirty <= wb_stat_error())
1949			break;
1950
1951		if (fatal_signal_pending(current))
1952			break;
1953	}
1954	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955}
1956
1957static DEFINE_PER_CPU(int, bdp_ratelimits);
1958
1959/*
1960 * Normal tasks are throttled by
1961 *	loop {
1962 *		dirty tsk->nr_dirtied_pause pages;
1963 *		take a snap in balance_dirty_pages();
1964 *	}
1965 * However there is a worst case. If every task exit immediately when dirtied
1966 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1967 * called to throttle the page dirties. The solution is to save the not yet
1968 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1969 * randomly into the running tasks. This works well for the above worst case,
1970 * as the new task will pick up and accumulate the old task's leaked dirty
1971 * count and eventually get throttled.
1972 */
1973DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1974
1975/**
1976 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1977 * @mapping: address_space which was dirtied.
1978 * @flags: BDP flags.
1979 *
1980 * Processes which are dirtying memory should call in here once for each page
1981 * which was newly dirtied.  The function will periodically check the system's
1982 * dirty state and will initiate writeback if needed.
1983 *
1984 * See balance_dirty_pages_ratelimited() for details.
1985 *
1986 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1987 * indicate that memory is out of balance and the caller must wait
1988 * for I/O to complete.  Otherwise, it will return 0 to indicate
1989 * that either memory was already in balance, or it was able to sleep
1990 * until the amount of dirty memory returned to balance.
1991 */
1992int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1993					unsigned int flags)
1994{
1995	struct inode *inode = mapping->host;
1996	struct backing_dev_info *bdi = inode_to_bdi(inode);
1997	struct bdi_writeback *wb = NULL;
1998	int ratelimit;
1999	int ret = 0;
2000	int *p;
2001
2002	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2003		return ret;
2004
2005	if (inode_cgwb_enabled(inode))
2006		wb = wb_get_create_current(bdi, GFP_KERNEL);
2007	if (!wb)
2008		wb = &bdi->wb;
2009
2010	ratelimit = current->nr_dirtied_pause;
2011	if (wb->dirty_exceeded)
2012		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2013
2014	preempt_disable();
2015	/*
2016	 * This prevents one CPU to accumulate too many dirtied pages without
2017	 * calling into balance_dirty_pages(), which can happen when there are
2018	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2019	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2020	 */
2021	p =  this_cpu_ptr(&bdp_ratelimits);
2022	if (unlikely(current->nr_dirtied >= ratelimit))
2023		*p = 0;
2024	else if (unlikely(*p >= ratelimit_pages)) {
2025		*p = 0;
2026		ratelimit = 0;
2027	}
2028	/*
2029	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2030	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2031	 * the dirty throttling and livelock other long-run dirtiers.
2032	 */
2033	p = this_cpu_ptr(&dirty_throttle_leaks);
2034	if (*p > 0 && current->nr_dirtied < ratelimit) {
2035		unsigned long nr_pages_dirtied;
2036		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2037		*p -= nr_pages_dirtied;
2038		current->nr_dirtied += nr_pages_dirtied;
2039	}
2040	preempt_enable();
2041
2042	if (unlikely(current->nr_dirtied >= ratelimit))
2043		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2044
2045	wb_put(wb);
2046	return ret;
2047}
2048EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2049
2050/**
2051 * balance_dirty_pages_ratelimited - balance dirty memory state.
2052 * @mapping: address_space which was dirtied.
2053 *
2054 * Processes which are dirtying memory should call in here once for each page
2055 * which was newly dirtied.  The function will periodically check the system's
2056 * dirty state and will initiate writeback if needed.
2057 *
2058 * Once we're over the dirty memory limit we decrease the ratelimiting
2059 * by a lot, to prevent individual processes from overshooting the limit
2060 * by (ratelimit_pages) each.
2061 */
2062void balance_dirty_pages_ratelimited(struct address_space *mapping)
2063{
2064	balance_dirty_pages_ratelimited_flags(mapping, 0);
2065}
2066EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2067
2068/**
2069 * wb_over_bg_thresh - does @wb need to be written back?
2070 * @wb: bdi_writeback of interest
2071 *
2072 * Determines whether background writeback should keep writing @wb or it's
2073 * clean enough.
2074 *
2075 * Return: %true if writeback should continue.
2076 */
2077bool wb_over_bg_thresh(struct bdi_writeback *wb)
2078{
2079	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2080	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2081	struct dirty_throttle_control * const gdtc = &gdtc_stor;
2082	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2083						     &mdtc_stor : NULL;
2084	unsigned long reclaimable;
2085	unsigned long thresh;
2086
2087	/*
2088	 * Similar to balance_dirty_pages() but ignores pages being written
2089	 * as we're trying to decide whether to put more under writeback.
2090	 */
2091	gdtc->avail = global_dirtyable_memory();
2092	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2093	domain_dirty_limits(gdtc);
2094
2095	if (gdtc->dirty > gdtc->bg_thresh)
2096		return true;
2097
2098	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2099	if (thresh < 2 * wb_stat_error())
2100		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2101	else
2102		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2103
2104	if (reclaimable > thresh)
2105		return true;
2106
2107	if (mdtc) {
2108		unsigned long filepages, headroom, writeback;
2109
2110		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2111				    &writeback);
2112		mdtc_calc_avail(mdtc, filepages, headroom);
2113		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
2114
2115		if (mdtc->dirty > mdtc->bg_thresh)
2116			return true;
2117
2118		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2119		if (thresh < 2 * wb_stat_error())
2120			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2121		else
2122			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2123
2124		if (reclaimable > thresh)
2125			return true;
2126	}
2127
2128	return false;
2129}
2130
2131#ifdef CONFIG_SYSCTL
2132/*
2133 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2134 */
2135static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2136		void *buffer, size_t *length, loff_t *ppos)
2137{
2138	unsigned int old_interval = dirty_writeback_interval;
2139	int ret;
2140
2141	ret = proc_dointvec(table, write, buffer, length, ppos);
2142
2143	/*
2144	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2145	 * and a different non-zero value will wakeup the writeback threads.
2146	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2147	 * iterate over all bdis and wbs.
2148	 * The reason we do this is to make the change take effect immediately.
2149	 */
2150	if (!ret && write && dirty_writeback_interval &&
2151		dirty_writeback_interval != old_interval)
2152		wakeup_flusher_threads(WB_REASON_PERIODIC);
2153
2154	return ret;
2155}
2156#endif
2157
 
2158void laptop_mode_timer_fn(struct timer_list *t)
2159{
2160	struct backing_dev_info *backing_dev_info =
2161		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2162
2163	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2164}
2165
2166/*
2167 * We've spun up the disk and we're in laptop mode: schedule writeback
2168 * of all dirty data a few seconds from now.  If the flush is already scheduled
2169 * then push it back - the user is still using the disk.
2170 */
2171void laptop_io_completion(struct backing_dev_info *info)
2172{
2173	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2174}
2175
2176/*
2177 * We're in laptop mode and we've just synced. The sync's writes will have
2178 * caused another writeback to be scheduled by laptop_io_completion.
2179 * Nothing needs to be written back anymore, so we unschedule the writeback.
2180 */
2181void laptop_sync_completion(void)
2182{
2183	struct backing_dev_info *bdi;
2184
2185	rcu_read_lock();
2186
2187	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2188		del_timer(&bdi->laptop_mode_wb_timer);
2189
2190	rcu_read_unlock();
2191}
 
2192
2193/*
2194 * If ratelimit_pages is too high then we can get into dirty-data overload
2195 * if a large number of processes all perform writes at the same time.
2196 *
2197 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2198 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2199 * thresholds.
2200 */
2201
2202void writeback_set_ratelimit(void)
2203{
2204	struct wb_domain *dom = &global_wb_domain;
2205	unsigned long background_thresh;
2206	unsigned long dirty_thresh;
2207
2208	global_dirty_limits(&background_thresh, &dirty_thresh);
2209	dom->dirty_limit = dirty_thresh;
2210	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2211	if (ratelimit_pages < 16)
2212		ratelimit_pages = 16;
2213}
2214
2215static int page_writeback_cpu_online(unsigned int cpu)
2216{
2217	writeback_set_ratelimit();
2218	return 0;
2219}
2220
2221#ifdef CONFIG_SYSCTL
2222
2223/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2224static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2225
2226static struct ctl_table vm_page_writeback_sysctls[] = {
2227	{
2228		.procname   = "dirty_background_ratio",
2229		.data       = &dirty_background_ratio,
2230		.maxlen     = sizeof(dirty_background_ratio),
2231		.mode       = 0644,
2232		.proc_handler   = dirty_background_ratio_handler,
2233		.extra1     = SYSCTL_ZERO,
2234		.extra2     = SYSCTL_ONE_HUNDRED,
2235	},
2236	{
2237		.procname   = "dirty_background_bytes",
2238		.data       = &dirty_background_bytes,
2239		.maxlen     = sizeof(dirty_background_bytes),
2240		.mode       = 0644,
2241		.proc_handler   = dirty_background_bytes_handler,
2242		.extra1     = SYSCTL_LONG_ONE,
2243	},
2244	{
2245		.procname   = "dirty_ratio",
2246		.data       = &vm_dirty_ratio,
2247		.maxlen     = sizeof(vm_dirty_ratio),
2248		.mode       = 0644,
2249		.proc_handler   = dirty_ratio_handler,
2250		.extra1     = SYSCTL_ZERO,
2251		.extra2     = SYSCTL_ONE_HUNDRED,
2252	},
2253	{
2254		.procname   = "dirty_bytes",
2255		.data       = &vm_dirty_bytes,
2256		.maxlen     = sizeof(vm_dirty_bytes),
2257		.mode       = 0644,
2258		.proc_handler   = dirty_bytes_handler,
2259		.extra1     = (void *)&dirty_bytes_min,
2260	},
2261	{
2262		.procname   = "dirty_writeback_centisecs",
2263		.data       = &dirty_writeback_interval,
2264		.maxlen     = sizeof(dirty_writeback_interval),
2265		.mode       = 0644,
2266		.proc_handler   = dirty_writeback_centisecs_handler,
2267	},
2268	{
2269		.procname   = "dirty_expire_centisecs",
2270		.data       = &dirty_expire_interval,
2271		.maxlen     = sizeof(dirty_expire_interval),
2272		.mode       = 0644,
2273		.proc_handler   = proc_dointvec_minmax,
2274		.extra1     = SYSCTL_ZERO,
2275	},
2276#ifdef CONFIG_HIGHMEM
2277	{
2278		.procname	= "highmem_is_dirtyable",
2279		.data		= &vm_highmem_is_dirtyable,
2280		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2281		.mode		= 0644,
2282		.proc_handler	= proc_dointvec_minmax,
2283		.extra1		= SYSCTL_ZERO,
2284		.extra2		= SYSCTL_ONE,
2285	},
2286#endif
2287	{
2288		.procname	= "laptop_mode",
2289		.data		= &laptop_mode,
2290		.maxlen		= sizeof(laptop_mode),
2291		.mode		= 0644,
2292		.proc_handler	= proc_dointvec_jiffies,
2293	},
2294	{}
2295};
2296#endif
2297
2298/*
2299 * Called early on to tune the page writeback dirty limits.
2300 *
2301 * We used to scale dirty pages according to how total memory
2302 * related to pages that could be allocated for buffers.
2303 *
2304 * However, that was when we used "dirty_ratio" to scale with
2305 * all memory, and we don't do that any more. "dirty_ratio"
2306 * is now applied to total non-HIGHPAGE memory, and as such we can't
2307 * get into the old insane situation any more where we had
2308 * large amounts of dirty pages compared to a small amount of
2309 * non-HIGHMEM memory.
2310 *
2311 * But we might still want to scale the dirty_ratio by how
2312 * much memory the box has..
2313 */
2314void __init page_writeback_init(void)
2315{
2316	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2317
2318	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2319			  page_writeback_cpu_online, NULL);
2320	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2321			  page_writeback_cpu_online);
2322#ifdef CONFIG_SYSCTL
2323	register_sysctl_init("vm", vm_page_writeback_sysctls);
2324#endif
2325}
2326
2327/**
2328 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2329 * @mapping: address space structure to write
2330 * @start: starting page index
2331 * @end: ending page index (inclusive)
2332 *
2333 * This function scans the page range from @start to @end (inclusive) and tags
2334 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2335 * that write_cache_pages (or whoever calls this function) will then use
2336 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2337 * used to avoid livelocking of writeback by a process steadily creating new
2338 * dirty pages in the file (thus it is important for this function to be quick
2339 * so that it can tag pages faster than a dirtying process can create them).
2340 */
2341void tag_pages_for_writeback(struct address_space *mapping,
2342			     pgoff_t start, pgoff_t end)
2343{
2344	XA_STATE(xas, &mapping->i_pages, start);
2345	unsigned int tagged = 0;
2346	void *page;
2347
2348	xas_lock_irq(&xas);
2349	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2350		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2351		if (++tagged % XA_CHECK_SCHED)
2352			continue;
2353
2354		xas_pause(&xas);
2355		xas_unlock_irq(&xas);
2356		cond_resched();
2357		xas_lock_irq(&xas);
2358	}
2359	xas_unlock_irq(&xas);
2360}
2361EXPORT_SYMBOL(tag_pages_for_writeback);
2362
2363/**
2364 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2365 * @mapping: address space structure to write
2366 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2367 * @writepage: function called for each page
2368 * @data: data passed to writepage function
2369 *
2370 * If a page is already under I/O, write_cache_pages() skips it, even
2371 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2372 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2373 * and msync() need to guarantee that all the data which was dirty at the time
2374 * the call was made get new I/O started against them.  If wbc->sync_mode is
2375 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2376 * existing IO to complete.
2377 *
2378 * To avoid livelocks (when other process dirties new pages), we first tag
2379 * pages which should be written back with TOWRITE tag and only then start
2380 * writing them. For data-integrity sync we have to be careful so that we do
2381 * not miss some pages (e.g., because some other process has cleared TOWRITE
2382 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2383 * by the process clearing the DIRTY tag (and submitting the page for IO).
2384 *
2385 * To avoid deadlocks between range_cyclic writeback and callers that hold
2386 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2387 * we do not loop back to the start of the file. Doing so causes a page
2388 * lock/page writeback access order inversion - we should only ever lock
2389 * multiple pages in ascending page->index order, and looping back to the start
2390 * of the file violates that rule and causes deadlocks.
2391 *
2392 * Return: %0 on success, negative error code otherwise
2393 */
2394int write_cache_pages(struct address_space *mapping,
2395		      struct writeback_control *wbc, writepage_t writepage,
2396		      void *data)
2397{
2398	int ret = 0;
2399	int done = 0;
2400	int error;
2401	struct pagevec pvec;
2402	int nr_pages;
2403	pgoff_t index;
2404	pgoff_t end;		/* Inclusive */
2405	pgoff_t done_index;
2406	int range_whole = 0;
2407	xa_mark_t tag;
2408
2409	pagevec_init(&pvec);
2410	if (wbc->range_cyclic) {
2411		index = mapping->writeback_index; /* prev offset */
2412		end = -1;
2413	} else {
2414		index = wbc->range_start >> PAGE_SHIFT;
2415		end = wbc->range_end >> PAGE_SHIFT;
2416		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2417			range_whole = 1;
2418	}
2419	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2420		tag_pages_for_writeback(mapping, index, end);
2421		tag = PAGECACHE_TAG_TOWRITE;
2422	} else {
2423		tag = PAGECACHE_TAG_DIRTY;
2424	}
2425	done_index = index;
2426	while (!done && (index <= end)) {
2427		int i;
2428
2429		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2430				tag);
2431		if (nr_pages == 0)
2432			break;
2433
2434		for (i = 0; i < nr_pages; i++) {
2435			struct page *page = pvec.pages[i];
2436
2437			done_index = page->index;
2438
2439			lock_page(page);
2440
2441			/*
2442			 * Page truncated or invalidated. We can freely skip it
2443			 * then, even for data integrity operations: the page
2444			 * has disappeared concurrently, so there could be no
2445			 * real expectation of this data integrity operation
2446			 * even if there is now a new, dirty page at the same
2447			 * pagecache address.
2448			 */
2449			if (unlikely(page->mapping != mapping)) {
2450continue_unlock:
2451				unlock_page(page);
2452				continue;
2453			}
2454
2455			if (!PageDirty(page)) {
2456				/* someone wrote it for us */
2457				goto continue_unlock;
2458			}
2459
2460			if (PageWriteback(page)) {
2461				if (wbc->sync_mode != WB_SYNC_NONE)
2462					wait_on_page_writeback(page);
2463				else
2464					goto continue_unlock;
2465			}
2466
2467			BUG_ON(PageWriteback(page));
2468			if (!clear_page_dirty_for_io(page))
2469				goto continue_unlock;
2470
2471			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2472			error = (*writepage)(page, wbc, data);
2473			if (unlikely(error)) {
2474				/*
2475				 * Handle errors according to the type of
2476				 * writeback. There's no need to continue for
2477				 * background writeback. Just push done_index
2478				 * past this page so media errors won't choke
2479				 * writeout for the entire file. For integrity
2480				 * writeback, we must process the entire dirty
2481				 * set regardless of errors because the fs may
2482				 * still have state to clear for each page. In
2483				 * that case we continue processing and return
2484				 * the first error.
2485				 */
2486				if (error == AOP_WRITEPAGE_ACTIVATE) {
2487					unlock_page(page);
2488					error = 0;
2489				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2490					ret = error;
2491					done_index = page->index + 1;
2492					done = 1;
2493					break;
2494				}
2495				if (!ret)
2496					ret = error;
2497			}
2498
2499			/*
2500			 * We stop writing back only if we are not doing
2501			 * integrity sync. In case of integrity sync we have to
2502			 * keep going until we have written all the pages
2503			 * we tagged for writeback prior to entering this loop.
2504			 */
2505			if (--wbc->nr_to_write <= 0 &&
2506			    wbc->sync_mode == WB_SYNC_NONE) {
2507				done = 1;
2508				break;
2509			}
2510		}
2511		pagevec_release(&pvec);
2512		cond_resched();
2513	}
2514
2515	/*
2516	 * If we hit the last page and there is more work to be done: wrap
2517	 * back the index back to the start of the file for the next
2518	 * time we are called.
2519	 */
2520	if (wbc->range_cyclic && !done)
2521		done_index = 0;
2522	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2523		mapping->writeback_index = done_index;
2524
2525	return ret;
2526}
2527EXPORT_SYMBOL(write_cache_pages);
2528
2529/*
2530 * Function used by generic_writepages to call the real writepage
2531 * function and set the mapping flags on error
2532 */
2533static int __writepage(struct page *page, struct writeback_control *wbc,
2534		       void *data)
2535{
2536	struct address_space *mapping = data;
2537	int ret = mapping->a_ops->writepage(page, wbc);
2538	mapping_set_error(mapping, ret);
2539	return ret;
2540}
2541
2542/**
2543 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2544 * @mapping: address space structure to write
2545 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2546 *
2547 * This is a library function, which implements the writepages()
2548 * address_space_operation.
2549 *
2550 * Return: %0 on success, negative error code otherwise
2551 */
2552int generic_writepages(struct address_space *mapping,
2553		       struct writeback_control *wbc)
2554{
2555	struct blk_plug plug;
2556	int ret;
2557
2558	/* deal with chardevs and other special file */
2559	if (!mapping->a_ops->writepage)
2560		return 0;
2561
2562	blk_start_plug(&plug);
2563	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2564	blk_finish_plug(&plug);
2565	return ret;
2566}
2567
2568EXPORT_SYMBOL(generic_writepages);
2569
2570int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2571{
2572	int ret;
2573	struct bdi_writeback *wb;
2574
2575	if (wbc->nr_to_write <= 0)
2576		return 0;
2577	wb = inode_to_wb_wbc(mapping->host, wbc);
2578	wb_bandwidth_estimate_start(wb);
2579	while (1) {
2580		if (mapping->a_ops->writepages)
2581			ret = mapping->a_ops->writepages(mapping, wbc);
2582		else
2583			ret = generic_writepages(mapping, wbc);
2584		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2585			break;
2586
2587		/*
2588		 * Lacking an allocation context or the locality or writeback
2589		 * state of any of the inode's pages, throttle based on
2590		 * writeback activity on the local node. It's as good a
2591		 * guess as any.
2592		 */
2593		reclaim_throttle(NODE_DATA(numa_node_id()),
2594			VMSCAN_THROTTLE_WRITEBACK);
2595	}
2596	/*
2597	 * Usually few pages are written by now from those we've just submitted
2598	 * but if there's constant writeback being submitted, this makes sure
2599	 * writeback bandwidth is updated once in a while.
2600	 */
2601	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2602				   BANDWIDTH_INTERVAL))
2603		wb_update_bandwidth(wb);
2604	return ret;
2605}
2606
2607/**
2608 * folio_write_one - write out a single folio and wait on I/O.
2609 * @folio: The folio to write.
2610 *
2611 * The folio must be locked by the caller and will be unlocked upon return.
2612 *
2613 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2614 * function returns.
2615 *
2616 * Return: %0 on success, negative error code otherwise
2617 */
2618int folio_write_one(struct folio *folio)
2619{
2620	struct address_space *mapping = folio->mapping;
2621	int ret = 0;
2622	struct writeback_control wbc = {
2623		.sync_mode = WB_SYNC_ALL,
2624		.nr_to_write = folio_nr_pages(folio),
2625	};
2626
2627	BUG_ON(!folio_test_locked(folio));
2628
2629	folio_wait_writeback(folio);
2630
2631	if (folio_clear_dirty_for_io(folio)) {
2632		folio_get(folio);
2633		ret = mapping->a_ops->writepage(&folio->page, &wbc);
2634		if (ret == 0)
2635			folio_wait_writeback(folio);
2636		folio_put(folio);
2637	} else {
2638		folio_unlock(folio);
2639	}
2640
2641	if (!ret)
2642		ret = filemap_check_errors(mapping);
2643	return ret;
2644}
2645EXPORT_SYMBOL(folio_write_one);
2646
2647/*
2648 * For address_spaces which do not use buffers nor write back.
2649 */
2650bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2651{
2652	if (!folio_test_dirty(folio))
2653		return !folio_test_set_dirty(folio);
2654	return false;
2655}
2656EXPORT_SYMBOL(noop_dirty_folio);
2657
2658/*
2659 * Helper function for set_page_dirty family.
2660 *
2661 * Caller must hold lock_page_memcg().
2662 *
2663 * NOTE: This relies on being atomic wrt interrupts.
2664 */
2665static void folio_account_dirtied(struct folio *folio,
2666		struct address_space *mapping)
2667{
2668	struct inode *inode = mapping->host;
2669
2670	trace_writeback_dirty_folio(folio, mapping);
2671
2672	if (mapping_can_writeback(mapping)) {
2673		struct bdi_writeback *wb;
2674		long nr = folio_nr_pages(folio);
2675
2676		inode_attach_wb(inode, &folio->page);
2677		wb = inode_to_wb(inode);
2678
2679		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2680		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2681		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2682		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2683		wb_stat_mod(wb, WB_DIRTIED, nr);
2684		task_io_account_write(nr * PAGE_SIZE);
2685		current->nr_dirtied += nr;
2686		__this_cpu_add(bdp_ratelimits, nr);
2687
2688		mem_cgroup_track_foreign_dirty(folio, wb);
2689	}
2690}
2691
2692/*
2693 * Helper function for deaccounting dirty page without writeback.
2694 *
2695 * Caller must hold lock_page_memcg().
2696 */
2697void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
 
2698{
2699	long nr = folio_nr_pages(folio);
2700
2701	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2702	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2703	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2704	task_io_account_cancelled_write(nr * PAGE_SIZE);
2705}
2706
2707/*
2708 * Mark the folio dirty, and set it dirty in the page cache, and mark
2709 * the inode dirty.
2710 *
2711 * If warn is true, then emit a warning if the folio is not uptodate and has
2712 * not been truncated.
2713 *
2714 * The caller must hold lock_page_memcg().  Most callers have the folio
2715 * locked.  A few have the folio blocked from truncation through other
2716 * means (eg zap_page_range() has it mapped and is holding the page table
2717 * lock).  This can also be called from mark_buffer_dirty(), which I
2718 * cannot prove is always protected against truncate.
2719 */
2720void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2721			     int warn)
2722{
2723	unsigned long flags;
2724
2725	xa_lock_irqsave(&mapping->i_pages, flags);
2726	if (folio->mapping) {	/* Race with truncate? */
2727		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2728		folio_account_dirtied(folio, mapping);
2729		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2730				PAGECACHE_TAG_DIRTY);
2731	}
2732	xa_unlock_irqrestore(&mapping->i_pages, flags);
2733}
2734
2735/**
2736 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2737 * @mapping: Address space this folio belongs to.
2738 * @folio: Folio to be marked as dirty.
2739 *
2740 * Filesystems which do not use buffer heads should call this function
2741 * from their set_page_dirty address space operation.  It ignores the
2742 * contents of folio_get_private(), so if the filesystem marks individual
2743 * blocks as dirty, the filesystem should handle that itself.
2744 *
2745 * This is also sometimes used by filesystems which use buffer_heads when
2746 * a single buffer is being dirtied: we want to set the folio dirty in
2747 * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2748 * whereas block_dirty_folio() is a "top-down" dirtying.
2749 *
2750 * The caller must ensure this doesn't race with truncation.  Most will
2751 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2752 * folio mapped and the pte lock held, which also locks out truncation.
2753 */
2754bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2755{
2756	folio_memcg_lock(folio);
2757	if (folio_test_set_dirty(folio)) {
2758		folio_memcg_unlock(folio);
2759		return false;
2760	}
2761
2762	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2763	folio_memcg_unlock(folio);
2764
2765	if (mapping->host) {
2766		/* !PageAnon && !swapper_space */
2767		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2768	}
2769	return true;
 
2770}
2771EXPORT_SYMBOL(filemap_dirty_folio);
2772
2773/**
2774 * folio_account_redirty - Manually account for redirtying a page.
2775 * @folio: The folio which is being redirtied.
2776 *
2777 * Most filesystems should call folio_redirty_for_writepage() instead
2778 * of this fuction.  If your filesystem is doing writeback outside the
2779 * context of a writeback_control(), it can call this when redirtying
2780 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2781 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2782 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2783 * in balanced_dirty_ratelimit and the dirty pages position control.
2784 */
2785void folio_account_redirty(struct folio *folio)
2786{
2787	struct address_space *mapping = folio->mapping;
2788
2789	if (mapping && mapping_can_writeback(mapping)) {
2790		struct inode *inode = mapping->host;
2791		struct bdi_writeback *wb;
2792		struct wb_lock_cookie cookie = {};
2793		long nr = folio_nr_pages(folio);
2794
2795		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2796		current->nr_dirtied -= nr;
2797		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2798		wb_stat_mod(wb, WB_DIRTIED, -nr);
2799		unlocked_inode_to_wb_end(inode, &cookie);
2800	}
2801}
2802EXPORT_SYMBOL(folio_account_redirty);
2803
2804/**
2805 * folio_redirty_for_writepage - Decline to write a dirty folio.
2806 * @wbc: The writeback control.
2807 * @folio: The folio.
2808 *
2809 * When a writepage implementation decides that it doesn't want to write
2810 * @folio for some reason, it should call this function, unlock @folio and
2811 * return 0.
2812 *
2813 * Return: True if we redirtied the folio.  False if someone else dirtied
2814 * it first.
2815 */
2816bool folio_redirty_for_writepage(struct writeback_control *wbc,
2817		struct folio *folio)
2818{
2819	bool ret;
2820	long nr = folio_nr_pages(folio);
2821
2822	wbc->pages_skipped += nr;
2823	ret = filemap_dirty_folio(folio->mapping, folio);
2824	folio_account_redirty(folio);
2825
 
 
 
2826	return ret;
2827}
2828EXPORT_SYMBOL(folio_redirty_for_writepage);
2829
2830/**
2831 * folio_mark_dirty - Mark a folio as being modified.
2832 * @folio: The folio.
2833 *
2834 * The folio may not be truncated while this function is running.
2835 * Holding the folio lock is sufficient to prevent truncation, but some
2836 * callers cannot acquire a sleeping lock.  These callers instead hold
2837 * the page table lock for a page table which contains at least one page
2838 * in this folio.  Truncation will block on the page table lock as it
2839 * unmaps pages before removing the folio from its mapping.
2840 *
2841 * Return: True if the folio was newly dirtied, false if it was already dirty.
 
 
2842 */
2843bool folio_mark_dirty(struct folio *folio)
2844{
2845	struct address_space *mapping = folio_mapping(folio);
2846
 
2847	if (likely(mapping)) {
2848		/*
2849		 * readahead/lru_deactivate_page could remain
2850		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2851		 * About readahead, if the folio is written, the flags would be
2852		 * reset. So no problem.
2853		 * About lru_deactivate_page, if the folio is redirtied,
2854		 * the flag will be reset. So no problem. but if the
2855		 * folio is used by readahead it will confuse readahead
2856		 * and make it restart the size rampup process. But it's
2857		 * a trivial problem.
2858		 */
2859		if (folio_test_reclaim(folio))
2860			folio_clear_reclaim(folio);
2861		return mapping->a_ops->dirty_folio(mapping, folio);
 
 
 
 
2862	}
2863
2864	return noop_dirty_folio(mapping, folio);
2865}
2866EXPORT_SYMBOL(folio_mark_dirty);
2867
2868/*
2869 * set_page_dirty() is racy if the caller has no reference against
2870 * page->mapping->host, and if the page is unlocked.  This is because another
2871 * CPU could truncate the page off the mapping and then free the mapping.
2872 *
2873 * Usually, the page _is_ locked, or the caller is a user-space process which
2874 * holds a reference on the inode by having an open file.
2875 *
2876 * In other cases, the page should be locked before running set_page_dirty().
2877 */
2878int set_page_dirty_lock(struct page *page)
2879{
2880	int ret;
2881
2882	lock_page(page);
2883	ret = set_page_dirty(page);
2884	unlock_page(page);
2885	return ret;
2886}
2887EXPORT_SYMBOL(set_page_dirty_lock);
2888
2889/*
2890 * This cancels just the dirty bit on the kernel page itself, it does NOT
2891 * actually remove dirty bits on any mmap's that may be around. It also
2892 * leaves the page tagged dirty, so any sync activity will still find it on
2893 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2894 * look at the dirty bits in the VM.
2895 *
2896 * Doing this should *normally* only ever be done when a page is truncated,
2897 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2898 * this when it notices that somebody has cleaned out all the buffers on a
2899 * page without actually doing it through the VM. Can you say "ext3 is
2900 * horribly ugly"? Thought you could.
2901 */
2902void __folio_cancel_dirty(struct folio *folio)
2903{
2904	struct address_space *mapping = folio_mapping(folio);
2905
2906	if (mapping_can_writeback(mapping)) {
2907		struct inode *inode = mapping->host;
2908		struct bdi_writeback *wb;
2909		struct wb_lock_cookie cookie = {};
2910
2911		folio_memcg_lock(folio);
2912		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2913
2914		if (folio_test_clear_dirty(folio))
2915			folio_account_cleaned(folio, wb);
2916
2917		unlocked_inode_to_wb_end(inode, &cookie);
2918		folio_memcg_unlock(folio);
2919	} else {
2920		folio_clear_dirty(folio);
2921	}
2922}
2923EXPORT_SYMBOL(__folio_cancel_dirty);
2924
2925/*
2926 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2927 * Returns true if the folio was previously dirty.
2928 *
2929 * This is for preparing to put the folio under writeout.  We leave
2930 * the folio tagged as dirty in the xarray so that a concurrent
2931 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2932 * The ->writepage implementation will run either folio_start_writeback()
2933 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2934 * and xarray dirty tag back into sync.
2935 *
2936 * This incoherency between the folio's dirty flag and xarray tag is
2937 * unfortunate, but it only exists while the folio is locked.
2938 */
2939bool folio_clear_dirty_for_io(struct folio *folio)
2940{
2941	struct address_space *mapping = folio_mapping(folio);
2942	bool ret = false;
2943
2944	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2945
2946	if (mapping && mapping_can_writeback(mapping)) {
2947		struct inode *inode = mapping->host;
2948		struct bdi_writeback *wb;
2949		struct wb_lock_cookie cookie = {};
2950
2951		/*
2952		 * Yes, Virginia, this is indeed insane.
2953		 *
2954		 * We use this sequence to make sure that
2955		 *  (a) we account for dirty stats properly
2956		 *  (b) we tell the low-level filesystem to
2957		 *      mark the whole folio dirty if it was
2958		 *      dirty in a pagetable. Only to then
2959		 *  (c) clean the folio again and return 1 to
2960		 *      cause the writeback.
2961		 *
2962		 * This way we avoid all nasty races with the
2963		 * dirty bit in multiple places and clearing
2964		 * them concurrently from different threads.
2965		 *
2966		 * Note! Normally the "folio_mark_dirty(folio)"
2967		 * has no effect on the actual dirty bit - since
2968		 * that will already usually be set. But we
2969		 * need the side effects, and it can help us
2970		 * avoid races.
2971		 *
2972		 * We basically use the folio "master dirty bit"
2973		 * as a serialization point for all the different
2974		 * threads doing their things.
2975		 */
2976		if (folio_mkclean(folio))
2977			folio_mark_dirty(folio);
2978		/*
2979		 * We carefully synchronise fault handlers against
2980		 * installing a dirty pte and marking the folio dirty
2981		 * at this point.  We do this by having them hold the
2982		 * page lock while dirtying the folio, and folios are
2983		 * always locked coming in here, so we get the desired
2984		 * exclusion.
2985		 */
2986		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2987		if (folio_test_clear_dirty(folio)) {
2988			long nr = folio_nr_pages(folio);
2989			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2990			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2991			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2992			ret = true;
2993		}
2994		unlocked_inode_to_wb_end(inode, &cookie);
2995		return ret;
2996	}
2997	return folio_test_clear_dirty(folio);
2998}
2999EXPORT_SYMBOL(folio_clear_dirty_for_io);
3000
3001static void wb_inode_writeback_start(struct bdi_writeback *wb)
3002{
3003	atomic_inc(&wb->writeback_inodes);
3004}
3005
3006static void wb_inode_writeback_end(struct bdi_writeback *wb)
3007{
3008	unsigned long flags;
3009	atomic_dec(&wb->writeback_inodes);
3010	/*
3011	 * Make sure estimate of writeback throughput gets updated after
3012	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3013	 * (which is the interval other bandwidth updates use for batching) so
3014	 * that if multiple inodes end writeback at a similar time, they get
3015	 * batched into one bandwidth update.
3016	 */
3017	spin_lock_irqsave(&wb->work_lock, flags);
3018	if (test_bit(WB_registered, &wb->state))
3019		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3020	spin_unlock_irqrestore(&wb->work_lock, flags);
3021}
3022
3023bool __folio_end_writeback(struct folio *folio)
3024{
3025	long nr = folio_nr_pages(folio);
3026	struct address_space *mapping = folio_mapping(folio);
3027	bool ret;
3028
3029	folio_memcg_lock(folio);
3030	if (mapping && mapping_use_writeback_tags(mapping)) {
3031		struct inode *inode = mapping->host;
3032		struct backing_dev_info *bdi = inode_to_bdi(inode);
3033		unsigned long flags;
3034
3035		xa_lock_irqsave(&mapping->i_pages, flags);
3036		ret = folio_test_clear_writeback(folio);
3037		if (ret) {
3038			__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3039						PAGECACHE_TAG_WRITEBACK);
3040			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3041				struct bdi_writeback *wb = inode_to_wb(inode);
3042
3043				wb_stat_mod(wb, WB_WRITEBACK, -nr);
3044				__wb_writeout_add(wb, nr);
3045				if (!mapping_tagged(mapping,
3046						    PAGECACHE_TAG_WRITEBACK))
3047					wb_inode_writeback_end(wb);
3048			}
3049		}
3050
3051		if (mapping->host && !mapping_tagged(mapping,
3052						     PAGECACHE_TAG_WRITEBACK))
3053			sb_clear_inode_writeback(mapping->host);
3054
3055		xa_unlock_irqrestore(&mapping->i_pages, flags);
3056	} else {
3057		ret = folio_test_clear_writeback(folio);
3058	}
3059	if (ret) {
3060		lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3061		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3062		node_stat_mod_folio(folio, NR_WRITTEN, nr);
3063	}
3064	folio_memcg_unlock(folio);
3065	return ret;
3066}
3067
3068bool __folio_start_writeback(struct folio *folio, bool keep_write)
3069{
3070	long nr = folio_nr_pages(folio);
3071	struct address_space *mapping = folio_mapping(folio);
3072	bool ret;
3073	int access_ret;
3074
3075	folio_memcg_lock(folio);
3076	if (mapping && mapping_use_writeback_tags(mapping)) {
3077		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3078		struct inode *inode = mapping->host;
3079		struct backing_dev_info *bdi = inode_to_bdi(inode);
3080		unsigned long flags;
3081
3082		xas_lock_irqsave(&xas, flags);
3083		xas_load(&xas);
3084		ret = folio_test_set_writeback(folio);
3085		if (!ret) {
3086			bool on_wblist;
3087
3088			on_wblist = mapping_tagged(mapping,
3089						   PAGECACHE_TAG_WRITEBACK);
3090
3091			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3092			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3093				struct bdi_writeback *wb = inode_to_wb(inode);
3094
3095				wb_stat_mod(wb, WB_WRITEBACK, nr);
3096				if (!on_wblist)
3097					wb_inode_writeback_start(wb);
3098			}
3099
3100			/*
3101			 * We can come through here when swapping
3102			 * anonymous folios, so we don't necessarily
3103			 * have an inode to track for sync.
3104			 */
3105			if (mapping->host && !on_wblist)
3106				sb_mark_inode_writeback(mapping->host);
3107		}
3108		if (!folio_test_dirty(folio))
3109			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3110		if (!keep_write)
3111			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3112		xas_unlock_irqrestore(&xas, flags);
3113	} else {
3114		ret = folio_test_set_writeback(folio);
3115	}
3116	if (!ret) {
3117		lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3118		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3119	}
3120	folio_memcg_unlock(folio);
3121	access_ret = arch_make_folio_accessible(folio);
3122	/*
3123	 * If writeback has been triggered on a page that cannot be made
3124	 * accessible, it is too late to recover here.
3125	 */
3126	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3127
3128	return ret;
 
3129}
3130EXPORT_SYMBOL(__folio_start_writeback);
3131
3132/**
3133 * folio_wait_writeback - Wait for a folio to finish writeback.
3134 * @folio: The folio to wait for.
3135 *
3136 * If the folio is currently being written back to storage, wait for the
3137 * I/O to complete.
3138 *
3139 * Context: Sleeps.  Must be called in process context and with
3140 * no spinlocks held.  Caller should hold a reference on the folio.
3141 * If the folio is not locked, writeback may start again after writeback
3142 * has finished.
3143 */
3144void folio_wait_writeback(struct folio *folio)
3145{
3146	while (folio_test_writeback(folio)) {
3147		trace_folio_wait_writeback(folio, folio_mapping(folio));
3148		folio_wait_bit(folio, PG_writeback);
3149	}
3150}
3151EXPORT_SYMBOL_GPL(folio_wait_writeback);
3152
3153/**
3154 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3155 * @folio: The folio to wait for.
3156 *
3157 * If the folio is currently being written back to storage, wait for the
3158 * I/O to complete or a fatal signal to arrive.
3159 *
3160 * Context: Sleeps.  Must be called in process context and with
3161 * no spinlocks held.  Caller should hold a reference on the folio.
3162 * If the folio is not locked, writeback may start again after writeback
3163 * has finished.
3164 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3165 */
3166int folio_wait_writeback_killable(struct folio *folio)
3167{
3168	while (folio_test_writeback(folio)) {
3169		trace_folio_wait_writeback(folio, folio_mapping(folio));
3170		if (folio_wait_bit_killable(folio, PG_writeback))
3171			return -EINTR;
3172	}
3173
3174	return 0;
3175}
3176EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3177
3178/**
3179 * folio_wait_stable() - wait for writeback to finish, if necessary.
3180 * @folio: The folio to wait on.
3181 *
3182 * This function determines if the given folio is related to a backing
3183 * device that requires folio contents to be held stable during writeback.
3184 * If so, then it will wait for any pending writeback to complete.
3185 *
3186 * Context: Sleeps.  Must be called in process context and with
3187 * no spinlocks held.  Caller should hold a reference on the folio.
3188 * If the folio is not locked, writeback may start again after writeback
3189 * has finished.
3190 */
3191void folio_wait_stable(struct folio *folio)
3192{
3193	if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3194		folio_wait_writeback(folio);
 
3195}
3196EXPORT_SYMBOL_GPL(folio_wait_stable);