Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include <linux/pagewalk.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69static bool __page_handle_poison(struct page *page)
70{
71 int ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret > 0;
80}
81
82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83{
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107}
108
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111u32 hwpoison_filter_enable = 0;
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174#ifdef CONFIG_MEMCG
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
191int hwpoison_filter(struct page *p)
192{
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206}
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243};
244
245/*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251{
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281}
282
283/*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287void shake_page(struct page *p, int access)
288{
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353{
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442{
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561{
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569}
570
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656out:
657 cond_resched();
658 return ret;
659}
660
661#ifdef CONFIG_HUGETLB_PAGE
662static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665{
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672}
673#else
674#define hwpoison_hugetlb_range NULL
675#endif
676
677static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680};
681
682/*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697{
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711}
712
713static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718};
719
720static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744};
745
746/*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752static int delete_from_lru_cache(struct page *p)
753{
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775}
776
777static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779{
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808}
809
810/*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815static int me_kernel(struct page *p, unsigned long pfn)
816{
817 unlock_page(p);
818 return MF_IGNORED;
819}
820
821/*
822 * Page in unknown state. Do nothing.
823 */
824static int me_unknown(struct page *p, unsigned long pfn)
825{
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829}
830
831/*
832 * Clean (or cleaned) page cache page.
833 */
834static int me_pagecache_clean(struct page *p, unsigned long pfn)
835{
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872out:
873 unlock_page(p);
874 return ret;
875}
876
877/*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883{
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927}
928
929/*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949{
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959}
960
961static int me_swapcache_clean(struct page *p, unsigned long pfn)
962{
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970}
971
972/*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978static int me_huge_page(struct page *p, unsigned long pfn)
979{
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008}
1009
1010/*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023#define dirty (1UL << PG_dirty)
1024#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025#define unevict (1UL << PG_unevictable)
1026#define mlock (1UL << PG_mlocked)
1027#define lru (1UL << PG_lru)
1028#define head (1UL << PG_head)
1029#define slab (1UL << PG_slab)
1030#define reserved (1UL << PG_reserved)
1031
1032static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039} error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071};
1072
1073#undef dirty
1074#undef sc
1075#undef unevict
1076#undef mlock
1077#undef lru
1078#undef head
1079#undef slab
1080#undef reserved
1081
1082/*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088{
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093}
1094
1095static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097{
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120}
1121
1122/*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128static inline bool HWPoisonHandlable(struct page *page)
1129{
1130 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1131}
1132
1133static int __get_hwpoison_page(struct page *page)
1134{
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return -EBUSY;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175}
1176
1177static int get_any_page(struct page *p, unsigned long flags)
1178{
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /*
1203 * We raced with (possibly temporary) unhandlable
1204 * page, retry.
1205 */
1206 if (pass++ < 3) {
1207 shake_page(p, 1);
1208 goto try_again;
1209 }
1210 ret = -EIO;
1211 goto out;
1212 }
1213 }
1214
1215 if (PageHuge(p) || HWPoisonHandlable(p)) {
1216 ret = 1;
1217 } else {
1218 /*
1219 * A page we cannot handle. Check whether we can turn
1220 * it into something we can handle.
1221 */
1222 if (pass++ < 3) {
1223 put_page(p);
1224 shake_page(p, 1);
1225 count_increased = false;
1226 goto try_again;
1227 }
1228 put_page(p);
1229 ret = -EIO;
1230 }
1231out:
1232 return ret;
1233}
1234
1235/**
1236 * get_hwpoison_page() - Get refcount for memory error handling
1237 * @p: Raw error page (hit by memory error)
1238 * @flags: Flags controlling behavior of error handling
1239 *
1240 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1241 * error on it, after checking that the error page is in a well-defined state
1242 * (defined as a page-type we can successfully handle the memor error on it,
1243 * such as LRU page and hugetlb page).
1244 *
1245 * Memory error handling could be triggered at any time on any type of page,
1246 * so it's prone to race with typical memory management lifecycle (like
1247 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1248 * extra care for the error page's state (as done in __get_hwpoison_page()),
1249 * and has some retry logic in get_any_page().
1250 *
1251 * Return: 0 on failure,
1252 * 1 on success for in-use pages in a well-defined state,
1253 * -EIO for pages on which we can not handle memory errors,
1254 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1255 * operations like allocation and free.
1256 */
1257static int get_hwpoison_page(struct page *p, unsigned long flags)
1258{
1259 int ret;
1260
1261 zone_pcp_disable(page_zone(p));
1262 ret = get_any_page(p, flags);
1263 zone_pcp_enable(page_zone(p));
1264
1265 return ret;
1266}
1267
1268/*
1269 * Do all that is necessary to remove user space mappings. Unmap
1270 * the pages and send SIGBUS to the processes if the data was dirty.
1271 */
1272static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1273 int flags, struct page **hpagep)
1274{
1275 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1276 struct address_space *mapping;
1277 LIST_HEAD(tokill);
1278 bool unmap_success;
1279 int kill = 1, forcekill;
1280 struct page *hpage = *hpagep;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388}
1389
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392{
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433{
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
1521 const bool unmap_success = true;
1522 unsigned long size = 0;
1523 struct to_kill *tk;
1524 LIST_HEAD(tokill);
1525 int rc = -EBUSY;
1526 loff_t start;
1527 dax_entry_t cookie;
1528
1529 if (flags & MF_COUNT_INCREASED)
1530 /*
1531 * Drop the extra refcount in case we come from madvise().
1532 */
1533 put_page(page);
1534
1535 /* device metadata space is not recoverable */
1536 if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 rc = -ENXIO;
1538 goto out;
1539 }
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 goto out;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = 0;
1554 goto unlock;
1555 }
1556
1557 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 /*
1559 * TODO: Handle HMM pages which may need coordination
1560 * with device-side memory.
1561 */
1562 goto unlock;
1563 }
1564
1565 /*
1566 * Use this flag as an indication that the dax page has been
1567 * remapped UC to prevent speculative consumption of poison.
1568 */
1569 SetPageHWPoison(page);
1570
1571 /*
1572 * Unlike System-RAM there is no possibility to swap in a
1573 * different physical page at a given virtual address, so all
1574 * userspace consumption of ZONE_DEVICE memory necessitates
1575 * SIGBUS (i.e. MF_MUST_KILL)
1576 */
1577 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579
1580 list_for_each_entry(tk, &tokill, nd)
1581 if (tk->size_shift)
1582 size = max(size, 1UL << tk->size_shift);
1583 if (size) {
1584 /*
1585 * Unmap the largest mapping to avoid breaking up
1586 * device-dax mappings which are constant size. The
1587 * actual size of the mapping being torn down is
1588 * communicated in siginfo, see kill_proc()
1589 */
1590 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 unmap_mapping_range(page->mapping, start, size, 0);
1592 }
1593 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1594 rc = 0;
1595unlock:
1596 dax_unlock_page(page, cookie);
1597out:
1598 /* drop pgmap ref acquired in caller */
1599 put_dev_pagemap(pgmap);
1600 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 return rc;
1602}
1603
1604/**
1605 * memory_failure - Handle memory failure of a page.
1606 * @pfn: Page Number of the corrupted page
1607 * @flags: fine tune action taken
1608 *
1609 * This function is called by the low level machine check code
1610 * of an architecture when it detects hardware memory corruption
1611 * of a page. It tries its best to recover, which includes
1612 * dropping pages, killing processes etc.
1613 *
1614 * The function is primarily of use for corruptions that
1615 * happen outside the current execution context (e.g. when
1616 * detected by a background scrubber)
1617 *
1618 * Must run in process context (e.g. a work queue) with interrupts
1619 * enabled and no spinlocks hold.
1620 */
1621int memory_failure(unsigned long pfn, int flags)
1622{
1623 struct page *p;
1624 struct page *hpage;
1625 struct page *orig_head;
1626 struct dev_pagemap *pgmap;
1627 int res = 0;
1628 unsigned long page_flags;
1629 bool retry = true;
1630 static DEFINE_MUTEX(mf_mutex);
1631
1632 if (!sysctl_memory_failure_recovery)
1633 panic("Memory failure on page %lx", pfn);
1634
1635 p = pfn_to_online_page(pfn);
1636 if (!p) {
1637 if (pfn_valid(pfn)) {
1638 pgmap = get_dev_pagemap(pfn, NULL);
1639 if (pgmap)
1640 return memory_failure_dev_pagemap(pfn, flags,
1641 pgmap);
1642 }
1643 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 pfn);
1645 return -ENXIO;
1646 }
1647
1648 mutex_lock(&mf_mutex);
1649
1650try_again:
1651 if (PageHuge(p)) {
1652 res = memory_failure_hugetlb(pfn, flags);
1653 goto unlock_mutex;
1654 }
1655
1656 if (TestSetPageHWPoison(p)) {
1657 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 pfn);
1659 res = -EHWPOISON;
1660 if (flags & MF_ACTION_REQUIRED)
1661 res = kill_accessing_process(current, pfn, flags);
1662 goto unlock_mutex;
1663 }
1664
1665 orig_head = hpage = compound_head(p);
1666 num_poisoned_pages_inc();
1667
1668 /*
1669 * We need/can do nothing about count=0 pages.
1670 * 1) it's a free page, and therefore in safe hand:
1671 * prep_new_page() will be the gate keeper.
1672 * 2) it's part of a non-compound high order page.
1673 * Implies some kernel user: cannot stop them from
1674 * R/W the page; let's pray that the page has been
1675 * used and will be freed some time later.
1676 * In fact it's dangerous to directly bump up page count from 0,
1677 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 */
1679 if (!(flags & MF_COUNT_INCREASED)) {
1680 res = get_hwpoison_page(p, flags);
1681 if (!res) {
1682 if (is_free_buddy_page(p)) {
1683 if (take_page_off_buddy(p)) {
1684 page_ref_inc(p);
1685 res = MF_RECOVERED;
1686 } else {
1687 /* We lost the race, try again */
1688 if (retry) {
1689 ClearPageHWPoison(p);
1690 num_poisoned_pages_dec();
1691 retry = false;
1692 goto try_again;
1693 }
1694 res = MF_FAILED;
1695 }
1696 action_result(pfn, MF_MSG_BUDDY, res);
1697 res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 } else {
1699 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 res = -EBUSY;
1701 }
1702 goto unlock_mutex;
1703 } else if (res < 0) {
1704 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 res = -EBUSY;
1706 goto unlock_mutex;
1707 }
1708 }
1709
1710 if (PageTransHuge(hpage)) {
1711 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 res = -EBUSY;
1714 goto unlock_mutex;
1715 }
1716 VM_BUG_ON_PAGE(!page_count(p), p);
1717 }
1718
1719 /*
1720 * We ignore non-LRU pages for good reasons.
1721 * - PG_locked is only well defined for LRU pages and a few others
1722 * - to avoid races with __SetPageLocked()
1723 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 * The check (unnecessarily) ignores LRU pages being isolated and
1725 * walked by the page reclaim code, however that's not a big loss.
1726 */
1727 shake_page(p, 0);
1728
1729 lock_page(p);
1730
1731 /*
1732 * The page could have changed compound pages during the locking.
1733 * If this happens just bail out.
1734 */
1735 if (PageCompound(p) && compound_head(p) != orig_head) {
1736 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 res = -EBUSY;
1738 goto unlock_page;
1739 }
1740
1741 /*
1742 * We use page flags to determine what action should be taken, but
1743 * the flags can be modified by the error containment action. One
1744 * example is an mlocked page, where PG_mlocked is cleared by
1745 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 * correctly, we save a copy of the page flags at this time.
1747 */
1748 page_flags = p->flags;
1749
1750 /*
1751 * unpoison always clear PG_hwpoison inside page lock
1752 */
1753 if (!PageHWPoison(p)) {
1754 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 num_poisoned_pages_dec();
1756 unlock_page(p);
1757 put_page(p);
1758 goto unlock_mutex;
1759 }
1760 if (hwpoison_filter(p)) {
1761 if (TestClearPageHWPoison(p))
1762 num_poisoned_pages_dec();
1763 unlock_page(p);
1764 put_page(p);
1765 goto unlock_mutex;
1766 }
1767
1768 /*
1769 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 * page_lock. We need wait writeback completion for this page or it
1771 * may trigger vfs BUG while evict inode.
1772 */
1773 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 goto identify_page_state;
1775
1776 /*
1777 * It's very difficult to mess with pages currently under IO
1778 * and in many cases impossible, so we just avoid it here.
1779 */
1780 wait_on_page_writeback(p);
1781
1782 /*
1783 * Now take care of user space mappings.
1784 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 */
1786 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1787 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 res = -EBUSY;
1789 goto unlock_page;
1790 }
1791
1792 /*
1793 * Torn down by someone else?
1794 */
1795 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 res = -EBUSY;
1798 goto unlock_page;
1799 }
1800
1801identify_page_state:
1802 res = identify_page_state(pfn, p, page_flags);
1803 mutex_unlock(&mf_mutex);
1804 return res;
1805unlock_page:
1806 unlock_page(p);
1807unlock_mutex:
1808 mutex_unlock(&mf_mutex);
1809 return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER 4
1814#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817 unsigned long pfn;
1818 int flags;
1819};
1820
1821struct memory_failure_cpu {
1822 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 MEMORY_FAILURE_FIFO_SIZE);
1824 spinlock_t lock;
1825 struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848 struct memory_failure_cpu *mf_cpu;
1849 unsigned long proc_flags;
1850 struct memory_failure_entry entry = {
1851 .pfn = pfn,
1852 .flags = flags,
1853 };
1854
1855 mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 if (kfifo_put(&mf_cpu->fifo, entry))
1858 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 else
1860 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 pfn);
1862 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869 struct memory_failure_cpu *mf_cpu;
1870 struct memory_failure_entry entry = { 0, };
1871 unsigned long proc_flags;
1872 int gotten;
1873
1874 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 for (;;) {
1876 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 if (!gotten)
1880 break;
1881 if (entry.flags & MF_SOFT_OFFLINE)
1882 soft_offline_page(entry.pfn, entry.flags);
1883 else
1884 memory_failure(entry.pfn, entry.flags);
1885 }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894 struct memory_failure_cpu *mf_cpu;
1895
1896 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 cancel_work_sync(&mf_cpu->work);
1898 memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903 struct memory_failure_cpu *mf_cpu;
1904 int cpu;
1905
1906 for_each_possible_cpu(cpu) {
1907 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 spin_lock_init(&mf_cpu->lock);
1909 INIT_KFIFO(mf_cpu->fifo);
1910 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 }
1912
1913 return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs) \
1918({ \
1919 if (__ratelimit(rs)) \
1920 pr_info(fmt, pfn); \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937 struct page *page;
1938 struct page *p;
1939 int freeit = 0;
1940 unsigned long flags = 0;
1941 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 if (!pfn_valid(pfn))
1945 return -ENXIO;
1946
1947 p = pfn_to_page(pfn);
1948 page = compound_head(p);
1949
1950 if (!PageHWPoison(p)) {
1951 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_count(page) > 1) {
1957 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapped(page)) {
1963 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 if (page_mapping(page)) {
1969 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 pfn, &unpoison_rs);
1971 return 0;
1972 }
1973
1974 /*
1975 * unpoison_memory() can encounter thp only when the thp is being
1976 * worked by memory_failure() and the page lock is not held yet.
1977 * In such case, we yield to memory_failure() and make unpoison fail.
1978 */
1979 if (!PageHuge(page) && PageTransHuge(page)) {
1980 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 pfn, &unpoison_rs);
1982 return 0;
1983 }
1984
1985 if (!get_hwpoison_page(p, flags)) {
1986 if (TestClearPageHWPoison(p))
1987 num_poisoned_pages_dec();
1988 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 pfn, &unpoison_rs);
1990 return 0;
1991 }
1992
1993 lock_page(page);
1994 /*
1995 * This test is racy because PG_hwpoison is set outside of page lock.
1996 * That's acceptable because that won't trigger kernel panic. Instead,
1997 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 * the free buddy page pool.
1999 */
2000 if (TestClearPageHWPoison(page)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 pfn, &unpoison_rs);
2003 num_poisoned_pages_dec();
2004 freeit = 1;
2005 }
2006 unlock_page(page);
2007
2008 put_page(page);
2009 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 put_page(page);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018 bool isolated = false;
2019 bool lru = PageLRU(page);
2020
2021 if (PageHuge(page)) {
2022 isolated = isolate_huge_page(page, pagelist);
2023 } else {
2024 if (lru)
2025 isolated = !isolate_lru_page(page);
2026 else
2027 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029 if (isolated)
2030 list_add(&page->lru, pagelist);
2031 }
2032
2033 if (isolated && lru)
2034 inc_node_page_state(page, NR_ISOLATED_ANON +
2035 page_is_file_lru(page));
2036
2037 /*
2038 * If we succeed to isolate the page, we grabbed another refcount on
2039 * the page, so we can safely drop the one we got from get_any_pages().
2040 * If we failed to isolate the page, it means that we cannot go further
2041 * and we will return an error, so drop the reference we got from
2042 * get_any_pages() as well.
2043 */
2044 put_page(page);
2045 return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055 int ret = 0;
2056 unsigned long pfn = page_to_pfn(page);
2057 struct page *hpage = compound_head(page);
2058 char const *msg_page[] = {"page", "hugepage"};
2059 bool huge = PageHuge(page);
2060 LIST_HEAD(pagelist);
2061 struct migration_target_control mtc = {
2062 .nid = NUMA_NO_NODE,
2063 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 };
2065
2066 /*
2067 * Check PageHWPoison again inside page lock because PageHWPoison
2068 * is set by memory_failure() outside page lock. Note that
2069 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 * so there's no race between soft_offline_page() and memory_failure().
2071 */
2072 lock_page(page);
2073 if (!PageHuge(page))
2074 wait_on_page_writeback(page);
2075 if (PageHWPoison(page)) {
2076 unlock_page(page);
2077 put_page(page);
2078 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 return 0;
2080 }
2081
2082 if (!PageHuge(page))
2083 /*
2084 * Try to invalidate first. This should work for
2085 * non dirty unmapped page cache pages.
2086 */
2087 ret = invalidate_inode_page(page);
2088 unlock_page(page);
2089
2090 /*
2091 * RED-PEN would be better to keep it isolated here, but we
2092 * would need to fix isolation locking first.
2093 */
2094 if (ret) {
2095 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 page_handle_poison(page, false, true);
2097 return 0;
2098 }
2099
2100 if (isolate_page(hpage, &pagelist)) {
2101 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2103 if (!ret) {
2104 bool release = !huge;
2105
2106 if (!page_handle_poison(page, huge, release))
2107 ret = -EBUSY;
2108 } else {
2109 if (!list_empty(&pagelist))
2110 putback_movable_pages(&pagelist);
2111
2112 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 if (ret > 0)
2115 ret = -EBUSY;
2116 }
2117 } else {
2118 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 ret = -EBUSY;
2121 }
2122 return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127 struct page *hpage = compound_head(page);
2128
2129 if (!PageHuge(page) && PageTransHuge(hpage))
2130 if (try_to_split_thp_page(page, "soft offline") < 0)
2131 return -EBUSY;
2132 return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137 int rc = 0;
2138
2139 if (!page_handle_poison(page, true, false))
2140 rc = -EBUSY;
2141
2142 return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147 if (page)
2148 put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175 int ret;
2176 bool try_again = true;
2177 struct page *page, *ref_page = NULL;
2178
2179 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181 if (!pfn_valid(pfn))
2182 return -ENXIO;
2183 if (flags & MF_COUNT_INCREASED)
2184 ref_page = pfn_to_page(pfn);
2185
2186 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 page = pfn_to_online_page(pfn);
2188 if (!page) {
2189 put_ref_page(ref_page);
2190 return -EIO;
2191 }
2192
2193 if (PageHWPoison(page)) {
2194 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 put_ref_page(ref_page);
2196 return 0;
2197 }
2198
2199retry:
2200 get_online_mems();
2201 ret = get_hwpoison_page(page, flags);
2202 put_online_mems();
2203
2204 if (ret > 0) {
2205 ret = soft_offline_in_use_page(page);
2206 } else if (ret == 0) {
2207 if (soft_offline_free_page(page) && try_again) {
2208 try_again = false;
2209 goto retry;
2210 }
2211 } else if (ret == -EIO) {
2212 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2213 __func__, pfn, page->flags, &page->flags);
2214 }
2215
2216 return ret;
2217}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched/signal.h>
44#include <linux/sched/task.h>
45#include <linux/dax.h>
46#include <linux/ksm.h>
47#include <linux/rmap.h>
48#include <linux/export.h>
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
52#include <linux/migrate.h>
53#include <linux/suspend.h>
54#include <linux/slab.h>
55#include <linux/swapops.h>
56#include <linux/hugetlb.h>
57#include <linux/memory_hotplug.h>
58#include <linux/mm_inline.h>
59#include <linux/memremap.h>
60#include <linux/kfifo.h>
61#include <linux/ratelimit.h>
62#include <linux/page-isolation.h>
63#include <linux/pagewalk.h>
64#include <linux/shmem_fs.h>
65#include "swap.h"
66#include "internal.h"
67#include "ras/ras_event.h"
68
69int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71int sysctl_memory_failure_recovery __read_mostly = 1;
72
73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75static bool hw_memory_failure __read_mostly = false;
76
77inline void num_poisoned_pages_inc(unsigned long pfn)
78{
79 atomic_long_inc(&num_poisoned_pages);
80 memblk_nr_poison_inc(pfn);
81}
82
83inline void num_poisoned_pages_sub(unsigned long pfn, long i)
84{
85 atomic_long_sub(i, &num_poisoned_pages);
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
88}
89
90/*
91 * Return values:
92 * 1: the page is dissolved (if needed) and taken off from buddy,
93 * 0: the page is dissolved (if needed) and not taken off from buddy,
94 * < 0: failed to dissolve.
95 */
96static int __page_handle_poison(struct page *page)
97{
98 int ret;
99
100 zone_pcp_disable(page_zone(page));
101 ret = dissolve_free_huge_page(page);
102 if (!ret)
103 ret = take_page_off_buddy(page);
104 zone_pcp_enable(page_zone(page));
105
106 return ret;
107}
108
109static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
110{
111 if (hugepage_or_freepage) {
112 /*
113 * Doing this check for free pages is also fine since dissolve_free_huge_page
114 * returns 0 for non-hugetlb pages as well.
115 */
116 if (__page_handle_poison(page) <= 0)
117 /*
118 * We could fail to take off the target page from buddy
119 * for example due to racy page allocation, but that's
120 * acceptable because soft-offlined page is not broken
121 * and if someone really want to use it, they should
122 * take it.
123 */
124 return false;
125 }
126
127 SetPageHWPoison(page);
128 if (release)
129 put_page(page);
130 page_ref_inc(page);
131 num_poisoned_pages_inc(page_to_pfn(page));
132
133 return true;
134}
135
136#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
137
138u32 hwpoison_filter_enable = 0;
139u32 hwpoison_filter_dev_major = ~0U;
140u32 hwpoison_filter_dev_minor = ~0U;
141u64 hwpoison_filter_flags_mask;
142u64 hwpoison_filter_flags_value;
143EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
144EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
145EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
146EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
147EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
148
149static int hwpoison_filter_dev(struct page *p)
150{
151 struct address_space *mapping;
152 dev_t dev;
153
154 if (hwpoison_filter_dev_major == ~0U &&
155 hwpoison_filter_dev_minor == ~0U)
156 return 0;
157
158 mapping = page_mapping(p);
159 if (mapping == NULL || mapping->host == NULL)
160 return -EINVAL;
161
162 dev = mapping->host->i_sb->s_dev;
163 if (hwpoison_filter_dev_major != ~0U &&
164 hwpoison_filter_dev_major != MAJOR(dev))
165 return -EINVAL;
166 if (hwpoison_filter_dev_minor != ~0U &&
167 hwpoison_filter_dev_minor != MINOR(dev))
168 return -EINVAL;
169
170 return 0;
171}
172
173static int hwpoison_filter_flags(struct page *p)
174{
175 if (!hwpoison_filter_flags_mask)
176 return 0;
177
178 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
179 hwpoison_filter_flags_value)
180 return 0;
181 else
182 return -EINVAL;
183}
184
185/*
186 * This allows stress tests to limit test scope to a collection of tasks
187 * by putting them under some memcg. This prevents killing unrelated/important
188 * processes such as /sbin/init. Note that the target task may share clean
189 * pages with init (eg. libc text), which is harmless. If the target task
190 * share _dirty_ pages with another task B, the test scheme must make sure B
191 * is also included in the memcg. At last, due to race conditions this filter
192 * can only guarantee that the page either belongs to the memcg tasks, or is
193 * a freed page.
194 */
195#ifdef CONFIG_MEMCG
196u64 hwpoison_filter_memcg;
197EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
198static int hwpoison_filter_task(struct page *p)
199{
200 if (!hwpoison_filter_memcg)
201 return 0;
202
203 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
204 return -EINVAL;
205
206 return 0;
207}
208#else
209static int hwpoison_filter_task(struct page *p) { return 0; }
210#endif
211
212int hwpoison_filter(struct page *p)
213{
214 if (!hwpoison_filter_enable)
215 return 0;
216
217 if (hwpoison_filter_dev(p))
218 return -EINVAL;
219
220 if (hwpoison_filter_flags(p))
221 return -EINVAL;
222
223 if (hwpoison_filter_task(p))
224 return -EINVAL;
225
226 return 0;
227}
228#else
229int hwpoison_filter(struct page *p)
230{
231 return 0;
232}
233#endif
234
235EXPORT_SYMBOL_GPL(hwpoison_filter);
236
237/*
238 * Kill all processes that have a poisoned page mapped and then isolate
239 * the page.
240 *
241 * General strategy:
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
246 *
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
249 * running processes.
250 *
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
254 *
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
257 */
258
259struct to_kill {
260 struct list_head nd;
261 struct task_struct *tsk;
262 unsigned long addr;
263 short size_shift;
264};
265
266/*
267 * Send all the processes who have the page mapped a signal.
268 * ``action optional'' if they are not immediately affected by the error
269 * ``action required'' if error happened in current execution context
270 */
271static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
272{
273 struct task_struct *t = tk->tsk;
274 short addr_lsb = tk->size_shift;
275 int ret = 0;
276
277 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
278 pfn, t->comm, t->pid);
279
280 if ((flags & MF_ACTION_REQUIRED) && (t == current))
281 ret = force_sig_mceerr(BUS_MCEERR_AR,
282 (void __user *)tk->addr, addr_lsb);
283 else
284 /*
285 * Signal other processes sharing the page if they have
286 * PF_MCE_EARLY set.
287 * Don't use force here, it's convenient if the signal
288 * can be temporarily blocked.
289 * This could cause a loop when the user sets SIGBUS
290 * to SIG_IGN, but hopefully no one will do that?
291 */
292 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
293 addr_lsb, t);
294 if (ret < 0)
295 pr_info("Error sending signal to %s:%d: %d\n",
296 t->comm, t->pid, ret);
297 return ret;
298}
299
300/*
301 * Unknown page type encountered. Try to check whether it can turn PageLRU by
302 * lru_add_drain_all.
303 */
304void shake_page(struct page *p)
305{
306 if (PageHuge(p))
307 return;
308
309 if (!PageSlab(p)) {
310 lru_add_drain_all();
311 if (PageLRU(p) || is_free_buddy_page(p))
312 return;
313 }
314
315 /*
316 * TODO: Could shrink slab caches here if a lightweight range-based
317 * shrinker will be available.
318 */
319}
320EXPORT_SYMBOL_GPL(shake_page);
321
322static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
323 unsigned long address)
324{
325 unsigned long ret = 0;
326 pgd_t *pgd;
327 p4d_t *p4d;
328 pud_t *pud;
329 pmd_t *pmd;
330 pte_t *pte;
331
332 VM_BUG_ON_VMA(address == -EFAULT, vma);
333 pgd = pgd_offset(vma->vm_mm, address);
334 if (!pgd_present(*pgd))
335 return 0;
336 p4d = p4d_offset(pgd, address);
337 if (!p4d_present(*p4d))
338 return 0;
339 pud = pud_offset(p4d, address);
340 if (!pud_present(*pud))
341 return 0;
342 if (pud_devmap(*pud))
343 return PUD_SHIFT;
344 pmd = pmd_offset(pud, address);
345 if (!pmd_present(*pmd))
346 return 0;
347 if (pmd_devmap(*pmd))
348 return PMD_SHIFT;
349 pte = pte_offset_map(pmd, address);
350 if (pte_present(*pte) && pte_devmap(*pte))
351 ret = PAGE_SHIFT;
352 pte_unmap(pte);
353 return ret;
354}
355
356/*
357 * Failure handling: if we can't find or can't kill a process there's
358 * not much we can do. We just print a message and ignore otherwise.
359 */
360
361#define FSDAX_INVALID_PGOFF ULONG_MAX
362
363/*
364 * Schedule a process for later kill.
365 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
366 *
367 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
368 * filesystem with a memory failure handler has claimed the
369 * memory_failure event. In all other cases, page->index and
370 * page->mapping are sufficient for mapping the page back to its
371 * corresponding user virtual address.
372 */
373static void add_to_kill(struct task_struct *tsk, struct page *p,
374 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
375 struct list_head *to_kill)
376{
377 struct to_kill *tk;
378
379 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
380 if (!tk) {
381 pr_err("Out of memory while machine check handling\n");
382 return;
383 }
384
385 tk->addr = page_address_in_vma(p, vma);
386 if (is_zone_device_page(p)) {
387 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
388 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
389 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
390 } else
391 tk->size_shift = page_shift(compound_head(p));
392
393 /*
394 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
395 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
396 * so "tk->size_shift == 0" effectively checks no mapping on
397 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
398 * to a process' address space, it's possible not all N VMAs
399 * contain mappings for the page, but at least one VMA does.
400 * Only deliver SIGBUS with payload derived from the VMA that
401 * has a mapping for the page.
402 */
403 if (tk->addr == -EFAULT) {
404 pr_info("Unable to find user space address %lx in %s\n",
405 page_to_pfn(p), tsk->comm);
406 } else if (tk->size_shift == 0) {
407 kfree(tk);
408 return;
409 }
410
411 get_task_struct(tsk);
412 tk->tsk = tsk;
413 list_add_tail(&tk->nd, to_kill);
414}
415
416/*
417 * Kill the processes that have been collected earlier.
418 *
419 * Only do anything when FORCEKILL is set, otherwise just free the
420 * list (this is used for clean pages which do not need killing)
421 * Also when FAIL is set do a force kill because something went
422 * wrong earlier.
423 */
424static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
425 unsigned long pfn, int flags)
426{
427 struct to_kill *tk, *next;
428
429 list_for_each_entry_safe(tk, next, to_kill, nd) {
430 if (forcekill) {
431 /*
432 * In case something went wrong with munmapping
433 * make sure the process doesn't catch the
434 * signal and then access the memory. Just kill it.
435 */
436 if (fail || tk->addr == -EFAULT) {
437 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
438 pfn, tk->tsk->comm, tk->tsk->pid);
439 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
440 tk->tsk, PIDTYPE_PID);
441 }
442
443 /*
444 * In theory the process could have mapped
445 * something else on the address in-between. We could
446 * check for that, but we need to tell the
447 * process anyways.
448 */
449 else if (kill_proc(tk, pfn, flags) < 0)
450 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
451 pfn, tk->tsk->comm, tk->tsk->pid);
452 }
453 list_del(&tk->nd);
454 put_task_struct(tk->tsk);
455 kfree(tk);
456 }
457}
458
459/*
460 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
461 * on behalf of the thread group. Return task_struct of the (first found)
462 * dedicated thread if found, and return NULL otherwise.
463 *
464 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
465 * have to call rcu_read_lock/unlock() in this function.
466 */
467static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
468{
469 struct task_struct *t;
470
471 for_each_thread(tsk, t) {
472 if (t->flags & PF_MCE_PROCESS) {
473 if (t->flags & PF_MCE_EARLY)
474 return t;
475 } else {
476 if (sysctl_memory_failure_early_kill)
477 return t;
478 }
479 }
480 return NULL;
481}
482
483/*
484 * Determine whether a given process is "early kill" process which expects
485 * to be signaled when some page under the process is hwpoisoned.
486 * Return task_struct of the dedicated thread (main thread unless explicitly
487 * specified) if the process is "early kill" and otherwise returns NULL.
488 *
489 * Note that the above is true for Action Optional case. For Action Required
490 * case, it's only meaningful to the current thread which need to be signaled
491 * with SIGBUS, this error is Action Optional for other non current
492 * processes sharing the same error page,if the process is "early kill", the
493 * task_struct of the dedicated thread will also be returned.
494 */
495static struct task_struct *task_early_kill(struct task_struct *tsk,
496 int force_early)
497{
498 if (!tsk->mm)
499 return NULL;
500 /*
501 * Comparing ->mm here because current task might represent
502 * a subthread, while tsk always points to the main thread.
503 */
504 if (force_early && tsk->mm == current->mm)
505 return current;
506
507 return find_early_kill_thread(tsk);
508}
509
510/*
511 * Collect processes when the error hit an anonymous page.
512 */
513static void collect_procs_anon(struct page *page, struct list_head *to_kill,
514 int force_early)
515{
516 struct folio *folio = page_folio(page);
517 struct vm_area_struct *vma;
518 struct task_struct *tsk;
519 struct anon_vma *av;
520 pgoff_t pgoff;
521
522 av = folio_lock_anon_vma_read(folio, NULL);
523 if (av == NULL) /* Not actually mapped anymore */
524 return;
525
526 pgoff = page_to_pgoff(page);
527 read_lock(&tasklist_lock);
528 for_each_process (tsk) {
529 struct anon_vma_chain *vmac;
530 struct task_struct *t = task_early_kill(tsk, force_early);
531
532 if (!t)
533 continue;
534 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
535 pgoff, pgoff) {
536 vma = vmac->vma;
537 if (vma->vm_mm != t->mm)
538 continue;
539 if (!page_mapped_in_vma(page, vma))
540 continue;
541 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
542 }
543 }
544 read_unlock(&tasklist_lock);
545 anon_vma_unlock_read(av);
546}
547
548/*
549 * Collect processes when the error hit a file mapped page.
550 */
551static void collect_procs_file(struct page *page, struct list_head *to_kill,
552 int force_early)
553{
554 struct vm_area_struct *vma;
555 struct task_struct *tsk;
556 struct address_space *mapping = page->mapping;
557 pgoff_t pgoff;
558
559 i_mmap_lock_read(mapping);
560 read_lock(&tasklist_lock);
561 pgoff = page_to_pgoff(page);
562 for_each_process(tsk) {
563 struct task_struct *t = task_early_kill(tsk, force_early);
564
565 if (!t)
566 continue;
567 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
568 pgoff) {
569 /*
570 * Send early kill signal to tasks where a vma covers
571 * the page but the corrupted page is not necessarily
572 * mapped it in its pte.
573 * Assume applications who requested early kill want
574 * to be informed of all such data corruptions.
575 */
576 if (vma->vm_mm == t->mm)
577 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
578 to_kill);
579 }
580 }
581 read_unlock(&tasklist_lock);
582 i_mmap_unlock_read(mapping);
583}
584
585#ifdef CONFIG_FS_DAX
586/*
587 * Collect processes when the error hit a fsdax page.
588 */
589static void collect_procs_fsdax(struct page *page,
590 struct address_space *mapping, pgoff_t pgoff,
591 struct list_head *to_kill)
592{
593 struct vm_area_struct *vma;
594 struct task_struct *tsk;
595
596 i_mmap_lock_read(mapping);
597 read_lock(&tasklist_lock);
598 for_each_process(tsk) {
599 struct task_struct *t = task_early_kill(tsk, true);
600
601 if (!t)
602 continue;
603 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
604 if (vma->vm_mm == t->mm)
605 add_to_kill(t, page, pgoff, vma, to_kill);
606 }
607 }
608 read_unlock(&tasklist_lock);
609 i_mmap_unlock_read(mapping);
610}
611#endif /* CONFIG_FS_DAX */
612
613/*
614 * Collect the processes who have the corrupted page mapped to kill.
615 */
616static void collect_procs(struct page *page, struct list_head *tokill,
617 int force_early)
618{
619 if (!page->mapping)
620 return;
621
622 if (PageAnon(page))
623 collect_procs_anon(page, tokill, force_early);
624 else
625 collect_procs_file(page, tokill, force_early);
626}
627
628struct hwp_walk {
629 struct to_kill tk;
630 unsigned long pfn;
631 int flags;
632};
633
634static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
635{
636 tk->addr = addr;
637 tk->size_shift = shift;
638}
639
640static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
641 unsigned long poisoned_pfn, struct to_kill *tk)
642{
643 unsigned long pfn = 0;
644
645 if (pte_present(pte)) {
646 pfn = pte_pfn(pte);
647 } else {
648 swp_entry_t swp = pte_to_swp_entry(pte);
649
650 if (is_hwpoison_entry(swp))
651 pfn = swp_offset_pfn(swp);
652 }
653
654 if (!pfn || pfn != poisoned_pfn)
655 return 0;
656
657 set_to_kill(tk, addr, shift);
658 return 1;
659}
660
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
663 struct hwp_walk *hwp)
664{
665 pmd_t pmd = *pmdp;
666 unsigned long pfn;
667 unsigned long hwpoison_vaddr;
668
669 if (!pmd_present(pmd))
670 return 0;
671 pfn = pmd_pfn(pmd);
672 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
673 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
674 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
675 return 1;
676 }
677 return 0;
678}
679#else
680static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
681 struct hwp_walk *hwp)
682{
683 return 0;
684}
685#endif
686
687static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
688 unsigned long end, struct mm_walk *walk)
689{
690 struct hwp_walk *hwp = walk->private;
691 int ret = 0;
692 pte_t *ptep, *mapped_pte;
693 spinlock_t *ptl;
694
695 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
696 if (ptl) {
697 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
698 spin_unlock(ptl);
699 goto out;
700 }
701
702 if (pmd_trans_unstable(pmdp))
703 goto out;
704
705 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
706 addr, &ptl);
707 for (; addr != end; ptep++, addr += PAGE_SIZE) {
708 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
709 hwp->pfn, &hwp->tk);
710 if (ret == 1)
711 break;
712 }
713 pte_unmap_unlock(mapped_pte, ptl);
714out:
715 cond_resched();
716 return ret;
717}
718
719#ifdef CONFIG_HUGETLB_PAGE
720static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
721 unsigned long addr, unsigned long end,
722 struct mm_walk *walk)
723{
724 struct hwp_walk *hwp = walk->private;
725 pte_t pte = huge_ptep_get(ptep);
726 struct hstate *h = hstate_vma(walk->vma);
727
728 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
729 hwp->pfn, &hwp->tk);
730}
731#else
732#define hwpoison_hugetlb_range NULL
733#endif
734
735static const struct mm_walk_ops hwp_walk_ops = {
736 .pmd_entry = hwpoison_pte_range,
737 .hugetlb_entry = hwpoison_hugetlb_range,
738};
739
740/*
741 * Sends SIGBUS to the current process with error info.
742 *
743 * This function is intended to handle "Action Required" MCEs on already
744 * hardware poisoned pages. They could happen, for example, when
745 * memory_failure() failed to unmap the error page at the first call, or
746 * when multiple local machine checks happened on different CPUs.
747 *
748 * MCE handler currently has no easy access to the error virtual address,
749 * so this function walks page table to find it. The returned virtual address
750 * is proper in most cases, but it could be wrong when the application
751 * process has multiple entries mapping the error page.
752 */
753static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
754 int flags)
755{
756 int ret;
757 struct hwp_walk priv = {
758 .pfn = pfn,
759 };
760 priv.tk.tsk = p;
761
762 if (!p->mm)
763 return -EFAULT;
764
765 mmap_read_lock(p->mm);
766 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
767 (void *)&priv);
768 if (ret == 1 && priv.tk.addr)
769 kill_proc(&priv.tk, pfn, flags);
770 else
771 ret = 0;
772 mmap_read_unlock(p->mm);
773 return ret > 0 ? -EHWPOISON : -EFAULT;
774}
775
776static const char *action_name[] = {
777 [MF_IGNORED] = "Ignored",
778 [MF_FAILED] = "Failed",
779 [MF_DELAYED] = "Delayed",
780 [MF_RECOVERED] = "Recovered",
781};
782
783static const char * const action_page_types[] = {
784 [MF_MSG_KERNEL] = "reserved kernel page",
785 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
786 [MF_MSG_SLAB] = "kernel slab page",
787 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
788 [MF_MSG_HUGE] = "huge page",
789 [MF_MSG_FREE_HUGE] = "free huge page",
790 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
791 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
792 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
793 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
794 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
795 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
796 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
797 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
798 [MF_MSG_CLEAN_LRU] = "clean LRU page",
799 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
800 [MF_MSG_BUDDY] = "free buddy page",
801 [MF_MSG_DAX] = "dax page",
802 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
803 [MF_MSG_UNKNOWN] = "unknown page",
804};
805
806/*
807 * XXX: It is possible that a page is isolated from LRU cache,
808 * and then kept in swap cache or failed to remove from page cache.
809 * The page count will stop it from being freed by unpoison.
810 * Stress tests should be aware of this memory leak problem.
811 */
812static int delete_from_lru_cache(struct page *p)
813{
814 if (!isolate_lru_page(p)) {
815 /*
816 * Clear sensible page flags, so that the buddy system won't
817 * complain when the page is unpoison-and-freed.
818 */
819 ClearPageActive(p);
820 ClearPageUnevictable(p);
821
822 /*
823 * Poisoned page might never drop its ref count to 0 so we have
824 * to uncharge it manually from its memcg.
825 */
826 mem_cgroup_uncharge(page_folio(p));
827
828 /*
829 * drop the page count elevated by isolate_lru_page()
830 */
831 put_page(p);
832 return 0;
833 }
834 return -EIO;
835}
836
837static int truncate_error_page(struct page *p, unsigned long pfn,
838 struct address_space *mapping)
839{
840 int ret = MF_FAILED;
841
842 if (mapping->a_ops->error_remove_page) {
843 struct folio *folio = page_folio(p);
844 int err = mapping->a_ops->error_remove_page(mapping, p);
845
846 if (err != 0) {
847 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
848 } else if (folio_has_private(folio) &&
849 !filemap_release_folio(folio, GFP_NOIO)) {
850 pr_info("%#lx: failed to release buffers\n", pfn);
851 } else {
852 ret = MF_RECOVERED;
853 }
854 } else {
855 /*
856 * If the file system doesn't support it just invalidate
857 * This fails on dirty or anything with private pages
858 */
859 if (invalidate_inode_page(p))
860 ret = MF_RECOVERED;
861 else
862 pr_info("%#lx: Failed to invalidate\n", pfn);
863 }
864
865 return ret;
866}
867
868struct page_state {
869 unsigned long mask;
870 unsigned long res;
871 enum mf_action_page_type type;
872
873 /* Callback ->action() has to unlock the relevant page inside it. */
874 int (*action)(struct page_state *ps, struct page *p);
875};
876
877/*
878 * Return true if page is still referenced by others, otherwise return
879 * false.
880 *
881 * The extra_pins is true when one extra refcount is expected.
882 */
883static bool has_extra_refcount(struct page_state *ps, struct page *p,
884 bool extra_pins)
885{
886 int count = page_count(p) - 1;
887
888 if (extra_pins)
889 count -= 1;
890
891 if (count > 0) {
892 pr_err("%#lx: %s still referenced by %d users\n",
893 page_to_pfn(p), action_page_types[ps->type], count);
894 return true;
895 }
896
897 return false;
898}
899
900/*
901 * Error hit kernel page.
902 * Do nothing, try to be lucky and not touch this instead. For a few cases we
903 * could be more sophisticated.
904 */
905static int me_kernel(struct page_state *ps, struct page *p)
906{
907 unlock_page(p);
908 return MF_IGNORED;
909}
910
911/*
912 * Page in unknown state. Do nothing.
913 */
914static int me_unknown(struct page_state *ps, struct page *p)
915{
916 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
917 unlock_page(p);
918 return MF_FAILED;
919}
920
921/*
922 * Clean (or cleaned) page cache page.
923 */
924static int me_pagecache_clean(struct page_state *ps, struct page *p)
925{
926 int ret;
927 struct address_space *mapping;
928 bool extra_pins;
929
930 delete_from_lru_cache(p);
931
932 /*
933 * For anonymous pages we're done the only reference left
934 * should be the one m_f() holds.
935 */
936 if (PageAnon(p)) {
937 ret = MF_RECOVERED;
938 goto out;
939 }
940
941 /*
942 * Now truncate the page in the page cache. This is really
943 * more like a "temporary hole punch"
944 * Don't do this for block devices when someone else
945 * has a reference, because it could be file system metadata
946 * and that's not safe to truncate.
947 */
948 mapping = page_mapping(p);
949 if (!mapping) {
950 /*
951 * Page has been teared down in the meanwhile
952 */
953 ret = MF_FAILED;
954 goto out;
955 }
956
957 /*
958 * The shmem page is kept in page cache instead of truncating
959 * so is expected to have an extra refcount after error-handling.
960 */
961 extra_pins = shmem_mapping(mapping);
962
963 /*
964 * Truncation is a bit tricky. Enable it per file system for now.
965 *
966 * Open: to take i_rwsem or not for this? Right now we don't.
967 */
968 ret = truncate_error_page(p, page_to_pfn(p), mapping);
969 if (has_extra_refcount(ps, p, extra_pins))
970 ret = MF_FAILED;
971
972out:
973 unlock_page(p);
974
975 return ret;
976}
977
978/*
979 * Dirty pagecache page
980 * Issues: when the error hit a hole page the error is not properly
981 * propagated.
982 */
983static int me_pagecache_dirty(struct page_state *ps, struct page *p)
984{
985 struct address_space *mapping = page_mapping(p);
986
987 SetPageError(p);
988 /* TBD: print more information about the file. */
989 if (mapping) {
990 /*
991 * IO error will be reported by write(), fsync(), etc.
992 * who check the mapping.
993 * This way the application knows that something went
994 * wrong with its dirty file data.
995 *
996 * There's one open issue:
997 *
998 * The EIO will be only reported on the next IO
999 * operation and then cleared through the IO map.
1000 * Normally Linux has two mechanisms to pass IO error
1001 * first through the AS_EIO flag in the address space
1002 * and then through the PageError flag in the page.
1003 * Since we drop pages on memory failure handling the
1004 * only mechanism open to use is through AS_AIO.
1005 *
1006 * This has the disadvantage that it gets cleared on
1007 * the first operation that returns an error, while
1008 * the PageError bit is more sticky and only cleared
1009 * when the page is reread or dropped. If an
1010 * application assumes it will always get error on
1011 * fsync, but does other operations on the fd before
1012 * and the page is dropped between then the error
1013 * will not be properly reported.
1014 *
1015 * This can already happen even without hwpoisoned
1016 * pages: first on metadata IO errors (which only
1017 * report through AS_EIO) or when the page is dropped
1018 * at the wrong time.
1019 *
1020 * So right now we assume that the application DTRT on
1021 * the first EIO, but we're not worse than other parts
1022 * of the kernel.
1023 */
1024 mapping_set_error(mapping, -EIO);
1025 }
1026
1027 return me_pagecache_clean(ps, p);
1028}
1029
1030/*
1031 * Clean and dirty swap cache.
1032 *
1033 * Dirty swap cache page is tricky to handle. The page could live both in page
1034 * cache and swap cache(ie. page is freshly swapped in). So it could be
1035 * referenced concurrently by 2 types of PTEs:
1036 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1037 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1038 * and then
1039 * - clear dirty bit to prevent IO
1040 * - remove from LRU
1041 * - but keep in the swap cache, so that when we return to it on
1042 * a later page fault, we know the application is accessing
1043 * corrupted data and shall be killed (we installed simple
1044 * interception code in do_swap_page to catch it).
1045 *
1046 * Clean swap cache pages can be directly isolated. A later page fault will
1047 * bring in the known good data from disk.
1048 */
1049static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1050{
1051 int ret;
1052 bool extra_pins = false;
1053
1054 ClearPageDirty(p);
1055 /* Trigger EIO in shmem: */
1056 ClearPageUptodate(p);
1057
1058 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1059 unlock_page(p);
1060
1061 if (ret == MF_DELAYED)
1062 extra_pins = true;
1063
1064 if (has_extra_refcount(ps, p, extra_pins))
1065 ret = MF_FAILED;
1066
1067 return ret;
1068}
1069
1070static int me_swapcache_clean(struct page_state *ps, struct page *p)
1071{
1072 struct folio *folio = page_folio(p);
1073 int ret;
1074
1075 delete_from_swap_cache(folio);
1076
1077 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1078 folio_unlock(folio);
1079
1080 if (has_extra_refcount(ps, p, false))
1081 ret = MF_FAILED;
1082
1083 return ret;
1084}
1085
1086/*
1087 * Huge pages. Needs work.
1088 * Issues:
1089 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1090 * To narrow down kill region to one page, we need to break up pmd.
1091 */
1092static int me_huge_page(struct page_state *ps, struct page *p)
1093{
1094 int res;
1095 struct page *hpage = compound_head(p);
1096 struct address_space *mapping;
1097 bool extra_pins = false;
1098
1099 if (!PageHuge(hpage))
1100 return MF_DELAYED;
1101
1102 mapping = page_mapping(hpage);
1103 if (mapping) {
1104 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1105 /* The page is kept in page cache. */
1106 extra_pins = true;
1107 unlock_page(hpage);
1108 } else {
1109 unlock_page(hpage);
1110 /*
1111 * migration entry prevents later access on error hugepage,
1112 * so we can free and dissolve it into buddy to save healthy
1113 * subpages.
1114 */
1115 put_page(hpage);
1116 if (__page_handle_poison(p) >= 0) {
1117 page_ref_inc(p);
1118 res = MF_RECOVERED;
1119 } else {
1120 res = MF_FAILED;
1121 }
1122 }
1123
1124 if (has_extra_refcount(ps, p, extra_pins))
1125 res = MF_FAILED;
1126
1127 return res;
1128}
1129
1130/*
1131 * Various page states we can handle.
1132 *
1133 * A page state is defined by its current page->flags bits.
1134 * The table matches them in order and calls the right handler.
1135 *
1136 * This is quite tricky because we can access page at any time
1137 * in its live cycle, so all accesses have to be extremely careful.
1138 *
1139 * This is not complete. More states could be added.
1140 * For any missing state don't attempt recovery.
1141 */
1142
1143#define dirty (1UL << PG_dirty)
1144#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1145#define unevict (1UL << PG_unevictable)
1146#define mlock (1UL << PG_mlocked)
1147#define lru (1UL << PG_lru)
1148#define head (1UL << PG_head)
1149#define slab (1UL << PG_slab)
1150#define reserved (1UL << PG_reserved)
1151
1152static struct page_state error_states[] = {
1153 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1154 /*
1155 * free pages are specially detected outside this table:
1156 * PG_buddy pages only make a small fraction of all free pages.
1157 */
1158
1159 /*
1160 * Could in theory check if slab page is free or if we can drop
1161 * currently unused objects without touching them. But just
1162 * treat it as standard kernel for now.
1163 */
1164 { slab, slab, MF_MSG_SLAB, me_kernel },
1165
1166 { head, head, MF_MSG_HUGE, me_huge_page },
1167
1168 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1169 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1170
1171 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1172 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1173
1174 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1175 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1176
1177 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1178 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1179
1180 /*
1181 * Catchall entry: must be at end.
1182 */
1183 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1184};
1185
1186#undef dirty
1187#undef sc
1188#undef unevict
1189#undef mlock
1190#undef lru
1191#undef head
1192#undef slab
1193#undef reserved
1194
1195/*
1196 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1197 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1198 */
1199static int action_result(unsigned long pfn, enum mf_action_page_type type,
1200 enum mf_result result)
1201{
1202 trace_memory_failure_event(pfn, type, result);
1203
1204 num_poisoned_pages_inc(pfn);
1205 pr_err("%#lx: recovery action for %s: %s\n",
1206 pfn, action_page_types[type], action_name[result]);
1207
1208 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1209}
1210
1211static int page_action(struct page_state *ps, struct page *p,
1212 unsigned long pfn)
1213{
1214 int result;
1215
1216 /* page p should be unlocked after returning from ps->action(). */
1217 result = ps->action(ps, p);
1218
1219 /* Could do more checks here if page looks ok */
1220 /*
1221 * Could adjust zone counters here to correct for the missing page.
1222 */
1223
1224 return action_result(pfn, ps->type, result);
1225}
1226
1227static inline bool PageHWPoisonTakenOff(struct page *page)
1228{
1229 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1230}
1231
1232void SetPageHWPoisonTakenOff(struct page *page)
1233{
1234 set_page_private(page, MAGIC_HWPOISON);
1235}
1236
1237void ClearPageHWPoisonTakenOff(struct page *page)
1238{
1239 if (PageHWPoison(page))
1240 set_page_private(page, 0);
1241}
1242
1243/*
1244 * Return true if a page type of a given page is supported by hwpoison
1245 * mechanism (while handling could fail), otherwise false. This function
1246 * does not return true for hugetlb or device memory pages, so it's assumed
1247 * to be called only in the context where we never have such pages.
1248 */
1249static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1250{
1251 /* Soft offline could migrate non-LRU movable pages */
1252 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1253 return true;
1254
1255 return PageLRU(page) || is_free_buddy_page(page);
1256}
1257
1258static int __get_hwpoison_page(struct page *page, unsigned long flags)
1259{
1260 struct page *head = compound_head(page);
1261 int ret = 0;
1262 bool hugetlb = false;
1263
1264 ret = get_hwpoison_huge_page(head, &hugetlb, false);
1265 if (hugetlb)
1266 return ret;
1267
1268 /*
1269 * This check prevents from calling get_page_unless_zero() for any
1270 * unsupported type of page in order to reduce the risk of unexpected
1271 * races caused by taking a page refcount.
1272 */
1273 if (!HWPoisonHandlable(head, flags))
1274 return -EBUSY;
1275
1276 if (get_page_unless_zero(head)) {
1277 if (head == compound_head(page))
1278 return 1;
1279
1280 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1281 put_page(head);
1282 }
1283
1284 return 0;
1285}
1286
1287static int get_any_page(struct page *p, unsigned long flags)
1288{
1289 int ret = 0, pass = 0;
1290 bool count_increased = false;
1291
1292 if (flags & MF_COUNT_INCREASED)
1293 count_increased = true;
1294
1295try_again:
1296 if (!count_increased) {
1297 ret = __get_hwpoison_page(p, flags);
1298 if (!ret) {
1299 if (page_count(p)) {
1300 /* We raced with an allocation, retry. */
1301 if (pass++ < 3)
1302 goto try_again;
1303 ret = -EBUSY;
1304 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1305 /* We raced with put_page, retry. */
1306 if (pass++ < 3)
1307 goto try_again;
1308 ret = -EIO;
1309 }
1310 goto out;
1311 } else if (ret == -EBUSY) {
1312 /*
1313 * We raced with (possibly temporary) unhandlable
1314 * page, retry.
1315 */
1316 if (pass++ < 3) {
1317 shake_page(p);
1318 goto try_again;
1319 }
1320 ret = -EIO;
1321 goto out;
1322 }
1323 }
1324
1325 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1326 ret = 1;
1327 } else {
1328 /*
1329 * A page we cannot handle. Check whether we can turn
1330 * it into something we can handle.
1331 */
1332 if (pass++ < 3) {
1333 put_page(p);
1334 shake_page(p);
1335 count_increased = false;
1336 goto try_again;
1337 }
1338 put_page(p);
1339 ret = -EIO;
1340 }
1341out:
1342 if (ret == -EIO)
1343 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1344
1345 return ret;
1346}
1347
1348static int __get_unpoison_page(struct page *page)
1349{
1350 struct page *head = compound_head(page);
1351 int ret = 0;
1352 bool hugetlb = false;
1353
1354 ret = get_hwpoison_huge_page(head, &hugetlb, true);
1355 if (hugetlb)
1356 return ret;
1357
1358 /*
1359 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1360 * but also isolated from buddy freelist, so need to identify the
1361 * state and have to cancel both operations to unpoison.
1362 */
1363 if (PageHWPoisonTakenOff(page))
1364 return -EHWPOISON;
1365
1366 return get_page_unless_zero(page) ? 1 : 0;
1367}
1368
1369/**
1370 * get_hwpoison_page() - Get refcount for memory error handling
1371 * @p: Raw error page (hit by memory error)
1372 * @flags: Flags controlling behavior of error handling
1373 *
1374 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1375 * error on it, after checking that the error page is in a well-defined state
1376 * (defined as a page-type we can successfully handle the memory error on it,
1377 * such as LRU page and hugetlb page).
1378 *
1379 * Memory error handling could be triggered at any time on any type of page,
1380 * so it's prone to race with typical memory management lifecycle (like
1381 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1382 * extra care for the error page's state (as done in __get_hwpoison_page()),
1383 * and has some retry logic in get_any_page().
1384 *
1385 * When called from unpoison_memory(), the caller should already ensure that
1386 * the given page has PG_hwpoison. So it's never reused for other page
1387 * allocations, and __get_unpoison_page() never races with them.
1388 *
1389 * Return: 0 on failure,
1390 * 1 on success for in-use pages in a well-defined state,
1391 * -EIO for pages on which we can not handle memory errors,
1392 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1393 * operations like allocation and free,
1394 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1395 */
1396static int get_hwpoison_page(struct page *p, unsigned long flags)
1397{
1398 int ret;
1399
1400 zone_pcp_disable(page_zone(p));
1401 if (flags & MF_UNPOISON)
1402 ret = __get_unpoison_page(p);
1403 else
1404 ret = get_any_page(p, flags);
1405 zone_pcp_enable(page_zone(p));
1406
1407 return ret;
1408}
1409
1410/*
1411 * Do all that is necessary to remove user space mappings. Unmap
1412 * the pages and send SIGBUS to the processes if the data was dirty.
1413 */
1414static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1415 int flags, struct page *hpage)
1416{
1417 struct folio *folio = page_folio(hpage);
1418 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1419 struct address_space *mapping;
1420 LIST_HEAD(tokill);
1421 bool unmap_success;
1422 int forcekill;
1423 bool mlocked = PageMlocked(hpage);
1424
1425 /*
1426 * Here we are interested only in user-mapped pages, so skip any
1427 * other types of pages.
1428 */
1429 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1430 return true;
1431 if (!(PageLRU(hpage) || PageHuge(p)))
1432 return true;
1433
1434 /*
1435 * This check implies we don't kill processes if their pages
1436 * are in the swap cache early. Those are always late kills.
1437 */
1438 if (!page_mapped(hpage))
1439 return true;
1440
1441 if (PageKsm(p)) {
1442 pr_err("%#lx: can't handle KSM pages.\n", pfn);
1443 return false;
1444 }
1445
1446 if (PageSwapCache(p)) {
1447 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1448 ttu |= TTU_IGNORE_HWPOISON;
1449 }
1450
1451 /*
1452 * Propagate the dirty bit from PTEs to struct page first, because we
1453 * need this to decide if we should kill or just drop the page.
1454 * XXX: the dirty test could be racy: set_page_dirty() may not always
1455 * be called inside page lock (it's recommended but not enforced).
1456 */
1457 mapping = page_mapping(hpage);
1458 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1459 mapping_can_writeback(mapping)) {
1460 if (page_mkclean(hpage)) {
1461 SetPageDirty(hpage);
1462 } else {
1463 ttu |= TTU_IGNORE_HWPOISON;
1464 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1465 pfn);
1466 }
1467 }
1468
1469 /*
1470 * First collect all the processes that have the page
1471 * mapped in dirty form. This has to be done before try_to_unmap,
1472 * because ttu takes the rmap data structures down.
1473 */
1474 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1475
1476 if (PageHuge(hpage) && !PageAnon(hpage)) {
1477 /*
1478 * For hugetlb pages in shared mappings, try_to_unmap
1479 * could potentially call huge_pmd_unshare. Because of
1480 * this, take semaphore in write mode here and set
1481 * TTU_RMAP_LOCKED to indicate we have taken the lock
1482 * at this higher level.
1483 */
1484 mapping = hugetlb_page_mapping_lock_write(hpage);
1485 if (mapping) {
1486 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1487 i_mmap_unlock_write(mapping);
1488 } else
1489 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1490 } else {
1491 try_to_unmap(folio, ttu);
1492 }
1493
1494 unmap_success = !page_mapped(hpage);
1495 if (!unmap_success)
1496 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1497 pfn, page_mapcount(hpage));
1498
1499 /*
1500 * try_to_unmap() might put mlocked page in lru cache, so call
1501 * shake_page() again to ensure that it's flushed.
1502 */
1503 if (mlocked)
1504 shake_page(hpage);
1505
1506 /*
1507 * Now that the dirty bit has been propagated to the
1508 * struct page and all unmaps done we can decide if
1509 * killing is needed or not. Only kill when the page
1510 * was dirty or the process is not restartable,
1511 * otherwise the tokill list is merely
1512 * freed. When there was a problem unmapping earlier
1513 * use a more force-full uncatchable kill to prevent
1514 * any accesses to the poisoned memory.
1515 */
1516 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1517 !unmap_success;
1518 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1519
1520 return unmap_success;
1521}
1522
1523static int identify_page_state(unsigned long pfn, struct page *p,
1524 unsigned long page_flags)
1525{
1526 struct page_state *ps;
1527
1528 /*
1529 * The first check uses the current page flags which may not have any
1530 * relevant information. The second check with the saved page flags is
1531 * carried out only if the first check can't determine the page status.
1532 */
1533 for (ps = error_states;; ps++)
1534 if ((p->flags & ps->mask) == ps->res)
1535 break;
1536
1537 page_flags |= (p->flags & (1UL << PG_dirty));
1538
1539 if (!ps->mask)
1540 for (ps = error_states;; ps++)
1541 if ((page_flags & ps->mask) == ps->res)
1542 break;
1543 return page_action(ps, p, pfn);
1544}
1545
1546static int try_to_split_thp_page(struct page *page)
1547{
1548 int ret;
1549
1550 lock_page(page);
1551 ret = split_huge_page(page);
1552 unlock_page(page);
1553
1554 if (unlikely(ret))
1555 put_page(page);
1556
1557 return ret;
1558}
1559
1560static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1561 struct address_space *mapping, pgoff_t index, int flags)
1562{
1563 struct to_kill *tk;
1564 unsigned long size = 0;
1565
1566 list_for_each_entry(tk, to_kill, nd)
1567 if (tk->size_shift)
1568 size = max(size, 1UL << tk->size_shift);
1569
1570 if (size) {
1571 /*
1572 * Unmap the largest mapping to avoid breaking up device-dax
1573 * mappings which are constant size. The actual size of the
1574 * mapping being torn down is communicated in siginfo, see
1575 * kill_proc()
1576 */
1577 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1578
1579 unmap_mapping_range(mapping, start, size, 0);
1580 }
1581
1582 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1583}
1584
1585static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1586 struct dev_pagemap *pgmap)
1587{
1588 struct page *page = pfn_to_page(pfn);
1589 LIST_HEAD(to_kill);
1590 dax_entry_t cookie;
1591 int rc = 0;
1592
1593 /*
1594 * Pages instantiated by device-dax (not filesystem-dax)
1595 * may be compound pages.
1596 */
1597 page = compound_head(page);
1598
1599 /*
1600 * Prevent the inode from being freed while we are interrogating
1601 * the address_space, typically this would be handled by
1602 * lock_page(), but dax pages do not use the page lock. This
1603 * also prevents changes to the mapping of this pfn until
1604 * poison signaling is complete.
1605 */
1606 cookie = dax_lock_page(page);
1607 if (!cookie)
1608 return -EBUSY;
1609
1610 if (hwpoison_filter(page)) {
1611 rc = -EOPNOTSUPP;
1612 goto unlock;
1613 }
1614
1615 switch (pgmap->type) {
1616 case MEMORY_DEVICE_PRIVATE:
1617 case MEMORY_DEVICE_COHERENT:
1618 /*
1619 * TODO: Handle device pages which may need coordination
1620 * with device-side memory.
1621 */
1622 rc = -ENXIO;
1623 goto unlock;
1624 default:
1625 break;
1626 }
1627
1628 /*
1629 * Use this flag as an indication that the dax page has been
1630 * remapped UC to prevent speculative consumption of poison.
1631 */
1632 SetPageHWPoison(page);
1633
1634 /*
1635 * Unlike System-RAM there is no possibility to swap in a
1636 * different physical page at a given virtual address, so all
1637 * userspace consumption of ZONE_DEVICE memory necessitates
1638 * SIGBUS (i.e. MF_MUST_KILL)
1639 */
1640 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641 collect_procs(page, &to_kill, true);
1642
1643 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1644unlock:
1645 dax_unlock_page(page, cookie);
1646 return rc;
1647}
1648
1649#ifdef CONFIG_FS_DAX
1650/**
1651 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1652 * @mapping: address_space of the file in use
1653 * @index: start pgoff of the range within the file
1654 * @count: length of the range, in unit of PAGE_SIZE
1655 * @mf_flags: memory failure flags
1656 */
1657int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1658 unsigned long count, int mf_flags)
1659{
1660 LIST_HEAD(to_kill);
1661 dax_entry_t cookie;
1662 struct page *page;
1663 size_t end = index + count;
1664
1665 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1666
1667 for (; index < end; index++) {
1668 page = NULL;
1669 cookie = dax_lock_mapping_entry(mapping, index, &page);
1670 if (!cookie)
1671 return -EBUSY;
1672 if (!page)
1673 goto unlock;
1674
1675 SetPageHWPoison(page);
1676
1677 collect_procs_fsdax(page, mapping, index, &to_kill);
1678 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1679 index, mf_flags);
1680unlock:
1681 dax_unlock_mapping_entry(mapping, index, cookie);
1682 }
1683 return 0;
1684}
1685EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1686#endif /* CONFIG_FS_DAX */
1687
1688#ifdef CONFIG_HUGETLB_PAGE
1689/*
1690 * Struct raw_hwp_page represents information about "raw error page",
1691 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1692 */
1693struct raw_hwp_page {
1694 struct llist_node node;
1695 struct page *page;
1696};
1697
1698static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1699{
1700 return (struct llist_head *)&page_folio(hpage)->_hugetlb_hwpoison;
1701}
1702
1703static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1704{
1705 struct llist_head *head;
1706 struct llist_node *t, *tnode;
1707 unsigned long count = 0;
1708
1709 head = raw_hwp_list_head(hpage);
1710 llist_for_each_safe(tnode, t, head->first) {
1711 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1712
1713 if (move_flag)
1714 SetPageHWPoison(p->page);
1715 else
1716 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1717 kfree(p);
1718 count++;
1719 }
1720 llist_del_all(head);
1721 return count;
1722}
1723
1724static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1725{
1726 struct llist_head *head;
1727 struct raw_hwp_page *raw_hwp;
1728 struct llist_node *t, *tnode;
1729 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1730
1731 /*
1732 * Once the hwpoison hugepage has lost reliable raw error info,
1733 * there is little meaning to keep additional error info precisely,
1734 * so skip to add additional raw error info.
1735 */
1736 if (HPageRawHwpUnreliable(hpage))
1737 return -EHWPOISON;
1738 head = raw_hwp_list_head(hpage);
1739 llist_for_each_safe(tnode, t, head->first) {
1740 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1741
1742 if (p->page == page)
1743 return -EHWPOISON;
1744 }
1745
1746 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1747 if (raw_hwp) {
1748 raw_hwp->page = page;
1749 llist_add(&raw_hwp->node, head);
1750 /* the first error event will be counted in action_result(). */
1751 if (ret)
1752 num_poisoned_pages_inc(page_to_pfn(page));
1753 } else {
1754 /*
1755 * Failed to save raw error info. We no longer trace all
1756 * hwpoisoned subpages, and we need refuse to free/dissolve
1757 * this hwpoisoned hugepage.
1758 */
1759 SetHPageRawHwpUnreliable(hpage);
1760 /*
1761 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1762 * used any more, so free it.
1763 */
1764 __free_raw_hwp_pages(hpage, false);
1765 }
1766 return ret;
1767}
1768
1769static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1770{
1771 /*
1772 * HPageVmemmapOptimized hugepages can't be freed because struct
1773 * pages for tail pages are required but they don't exist.
1774 */
1775 if (move_flag && HPageVmemmapOptimized(hpage))
1776 return 0;
1777
1778 /*
1779 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1780 * definition.
1781 */
1782 if (HPageRawHwpUnreliable(hpage))
1783 return 0;
1784
1785 return __free_raw_hwp_pages(hpage, move_flag);
1786}
1787
1788void hugetlb_clear_page_hwpoison(struct page *hpage)
1789{
1790 if (HPageRawHwpUnreliable(hpage))
1791 return;
1792 ClearPageHWPoison(hpage);
1793 free_raw_hwp_pages(hpage, true);
1794}
1795
1796/*
1797 * Called from hugetlb code with hugetlb_lock held.
1798 *
1799 * Return values:
1800 * 0 - free hugepage
1801 * 1 - in-use hugepage
1802 * 2 - not a hugepage
1803 * -EBUSY - the hugepage is busy (try to retry)
1804 * -EHWPOISON - the hugepage is already hwpoisoned
1805 */
1806int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1807 bool *migratable_cleared)
1808{
1809 struct page *page = pfn_to_page(pfn);
1810 struct page *head = compound_head(page);
1811 int ret = 2; /* fallback to normal page handling */
1812 bool count_increased = false;
1813
1814 if (!PageHeadHuge(head))
1815 goto out;
1816
1817 if (flags & MF_COUNT_INCREASED) {
1818 ret = 1;
1819 count_increased = true;
1820 } else if (HPageFreed(head)) {
1821 ret = 0;
1822 } else if (HPageMigratable(head)) {
1823 ret = get_page_unless_zero(head);
1824 if (ret)
1825 count_increased = true;
1826 } else {
1827 ret = -EBUSY;
1828 if (!(flags & MF_NO_RETRY))
1829 goto out;
1830 }
1831
1832 if (hugetlb_set_page_hwpoison(head, page)) {
1833 ret = -EHWPOISON;
1834 goto out;
1835 }
1836
1837 /*
1838 * Clearing HPageMigratable for hwpoisoned hugepages to prevent them
1839 * from being migrated by memory hotremove.
1840 */
1841 if (count_increased && HPageMigratable(head)) {
1842 ClearHPageMigratable(head);
1843 *migratable_cleared = true;
1844 }
1845
1846 return ret;
1847out:
1848 if (count_increased)
1849 put_page(head);
1850 return ret;
1851}
1852
1853/*
1854 * Taking refcount of hugetlb pages needs extra care about race conditions
1855 * with basic operations like hugepage allocation/free/demotion.
1856 * So some of prechecks for hwpoison (pinning, and testing/setting
1857 * PageHWPoison) should be done in single hugetlb_lock range.
1858 */
1859static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1860{
1861 int res;
1862 struct page *p = pfn_to_page(pfn);
1863 struct page *head;
1864 unsigned long page_flags;
1865 bool migratable_cleared = false;
1866
1867 *hugetlb = 1;
1868retry:
1869 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1870 if (res == 2) { /* fallback to normal page handling */
1871 *hugetlb = 0;
1872 return 0;
1873 } else if (res == -EHWPOISON) {
1874 pr_err("%#lx: already hardware poisoned\n", pfn);
1875 if (flags & MF_ACTION_REQUIRED) {
1876 head = compound_head(p);
1877 res = kill_accessing_process(current, page_to_pfn(head), flags);
1878 }
1879 return res;
1880 } else if (res == -EBUSY) {
1881 if (!(flags & MF_NO_RETRY)) {
1882 flags |= MF_NO_RETRY;
1883 goto retry;
1884 }
1885 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1886 }
1887
1888 head = compound_head(p);
1889 lock_page(head);
1890
1891 if (hwpoison_filter(p)) {
1892 hugetlb_clear_page_hwpoison(head);
1893 if (migratable_cleared)
1894 SetHPageMigratable(head);
1895 unlock_page(head);
1896 if (res == 1)
1897 put_page(head);
1898 return -EOPNOTSUPP;
1899 }
1900
1901 /*
1902 * Handling free hugepage. The possible race with hugepage allocation
1903 * or demotion can be prevented by PageHWPoison flag.
1904 */
1905 if (res == 0) {
1906 unlock_page(head);
1907 if (__page_handle_poison(p) >= 0) {
1908 page_ref_inc(p);
1909 res = MF_RECOVERED;
1910 } else {
1911 res = MF_FAILED;
1912 }
1913 return action_result(pfn, MF_MSG_FREE_HUGE, res);
1914 }
1915
1916 page_flags = head->flags;
1917
1918 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1919 unlock_page(head);
1920 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1921 }
1922
1923 return identify_page_state(pfn, p, page_flags);
1924}
1925
1926#else
1927static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1928{
1929 return 0;
1930}
1931
1932static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1933{
1934 return 0;
1935}
1936#endif /* CONFIG_HUGETLB_PAGE */
1937
1938/* Drop the extra refcount in case we come from madvise() */
1939static void put_ref_page(unsigned long pfn, int flags)
1940{
1941 struct page *page;
1942
1943 if (!(flags & MF_COUNT_INCREASED))
1944 return;
1945
1946 page = pfn_to_page(pfn);
1947 if (page)
1948 put_page(page);
1949}
1950
1951static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1952 struct dev_pagemap *pgmap)
1953{
1954 int rc = -ENXIO;
1955
1956 put_ref_page(pfn, flags);
1957
1958 /* device metadata space is not recoverable */
1959 if (!pgmap_pfn_valid(pgmap, pfn))
1960 goto out;
1961
1962 /*
1963 * Call driver's implementation to handle the memory failure, otherwise
1964 * fall back to generic handler.
1965 */
1966 if (pgmap_has_memory_failure(pgmap)) {
1967 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1968 /*
1969 * Fall back to generic handler too if operation is not
1970 * supported inside the driver/device/filesystem.
1971 */
1972 if (rc != -EOPNOTSUPP)
1973 goto out;
1974 }
1975
1976 rc = mf_generic_kill_procs(pfn, flags, pgmap);
1977out:
1978 /* drop pgmap ref acquired in caller */
1979 put_dev_pagemap(pgmap);
1980 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1981 return rc;
1982}
1983
1984static DEFINE_MUTEX(mf_mutex);
1985
1986/**
1987 * memory_failure - Handle memory failure of a page.
1988 * @pfn: Page Number of the corrupted page
1989 * @flags: fine tune action taken
1990 *
1991 * This function is called by the low level machine check code
1992 * of an architecture when it detects hardware memory corruption
1993 * of a page. It tries its best to recover, which includes
1994 * dropping pages, killing processes etc.
1995 *
1996 * The function is primarily of use for corruptions that
1997 * happen outside the current execution context (e.g. when
1998 * detected by a background scrubber)
1999 *
2000 * Must run in process context (e.g. a work queue) with interrupts
2001 * enabled and no spinlocks hold.
2002 *
2003 * Return: 0 for successfully handled the memory error,
2004 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2005 * < 0(except -EOPNOTSUPP) on failure.
2006 */
2007int memory_failure(unsigned long pfn, int flags)
2008{
2009 struct page *p;
2010 struct page *hpage;
2011 struct dev_pagemap *pgmap;
2012 int res = 0;
2013 unsigned long page_flags;
2014 bool retry = true;
2015 int hugetlb = 0;
2016
2017 if (!sysctl_memory_failure_recovery)
2018 panic("Memory failure on page %lx", pfn);
2019
2020 mutex_lock(&mf_mutex);
2021
2022 if (!(flags & MF_SW_SIMULATED))
2023 hw_memory_failure = true;
2024
2025 p = pfn_to_online_page(pfn);
2026 if (!p) {
2027 res = arch_memory_failure(pfn, flags);
2028 if (res == 0)
2029 goto unlock_mutex;
2030
2031 if (pfn_valid(pfn)) {
2032 pgmap = get_dev_pagemap(pfn, NULL);
2033 if (pgmap) {
2034 res = memory_failure_dev_pagemap(pfn, flags,
2035 pgmap);
2036 goto unlock_mutex;
2037 }
2038 }
2039 pr_err("%#lx: memory outside kernel control\n", pfn);
2040 res = -ENXIO;
2041 goto unlock_mutex;
2042 }
2043
2044try_again:
2045 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2046 if (hugetlb)
2047 goto unlock_mutex;
2048
2049 if (TestSetPageHWPoison(p)) {
2050 pr_err("%#lx: already hardware poisoned\n", pfn);
2051 res = -EHWPOISON;
2052 if (flags & MF_ACTION_REQUIRED)
2053 res = kill_accessing_process(current, pfn, flags);
2054 if (flags & MF_COUNT_INCREASED)
2055 put_page(p);
2056 goto unlock_mutex;
2057 }
2058
2059 hpage = compound_head(p);
2060
2061 /*
2062 * We need/can do nothing about count=0 pages.
2063 * 1) it's a free page, and therefore in safe hand:
2064 * check_new_page() will be the gate keeper.
2065 * 2) it's part of a non-compound high order page.
2066 * Implies some kernel user: cannot stop them from
2067 * R/W the page; let's pray that the page has been
2068 * used and will be freed some time later.
2069 * In fact it's dangerous to directly bump up page count from 0,
2070 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2071 */
2072 if (!(flags & MF_COUNT_INCREASED)) {
2073 res = get_hwpoison_page(p, flags);
2074 if (!res) {
2075 if (is_free_buddy_page(p)) {
2076 if (take_page_off_buddy(p)) {
2077 page_ref_inc(p);
2078 res = MF_RECOVERED;
2079 } else {
2080 /* We lost the race, try again */
2081 if (retry) {
2082 ClearPageHWPoison(p);
2083 retry = false;
2084 goto try_again;
2085 }
2086 res = MF_FAILED;
2087 }
2088 res = action_result(pfn, MF_MSG_BUDDY, res);
2089 } else {
2090 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2091 }
2092 goto unlock_mutex;
2093 } else if (res < 0) {
2094 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2095 goto unlock_mutex;
2096 }
2097 }
2098
2099 if (PageTransHuge(hpage)) {
2100 /*
2101 * The flag must be set after the refcount is bumped
2102 * otherwise it may race with THP split.
2103 * And the flag can't be set in get_hwpoison_page() since
2104 * it is called by soft offline too and it is just called
2105 * for !MF_COUNT_INCREASE. So here seems to be the best
2106 * place.
2107 *
2108 * Don't need care about the above error handling paths for
2109 * get_hwpoison_page() since they handle either free page
2110 * or unhandlable page. The refcount is bumped iff the
2111 * page is a valid handlable page.
2112 */
2113 SetPageHasHWPoisoned(hpage);
2114 if (try_to_split_thp_page(p) < 0) {
2115 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2116 goto unlock_mutex;
2117 }
2118 VM_BUG_ON_PAGE(!page_count(p), p);
2119 }
2120
2121 /*
2122 * We ignore non-LRU pages for good reasons.
2123 * - PG_locked is only well defined for LRU pages and a few others
2124 * - to avoid races with __SetPageLocked()
2125 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2126 * The check (unnecessarily) ignores LRU pages being isolated and
2127 * walked by the page reclaim code, however that's not a big loss.
2128 */
2129 shake_page(p);
2130
2131 lock_page(p);
2132
2133 /*
2134 * We're only intended to deal with the non-Compound page here.
2135 * However, the page could have changed compound pages due to
2136 * race window. If this happens, we could try again to hopefully
2137 * handle the page next round.
2138 */
2139 if (PageCompound(p)) {
2140 if (retry) {
2141 ClearPageHWPoison(p);
2142 unlock_page(p);
2143 put_page(p);
2144 flags &= ~MF_COUNT_INCREASED;
2145 retry = false;
2146 goto try_again;
2147 }
2148 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2149 goto unlock_page;
2150 }
2151
2152 /*
2153 * We use page flags to determine what action should be taken, but
2154 * the flags can be modified by the error containment action. One
2155 * example is an mlocked page, where PG_mlocked is cleared by
2156 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2157 * correctly, we save a copy of the page flags at this time.
2158 */
2159 page_flags = p->flags;
2160
2161 if (hwpoison_filter(p)) {
2162 ClearPageHWPoison(p);
2163 unlock_page(p);
2164 put_page(p);
2165 res = -EOPNOTSUPP;
2166 goto unlock_mutex;
2167 }
2168
2169 /*
2170 * __munlock_pagevec may clear a writeback page's LRU flag without
2171 * page_lock. We need wait writeback completion for this page or it
2172 * may trigger vfs BUG while evict inode.
2173 */
2174 if (!PageLRU(p) && !PageWriteback(p))
2175 goto identify_page_state;
2176
2177 /*
2178 * It's very difficult to mess with pages currently under IO
2179 * and in many cases impossible, so we just avoid it here.
2180 */
2181 wait_on_page_writeback(p);
2182
2183 /*
2184 * Now take care of user space mappings.
2185 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2186 */
2187 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2188 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2189 goto unlock_page;
2190 }
2191
2192 /*
2193 * Torn down by someone else?
2194 */
2195 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2196 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2197 goto unlock_page;
2198 }
2199
2200identify_page_state:
2201 res = identify_page_state(pfn, p, page_flags);
2202 mutex_unlock(&mf_mutex);
2203 return res;
2204unlock_page:
2205 unlock_page(p);
2206unlock_mutex:
2207 mutex_unlock(&mf_mutex);
2208 return res;
2209}
2210EXPORT_SYMBOL_GPL(memory_failure);
2211
2212#define MEMORY_FAILURE_FIFO_ORDER 4
2213#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2214
2215struct memory_failure_entry {
2216 unsigned long pfn;
2217 int flags;
2218};
2219
2220struct memory_failure_cpu {
2221 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2222 MEMORY_FAILURE_FIFO_SIZE);
2223 spinlock_t lock;
2224 struct work_struct work;
2225};
2226
2227static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2228
2229/**
2230 * memory_failure_queue - Schedule handling memory failure of a page.
2231 * @pfn: Page Number of the corrupted page
2232 * @flags: Flags for memory failure handling
2233 *
2234 * This function is called by the low level hardware error handler
2235 * when it detects hardware memory corruption of a page. It schedules
2236 * the recovering of error page, including dropping pages, killing
2237 * processes etc.
2238 *
2239 * The function is primarily of use for corruptions that
2240 * happen outside the current execution context (e.g. when
2241 * detected by a background scrubber)
2242 *
2243 * Can run in IRQ context.
2244 */
2245void memory_failure_queue(unsigned long pfn, int flags)
2246{
2247 struct memory_failure_cpu *mf_cpu;
2248 unsigned long proc_flags;
2249 struct memory_failure_entry entry = {
2250 .pfn = pfn,
2251 .flags = flags,
2252 };
2253
2254 mf_cpu = &get_cpu_var(memory_failure_cpu);
2255 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2256 if (kfifo_put(&mf_cpu->fifo, entry))
2257 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2258 else
2259 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2260 pfn);
2261 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2262 put_cpu_var(memory_failure_cpu);
2263}
2264EXPORT_SYMBOL_GPL(memory_failure_queue);
2265
2266static void memory_failure_work_func(struct work_struct *work)
2267{
2268 struct memory_failure_cpu *mf_cpu;
2269 struct memory_failure_entry entry = { 0, };
2270 unsigned long proc_flags;
2271 int gotten;
2272
2273 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2274 for (;;) {
2275 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2276 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2277 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2278 if (!gotten)
2279 break;
2280 if (entry.flags & MF_SOFT_OFFLINE)
2281 soft_offline_page(entry.pfn, entry.flags);
2282 else
2283 memory_failure(entry.pfn, entry.flags);
2284 }
2285}
2286
2287/*
2288 * Process memory_failure work queued on the specified CPU.
2289 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2290 */
2291void memory_failure_queue_kick(int cpu)
2292{
2293 struct memory_failure_cpu *mf_cpu;
2294
2295 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2296 cancel_work_sync(&mf_cpu->work);
2297 memory_failure_work_func(&mf_cpu->work);
2298}
2299
2300static int __init memory_failure_init(void)
2301{
2302 struct memory_failure_cpu *mf_cpu;
2303 int cpu;
2304
2305 for_each_possible_cpu(cpu) {
2306 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2307 spin_lock_init(&mf_cpu->lock);
2308 INIT_KFIFO(mf_cpu->fifo);
2309 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2310 }
2311
2312 return 0;
2313}
2314core_initcall(memory_failure_init);
2315
2316#undef pr_fmt
2317#define pr_fmt(fmt) "" fmt
2318#define unpoison_pr_info(fmt, pfn, rs) \
2319({ \
2320 if (__ratelimit(rs)) \
2321 pr_info(fmt, pfn); \
2322})
2323
2324/**
2325 * unpoison_memory - Unpoison a previously poisoned page
2326 * @pfn: Page number of the to be unpoisoned page
2327 *
2328 * Software-unpoison a page that has been poisoned by
2329 * memory_failure() earlier.
2330 *
2331 * This is only done on the software-level, so it only works
2332 * for linux injected failures, not real hardware failures
2333 *
2334 * Returns 0 for success, otherwise -errno.
2335 */
2336int unpoison_memory(unsigned long pfn)
2337{
2338 struct page *page;
2339 struct page *p;
2340 int ret = -EBUSY;
2341 unsigned long count = 1;
2342 bool huge = false;
2343 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2344 DEFAULT_RATELIMIT_BURST);
2345
2346 if (!pfn_valid(pfn))
2347 return -ENXIO;
2348
2349 p = pfn_to_page(pfn);
2350 page = compound_head(p);
2351
2352 mutex_lock(&mf_mutex);
2353
2354 if (hw_memory_failure) {
2355 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2356 pfn, &unpoison_rs);
2357 ret = -EOPNOTSUPP;
2358 goto unlock_mutex;
2359 }
2360
2361 if (!PageHWPoison(p)) {
2362 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2363 pfn, &unpoison_rs);
2364 goto unlock_mutex;
2365 }
2366
2367 if (page_count(page) > 1) {
2368 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2369 pfn, &unpoison_rs);
2370 goto unlock_mutex;
2371 }
2372
2373 if (page_mapped(page)) {
2374 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2375 pfn, &unpoison_rs);
2376 goto unlock_mutex;
2377 }
2378
2379 if (page_mapping(page)) {
2380 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2381 pfn, &unpoison_rs);
2382 goto unlock_mutex;
2383 }
2384
2385 if (PageSlab(page) || PageTable(page) || PageReserved(page))
2386 goto unlock_mutex;
2387
2388 ret = get_hwpoison_page(p, MF_UNPOISON);
2389 if (!ret) {
2390 if (PageHuge(p)) {
2391 huge = true;
2392 count = free_raw_hwp_pages(page, false);
2393 if (count == 0) {
2394 ret = -EBUSY;
2395 goto unlock_mutex;
2396 }
2397 }
2398 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2399 } else if (ret < 0) {
2400 if (ret == -EHWPOISON) {
2401 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2402 } else
2403 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2404 pfn, &unpoison_rs);
2405 } else {
2406 if (PageHuge(p)) {
2407 huge = true;
2408 count = free_raw_hwp_pages(page, false);
2409 if (count == 0) {
2410 ret = -EBUSY;
2411 put_page(page);
2412 goto unlock_mutex;
2413 }
2414 }
2415
2416 put_page(page);
2417 if (TestClearPageHWPoison(p)) {
2418 put_page(page);
2419 ret = 0;
2420 }
2421 }
2422
2423unlock_mutex:
2424 mutex_unlock(&mf_mutex);
2425 if (!ret) {
2426 if (!huge)
2427 num_poisoned_pages_sub(pfn, 1);
2428 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2429 page_to_pfn(p), &unpoison_rs);
2430 }
2431 return ret;
2432}
2433EXPORT_SYMBOL(unpoison_memory);
2434
2435static bool isolate_page(struct page *page, struct list_head *pagelist)
2436{
2437 bool isolated = false;
2438
2439 if (PageHuge(page)) {
2440 isolated = !isolate_hugetlb(page, pagelist);
2441 } else {
2442 bool lru = !__PageMovable(page);
2443
2444 if (lru)
2445 isolated = !isolate_lru_page(page);
2446 else
2447 isolated = !isolate_movable_page(page,
2448 ISOLATE_UNEVICTABLE);
2449
2450 if (isolated) {
2451 list_add(&page->lru, pagelist);
2452 if (lru)
2453 inc_node_page_state(page, NR_ISOLATED_ANON +
2454 page_is_file_lru(page));
2455 }
2456 }
2457
2458 /*
2459 * If we succeed to isolate the page, we grabbed another refcount on
2460 * the page, so we can safely drop the one we got from get_any_pages().
2461 * If we failed to isolate the page, it means that we cannot go further
2462 * and we will return an error, so drop the reference we got from
2463 * get_any_pages() as well.
2464 */
2465 put_page(page);
2466 return isolated;
2467}
2468
2469/*
2470 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2471 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2472 * If the page is mapped, it migrates the contents over.
2473 */
2474static int soft_offline_in_use_page(struct page *page)
2475{
2476 long ret = 0;
2477 unsigned long pfn = page_to_pfn(page);
2478 struct page *hpage = compound_head(page);
2479 char const *msg_page[] = {"page", "hugepage"};
2480 bool huge = PageHuge(page);
2481 LIST_HEAD(pagelist);
2482 struct migration_target_control mtc = {
2483 .nid = NUMA_NO_NODE,
2484 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2485 };
2486
2487 if (!huge && PageTransHuge(hpage)) {
2488 if (try_to_split_thp_page(page)) {
2489 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2490 return -EBUSY;
2491 }
2492 hpage = page;
2493 }
2494
2495 lock_page(page);
2496 if (!PageHuge(page))
2497 wait_on_page_writeback(page);
2498 if (PageHWPoison(page)) {
2499 unlock_page(page);
2500 put_page(page);
2501 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2502 return 0;
2503 }
2504
2505 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2506 /*
2507 * Try to invalidate first. This should work for
2508 * non dirty unmapped page cache pages.
2509 */
2510 ret = invalidate_inode_page(page);
2511 unlock_page(page);
2512
2513 if (ret) {
2514 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2515 page_handle_poison(page, false, true);
2516 return 0;
2517 }
2518
2519 if (isolate_page(hpage, &pagelist)) {
2520 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2521 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2522 if (!ret) {
2523 bool release = !huge;
2524
2525 if (!page_handle_poison(page, huge, release))
2526 ret = -EBUSY;
2527 } else {
2528 if (!list_empty(&pagelist))
2529 putback_movable_pages(&pagelist);
2530
2531 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2532 pfn, msg_page[huge], ret, &page->flags);
2533 if (ret > 0)
2534 ret = -EBUSY;
2535 }
2536 } else {
2537 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2538 pfn, msg_page[huge], page_count(page), &page->flags);
2539 ret = -EBUSY;
2540 }
2541 return ret;
2542}
2543
2544/**
2545 * soft_offline_page - Soft offline a page.
2546 * @pfn: pfn to soft-offline
2547 * @flags: flags. Same as memory_failure().
2548 *
2549 * Returns 0 on success
2550 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2551 * < 0 otherwise negated errno.
2552 *
2553 * Soft offline a page, by migration or invalidation,
2554 * without killing anything. This is for the case when
2555 * a page is not corrupted yet (so it's still valid to access),
2556 * but has had a number of corrected errors and is better taken
2557 * out.
2558 *
2559 * The actual policy on when to do that is maintained by
2560 * user space.
2561 *
2562 * This should never impact any application or cause data loss,
2563 * however it might take some time.
2564 *
2565 * This is not a 100% solution for all memory, but tries to be
2566 * ``good enough'' for the majority of memory.
2567 */
2568int soft_offline_page(unsigned long pfn, int flags)
2569{
2570 int ret;
2571 bool try_again = true;
2572 struct page *page;
2573
2574 if (!pfn_valid(pfn)) {
2575 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2576 return -ENXIO;
2577 }
2578
2579 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2580 page = pfn_to_online_page(pfn);
2581 if (!page) {
2582 put_ref_page(pfn, flags);
2583 return -EIO;
2584 }
2585
2586 mutex_lock(&mf_mutex);
2587
2588 if (PageHWPoison(page)) {
2589 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2590 put_ref_page(pfn, flags);
2591 mutex_unlock(&mf_mutex);
2592 return 0;
2593 }
2594
2595retry:
2596 get_online_mems();
2597 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2598 put_online_mems();
2599
2600 if (hwpoison_filter(page)) {
2601 if (ret > 0)
2602 put_page(page);
2603
2604 mutex_unlock(&mf_mutex);
2605 return -EOPNOTSUPP;
2606 }
2607
2608 if (ret > 0) {
2609 ret = soft_offline_in_use_page(page);
2610 } else if (ret == 0) {
2611 if (!page_handle_poison(page, true, false) && try_again) {
2612 try_again = false;
2613 flags &= ~MF_COUNT_INCREASED;
2614 goto retry;
2615 }
2616 }
2617
2618 mutex_unlock(&mf_mutex);
2619
2620 return ret;
2621}