Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
5 *
6 * Copyright (C) IBM Corporation, 2002, 2004
7 *
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
20 */
21#include <linux/kprobes.h>
22#include <linux/hash.h>
23#include <linux/init.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
26#include <linux/export.h>
27#include <linux/moduleloader.h>
28#include <linux/kallsyms.h>
29#include <linux/freezer.h>
30#include <linux/seq_file.h>
31#include <linux/debugfs.h>
32#include <linux/sysctl.h>
33#include <linux/kdebug.h>
34#include <linux/memory.h>
35#include <linux/ftrace.h>
36#include <linux/cpu.h>
37#include <linux/jump_label.h>
38#include <linux/static_call.h>
39#include <linux/perf_event.h>
40
41#include <asm/sections.h>
42#include <asm/cacheflush.h>
43#include <asm/errno.h>
44#include <linux/uaccess.h>
45
46#define KPROBE_HASH_BITS 6
47#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50static int kprobes_initialized;
51/* kprobe_table can be accessed by
52 * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53 * Or
54 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55 */
56static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58/* NOTE: change this value only with kprobe_mutex held */
59static bool kprobes_all_disarmed;
60
61/* This protects kprobe_table and optimizing_list */
62static DEFINE_MUTEX(kprobe_mutex);
63static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 unsigned int __unused)
67{
68 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69}
70
71/* Blacklist -- list of struct kprobe_blacklist_entry */
72static LIST_HEAD(kprobe_blacklist);
73
74#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75/*
76 * kprobe->ainsn.insn points to the copy of the instruction to be
77 * single-stepped. x86_64, POWER4 and above have no-exec support and
78 * stepping on the instruction on a vmalloced/kmalloced/data page
79 * is a recipe for disaster
80 */
81struct kprobe_insn_page {
82 struct list_head list;
83 kprobe_opcode_t *insns; /* Page of instruction slots */
84 struct kprobe_insn_cache *cache;
85 int nused;
86 int ngarbage;
87 char slot_used[];
88};
89
90#define KPROBE_INSN_PAGE_SIZE(slots) \
91 (offsetof(struct kprobe_insn_page, slot_used) + \
92 (sizeof(char) * (slots)))
93
94static int slots_per_page(struct kprobe_insn_cache *c)
95{
96 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97}
98
99enum kprobe_slot_state {
100 SLOT_CLEAN = 0,
101 SLOT_DIRTY = 1,
102 SLOT_USED = 2,
103};
104
105void __weak *alloc_insn_page(void)
106{
107 return module_alloc(PAGE_SIZE);
108}
109
110static void free_insn_page(void *page)
111{
112 module_memfree(page);
113}
114
115struct kprobe_insn_cache kprobe_insn_slots = {
116 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 .alloc = alloc_insn_page,
118 .free = free_insn_page,
119 .sym = KPROBE_INSN_PAGE_SYM,
120 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 .insn_size = MAX_INSN_SIZE,
122 .nr_garbage = 0,
123};
124static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126/**
127 * __get_insn_slot() - Find a slot on an executable page for an instruction.
128 * We allocate an executable page if there's no room on existing ones.
129 */
130kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131{
132 struct kprobe_insn_page *kip;
133 kprobe_opcode_t *slot = NULL;
134
135 /* Since the slot array is not protected by rcu, we need a mutex */
136 mutex_lock(&c->mutex);
137 retry:
138 rcu_read_lock();
139 list_for_each_entry_rcu(kip, &c->pages, list) {
140 if (kip->nused < slots_per_page(c)) {
141 int i;
142 for (i = 0; i < slots_per_page(c); i++) {
143 if (kip->slot_used[i] == SLOT_CLEAN) {
144 kip->slot_used[i] = SLOT_USED;
145 kip->nused++;
146 slot = kip->insns + (i * c->insn_size);
147 rcu_read_unlock();
148 goto out;
149 }
150 }
151 /* kip->nused is broken. Fix it. */
152 kip->nused = slots_per_page(c);
153 WARN_ON(1);
154 }
155 }
156 rcu_read_unlock();
157
158 /* If there are any garbage slots, collect it and try again. */
159 if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 goto retry;
161
162 /* All out of space. Need to allocate a new page. */
163 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 if (!kip)
165 goto out;
166
167 /*
168 * Use module_alloc so this page is within +/- 2GB of where the
169 * kernel image and loaded module images reside. This is required
170 * so x86_64 can correctly handle the %rip-relative fixups.
171 */
172 kip->insns = c->alloc();
173 if (!kip->insns) {
174 kfree(kip);
175 goto out;
176 }
177 INIT_LIST_HEAD(&kip->list);
178 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 kip->slot_used[0] = SLOT_USED;
180 kip->nused = 1;
181 kip->ngarbage = 0;
182 kip->cache = c;
183 list_add_rcu(&kip->list, &c->pages);
184 slot = kip->insns;
185
186 /* Record the perf ksymbol register event after adding the page */
187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 PAGE_SIZE, false, c->sym);
189out:
190 mutex_unlock(&c->mutex);
191 return slot;
192}
193
194/* Return 1 if all garbages are collected, otherwise 0. */
195static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196{
197 kip->slot_used[idx] = SLOT_CLEAN;
198 kip->nused--;
199 if (kip->nused == 0) {
200 /*
201 * Page is no longer in use. Free it unless
202 * it's the last one. We keep the last one
203 * so as not to have to set it up again the
204 * next time somebody inserts a probe.
205 */
206 if (!list_is_singular(&kip->list)) {
207 /*
208 * Record perf ksymbol unregister event before removing
209 * the page.
210 */
211 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 (unsigned long)kip->insns, PAGE_SIZE, true,
213 kip->cache->sym);
214 list_del_rcu(&kip->list);
215 synchronize_rcu();
216 kip->cache->free(kip->insns);
217 kfree(kip);
218 }
219 return 1;
220 }
221 return 0;
222}
223
224static int collect_garbage_slots(struct kprobe_insn_cache *c)
225{
226 struct kprobe_insn_page *kip, *next;
227
228 /* Ensure no-one is interrupted on the garbages */
229 synchronize_rcu();
230
231 list_for_each_entry_safe(kip, next, &c->pages, list) {
232 int i;
233 if (kip->ngarbage == 0)
234 continue;
235 kip->ngarbage = 0; /* we will collect all garbages */
236 for (i = 0; i < slots_per_page(c); i++) {
237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 break;
239 }
240 }
241 c->nr_garbage = 0;
242 return 0;
243}
244
245void __free_insn_slot(struct kprobe_insn_cache *c,
246 kprobe_opcode_t *slot, int dirty)
247{
248 struct kprobe_insn_page *kip;
249 long idx;
250
251 mutex_lock(&c->mutex);
252 rcu_read_lock();
253 list_for_each_entry_rcu(kip, &c->pages, list) {
254 idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c))
257 goto out;
258 }
259 /* Could not find this slot. */
260 WARN_ON(1);
261 kip = NULL;
262out:
263 rcu_read_unlock();
264 /* Mark and sweep: this may sleep */
265 if (kip) {
266 /* Check double free */
267 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 if (dirty) {
269 kip->slot_used[idx] = SLOT_DIRTY;
270 kip->ngarbage++;
271 if (++c->nr_garbage > slots_per_page(c))
272 collect_garbage_slots(c);
273 } else {
274 collect_one_slot(kip, idx);
275 }
276 }
277 mutex_unlock(&c->mutex);
278}
279
280/*
281 * Check given address is on the page of kprobe instruction slots.
282 * This will be used for checking whether the address on a stack
283 * is on a text area or not.
284 */
285bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286{
287 struct kprobe_insn_page *kip;
288 bool ret = false;
289
290 rcu_read_lock();
291 list_for_each_entry_rcu(kip, &c->pages, list) {
292 if (addr >= (unsigned long)kip->insns &&
293 addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 ret = true;
295 break;
296 }
297 }
298 rcu_read_unlock();
299
300 return ret;
301}
302
303int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 unsigned long *value, char *type, char *sym)
305{
306 struct kprobe_insn_page *kip;
307 int ret = -ERANGE;
308
309 rcu_read_lock();
310 list_for_each_entry_rcu(kip, &c->pages, list) {
311 if ((*symnum)--)
312 continue;
313 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 *type = 't';
315 *value = (unsigned long)kip->insns;
316 ret = 0;
317 break;
318 }
319 rcu_read_unlock();
320
321 return ret;
322}
323
324#ifdef CONFIG_OPTPROBES
325void __weak *alloc_optinsn_page(void)
326{
327 return alloc_insn_page();
328}
329
330void __weak free_optinsn_page(void *page)
331{
332 free_insn_page(page);
333}
334
335/* For optimized_kprobe buffer */
336struct kprobe_insn_cache kprobe_optinsn_slots = {
337 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 .alloc = alloc_optinsn_page,
339 .free = free_optinsn_page,
340 .sym = KPROBE_OPTINSN_PAGE_SYM,
341 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 /* .insn_size is initialized later */
343 .nr_garbage = 0,
344};
345#endif
346#endif
347
348/* We have preemption disabled.. so it is safe to use __ versions */
349static inline void set_kprobe_instance(struct kprobe *kp)
350{
351 __this_cpu_write(kprobe_instance, kp);
352}
353
354static inline void reset_kprobe_instance(void)
355{
356 __this_cpu_write(kprobe_instance, NULL);
357}
358
359/*
360 * This routine is called either:
361 * - under the kprobe_mutex - during kprobe_[un]register()
362 * OR
363 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
364 */
365struct kprobe *get_kprobe(void *addr)
366{
367 struct hlist_head *head;
368 struct kprobe *p;
369
370 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 hlist_for_each_entry_rcu(p, head, hlist,
372 lockdep_is_held(&kprobe_mutex)) {
373 if (p->addr == addr)
374 return p;
375 }
376
377 return NULL;
378}
379NOKPROBE_SYMBOL(get_kprobe);
380
381static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382
383/* Return true if the kprobe is an aggregator */
384static inline int kprobe_aggrprobe(struct kprobe *p)
385{
386 return p->pre_handler == aggr_pre_handler;
387}
388
389/* Return true(!0) if the kprobe is unused */
390static inline int kprobe_unused(struct kprobe *p)
391{
392 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 list_empty(&p->list);
394}
395
396/*
397 * Keep all fields in the kprobe consistent
398 */
399static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400{
401 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403}
404
405#ifdef CONFIG_OPTPROBES
406/* NOTE: change this value only with kprobe_mutex held */
407static bool kprobes_allow_optimization;
408
409/*
410 * Call all pre_handler on the list, but ignores its return value.
411 * This must be called from arch-dep optimized caller.
412 */
413void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414{
415 struct kprobe *kp;
416
417 list_for_each_entry_rcu(kp, &p->list, list) {
418 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 set_kprobe_instance(kp);
420 kp->pre_handler(kp, regs);
421 }
422 reset_kprobe_instance();
423 }
424}
425NOKPROBE_SYMBOL(opt_pre_handler);
426
427/* Free optimized instructions and optimized_kprobe */
428static void free_aggr_kprobe(struct kprobe *p)
429{
430 struct optimized_kprobe *op;
431
432 op = container_of(p, struct optimized_kprobe, kp);
433 arch_remove_optimized_kprobe(op);
434 arch_remove_kprobe(p);
435 kfree(op);
436}
437
438/* Return true(!0) if the kprobe is ready for optimization. */
439static inline int kprobe_optready(struct kprobe *p)
440{
441 struct optimized_kprobe *op;
442
443 if (kprobe_aggrprobe(p)) {
444 op = container_of(p, struct optimized_kprobe, kp);
445 return arch_prepared_optinsn(&op->optinsn);
446 }
447
448 return 0;
449}
450
451/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452static inline int kprobe_disarmed(struct kprobe *p)
453{
454 struct optimized_kprobe *op;
455
456 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 if (!kprobe_aggrprobe(p))
458 return kprobe_disabled(p);
459
460 op = container_of(p, struct optimized_kprobe, kp);
461
462 return kprobe_disabled(p) && list_empty(&op->list);
463}
464
465/* Return true(!0) if the probe is queued on (un)optimizing lists */
466static int kprobe_queued(struct kprobe *p)
467{
468 struct optimized_kprobe *op;
469
470 if (kprobe_aggrprobe(p)) {
471 op = container_of(p, struct optimized_kprobe, kp);
472 if (!list_empty(&op->list))
473 return 1;
474 }
475 return 0;
476}
477
478/*
479 * Return an optimized kprobe whose optimizing code replaces
480 * instructions including addr (exclude breakpoint).
481 */
482static struct kprobe *get_optimized_kprobe(unsigned long addr)
483{
484 int i;
485 struct kprobe *p = NULL;
486 struct optimized_kprobe *op;
487
488 /* Don't check i == 0, since that is a breakpoint case. */
489 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 p = get_kprobe((void *)(addr - i));
491
492 if (p && kprobe_optready(p)) {
493 op = container_of(p, struct optimized_kprobe, kp);
494 if (arch_within_optimized_kprobe(op, addr))
495 return p;
496 }
497
498 return NULL;
499}
500
501/* Optimization staging list, protected by kprobe_mutex */
502static LIST_HEAD(optimizing_list);
503static LIST_HEAD(unoptimizing_list);
504static LIST_HEAD(freeing_list);
505
506static void kprobe_optimizer(struct work_struct *work);
507static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508#define OPTIMIZE_DELAY 5
509
510/*
511 * Optimize (replace a breakpoint with a jump) kprobes listed on
512 * optimizing_list.
513 */
514static void do_optimize_kprobes(void)
515{
516 lockdep_assert_held(&text_mutex);
517 /*
518 * The optimization/unoptimization refers online_cpus via
519 * stop_machine() and cpu-hotplug modifies online_cpus.
520 * And same time, text_mutex will be held in cpu-hotplug and here.
521 * This combination can cause a deadlock (cpu-hotplug try to lock
522 * text_mutex but stop_machine can not be done because online_cpus
523 * has been changed)
524 * To avoid this deadlock, caller must have locked cpu hotplug
525 * for preventing cpu-hotplug outside of text_mutex locking.
526 */
527 lockdep_assert_cpus_held();
528
529 /* Optimization never be done when disarmed */
530 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 list_empty(&optimizing_list))
532 return;
533
534 arch_optimize_kprobes(&optimizing_list);
535}
536
537/*
538 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539 * if need) kprobes listed on unoptimizing_list.
540 */
541static void do_unoptimize_kprobes(void)
542{
543 struct optimized_kprobe *op, *tmp;
544
545 lockdep_assert_held(&text_mutex);
546 /* See comment in do_optimize_kprobes() */
547 lockdep_assert_cpus_held();
548
549 /* Unoptimization must be done anytime */
550 if (list_empty(&unoptimizing_list))
551 return;
552
553 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 /* Loop free_list for disarming */
555 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 /* Switching from detour code to origin */
557 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 /* Disarm probes if marked disabled */
559 if (kprobe_disabled(&op->kp))
560 arch_disarm_kprobe(&op->kp);
561 if (kprobe_unused(&op->kp)) {
562 /*
563 * Remove unused probes from hash list. After waiting
564 * for synchronization, these probes are reclaimed.
565 * (reclaiming is done by do_free_cleaned_kprobes.)
566 */
567 hlist_del_rcu(&op->kp.hlist);
568 } else
569 list_del_init(&op->list);
570 }
571}
572
573/* Reclaim all kprobes on the free_list */
574static void do_free_cleaned_kprobes(void)
575{
576 struct optimized_kprobe *op, *tmp;
577
578 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 list_del_init(&op->list);
580 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 /*
582 * This must not happen, but if there is a kprobe
583 * still in use, keep it on kprobes hash list.
584 */
585 continue;
586 }
587 free_aggr_kprobe(&op->kp);
588 }
589}
590
591/* Start optimizer after OPTIMIZE_DELAY passed */
592static void kick_kprobe_optimizer(void)
593{
594 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595}
596
597/* Kprobe jump optimizer */
598static void kprobe_optimizer(struct work_struct *work)
599{
600 mutex_lock(&kprobe_mutex);
601 cpus_read_lock();
602 mutex_lock(&text_mutex);
603
604 /*
605 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 * kprobes before waiting for quiesence period.
607 */
608 do_unoptimize_kprobes();
609
610 /*
611 * Step 2: Wait for quiesence period to ensure all potentially
612 * preempted tasks to have normally scheduled. Because optprobe
613 * may modify multiple instructions, there is a chance that Nth
614 * instruction is preempted. In that case, such tasks can return
615 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 * Note that on non-preemptive kernel, this is transparently converted
617 * to synchronoze_sched() to wait for all interrupts to have completed.
618 */
619 synchronize_rcu_tasks();
620
621 /* Step 3: Optimize kprobes after quiesence period */
622 do_optimize_kprobes();
623
624 /* Step 4: Free cleaned kprobes after quiesence period */
625 do_free_cleaned_kprobes();
626
627 mutex_unlock(&text_mutex);
628 cpus_read_unlock();
629
630 /* Step 5: Kick optimizer again if needed */
631 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 kick_kprobe_optimizer();
633
634 mutex_unlock(&kprobe_mutex);
635}
636
637/* Wait for completing optimization and unoptimization */
638void wait_for_kprobe_optimizer(void)
639{
640 mutex_lock(&kprobe_mutex);
641
642 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 mutex_unlock(&kprobe_mutex);
644
645 /* this will also make optimizing_work execute immmediately */
646 flush_delayed_work(&optimizing_work);
647 /* @optimizing_work might not have been queued yet, relax */
648 cpu_relax();
649
650 mutex_lock(&kprobe_mutex);
651 }
652
653 mutex_unlock(&kprobe_mutex);
654}
655
656static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657{
658 struct optimized_kprobe *_op;
659
660 list_for_each_entry(_op, &unoptimizing_list, list) {
661 if (op == _op)
662 return true;
663 }
664
665 return false;
666}
667
668/* Optimize kprobe if p is ready to be optimized */
669static void optimize_kprobe(struct kprobe *p)
670{
671 struct optimized_kprobe *op;
672
673 /* Check if the kprobe is disabled or not ready for optimization. */
674 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 (kprobe_disabled(p) || kprobes_all_disarmed))
676 return;
677
678 /* kprobes with post_handler can not be optimized */
679 if (p->post_handler)
680 return;
681
682 op = container_of(p, struct optimized_kprobe, kp);
683
684 /* Check there is no other kprobes at the optimized instructions */
685 if (arch_check_optimized_kprobe(op) < 0)
686 return;
687
688 /* Check if it is already optimized. */
689 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 if (optprobe_queued_unopt(op)) {
691 /* This is under unoptimizing. Just dequeue the probe */
692 list_del_init(&op->list);
693 }
694 return;
695 }
696 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697
698 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 if (WARN_ON_ONCE(!list_empty(&op->list)))
700 return;
701
702 list_add(&op->list, &optimizing_list);
703 kick_kprobe_optimizer();
704}
705
706/* Short cut to direct unoptimizing */
707static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708{
709 lockdep_assert_cpus_held();
710 arch_unoptimize_kprobe(op);
711 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712}
713
714/* Unoptimize a kprobe if p is optimized */
715static void unoptimize_kprobe(struct kprobe *p, bool force)
716{
717 struct optimized_kprobe *op;
718
719 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 return; /* This is not an optprobe nor optimized */
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 if (!kprobe_optimized(p))
724 return;
725
726 if (!list_empty(&op->list)) {
727 if (optprobe_queued_unopt(op)) {
728 /* Queued in unoptimizing queue */
729 if (force) {
730 /*
731 * Forcibly unoptimize the kprobe here, and queue it
732 * in the freeing list for release afterwards.
733 */
734 force_unoptimize_kprobe(op);
735 list_move(&op->list, &freeing_list);
736 }
737 } else {
738 /* Dequeue from the optimizing queue */
739 list_del_init(&op->list);
740 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 }
742 return;
743 }
744
745 /* Optimized kprobe case */
746 if (force) {
747 /* Forcibly update the code: this is a special case */
748 force_unoptimize_kprobe(op);
749 } else {
750 list_add(&op->list, &unoptimizing_list);
751 kick_kprobe_optimizer();
752 }
753}
754
755/* Cancel unoptimizing for reusing */
756static int reuse_unused_kprobe(struct kprobe *ap)
757{
758 struct optimized_kprobe *op;
759
760 /*
761 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 * there is still a relative jump) and disabled.
763 */
764 op = container_of(ap, struct optimized_kprobe, kp);
765 WARN_ON_ONCE(list_empty(&op->list));
766 /* Enable the probe again */
767 ap->flags &= ~KPROBE_FLAG_DISABLED;
768 /* Optimize it again (remove from op->list) */
769 if (!kprobe_optready(ap))
770 return -EINVAL;
771
772 optimize_kprobe(ap);
773 return 0;
774}
775
776/* Remove optimized instructions */
777static void kill_optimized_kprobe(struct kprobe *p)
778{
779 struct optimized_kprobe *op;
780
781 op = container_of(p, struct optimized_kprobe, kp);
782 if (!list_empty(&op->list))
783 /* Dequeue from the (un)optimization queue */
784 list_del_init(&op->list);
785 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786
787 if (kprobe_unused(p)) {
788 /* Enqueue if it is unused */
789 list_add(&op->list, &freeing_list);
790 /*
791 * Remove unused probes from the hash list. After waiting
792 * for synchronization, this probe is reclaimed.
793 * (reclaiming is done by do_free_cleaned_kprobes().)
794 */
795 hlist_del_rcu(&op->kp.hlist);
796 }
797
798 /* Don't touch the code, because it is already freed. */
799 arch_remove_optimized_kprobe(op);
800}
801
802static inline
803void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804{
805 if (!kprobe_ftrace(p))
806 arch_prepare_optimized_kprobe(op, p);
807}
808
809/* Try to prepare optimized instructions */
810static void prepare_optimized_kprobe(struct kprobe *p)
811{
812 struct optimized_kprobe *op;
813
814 op = container_of(p, struct optimized_kprobe, kp);
815 __prepare_optimized_kprobe(op, p);
816}
817
818/* Allocate new optimized_kprobe and try to prepare optimized instructions */
819static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820{
821 struct optimized_kprobe *op;
822
823 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 if (!op)
825 return NULL;
826
827 INIT_LIST_HEAD(&op->list);
828 op->kp.addr = p->addr;
829 __prepare_optimized_kprobe(op, p);
830
831 return &op->kp;
832}
833
834static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836/*
837 * Prepare an optimized_kprobe and optimize it
838 * NOTE: p must be a normal registered kprobe
839 */
840static void try_to_optimize_kprobe(struct kprobe *p)
841{
842 struct kprobe *ap;
843 struct optimized_kprobe *op;
844
845 /* Impossible to optimize ftrace-based kprobe */
846 if (kprobe_ftrace(p))
847 return;
848
849 /* For preparing optimization, jump_label_text_reserved() is called */
850 cpus_read_lock();
851 jump_label_lock();
852 mutex_lock(&text_mutex);
853
854 ap = alloc_aggr_kprobe(p);
855 if (!ap)
856 goto out;
857
858 op = container_of(ap, struct optimized_kprobe, kp);
859 if (!arch_prepared_optinsn(&op->optinsn)) {
860 /* If failed to setup optimizing, fallback to kprobe */
861 arch_remove_optimized_kprobe(op);
862 kfree(op);
863 goto out;
864 }
865
866 init_aggr_kprobe(ap, p);
867 optimize_kprobe(ap); /* This just kicks optimizer thread */
868
869out:
870 mutex_unlock(&text_mutex);
871 jump_label_unlock();
872 cpus_read_unlock();
873}
874
875static void optimize_all_kprobes(void)
876{
877 struct hlist_head *head;
878 struct kprobe *p;
879 unsigned int i;
880
881 mutex_lock(&kprobe_mutex);
882 /* If optimization is already allowed, just return */
883 if (kprobes_allow_optimization)
884 goto out;
885
886 cpus_read_lock();
887 kprobes_allow_optimization = true;
888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 head = &kprobe_table[i];
890 hlist_for_each_entry(p, head, hlist)
891 if (!kprobe_disabled(p))
892 optimize_kprobe(p);
893 }
894 cpus_read_unlock();
895 printk(KERN_INFO "Kprobes globally optimized\n");
896out:
897 mutex_unlock(&kprobe_mutex);
898}
899
900#ifdef CONFIG_SYSCTL
901static void unoptimize_all_kprobes(void)
902{
903 struct hlist_head *head;
904 struct kprobe *p;
905 unsigned int i;
906
907 mutex_lock(&kprobe_mutex);
908 /* If optimization is already prohibited, just return */
909 if (!kprobes_allow_optimization) {
910 mutex_unlock(&kprobe_mutex);
911 return;
912 }
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 mutex_unlock(&kprobe_mutex);
925
926 /* Wait for unoptimizing completion */
927 wait_for_kprobe_optimizer();
928 printk(KERN_INFO "Kprobes globally unoptimized\n");
929}
930
931static DEFINE_MUTEX(kprobe_sysctl_mutex);
932int sysctl_kprobes_optimization;
933int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 void *buffer, size_t *length,
935 loff_t *ppos)
936{
937 int ret;
938
939 mutex_lock(&kprobe_sysctl_mutex);
940 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943 if (sysctl_kprobes_optimization)
944 optimize_all_kprobes();
945 else
946 unoptimize_all_kprobes();
947 mutex_unlock(&kprobe_sysctl_mutex);
948
949 return ret;
950}
951#endif /* CONFIG_SYSCTL */
952
953/* Put a breakpoint for a probe. Must be called with text_mutex locked */
954static void __arm_kprobe(struct kprobe *p)
955{
956 struct kprobe *_p;
957
958 /* Check collision with other optimized kprobes */
959 _p = get_optimized_kprobe((unsigned long)p->addr);
960 if (unlikely(_p))
961 /* Fallback to unoptimized kprobe */
962 unoptimize_kprobe(_p, true);
963
964 arch_arm_kprobe(p);
965 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
966}
967
968/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969static void __disarm_kprobe(struct kprobe *p, bool reopt)
970{
971 struct kprobe *_p;
972
973 /* Try to unoptimize */
974 unoptimize_kprobe(p, kprobes_all_disarmed);
975
976 if (!kprobe_queued(p)) {
977 arch_disarm_kprobe(p);
978 /* If another kprobe was blocked, optimize it. */
979 _p = get_optimized_kprobe((unsigned long)p->addr);
980 if (unlikely(_p) && reopt)
981 optimize_kprobe(_p);
982 }
983 /* TODO: reoptimize others after unoptimized this probe */
984}
985
986#else /* !CONFIG_OPTPROBES */
987
988#define optimize_kprobe(p) do {} while (0)
989#define unoptimize_kprobe(p, f) do {} while (0)
990#define kill_optimized_kprobe(p) do {} while (0)
991#define prepare_optimized_kprobe(p) do {} while (0)
992#define try_to_optimize_kprobe(p) do {} while (0)
993#define __arm_kprobe(p) arch_arm_kprobe(p)
994#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
995#define kprobe_disarmed(p) kprobe_disabled(p)
996#define wait_for_kprobe_optimizer() do {} while (0)
997
998static int reuse_unused_kprobe(struct kprobe *ap)
999{
1000 /*
1001 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 * released at the same time that the last aggregated kprobe is
1003 * unregistered.
1004 * Thus there should be no chance to reuse unused kprobe.
1005 */
1006 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 return -EINVAL;
1008}
1009
1010static void free_aggr_kprobe(struct kprobe *p)
1011{
1012 arch_remove_kprobe(p);
1013 kfree(p);
1014}
1015
1016static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017{
1018 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019}
1020#endif /* CONFIG_OPTPROBES */
1021
1022#ifdef CONFIG_KPROBES_ON_FTRACE
1023static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 .func = kprobe_ftrace_handler,
1025 .flags = FTRACE_OPS_FL_SAVE_REGS,
1026};
1027
1028static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 .func = kprobe_ftrace_handler,
1030 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031};
1032
1033static int kprobe_ipmodify_enabled;
1034static int kprobe_ftrace_enabled;
1035
1036/* Must ensure p->addr is really on ftrace */
1037static int prepare_kprobe(struct kprobe *p)
1038{
1039 if (!kprobe_ftrace(p))
1040 return arch_prepare_kprobe(p);
1041
1042 return arch_prepare_kprobe_ftrace(p);
1043}
1044
1045/* Caller must lock kprobe_mutex */
1046static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1047 int *cnt)
1048{
1049 int ret = 0;
1050
1051 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1052 if (ret) {
1053 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1054 p->addr, ret);
1055 return ret;
1056 }
1057
1058 if (*cnt == 0) {
1059 ret = register_ftrace_function(ops);
1060 if (ret) {
1061 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1062 goto err_ftrace;
1063 }
1064 }
1065
1066 (*cnt)++;
1067 return ret;
1068
1069err_ftrace:
1070 /*
1071 * At this point, sinec ops is not registered, we should be sefe from
1072 * registering empty filter.
1073 */
1074 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1075 return ret;
1076}
1077
1078static int arm_kprobe_ftrace(struct kprobe *p)
1079{
1080 bool ipmodify = (p->post_handler != NULL);
1081
1082 return __arm_kprobe_ftrace(p,
1083 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1084 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1085}
1086
1087/* Caller must lock kprobe_mutex */
1088static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1089 int *cnt)
1090{
1091 int ret = 0;
1092
1093 if (*cnt == 1) {
1094 ret = unregister_ftrace_function(ops);
1095 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1096 return ret;
1097 }
1098
1099 (*cnt)--;
1100
1101 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1102 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1103 p->addr, ret);
1104 return ret;
1105}
1106
1107static int disarm_kprobe_ftrace(struct kprobe *p)
1108{
1109 bool ipmodify = (p->post_handler != NULL);
1110
1111 return __disarm_kprobe_ftrace(p,
1112 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1113 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1114}
1115#else /* !CONFIG_KPROBES_ON_FTRACE */
1116static inline int prepare_kprobe(struct kprobe *p)
1117{
1118 return arch_prepare_kprobe(p);
1119}
1120
1121static inline int arm_kprobe_ftrace(struct kprobe *p)
1122{
1123 return -ENODEV;
1124}
1125
1126static inline int disarm_kprobe_ftrace(struct kprobe *p)
1127{
1128 return -ENODEV;
1129}
1130#endif
1131
1132/* Arm a kprobe with text_mutex */
1133static int arm_kprobe(struct kprobe *kp)
1134{
1135 if (unlikely(kprobe_ftrace(kp)))
1136 return arm_kprobe_ftrace(kp);
1137
1138 cpus_read_lock();
1139 mutex_lock(&text_mutex);
1140 __arm_kprobe(kp);
1141 mutex_unlock(&text_mutex);
1142 cpus_read_unlock();
1143
1144 return 0;
1145}
1146
1147/* Disarm a kprobe with text_mutex */
1148static int disarm_kprobe(struct kprobe *kp, bool reopt)
1149{
1150 if (unlikely(kprobe_ftrace(kp)))
1151 return disarm_kprobe_ftrace(kp);
1152
1153 cpus_read_lock();
1154 mutex_lock(&text_mutex);
1155 __disarm_kprobe(kp, reopt);
1156 mutex_unlock(&text_mutex);
1157 cpus_read_unlock();
1158
1159 return 0;
1160}
1161
1162/*
1163 * Aggregate handlers for multiple kprobes support - these handlers
1164 * take care of invoking the individual kprobe handlers on p->list
1165 */
1166static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1167{
1168 struct kprobe *kp;
1169
1170 list_for_each_entry_rcu(kp, &p->list, list) {
1171 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1172 set_kprobe_instance(kp);
1173 if (kp->pre_handler(kp, regs))
1174 return 1;
1175 }
1176 reset_kprobe_instance();
1177 }
1178 return 0;
1179}
1180NOKPROBE_SYMBOL(aggr_pre_handler);
1181
1182static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1183 unsigned long flags)
1184{
1185 struct kprobe *kp;
1186
1187 list_for_each_entry_rcu(kp, &p->list, list) {
1188 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1189 set_kprobe_instance(kp);
1190 kp->post_handler(kp, regs, flags);
1191 reset_kprobe_instance();
1192 }
1193 }
1194}
1195NOKPROBE_SYMBOL(aggr_post_handler);
1196
1197/* Walks the list and increments nmissed count for multiprobe case */
1198void kprobes_inc_nmissed_count(struct kprobe *p)
1199{
1200 struct kprobe *kp;
1201 if (!kprobe_aggrprobe(p)) {
1202 p->nmissed++;
1203 } else {
1204 list_for_each_entry_rcu(kp, &p->list, list)
1205 kp->nmissed++;
1206 }
1207 return;
1208}
1209NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1210
1211static void free_rp_inst_rcu(struct rcu_head *head)
1212{
1213 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1214
1215 if (refcount_dec_and_test(&ri->rph->ref))
1216 kfree(ri->rph);
1217 kfree(ri);
1218}
1219NOKPROBE_SYMBOL(free_rp_inst_rcu);
1220
1221static void recycle_rp_inst(struct kretprobe_instance *ri)
1222{
1223 struct kretprobe *rp = get_kretprobe(ri);
1224
1225 if (likely(rp)) {
1226 freelist_add(&ri->freelist, &rp->freelist);
1227 } else
1228 call_rcu(&ri->rcu, free_rp_inst_rcu);
1229}
1230NOKPROBE_SYMBOL(recycle_rp_inst);
1231
1232static struct kprobe kprobe_busy = {
1233 .addr = (void *) get_kprobe,
1234};
1235
1236void kprobe_busy_begin(void)
1237{
1238 struct kprobe_ctlblk *kcb;
1239
1240 preempt_disable();
1241 __this_cpu_write(current_kprobe, &kprobe_busy);
1242 kcb = get_kprobe_ctlblk();
1243 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1244}
1245
1246void kprobe_busy_end(void)
1247{
1248 __this_cpu_write(current_kprobe, NULL);
1249 preempt_enable();
1250}
1251
1252/*
1253 * This function is called from finish_task_switch when task tk becomes dead,
1254 * so that we can recycle any function-return probe instances associated
1255 * with this task. These left over instances represent probed functions
1256 * that have been called but will never return.
1257 */
1258void kprobe_flush_task(struct task_struct *tk)
1259{
1260 struct kretprobe_instance *ri;
1261 struct llist_node *node;
1262
1263 /* Early boot, not yet initialized. */
1264 if (unlikely(!kprobes_initialized))
1265 return;
1266
1267 kprobe_busy_begin();
1268
1269 node = __llist_del_all(&tk->kretprobe_instances);
1270 while (node) {
1271 ri = container_of(node, struct kretprobe_instance, llist);
1272 node = node->next;
1273
1274 recycle_rp_inst(ri);
1275 }
1276
1277 kprobe_busy_end();
1278}
1279NOKPROBE_SYMBOL(kprobe_flush_task);
1280
1281static inline void free_rp_inst(struct kretprobe *rp)
1282{
1283 struct kretprobe_instance *ri;
1284 struct freelist_node *node;
1285 int count = 0;
1286
1287 node = rp->freelist.head;
1288 while (node) {
1289 ri = container_of(node, struct kretprobe_instance, freelist);
1290 node = node->next;
1291
1292 kfree(ri);
1293 count++;
1294 }
1295
1296 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1297 kfree(rp->rph);
1298 rp->rph = NULL;
1299 }
1300}
1301
1302/* Add the new probe to ap->list */
1303static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1304{
1305 if (p->post_handler)
1306 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1307
1308 list_add_rcu(&p->list, &ap->list);
1309 if (p->post_handler && !ap->post_handler)
1310 ap->post_handler = aggr_post_handler;
1311
1312 return 0;
1313}
1314
1315/*
1316 * Fill in the required fields of the "manager kprobe". Replace the
1317 * earlier kprobe in the hlist with the manager kprobe
1318 */
1319static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1320{
1321 /* Copy p's insn slot to ap */
1322 copy_kprobe(p, ap);
1323 flush_insn_slot(ap);
1324 ap->addr = p->addr;
1325 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1326 ap->pre_handler = aggr_pre_handler;
1327 /* We don't care the kprobe which has gone. */
1328 if (p->post_handler && !kprobe_gone(p))
1329 ap->post_handler = aggr_post_handler;
1330
1331 INIT_LIST_HEAD(&ap->list);
1332 INIT_HLIST_NODE(&ap->hlist);
1333
1334 list_add_rcu(&p->list, &ap->list);
1335 hlist_replace_rcu(&p->hlist, &ap->hlist);
1336}
1337
1338/*
1339 * This is the second or subsequent kprobe at the address - handle
1340 * the intricacies
1341 */
1342static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1343{
1344 int ret = 0;
1345 struct kprobe *ap = orig_p;
1346
1347 cpus_read_lock();
1348
1349 /* For preparing optimization, jump_label_text_reserved() is called */
1350 jump_label_lock();
1351 mutex_lock(&text_mutex);
1352
1353 if (!kprobe_aggrprobe(orig_p)) {
1354 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1355 ap = alloc_aggr_kprobe(orig_p);
1356 if (!ap) {
1357 ret = -ENOMEM;
1358 goto out;
1359 }
1360 init_aggr_kprobe(ap, orig_p);
1361 } else if (kprobe_unused(ap)) {
1362 /* This probe is going to die. Rescue it */
1363 ret = reuse_unused_kprobe(ap);
1364 if (ret)
1365 goto out;
1366 }
1367
1368 if (kprobe_gone(ap)) {
1369 /*
1370 * Attempting to insert new probe at the same location that
1371 * had a probe in the module vaddr area which already
1372 * freed. So, the instruction slot has already been
1373 * released. We need a new slot for the new probe.
1374 */
1375 ret = arch_prepare_kprobe(ap);
1376 if (ret)
1377 /*
1378 * Even if fail to allocate new slot, don't need to
1379 * free aggr_probe. It will be used next time, or
1380 * freed by unregister_kprobe.
1381 */
1382 goto out;
1383
1384 /* Prepare optimized instructions if possible. */
1385 prepare_optimized_kprobe(ap);
1386
1387 /*
1388 * Clear gone flag to prevent allocating new slot again, and
1389 * set disabled flag because it is not armed yet.
1390 */
1391 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1392 | KPROBE_FLAG_DISABLED;
1393 }
1394
1395 /* Copy ap's insn slot to p */
1396 copy_kprobe(ap, p);
1397 ret = add_new_kprobe(ap, p);
1398
1399out:
1400 mutex_unlock(&text_mutex);
1401 jump_label_unlock();
1402 cpus_read_unlock();
1403
1404 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1405 ap->flags &= ~KPROBE_FLAG_DISABLED;
1406 if (!kprobes_all_disarmed) {
1407 /* Arm the breakpoint again. */
1408 ret = arm_kprobe(ap);
1409 if (ret) {
1410 ap->flags |= KPROBE_FLAG_DISABLED;
1411 list_del_rcu(&p->list);
1412 synchronize_rcu();
1413 }
1414 }
1415 }
1416 return ret;
1417}
1418
1419bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1420{
1421 /* The __kprobes marked functions and entry code must not be probed */
1422 return addr >= (unsigned long)__kprobes_text_start &&
1423 addr < (unsigned long)__kprobes_text_end;
1424}
1425
1426static bool __within_kprobe_blacklist(unsigned long addr)
1427{
1428 struct kprobe_blacklist_entry *ent;
1429
1430 if (arch_within_kprobe_blacklist(addr))
1431 return true;
1432 /*
1433 * If there exists a kprobe_blacklist, verify and
1434 * fail any probe registration in the prohibited area
1435 */
1436 list_for_each_entry(ent, &kprobe_blacklist, list) {
1437 if (addr >= ent->start_addr && addr < ent->end_addr)
1438 return true;
1439 }
1440 return false;
1441}
1442
1443bool within_kprobe_blacklist(unsigned long addr)
1444{
1445 char symname[KSYM_NAME_LEN], *p;
1446
1447 if (__within_kprobe_blacklist(addr))
1448 return true;
1449
1450 /* Check if the address is on a suffixed-symbol */
1451 if (!lookup_symbol_name(addr, symname)) {
1452 p = strchr(symname, '.');
1453 if (!p)
1454 return false;
1455 *p = '\0';
1456 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1457 if (addr)
1458 return __within_kprobe_blacklist(addr);
1459 }
1460 return false;
1461}
1462
1463/*
1464 * If we have a symbol_name argument, look it up and add the offset field
1465 * to it. This way, we can specify a relative address to a symbol.
1466 * This returns encoded errors if it fails to look up symbol or invalid
1467 * combination of parameters.
1468 */
1469static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1470 const char *symbol_name, unsigned int offset)
1471{
1472 if ((symbol_name && addr) || (!symbol_name && !addr))
1473 goto invalid;
1474
1475 if (symbol_name) {
1476 addr = kprobe_lookup_name(symbol_name, offset);
1477 if (!addr)
1478 return ERR_PTR(-ENOENT);
1479 }
1480
1481 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1482 if (addr)
1483 return addr;
1484
1485invalid:
1486 return ERR_PTR(-EINVAL);
1487}
1488
1489static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1490{
1491 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1492}
1493
1494/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1495static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1496{
1497 struct kprobe *ap, *list_p;
1498
1499 lockdep_assert_held(&kprobe_mutex);
1500
1501 ap = get_kprobe(p->addr);
1502 if (unlikely(!ap))
1503 return NULL;
1504
1505 if (p != ap) {
1506 list_for_each_entry(list_p, &ap->list, list)
1507 if (list_p == p)
1508 /* kprobe p is a valid probe */
1509 goto valid;
1510 return NULL;
1511 }
1512valid:
1513 return ap;
1514}
1515
1516/*
1517 * Warn and return error if the kprobe is being re-registered since
1518 * there must be a software bug.
1519 */
1520static inline int warn_kprobe_rereg(struct kprobe *p)
1521{
1522 int ret = 0;
1523
1524 mutex_lock(&kprobe_mutex);
1525 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1526 ret = -EINVAL;
1527 mutex_unlock(&kprobe_mutex);
1528
1529 return ret;
1530}
1531
1532int __weak arch_check_ftrace_location(struct kprobe *p)
1533{
1534 unsigned long ftrace_addr;
1535
1536 ftrace_addr = ftrace_location((unsigned long)p->addr);
1537 if (ftrace_addr) {
1538#ifdef CONFIG_KPROBES_ON_FTRACE
1539 /* Given address is not on the instruction boundary */
1540 if ((unsigned long)p->addr != ftrace_addr)
1541 return -EILSEQ;
1542 p->flags |= KPROBE_FLAG_FTRACE;
1543#else /* !CONFIG_KPROBES_ON_FTRACE */
1544 return -EINVAL;
1545#endif
1546 }
1547 return 0;
1548}
1549
1550static int check_kprobe_address_safe(struct kprobe *p,
1551 struct module **probed_mod)
1552{
1553 int ret;
1554
1555 ret = arch_check_ftrace_location(p);
1556 if (ret)
1557 return ret;
1558 jump_label_lock();
1559 preempt_disable();
1560
1561 /* Ensure it is not in reserved area nor out of text */
1562 if (!kernel_text_address((unsigned long) p->addr) ||
1563 within_kprobe_blacklist((unsigned long) p->addr) ||
1564 jump_label_text_reserved(p->addr, p->addr) ||
1565 static_call_text_reserved(p->addr, p->addr) ||
1566 find_bug((unsigned long)p->addr)) {
1567 ret = -EINVAL;
1568 goto out;
1569 }
1570
1571 /* Check if are we probing a module */
1572 *probed_mod = __module_text_address((unsigned long) p->addr);
1573 if (*probed_mod) {
1574 /*
1575 * We must hold a refcount of the probed module while updating
1576 * its code to prohibit unexpected unloading.
1577 */
1578 if (unlikely(!try_module_get(*probed_mod))) {
1579 ret = -ENOENT;
1580 goto out;
1581 }
1582
1583 /*
1584 * If the module freed .init.text, we couldn't insert
1585 * kprobes in there.
1586 */
1587 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1588 (*probed_mod)->state != MODULE_STATE_COMING) {
1589 module_put(*probed_mod);
1590 *probed_mod = NULL;
1591 ret = -ENOENT;
1592 }
1593 }
1594out:
1595 preempt_enable();
1596 jump_label_unlock();
1597
1598 return ret;
1599}
1600
1601int register_kprobe(struct kprobe *p)
1602{
1603 int ret;
1604 struct kprobe *old_p;
1605 struct module *probed_mod;
1606 kprobe_opcode_t *addr;
1607
1608 /* Adjust probe address from symbol */
1609 addr = kprobe_addr(p);
1610 if (IS_ERR(addr))
1611 return PTR_ERR(addr);
1612 p->addr = addr;
1613
1614 ret = warn_kprobe_rereg(p);
1615 if (ret)
1616 return ret;
1617
1618 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1619 p->flags &= KPROBE_FLAG_DISABLED;
1620 p->nmissed = 0;
1621 INIT_LIST_HEAD(&p->list);
1622
1623 ret = check_kprobe_address_safe(p, &probed_mod);
1624 if (ret)
1625 return ret;
1626
1627 mutex_lock(&kprobe_mutex);
1628
1629 old_p = get_kprobe(p->addr);
1630 if (old_p) {
1631 /* Since this may unoptimize old_p, locking text_mutex. */
1632 ret = register_aggr_kprobe(old_p, p);
1633 goto out;
1634 }
1635
1636 cpus_read_lock();
1637 /* Prevent text modification */
1638 mutex_lock(&text_mutex);
1639 ret = prepare_kprobe(p);
1640 mutex_unlock(&text_mutex);
1641 cpus_read_unlock();
1642 if (ret)
1643 goto out;
1644
1645 INIT_HLIST_NODE(&p->hlist);
1646 hlist_add_head_rcu(&p->hlist,
1647 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1648
1649 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1650 ret = arm_kprobe(p);
1651 if (ret) {
1652 hlist_del_rcu(&p->hlist);
1653 synchronize_rcu();
1654 goto out;
1655 }
1656 }
1657
1658 /* Try to optimize kprobe */
1659 try_to_optimize_kprobe(p);
1660out:
1661 mutex_unlock(&kprobe_mutex);
1662
1663 if (probed_mod)
1664 module_put(probed_mod);
1665
1666 return ret;
1667}
1668EXPORT_SYMBOL_GPL(register_kprobe);
1669
1670/* Check if all probes on the aggrprobe are disabled */
1671static int aggr_kprobe_disabled(struct kprobe *ap)
1672{
1673 struct kprobe *kp;
1674
1675 lockdep_assert_held(&kprobe_mutex);
1676
1677 list_for_each_entry(kp, &ap->list, list)
1678 if (!kprobe_disabled(kp))
1679 /*
1680 * There is an active probe on the list.
1681 * We can't disable this ap.
1682 */
1683 return 0;
1684
1685 return 1;
1686}
1687
1688/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1689static struct kprobe *__disable_kprobe(struct kprobe *p)
1690{
1691 struct kprobe *orig_p;
1692 int ret;
1693
1694 /* Get an original kprobe for return */
1695 orig_p = __get_valid_kprobe(p);
1696 if (unlikely(orig_p == NULL))
1697 return ERR_PTR(-EINVAL);
1698
1699 if (!kprobe_disabled(p)) {
1700 /* Disable probe if it is a child probe */
1701 if (p != orig_p)
1702 p->flags |= KPROBE_FLAG_DISABLED;
1703
1704 /* Try to disarm and disable this/parent probe */
1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1706 /*
1707 * If kprobes_all_disarmed is set, orig_p
1708 * should have already been disarmed, so
1709 * skip unneed disarming process.
1710 */
1711 if (!kprobes_all_disarmed) {
1712 ret = disarm_kprobe(orig_p, true);
1713 if (ret) {
1714 p->flags &= ~KPROBE_FLAG_DISABLED;
1715 return ERR_PTR(ret);
1716 }
1717 }
1718 orig_p->flags |= KPROBE_FLAG_DISABLED;
1719 }
1720 }
1721
1722 return orig_p;
1723}
1724
1725/*
1726 * Unregister a kprobe without a scheduler synchronization.
1727 */
1728static int __unregister_kprobe_top(struct kprobe *p)
1729{
1730 struct kprobe *ap, *list_p;
1731
1732 /* Disable kprobe. This will disarm it if needed. */
1733 ap = __disable_kprobe(p);
1734 if (IS_ERR(ap))
1735 return PTR_ERR(ap);
1736
1737 if (ap == p)
1738 /*
1739 * This probe is an independent(and non-optimized) kprobe
1740 * (not an aggrprobe). Remove from the hash list.
1741 */
1742 goto disarmed;
1743
1744 /* Following process expects this probe is an aggrprobe */
1745 WARN_ON(!kprobe_aggrprobe(ap));
1746
1747 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1748 /*
1749 * !disarmed could be happen if the probe is under delayed
1750 * unoptimizing.
1751 */
1752 goto disarmed;
1753 else {
1754 /* If disabling probe has special handlers, update aggrprobe */
1755 if (p->post_handler && !kprobe_gone(p)) {
1756 list_for_each_entry(list_p, &ap->list, list) {
1757 if ((list_p != p) && (list_p->post_handler))
1758 goto noclean;
1759 }
1760 ap->post_handler = NULL;
1761 }
1762noclean:
1763 /*
1764 * Remove from the aggrprobe: this path will do nothing in
1765 * __unregister_kprobe_bottom().
1766 */
1767 list_del_rcu(&p->list);
1768 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1769 /*
1770 * Try to optimize this probe again, because post
1771 * handler may have been changed.
1772 */
1773 optimize_kprobe(ap);
1774 }
1775 return 0;
1776
1777disarmed:
1778 hlist_del_rcu(&ap->hlist);
1779 return 0;
1780}
1781
1782static void __unregister_kprobe_bottom(struct kprobe *p)
1783{
1784 struct kprobe *ap;
1785
1786 if (list_empty(&p->list))
1787 /* This is an independent kprobe */
1788 arch_remove_kprobe(p);
1789 else if (list_is_singular(&p->list)) {
1790 /* This is the last child of an aggrprobe */
1791 ap = list_entry(p->list.next, struct kprobe, list);
1792 list_del(&p->list);
1793 free_aggr_kprobe(ap);
1794 }
1795 /* Otherwise, do nothing. */
1796}
1797
1798int register_kprobes(struct kprobe **kps, int num)
1799{
1800 int i, ret = 0;
1801
1802 if (num <= 0)
1803 return -EINVAL;
1804 for (i = 0; i < num; i++) {
1805 ret = register_kprobe(kps[i]);
1806 if (ret < 0) {
1807 if (i > 0)
1808 unregister_kprobes(kps, i);
1809 break;
1810 }
1811 }
1812 return ret;
1813}
1814EXPORT_SYMBOL_GPL(register_kprobes);
1815
1816void unregister_kprobe(struct kprobe *p)
1817{
1818 unregister_kprobes(&p, 1);
1819}
1820EXPORT_SYMBOL_GPL(unregister_kprobe);
1821
1822void unregister_kprobes(struct kprobe **kps, int num)
1823{
1824 int i;
1825
1826 if (num <= 0)
1827 return;
1828 mutex_lock(&kprobe_mutex);
1829 for (i = 0; i < num; i++)
1830 if (__unregister_kprobe_top(kps[i]) < 0)
1831 kps[i]->addr = NULL;
1832 mutex_unlock(&kprobe_mutex);
1833
1834 synchronize_rcu();
1835 for (i = 0; i < num; i++)
1836 if (kps[i]->addr)
1837 __unregister_kprobe_bottom(kps[i]);
1838}
1839EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
1841int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 unsigned long val, void *data)
1843{
1844 return NOTIFY_DONE;
1845}
1846NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848static struct notifier_block kprobe_exceptions_nb = {
1849 .notifier_call = kprobe_exceptions_notify,
1850 .priority = 0x7fffffff /* we need to be notified first */
1851};
1852
1853unsigned long __weak arch_deref_entry_point(void *entry)
1854{
1855 return (unsigned long)entry;
1856}
1857
1858#ifdef CONFIG_KRETPROBES
1859
1860unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1861 void *trampoline_address,
1862 void *frame_pointer)
1863{
1864 kprobe_opcode_t *correct_ret_addr = NULL;
1865 struct kretprobe_instance *ri = NULL;
1866 struct llist_node *first, *node;
1867 struct kretprobe *rp;
1868
1869 /* Find all nodes for this frame. */
1870 first = node = current->kretprobe_instances.first;
1871 while (node) {
1872 ri = container_of(node, struct kretprobe_instance, llist);
1873
1874 BUG_ON(ri->fp != frame_pointer);
1875
1876 if (ri->ret_addr != trampoline_address) {
1877 correct_ret_addr = ri->ret_addr;
1878 /*
1879 * This is the real return address. Any other
1880 * instances associated with this task are for
1881 * other calls deeper on the call stack
1882 */
1883 goto found;
1884 }
1885
1886 node = node->next;
1887 }
1888 pr_err("Oops! Kretprobe fails to find correct return address.\n");
1889 BUG_ON(1);
1890
1891found:
1892 /* Unlink all nodes for this frame. */
1893 current->kretprobe_instances.first = node->next;
1894 node->next = NULL;
1895
1896 /* Run them.. */
1897 while (first) {
1898 ri = container_of(first, struct kretprobe_instance, llist);
1899 first = first->next;
1900
1901 rp = get_kretprobe(ri);
1902 if (rp && rp->handler) {
1903 struct kprobe *prev = kprobe_running();
1904
1905 __this_cpu_write(current_kprobe, &rp->kp);
1906 ri->ret_addr = correct_ret_addr;
1907 rp->handler(ri, regs);
1908 __this_cpu_write(current_kprobe, prev);
1909 }
1910
1911 recycle_rp_inst(ri);
1912 }
1913
1914 return (unsigned long)correct_ret_addr;
1915}
1916NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1917
1918/*
1919 * This kprobe pre_handler is registered with every kretprobe. When probe
1920 * hits it will set up the return probe.
1921 */
1922static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1923{
1924 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1925 struct kretprobe_instance *ri;
1926 struct freelist_node *fn;
1927
1928 fn = freelist_try_get(&rp->freelist);
1929 if (!fn) {
1930 rp->nmissed++;
1931 return 0;
1932 }
1933
1934 ri = container_of(fn, struct kretprobe_instance, freelist);
1935
1936 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1937 freelist_add(&ri->freelist, &rp->freelist);
1938 return 0;
1939 }
1940
1941 arch_prepare_kretprobe(ri, regs);
1942
1943 __llist_add(&ri->llist, ¤t->kretprobe_instances);
1944
1945 return 0;
1946}
1947NOKPROBE_SYMBOL(pre_handler_kretprobe);
1948
1949bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1950{
1951 return !offset;
1952}
1953
1954/**
1955 * kprobe_on_func_entry() -- check whether given address is function entry
1956 * @addr: Target address
1957 * @sym: Target symbol name
1958 * @offset: The offset from the symbol or the address
1959 *
1960 * This checks whether the given @addr+@offset or @sym+@offset is on the
1961 * function entry address or not.
1962 * This returns 0 if it is the function entry, or -EINVAL if it is not.
1963 * And also it returns -ENOENT if it fails the symbol or address lookup.
1964 * Caller must pass @addr or @sym (either one must be NULL), or this
1965 * returns -EINVAL.
1966 */
1967int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1968{
1969 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1970
1971 if (IS_ERR(kp_addr))
1972 return PTR_ERR(kp_addr);
1973
1974 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1975 return -ENOENT;
1976
1977 if (!arch_kprobe_on_func_entry(offset))
1978 return -EINVAL;
1979
1980 return 0;
1981}
1982
1983int register_kretprobe(struct kretprobe *rp)
1984{
1985 int ret;
1986 struct kretprobe_instance *inst;
1987 int i;
1988 void *addr;
1989
1990 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1991 if (ret)
1992 return ret;
1993
1994 /* If only rp->kp.addr is specified, check reregistering kprobes */
1995 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1996 return -EINVAL;
1997
1998 if (kretprobe_blacklist_size) {
1999 addr = kprobe_addr(&rp->kp);
2000 if (IS_ERR(addr))
2001 return PTR_ERR(addr);
2002
2003 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2004 if (kretprobe_blacklist[i].addr == addr)
2005 return -EINVAL;
2006 }
2007 }
2008
2009 rp->kp.pre_handler = pre_handler_kretprobe;
2010 rp->kp.post_handler = NULL;
2011
2012 /* Pre-allocate memory for max kretprobe instances */
2013 if (rp->maxactive <= 0) {
2014#ifdef CONFIG_PREEMPTION
2015 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2016#else
2017 rp->maxactive = num_possible_cpus();
2018#endif
2019 }
2020 rp->freelist.head = NULL;
2021 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2022 if (!rp->rph)
2023 return -ENOMEM;
2024
2025 rp->rph->rp = rp;
2026 for (i = 0; i < rp->maxactive; i++) {
2027 inst = kzalloc(sizeof(struct kretprobe_instance) +
2028 rp->data_size, GFP_KERNEL);
2029 if (inst == NULL) {
2030 refcount_set(&rp->rph->ref, i);
2031 free_rp_inst(rp);
2032 return -ENOMEM;
2033 }
2034 inst->rph = rp->rph;
2035 freelist_add(&inst->freelist, &rp->freelist);
2036 }
2037 refcount_set(&rp->rph->ref, i);
2038
2039 rp->nmissed = 0;
2040 /* Establish function entry probe point */
2041 ret = register_kprobe(&rp->kp);
2042 if (ret != 0)
2043 free_rp_inst(rp);
2044 return ret;
2045}
2046EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048int register_kretprobes(struct kretprobe **rps, int num)
2049{
2050 int ret = 0, i;
2051
2052 if (num <= 0)
2053 return -EINVAL;
2054 for (i = 0; i < num; i++) {
2055 ret = register_kretprobe(rps[i]);
2056 if (ret < 0) {
2057 if (i > 0)
2058 unregister_kretprobes(rps, i);
2059 break;
2060 }
2061 }
2062 return ret;
2063}
2064EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066void unregister_kretprobe(struct kretprobe *rp)
2067{
2068 unregister_kretprobes(&rp, 1);
2069}
2070EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072void unregister_kretprobes(struct kretprobe **rps, int num)
2073{
2074 int i;
2075
2076 if (num <= 0)
2077 return;
2078 mutex_lock(&kprobe_mutex);
2079 for (i = 0; i < num; i++) {
2080 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081 rps[i]->kp.addr = NULL;
2082 rps[i]->rph->rp = NULL;
2083 }
2084 mutex_unlock(&kprobe_mutex);
2085
2086 synchronize_rcu();
2087 for (i = 0; i < num; i++) {
2088 if (rps[i]->kp.addr) {
2089 __unregister_kprobe_bottom(&rps[i]->kp);
2090 free_rp_inst(rps[i]);
2091 }
2092 }
2093}
2094EXPORT_SYMBOL_GPL(unregister_kretprobes);
2095
2096#else /* CONFIG_KRETPROBES */
2097int register_kretprobe(struct kretprobe *rp)
2098{
2099 return -ENOSYS;
2100}
2101EXPORT_SYMBOL_GPL(register_kretprobe);
2102
2103int register_kretprobes(struct kretprobe **rps, int num)
2104{
2105 return -ENOSYS;
2106}
2107EXPORT_SYMBOL_GPL(register_kretprobes);
2108
2109void unregister_kretprobe(struct kretprobe *rp)
2110{
2111}
2112EXPORT_SYMBOL_GPL(unregister_kretprobe);
2113
2114void unregister_kretprobes(struct kretprobe **rps, int num)
2115{
2116}
2117EXPORT_SYMBOL_GPL(unregister_kretprobes);
2118
2119static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120{
2121 return 0;
2122}
2123NOKPROBE_SYMBOL(pre_handler_kretprobe);
2124
2125#endif /* CONFIG_KRETPROBES */
2126
2127/* Set the kprobe gone and remove its instruction buffer. */
2128static void kill_kprobe(struct kprobe *p)
2129{
2130 struct kprobe *kp;
2131
2132 lockdep_assert_held(&kprobe_mutex);
2133
2134 p->flags |= KPROBE_FLAG_GONE;
2135 if (kprobe_aggrprobe(p)) {
2136 /*
2137 * If this is an aggr_kprobe, we have to list all the
2138 * chained probes and mark them GONE.
2139 */
2140 list_for_each_entry(kp, &p->list, list)
2141 kp->flags |= KPROBE_FLAG_GONE;
2142 p->post_handler = NULL;
2143 kill_optimized_kprobe(p);
2144 }
2145 /*
2146 * Here, we can remove insn_slot safely, because no thread calls
2147 * the original probed function (which will be freed soon) any more.
2148 */
2149 arch_remove_kprobe(p);
2150
2151 /*
2152 * The module is going away. We should disarm the kprobe which
2153 * is using ftrace, because ftrace framework is still available at
2154 * MODULE_STATE_GOING notification.
2155 */
2156 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2157 disarm_kprobe_ftrace(p);
2158}
2159
2160/* Disable one kprobe */
2161int disable_kprobe(struct kprobe *kp)
2162{
2163 int ret = 0;
2164 struct kprobe *p;
2165
2166 mutex_lock(&kprobe_mutex);
2167
2168 /* Disable this kprobe */
2169 p = __disable_kprobe(kp);
2170 if (IS_ERR(p))
2171 ret = PTR_ERR(p);
2172
2173 mutex_unlock(&kprobe_mutex);
2174 return ret;
2175}
2176EXPORT_SYMBOL_GPL(disable_kprobe);
2177
2178/* Enable one kprobe */
2179int enable_kprobe(struct kprobe *kp)
2180{
2181 int ret = 0;
2182 struct kprobe *p;
2183
2184 mutex_lock(&kprobe_mutex);
2185
2186 /* Check whether specified probe is valid. */
2187 p = __get_valid_kprobe(kp);
2188 if (unlikely(p == NULL)) {
2189 ret = -EINVAL;
2190 goto out;
2191 }
2192
2193 if (kprobe_gone(kp)) {
2194 /* This kprobe has gone, we couldn't enable it. */
2195 ret = -EINVAL;
2196 goto out;
2197 }
2198
2199 if (p != kp)
2200 kp->flags &= ~KPROBE_FLAG_DISABLED;
2201
2202 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2203 p->flags &= ~KPROBE_FLAG_DISABLED;
2204 ret = arm_kprobe(p);
2205 if (ret)
2206 p->flags |= KPROBE_FLAG_DISABLED;
2207 }
2208out:
2209 mutex_unlock(&kprobe_mutex);
2210 return ret;
2211}
2212EXPORT_SYMBOL_GPL(enable_kprobe);
2213
2214/* Caller must NOT call this in usual path. This is only for critical case */
2215void dump_kprobe(struct kprobe *kp)
2216{
2217 pr_err("Dumping kprobe:\n");
2218 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2219 kp->symbol_name, kp->offset, kp->addr);
2220}
2221NOKPROBE_SYMBOL(dump_kprobe);
2222
2223int kprobe_add_ksym_blacklist(unsigned long entry)
2224{
2225 struct kprobe_blacklist_entry *ent;
2226 unsigned long offset = 0, size = 0;
2227
2228 if (!kernel_text_address(entry) ||
2229 !kallsyms_lookup_size_offset(entry, &size, &offset))
2230 return -EINVAL;
2231
2232 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2233 if (!ent)
2234 return -ENOMEM;
2235 ent->start_addr = entry;
2236 ent->end_addr = entry + size;
2237 INIT_LIST_HEAD(&ent->list);
2238 list_add_tail(&ent->list, &kprobe_blacklist);
2239
2240 return (int)size;
2241}
2242
2243/* Add all symbols in given area into kprobe blacklist */
2244int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2245{
2246 unsigned long entry;
2247 int ret = 0;
2248
2249 for (entry = start; entry < end; entry += ret) {
2250 ret = kprobe_add_ksym_blacklist(entry);
2251 if (ret < 0)
2252 return ret;
2253 if (ret == 0) /* In case of alias symbol */
2254 ret = 1;
2255 }
2256 return 0;
2257}
2258
2259/* Remove all symbols in given area from kprobe blacklist */
2260static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2261{
2262 struct kprobe_blacklist_entry *ent, *n;
2263
2264 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2265 if (ent->start_addr < start || ent->start_addr >= end)
2266 continue;
2267 list_del(&ent->list);
2268 kfree(ent);
2269 }
2270}
2271
2272static void kprobe_remove_ksym_blacklist(unsigned long entry)
2273{
2274 kprobe_remove_area_blacklist(entry, entry + 1);
2275}
2276
2277int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2278 char *type, char *sym)
2279{
2280 return -ERANGE;
2281}
2282
2283int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2284 char *sym)
2285{
2286#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2287 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2288 return 0;
2289#ifdef CONFIG_OPTPROBES
2290 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2291 return 0;
2292#endif
2293#endif
2294 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2295 return 0;
2296 return -ERANGE;
2297}
2298
2299int __init __weak arch_populate_kprobe_blacklist(void)
2300{
2301 return 0;
2302}
2303
2304/*
2305 * Lookup and populate the kprobe_blacklist.
2306 *
2307 * Unlike the kretprobe blacklist, we'll need to determine
2308 * the range of addresses that belong to the said functions,
2309 * since a kprobe need not necessarily be at the beginning
2310 * of a function.
2311 */
2312static int __init populate_kprobe_blacklist(unsigned long *start,
2313 unsigned long *end)
2314{
2315 unsigned long entry;
2316 unsigned long *iter;
2317 int ret;
2318
2319 for (iter = start; iter < end; iter++) {
2320 entry = arch_deref_entry_point((void *)*iter);
2321 ret = kprobe_add_ksym_blacklist(entry);
2322 if (ret == -EINVAL)
2323 continue;
2324 if (ret < 0)
2325 return ret;
2326 }
2327
2328 /* Symbols in __kprobes_text are blacklisted */
2329 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2330 (unsigned long)__kprobes_text_end);
2331 if (ret)
2332 return ret;
2333
2334 /* Symbols in noinstr section are blacklisted */
2335 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2336 (unsigned long)__noinstr_text_end);
2337
2338 return ret ? : arch_populate_kprobe_blacklist();
2339}
2340
2341static void add_module_kprobe_blacklist(struct module *mod)
2342{
2343 unsigned long start, end;
2344 int i;
2345
2346 if (mod->kprobe_blacklist) {
2347 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2348 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2349 }
2350
2351 start = (unsigned long)mod->kprobes_text_start;
2352 if (start) {
2353 end = start + mod->kprobes_text_size;
2354 kprobe_add_area_blacklist(start, end);
2355 }
2356
2357 start = (unsigned long)mod->noinstr_text_start;
2358 if (start) {
2359 end = start + mod->noinstr_text_size;
2360 kprobe_add_area_blacklist(start, end);
2361 }
2362}
2363
2364static void remove_module_kprobe_blacklist(struct module *mod)
2365{
2366 unsigned long start, end;
2367 int i;
2368
2369 if (mod->kprobe_blacklist) {
2370 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2371 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2372 }
2373
2374 start = (unsigned long)mod->kprobes_text_start;
2375 if (start) {
2376 end = start + mod->kprobes_text_size;
2377 kprobe_remove_area_blacklist(start, end);
2378 }
2379
2380 start = (unsigned long)mod->noinstr_text_start;
2381 if (start) {
2382 end = start + mod->noinstr_text_size;
2383 kprobe_remove_area_blacklist(start, end);
2384 }
2385}
2386
2387/* Module notifier call back, checking kprobes on the module */
2388static int kprobes_module_callback(struct notifier_block *nb,
2389 unsigned long val, void *data)
2390{
2391 struct module *mod = data;
2392 struct hlist_head *head;
2393 struct kprobe *p;
2394 unsigned int i;
2395 int checkcore = (val == MODULE_STATE_GOING);
2396
2397 if (val == MODULE_STATE_COMING) {
2398 mutex_lock(&kprobe_mutex);
2399 add_module_kprobe_blacklist(mod);
2400 mutex_unlock(&kprobe_mutex);
2401 }
2402 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2403 return NOTIFY_DONE;
2404
2405 /*
2406 * When MODULE_STATE_GOING was notified, both of module .text and
2407 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2408 * notified, only .init.text section would be freed. We need to
2409 * disable kprobes which have been inserted in the sections.
2410 */
2411 mutex_lock(&kprobe_mutex);
2412 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2413 head = &kprobe_table[i];
2414 hlist_for_each_entry(p, head, hlist)
2415 if (within_module_init((unsigned long)p->addr, mod) ||
2416 (checkcore &&
2417 within_module_core((unsigned long)p->addr, mod))) {
2418 /*
2419 * The vaddr this probe is installed will soon
2420 * be vfreed buy not synced to disk. Hence,
2421 * disarming the breakpoint isn't needed.
2422 *
2423 * Note, this will also move any optimized probes
2424 * that are pending to be removed from their
2425 * corresponding lists to the freeing_list and
2426 * will not be touched by the delayed
2427 * kprobe_optimizer work handler.
2428 */
2429 kill_kprobe(p);
2430 }
2431 }
2432 if (val == MODULE_STATE_GOING)
2433 remove_module_kprobe_blacklist(mod);
2434 mutex_unlock(&kprobe_mutex);
2435 return NOTIFY_DONE;
2436}
2437
2438static struct notifier_block kprobe_module_nb = {
2439 .notifier_call = kprobes_module_callback,
2440 .priority = 0
2441};
2442
2443/* Markers of _kprobe_blacklist section */
2444extern unsigned long __start_kprobe_blacklist[];
2445extern unsigned long __stop_kprobe_blacklist[];
2446
2447void kprobe_free_init_mem(void)
2448{
2449 void *start = (void *)(&__init_begin);
2450 void *end = (void *)(&__init_end);
2451 struct hlist_head *head;
2452 struct kprobe *p;
2453 int i;
2454
2455 mutex_lock(&kprobe_mutex);
2456
2457 /* Kill all kprobes on initmem */
2458 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2459 head = &kprobe_table[i];
2460 hlist_for_each_entry(p, head, hlist) {
2461 if (start <= (void *)p->addr && (void *)p->addr < end)
2462 kill_kprobe(p);
2463 }
2464 }
2465
2466 mutex_unlock(&kprobe_mutex);
2467}
2468
2469static int __init init_kprobes(void)
2470{
2471 int i, err = 0;
2472
2473 /* FIXME allocate the probe table, currently defined statically */
2474 /* initialize all list heads */
2475 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2476 INIT_HLIST_HEAD(&kprobe_table[i]);
2477
2478 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2479 __stop_kprobe_blacklist);
2480 if (err) {
2481 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2482 pr_err("Please take care of using kprobes.\n");
2483 }
2484
2485 if (kretprobe_blacklist_size) {
2486 /* lookup the function address from its name */
2487 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2488 kretprobe_blacklist[i].addr =
2489 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2490 if (!kretprobe_blacklist[i].addr)
2491 printk("kretprobe: lookup failed: %s\n",
2492 kretprobe_blacklist[i].name);
2493 }
2494 }
2495
2496 /* By default, kprobes are armed */
2497 kprobes_all_disarmed = false;
2498
2499#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2500 /* Init kprobe_optinsn_slots for allocation */
2501 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2502#endif
2503
2504 err = arch_init_kprobes();
2505 if (!err)
2506 err = register_die_notifier(&kprobe_exceptions_nb);
2507 if (!err)
2508 err = register_module_notifier(&kprobe_module_nb);
2509
2510 kprobes_initialized = (err == 0);
2511
2512 if (!err)
2513 init_test_probes();
2514 return err;
2515}
2516early_initcall(init_kprobes);
2517
2518#if defined(CONFIG_OPTPROBES)
2519static int __init init_optprobes(void)
2520{
2521 /*
2522 * Enable kprobe optimization - this kicks the optimizer which
2523 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2524 * not spawned in early initcall. So delay the optimization.
2525 */
2526 optimize_all_kprobes();
2527
2528 return 0;
2529}
2530subsys_initcall(init_optprobes);
2531#endif
2532
2533#ifdef CONFIG_DEBUG_FS
2534static void report_probe(struct seq_file *pi, struct kprobe *p,
2535 const char *sym, int offset, char *modname, struct kprobe *pp)
2536{
2537 char *kprobe_type;
2538 void *addr = p->addr;
2539
2540 if (p->pre_handler == pre_handler_kretprobe)
2541 kprobe_type = "r";
2542 else
2543 kprobe_type = "k";
2544
2545 if (!kallsyms_show_value(pi->file->f_cred))
2546 addr = NULL;
2547
2548 if (sym)
2549 seq_printf(pi, "%px %s %s+0x%x %s ",
2550 addr, kprobe_type, sym, offset,
2551 (modname ? modname : " "));
2552 else /* try to use %pS */
2553 seq_printf(pi, "%px %s %pS ",
2554 addr, kprobe_type, p->addr);
2555
2556 if (!pp)
2557 pp = p;
2558 seq_printf(pi, "%s%s%s%s\n",
2559 (kprobe_gone(p) ? "[GONE]" : ""),
2560 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2561 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2562 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2563}
2564
2565static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2566{
2567 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2568}
2569
2570static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2571{
2572 (*pos)++;
2573 if (*pos >= KPROBE_TABLE_SIZE)
2574 return NULL;
2575 return pos;
2576}
2577
2578static void kprobe_seq_stop(struct seq_file *f, void *v)
2579{
2580 /* Nothing to do */
2581}
2582
2583static int show_kprobe_addr(struct seq_file *pi, void *v)
2584{
2585 struct hlist_head *head;
2586 struct kprobe *p, *kp;
2587 const char *sym = NULL;
2588 unsigned int i = *(loff_t *) v;
2589 unsigned long offset = 0;
2590 char *modname, namebuf[KSYM_NAME_LEN];
2591
2592 head = &kprobe_table[i];
2593 preempt_disable();
2594 hlist_for_each_entry_rcu(p, head, hlist) {
2595 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2596 &offset, &modname, namebuf);
2597 if (kprobe_aggrprobe(p)) {
2598 list_for_each_entry_rcu(kp, &p->list, list)
2599 report_probe(pi, kp, sym, offset, modname, p);
2600 } else
2601 report_probe(pi, p, sym, offset, modname, NULL);
2602 }
2603 preempt_enable();
2604 return 0;
2605}
2606
2607static const struct seq_operations kprobes_sops = {
2608 .start = kprobe_seq_start,
2609 .next = kprobe_seq_next,
2610 .stop = kprobe_seq_stop,
2611 .show = show_kprobe_addr
2612};
2613
2614DEFINE_SEQ_ATTRIBUTE(kprobes);
2615
2616/* kprobes/blacklist -- shows which functions can not be probed */
2617static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2618{
2619 mutex_lock(&kprobe_mutex);
2620 return seq_list_start(&kprobe_blacklist, *pos);
2621}
2622
2623static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2624{
2625 return seq_list_next(v, &kprobe_blacklist, pos);
2626}
2627
2628static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2629{
2630 struct kprobe_blacklist_entry *ent =
2631 list_entry(v, struct kprobe_blacklist_entry, list);
2632
2633 /*
2634 * If /proc/kallsyms is not showing kernel address, we won't
2635 * show them here either.
2636 */
2637 if (!kallsyms_show_value(m->file->f_cred))
2638 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2639 (void *)ent->start_addr);
2640 else
2641 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2642 (void *)ent->end_addr, (void *)ent->start_addr);
2643 return 0;
2644}
2645
2646static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2647{
2648 mutex_unlock(&kprobe_mutex);
2649}
2650
2651static const struct seq_operations kprobe_blacklist_sops = {
2652 .start = kprobe_blacklist_seq_start,
2653 .next = kprobe_blacklist_seq_next,
2654 .stop = kprobe_blacklist_seq_stop,
2655 .show = kprobe_blacklist_seq_show,
2656};
2657DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2658
2659static int arm_all_kprobes(void)
2660{
2661 struct hlist_head *head;
2662 struct kprobe *p;
2663 unsigned int i, total = 0, errors = 0;
2664 int err, ret = 0;
2665
2666 mutex_lock(&kprobe_mutex);
2667
2668 /* If kprobes are armed, just return */
2669 if (!kprobes_all_disarmed)
2670 goto already_enabled;
2671
2672 /*
2673 * optimize_kprobe() called by arm_kprobe() checks
2674 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2675 * arm_kprobe.
2676 */
2677 kprobes_all_disarmed = false;
2678 /* Arming kprobes doesn't optimize kprobe itself */
2679 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2680 head = &kprobe_table[i];
2681 /* Arm all kprobes on a best-effort basis */
2682 hlist_for_each_entry(p, head, hlist) {
2683 if (!kprobe_disabled(p)) {
2684 err = arm_kprobe(p);
2685 if (err) {
2686 errors++;
2687 ret = err;
2688 }
2689 total++;
2690 }
2691 }
2692 }
2693
2694 if (errors)
2695 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2696 errors, total);
2697 else
2698 pr_info("Kprobes globally enabled\n");
2699
2700already_enabled:
2701 mutex_unlock(&kprobe_mutex);
2702 return ret;
2703}
2704
2705static int disarm_all_kprobes(void)
2706{
2707 struct hlist_head *head;
2708 struct kprobe *p;
2709 unsigned int i, total = 0, errors = 0;
2710 int err, ret = 0;
2711
2712 mutex_lock(&kprobe_mutex);
2713
2714 /* If kprobes are already disarmed, just return */
2715 if (kprobes_all_disarmed) {
2716 mutex_unlock(&kprobe_mutex);
2717 return 0;
2718 }
2719
2720 kprobes_all_disarmed = true;
2721
2722 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2723 head = &kprobe_table[i];
2724 /* Disarm all kprobes on a best-effort basis */
2725 hlist_for_each_entry(p, head, hlist) {
2726 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2727 err = disarm_kprobe(p, false);
2728 if (err) {
2729 errors++;
2730 ret = err;
2731 }
2732 total++;
2733 }
2734 }
2735 }
2736
2737 if (errors)
2738 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2739 errors, total);
2740 else
2741 pr_info("Kprobes globally disabled\n");
2742
2743 mutex_unlock(&kprobe_mutex);
2744
2745 /* Wait for disarming all kprobes by optimizer */
2746 wait_for_kprobe_optimizer();
2747
2748 return ret;
2749}
2750
2751/*
2752 * XXX: The debugfs bool file interface doesn't allow for callbacks
2753 * when the bool state is switched. We can reuse that facility when
2754 * available
2755 */
2756static ssize_t read_enabled_file_bool(struct file *file,
2757 char __user *user_buf, size_t count, loff_t *ppos)
2758{
2759 char buf[3];
2760
2761 if (!kprobes_all_disarmed)
2762 buf[0] = '1';
2763 else
2764 buf[0] = '0';
2765 buf[1] = '\n';
2766 buf[2] = 0x00;
2767 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2768}
2769
2770static ssize_t write_enabled_file_bool(struct file *file,
2771 const char __user *user_buf, size_t count, loff_t *ppos)
2772{
2773 char buf[32];
2774 size_t buf_size;
2775 int ret = 0;
2776
2777 buf_size = min(count, (sizeof(buf)-1));
2778 if (copy_from_user(buf, user_buf, buf_size))
2779 return -EFAULT;
2780
2781 buf[buf_size] = '\0';
2782 switch (buf[0]) {
2783 case 'y':
2784 case 'Y':
2785 case '1':
2786 ret = arm_all_kprobes();
2787 break;
2788 case 'n':
2789 case 'N':
2790 case '0':
2791 ret = disarm_all_kprobes();
2792 break;
2793 default:
2794 return -EINVAL;
2795 }
2796
2797 if (ret)
2798 return ret;
2799
2800 return count;
2801}
2802
2803static const struct file_operations fops_kp = {
2804 .read = read_enabled_file_bool,
2805 .write = write_enabled_file_bool,
2806 .llseek = default_llseek,
2807};
2808
2809static int __init debugfs_kprobe_init(void)
2810{
2811 struct dentry *dir;
2812 unsigned int value = 1;
2813
2814 dir = debugfs_create_dir("kprobes", NULL);
2815
2816 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2817
2818 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2819
2820 debugfs_create_file("blacklist", 0400, dir, NULL,
2821 &kprobe_blacklist_fops);
2822
2823 return 0;
2824}
2825
2826late_initcall(debugfs_kprobe_init);
2827#endif /* CONFIG_DEBUG_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 * <prasanna@in.ibm.com> added function-return probes.
19 */
20
21#define pr_fmt(fmt) "kprobes: " fmt
22
23#include <linux/kprobes.h>
24#include <linux/hash.h>
25#include <linux/init.h>
26#include <linux/slab.h>
27#include <linux/stddef.h>
28#include <linux/export.h>
29#include <linux/moduleloader.h>
30#include <linux/kallsyms.h>
31#include <linux/freezer.h>
32#include <linux/seq_file.h>
33#include <linux/debugfs.h>
34#include <linux/sysctl.h>
35#include <linux/kdebug.h>
36#include <linux/memory.h>
37#include <linux/ftrace.h>
38#include <linux/cpu.h>
39#include <linux/jump_label.h>
40#include <linux/static_call.h>
41#include <linux/perf_event.h>
42
43#include <asm/sections.h>
44#include <asm/cacheflush.h>
45#include <asm/errno.h>
46#include <linux/uaccess.h>
47
48#define KPROBE_HASH_BITS 6
49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52#define kprobe_sysctls_init() do { } while (0)
53#endif
54
55static int kprobes_initialized;
56/* kprobe_table can be accessed by
57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58 * Or
59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60 */
61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63/* NOTE: change this value only with 'kprobe_mutex' held */
64static bool kprobes_all_disarmed;
65
66/* This protects 'kprobe_table' and 'optimizing_list' */
67static DEFINE_MUTEX(kprobe_mutex);
68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 unsigned int __unused)
72{
73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74}
75
76/*
77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78 * kprobes can not probe.
79 */
80static LIST_HEAD(kprobe_blacklist);
81
82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83/*
84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85 * single-stepped. x86_64, POWER4 and above have no-exec support and
86 * stepping on the instruction on a vmalloced/kmalloced/data page
87 * is a recipe for disaster
88 */
89struct kprobe_insn_page {
90 struct list_head list;
91 kprobe_opcode_t *insns; /* Page of instruction slots */
92 struct kprobe_insn_cache *cache;
93 int nused;
94 int ngarbage;
95 char slot_used[];
96};
97
98#define KPROBE_INSN_PAGE_SIZE(slots) \
99 (offsetof(struct kprobe_insn_page, slot_used) + \
100 (sizeof(char) * (slots)))
101
102static int slots_per_page(struct kprobe_insn_cache *c)
103{
104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105}
106
107enum kprobe_slot_state {
108 SLOT_CLEAN = 0,
109 SLOT_DIRTY = 1,
110 SLOT_USED = 2,
111};
112
113void __weak *alloc_insn_page(void)
114{
115 /*
116 * Use module_alloc() so this page is within +/- 2GB of where the
117 * kernel image and loaded module images reside. This is required
118 * for most of the architectures.
119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 */
121 return module_alloc(PAGE_SIZE);
122}
123
124static void free_insn_page(void *page)
125{
126 module_memfree(page);
127}
128
129struct kprobe_insn_cache kprobe_insn_slots = {
130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 .alloc = alloc_insn_page,
132 .free = free_insn_page,
133 .sym = KPROBE_INSN_PAGE_SYM,
134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 .insn_size = MAX_INSN_SIZE,
136 .nr_garbage = 0,
137};
138static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140/**
141 * __get_insn_slot() - Find a slot on an executable page for an instruction.
142 * We allocate an executable page if there's no room on existing ones.
143 */
144kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145{
146 struct kprobe_insn_page *kip;
147 kprobe_opcode_t *slot = NULL;
148
149 /* Since the slot array is not protected by rcu, we need a mutex */
150 mutex_lock(&c->mutex);
151 retry:
152 rcu_read_lock();
153 list_for_each_entry_rcu(kip, &c->pages, list) {
154 if (kip->nused < slots_per_page(c)) {
155 int i;
156
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 rcu_read_unlock();
163 goto out;
164 }
165 }
166 /* kip->nused is broken. Fix it. */
167 kip->nused = slots_per_page(c);
168 WARN_ON(1);
169 }
170 }
171 rcu_read_unlock();
172
173 /* If there are any garbage slots, collect it and try again. */
174 if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 goto retry;
176
177 /* All out of space. Need to allocate a new page. */
178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 if (!kip)
180 goto out;
181
182 kip->insns = c->alloc();
183 if (!kip->insns) {
184 kfree(kip);
185 goto out;
186 }
187 INIT_LIST_HEAD(&kip->list);
188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 kip->slot_used[0] = SLOT_USED;
190 kip->nused = 1;
191 kip->ngarbage = 0;
192 kip->cache = c;
193 list_add_rcu(&kip->list, &c->pages);
194 slot = kip->insns;
195
196 /* Record the perf ksymbol register event after adding the page */
197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 PAGE_SIZE, false, c->sym);
199out:
200 mutex_unlock(&c->mutex);
201 return slot;
202}
203
204/* Return true if all garbages are collected, otherwise false. */
205static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206{
207 kip->slot_used[idx] = SLOT_CLEAN;
208 kip->nused--;
209 if (kip->nused == 0) {
210 /*
211 * Page is no longer in use. Free it unless
212 * it's the last one. We keep the last one
213 * so as not to have to set it up again the
214 * next time somebody inserts a probe.
215 */
216 if (!list_is_singular(&kip->list)) {
217 /*
218 * Record perf ksymbol unregister event before removing
219 * the page.
220 */
221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 (unsigned long)kip->insns, PAGE_SIZE, true,
223 kip->cache->sym);
224 list_del_rcu(&kip->list);
225 synchronize_rcu();
226 kip->cache->free(kip->insns);
227 kfree(kip);
228 }
229 return true;
230 }
231 return false;
232}
233
234static int collect_garbage_slots(struct kprobe_insn_cache *c)
235{
236 struct kprobe_insn_page *kip, *next;
237
238 /* Ensure no-one is interrupted on the garbages */
239 synchronize_rcu();
240
241 list_for_each_entry_safe(kip, next, &c->pages, list) {
242 int i;
243
244 if (kip->ngarbage == 0)
245 continue;
246 kip->ngarbage = 0; /* we will collect all garbages */
247 for (i = 0; i < slots_per_page(c); i++) {
248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 break;
250 }
251 }
252 c->nr_garbage = 0;
253 return 0;
254}
255
256void __free_insn_slot(struct kprobe_insn_cache *c,
257 kprobe_opcode_t *slot, int dirty)
258{
259 struct kprobe_insn_page *kip;
260 long idx;
261
262 mutex_lock(&c->mutex);
263 rcu_read_lock();
264 list_for_each_entry_rcu(kip, &c->pages, list) {
265 idx = ((long)slot - (long)kip->insns) /
266 (c->insn_size * sizeof(kprobe_opcode_t));
267 if (idx >= 0 && idx < slots_per_page(c))
268 goto out;
269 }
270 /* Could not find this slot. */
271 WARN_ON(1);
272 kip = NULL;
273out:
274 rcu_read_unlock();
275 /* Mark and sweep: this may sleep */
276 if (kip) {
277 /* Check double free */
278 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 if (dirty) {
280 kip->slot_used[idx] = SLOT_DIRTY;
281 kip->ngarbage++;
282 if (++c->nr_garbage > slots_per_page(c))
283 collect_garbage_slots(c);
284 } else {
285 collect_one_slot(kip, idx);
286 }
287 }
288 mutex_unlock(&c->mutex);
289}
290
291/*
292 * Check given address is on the page of kprobe instruction slots.
293 * This will be used for checking whether the address on a stack
294 * is on a text area or not.
295 */
296bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297{
298 struct kprobe_insn_page *kip;
299 bool ret = false;
300
301 rcu_read_lock();
302 list_for_each_entry_rcu(kip, &c->pages, list) {
303 if (addr >= (unsigned long)kip->insns &&
304 addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 ret = true;
306 break;
307 }
308 }
309 rcu_read_unlock();
310
311 return ret;
312}
313
314int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 unsigned long *value, char *type, char *sym)
316{
317 struct kprobe_insn_page *kip;
318 int ret = -ERANGE;
319
320 rcu_read_lock();
321 list_for_each_entry_rcu(kip, &c->pages, list) {
322 if ((*symnum)--)
323 continue;
324 strscpy(sym, c->sym, KSYM_NAME_LEN);
325 *type = 't';
326 *value = (unsigned long)kip->insns;
327 ret = 0;
328 break;
329 }
330 rcu_read_unlock();
331
332 return ret;
333}
334
335#ifdef CONFIG_OPTPROBES
336void __weak *alloc_optinsn_page(void)
337{
338 return alloc_insn_page();
339}
340
341void __weak free_optinsn_page(void *page)
342{
343 free_insn_page(page);
344}
345
346/* For optimized_kprobe buffer */
347struct kprobe_insn_cache kprobe_optinsn_slots = {
348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 .alloc = alloc_optinsn_page,
350 .free = free_optinsn_page,
351 .sym = KPROBE_OPTINSN_PAGE_SYM,
352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 /* .insn_size is initialized later */
354 .nr_garbage = 0,
355};
356#endif
357#endif
358
359/* We have preemption disabled.. so it is safe to use __ versions */
360static inline void set_kprobe_instance(struct kprobe *kp)
361{
362 __this_cpu_write(kprobe_instance, kp);
363}
364
365static inline void reset_kprobe_instance(void)
366{
367 __this_cpu_write(kprobe_instance, NULL);
368}
369
370/*
371 * This routine is called either:
372 * - under the 'kprobe_mutex' - during kprobe_[un]register().
373 * OR
374 * - with preemption disabled - from architecture specific code.
375 */
376struct kprobe *get_kprobe(void *addr)
377{
378 struct hlist_head *head;
379 struct kprobe *p;
380
381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 hlist_for_each_entry_rcu(p, head, hlist,
383 lockdep_is_held(&kprobe_mutex)) {
384 if (p->addr == addr)
385 return p;
386 }
387
388 return NULL;
389}
390NOKPROBE_SYMBOL(get_kprobe);
391
392static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394/* Return true if 'p' is an aggregator */
395static inline bool kprobe_aggrprobe(struct kprobe *p)
396{
397 return p->pre_handler == aggr_pre_handler;
398}
399
400/* Return true if 'p' is unused */
401static inline bool kprobe_unused(struct kprobe *p)
402{
403 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 list_empty(&p->list);
405}
406
407/* Keep all fields in the kprobe consistent. */
408static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409{
410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412}
413
414#ifdef CONFIG_OPTPROBES
415/* NOTE: This is protected by 'kprobe_mutex'. */
416static bool kprobes_allow_optimization;
417
418/*
419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420 * This must be called from arch-dep optimized caller.
421 */
422void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423{
424 struct kprobe *kp;
425
426 list_for_each_entry_rcu(kp, &p->list, list) {
427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 set_kprobe_instance(kp);
429 kp->pre_handler(kp, regs);
430 }
431 reset_kprobe_instance();
432 }
433}
434NOKPROBE_SYMBOL(opt_pre_handler);
435
436/* Free optimized instructions and optimized_kprobe */
437static void free_aggr_kprobe(struct kprobe *p)
438{
439 struct optimized_kprobe *op;
440
441 op = container_of(p, struct optimized_kprobe, kp);
442 arch_remove_optimized_kprobe(op);
443 arch_remove_kprobe(p);
444 kfree(op);
445}
446
447/* Return true if the kprobe is ready for optimization. */
448static inline int kprobe_optready(struct kprobe *p)
449{
450 struct optimized_kprobe *op;
451
452 if (kprobe_aggrprobe(p)) {
453 op = container_of(p, struct optimized_kprobe, kp);
454 return arch_prepared_optinsn(&op->optinsn);
455 }
456
457 return 0;
458}
459
460/* Return true if the kprobe is disarmed. Note: p must be on hash list */
461static inline bool kprobe_disarmed(struct kprobe *p)
462{
463 struct optimized_kprobe *op;
464
465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 if (!kprobe_aggrprobe(p))
467 return kprobe_disabled(p);
468
469 op = container_of(p, struct optimized_kprobe, kp);
470
471 return kprobe_disabled(p) && list_empty(&op->list);
472}
473
474/* Return true if the probe is queued on (un)optimizing lists */
475static bool kprobe_queued(struct kprobe *p)
476{
477 struct optimized_kprobe *op;
478
479 if (kprobe_aggrprobe(p)) {
480 op = container_of(p, struct optimized_kprobe, kp);
481 if (!list_empty(&op->list))
482 return true;
483 }
484 return false;
485}
486
487/*
488 * Return an optimized kprobe whose optimizing code replaces
489 * instructions including 'addr' (exclude breakpoint).
490 */
491static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492{
493 int i;
494 struct kprobe *p = NULL;
495 struct optimized_kprobe *op;
496
497 /* Don't check i == 0, since that is a breakpoint case. */
498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 p = get_kprobe(addr - i);
500
501 if (p && kprobe_optready(p)) {
502 op = container_of(p, struct optimized_kprobe, kp);
503 if (arch_within_optimized_kprobe(op, addr))
504 return p;
505 }
506
507 return NULL;
508}
509
510/* Optimization staging list, protected by 'kprobe_mutex' */
511static LIST_HEAD(optimizing_list);
512static LIST_HEAD(unoptimizing_list);
513static LIST_HEAD(freeing_list);
514
515static void kprobe_optimizer(struct work_struct *work);
516static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517#define OPTIMIZE_DELAY 5
518
519/*
520 * Optimize (replace a breakpoint with a jump) kprobes listed on
521 * 'optimizing_list'.
522 */
523static void do_optimize_kprobes(void)
524{
525 lockdep_assert_held(&text_mutex);
526 /*
527 * The optimization/unoptimization refers 'online_cpus' via
528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 * 'text_mutex' but stop_machine() can not be done because
532 * the 'online_cpus' has been changed)
533 * To avoid this deadlock, caller must have locked cpu-hotplug
534 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 */
536 lockdep_assert_cpus_held();
537
538 /* Optimization never be done when disarmed */
539 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 list_empty(&optimizing_list))
541 return;
542
543 arch_optimize_kprobes(&optimizing_list);
544}
545
546/*
547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548 * if need) kprobes listed on 'unoptimizing_list'.
549 */
550static void do_unoptimize_kprobes(void)
551{
552 struct optimized_kprobe *op, *tmp;
553
554 lockdep_assert_held(&text_mutex);
555 /* See comment in do_optimize_kprobes() */
556 lockdep_assert_cpus_held();
557
558 /* Unoptimization must be done anytime */
559 if (list_empty(&unoptimizing_list))
560 return;
561
562 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
563 /* Loop on 'freeing_list' for disarming */
564 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
565 /* Switching from detour code to origin */
566 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
567 /* Disarm probes if marked disabled */
568 if (kprobe_disabled(&op->kp))
569 arch_disarm_kprobe(&op->kp);
570 if (kprobe_unused(&op->kp)) {
571 /*
572 * Remove unused probes from hash list. After waiting
573 * for synchronization, these probes are reclaimed.
574 * (reclaiming is done by do_free_cleaned_kprobes().)
575 */
576 hlist_del_rcu(&op->kp.hlist);
577 } else
578 list_del_init(&op->list);
579 }
580}
581
582/* Reclaim all kprobes on the 'freeing_list' */
583static void do_free_cleaned_kprobes(void)
584{
585 struct optimized_kprobe *op, *tmp;
586
587 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
588 list_del_init(&op->list);
589 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
590 /*
591 * This must not happen, but if there is a kprobe
592 * still in use, keep it on kprobes hash list.
593 */
594 continue;
595 }
596 free_aggr_kprobe(&op->kp);
597 }
598}
599
600/* Start optimizer after OPTIMIZE_DELAY passed */
601static void kick_kprobe_optimizer(void)
602{
603 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
604}
605
606/* Kprobe jump optimizer */
607static void kprobe_optimizer(struct work_struct *work)
608{
609 mutex_lock(&kprobe_mutex);
610 cpus_read_lock();
611 mutex_lock(&text_mutex);
612
613 /*
614 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
615 * kprobes before waiting for quiesence period.
616 */
617 do_unoptimize_kprobes();
618
619 /*
620 * Step 2: Wait for quiesence period to ensure all potentially
621 * preempted tasks to have normally scheduled. Because optprobe
622 * may modify multiple instructions, there is a chance that Nth
623 * instruction is preempted. In that case, such tasks can return
624 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
625 * Note that on non-preemptive kernel, this is transparently converted
626 * to synchronoze_sched() to wait for all interrupts to have completed.
627 */
628 synchronize_rcu_tasks();
629
630 /* Step 3: Optimize kprobes after quiesence period */
631 do_optimize_kprobes();
632
633 /* Step 4: Free cleaned kprobes after quiesence period */
634 do_free_cleaned_kprobes();
635
636 mutex_unlock(&text_mutex);
637 cpus_read_unlock();
638
639 /* Step 5: Kick optimizer again if needed */
640 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
641 kick_kprobe_optimizer();
642
643 mutex_unlock(&kprobe_mutex);
644}
645
646/* Wait for completing optimization and unoptimization */
647void wait_for_kprobe_optimizer(void)
648{
649 mutex_lock(&kprobe_mutex);
650
651 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
652 mutex_unlock(&kprobe_mutex);
653
654 /* This will also make 'optimizing_work' execute immmediately */
655 flush_delayed_work(&optimizing_work);
656 /* 'optimizing_work' might not have been queued yet, relax */
657 cpu_relax();
658
659 mutex_lock(&kprobe_mutex);
660 }
661
662 mutex_unlock(&kprobe_mutex);
663}
664
665static bool optprobe_queued_unopt(struct optimized_kprobe *op)
666{
667 struct optimized_kprobe *_op;
668
669 list_for_each_entry(_op, &unoptimizing_list, list) {
670 if (op == _op)
671 return true;
672 }
673
674 return false;
675}
676
677/* Optimize kprobe if p is ready to be optimized */
678static void optimize_kprobe(struct kprobe *p)
679{
680 struct optimized_kprobe *op;
681
682 /* Check if the kprobe is disabled or not ready for optimization. */
683 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
684 (kprobe_disabled(p) || kprobes_all_disarmed))
685 return;
686
687 /* kprobes with 'post_handler' can not be optimized */
688 if (p->post_handler)
689 return;
690
691 op = container_of(p, struct optimized_kprobe, kp);
692
693 /* Check there is no other kprobes at the optimized instructions */
694 if (arch_check_optimized_kprobe(op) < 0)
695 return;
696
697 /* Check if it is already optimized. */
698 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
699 if (optprobe_queued_unopt(op)) {
700 /* This is under unoptimizing. Just dequeue the probe */
701 list_del_init(&op->list);
702 }
703 return;
704 }
705 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
706
707 /*
708 * On the 'unoptimizing_list' and 'optimizing_list',
709 * 'op' must have OPTIMIZED flag
710 */
711 if (WARN_ON_ONCE(!list_empty(&op->list)))
712 return;
713
714 list_add(&op->list, &optimizing_list);
715 kick_kprobe_optimizer();
716}
717
718/* Short cut to direct unoptimizing */
719static void force_unoptimize_kprobe(struct optimized_kprobe *op)
720{
721 lockdep_assert_cpus_held();
722 arch_unoptimize_kprobe(op);
723 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
724}
725
726/* Unoptimize a kprobe if p is optimized */
727static void unoptimize_kprobe(struct kprobe *p, bool force)
728{
729 struct optimized_kprobe *op;
730
731 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
732 return; /* This is not an optprobe nor optimized */
733
734 op = container_of(p, struct optimized_kprobe, kp);
735 if (!kprobe_optimized(p))
736 return;
737
738 if (!list_empty(&op->list)) {
739 if (optprobe_queued_unopt(op)) {
740 /* Queued in unoptimizing queue */
741 if (force) {
742 /*
743 * Forcibly unoptimize the kprobe here, and queue it
744 * in the freeing list for release afterwards.
745 */
746 force_unoptimize_kprobe(op);
747 list_move(&op->list, &freeing_list);
748 }
749 } else {
750 /* Dequeue from the optimizing queue */
751 list_del_init(&op->list);
752 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
753 }
754 return;
755 }
756
757 /* Optimized kprobe case */
758 if (force) {
759 /* Forcibly update the code: this is a special case */
760 force_unoptimize_kprobe(op);
761 } else {
762 list_add(&op->list, &unoptimizing_list);
763 kick_kprobe_optimizer();
764 }
765}
766
767/* Cancel unoptimizing for reusing */
768static int reuse_unused_kprobe(struct kprobe *ap)
769{
770 struct optimized_kprobe *op;
771
772 /*
773 * Unused kprobe MUST be on the way of delayed unoptimizing (means
774 * there is still a relative jump) and disabled.
775 */
776 op = container_of(ap, struct optimized_kprobe, kp);
777 WARN_ON_ONCE(list_empty(&op->list));
778 /* Enable the probe again */
779 ap->flags &= ~KPROBE_FLAG_DISABLED;
780 /* Optimize it again. (remove from 'op->list') */
781 if (!kprobe_optready(ap))
782 return -EINVAL;
783
784 optimize_kprobe(ap);
785 return 0;
786}
787
788/* Remove optimized instructions */
789static void kill_optimized_kprobe(struct kprobe *p)
790{
791 struct optimized_kprobe *op;
792
793 op = container_of(p, struct optimized_kprobe, kp);
794 if (!list_empty(&op->list))
795 /* Dequeue from the (un)optimization queue */
796 list_del_init(&op->list);
797 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
798
799 if (kprobe_unused(p)) {
800 /* Enqueue if it is unused */
801 list_add(&op->list, &freeing_list);
802 /*
803 * Remove unused probes from the hash list. After waiting
804 * for synchronization, this probe is reclaimed.
805 * (reclaiming is done by do_free_cleaned_kprobes().)
806 */
807 hlist_del_rcu(&op->kp.hlist);
808 }
809
810 /* Don't touch the code, because it is already freed. */
811 arch_remove_optimized_kprobe(op);
812}
813
814static inline
815void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
816{
817 if (!kprobe_ftrace(p))
818 arch_prepare_optimized_kprobe(op, p);
819}
820
821/* Try to prepare optimized instructions */
822static void prepare_optimized_kprobe(struct kprobe *p)
823{
824 struct optimized_kprobe *op;
825
826 op = container_of(p, struct optimized_kprobe, kp);
827 __prepare_optimized_kprobe(op, p);
828}
829
830/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
831static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
832{
833 struct optimized_kprobe *op;
834
835 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
836 if (!op)
837 return NULL;
838
839 INIT_LIST_HEAD(&op->list);
840 op->kp.addr = p->addr;
841 __prepare_optimized_kprobe(op, p);
842
843 return &op->kp;
844}
845
846static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
847
848/*
849 * Prepare an optimized_kprobe and optimize it.
850 * NOTE: 'p' must be a normal registered kprobe.
851 */
852static void try_to_optimize_kprobe(struct kprobe *p)
853{
854 struct kprobe *ap;
855 struct optimized_kprobe *op;
856
857 /* Impossible to optimize ftrace-based kprobe. */
858 if (kprobe_ftrace(p))
859 return;
860
861 /* For preparing optimization, jump_label_text_reserved() is called. */
862 cpus_read_lock();
863 jump_label_lock();
864 mutex_lock(&text_mutex);
865
866 ap = alloc_aggr_kprobe(p);
867 if (!ap)
868 goto out;
869
870 op = container_of(ap, struct optimized_kprobe, kp);
871 if (!arch_prepared_optinsn(&op->optinsn)) {
872 /* If failed to setup optimizing, fallback to kprobe. */
873 arch_remove_optimized_kprobe(op);
874 kfree(op);
875 goto out;
876 }
877
878 init_aggr_kprobe(ap, p);
879 optimize_kprobe(ap); /* This just kicks optimizer thread. */
880
881out:
882 mutex_unlock(&text_mutex);
883 jump_label_unlock();
884 cpus_read_unlock();
885}
886
887static void optimize_all_kprobes(void)
888{
889 struct hlist_head *head;
890 struct kprobe *p;
891 unsigned int i;
892
893 mutex_lock(&kprobe_mutex);
894 /* If optimization is already allowed, just return. */
895 if (kprobes_allow_optimization)
896 goto out;
897
898 cpus_read_lock();
899 kprobes_allow_optimization = true;
900 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
901 head = &kprobe_table[i];
902 hlist_for_each_entry(p, head, hlist)
903 if (!kprobe_disabled(p))
904 optimize_kprobe(p);
905 }
906 cpus_read_unlock();
907 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
908out:
909 mutex_unlock(&kprobe_mutex);
910}
911
912#ifdef CONFIG_SYSCTL
913static void unoptimize_all_kprobes(void)
914{
915 struct hlist_head *head;
916 struct kprobe *p;
917 unsigned int i;
918
919 mutex_lock(&kprobe_mutex);
920 /* If optimization is already prohibited, just return. */
921 if (!kprobes_allow_optimization) {
922 mutex_unlock(&kprobe_mutex);
923 return;
924 }
925
926 cpus_read_lock();
927 kprobes_allow_optimization = false;
928 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
929 head = &kprobe_table[i];
930 hlist_for_each_entry(p, head, hlist) {
931 if (!kprobe_disabled(p))
932 unoptimize_kprobe(p, false);
933 }
934 }
935 cpus_read_unlock();
936 mutex_unlock(&kprobe_mutex);
937
938 /* Wait for unoptimizing completion. */
939 wait_for_kprobe_optimizer();
940 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
941}
942
943static DEFINE_MUTEX(kprobe_sysctl_mutex);
944static int sysctl_kprobes_optimization;
945static int proc_kprobes_optimization_handler(struct ctl_table *table,
946 int write, void *buffer,
947 size_t *length, loff_t *ppos)
948{
949 int ret;
950
951 mutex_lock(&kprobe_sysctl_mutex);
952 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
953 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
954
955 if (sysctl_kprobes_optimization)
956 optimize_all_kprobes();
957 else
958 unoptimize_all_kprobes();
959 mutex_unlock(&kprobe_sysctl_mutex);
960
961 return ret;
962}
963
964static struct ctl_table kprobe_sysctls[] = {
965 {
966 .procname = "kprobes-optimization",
967 .data = &sysctl_kprobes_optimization,
968 .maxlen = sizeof(int),
969 .mode = 0644,
970 .proc_handler = proc_kprobes_optimization_handler,
971 .extra1 = SYSCTL_ZERO,
972 .extra2 = SYSCTL_ONE,
973 },
974 {}
975};
976
977static void __init kprobe_sysctls_init(void)
978{
979 register_sysctl_init("debug", kprobe_sysctls);
980}
981#endif /* CONFIG_SYSCTL */
982
983/* Put a breakpoint for a probe. */
984static void __arm_kprobe(struct kprobe *p)
985{
986 struct kprobe *_p;
987
988 lockdep_assert_held(&text_mutex);
989
990 /* Find the overlapping optimized kprobes. */
991 _p = get_optimized_kprobe(p->addr);
992 if (unlikely(_p))
993 /* Fallback to unoptimized kprobe */
994 unoptimize_kprobe(_p, true);
995
996 arch_arm_kprobe(p);
997 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
998}
999
1000/* Remove the breakpoint of a probe. */
1001static void __disarm_kprobe(struct kprobe *p, bool reopt)
1002{
1003 struct kprobe *_p;
1004
1005 lockdep_assert_held(&text_mutex);
1006
1007 /* Try to unoptimize */
1008 unoptimize_kprobe(p, kprobes_all_disarmed);
1009
1010 if (!kprobe_queued(p)) {
1011 arch_disarm_kprobe(p);
1012 /* If another kprobe was blocked, re-optimize it. */
1013 _p = get_optimized_kprobe(p->addr);
1014 if (unlikely(_p) && reopt)
1015 optimize_kprobe(_p);
1016 }
1017 /*
1018 * TODO: Since unoptimization and real disarming will be done by
1019 * the worker thread, we can not check whether another probe are
1020 * unoptimized because of this probe here. It should be re-optimized
1021 * by the worker thread.
1022 */
1023}
1024
1025#else /* !CONFIG_OPTPROBES */
1026
1027#define optimize_kprobe(p) do {} while (0)
1028#define unoptimize_kprobe(p, f) do {} while (0)
1029#define kill_optimized_kprobe(p) do {} while (0)
1030#define prepare_optimized_kprobe(p) do {} while (0)
1031#define try_to_optimize_kprobe(p) do {} while (0)
1032#define __arm_kprobe(p) arch_arm_kprobe(p)
1033#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1034#define kprobe_disarmed(p) kprobe_disabled(p)
1035#define wait_for_kprobe_optimizer() do {} while (0)
1036
1037static int reuse_unused_kprobe(struct kprobe *ap)
1038{
1039 /*
1040 * If the optimized kprobe is NOT supported, the aggr kprobe is
1041 * released at the same time that the last aggregated kprobe is
1042 * unregistered.
1043 * Thus there should be no chance to reuse unused kprobe.
1044 */
1045 WARN_ON_ONCE(1);
1046 return -EINVAL;
1047}
1048
1049static void free_aggr_kprobe(struct kprobe *p)
1050{
1051 arch_remove_kprobe(p);
1052 kfree(p);
1053}
1054
1055static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1056{
1057 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1058}
1059#endif /* CONFIG_OPTPROBES */
1060
1061#ifdef CONFIG_KPROBES_ON_FTRACE
1062static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1063 .func = kprobe_ftrace_handler,
1064 .flags = FTRACE_OPS_FL_SAVE_REGS,
1065};
1066
1067static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1068 .func = kprobe_ftrace_handler,
1069 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1070};
1071
1072static int kprobe_ipmodify_enabled;
1073static int kprobe_ftrace_enabled;
1074
1075static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1076 int *cnt)
1077{
1078 int ret = 0;
1079
1080 lockdep_assert_held(&kprobe_mutex);
1081
1082 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1083 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1084 return ret;
1085
1086 if (*cnt == 0) {
1087 ret = register_ftrace_function(ops);
1088 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1089 goto err_ftrace;
1090 }
1091
1092 (*cnt)++;
1093 return ret;
1094
1095err_ftrace:
1096 /*
1097 * At this point, sinec ops is not registered, we should be sefe from
1098 * registering empty filter.
1099 */
1100 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 return ret;
1102}
1103
1104static int arm_kprobe_ftrace(struct kprobe *p)
1105{
1106 bool ipmodify = (p->post_handler != NULL);
1107
1108 return __arm_kprobe_ftrace(p,
1109 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1110 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1111}
1112
1113static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1114 int *cnt)
1115{
1116 int ret = 0;
1117
1118 lockdep_assert_held(&kprobe_mutex);
1119
1120 if (*cnt == 1) {
1121 ret = unregister_ftrace_function(ops);
1122 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1123 return ret;
1124 }
1125
1126 (*cnt)--;
1127
1128 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1129 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1130 p->addr, ret);
1131 return ret;
1132}
1133
1134static int disarm_kprobe_ftrace(struct kprobe *p)
1135{
1136 bool ipmodify = (p->post_handler != NULL);
1137
1138 return __disarm_kprobe_ftrace(p,
1139 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1140 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1141}
1142#else /* !CONFIG_KPROBES_ON_FTRACE */
1143static inline int arm_kprobe_ftrace(struct kprobe *p)
1144{
1145 return -ENODEV;
1146}
1147
1148static inline int disarm_kprobe_ftrace(struct kprobe *p)
1149{
1150 return -ENODEV;
1151}
1152#endif
1153
1154static int prepare_kprobe(struct kprobe *p)
1155{
1156 /* Must ensure p->addr is really on ftrace */
1157 if (kprobe_ftrace(p))
1158 return arch_prepare_kprobe_ftrace(p);
1159
1160 return arch_prepare_kprobe(p);
1161}
1162
1163static int arm_kprobe(struct kprobe *kp)
1164{
1165 if (unlikely(kprobe_ftrace(kp)))
1166 return arm_kprobe_ftrace(kp);
1167
1168 cpus_read_lock();
1169 mutex_lock(&text_mutex);
1170 __arm_kprobe(kp);
1171 mutex_unlock(&text_mutex);
1172 cpus_read_unlock();
1173
1174 return 0;
1175}
1176
1177static int disarm_kprobe(struct kprobe *kp, bool reopt)
1178{
1179 if (unlikely(kprobe_ftrace(kp)))
1180 return disarm_kprobe_ftrace(kp);
1181
1182 cpus_read_lock();
1183 mutex_lock(&text_mutex);
1184 __disarm_kprobe(kp, reopt);
1185 mutex_unlock(&text_mutex);
1186 cpus_read_unlock();
1187
1188 return 0;
1189}
1190
1191/*
1192 * Aggregate handlers for multiple kprobes support - these handlers
1193 * take care of invoking the individual kprobe handlers on p->list
1194 */
1195static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1196{
1197 struct kprobe *kp;
1198
1199 list_for_each_entry_rcu(kp, &p->list, list) {
1200 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1201 set_kprobe_instance(kp);
1202 if (kp->pre_handler(kp, regs))
1203 return 1;
1204 }
1205 reset_kprobe_instance();
1206 }
1207 return 0;
1208}
1209NOKPROBE_SYMBOL(aggr_pre_handler);
1210
1211static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1212 unsigned long flags)
1213{
1214 struct kprobe *kp;
1215
1216 list_for_each_entry_rcu(kp, &p->list, list) {
1217 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1218 set_kprobe_instance(kp);
1219 kp->post_handler(kp, regs, flags);
1220 reset_kprobe_instance();
1221 }
1222 }
1223}
1224NOKPROBE_SYMBOL(aggr_post_handler);
1225
1226/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1227void kprobes_inc_nmissed_count(struct kprobe *p)
1228{
1229 struct kprobe *kp;
1230
1231 if (!kprobe_aggrprobe(p)) {
1232 p->nmissed++;
1233 } else {
1234 list_for_each_entry_rcu(kp, &p->list, list)
1235 kp->nmissed++;
1236 }
1237}
1238NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1239
1240static struct kprobe kprobe_busy = {
1241 .addr = (void *) get_kprobe,
1242};
1243
1244void kprobe_busy_begin(void)
1245{
1246 struct kprobe_ctlblk *kcb;
1247
1248 preempt_disable();
1249 __this_cpu_write(current_kprobe, &kprobe_busy);
1250 kcb = get_kprobe_ctlblk();
1251 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1252}
1253
1254void kprobe_busy_end(void)
1255{
1256 __this_cpu_write(current_kprobe, NULL);
1257 preempt_enable();
1258}
1259
1260/* Add the new probe to 'ap->list'. */
1261static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1262{
1263 if (p->post_handler)
1264 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1265
1266 list_add_rcu(&p->list, &ap->list);
1267 if (p->post_handler && !ap->post_handler)
1268 ap->post_handler = aggr_post_handler;
1269
1270 return 0;
1271}
1272
1273/*
1274 * Fill in the required fields of the aggregator kprobe. Replace the
1275 * earlier kprobe in the hlist with the aggregator kprobe.
1276 */
1277static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1278{
1279 /* Copy the insn slot of 'p' to 'ap'. */
1280 copy_kprobe(p, ap);
1281 flush_insn_slot(ap);
1282 ap->addr = p->addr;
1283 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1284 ap->pre_handler = aggr_pre_handler;
1285 /* We don't care the kprobe which has gone. */
1286 if (p->post_handler && !kprobe_gone(p))
1287 ap->post_handler = aggr_post_handler;
1288
1289 INIT_LIST_HEAD(&ap->list);
1290 INIT_HLIST_NODE(&ap->hlist);
1291
1292 list_add_rcu(&p->list, &ap->list);
1293 hlist_replace_rcu(&p->hlist, &ap->hlist);
1294}
1295
1296/*
1297 * This registers the second or subsequent kprobe at the same address.
1298 */
1299static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1300{
1301 int ret = 0;
1302 struct kprobe *ap = orig_p;
1303
1304 cpus_read_lock();
1305
1306 /* For preparing optimization, jump_label_text_reserved() is called */
1307 jump_label_lock();
1308 mutex_lock(&text_mutex);
1309
1310 if (!kprobe_aggrprobe(orig_p)) {
1311 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1312 ap = alloc_aggr_kprobe(orig_p);
1313 if (!ap) {
1314 ret = -ENOMEM;
1315 goto out;
1316 }
1317 init_aggr_kprobe(ap, orig_p);
1318 } else if (kprobe_unused(ap)) {
1319 /* This probe is going to die. Rescue it */
1320 ret = reuse_unused_kprobe(ap);
1321 if (ret)
1322 goto out;
1323 }
1324
1325 if (kprobe_gone(ap)) {
1326 /*
1327 * Attempting to insert new probe at the same location that
1328 * had a probe in the module vaddr area which already
1329 * freed. So, the instruction slot has already been
1330 * released. We need a new slot for the new probe.
1331 */
1332 ret = arch_prepare_kprobe(ap);
1333 if (ret)
1334 /*
1335 * Even if fail to allocate new slot, don't need to
1336 * free the 'ap'. It will be used next time, or
1337 * freed by unregister_kprobe().
1338 */
1339 goto out;
1340
1341 /* Prepare optimized instructions if possible. */
1342 prepare_optimized_kprobe(ap);
1343
1344 /*
1345 * Clear gone flag to prevent allocating new slot again, and
1346 * set disabled flag because it is not armed yet.
1347 */
1348 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349 | KPROBE_FLAG_DISABLED;
1350 }
1351
1352 /* Copy the insn slot of 'p' to 'ap'. */
1353 copy_kprobe(ap, p);
1354 ret = add_new_kprobe(ap, p);
1355
1356out:
1357 mutex_unlock(&text_mutex);
1358 jump_label_unlock();
1359 cpus_read_unlock();
1360
1361 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363 if (!kprobes_all_disarmed) {
1364 /* Arm the breakpoint again. */
1365 ret = arm_kprobe(ap);
1366 if (ret) {
1367 ap->flags |= KPROBE_FLAG_DISABLED;
1368 list_del_rcu(&p->list);
1369 synchronize_rcu();
1370 }
1371 }
1372 }
1373 return ret;
1374}
1375
1376bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1377{
1378 /* The '__kprobes' functions and entry code must not be probed. */
1379 return addr >= (unsigned long)__kprobes_text_start &&
1380 addr < (unsigned long)__kprobes_text_end;
1381}
1382
1383static bool __within_kprobe_blacklist(unsigned long addr)
1384{
1385 struct kprobe_blacklist_entry *ent;
1386
1387 if (arch_within_kprobe_blacklist(addr))
1388 return true;
1389 /*
1390 * If 'kprobe_blacklist' is defined, check the address and
1391 * reject any probe registration in the prohibited area.
1392 */
1393 list_for_each_entry(ent, &kprobe_blacklist, list) {
1394 if (addr >= ent->start_addr && addr < ent->end_addr)
1395 return true;
1396 }
1397 return false;
1398}
1399
1400bool within_kprobe_blacklist(unsigned long addr)
1401{
1402 char symname[KSYM_NAME_LEN], *p;
1403
1404 if (__within_kprobe_blacklist(addr))
1405 return true;
1406
1407 /* Check if the address is on a suffixed-symbol */
1408 if (!lookup_symbol_name(addr, symname)) {
1409 p = strchr(symname, '.');
1410 if (!p)
1411 return false;
1412 *p = '\0';
1413 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1414 if (addr)
1415 return __within_kprobe_blacklist(addr);
1416 }
1417 return false;
1418}
1419
1420/*
1421 * arch_adjust_kprobe_addr - adjust the address
1422 * @addr: symbol base address
1423 * @offset: offset within the symbol
1424 * @on_func_entry: was this @addr+@offset on the function entry
1425 *
1426 * Typically returns @addr + @offset, except for special cases where the
1427 * function might be prefixed by a CFI landing pad, in that case any offset
1428 * inside the landing pad is mapped to the first 'real' instruction of the
1429 * symbol.
1430 *
1431 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1432 * instruction at +0.
1433 */
1434kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1435 unsigned long offset,
1436 bool *on_func_entry)
1437{
1438 *on_func_entry = !offset;
1439 return (kprobe_opcode_t *)(addr + offset);
1440}
1441
1442/*
1443 * If 'symbol_name' is specified, look it up and add the 'offset'
1444 * to it. This way, we can specify a relative address to a symbol.
1445 * This returns encoded errors if it fails to look up symbol or invalid
1446 * combination of parameters.
1447 */
1448static kprobe_opcode_t *
1449_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1450 unsigned long offset, bool *on_func_entry)
1451{
1452 if ((symbol_name && addr) || (!symbol_name && !addr))
1453 goto invalid;
1454
1455 if (symbol_name) {
1456 /*
1457 * Input: @sym + @offset
1458 * Output: @addr + @offset
1459 *
1460 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1461 * argument into it's output!
1462 */
1463 addr = kprobe_lookup_name(symbol_name, offset);
1464 if (!addr)
1465 return ERR_PTR(-ENOENT);
1466 }
1467
1468 /*
1469 * So here we have @addr + @offset, displace it into a new
1470 * @addr' + @offset' where @addr' is the symbol start address.
1471 */
1472 addr = (void *)addr + offset;
1473 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1474 return ERR_PTR(-ENOENT);
1475 addr = (void *)addr - offset;
1476
1477 /*
1478 * Then ask the architecture to re-combine them, taking care of
1479 * magical function entry details while telling us if this was indeed
1480 * at the start of the function.
1481 */
1482 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1483 if (addr)
1484 return addr;
1485
1486invalid:
1487 return ERR_PTR(-EINVAL);
1488}
1489
1490static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1491{
1492 bool on_func_entry;
1493 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1494}
1495
1496/*
1497 * Check the 'p' is valid and return the aggregator kprobe
1498 * at the same address.
1499 */
1500static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1501{
1502 struct kprobe *ap, *list_p;
1503
1504 lockdep_assert_held(&kprobe_mutex);
1505
1506 ap = get_kprobe(p->addr);
1507 if (unlikely(!ap))
1508 return NULL;
1509
1510 if (p != ap) {
1511 list_for_each_entry(list_p, &ap->list, list)
1512 if (list_p == p)
1513 /* kprobe p is a valid probe */
1514 goto valid;
1515 return NULL;
1516 }
1517valid:
1518 return ap;
1519}
1520
1521/*
1522 * Warn and return error if the kprobe is being re-registered since
1523 * there must be a software bug.
1524 */
1525static inline int warn_kprobe_rereg(struct kprobe *p)
1526{
1527 int ret = 0;
1528
1529 mutex_lock(&kprobe_mutex);
1530 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1531 ret = -EINVAL;
1532 mutex_unlock(&kprobe_mutex);
1533
1534 return ret;
1535}
1536
1537static int check_ftrace_location(struct kprobe *p)
1538{
1539 unsigned long addr = (unsigned long)p->addr;
1540
1541 if (ftrace_location(addr) == addr) {
1542#ifdef CONFIG_KPROBES_ON_FTRACE
1543 p->flags |= KPROBE_FLAG_FTRACE;
1544#else /* !CONFIG_KPROBES_ON_FTRACE */
1545 return -EINVAL;
1546#endif
1547 }
1548 return 0;
1549}
1550
1551static int check_kprobe_address_safe(struct kprobe *p,
1552 struct module **probed_mod)
1553{
1554 int ret;
1555
1556 ret = check_ftrace_location(p);
1557 if (ret)
1558 return ret;
1559 jump_label_lock();
1560 preempt_disable();
1561
1562 /* Ensure it is not in reserved area nor out of text */
1563 if (!(core_kernel_text((unsigned long) p->addr) ||
1564 is_module_text_address((unsigned long) p->addr)) ||
1565 in_gate_area_no_mm((unsigned long) p->addr) ||
1566 within_kprobe_blacklist((unsigned long) p->addr) ||
1567 jump_label_text_reserved(p->addr, p->addr) ||
1568 static_call_text_reserved(p->addr, p->addr) ||
1569 find_bug((unsigned long)p->addr)) {
1570 ret = -EINVAL;
1571 goto out;
1572 }
1573
1574 /* Check if 'p' is probing a module. */
1575 *probed_mod = __module_text_address((unsigned long) p->addr);
1576 if (*probed_mod) {
1577 /*
1578 * We must hold a refcount of the probed module while updating
1579 * its code to prohibit unexpected unloading.
1580 */
1581 if (unlikely(!try_module_get(*probed_mod))) {
1582 ret = -ENOENT;
1583 goto out;
1584 }
1585
1586 /*
1587 * If the module freed '.init.text', we couldn't insert
1588 * kprobes in there.
1589 */
1590 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1591 (*probed_mod)->state != MODULE_STATE_COMING) {
1592 module_put(*probed_mod);
1593 *probed_mod = NULL;
1594 ret = -ENOENT;
1595 }
1596 }
1597out:
1598 preempt_enable();
1599 jump_label_unlock();
1600
1601 return ret;
1602}
1603
1604int register_kprobe(struct kprobe *p)
1605{
1606 int ret;
1607 struct kprobe *old_p;
1608 struct module *probed_mod;
1609 kprobe_opcode_t *addr;
1610 bool on_func_entry;
1611
1612 /* Adjust probe address from symbol */
1613 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1614 if (IS_ERR(addr))
1615 return PTR_ERR(addr);
1616 p->addr = addr;
1617
1618 ret = warn_kprobe_rereg(p);
1619 if (ret)
1620 return ret;
1621
1622 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1623 p->flags &= KPROBE_FLAG_DISABLED;
1624 p->nmissed = 0;
1625 INIT_LIST_HEAD(&p->list);
1626
1627 ret = check_kprobe_address_safe(p, &probed_mod);
1628 if (ret)
1629 return ret;
1630
1631 mutex_lock(&kprobe_mutex);
1632
1633 if (on_func_entry)
1634 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1635
1636 old_p = get_kprobe(p->addr);
1637 if (old_p) {
1638 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1639 ret = register_aggr_kprobe(old_p, p);
1640 goto out;
1641 }
1642
1643 cpus_read_lock();
1644 /* Prevent text modification */
1645 mutex_lock(&text_mutex);
1646 ret = prepare_kprobe(p);
1647 mutex_unlock(&text_mutex);
1648 cpus_read_unlock();
1649 if (ret)
1650 goto out;
1651
1652 INIT_HLIST_NODE(&p->hlist);
1653 hlist_add_head_rcu(&p->hlist,
1654 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1655
1656 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1657 ret = arm_kprobe(p);
1658 if (ret) {
1659 hlist_del_rcu(&p->hlist);
1660 synchronize_rcu();
1661 goto out;
1662 }
1663 }
1664
1665 /* Try to optimize kprobe */
1666 try_to_optimize_kprobe(p);
1667out:
1668 mutex_unlock(&kprobe_mutex);
1669
1670 if (probed_mod)
1671 module_put(probed_mod);
1672
1673 return ret;
1674}
1675EXPORT_SYMBOL_GPL(register_kprobe);
1676
1677/* Check if all probes on the 'ap' are disabled. */
1678static bool aggr_kprobe_disabled(struct kprobe *ap)
1679{
1680 struct kprobe *kp;
1681
1682 lockdep_assert_held(&kprobe_mutex);
1683
1684 list_for_each_entry(kp, &ap->list, list)
1685 if (!kprobe_disabled(kp))
1686 /*
1687 * Since there is an active probe on the list,
1688 * we can't disable this 'ap'.
1689 */
1690 return false;
1691
1692 return true;
1693}
1694
1695static struct kprobe *__disable_kprobe(struct kprobe *p)
1696{
1697 struct kprobe *orig_p;
1698 int ret;
1699
1700 lockdep_assert_held(&kprobe_mutex);
1701
1702 /* Get an original kprobe for return */
1703 orig_p = __get_valid_kprobe(p);
1704 if (unlikely(orig_p == NULL))
1705 return ERR_PTR(-EINVAL);
1706
1707 if (!kprobe_disabled(p)) {
1708 /* Disable probe if it is a child probe */
1709 if (p != orig_p)
1710 p->flags |= KPROBE_FLAG_DISABLED;
1711
1712 /* Try to disarm and disable this/parent probe */
1713 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714 /*
1715 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1716 * is false, 'orig_p' might not have been armed yet.
1717 * Note arm_all_kprobes() __tries__ to arm all kprobes
1718 * on the best effort basis.
1719 */
1720 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1721 ret = disarm_kprobe(orig_p, true);
1722 if (ret) {
1723 p->flags &= ~KPROBE_FLAG_DISABLED;
1724 return ERR_PTR(ret);
1725 }
1726 }
1727 orig_p->flags |= KPROBE_FLAG_DISABLED;
1728 }
1729 }
1730
1731 return orig_p;
1732}
1733
1734/*
1735 * Unregister a kprobe without a scheduler synchronization.
1736 */
1737static int __unregister_kprobe_top(struct kprobe *p)
1738{
1739 struct kprobe *ap, *list_p;
1740
1741 /* Disable kprobe. This will disarm it if needed. */
1742 ap = __disable_kprobe(p);
1743 if (IS_ERR(ap))
1744 return PTR_ERR(ap);
1745
1746 if (ap == p)
1747 /*
1748 * This probe is an independent(and non-optimized) kprobe
1749 * (not an aggrprobe). Remove from the hash list.
1750 */
1751 goto disarmed;
1752
1753 /* Following process expects this probe is an aggrprobe */
1754 WARN_ON(!kprobe_aggrprobe(ap));
1755
1756 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1757 /*
1758 * !disarmed could be happen if the probe is under delayed
1759 * unoptimizing.
1760 */
1761 goto disarmed;
1762 else {
1763 /* If disabling probe has special handlers, update aggrprobe */
1764 if (p->post_handler && !kprobe_gone(p)) {
1765 list_for_each_entry(list_p, &ap->list, list) {
1766 if ((list_p != p) && (list_p->post_handler))
1767 goto noclean;
1768 }
1769 /*
1770 * For the kprobe-on-ftrace case, we keep the
1771 * post_handler setting to identify this aggrprobe
1772 * armed with kprobe_ipmodify_ops.
1773 */
1774 if (!kprobe_ftrace(ap))
1775 ap->post_handler = NULL;
1776 }
1777noclean:
1778 /*
1779 * Remove from the aggrprobe: this path will do nothing in
1780 * __unregister_kprobe_bottom().
1781 */
1782 list_del_rcu(&p->list);
1783 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1784 /*
1785 * Try to optimize this probe again, because post
1786 * handler may have been changed.
1787 */
1788 optimize_kprobe(ap);
1789 }
1790 return 0;
1791
1792disarmed:
1793 hlist_del_rcu(&ap->hlist);
1794 return 0;
1795}
1796
1797static void __unregister_kprobe_bottom(struct kprobe *p)
1798{
1799 struct kprobe *ap;
1800
1801 if (list_empty(&p->list))
1802 /* This is an independent kprobe */
1803 arch_remove_kprobe(p);
1804 else if (list_is_singular(&p->list)) {
1805 /* This is the last child of an aggrprobe */
1806 ap = list_entry(p->list.next, struct kprobe, list);
1807 list_del(&p->list);
1808 free_aggr_kprobe(ap);
1809 }
1810 /* Otherwise, do nothing. */
1811}
1812
1813int register_kprobes(struct kprobe **kps, int num)
1814{
1815 int i, ret = 0;
1816
1817 if (num <= 0)
1818 return -EINVAL;
1819 for (i = 0; i < num; i++) {
1820 ret = register_kprobe(kps[i]);
1821 if (ret < 0) {
1822 if (i > 0)
1823 unregister_kprobes(kps, i);
1824 break;
1825 }
1826 }
1827 return ret;
1828}
1829EXPORT_SYMBOL_GPL(register_kprobes);
1830
1831void unregister_kprobe(struct kprobe *p)
1832{
1833 unregister_kprobes(&p, 1);
1834}
1835EXPORT_SYMBOL_GPL(unregister_kprobe);
1836
1837void unregister_kprobes(struct kprobe **kps, int num)
1838{
1839 int i;
1840
1841 if (num <= 0)
1842 return;
1843 mutex_lock(&kprobe_mutex);
1844 for (i = 0; i < num; i++)
1845 if (__unregister_kprobe_top(kps[i]) < 0)
1846 kps[i]->addr = NULL;
1847 mutex_unlock(&kprobe_mutex);
1848
1849 synchronize_rcu();
1850 for (i = 0; i < num; i++)
1851 if (kps[i]->addr)
1852 __unregister_kprobe_bottom(kps[i]);
1853}
1854EXPORT_SYMBOL_GPL(unregister_kprobes);
1855
1856int __weak kprobe_exceptions_notify(struct notifier_block *self,
1857 unsigned long val, void *data)
1858{
1859 return NOTIFY_DONE;
1860}
1861NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1862
1863static struct notifier_block kprobe_exceptions_nb = {
1864 .notifier_call = kprobe_exceptions_notify,
1865 .priority = 0x7fffffff /* we need to be notified first */
1866};
1867
1868#ifdef CONFIG_KRETPROBES
1869
1870#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1871static void free_rp_inst_rcu(struct rcu_head *head)
1872{
1873 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874
1875 if (refcount_dec_and_test(&ri->rph->ref))
1876 kfree(ri->rph);
1877 kfree(ri);
1878}
1879NOKPROBE_SYMBOL(free_rp_inst_rcu);
1880
1881static void recycle_rp_inst(struct kretprobe_instance *ri)
1882{
1883 struct kretprobe *rp = get_kretprobe(ri);
1884
1885 if (likely(rp))
1886 freelist_add(&ri->freelist, &rp->freelist);
1887 else
1888 call_rcu(&ri->rcu, free_rp_inst_rcu);
1889}
1890NOKPROBE_SYMBOL(recycle_rp_inst);
1891
1892/*
1893 * This function is called from delayed_put_task_struct() when a task is
1894 * dead and cleaned up to recycle any kretprobe instances associated with
1895 * this task. These left over instances represent probed functions that
1896 * have been called but will never return.
1897 */
1898void kprobe_flush_task(struct task_struct *tk)
1899{
1900 struct kretprobe_instance *ri;
1901 struct llist_node *node;
1902
1903 /* Early boot, not yet initialized. */
1904 if (unlikely(!kprobes_initialized))
1905 return;
1906
1907 kprobe_busy_begin();
1908
1909 node = __llist_del_all(&tk->kretprobe_instances);
1910 while (node) {
1911 ri = container_of(node, struct kretprobe_instance, llist);
1912 node = node->next;
1913
1914 recycle_rp_inst(ri);
1915 }
1916
1917 kprobe_busy_end();
1918}
1919NOKPROBE_SYMBOL(kprobe_flush_task);
1920
1921static inline void free_rp_inst(struct kretprobe *rp)
1922{
1923 struct kretprobe_instance *ri;
1924 struct freelist_node *node;
1925 int count = 0;
1926
1927 node = rp->freelist.head;
1928 while (node) {
1929 ri = container_of(node, struct kretprobe_instance, freelist);
1930 node = node->next;
1931
1932 kfree(ri);
1933 count++;
1934 }
1935
1936 if (refcount_sub_and_test(count, &rp->rph->ref)) {
1937 kfree(rp->rph);
1938 rp->rph = NULL;
1939 }
1940}
1941
1942/* This assumes the 'tsk' is the current task or the is not running. */
1943static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1944 struct llist_node **cur)
1945{
1946 struct kretprobe_instance *ri = NULL;
1947 struct llist_node *node = *cur;
1948
1949 if (!node)
1950 node = tsk->kretprobe_instances.first;
1951 else
1952 node = node->next;
1953
1954 while (node) {
1955 ri = container_of(node, struct kretprobe_instance, llist);
1956 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1957 *cur = node;
1958 return ri->ret_addr;
1959 }
1960 node = node->next;
1961 }
1962 return NULL;
1963}
1964NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1965
1966/**
1967 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1968 * @tsk: Target task
1969 * @fp: A frame pointer
1970 * @cur: a storage of the loop cursor llist_node pointer for next call
1971 *
1972 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1973 * long type. If it finds the return address, this returns that address value,
1974 * or this returns 0.
1975 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1976 * to get the currect return address - which is compared with the
1977 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1978 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1979 * first call, but '@cur' itself must NOT NULL.
1980 */
1981unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1982 struct llist_node **cur)
1983{
1984 struct kretprobe_instance *ri = NULL;
1985 kprobe_opcode_t *ret;
1986
1987 if (WARN_ON_ONCE(!cur))
1988 return 0;
1989
1990 do {
1991 ret = __kretprobe_find_ret_addr(tsk, cur);
1992 if (!ret)
1993 break;
1994 ri = container_of(*cur, struct kretprobe_instance, llist);
1995 } while (ri->fp != fp);
1996
1997 return (unsigned long)ret;
1998}
1999NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2000
2001void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2002 kprobe_opcode_t *correct_ret_addr)
2003{
2004 /*
2005 * Do nothing by default. Please fill this to update the fake return
2006 * address on the stack with the correct one on each arch if possible.
2007 */
2008}
2009
2010unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2011 void *frame_pointer)
2012{
2013 kprobe_opcode_t *correct_ret_addr = NULL;
2014 struct kretprobe_instance *ri = NULL;
2015 struct llist_node *first, *node = NULL;
2016 struct kretprobe *rp;
2017
2018 /* Find correct address and all nodes for this frame. */
2019 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2020 if (!correct_ret_addr) {
2021 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2022 BUG_ON(1);
2023 }
2024
2025 /*
2026 * Set the return address as the instruction pointer, because if the
2027 * user handler calls stack_trace_save_regs() with this 'regs',
2028 * the stack trace will start from the instruction pointer.
2029 */
2030 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2031
2032 /* Run the user handler of the nodes. */
2033 first = current->kretprobe_instances.first;
2034 while (first) {
2035 ri = container_of(first, struct kretprobe_instance, llist);
2036
2037 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2038 break;
2039
2040 rp = get_kretprobe(ri);
2041 if (rp && rp->handler) {
2042 struct kprobe *prev = kprobe_running();
2043
2044 __this_cpu_write(current_kprobe, &rp->kp);
2045 ri->ret_addr = correct_ret_addr;
2046 rp->handler(ri, regs);
2047 __this_cpu_write(current_kprobe, prev);
2048 }
2049 if (first == node)
2050 break;
2051
2052 first = first->next;
2053 }
2054
2055 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2056
2057 /* Unlink all nodes for this frame. */
2058 first = current->kretprobe_instances.first;
2059 current->kretprobe_instances.first = node->next;
2060 node->next = NULL;
2061
2062 /* Recycle free instances. */
2063 while (first) {
2064 ri = container_of(first, struct kretprobe_instance, llist);
2065 first = first->next;
2066
2067 recycle_rp_inst(ri);
2068 }
2069
2070 return (unsigned long)correct_ret_addr;
2071}
2072NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2073
2074/*
2075 * This kprobe pre_handler is registered with every kretprobe. When probe
2076 * hits it will set up the return probe.
2077 */
2078static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2079{
2080 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2081 struct kretprobe_instance *ri;
2082 struct freelist_node *fn;
2083
2084 fn = freelist_try_get(&rp->freelist);
2085 if (!fn) {
2086 rp->nmissed++;
2087 return 0;
2088 }
2089
2090 ri = container_of(fn, struct kretprobe_instance, freelist);
2091
2092 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2093 freelist_add(&ri->freelist, &rp->freelist);
2094 return 0;
2095 }
2096
2097 arch_prepare_kretprobe(ri, regs);
2098
2099 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2100
2101 return 0;
2102}
2103NOKPROBE_SYMBOL(pre_handler_kretprobe);
2104#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2105/*
2106 * This kprobe pre_handler is registered with every kretprobe. When probe
2107 * hits it will set up the return probe.
2108 */
2109static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2110{
2111 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2112 struct kretprobe_instance *ri;
2113 struct rethook_node *rhn;
2114
2115 rhn = rethook_try_get(rp->rh);
2116 if (!rhn) {
2117 rp->nmissed++;
2118 return 0;
2119 }
2120
2121 ri = container_of(rhn, struct kretprobe_instance, node);
2122
2123 if (rp->entry_handler && rp->entry_handler(ri, regs))
2124 rethook_recycle(rhn);
2125 else
2126 rethook_hook(rhn, regs, kprobe_ftrace(p));
2127
2128 return 0;
2129}
2130NOKPROBE_SYMBOL(pre_handler_kretprobe);
2131
2132static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2133 struct pt_regs *regs)
2134{
2135 struct kretprobe *rp = (struct kretprobe *)data;
2136 struct kretprobe_instance *ri;
2137 struct kprobe_ctlblk *kcb;
2138
2139 /* The data must NOT be null. This means rethook data structure is broken. */
2140 if (WARN_ON_ONCE(!data) || !rp->handler)
2141 return;
2142
2143 __this_cpu_write(current_kprobe, &rp->kp);
2144 kcb = get_kprobe_ctlblk();
2145 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2146
2147 ri = container_of(rh, struct kretprobe_instance, node);
2148 rp->handler(ri, regs);
2149
2150 __this_cpu_write(current_kprobe, NULL);
2151}
2152NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2153
2154#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2155
2156/**
2157 * kprobe_on_func_entry() -- check whether given address is function entry
2158 * @addr: Target address
2159 * @sym: Target symbol name
2160 * @offset: The offset from the symbol or the address
2161 *
2162 * This checks whether the given @addr+@offset or @sym+@offset is on the
2163 * function entry address or not.
2164 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2165 * And also it returns -ENOENT if it fails the symbol or address lookup.
2166 * Caller must pass @addr or @sym (either one must be NULL), or this
2167 * returns -EINVAL.
2168 */
2169int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2170{
2171 bool on_func_entry;
2172 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2173
2174 if (IS_ERR(kp_addr))
2175 return PTR_ERR(kp_addr);
2176
2177 if (!on_func_entry)
2178 return -EINVAL;
2179
2180 return 0;
2181}
2182
2183int register_kretprobe(struct kretprobe *rp)
2184{
2185 int ret;
2186 struct kretprobe_instance *inst;
2187 int i;
2188 void *addr;
2189
2190 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2191 if (ret)
2192 return ret;
2193
2194 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2195 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2196 return -EINVAL;
2197
2198 if (kretprobe_blacklist_size) {
2199 addr = kprobe_addr(&rp->kp);
2200 if (IS_ERR(addr))
2201 return PTR_ERR(addr);
2202
2203 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2204 if (kretprobe_blacklist[i].addr == addr)
2205 return -EINVAL;
2206 }
2207 }
2208
2209 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2210 return -E2BIG;
2211
2212 rp->kp.pre_handler = pre_handler_kretprobe;
2213 rp->kp.post_handler = NULL;
2214
2215 /* Pre-allocate memory for max kretprobe instances */
2216 if (rp->maxactive <= 0)
2217 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2218
2219#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2220 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler);
2221 if (!rp->rh)
2222 return -ENOMEM;
2223
2224 for (i = 0; i < rp->maxactive; i++) {
2225 inst = kzalloc(sizeof(struct kretprobe_instance) +
2226 rp->data_size, GFP_KERNEL);
2227 if (inst == NULL) {
2228 rethook_free(rp->rh);
2229 rp->rh = NULL;
2230 return -ENOMEM;
2231 }
2232 rethook_add_node(rp->rh, &inst->node);
2233 }
2234 rp->nmissed = 0;
2235 /* Establish function entry probe point */
2236 ret = register_kprobe(&rp->kp);
2237 if (ret != 0) {
2238 rethook_free(rp->rh);
2239 rp->rh = NULL;
2240 }
2241#else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2242 rp->freelist.head = NULL;
2243 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2244 if (!rp->rph)
2245 return -ENOMEM;
2246
2247 rp->rph->rp = rp;
2248 for (i = 0; i < rp->maxactive; i++) {
2249 inst = kzalloc(sizeof(struct kretprobe_instance) +
2250 rp->data_size, GFP_KERNEL);
2251 if (inst == NULL) {
2252 refcount_set(&rp->rph->ref, i);
2253 free_rp_inst(rp);
2254 return -ENOMEM;
2255 }
2256 inst->rph = rp->rph;
2257 freelist_add(&inst->freelist, &rp->freelist);
2258 }
2259 refcount_set(&rp->rph->ref, i);
2260
2261 rp->nmissed = 0;
2262 /* Establish function entry probe point */
2263 ret = register_kprobe(&rp->kp);
2264 if (ret != 0)
2265 free_rp_inst(rp);
2266#endif
2267 return ret;
2268}
2269EXPORT_SYMBOL_GPL(register_kretprobe);
2270
2271int register_kretprobes(struct kretprobe **rps, int num)
2272{
2273 int ret = 0, i;
2274
2275 if (num <= 0)
2276 return -EINVAL;
2277 for (i = 0; i < num; i++) {
2278 ret = register_kretprobe(rps[i]);
2279 if (ret < 0) {
2280 if (i > 0)
2281 unregister_kretprobes(rps, i);
2282 break;
2283 }
2284 }
2285 return ret;
2286}
2287EXPORT_SYMBOL_GPL(register_kretprobes);
2288
2289void unregister_kretprobe(struct kretprobe *rp)
2290{
2291 unregister_kretprobes(&rp, 1);
2292}
2293EXPORT_SYMBOL_GPL(unregister_kretprobe);
2294
2295void unregister_kretprobes(struct kretprobe **rps, int num)
2296{
2297 int i;
2298
2299 if (num <= 0)
2300 return;
2301 mutex_lock(&kprobe_mutex);
2302 for (i = 0; i < num; i++) {
2303 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2304 rps[i]->kp.addr = NULL;
2305#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2306 rethook_free(rps[i]->rh);
2307#else
2308 rps[i]->rph->rp = NULL;
2309#endif
2310 }
2311 mutex_unlock(&kprobe_mutex);
2312
2313 synchronize_rcu();
2314 for (i = 0; i < num; i++) {
2315 if (rps[i]->kp.addr) {
2316 __unregister_kprobe_bottom(&rps[i]->kp);
2317#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2318 free_rp_inst(rps[i]);
2319#endif
2320 }
2321 }
2322}
2323EXPORT_SYMBOL_GPL(unregister_kretprobes);
2324
2325#else /* CONFIG_KRETPROBES */
2326int register_kretprobe(struct kretprobe *rp)
2327{
2328 return -EOPNOTSUPP;
2329}
2330EXPORT_SYMBOL_GPL(register_kretprobe);
2331
2332int register_kretprobes(struct kretprobe **rps, int num)
2333{
2334 return -EOPNOTSUPP;
2335}
2336EXPORT_SYMBOL_GPL(register_kretprobes);
2337
2338void unregister_kretprobe(struct kretprobe *rp)
2339{
2340}
2341EXPORT_SYMBOL_GPL(unregister_kretprobe);
2342
2343void unregister_kretprobes(struct kretprobe **rps, int num)
2344{
2345}
2346EXPORT_SYMBOL_GPL(unregister_kretprobes);
2347
2348static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2349{
2350 return 0;
2351}
2352NOKPROBE_SYMBOL(pre_handler_kretprobe);
2353
2354#endif /* CONFIG_KRETPROBES */
2355
2356/* Set the kprobe gone and remove its instruction buffer. */
2357static void kill_kprobe(struct kprobe *p)
2358{
2359 struct kprobe *kp;
2360
2361 lockdep_assert_held(&kprobe_mutex);
2362
2363 /*
2364 * The module is going away. We should disarm the kprobe which
2365 * is using ftrace, because ftrace framework is still available at
2366 * 'MODULE_STATE_GOING' notification.
2367 */
2368 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2369 disarm_kprobe_ftrace(p);
2370
2371 p->flags |= KPROBE_FLAG_GONE;
2372 if (kprobe_aggrprobe(p)) {
2373 /*
2374 * If this is an aggr_kprobe, we have to list all the
2375 * chained probes and mark them GONE.
2376 */
2377 list_for_each_entry(kp, &p->list, list)
2378 kp->flags |= KPROBE_FLAG_GONE;
2379 p->post_handler = NULL;
2380 kill_optimized_kprobe(p);
2381 }
2382 /*
2383 * Here, we can remove insn_slot safely, because no thread calls
2384 * the original probed function (which will be freed soon) any more.
2385 */
2386 arch_remove_kprobe(p);
2387}
2388
2389/* Disable one kprobe */
2390int disable_kprobe(struct kprobe *kp)
2391{
2392 int ret = 0;
2393 struct kprobe *p;
2394
2395 mutex_lock(&kprobe_mutex);
2396
2397 /* Disable this kprobe */
2398 p = __disable_kprobe(kp);
2399 if (IS_ERR(p))
2400 ret = PTR_ERR(p);
2401
2402 mutex_unlock(&kprobe_mutex);
2403 return ret;
2404}
2405EXPORT_SYMBOL_GPL(disable_kprobe);
2406
2407/* Enable one kprobe */
2408int enable_kprobe(struct kprobe *kp)
2409{
2410 int ret = 0;
2411 struct kprobe *p;
2412
2413 mutex_lock(&kprobe_mutex);
2414
2415 /* Check whether specified probe is valid. */
2416 p = __get_valid_kprobe(kp);
2417 if (unlikely(p == NULL)) {
2418 ret = -EINVAL;
2419 goto out;
2420 }
2421
2422 if (kprobe_gone(kp)) {
2423 /* This kprobe has gone, we couldn't enable it. */
2424 ret = -EINVAL;
2425 goto out;
2426 }
2427
2428 if (p != kp)
2429 kp->flags &= ~KPROBE_FLAG_DISABLED;
2430
2431 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2432 p->flags &= ~KPROBE_FLAG_DISABLED;
2433 ret = arm_kprobe(p);
2434 if (ret) {
2435 p->flags |= KPROBE_FLAG_DISABLED;
2436 if (p != kp)
2437 kp->flags |= KPROBE_FLAG_DISABLED;
2438 }
2439 }
2440out:
2441 mutex_unlock(&kprobe_mutex);
2442 return ret;
2443}
2444EXPORT_SYMBOL_GPL(enable_kprobe);
2445
2446/* Caller must NOT call this in usual path. This is only for critical case */
2447void dump_kprobe(struct kprobe *kp)
2448{
2449 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2450 kp->symbol_name, kp->offset, kp->addr);
2451}
2452NOKPROBE_SYMBOL(dump_kprobe);
2453
2454int kprobe_add_ksym_blacklist(unsigned long entry)
2455{
2456 struct kprobe_blacklist_entry *ent;
2457 unsigned long offset = 0, size = 0;
2458
2459 if (!kernel_text_address(entry) ||
2460 !kallsyms_lookup_size_offset(entry, &size, &offset))
2461 return -EINVAL;
2462
2463 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2464 if (!ent)
2465 return -ENOMEM;
2466 ent->start_addr = entry;
2467 ent->end_addr = entry + size;
2468 INIT_LIST_HEAD(&ent->list);
2469 list_add_tail(&ent->list, &kprobe_blacklist);
2470
2471 return (int)size;
2472}
2473
2474/* Add all symbols in given area into kprobe blacklist */
2475int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2476{
2477 unsigned long entry;
2478 int ret = 0;
2479
2480 for (entry = start; entry < end; entry += ret) {
2481 ret = kprobe_add_ksym_blacklist(entry);
2482 if (ret < 0)
2483 return ret;
2484 if (ret == 0) /* In case of alias symbol */
2485 ret = 1;
2486 }
2487 return 0;
2488}
2489
2490/* Remove all symbols in given area from kprobe blacklist */
2491static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2492{
2493 struct kprobe_blacklist_entry *ent, *n;
2494
2495 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2496 if (ent->start_addr < start || ent->start_addr >= end)
2497 continue;
2498 list_del(&ent->list);
2499 kfree(ent);
2500 }
2501}
2502
2503static void kprobe_remove_ksym_blacklist(unsigned long entry)
2504{
2505 kprobe_remove_area_blacklist(entry, entry + 1);
2506}
2507
2508int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2509 char *type, char *sym)
2510{
2511 return -ERANGE;
2512}
2513
2514int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2515 char *sym)
2516{
2517#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2518 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2519 return 0;
2520#ifdef CONFIG_OPTPROBES
2521 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2522 return 0;
2523#endif
2524#endif
2525 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2526 return 0;
2527 return -ERANGE;
2528}
2529
2530int __init __weak arch_populate_kprobe_blacklist(void)
2531{
2532 return 0;
2533}
2534
2535/*
2536 * Lookup and populate the kprobe_blacklist.
2537 *
2538 * Unlike the kretprobe blacklist, we'll need to determine
2539 * the range of addresses that belong to the said functions,
2540 * since a kprobe need not necessarily be at the beginning
2541 * of a function.
2542 */
2543static int __init populate_kprobe_blacklist(unsigned long *start,
2544 unsigned long *end)
2545{
2546 unsigned long entry;
2547 unsigned long *iter;
2548 int ret;
2549
2550 for (iter = start; iter < end; iter++) {
2551 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2552 ret = kprobe_add_ksym_blacklist(entry);
2553 if (ret == -EINVAL)
2554 continue;
2555 if (ret < 0)
2556 return ret;
2557 }
2558
2559 /* Symbols in '__kprobes_text' are blacklisted */
2560 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2561 (unsigned long)__kprobes_text_end);
2562 if (ret)
2563 return ret;
2564
2565 /* Symbols in 'noinstr' section are blacklisted */
2566 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2567 (unsigned long)__noinstr_text_end);
2568
2569 return ret ? : arch_populate_kprobe_blacklist();
2570}
2571
2572static void add_module_kprobe_blacklist(struct module *mod)
2573{
2574 unsigned long start, end;
2575 int i;
2576
2577 if (mod->kprobe_blacklist) {
2578 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2579 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2580 }
2581
2582 start = (unsigned long)mod->kprobes_text_start;
2583 if (start) {
2584 end = start + mod->kprobes_text_size;
2585 kprobe_add_area_blacklist(start, end);
2586 }
2587
2588 start = (unsigned long)mod->noinstr_text_start;
2589 if (start) {
2590 end = start + mod->noinstr_text_size;
2591 kprobe_add_area_blacklist(start, end);
2592 }
2593}
2594
2595static void remove_module_kprobe_blacklist(struct module *mod)
2596{
2597 unsigned long start, end;
2598 int i;
2599
2600 if (mod->kprobe_blacklist) {
2601 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2602 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2603 }
2604
2605 start = (unsigned long)mod->kprobes_text_start;
2606 if (start) {
2607 end = start + mod->kprobes_text_size;
2608 kprobe_remove_area_blacklist(start, end);
2609 }
2610
2611 start = (unsigned long)mod->noinstr_text_start;
2612 if (start) {
2613 end = start + mod->noinstr_text_size;
2614 kprobe_remove_area_blacklist(start, end);
2615 }
2616}
2617
2618/* Module notifier call back, checking kprobes on the module */
2619static int kprobes_module_callback(struct notifier_block *nb,
2620 unsigned long val, void *data)
2621{
2622 struct module *mod = data;
2623 struct hlist_head *head;
2624 struct kprobe *p;
2625 unsigned int i;
2626 int checkcore = (val == MODULE_STATE_GOING);
2627
2628 if (val == MODULE_STATE_COMING) {
2629 mutex_lock(&kprobe_mutex);
2630 add_module_kprobe_blacklist(mod);
2631 mutex_unlock(&kprobe_mutex);
2632 }
2633 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2634 return NOTIFY_DONE;
2635
2636 /*
2637 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2638 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2639 * notified, only '.init.text' section would be freed. We need to
2640 * disable kprobes which have been inserted in the sections.
2641 */
2642 mutex_lock(&kprobe_mutex);
2643 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2644 head = &kprobe_table[i];
2645 hlist_for_each_entry(p, head, hlist)
2646 if (within_module_init((unsigned long)p->addr, mod) ||
2647 (checkcore &&
2648 within_module_core((unsigned long)p->addr, mod))) {
2649 /*
2650 * The vaddr this probe is installed will soon
2651 * be vfreed buy not synced to disk. Hence,
2652 * disarming the breakpoint isn't needed.
2653 *
2654 * Note, this will also move any optimized probes
2655 * that are pending to be removed from their
2656 * corresponding lists to the 'freeing_list' and
2657 * will not be touched by the delayed
2658 * kprobe_optimizer() work handler.
2659 */
2660 kill_kprobe(p);
2661 }
2662 }
2663 if (val == MODULE_STATE_GOING)
2664 remove_module_kprobe_blacklist(mod);
2665 mutex_unlock(&kprobe_mutex);
2666 return NOTIFY_DONE;
2667}
2668
2669static struct notifier_block kprobe_module_nb = {
2670 .notifier_call = kprobes_module_callback,
2671 .priority = 0
2672};
2673
2674void kprobe_free_init_mem(void)
2675{
2676 void *start = (void *)(&__init_begin);
2677 void *end = (void *)(&__init_end);
2678 struct hlist_head *head;
2679 struct kprobe *p;
2680 int i;
2681
2682 mutex_lock(&kprobe_mutex);
2683
2684 /* Kill all kprobes on initmem because the target code has been freed. */
2685 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2686 head = &kprobe_table[i];
2687 hlist_for_each_entry(p, head, hlist) {
2688 if (start <= (void *)p->addr && (void *)p->addr < end)
2689 kill_kprobe(p);
2690 }
2691 }
2692
2693 mutex_unlock(&kprobe_mutex);
2694}
2695
2696static int __init init_kprobes(void)
2697{
2698 int i, err = 0;
2699
2700 /* FIXME allocate the probe table, currently defined statically */
2701 /* initialize all list heads */
2702 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2703 INIT_HLIST_HEAD(&kprobe_table[i]);
2704
2705 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2706 __stop_kprobe_blacklist);
2707 if (err)
2708 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2709
2710 if (kretprobe_blacklist_size) {
2711 /* lookup the function address from its name */
2712 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2713 kretprobe_blacklist[i].addr =
2714 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2715 if (!kretprobe_blacklist[i].addr)
2716 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2717 kretprobe_blacklist[i].name);
2718 }
2719 }
2720
2721 /* By default, kprobes are armed */
2722 kprobes_all_disarmed = false;
2723
2724#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2725 /* Init 'kprobe_optinsn_slots' for allocation */
2726 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2727#endif
2728
2729 err = arch_init_kprobes();
2730 if (!err)
2731 err = register_die_notifier(&kprobe_exceptions_nb);
2732 if (!err)
2733 err = register_module_notifier(&kprobe_module_nb);
2734
2735 kprobes_initialized = (err == 0);
2736 kprobe_sysctls_init();
2737 return err;
2738}
2739early_initcall(init_kprobes);
2740
2741#if defined(CONFIG_OPTPROBES)
2742static int __init init_optprobes(void)
2743{
2744 /*
2745 * Enable kprobe optimization - this kicks the optimizer which
2746 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2747 * not spawned in early initcall. So delay the optimization.
2748 */
2749 optimize_all_kprobes();
2750
2751 return 0;
2752}
2753subsys_initcall(init_optprobes);
2754#endif
2755
2756#ifdef CONFIG_DEBUG_FS
2757static void report_probe(struct seq_file *pi, struct kprobe *p,
2758 const char *sym, int offset, char *modname, struct kprobe *pp)
2759{
2760 char *kprobe_type;
2761 void *addr = p->addr;
2762
2763 if (p->pre_handler == pre_handler_kretprobe)
2764 kprobe_type = "r";
2765 else
2766 kprobe_type = "k";
2767
2768 if (!kallsyms_show_value(pi->file->f_cred))
2769 addr = NULL;
2770
2771 if (sym)
2772 seq_printf(pi, "%px %s %s+0x%x %s ",
2773 addr, kprobe_type, sym, offset,
2774 (modname ? modname : " "));
2775 else /* try to use %pS */
2776 seq_printf(pi, "%px %s %pS ",
2777 addr, kprobe_type, p->addr);
2778
2779 if (!pp)
2780 pp = p;
2781 seq_printf(pi, "%s%s%s%s\n",
2782 (kprobe_gone(p) ? "[GONE]" : ""),
2783 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2784 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2785 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2786}
2787
2788static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2789{
2790 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2791}
2792
2793static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2794{
2795 (*pos)++;
2796 if (*pos >= KPROBE_TABLE_SIZE)
2797 return NULL;
2798 return pos;
2799}
2800
2801static void kprobe_seq_stop(struct seq_file *f, void *v)
2802{
2803 /* Nothing to do */
2804}
2805
2806static int show_kprobe_addr(struct seq_file *pi, void *v)
2807{
2808 struct hlist_head *head;
2809 struct kprobe *p, *kp;
2810 const char *sym = NULL;
2811 unsigned int i = *(loff_t *) v;
2812 unsigned long offset = 0;
2813 char *modname, namebuf[KSYM_NAME_LEN];
2814
2815 head = &kprobe_table[i];
2816 preempt_disable();
2817 hlist_for_each_entry_rcu(p, head, hlist) {
2818 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2819 &offset, &modname, namebuf);
2820 if (kprobe_aggrprobe(p)) {
2821 list_for_each_entry_rcu(kp, &p->list, list)
2822 report_probe(pi, kp, sym, offset, modname, p);
2823 } else
2824 report_probe(pi, p, sym, offset, modname, NULL);
2825 }
2826 preempt_enable();
2827 return 0;
2828}
2829
2830static const struct seq_operations kprobes_sops = {
2831 .start = kprobe_seq_start,
2832 .next = kprobe_seq_next,
2833 .stop = kprobe_seq_stop,
2834 .show = show_kprobe_addr
2835};
2836
2837DEFINE_SEQ_ATTRIBUTE(kprobes);
2838
2839/* kprobes/blacklist -- shows which functions can not be probed */
2840static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2841{
2842 mutex_lock(&kprobe_mutex);
2843 return seq_list_start(&kprobe_blacklist, *pos);
2844}
2845
2846static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2847{
2848 return seq_list_next(v, &kprobe_blacklist, pos);
2849}
2850
2851static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2852{
2853 struct kprobe_blacklist_entry *ent =
2854 list_entry(v, struct kprobe_blacklist_entry, list);
2855
2856 /*
2857 * If '/proc/kallsyms' is not showing kernel address, we won't
2858 * show them here either.
2859 */
2860 if (!kallsyms_show_value(m->file->f_cred))
2861 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2862 (void *)ent->start_addr);
2863 else
2864 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2865 (void *)ent->end_addr, (void *)ent->start_addr);
2866 return 0;
2867}
2868
2869static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2870{
2871 mutex_unlock(&kprobe_mutex);
2872}
2873
2874static const struct seq_operations kprobe_blacklist_sops = {
2875 .start = kprobe_blacklist_seq_start,
2876 .next = kprobe_blacklist_seq_next,
2877 .stop = kprobe_blacklist_seq_stop,
2878 .show = kprobe_blacklist_seq_show,
2879};
2880DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2881
2882static int arm_all_kprobes(void)
2883{
2884 struct hlist_head *head;
2885 struct kprobe *p;
2886 unsigned int i, total = 0, errors = 0;
2887 int err, ret = 0;
2888
2889 mutex_lock(&kprobe_mutex);
2890
2891 /* If kprobes are armed, just return */
2892 if (!kprobes_all_disarmed)
2893 goto already_enabled;
2894
2895 /*
2896 * optimize_kprobe() called by arm_kprobe() checks
2897 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2898 * arm_kprobe.
2899 */
2900 kprobes_all_disarmed = false;
2901 /* Arming kprobes doesn't optimize kprobe itself */
2902 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2903 head = &kprobe_table[i];
2904 /* Arm all kprobes on a best-effort basis */
2905 hlist_for_each_entry(p, head, hlist) {
2906 if (!kprobe_disabled(p)) {
2907 err = arm_kprobe(p);
2908 if (err) {
2909 errors++;
2910 ret = err;
2911 }
2912 total++;
2913 }
2914 }
2915 }
2916
2917 if (errors)
2918 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2919 errors, total);
2920 else
2921 pr_info("Kprobes globally enabled\n");
2922
2923already_enabled:
2924 mutex_unlock(&kprobe_mutex);
2925 return ret;
2926}
2927
2928static int disarm_all_kprobes(void)
2929{
2930 struct hlist_head *head;
2931 struct kprobe *p;
2932 unsigned int i, total = 0, errors = 0;
2933 int err, ret = 0;
2934
2935 mutex_lock(&kprobe_mutex);
2936
2937 /* If kprobes are already disarmed, just return */
2938 if (kprobes_all_disarmed) {
2939 mutex_unlock(&kprobe_mutex);
2940 return 0;
2941 }
2942
2943 kprobes_all_disarmed = true;
2944
2945 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2946 head = &kprobe_table[i];
2947 /* Disarm all kprobes on a best-effort basis */
2948 hlist_for_each_entry(p, head, hlist) {
2949 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2950 err = disarm_kprobe(p, false);
2951 if (err) {
2952 errors++;
2953 ret = err;
2954 }
2955 total++;
2956 }
2957 }
2958 }
2959
2960 if (errors)
2961 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2962 errors, total);
2963 else
2964 pr_info("Kprobes globally disabled\n");
2965
2966 mutex_unlock(&kprobe_mutex);
2967
2968 /* Wait for disarming all kprobes by optimizer */
2969 wait_for_kprobe_optimizer();
2970
2971 return ret;
2972}
2973
2974/*
2975 * XXX: The debugfs bool file interface doesn't allow for callbacks
2976 * when the bool state is switched. We can reuse that facility when
2977 * available
2978 */
2979static ssize_t read_enabled_file_bool(struct file *file,
2980 char __user *user_buf, size_t count, loff_t *ppos)
2981{
2982 char buf[3];
2983
2984 if (!kprobes_all_disarmed)
2985 buf[0] = '1';
2986 else
2987 buf[0] = '0';
2988 buf[1] = '\n';
2989 buf[2] = 0x00;
2990 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2991}
2992
2993static ssize_t write_enabled_file_bool(struct file *file,
2994 const char __user *user_buf, size_t count, loff_t *ppos)
2995{
2996 bool enable;
2997 int ret;
2998
2999 ret = kstrtobool_from_user(user_buf, count, &enable);
3000 if (ret)
3001 return ret;
3002
3003 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3004 if (ret)
3005 return ret;
3006
3007 return count;
3008}
3009
3010static const struct file_operations fops_kp = {
3011 .read = read_enabled_file_bool,
3012 .write = write_enabled_file_bool,
3013 .llseek = default_llseek,
3014};
3015
3016static int __init debugfs_kprobe_init(void)
3017{
3018 struct dentry *dir;
3019
3020 dir = debugfs_create_dir("kprobes", NULL);
3021
3022 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3023
3024 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3025
3026 debugfs_create_file("blacklist", 0400, dir, NULL,
3027 &kprobe_blacklist_fops);
3028
3029 return 0;
3030}
3031
3032late_initcall(debugfs_kprobe_init);
3033#endif /* CONFIG_DEBUG_FS */