Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42#include <net/mptcp.h>
43
44#include <linux/seq_file.h>
45#include <linux/memcontrol.h>
46#include <linux/bpf-cgroup.h>
47#include <linux/siphash.h>
48
49extern struct inet_hashinfo tcp_hashinfo;
50
51extern struct percpu_counter tcp_orphan_count;
52void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
55#define MAX_TCP_OPTION_SPACE 40
56#define TCP_MIN_SND_MSS 48
57#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58
59/*
60 * Never offer a window over 32767 without using window scaling. Some
61 * poor stacks do signed 16bit maths!
62 */
63#define MAX_TCP_WINDOW 32767U
64
65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66#define TCP_MIN_MSS 88U
67
68/* The initial MTU to use for probing */
69#define TCP_BASE_MSS 1024
70
71/* probing interval, default to 10 minutes as per RFC4821 */
72#define TCP_PROBE_INTERVAL 600
73
74/* Specify interval when tcp mtu probing will stop */
75#define TCP_PROBE_THRESHOLD 8
76
77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
78#define TCP_FASTRETRANS_THRESH 3
79
80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
81#define TCP_MAX_QUICKACKS 16U
82
83/* Maximal number of window scale according to RFC1323 */
84#define TCP_MAX_WSCALE 14U
85
86/* urg_data states */
87#define TCP_URG_VALID 0x0100
88#define TCP_URG_NOTYET 0x0200
89#define TCP_URG_READ 0x0400
90
91#define TCP_RETR1 3 /*
92 * This is how many retries it does before it
93 * tries to figure out if the gateway is
94 * down. Minimal RFC value is 3; it corresponds
95 * to ~3sec-8min depending on RTO.
96 */
97
98#define TCP_RETR2 15 /*
99 * This should take at least
100 * 90 minutes to time out.
101 * RFC1122 says that the limit is 100 sec.
102 * 15 is ~13-30min depending on RTO.
103 */
104
105#define TCP_SYN_RETRIES 6 /* This is how many retries are done
106 * when active opening a connection.
107 * RFC1122 says the minimum retry MUST
108 * be at least 180secs. Nevertheless
109 * this value is corresponding to
110 * 63secs of retransmission with the
111 * current initial RTO.
112 */
113
114#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
115 * when passive opening a connection.
116 * This is corresponding to 31secs of
117 * retransmission with the current
118 * initial RTO.
119 */
120
121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 * state, about 60 seconds */
123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
124 /* BSD style FIN_WAIT2 deadlock breaker.
125 * It used to be 3min, new value is 60sec,
126 * to combine FIN-WAIT-2 timeout with
127 * TIME-WAIT timer.
128 */
129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130
131#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
132#if HZ >= 100
133#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
134#define TCP_ATO_MIN ((unsigned)(HZ/25))
135#else
136#define TCP_DELACK_MIN 4U
137#define TCP_ATO_MIN 4U
138#endif
139#define TCP_RTO_MAX ((unsigned)(120*HZ))
140#define TCP_RTO_MIN ((unsigned)(HZ/5))
141#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
144 * used as a fallback RTO for the
145 * initial data transmission if no
146 * valid RTT sample has been acquired,
147 * most likely due to retrans in 3WHS.
148 */
149
150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 * for local resources.
152 */
153#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
154#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
155#define TCP_KEEPALIVE_INTVL (75*HZ)
156
157#define MAX_TCP_KEEPIDLE 32767
158#define MAX_TCP_KEEPINTVL 32767
159#define MAX_TCP_KEEPCNT 127
160#define MAX_TCP_SYNCNT 127
161
162#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
163
164#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
165#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
166 * after this time. It should be equal
167 * (or greater than) TCP_TIMEWAIT_LEN
168 * to provide reliability equal to one
169 * provided by timewait state.
170 */
171#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
172 * timestamps. It must be less than
173 * minimal timewait lifetime.
174 */
175/*
176 * TCP option
177 */
178
179#define TCPOPT_NOP 1 /* Padding */
180#define TCPOPT_EOL 0 /* End of options */
181#define TCPOPT_MSS 2 /* Segment size negotiating */
182#define TCPOPT_WINDOW 3 /* Window scaling */
183#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
184#define TCPOPT_SACK 5 /* SACK Block */
185#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
186#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
187#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
188#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189#define TCPOPT_EXP 254 /* Experimental */
190/* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192 */
193#define TCPOPT_FASTOPEN_MAGIC 0xF989
194#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
195
196/*
197 * TCP option lengths
198 */
199
200#define TCPOLEN_MSS 4
201#define TCPOLEN_WINDOW 3
202#define TCPOLEN_SACK_PERM 2
203#define TCPOLEN_TIMESTAMP 10
204#define TCPOLEN_MD5SIG 18
205#define TCPOLEN_FASTOPEN_BASE 2
206#define TCPOLEN_EXP_FASTOPEN_BASE 4
207#define TCPOLEN_EXP_SMC_BASE 6
208
209/* But this is what stacks really send out. */
210#define TCPOLEN_TSTAMP_ALIGNED 12
211#define TCPOLEN_WSCALE_ALIGNED 4
212#define TCPOLEN_SACKPERM_ALIGNED 4
213#define TCPOLEN_SACK_BASE 2
214#define TCPOLEN_SACK_BASE_ALIGNED 4
215#define TCPOLEN_SACK_PERBLOCK 8
216#define TCPOLEN_MD5SIG_ALIGNED 20
217#define TCPOLEN_MSS_ALIGNED 4
218#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
219
220/* Flags in tp->nonagle */
221#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222#define TCP_NAGLE_CORK 2 /* Socket is corked */
223#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
224
225/* TCP thin-stream limits */
226#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
227
228/* TCP initial congestion window as per rfc6928 */
229#define TCP_INIT_CWND 10
230
231/* Bit Flags for sysctl_tcp_fastopen */
232#define TFO_CLIENT_ENABLE 1
233#define TFO_SERVER_ENABLE 2
234#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
235
236/* Accept SYN data w/o any cookie option */
237#define TFO_SERVER_COOKIE_NOT_REQD 0x200
238
239/* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
241 */
242#define TFO_SERVER_WO_SOCKOPT1 0x400
243
244
245/* sysctl variables for tcp */
246extern int sysctl_tcp_max_orphans;
247extern long sysctl_tcp_mem[3];
248
249#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
252
253extern atomic_long_t tcp_memory_allocated;
254extern struct percpu_counter tcp_sockets_allocated;
255extern unsigned long tcp_memory_pressure;
256
257/* optimized version of sk_under_memory_pressure() for TCP sockets */
258static inline bool tcp_under_memory_pressure(const struct sock *sk)
259{
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 return true;
263
264 return READ_ONCE(tcp_memory_pressure);
265}
266/*
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
269 */
270
271static inline bool before(__u32 seq1, __u32 seq2)
272{
273 return (__s32)(seq1-seq2) < 0;
274}
275#define after(seq2, seq1) before(seq1, seq2)
276
277/* is s2<=s1<=s3 ? */
278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279{
280 return seq3 - seq2 >= seq1 - seq2;
281}
282
283static inline bool tcp_out_of_memory(struct sock *sk)
284{
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 return true;
288 return false;
289}
290
291void sk_forced_mem_schedule(struct sock *sk, int size);
292
293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294{
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
297
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
301 return true;
302 }
303 return false;
304}
305
306bool tcp_check_oom(struct sock *sk, int shift);
307
308
309extern struct proto tcp_prot;
310
311#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316void tcp_tasklet_init(void);
317
318int tcp_v4_err(struct sk_buff *skb, u32);
319
320void tcp_shutdown(struct sock *sk, int how);
321
322int tcp_v4_early_demux(struct sk_buff *skb);
323int tcp_v4_rcv(struct sk_buff *skb);
324
325void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
326int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
330 int flags);
331int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
332 size_t size, int flags);
333struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
334 struct page *page, int offset, size_t *size);
335ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
336 size_t size, int flags);
337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
338void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 int size_goal);
340void tcp_release_cb(struct sock *sk);
341void tcp_wfree(struct sk_buff *skb);
342void tcp_write_timer_handler(struct sock *sk);
343void tcp_delack_timer_handler(struct sock *sk);
344int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
345int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347void tcp_rcv_space_adjust(struct sock *sk);
348int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349void tcp_twsk_destructor(struct sock *sk);
350ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
351 struct pipe_inode_info *pipe, size_t len,
352 unsigned int flags);
353
354void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
355static inline void tcp_dec_quickack_mode(struct sock *sk,
356 const unsigned int pkts)
357{
358 struct inet_connection_sock *icsk = inet_csk(sk);
359
360 if (icsk->icsk_ack.quick) {
361 if (pkts >= icsk->icsk_ack.quick) {
362 icsk->icsk_ack.quick = 0;
363 /* Leaving quickack mode we deflate ATO. */
364 icsk->icsk_ack.ato = TCP_ATO_MIN;
365 } else
366 icsk->icsk_ack.quick -= pkts;
367 }
368}
369
370#define TCP_ECN_OK 1
371#define TCP_ECN_QUEUE_CWR 2
372#define TCP_ECN_DEMAND_CWR 4
373#define TCP_ECN_SEEN 8
374
375enum tcp_tw_status {
376 TCP_TW_SUCCESS = 0,
377 TCP_TW_RST = 1,
378 TCP_TW_ACK = 2,
379 TCP_TW_SYN = 3
380};
381
382
383enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
384 struct sk_buff *skb,
385 const struct tcphdr *th);
386struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
387 struct request_sock *req, bool fastopen,
388 bool *lost_race);
389int tcp_child_process(struct sock *parent, struct sock *child,
390 struct sk_buff *skb);
391void tcp_enter_loss(struct sock *sk);
392void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
393void tcp_clear_retrans(struct tcp_sock *tp);
394void tcp_update_metrics(struct sock *sk);
395void tcp_init_metrics(struct sock *sk);
396void tcp_metrics_init(void);
397bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
398void __tcp_close(struct sock *sk, long timeout);
399void tcp_close(struct sock *sk, long timeout);
400void tcp_init_sock(struct sock *sk);
401void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
402__poll_t tcp_poll(struct file *file, struct socket *sock,
403 struct poll_table_struct *wait);
404int tcp_getsockopt(struct sock *sk, int level, int optname,
405 char __user *optval, int __user *optlen);
406bool tcp_bpf_bypass_getsockopt(int level, int optname);
407int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
408 unsigned int optlen);
409void tcp_set_keepalive(struct sock *sk, int val);
410void tcp_syn_ack_timeout(const struct request_sock *req);
411int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
412 int flags, int *addr_len);
413int tcp_set_rcvlowat(struct sock *sk, int val);
414int tcp_set_window_clamp(struct sock *sk, int val);
415void tcp_update_recv_tstamps(struct sk_buff *skb,
416 struct scm_timestamping_internal *tss);
417void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
418 struct scm_timestamping_internal *tss);
419void tcp_data_ready(struct sock *sk);
420#ifdef CONFIG_MMU
421int tcp_mmap(struct file *file, struct socket *sock,
422 struct vm_area_struct *vma);
423#endif
424void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
425 struct tcp_options_received *opt_rx,
426 int estab, struct tcp_fastopen_cookie *foc);
427const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
428
429/*
430 * BPF SKB-less helpers
431 */
432u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
433 struct tcphdr *th, u32 *cookie);
434u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
435 struct tcphdr *th, u32 *cookie);
436u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
437 const struct tcp_request_sock_ops *af_ops,
438 struct sock *sk, struct tcphdr *th);
439/*
440 * TCP v4 functions exported for the inet6 API
441 */
442
443void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444void tcp_v4_mtu_reduced(struct sock *sk);
445void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
447int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
448struct sock *tcp_create_openreq_child(const struct sock *sk,
449 struct request_sock *req,
450 struct sk_buff *skb);
451void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
452struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
453 struct request_sock *req,
454 struct dst_entry *dst,
455 struct request_sock *req_unhash,
456 bool *own_req);
457int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
458int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
459int tcp_connect(struct sock *sk);
460enum tcp_synack_type {
461 TCP_SYNACK_NORMAL,
462 TCP_SYNACK_FASTOPEN,
463 TCP_SYNACK_COOKIE,
464};
465struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
466 struct request_sock *req,
467 struct tcp_fastopen_cookie *foc,
468 enum tcp_synack_type synack_type,
469 struct sk_buff *syn_skb);
470int tcp_disconnect(struct sock *sk, int flags);
471
472void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
473int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
474void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
475
476/* From syncookies.c */
477struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
478 struct request_sock *req,
479 struct dst_entry *dst, u32 tsoff);
480int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
481 u32 cookie);
482struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
483struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
484 struct sock *sk, struct sk_buff *skb);
485#ifdef CONFIG_SYN_COOKIES
486
487/* Syncookies use a monotonic timer which increments every 60 seconds.
488 * This counter is used both as a hash input and partially encoded into
489 * the cookie value. A cookie is only validated further if the delta
490 * between the current counter value and the encoded one is less than this,
491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492 * the counter advances immediately after a cookie is generated).
493 */
494#define MAX_SYNCOOKIE_AGE 2
495#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
496#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497
498/* syncookies: remember time of last synqueue overflow
499 * But do not dirty this field too often (once per second is enough)
500 * It is racy as we do not hold a lock, but race is very minor.
501 */
502static inline void tcp_synq_overflow(const struct sock *sk)
503{
504 unsigned int last_overflow;
505 unsigned int now = jiffies;
506
507 if (sk->sk_reuseport) {
508 struct sock_reuseport *reuse;
509
510 reuse = rcu_dereference(sk->sk_reuseport_cb);
511 if (likely(reuse)) {
512 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
513 if (!time_between32(now, last_overflow,
514 last_overflow + HZ))
515 WRITE_ONCE(reuse->synq_overflow_ts, now);
516 return;
517 }
518 }
519
520 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
521 if (!time_between32(now, last_overflow, last_overflow + HZ))
522 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
523}
524
525/* syncookies: no recent synqueue overflow on this listening socket? */
526static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
527{
528 unsigned int last_overflow;
529 unsigned int now = jiffies;
530
531 if (sk->sk_reuseport) {
532 struct sock_reuseport *reuse;
533
534 reuse = rcu_dereference(sk->sk_reuseport_cb);
535 if (likely(reuse)) {
536 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
537 return !time_between32(now, last_overflow - HZ,
538 last_overflow +
539 TCP_SYNCOOKIE_VALID);
540 }
541 }
542
543 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
544
545 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
546 * then we're under synflood. However, we have to use
547 * 'last_overflow - HZ' as lower bound. That's because a concurrent
548 * tcp_synq_overflow() could update .ts_recent_stamp after we read
549 * jiffies but before we store .ts_recent_stamp into last_overflow,
550 * which could lead to rejecting a valid syncookie.
551 */
552 return !time_between32(now, last_overflow - HZ,
553 last_overflow + TCP_SYNCOOKIE_VALID);
554}
555
556static inline u32 tcp_cookie_time(void)
557{
558 u64 val = get_jiffies_64();
559
560 do_div(val, TCP_SYNCOOKIE_PERIOD);
561 return val;
562}
563
564u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
565 u16 *mssp);
566__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
567u64 cookie_init_timestamp(struct request_sock *req, u64 now);
568bool cookie_timestamp_decode(const struct net *net,
569 struct tcp_options_received *opt);
570bool cookie_ecn_ok(const struct tcp_options_received *opt,
571 const struct net *net, const struct dst_entry *dst);
572
573/* From net/ipv6/syncookies.c */
574int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
575 u32 cookie);
576struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
577
578u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
579 const struct tcphdr *th, u16 *mssp);
580__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
581#endif
582/* tcp_output.c */
583
584void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
585 int nonagle);
586int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
587int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
588void tcp_retransmit_timer(struct sock *sk);
589void tcp_xmit_retransmit_queue(struct sock *);
590void tcp_simple_retransmit(struct sock *);
591void tcp_enter_recovery(struct sock *sk, bool ece_ack);
592int tcp_trim_head(struct sock *, struct sk_buff *, u32);
593enum tcp_queue {
594 TCP_FRAG_IN_WRITE_QUEUE,
595 TCP_FRAG_IN_RTX_QUEUE,
596};
597int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
598 struct sk_buff *skb, u32 len,
599 unsigned int mss_now, gfp_t gfp);
600
601void tcp_send_probe0(struct sock *);
602void tcp_send_partial(struct sock *);
603int tcp_write_wakeup(struct sock *, int mib);
604void tcp_send_fin(struct sock *sk);
605void tcp_send_active_reset(struct sock *sk, gfp_t priority);
606int tcp_send_synack(struct sock *);
607void tcp_push_one(struct sock *, unsigned int mss_now);
608void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
609void tcp_send_ack(struct sock *sk);
610void tcp_send_delayed_ack(struct sock *sk);
611void tcp_send_loss_probe(struct sock *sk);
612bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
613void tcp_skb_collapse_tstamp(struct sk_buff *skb,
614 const struct sk_buff *next_skb);
615
616/* tcp_input.c */
617void tcp_rearm_rto(struct sock *sk);
618void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
619void tcp_reset(struct sock *sk, struct sk_buff *skb);
620void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
621void tcp_fin(struct sock *sk);
622
623/* tcp_timer.c */
624void tcp_init_xmit_timers(struct sock *);
625static inline void tcp_clear_xmit_timers(struct sock *sk)
626{
627 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
628 __sock_put(sk);
629
630 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
631 __sock_put(sk);
632
633 inet_csk_clear_xmit_timers(sk);
634}
635
636unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
637unsigned int tcp_current_mss(struct sock *sk);
638u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
639
640/* Bound MSS / TSO packet size with the half of the window */
641static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
642{
643 int cutoff;
644
645 /* When peer uses tiny windows, there is no use in packetizing
646 * to sub-MSS pieces for the sake of SWS or making sure there
647 * are enough packets in the pipe for fast recovery.
648 *
649 * On the other hand, for extremely large MSS devices, handling
650 * smaller than MSS windows in this way does make sense.
651 */
652 if (tp->max_window > TCP_MSS_DEFAULT)
653 cutoff = (tp->max_window >> 1);
654 else
655 cutoff = tp->max_window;
656
657 if (cutoff && pktsize > cutoff)
658 return max_t(int, cutoff, 68U - tp->tcp_header_len);
659 else
660 return pktsize;
661}
662
663/* tcp.c */
664void tcp_get_info(struct sock *, struct tcp_info *);
665
666/* Read 'sendfile()'-style from a TCP socket */
667int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
668 sk_read_actor_t recv_actor);
669
670void tcp_initialize_rcv_mss(struct sock *sk);
671
672int tcp_mtu_to_mss(struct sock *sk, int pmtu);
673int tcp_mss_to_mtu(struct sock *sk, int mss);
674void tcp_mtup_init(struct sock *sk);
675
676static inline void tcp_bound_rto(const struct sock *sk)
677{
678 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
679 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
680}
681
682static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
683{
684 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
685}
686
687static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
688{
689 /* mptcp hooks are only on the slow path */
690 if (sk_is_mptcp((struct sock *)tp))
691 return;
692
693 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
694 ntohl(TCP_FLAG_ACK) |
695 snd_wnd);
696}
697
698static inline void tcp_fast_path_on(struct tcp_sock *tp)
699{
700 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
701}
702
703static inline void tcp_fast_path_check(struct sock *sk)
704{
705 struct tcp_sock *tp = tcp_sk(sk);
706
707 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
708 tp->rcv_wnd &&
709 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
710 !tp->urg_data)
711 tcp_fast_path_on(tp);
712}
713
714/* Compute the actual rto_min value */
715static inline u32 tcp_rto_min(struct sock *sk)
716{
717 const struct dst_entry *dst = __sk_dst_get(sk);
718 u32 rto_min = inet_csk(sk)->icsk_rto_min;
719
720 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
721 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
722 return rto_min;
723}
724
725static inline u32 tcp_rto_min_us(struct sock *sk)
726{
727 return jiffies_to_usecs(tcp_rto_min(sk));
728}
729
730static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
731{
732 return dst_metric_locked(dst, RTAX_CC_ALGO);
733}
734
735/* Minimum RTT in usec. ~0 means not available. */
736static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
737{
738 return minmax_get(&tp->rtt_min);
739}
740
741/* Compute the actual receive window we are currently advertising.
742 * Rcv_nxt can be after the window if our peer push more data
743 * than the offered window.
744 */
745static inline u32 tcp_receive_window(const struct tcp_sock *tp)
746{
747 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
748
749 if (win < 0)
750 win = 0;
751 return (u32) win;
752}
753
754/* Choose a new window, without checks for shrinking, and without
755 * scaling applied to the result. The caller does these things
756 * if necessary. This is a "raw" window selection.
757 */
758u32 __tcp_select_window(struct sock *sk);
759
760void tcp_send_window_probe(struct sock *sk);
761
762/* TCP uses 32bit jiffies to save some space.
763 * Note that this is different from tcp_time_stamp, which
764 * historically has been the same until linux-4.13.
765 */
766#define tcp_jiffies32 ((u32)jiffies)
767
768/*
769 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
770 * It is no longer tied to jiffies, but to 1 ms clock.
771 * Note: double check if you want to use tcp_jiffies32 instead of this.
772 */
773#define TCP_TS_HZ 1000
774
775static inline u64 tcp_clock_ns(void)
776{
777 return ktime_get_ns();
778}
779
780static inline u64 tcp_clock_us(void)
781{
782 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
783}
784
785/* This should only be used in contexts where tp->tcp_mstamp is up to date */
786static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
787{
788 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
789}
790
791/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
792static inline u32 tcp_ns_to_ts(u64 ns)
793{
794 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
795}
796
797/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
798static inline u32 tcp_time_stamp_raw(void)
799{
800 return tcp_ns_to_ts(tcp_clock_ns());
801}
802
803void tcp_mstamp_refresh(struct tcp_sock *tp);
804
805static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
806{
807 return max_t(s64, t1 - t0, 0);
808}
809
810static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
811{
812 return tcp_ns_to_ts(skb->skb_mstamp_ns);
813}
814
815/* provide the departure time in us unit */
816static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
817{
818 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
819}
820
821
822#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
823
824#define TCPHDR_FIN 0x01
825#define TCPHDR_SYN 0x02
826#define TCPHDR_RST 0x04
827#define TCPHDR_PSH 0x08
828#define TCPHDR_ACK 0x10
829#define TCPHDR_URG 0x20
830#define TCPHDR_ECE 0x40
831#define TCPHDR_CWR 0x80
832
833#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
834
835/* This is what the send packet queuing engine uses to pass
836 * TCP per-packet control information to the transmission code.
837 * We also store the host-order sequence numbers in here too.
838 * This is 44 bytes if IPV6 is enabled.
839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
840 */
841struct tcp_skb_cb {
842 __u32 seq; /* Starting sequence number */
843 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
844 union {
845 /* Note : tcp_tw_isn is used in input path only
846 * (isn chosen by tcp_timewait_state_process())
847 *
848 * tcp_gso_segs/size are used in write queue only,
849 * cf tcp_skb_pcount()/tcp_skb_mss()
850 */
851 __u32 tcp_tw_isn;
852 struct {
853 u16 tcp_gso_segs;
854 u16 tcp_gso_size;
855 };
856 };
857 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
858
859 __u8 sacked; /* State flags for SACK. */
860#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
861#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
862#define TCPCB_LOST 0x04 /* SKB is lost */
863#define TCPCB_TAGBITS 0x07 /* All tag bits */
864#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
865#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
866#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
867 TCPCB_REPAIRED)
868
869 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
870 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
871 eor:1, /* Is skb MSG_EOR marked? */
872 has_rxtstamp:1, /* SKB has a RX timestamp */
873 unused:5;
874 __u32 ack_seq; /* Sequence number ACK'd */
875 union {
876 struct {
877 /* There is space for up to 24 bytes */
878 __u32 in_flight:30,/* Bytes in flight at transmit */
879 is_app_limited:1, /* cwnd not fully used? */
880 unused:1;
881 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
882 __u32 delivered;
883 /* start of send pipeline phase */
884 u64 first_tx_mstamp;
885 /* when we reached the "delivered" count */
886 u64 delivered_mstamp;
887 } tx; /* only used for outgoing skbs */
888 union {
889 struct inet_skb_parm h4;
890#if IS_ENABLED(CONFIG_IPV6)
891 struct inet6_skb_parm h6;
892#endif
893 } header; /* For incoming skbs */
894 };
895};
896
897#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
898
899extern const struct inet_connection_sock_af_ops ipv4_specific;
900
901#if IS_ENABLED(CONFIG_IPV6)
902/* This is the variant of inet6_iif() that must be used by TCP,
903 * as TCP moves IP6CB into a different location in skb->cb[]
904 */
905static inline int tcp_v6_iif(const struct sk_buff *skb)
906{
907 return TCP_SKB_CB(skb)->header.h6.iif;
908}
909
910static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
911{
912 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
913
914 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
915}
916
917/* TCP_SKB_CB reference means this can not be used from early demux */
918static inline int tcp_v6_sdif(const struct sk_buff *skb)
919{
920#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
921 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
922 return TCP_SKB_CB(skb)->header.h6.iif;
923#endif
924 return 0;
925}
926
927extern const struct inet_connection_sock_af_ops ipv6_specific;
928
929INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
930INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
931INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
932
933#endif
934
935/* TCP_SKB_CB reference means this can not be used from early demux */
936static inline int tcp_v4_sdif(struct sk_buff *skb)
937{
938#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
939 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
940 return TCP_SKB_CB(skb)->header.h4.iif;
941#endif
942 return 0;
943}
944
945/* Due to TSO, an SKB can be composed of multiple actual
946 * packets. To keep these tracked properly, we use this.
947 */
948static inline int tcp_skb_pcount(const struct sk_buff *skb)
949{
950 return TCP_SKB_CB(skb)->tcp_gso_segs;
951}
952
953static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
954{
955 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
956}
957
958static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
959{
960 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
961}
962
963/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
964static inline int tcp_skb_mss(const struct sk_buff *skb)
965{
966 return TCP_SKB_CB(skb)->tcp_gso_size;
967}
968
969static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
970{
971 return likely(!TCP_SKB_CB(skb)->eor);
972}
973
974static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
975 const struct sk_buff *from)
976{
977 return likely(tcp_skb_can_collapse_to(to) &&
978 mptcp_skb_can_collapse(to, from));
979}
980
981/* Events passed to congestion control interface */
982enum tcp_ca_event {
983 CA_EVENT_TX_START, /* first transmit when no packets in flight */
984 CA_EVENT_CWND_RESTART, /* congestion window restart */
985 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
986 CA_EVENT_LOSS, /* loss timeout */
987 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
988 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
989};
990
991/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
992enum tcp_ca_ack_event_flags {
993 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
994 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
995 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
996};
997
998/*
999 * Interface for adding new TCP congestion control handlers
1000 */
1001#define TCP_CA_NAME_MAX 16
1002#define TCP_CA_MAX 128
1003#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1004
1005#define TCP_CA_UNSPEC 0
1006
1007/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008#define TCP_CONG_NON_RESTRICTED 0x1
1009/* Requires ECN/ECT set on all packets */
1010#define TCP_CONG_NEEDS_ECN 0x2
1011#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012
1013union tcp_cc_info;
1014
1015struct ack_sample {
1016 u32 pkts_acked;
1017 s32 rtt_us;
1018 u32 in_flight;
1019};
1020
1021/* A rate sample measures the number of (original/retransmitted) data
1022 * packets delivered "delivered" over an interval of time "interval_us".
1023 * The tcp_rate.c code fills in the rate sample, and congestion
1024 * control modules that define a cong_control function to run at the end
1025 * of ACK processing can optionally chose to consult this sample when
1026 * setting cwnd and pacing rate.
1027 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 */
1029struct rate_sample {
1030 u64 prior_mstamp; /* starting timestamp for interval */
1031 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1032 s32 delivered; /* number of packets delivered over interval */
1033 long interval_us; /* time for tp->delivered to incr "delivered" */
1034 u32 snd_interval_us; /* snd interval for delivered packets */
1035 u32 rcv_interval_us; /* rcv interval for delivered packets */
1036 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1037 int losses; /* number of packets marked lost upon ACK */
1038 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1039 u32 prior_in_flight; /* in flight before this ACK */
1040 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1041 bool is_retrans; /* is sample from retransmission? */
1042 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1043};
1044
1045struct tcp_congestion_ops {
1046/* fast path fields are put first to fill one cache line */
1047
1048 /* return slow start threshold (required) */
1049 u32 (*ssthresh)(struct sock *sk);
1050
1051 /* do new cwnd calculation (required) */
1052 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053
1054 /* call before changing ca_state (optional) */
1055 void (*set_state)(struct sock *sk, u8 new_state);
1056
1057 /* call when cwnd event occurs (optional) */
1058 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059
1060 /* call when ack arrives (optional) */
1061 void (*in_ack_event)(struct sock *sk, u32 flags);
1062
1063 /* hook for packet ack accounting (optional) */
1064 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065
1066 /* override sysctl_tcp_min_tso_segs */
1067 u32 (*min_tso_segs)(struct sock *sk);
1068
1069 /* call when packets are delivered to update cwnd and pacing rate,
1070 * after all the ca_state processing. (optional)
1071 */
1072 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073
1074
1075 /* new value of cwnd after loss (required) */
1076 u32 (*undo_cwnd)(struct sock *sk);
1077 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078 u32 (*sndbuf_expand)(struct sock *sk);
1079
1080/* control/slow paths put last */
1081 /* get info for inet_diag (optional) */
1082 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083 union tcp_cc_info *info);
1084
1085 char name[TCP_CA_NAME_MAX];
1086 struct module *owner;
1087 struct list_head list;
1088 u32 key;
1089 u32 flags;
1090
1091 /* initialize private data (optional) */
1092 void (*init)(struct sock *sk);
1093 /* cleanup private data (optional) */
1094 void (*release)(struct sock *sk);
1095} ____cacheline_aligned_in_smp;
1096
1097int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099
1100void tcp_assign_congestion_control(struct sock *sk);
1101void tcp_init_congestion_control(struct sock *sk);
1102void tcp_cleanup_congestion_control(struct sock *sk);
1103int tcp_set_default_congestion_control(struct net *net, const char *name);
1104void tcp_get_default_congestion_control(struct net *net, char *name);
1105void tcp_get_available_congestion_control(char *buf, size_t len);
1106void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107int tcp_set_allowed_congestion_control(char *allowed);
1108int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109 bool cap_net_admin);
1110u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113u32 tcp_reno_ssthresh(struct sock *sk);
1114u32 tcp_reno_undo_cwnd(struct sock *sk);
1115void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116extern struct tcp_congestion_ops tcp_reno;
1117
1118struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121#ifdef CONFIG_INET
1122char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123#else
1124static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125{
1126 return NULL;
1127}
1128#endif
1129
1130static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131{
1132 const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135}
1136
1137static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138{
1139 struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141 if (icsk->icsk_ca_ops->set_state)
1142 icsk->icsk_ca_ops->set_state(sk, ca_state);
1143 icsk->icsk_ca_state = ca_state;
1144}
1145
1146static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147{
1148 const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150 if (icsk->icsk_ca_ops->cwnd_event)
1151 icsk->icsk_ca_ops->cwnd_event(sk, event);
1152}
1153
1154/* From tcp_rate.c */
1155void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157 struct rate_sample *rs);
1158void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159 bool is_sack_reneg, struct rate_sample *rs);
1160void tcp_rate_check_app_limited(struct sock *sk);
1161
1162/* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1165 *
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1168 */
1169static inline int tcp_is_sack(const struct tcp_sock *tp)
1170{
1171 return likely(tp->rx_opt.sack_ok);
1172}
1173
1174static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175{
1176 return !tcp_is_sack(tp);
1177}
1178
1179static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180{
1181 return tp->sacked_out + tp->lost_out;
1182}
1183
1184/* This determines how many packets are "in the network" to the best
1185 * of our knowledge. In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1188 *
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1191 *
1192 * Read this equation as:
1193 *
1194 * "Packets sent once on transmission queue" MINUS
1195 * "Packets left network, but not honestly ACKed yet" PLUS
1196 * "Packets fast retransmitted"
1197 */
1198static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199{
1200 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201}
1202
1203#define TCP_INFINITE_SSTHRESH 0x7fffffff
1204
1205static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206{
1207 return tp->snd_cwnd < tp->snd_ssthresh;
1208}
1209
1210static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211{
1212 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213}
1214
1215static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216{
1217 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218 (1 << inet_csk(sk)->icsk_ca_state);
1219}
1220
1221/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223 * ssthresh.
1224 */
1225static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226{
1227 const struct tcp_sock *tp = tcp_sk(sk);
1228
1229 if (tcp_in_cwnd_reduction(sk))
1230 return tp->snd_ssthresh;
1231 else
1232 return max(tp->snd_ssthresh,
1233 ((tp->snd_cwnd >> 1) +
1234 (tp->snd_cwnd >> 2)));
1235}
1236
1237/* Use define here intentionally to get WARN_ON location shown at the caller */
1238#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239
1240void tcp_enter_cwr(struct sock *sk);
1241__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242
1243/* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1245 */
1246static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247{
1248 return 3;
1249}
1250
1251/* Returns end sequence number of the receiver's advertised window */
1252static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253{
1254 return tp->snd_una + tp->snd_wnd;
1255}
1256
1257/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1262 * Example :
1263 * cwnd is 10 (IW10), but application sends 9 frames.
1264 * We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1269 */
1270static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271{
1272 const struct tcp_sock *tp = tcp_sk(sk);
1273
1274 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275 if (tcp_in_slow_start(tp))
1276 return tp->snd_cwnd < 2 * tp->max_packets_out;
1277
1278 return tp->is_cwnd_limited;
1279}
1280
1281/* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1286 */
1287static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288{
1289 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290}
1291
1292/* Estimates in how many jiffies next packet for this flow can be sent.
1293 * Scheduling a retransmit timer too early would be silly.
1294 */
1295static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296{
1297 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298
1299 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300}
1301
1302static inline void tcp_reset_xmit_timer(struct sock *sk,
1303 const int what,
1304 unsigned long when,
1305 const unsigned long max_when)
1306{
1307 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308 max_when);
1309}
1310
1311/* Something is really bad, we could not queue an additional packet,
1312 * because qdisc is full or receiver sent a 0 window, or we are paced.
1313 * We do not want to add fuel to the fire, or abort too early,
1314 * so make sure the timer we arm now is at least 200ms in the future,
1315 * regardless of current icsk_rto value (as it could be ~2ms)
1316 */
1317static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318{
1319 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320}
1321
1322/* Variant of inet_csk_rto_backoff() used for zero window probes */
1323static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324 unsigned long max_when)
1325{
1326 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327 inet_csk(sk)->icsk_backoff);
1328 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329
1330 return (unsigned long)min_t(u64, when, max_when);
1331}
1332
1333static inline void tcp_check_probe_timer(struct sock *sk)
1334{
1335 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337 tcp_probe0_base(sk), TCP_RTO_MAX);
1338}
1339
1340static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341{
1342 tp->snd_wl1 = seq;
1343}
1344
1345static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346{
1347 tp->snd_wl1 = seq;
1348}
1349
1350/*
1351 * Calculate(/check) TCP checksum
1352 */
1353static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354 __be32 daddr, __wsum base)
1355{
1356 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357}
1358
1359static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360{
1361 return !skb_csum_unnecessary(skb) &&
1362 __skb_checksum_complete(skb);
1363}
1364
1365bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1366int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367void tcp_set_state(struct sock *sk, int state);
1368void tcp_done(struct sock *sk);
1369int tcp_abort(struct sock *sk, int err);
1370
1371static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372{
1373 rx_opt->dsack = 0;
1374 rx_opt->num_sacks = 0;
1375}
1376
1377void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378
1379static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380{
1381 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 s32 delta;
1384
1385 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386 ca_ops->cong_control)
1387 return;
1388 delta = tcp_jiffies32 - tp->lsndtime;
1389 if (delta > inet_csk(sk)->icsk_rto)
1390 tcp_cwnd_restart(sk, delta);
1391}
1392
1393/* Determine a window scaling and initial window to offer. */
1394void tcp_select_initial_window(const struct sock *sk, int __space,
1395 __u32 mss, __u32 *rcv_wnd,
1396 __u32 *window_clamp, int wscale_ok,
1397 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398
1399static inline int tcp_win_from_space(const struct sock *sk, int space)
1400{
1401 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1402
1403 return tcp_adv_win_scale <= 0 ?
1404 (space>>(-tcp_adv_win_scale)) :
1405 space - (space>>tcp_adv_win_scale);
1406}
1407
1408/* Note: caller must be prepared to deal with negative returns */
1409static inline int tcp_space(const struct sock *sk)
1410{
1411 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412 READ_ONCE(sk->sk_backlog.len) -
1413 atomic_read(&sk->sk_rmem_alloc));
1414}
1415
1416static inline int tcp_full_space(const struct sock *sk)
1417{
1418 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419}
1420
1421void tcp_cleanup_rbuf(struct sock *sk, int copied);
1422
1423/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428static inline bool tcp_rmem_pressure(const struct sock *sk)
1429{
1430 int rcvbuf, threshold;
1431
1432 if (tcp_under_memory_pressure(sk))
1433 return true;
1434
1435 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436 threshold = rcvbuf - (rcvbuf >> 3);
1437
1438 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439}
1440
1441static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442{
1443 const struct tcp_sock *tp = tcp_sk(sk);
1444 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445
1446 if (avail <= 0)
1447 return false;
1448
1449 return (avail >= target) || tcp_rmem_pressure(sk) ||
1450 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451}
1452
1453extern void tcp_openreq_init_rwin(struct request_sock *req,
1454 const struct sock *sk_listener,
1455 const struct dst_entry *dst);
1456
1457void tcp_enter_memory_pressure(struct sock *sk);
1458void tcp_leave_memory_pressure(struct sock *sk);
1459
1460static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461{
1462 struct net *net = sock_net((struct sock *)tp);
1463
1464 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1465}
1466
1467static inline int keepalive_time_when(const struct tcp_sock *tp)
1468{
1469 struct net *net = sock_net((struct sock *)tp);
1470
1471 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1472}
1473
1474static inline int keepalive_probes(const struct tcp_sock *tp)
1475{
1476 struct net *net = sock_net((struct sock *)tp);
1477
1478 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1479}
1480
1481static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482{
1483 const struct inet_connection_sock *icsk = &tp->inet_conn;
1484
1485 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486 tcp_jiffies32 - tp->rcv_tstamp);
1487}
1488
1489static inline int tcp_fin_time(const struct sock *sk)
1490{
1491 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1492 const int rto = inet_csk(sk)->icsk_rto;
1493
1494 if (fin_timeout < (rto << 2) - (rto >> 1))
1495 fin_timeout = (rto << 2) - (rto >> 1);
1496
1497 return fin_timeout;
1498}
1499
1500static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501 int paws_win)
1502{
1503 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504 return true;
1505 if (unlikely(!time_before32(ktime_get_seconds(),
1506 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507 return true;
1508 /*
1509 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510 * then following tcp messages have valid values. Ignore 0 value,
1511 * or else 'negative' tsval might forbid us to accept their packets.
1512 */
1513 if (!rx_opt->ts_recent)
1514 return true;
1515 return false;
1516}
1517
1518static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519 int rst)
1520{
1521 if (tcp_paws_check(rx_opt, 0))
1522 return false;
1523
1524 /* RST segments are not recommended to carry timestamp,
1525 and, if they do, it is recommended to ignore PAWS because
1526 "their cleanup function should take precedence over timestamps."
1527 Certainly, it is mistake. It is necessary to understand the reasons
1528 of this constraint to relax it: if peer reboots, clock may go
1529 out-of-sync and half-open connections will not be reset.
1530 Actually, the problem would be not existing if all
1531 the implementations followed draft about maintaining clock
1532 via reboots. Linux-2.2 DOES NOT!
1533
1534 However, we can relax time bounds for RST segments to MSL.
1535 */
1536 if (rst && !time_before32(ktime_get_seconds(),
1537 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538 return false;
1539 return true;
1540}
1541
1542bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543 int mib_idx, u32 *last_oow_ack_time);
1544
1545static inline void tcp_mib_init(struct net *net)
1546{
1547 /* See RFC 2012 */
1548 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552}
1553
1554/* from STCP */
1555static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556{
1557 tp->lost_skb_hint = NULL;
1558}
1559
1560static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561{
1562 tcp_clear_retrans_hints_partial(tp);
1563 tp->retransmit_skb_hint = NULL;
1564}
1565
1566union tcp_md5_addr {
1567 struct in_addr a4;
1568#if IS_ENABLED(CONFIG_IPV6)
1569 struct in6_addr a6;
1570#endif
1571};
1572
1573/* - key database */
1574struct tcp_md5sig_key {
1575 struct hlist_node node;
1576 u8 keylen;
1577 u8 family; /* AF_INET or AF_INET6 */
1578 u8 prefixlen;
1579 union tcp_md5_addr addr;
1580 int l3index; /* set if key added with L3 scope */
1581 u8 key[TCP_MD5SIG_MAXKEYLEN];
1582 struct rcu_head rcu;
1583};
1584
1585/* - sock block */
1586struct tcp_md5sig_info {
1587 struct hlist_head head;
1588 struct rcu_head rcu;
1589};
1590
1591/* - pseudo header */
1592struct tcp4_pseudohdr {
1593 __be32 saddr;
1594 __be32 daddr;
1595 __u8 pad;
1596 __u8 protocol;
1597 __be16 len;
1598};
1599
1600struct tcp6_pseudohdr {
1601 struct in6_addr saddr;
1602 struct in6_addr daddr;
1603 __be32 len;
1604 __be32 protocol; /* including padding */
1605};
1606
1607union tcp_md5sum_block {
1608 struct tcp4_pseudohdr ip4;
1609#if IS_ENABLED(CONFIG_IPV6)
1610 struct tcp6_pseudohdr ip6;
1611#endif
1612};
1613
1614/* - pool: digest algorithm, hash description and scratch buffer */
1615struct tcp_md5sig_pool {
1616 struct ahash_request *md5_req;
1617 void *scratch;
1618};
1619
1620/* - functions */
1621int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1622 const struct sock *sk, const struct sk_buff *skb);
1623int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1624 int family, u8 prefixlen, int l3index,
1625 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1626int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1627 int family, u8 prefixlen, int l3index);
1628struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1629 const struct sock *addr_sk);
1630
1631#ifdef CONFIG_TCP_MD5SIG
1632#include <linux/jump_label.h>
1633extern struct static_key_false tcp_md5_needed;
1634struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1635 const union tcp_md5_addr *addr,
1636 int family);
1637static inline struct tcp_md5sig_key *
1638tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639 const union tcp_md5_addr *addr, int family)
1640{
1641 if (!static_branch_unlikely(&tcp_md5_needed))
1642 return NULL;
1643 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1644}
1645
1646#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1647#else
1648static inline struct tcp_md5sig_key *
1649tcp_md5_do_lookup(const struct sock *sk, int l3index,
1650 const union tcp_md5_addr *addr, int family)
1651{
1652 return NULL;
1653}
1654#define tcp_twsk_md5_key(twsk) NULL
1655#endif
1656
1657bool tcp_alloc_md5sig_pool(void);
1658
1659struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1660static inline void tcp_put_md5sig_pool(void)
1661{
1662 local_bh_enable();
1663}
1664
1665int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1666 unsigned int header_len);
1667int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1668 const struct tcp_md5sig_key *key);
1669
1670/* From tcp_fastopen.c */
1671void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1672 struct tcp_fastopen_cookie *cookie);
1673void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1674 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1675 u16 try_exp);
1676struct tcp_fastopen_request {
1677 /* Fast Open cookie. Size 0 means a cookie request */
1678 struct tcp_fastopen_cookie cookie;
1679 struct msghdr *data; /* data in MSG_FASTOPEN */
1680 size_t size;
1681 int copied; /* queued in tcp_connect() */
1682 struct ubuf_info *uarg;
1683};
1684void tcp_free_fastopen_req(struct tcp_sock *tp);
1685void tcp_fastopen_destroy_cipher(struct sock *sk);
1686void tcp_fastopen_ctx_destroy(struct net *net);
1687int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1688 void *primary_key, void *backup_key);
1689int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1690 u64 *key);
1691void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1692struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1693 struct request_sock *req,
1694 struct tcp_fastopen_cookie *foc,
1695 const struct dst_entry *dst);
1696void tcp_fastopen_init_key_once(struct net *net);
1697bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1698 struct tcp_fastopen_cookie *cookie);
1699bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1700#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1701#define TCP_FASTOPEN_KEY_MAX 2
1702#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1703 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1704
1705/* Fastopen key context */
1706struct tcp_fastopen_context {
1707 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1708 int num;
1709 struct rcu_head rcu;
1710};
1711
1712void tcp_fastopen_active_disable(struct sock *sk);
1713bool tcp_fastopen_active_should_disable(struct sock *sk);
1714void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1715void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1716
1717/* Caller needs to wrap with rcu_read_(un)lock() */
1718static inline
1719struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1720{
1721 struct tcp_fastopen_context *ctx;
1722
1723 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1724 if (!ctx)
1725 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1726 return ctx;
1727}
1728
1729static inline
1730bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1731 const struct tcp_fastopen_cookie *orig)
1732{
1733 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1734 orig->len == foc->len &&
1735 !memcmp(orig->val, foc->val, foc->len))
1736 return true;
1737 return false;
1738}
1739
1740static inline
1741int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1742{
1743 return ctx->num;
1744}
1745
1746/* Latencies incurred by various limits for a sender. They are
1747 * chronograph-like stats that are mutually exclusive.
1748 */
1749enum tcp_chrono {
1750 TCP_CHRONO_UNSPEC,
1751 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1752 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1753 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1754 __TCP_CHRONO_MAX,
1755};
1756
1757void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1758void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1759
1760/* This helper is needed, because skb->tcp_tsorted_anchor uses
1761 * the same memory storage than skb->destructor/_skb_refdst
1762 */
1763static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1764{
1765 skb->destructor = NULL;
1766 skb->_skb_refdst = 0UL;
1767}
1768
1769#define tcp_skb_tsorted_save(skb) { \
1770 unsigned long _save = skb->_skb_refdst; \
1771 skb->_skb_refdst = 0UL;
1772
1773#define tcp_skb_tsorted_restore(skb) \
1774 skb->_skb_refdst = _save; \
1775}
1776
1777void tcp_write_queue_purge(struct sock *sk);
1778
1779static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1780{
1781 return skb_rb_first(&sk->tcp_rtx_queue);
1782}
1783
1784static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1785{
1786 return skb_rb_last(&sk->tcp_rtx_queue);
1787}
1788
1789static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1790{
1791 return skb_peek(&sk->sk_write_queue);
1792}
1793
1794static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1795{
1796 return skb_peek_tail(&sk->sk_write_queue);
1797}
1798
1799#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1800 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1801
1802static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1803{
1804 return skb_peek(&sk->sk_write_queue);
1805}
1806
1807static inline bool tcp_skb_is_last(const struct sock *sk,
1808 const struct sk_buff *skb)
1809{
1810 return skb_queue_is_last(&sk->sk_write_queue, skb);
1811}
1812
1813/**
1814 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1815 * @sk: socket
1816 *
1817 * Since the write queue can have a temporary empty skb in it,
1818 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1819 */
1820static inline bool tcp_write_queue_empty(const struct sock *sk)
1821{
1822 const struct tcp_sock *tp = tcp_sk(sk);
1823
1824 return tp->write_seq == tp->snd_nxt;
1825}
1826
1827static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1828{
1829 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1830}
1831
1832static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1833{
1834 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1835}
1836
1837static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1838{
1839 __skb_queue_tail(&sk->sk_write_queue, skb);
1840
1841 /* Queue it, remembering where we must start sending. */
1842 if (sk->sk_write_queue.next == skb)
1843 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1844}
1845
1846/* Insert new before skb on the write queue of sk. */
1847static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1848 struct sk_buff *skb,
1849 struct sock *sk)
1850{
1851 __skb_queue_before(&sk->sk_write_queue, skb, new);
1852}
1853
1854static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1855{
1856 tcp_skb_tsorted_anchor_cleanup(skb);
1857 __skb_unlink(skb, &sk->sk_write_queue);
1858}
1859
1860void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1861
1862static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1863{
1864 tcp_skb_tsorted_anchor_cleanup(skb);
1865 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1866}
1867
1868static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1869{
1870 list_del(&skb->tcp_tsorted_anchor);
1871 tcp_rtx_queue_unlink(skb, sk);
1872 sk_wmem_free_skb(sk, skb);
1873}
1874
1875static inline void tcp_push_pending_frames(struct sock *sk)
1876{
1877 if (tcp_send_head(sk)) {
1878 struct tcp_sock *tp = tcp_sk(sk);
1879
1880 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1881 }
1882}
1883
1884/* Start sequence of the skb just after the highest skb with SACKed
1885 * bit, valid only if sacked_out > 0 or when the caller has ensured
1886 * validity by itself.
1887 */
1888static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1889{
1890 if (!tp->sacked_out)
1891 return tp->snd_una;
1892
1893 if (tp->highest_sack == NULL)
1894 return tp->snd_nxt;
1895
1896 return TCP_SKB_CB(tp->highest_sack)->seq;
1897}
1898
1899static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1900{
1901 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1902}
1903
1904static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1905{
1906 return tcp_sk(sk)->highest_sack;
1907}
1908
1909static inline void tcp_highest_sack_reset(struct sock *sk)
1910{
1911 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1912}
1913
1914/* Called when old skb is about to be deleted and replaced by new skb */
1915static inline void tcp_highest_sack_replace(struct sock *sk,
1916 struct sk_buff *old,
1917 struct sk_buff *new)
1918{
1919 if (old == tcp_highest_sack(sk))
1920 tcp_sk(sk)->highest_sack = new;
1921}
1922
1923/* This helper checks if socket has IP_TRANSPARENT set */
1924static inline bool inet_sk_transparent(const struct sock *sk)
1925{
1926 switch (sk->sk_state) {
1927 case TCP_TIME_WAIT:
1928 return inet_twsk(sk)->tw_transparent;
1929 case TCP_NEW_SYN_RECV:
1930 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1931 }
1932 return inet_sk(sk)->transparent;
1933}
1934
1935/* Determines whether this is a thin stream (which may suffer from
1936 * increased latency). Used to trigger latency-reducing mechanisms.
1937 */
1938static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1939{
1940 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1941}
1942
1943/* /proc */
1944enum tcp_seq_states {
1945 TCP_SEQ_STATE_LISTENING,
1946 TCP_SEQ_STATE_ESTABLISHED,
1947};
1948
1949void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1950void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1951void tcp_seq_stop(struct seq_file *seq, void *v);
1952
1953struct tcp_seq_afinfo {
1954 sa_family_t family;
1955};
1956
1957struct tcp_iter_state {
1958 struct seq_net_private p;
1959 enum tcp_seq_states state;
1960 struct sock *syn_wait_sk;
1961 struct tcp_seq_afinfo *bpf_seq_afinfo;
1962 int bucket, offset, sbucket, num;
1963 loff_t last_pos;
1964};
1965
1966extern struct request_sock_ops tcp_request_sock_ops;
1967extern struct request_sock_ops tcp6_request_sock_ops;
1968
1969void tcp_v4_destroy_sock(struct sock *sk);
1970
1971struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features);
1973struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1974INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1975INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1976INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1977INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1978int tcp_gro_complete(struct sk_buff *skb);
1979
1980void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1981
1982static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1983{
1984 struct net *net = sock_net((struct sock *)tp);
1985 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1986}
1987
1988bool tcp_stream_memory_free(const struct sock *sk, int wake);
1989
1990#ifdef CONFIG_PROC_FS
1991int tcp4_proc_init(void);
1992void tcp4_proc_exit(void);
1993#endif
1994
1995int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1996int tcp_conn_request(struct request_sock_ops *rsk_ops,
1997 const struct tcp_request_sock_ops *af_ops,
1998 struct sock *sk, struct sk_buff *skb);
1999
2000/* TCP af-specific functions */
2001struct tcp_sock_af_ops {
2002#ifdef CONFIG_TCP_MD5SIG
2003 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2004 const struct sock *addr_sk);
2005 int (*calc_md5_hash)(char *location,
2006 const struct tcp_md5sig_key *md5,
2007 const struct sock *sk,
2008 const struct sk_buff *skb);
2009 int (*md5_parse)(struct sock *sk,
2010 int optname,
2011 sockptr_t optval,
2012 int optlen);
2013#endif
2014};
2015
2016struct tcp_request_sock_ops {
2017 u16 mss_clamp;
2018#ifdef CONFIG_TCP_MD5SIG
2019 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2020 const struct sock *addr_sk);
2021 int (*calc_md5_hash) (char *location,
2022 const struct tcp_md5sig_key *md5,
2023 const struct sock *sk,
2024 const struct sk_buff *skb);
2025#endif
2026#ifdef CONFIG_SYN_COOKIES
2027 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028 __u16 *mss);
2029#endif
2030 struct dst_entry *(*route_req)(const struct sock *sk,
2031 struct sk_buff *skb,
2032 struct flowi *fl,
2033 struct request_sock *req);
2034 u32 (*init_seq)(const struct sk_buff *skb);
2035 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2036 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2037 struct flowi *fl, struct request_sock *req,
2038 struct tcp_fastopen_cookie *foc,
2039 enum tcp_synack_type synack_type,
2040 struct sk_buff *syn_skb);
2041};
2042
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2044#if IS_ENABLED(CONFIG_IPV6)
2045extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2046#endif
2047
2048#ifdef CONFIG_SYN_COOKIES
2049static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050 const struct sock *sk, struct sk_buff *skb,
2051 __u16 *mss)
2052{
2053 tcp_synq_overflow(sk);
2054 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2055 return ops->cookie_init_seq(skb, mss);
2056}
2057#else
2058static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2059 const struct sock *sk, struct sk_buff *skb,
2060 __u16 *mss)
2061{
2062 return 0;
2063}
2064#endif
2065
2066int tcpv4_offload_init(void);
2067
2068void tcp_v4_init(void);
2069void tcp_init(void);
2070
2071/* tcp_recovery.c */
2072void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2073void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2074extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2075 u32 reo_wnd);
2076extern bool tcp_rack_mark_lost(struct sock *sk);
2077extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2078 u64 xmit_time);
2079extern void tcp_rack_reo_timeout(struct sock *sk);
2080extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2081
2082/* At how many usecs into the future should the RTO fire? */
2083static inline s64 tcp_rto_delta_us(const struct sock *sk)
2084{
2085 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2086 u32 rto = inet_csk(sk)->icsk_rto;
2087 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2088
2089 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2090}
2091
2092/*
2093 * Save and compile IPv4 options, return a pointer to it
2094 */
2095static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2096 struct sk_buff *skb)
2097{
2098 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2099 struct ip_options_rcu *dopt = NULL;
2100
2101 if (opt->optlen) {
2102 int opt_size = sizeof(*dopt) + opt->optlen;
2103
2104 dopt = kmalloc(opt_size, GFP_ATOMIC);
2105 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2106 kfree(dopt);
2107 dopt = NULL;
2108 }
2109 }
2110 return dopt;
2111}
2112
2113/* locally generated TCP pure ACKs have skb->truesize == 2
2114 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2115 * This is much faster than dissecting the packet to find out.
2116 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2117 */
2118static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2119{
2120 return skb->truesize == 2;
2121}
2122
2123static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2124{
2125 skb->truesize = 2;
2126}
2127
2128static inline int tcp_inq(struct sock *sk)
2129{
2130 struct tcp_sock *tp = tcp_sk(sk);
2131 int answ;
2132
2133 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2134 answ = 0;
2135 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2136 !tp->urg_data ||
2137 before(tp->urg_seq, tp->copied_seq) ||
2138 !before(tp->urg_seq, tp->rcv_nxt)) {
2139
2140 answ = tp->rcv_nxt - tp->copied_seq;
2141
2142 /* Subtract 1, if FIN was received */
2143 if (answ && sock_flag(sk, SOCK_DONE))
2144 answ--;
2145 } else {
2146 answ = tp->urg_seq - tp->copied_seq;
2147 }
2148
2149 return answ;
2150}
2151
2152int tcp_peek_len(struct socket *sock);
2153
2154static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2155{
2156 u16 segs_in;
2157
2158 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2159 tp->segs_in += segs_in;
2160 if (skb->len > tcp_hdrlen(skb))
2161 tp->data_segs_in += segs_in;
2162}
2163
2164/*
2165 * TCP listen path runs lockless.
2166 * We forced "struct sock" to be const qualified to make sure
2167 * we don't modify one of its field by mistake.
2168 * Here, we increment sk_drops which is an atomic_t, so we can safely
2169 * make sock writable again.
2170 */
2171static inline void tcp_listendrop(const struct sock *sk)
2172{
2173 atomic_inc(&((struct sock *)sk)->sk_drops);
2174 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2175}
2176
2177enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2178
2179/*
2180 * Interface for adding Upper Level Protocols over TCP
2181 */
2182
2183#define TCP_ULP_NAME_MAX 16
2184#define TCP_ULP_MAX 128
2185#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2186
2187struct tcp_ulp_ops {
2188 struct list_head list;
2189
2190 /* initialize ulp */
2191 int (*init)(struct sock *sk);
2192 /* update ulp */
2193 void (*update)(struct sock *sk, struct proto *p,
2194 void (*write_space)(struct sock *sk));
2195 /* cleanup ulp */
2196 void (*release)(struct sock *sk);
2197 /* diagnostic */
2198 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2199 size_t (*get_info_size)(const struct sock *sk);
2200 /* clone ulp */
2201 void (*clone)(const struct request_sock *req, struct sock *newsk,
2202 const gfp_t priority);
2203
2204 char name[TCP_ULP_NAME_MAX];
2205 struct module *owner;
2206};
2207int tcp_register_ulp(struct tcp_ulp_ops *type);
2208void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2209int tcp_set_ulp(struct sock *sk, const char *name);
2210void tcp_get_available_ulp(char *buf, size_t len);
2211void tcp_cleanup_ulp(struct sock *sk);
2212void tcp_update_ulp(struct sock *sk, struct proto *p,
2213 void (*write_space)(struct sock *sk));
2214
2215#define MODULE_ALIAS_TCP_ULP(name) \
2216 __MODULE_INFO(alias, alias_userspace, name); \
2217 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2218
2219#ifdef CONFIG_NET_SOCK_MSG
2220struct sk_msg;
2221struct sk_psock;
2222
2223#ifdef CONFIG_BPF_SYSCALL
2224struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2225int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2226void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227#endif /* CONFIG_BPF_SYSCALL */
2228
2229int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2230 int flags);
2231#endif /* CONFIG_NET_SOCK_MSG */
2232
2233#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2234static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2235{
2236}
2237#endif
2238
2239#ifdef CONFIG_CGROUP_BPF
2240static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2241 struct sk_buff *skb,
2242 unsigned int end_offset)
2243{
2244 skops->skb = skb;
2245 skops->skb_data_end = skb->data + end_offset;
2246}
2247#else
2248static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2249 struct sk_buff *skb,
2250 unsigned int end_offset)
2251{
2252}
2253#endif
2254
2255/* Call BPF_SOCK_OPS program that returns an int. If the return value
2256 * is < 0, then the BPF op failed (for example if the loaded BPF
2257 * program does not support the chosen operation or there is no BPF
2258 * program loaded).
2259 */
2260#ifdef CONFIG_BPF
2261static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2262{
2263 struct bpf_sock_ops_kern sock_ops;
2264 int ret;
2265
2266 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2267 if (sk_fullsock(sk)) {
2268 sock_ops.is_fullsock = 1;
2269 sock_owned_by_me(sk);
2270 }
2271
2272 sock_ops.sk = sk;
2273 sock_ops.op = op;
2274 if (nargs > 0)
2275 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2276
2277 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2278 if (ret == 0)
2279 ret = sock_ops.reply;
2280 else
2281 ret = -1;
2282 return ret;
2283}
2284
2285static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2286{
2287 u32 args[2] = {arg1, arg2};
2288
2289 return tcp_call_bpf(sk, op, 2, args);
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293 u32 arg3)
2294{
2295 u32 args[3] = {arg1, arg2, arg3};
2296
2297 return tcp_call_bpf(sk, op, 3, args);
2298}
2299
2300#else
2301static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2302{
2303 return -EPERM;
2304}
2305
2306static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2307{
2308 return -EPERM;
2309}
2310
2311static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2312 u32 arg3)
2313{
2314 return -EPERM;
2315}
2316
2317#endif
2318
2319static inline u32 tcp_timeout_init(struct sock *sk)
2320{
2321 int timeout;
2322
2323 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2324
2325 if (timeout <= 0)
2326 timeout = TCP_TIMEOUT_INIT;
2327 return timeout;
2328}
2329
2330static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2331{
2332 int rwnd;
2333
2334 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2335
2336 if (rwnd < 0)
2337 rwnd = 0;
2338 return rwnd;
2339}
2340
2341static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2342{
2343 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2344}
2345
2346static inline void tcp_bpf_rtt(struct sock *sk)
2347{
2348 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2349 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2350}
2351
2352#if IS_ENABLED(CONFIG_SMC)
2353extern struct static_key_false tcp_have_smc;
2354#endif
2355
2356#if IS_ENABLED(CONFIG_TLS_DEVICE)
2357void clean_acked_data_enable(struct inet_connection_sock *icsk,
2358 void (*cad)(struct sock *sk, u32 ack_seq));
2359void clean_acked_data_disable(struct inet_connection_sock *icsk);
2360void clean_acked_data_flush(void);
2361#endif
2362
2363DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2364static inline void tcp_add_tx_delay(struct sk_buff *skb,
2365 const struct tcp_sock *tp)
2366{
2367 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2368 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2369}
2370
2371/* Compute Earliest Departure Time for some control packets
2372 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2373 */
2374static inline u64 tcp_transmit_time(const struct sock *sk)
2375{
2376 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2377 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2378 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2379
2380 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2381 }
2382 return 0;
2383}
2384
2385#endif /* _TCP_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42#include <net/mptcp.h>
43
44#include <linux/seq_file.h>
45#include <linux/memcontrol.h>
46#include <linux/bpf-cgroup.h>
47#include <linux/siphash.h>
48
49extern struct inet_hashinfo tcp_hashinfo;
50
51DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52int tcp_orphan_count_sum(void);
53
54void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56#define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
57#define MAX_TCP_OPTION_SPACE 40
58#define TCP_MIN_SND_MSS 48
59#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60
61/*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65#define MAX_TCP_WINDOW 32767U
66
67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68#define TCP_MIN_MSS 88U
69
70/* The initial MTU to use for probing */
71#define TCP_BASE_MSS 1024
72
73/* probing interval, default to 10 minutes as per RFC4821 */
74#define TCP_PROBE_INTERVAL 600
75
76/* Specify interval when tcp mtu probing will stop */
77#define TCP_PROBE_THRESHOLD 8
78
79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
80#define TCP_FASTRETRANS_THRESH 3
81
82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
83#define TCP_MAX_QUICKACKS 16U
84
85/* Maximal number of window scale according to RFC1323 */
86#define TCP_MAX_WSCALE 14U
87
88/* urg_data states */
89#define TCP_URG_VALID 0x0100
90#define TCP_URG_NOTYET 0x0200
91#define TCP_URG_READ 0x0400
92
93#define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
98 */
99
100#define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
105 */
106
107#define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
114 */
115
116#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
121 */
122
123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
130 */
131#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132
133#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
134#if HZ >= 100
135#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
136#define TCP_ATO_MIN ((unsigned)(HZ/25))
137#else
138#define TCP_DELACK_MIN 4U
139#define TCP_ATO_MIN 4U
140#endif
141#define TCP_RTO_MAX ((unsigned)(120*HZ))
142#define TCP_RTO_MIN ((unsigned)(HZ/5))
143#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157#define TCP_KEEPALIVE_INTVL (75*HZ)
158
159#define MAX_TCP_KEEPIDLE 32767
160#define MAX_TCP_KEEPINTVL 32767
161#define MAX_TCP_KEEPCNT 127
162#define MAX_TCP_SYNCNT 127
163
164#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177/*
178 * TCP option
179 */
180
181#define TCPOPT_NOP 1 /* Padding */
182#define TCPOPT_EOL 0 /* End of options */
183#define TCPOPT_MSS 2 /* Segment size negotiating */
184#define TCPOPT_WINDOW 3 /* Window scaling */
185#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186#define TCPOPT_SACK 5 /* SACK Block */
187#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189#define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
190#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191#define TCPOPT_EXP 254 /* Experimental */
192/* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194 */
195#define TCPOPT_FASTOPEN_MAGIC 0xF989
196#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
197
198/*
199 * TCP option lengths
200 */
201
202#define TCPOLEN_MSS 4
203#define TCPOLEN_WINDOW 3
204#define TCPOLEN_SACK_PERM 2
205#define TCPOLEN_TIMESTAMP 10
206#define TCPOLEN_MD5SIG 18
207#define TCPOLEN_FASTOPEN_BASE 2
208#define TCPOLEN_EXP_FASTOPEN_BASE 4
209#define TCPOLEN_EXP_SMC_BASE 6
210
211/* But this is what stacks really send out. */
212#define TCPOLEN_TSTAMP_ALIGNED 12
213#define TCPOLEN_WSCALE_ALIGNED 4
214#define TCPOLEN_SACKPERM_ALIGNED 4
215#define TCPOLEN_SACK_BASE 2
216#define TCPOLEN_SACK_BASE_ALIGNED 4
217#define TCPOLEN_SACK_PERBLOCK 8
218#define TCPOLEN_MD5SIG_ALIGNED 20
219#define TCPOLEN_MSS_ALIGNED 4
220#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
221
222/* Flags in tp->nonagle */
223#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
224#define TCP_NAGLE_CORK 2 /* Socket is corked */
225#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
226
227/* TCP thin-stream limits */
228#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
229
230/* TCP initial congestion window as per rfc6928 */
231#define TCP_INIT_CWND 10
232
233/* Bit Flags for sysctl_tcp_fastopen */
234#define TFO_CLIENT_ENABLE 1
235#define TFO_SERVER_ENABLE 2
236#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
237
238/* Accept SYN data w/o any cookie option */
239#define TFO_SERVER_COOKIE_NOT_REQD 0x200
240
241/* Force enable TFO on all listeners, i.e., not requiring the
242 * TCP_FASTOPEN socket option.
243 */
244#define TFO_SERVER_WO_SOCKOPT1 0x400
245
246
247/* sysctl variables for tcp */
248extern int sysctl_tcp_max_orphans;
249extern long sysctl_tcp_mem[3];
250
251#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
252#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
253#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
254
255extern atomic_long_t tcp_memory_allocated;
256DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
257
258extern struct percpu_counter tcp_sockets_allocated;
259extern unsigned long tcp_memory_pressure;
260
261/* optimized version of sk_under_memory_pressure() for TCP sockets */
262static inline bool tcp_under_memory_pressure(const struct sock *sk)
263{
264 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 return true;
267
268 return READ_ONCE(tcp_memory_pressure);
269}
270/*
271 * The next routines deal with comparing 32 bit unsigned ints
272 * and worry about wraparound (automatic with unsigned arithmetic).
273 */
274
275static inline bool before(__u32 seq1, __u32 seq2)
276{
277 return (__s32)(seq1-seq2) < 0;
278}
279#define after(seq2, seq1) before(seq1, seq2)
280
281/* is s2<=s1<=s3 ? */
282static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283{
284 return seq3 - seq2 >= seq1 - seq2;
285}
286
287static inline bool tcp_out_of_memory(struct sock *sk)
288{
289 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 return true;
292 return false;
293}
294
295static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
296{
297 sk_wmem_queued_add(sk, -skb->truesize);
298 if (!skb_zcopy_pure(skb))
299 sk_mem_uncharge(sk, skb->truesize);
300 else
301 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
302 __kfree_skb(skb);
303}
304
305void sk_forced_mem_schedule(struct sock *sk, int size);
306
307bool tcp_check_oom(struct sock *sk, int shift);
308
309
310extern struct proto tcp_prot;
311
312#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
315#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
316
317void tcp_tasklet_init(void);
318
319int tcp_v4_err(struct sk_buff *skb, u32);
320
321void tcp_shutdown(struct sock *sk, int how);
322
323int tcp_v4_early_demux(struct sk_buff *skb);
324int tcp_v4_rcv(struct sk_buff *skb);
325
326void tcp_remove_empty_skb(struct sock *sk);
327int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
328int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331 size_t size, struct ubuf_info *uarg);
332int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
333 int flags);
334int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
335 size_t size, int flags);
336ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
337 size_t size, int flags);
338int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
339void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
340 int size_goal);
341void tcp_release_cb(struct sock *sk);
342void tcp_wfree(struct sk_buff *skb);
343void tcp_write_timer_handler(struct sock *sk);
344void tcp_delack_timer_handler(struct sock *sk);
345int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
346int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
347void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
348void tcp_rcv_space_adjust(struct sock *sk);
349int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
350void tcp_twsk_destructor(struct sock *sk);
351void tcp_twsk_purge(struct list_head *net_exit_list, int family);
352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
353 struct pipe_inode_info *pipe, size_t len,
354 unsigned int flags);
355struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
356 bool force_schedule);
357
358void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
359static inline void tcp_dec_quickack_mode(struct sock *sk,
360 const unsigned int pkts)
361{
362 struct inet_connection_sock *icsk = inet_csk(sk);
363
364 if (icsk->icsk_ack.quick) {
365 if (pkts >= icsk->icsk_ack.quick) {
366 icsk->icsk_ack.quick = 0;
367 /* Leaving quickack mode we deflate ATO. */
368 icsk->icsk_ack.ato = TCP_ATO_MIN;
369 } else
370 icsk->icsk_ack.quick -= pkts;
371 }
372}
373
374#define TCP_ECN_OK 1
375#define TCP_ECN_QUEUE_CWR 2
376#define TCP_ECN_DEMAND_CWR 4
377#define TCP_ECN_SEEN 8
378
379enum tcp_tw_status {
380 TCP_TW_SUCCESS = 0,
381 TCP_TW_RST = 1,
382 TCP_TW_ACK = 2,
383 TCP_TW_SYN = 3
384};
385
386
387enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
388 struct sk_buff *skb,
389 const struct tcphdr *th);
390struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
391 struct request_sock *req, bool fastopen,
392 bool *lost_race);
393int tcp_child_process(struct sock *parent, struct sock *child,
394 struct sk_buff *skb);
395void tcp_enter_loss(struct sock *sk);
396void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
397void tcp_clear_retrans(struct tcp_sock *tp);
398void tcp_update_metrics(struct sock *sk);
399void tcp_init_metrics(struct sock *sk);
400void tcp_metrics_init(void);
401bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
402void __tcp_close(struct sock *sk, long timeout);
403void tcp_close(struct sock *sk, long timeout);
404void tcp_init_sock(struct sock *sk);
405void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
406__poll_t tcp_poll(struct file *file, struct socket *sock,
407 struct poll_table_struct *wait);
408int do_tcp_getsockopt(struct sock *sk, int level,
409 int optname, sockptr_t optval, sockptr_t optlen);
410int tcp_getsockopt(struct sock *sk, int level, int optname,
411 char __user *optval, int __user *optlen);
412bool tcp_bpf_bypass_getsockopt(int level, int optname);
413int do_tcp_setsockopt(struct sock *sk, int level, int optname,
414 sockptr_t optval, unsigned int optlen);
415int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
416 unsigned int optlen);
417void tcp_set_keepalive(struct sock *sk, int val);
418void tcp_syn_ack_timeout(const struct request_sock *req);
419int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
420 int flags, int *addr_len);
421int tcp_set_rcvlowat(struct sock *sk, int val);
422int tcp_set_window_clamp(struct sock *sk, int val);
423void tcp_update_recv_tstamps(struct sk_buff *skb,
424 struct scm_timestamping_internal *tss);
425void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
426 struct scm_timestamping_internal *tss);
427void tcp_data_ready(struct sock *sk);
428#ifdef CONFIG_MMU
429int tcp_mmap(struct file *file, struct socket *sock,
430 struct vm_area_struct *vma);
431#endif
432void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
433 struct tcp_options_received *opt_rx,
434 int estab, struct tcp_fastopen_cookie *foc);
435const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
436
437/*
438 * BPF SKB-less helpers
439 */
440u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
441 struct tcphdr *th, u32 *cookie);
442u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
443 struct tcphdr *th, u32 *cookie);
444u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
445u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
446 const struct tcp_request_sock_ops *af_ops,
447 struct sock *sk, struct tcphdr *th);
448/*
449 * TCP v4 functions exported for the inet6 API
450 */
451
452void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
453void tcp_v4_mtu_reduced(struct sock *sk);
454void tcp_req_err(struct sock *sk, u32 seq, bool abort);
455void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
456int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457struct sock *tcp_create_openreq_child(const struct sock *sk,
458 struct request_sock *req,
459 struct sk_buff *skb);
460void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
461struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
462 struct request_sock *req,
463 struct dst_entry *dst,
464 struct request_sock *req_unhash,
465 bool *own_req);
466int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
467int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
468int tcp_connect(struct sock *sk);
469enum tcp_synack_type {
470 TCP_SYNACK_NORMAL,
471 TCP_SYNACK_FASTOPEN,
472 TCP_SYNACK_COOKIE,
473};
474struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
475 struct request_sock *req,
476 struct tcp_fastopen_cookie *foc,
477 enum tcp_synack_type synack_type,
478 struct sk_buff *syn_skb);
479int tcp_disconnect(struct sock *sk, int flags);
480
481void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
482int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
483void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
484
485/* From syncookies.c */
486struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
487 struct request_sock *req,
488 struct dst_entry *dst, u32 tsoff);
489int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
490 u32 cookie);
491struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
492struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
493 const struct tcp_request_sock_ops *af_ops,
494 struct sock *sk, struct sk_buff *skb);
495#ifdef CONFIG_SYN_COOKIES
496
497/* Syncookies use a monotonic timer which increments every 60 seconds.
498 * This counter is used both as a hash input and partially encoded into
499 * the cookie value. A cookie is only validated further if the delta
500 * between the current counter value and the encoded one is less than this,
501 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
502 * the counter advances immediately after a cookie is generated).
503 */
504#define MAX_SYNCOOKIE_AGE 2
505#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
506#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
507
508/* syncookies: remember time of last synqueue overflow
509 * But do not dirty this field too often (once per second is enough)
510 * It is racy as we do not hold a lock, but race is very minor.
511 */
512static inline void tcp_synq_overflow(const struct sock *sk)
513{
514 unsigned int last_overflow;
515 unsigned int now = jiffies;
516
517 if (sk->sk_reuseport) {
518 struct sock_reuseport *reuse;
519
520 reuse = rcu_dereference(sk->sk_reuseport_cb);
521 if (likely(reuse)) {
522 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
523 if (!time_between32(now, last_overflow,
524 last_overflow + HZ))
525 WRITE_ONCE(reuse->synq_overflow_ts, now);
526 return;
527 }
528 }
529
530 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
531 if (!time_between32(now, last_overflow, last_overflow + HZ))
532 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
533}
534
535/* syncookies: no recent synqueue overflow on this listening socket? */
536static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
537{
538 unsigned int last_overflow;
539 unsigned int now = jiffies;
540
541 if (sk->sk_reuseport) {
542 struct sock_reuseport *reuse;
543
544 reuse = rcu_dereference(sk->sk_reuseport_cb);
545 if (likely(reuse)) {
546 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
547 return !time_between32(now, last_overflow - HZ,
548 last_overflow +
549 TCP_SYNCOOKIE_VALID);
550 }
551 }
552
553 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
554
555 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
556 * then we're under synflood. However, we have to use
557 * 'last_overflow - HZ' as lower bound. That's because a concurrent
558 * tcp_synq_overflow() could update .ts_recent_stamp after we read
559 * jiffies but before we store .ts_recent_stamp into last_overflow,
560 * which could lead to rejecting a valid syncookie.
561 */
562 return !time_between32(now, last_overflow - HZ,
563 last_overflow + TCP_SYNCOOKIE_VALID);
564}
565
566static inline u32 tcp_cookie_time(void)
567{
568 u64 val = get_jiffies_64();
569
570 do_div(val, TCP_SYNCOOKIE_PERIOD);
571 return val;
572}
573
574u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
575 u16 *mssp);
576__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
577u64 cookie_init_timestamp(struct request_sock *req, u64 now);
578bool cookie_timestamp_decode(const struct net *net,
579 struct tcp_options_received *opt);
580bool cookie_ecn_ok(const struct tcp_options_received *opt,
581 const struct net *net, const struct dst_entry *dst);
582
583/* From net/ipv6/syncookies.c */
584int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
585 u32 cookie);
586struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
587
588u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
589 const struct tcphdr *th, u16 *mssp);
590__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
591#endif
592/* tcp_output.c */
593
594void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
595void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
596void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
597 int nonagle);
598int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
599int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
600void tcp_retransmit_timer(struct sock *sk);
601void tcp_xmit_retransmit_queue(struct sock *);
602void tcp_simple_retransmit(struct sock *);
603void tcp_enter_recovery(struct sock *sk, bool ece_ack);
604int tcp_trim_head(struct sock *, struct sk_buff *, u32);
605enum tcp_queue {
606 TCP_FRAG_IN_WRITE_QUEUE,
607 TCP_FRAG_IN_RTX_QUEUE,
608};
609int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
610 struct sk_buff *skb, u32 len,
611 unsigned int mss_now, gfp_t gfp);
612
613void tcp_send_probe0(struct sock *);
614void tcp_send_partial(struct sock *);
615int tcp_write_wakeup(struct sock *, int mib);
616void tcp_send_fin(struct sock *sk);
617void tcp_send_active_reset(struct sock *sk, gfp_t priority);
618int tcp_send_synack(struct sock *);
619void tcp_push_one(struct sock *, unsigned int mss_now);
620void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
621void tcp_send_ack(struct sock *sk);
622void tcp_send_delayed_ack(struct sock *sk);
623void tcp_send_loss_probe(struct sock *sk);
624bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
625void tcp_skb_collapse_tstamp(struct sk_buff *skb,
626 const struct sk_buff *next_skb);
627
628/* tcp_input.c */
629void tcp_rearm_rto(struct sock *sk);
630void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
631void tcp_reset(struct sock *sk, struct sk_buff *skb);
632void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
633void tcp_fin(struct sock *sk);
634void tcp_check_space(struct sock *sk);
635
636/* tcp_timer.c */
637void tcp_init_xmit_timers(struct sock *);
638static inline void tcp_clear_xmit_timers(struct sock *sk)
639{
640 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
641 __sock_put(sk);
642
643 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
644 __sock_put(sk);
645
646 inet_csk_clear_xmit_timers(sk);
647}
648
649unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
650unsigned int tcp_current_mss(struct sock *sk);
651u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
652
653/* Bound MSS / TSO packet size with the half of the window */
654static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
655{
656 int cutoff;
657
658 /* When peer uses tiny windows, there is no use in packetizing
659 * to sub-MSS pieces for the sake of SWS or making sure there
660 * are enough packets in the pipe for fast recovery.
661 *
662 * On the other hand, for extremely large MSS devices, handling
663 * smaller than MSS windows in this way does make sense.
664 */
665 if (tp->max_window > TCP_MSS_DEFAULT)
666 cutoff = (tp->max_window >> 1);
667 else
668 cutoff = tp->max_window;
669
670 if (cutoff && pktsize > cutoff)
671 return max_t(int, cutoff, 68U - tp->tcp_header_len);
672 else
673 return pktsize;
674}
675
676/* tcp.c */
677void tcp_get_info(struct sock *, struct tcp_info *);
678
679/* Read 'sendfile()'-style from a TCP socket */
680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
681 sk_read_actor_t recv_actor);
682int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
683struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
684void tcp_read_done(struct sock *sk, size_t len);
685
686void tcp_initialize_rcv_mss(struct sock *sk);
687
688int tcp_mtu_to_mss(struct sock *sk, int pmtu);
689int tcp_mss_to_mtu(struct sock *sk, int mss);
690void tcp_mtup_init(struct sock *sk);
691
692static inline void tcp_bound_rto(const struct sock *sk)
693{
694 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
695 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
696}
697
698static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
699{
700 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
701}
702
703static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
704{
705 /* mptcp hooks are only on the slow path */
706 if (sk_is_mptcp((struct sock *)tp))
707 return;
708
709 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
710 ntohl(TCP_FLAG_ACK) |
711 snd_wnd);
712}
713
714static inline void tcp_fast_path_on(struct tcp_sock *tp)
715{
716 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
717}
718
719static inline void tcp_fast_path_check(struct sock *sk)
720{
721 struct tcp_sock *tp = tcp_sk(sk);
722
723 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
724 tp->rcv_wnd &&
725 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
726 !tp->urg_data)
727 tcp_fast_path_on(tp);
728}
729
730/* Compute the actual rto_min value */
731static inline u32 tcp_rto_min(struct sock *sk)
732{
733 const struct dst_entry *dst = __sk_dst_get(sk);
734 u32 rto_min = inet_csk(sk)->icsk_rto_min;
735
736 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
737 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
738 return rto_min;
739}
740
741static inline u32 tcp_rto_min_us(struct sock *sk)
742{
743 return jiffies_to_usecs(tcp_rto_min(sk));
744}
745
746static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
747{
748 return dst_metric_locked(dst, RTAX_CC_ALGO);
749}
750
751/* Minimum RTT in usec. ~0 means not available. */
752static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
753{
754 return minmax_get(&tp->rtt_min);
755}
756
757/* Compute the actual receive window we are currently advertising.
758 * Rcv_nxt can be after the window if our peer push more data
759 * than the offered window.
760 */
761static inline u32 tcp_receive_window(const struct tcp_sock *tp)
762{
763 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
764
765 if (win < 0)
766 win = 0;
767 return (u32) win;
768}
769
770/* Choose a new window, without checks for shrinking, and without
771 * scaling applied to the result. The caller does these things
772 * if necessary. This is a "raw" window selection.
773 */
774u32 __tcp_select_window(struct sock *sk);
775
776void tcp_send_window_probe(struct sock *sk);
777
778/* TCP uses 32bit jiffies to save some space.
779 * Note that this is different from tcp_time_stamp, which
780 * historically has been the same until linux-4.13.
781 */
782#define tcp_jiffies32 ((u32)jiffies)
783
784/*
785 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
786 * It is no longer tied to jiffies, but to 1 ms clock.
787 * Note: double check if you want to use tcp_jiffies32 instead of this.
788 */
789#define TCP_TS_HZ 1000
790
791static inline u64 tcp_clock_ns(void)
792{
793 return ktime_get_ns();
794}
795
796static inline u64 tcp_clock_us(void)
797{
798 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
799}
800
801/* This should only be used in contexts where tp->tcp_mstamp is up to date */
802static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
803{
804 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
805}
806
807/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
808static inline u32 tcp_ns_to_ts(u64 ns)
809{
810 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
811}
812
813/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
814static inline u32 tcp_time_stamp_raw(void)
815{
816 return tcp_ns_to_ts(tcp_clock_ns());
817}
818
819void tcp_mstamp_refresh(struct tcp_sock *tp);
820
821static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
822{
823 return max_t(s64, t1 - t0, 0);
824}
825
826static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
827{
828 return tcp_ns_to_ts(skb->skb_mstamp_ns);
829}
830
831/* provide the departure time in us unit */
832static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
833{
834 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
835}
836
837
838#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
839
840#define TCPHDR_FIN 0x01
841#define TCPHDR_SYN 0x02
842#define TCPHDR_RST 0x04
843#define TCPHDR_PSH 0x08
844#define TCPHDR_ACK 0x10
845#define TCPHDR_URG 0x20
846#define TCPHDR_ECE 0x40
847#define TCPHDR_CWR 0x80
848
849#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
850
851/* This is what the send packet queuing engine uses to pass
852 * TCP per-packet control information to the transmission code.
853 * We also store the host-order sequence numbers in here too.
854 * This is 44 bytes if IPV6 is enabled.
855 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
856 */
857struct tcp_skb_cb {
858 __u32 seq; /* Starting sequence number */
859 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
860 union {
861 /* Note : tcp_tw_isn is used in input path only
862 * (isn chosen by tcp_timewait_state_process())
863 *
864 * tcp_gso_segs/size are used in write queue only,
865 * cf tcp_skb_pcount()/tcp_skb_mss()
866 */
867 __u32 tcp_tw_isn;
868 struct {
869 u16 tcp_gso_segs;
870 u16 tcp_gso_size;
871 };
872 };
873 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
874
875 __u8 sacked; /* State flags for SACK. */
876#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
877#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
878#define TCPCB_LOST 0x04 /* SKB is lost */
879#define TCPCB_TAGBITS 0x07 /* All tag bits */
880#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
881#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
882#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
883 TCPCB_REPAIRED)
884
885 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
886 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
887 eor:1, /* Is skb MSG_EOR marked? */
888 has_rxtstamp:1, /* SKB has a RX timestamp */
889 unused:5;
890 __u32 ack_seq; /* Sequence number ACK'd */
891 union {
892 struct {
893#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
894 /* There is space for up to 24 bytes */
895 __u32 is_app_limited:1, /* cwnd not fully used? */
896 delivered_ce:20,
897 unused:11;
898 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
899 __u32 delivered;
900 /* start of send pipeline phase */
901 u64 first_tx_mstamp;
902 /* when we reached the "delivered" count */
903 u64 delivered_mstamp;
904 } tx; /* only used for outgoing skbs */
905 union {
906 struct inet_skb_parm h4;
907#if IS_ENABLED(CONFIG_IPV6)
908 struct inet6_skb_parm h6;
909#endif
910 } header; /* For incoming skbs */
911 };
912};
913
914#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
915
916extern const struct inet_connection_sock_af_ops ipv4_specific;
917
918#if IS_ENABLED(CONFIG_IPV6)
919/* This is the variant of inet6_iif() that must be used by TCP,
920 * as TCP moves IP6CB into a different location in skb->cb[]
921 */
922static inline int tcp_v6_iif(const struct sk_buff *skb)
923{
924 return TCP_SKB_CB(skb)->header.h6.iif;
925}
926
927static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
928{
929 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
930
931 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
932}
933
934/* TCP_SKB_CB reference means this can not be used from early demux */
935static inline int tcp_v6_sdif(const struct sk_buff *skb)
936{
937#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
939 return TCP_SKB_CB(skb)->header.h6.iif;
940#endif
941 return 0;
942}
943
944extern const struct inet_connection_sock_af_ops ipv6_specific;
945
946INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
947INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
948void tcp_v6_early_demux(struct sk_buff *skb);
949
950#endif
951
952/* TCP_SKB_CB reference means this can not be used from early demux */
953static inline int tcp_v4_sdif(struct sk_buff *skb)
954{
955#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957 return TCP_SKB_CB(skb)->header.h4.iif;
958#endif
959 return 0;
960}
961
962/* Due to TSO, an SKB can be composed of multiple actual
963 * packets. To keep these tracked properly, we use this.
964 */
965static inline int tcp_skb_pcount(const struct sk_buff *skb)
966{
967 return TCP_SKB_CB(skb)->tcp_gso_segs;
968}
969
970static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971{
972 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973}
974
975static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976{
977 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978}
979
980/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
981static inline int tcp_skb_mss(const struct sk_buff *skb)
982{
983 return TCP_SKB_CB(skb)->tcp_gso_size;
984}
985
986static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987{
988 return likely(!TCP_SKB_CB(skb)->eor);
989}
990
991static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992 const struct sk_buff *from)
993{
994 return likely(tcp_skb_can_collapse_to(to) &&
995 mptcp_skb_can_collapse(to, from) &&
996 skb_pure_zcopy_same(to, from));
997}
998
999/* Events passed to congestion control interface */
1000enum tcp_ca_event {
1001 CA_EVENT_TX_START, /* first transmit when no packets in flight */
1002 CA_EVENT_CWND_RESTART, /* congestion window restart */
1003 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
1004 CA_EVENT_LOSS, /* loss timeout */
1005 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1006 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1007};
1008
1009/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1010enum tcp_ca_ack_event_flags {
1011 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1012 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1013 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1014};
1015
1016/*
1017 * Interface for adding new TCP congestion control handlers
1018 */
1019#define TCP_CA_NAME_MAX 16
1020#define TCP_CA_MAX 128
1021#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1022
1023#define TCP_CA_UNSPEC 0
1024
1025/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1026#define TCP_CONG_NON_RESTRICTED 0x1
1027/* Requires ECN/ECT set on all packets */
1028#define TCP_CONG_NEEDS_ECN 0x2
1029#define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1030
1031union tcp_cc_info;
1032
1033struct ack_sample {
1034 u32 pkts_acked;
1035 s32 rtt_us;
1036 u32 in_flight;
1037};
1038
1039/* A rate sample measures the number of (original/retransmitted) data
1040 * packets delivered "delivered" over an interval of time "interval_us".
1041 * The tcp_rate.c code fills in the rate sample, and congestion
1042 * control modules that define a cong_control function to run at the end
1043 * of ACK processing can optionally chose to consult this sample when
1044 * setting cwnd and pacing rate.
1045 * A sample is invalid if "delivered" or "interval_us" is negative.
1046 */
1047struct rate_sample {
1048 u64 prior_mstamp; /* starting timestamp for interval */
1049 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1050 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1051 s32 delivered; /* number of packets delivered over interval */
1052 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1053 long interval_us; /* time for tp->delivered to incr "delivered" */
1054 u32 snd_interval_us; /* snd interval for delivered packets */
1055 u32 rcv_interval_us; /* rcv interval for delivered packets */
1056 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1057 int losses; /* number of packets marked lost upon ACK */
1058 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1059 u32 prior_in_flight; /* in flight before this ACK */
1060 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1061 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1062 bool is_retrans; /* is sample from retransmission? */
1063 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1064};
1065
1066struct tcp_congestion_ops {
1067/* fast path fields are put first to fill one cache line */
1068
1069 /* return slow start threshold (required) */
1070 u32 (*ssthresh)(struct sock *sk);
1071
1072 /* do new cwnd calculation (required) */
1073 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1074
1075 /* call before changing ca_state (optional) */
1076 void (*set_state)(struct sock *sk, u8 new_state);
1077
1078 /* call when cwnd event occurs (optional) */
1079 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080
1081 /* call when ack arrives (optional) */
1082 void (*in_ack_event)(struct sock *sk, u32 flags);
1083
1084 /* hook for packet ack accounting (optional) */
1085 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086
1087 /* override sysctl_tcp_min_tso_segs */
1088 u32 (*min_tso_segs)(struct sock *sk);
1089
1090 /* call when packets are delivered to update cwnd and pacing rate,
1091 * after all the ca_state processing. (optional)
1092 */
1093 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094
1095
1096 /* new value of cwnd after loss (required) */
1097 u32 (*undo_cwnd)(struct sock *sk);
1098 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1099 u32 (*sndbuf_expand)(struct sock *sk);
1100
1101/* control/slow paths put last */
1102 /* get info for inet_diag (optional) */
1103 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1104 union tcp_cc_info *info);
1105
1106 char name[TCP_CA_NAME_MAX];
1107 struct module *owner;
1108 struct list_head list;
1109 u32 key;
1110 u32 flags;
1111
1112 /* initialize private data (optional) */
1113 void (*init)(struct sock *sk);
1114 /* cleanup private data (optional) */
1115 void (*release)(struct sock *sk);
1116} ____cacheline_aligned_in_smp;
1117
1118int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1119void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1120
1121void tcp_assign_congestion_control(struct sock *sk);
1122void tcp_init_congestion_control(struct sock *sk);
1123void tcp_cleanup_congestion_control(struct sock *sk);
1124int tcp_set_default_congestion_control(struct net *net, const char *name);
1125void tcp_get_default_congestion_control(struct net *net, char *name);
1126void tcp_get_available_congestion_control(char *buf, size_t len);
1127void tcp_get_allowed_congestion_control(char *buf, size_t len);
1128int tcp_set_allowed_congestion_control(char *allowed);
1129int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1130 bool cap_net_admin);
1131u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1132void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1133
1134u32 tcp_reno_ssthresh(struct sock *sk);
1135u32 tcp_reno_undo_cwnd(struct sock *sk);
1136void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1137extern struct tcp_congestion_ops tcp_reno;
1138
1139struct tcp_congestion_ops *tcp_ca_find(const char *name);
1140struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1141u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1142#ifdef CONFIG_INET
1143char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1144#else
1145static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1146{
1147 return NULL;
1148}
1149#endif
1150
1151static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1152{
1153 const struct inet_connection_sock *icsk = inet_csk(sk);
1154
1155 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1156}
1157
1158static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1159{
1160 const struct inet_connection_sock *icsk = inet_csk(sk);
1161
1162 if (icsk->icsk_ca_ops->cwnd_event)
1163 icsk->icsk_ca_ops->cwnd_event(sk, event);
1164}
1165
1166/* From tcp_cong.c */
1167void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1168
1169/* From tcp_rate.c */
1170void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1171void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1172 struct rate_sample *rs);
1173void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1174 bool is_sack_reneg, struct rate_sample *rs);
1175void tcp_rate_check_app_limited(struct sock *sk);
1176
1177static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1178{
1179 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1180}
1181
1182/* These functions determine how the current flow behaves in respect of SACK
1183 * handling. SACK is negotiated with the peer, and therefore it can vary
1184 * between different flows.
1185 *
1186 * tcp_is_sack - SACK enabled
1187 * tcp_is_reno - No SACK
1188 */
1189static inline int tcp_is_sack(const struct tcp_sock *tp)
1190{
1191 return likely(tp->rx_opt.sack_ok);
1192}
1193
1194static inline bool tcp_is_reno(const struct tcp_sock *tp)
1195{
1196 return !tcp_is_sack(tp);
1197}
1198
1199static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1200{
1201 return tp->sacked_out + tp->lost_out;
1202}
1203
1204/* This determines how many packets are "in the network" to the best
1205 * of our knowledge. In many cases it is conservative, but where
1206 * detailed information is available from the receiver (via SACK
1207 * blocks etc.) we can make more aggressive calculations.
1208 *
1209 * Use this for decisions involving congestion control, use just
1210 * tp->packets_out to determine if the send queue is empty or not.
1211 *
1212 * Read this equation as:
1213 *
1214 * "Packets sent once on transmission queue" MINUS
1215 * "Packets left network, but not honestly ACKed yet" PLUS
1216 * "Packets fast retransmitted"
1217 */
1218static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1219{
1220 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1221}
1222
1223#define TCP_INFINITE_SSTHRESH 0x7fffffff
1224
1225static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1226{
1227 return tp->snd_cwnd;
1228}
1229
1230static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1231{
1232 WARN_ON_ONCE((int)val <= 0);
1233 tp->snd_cwnd = val;
1234}
1235
1236static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1237{
1238 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1239}
1240
1241static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1242{
1243 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1244}
1245
1246static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1247{
1248 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1249 (1 << inet_csk(sk)->icsk_ca_state);
1250}
1251
1252/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1253 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1254 * ssthresh.
1255 */
1256static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1257{
1258 const struct tcp_sock *tp = tcp_sk(sk);
1259
1260 if (tcp_in_cwnd_reduction(sk))
1261 return tp->snd_ssthresh;
1262 else
1263 return max(tp->snd_ssthresh,
1264 ((tcp_snd_cwnd(tp) >> 1) +
1265 (tcp_snd_cwnd(tp) >> 2)));
1266}
1267
1268/* Use define here intentionally to get WARN_ON location shown at the caller */
1269#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1270
1271void tcp_enter_cwr(struct sock *sk);
1272__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1273
1274/* The maximum number of MSS of available cwnd for which TSO defers
1275 * sending if not using sysctl_tcp_tso_win_divisor.
1276 */
1277static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1278{
1279 return 3;
1280}
1281
1282/* Returns end sequence number of the receiver's advertised window */
1283static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1284{
1285 return tp->snd_una + tp->snd_wnd;
1286}
1287
1288/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1289 * flexible approach. The RFC suggests cwnd should not be raised unless
1290 * it was fully used previously. And that's exactly what we do in
1291 * congestion avoidance mode. But in slow start we allow cwnd to grow
1292 * as long as the application has used half the cwnd.
1293 * Example :
1294 * cwnd is 10 (IW10), but application sends 9 frames.
1295 * We allow cwnd to reach 18 when all frames are ACKed.
1296 * This check is safe because it's as aggressive as slow start which already
1297 * risks 100% overshoot. The advantage is that we discourage application to
1298 * either send more filler packets or data to artificially blow up the cwnd
1299 * usage, and allow application-limited process to probe bw more aggressively.
1300 */
1301static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1302{
1303 const struct tcp_sock *tp = tcp_sk(sk);
1304
1305 if (tp->is_cwnd_limited)
1306 return true;
1307
1308 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1309 if (tcp_in_slow_start(tp))
1310 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1311
1312 return false;
1313}
1314
1315/* BBR congestion control needs pacing.
1316 * Same remark for SO_MAX_PACING_RATE.
1317 * sch_fq packet scheduler is efficiently handling pacing,
1318 * but is not always installed/used.
1319 * Return true if TCP stack should pace packets itself.
1320 */
1321static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1322{
1323 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1324}
1325
1326/* Estimates in how many jiffies next packet for this flow can be sent.
1327 * Scheduling a retransmit timer too early would be silly.
1328 */
1329static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1330{
1331 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1332
1333 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1334}
1335
1336static inline void tcp_reset_xmit_timer(struct sock *sk,
1337 const int what,
1338 unsigned long when,
1339 const unsigned long max_when)
1340{
1341 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1342 max_when);
1343}
1344
1345/* Something is really bad, we could not queue an additional packet,
1346 * because qdisc is full or receiver sent a 0 window, or we are paced.
1347 * We do not want to add fuel to the fire, or abort too early,
1348 * so make sure the timer we arm now is at least 200ms in the future,
1349 * regardless of current icsk_rto value (as it could be ~2ms)
1350 */
1351static inline unsigned long tcp_probe0_base(const struct sock *sk)
1352{
1353 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1354}
1355
1356/* Variant of inet_csk_rto_backoff() used for zero window probes */
1357static inline unsigned long tcp_probe0_when(const struct sock *sk,
1358 unsigned long max_when)
1359{
1360 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1361 inet_csk(sk)->icsk_backoff);
1362 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1363
1364 return (unsigned long)min_t(u64, when, max_when);
1365}
1366
1367static inline void tcp_check_probe_timer(struct sock *sk)
1368{
1369 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1370 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1371 tcp_probe0_base(sk), TCP_RTO_MAX);
1372}
1373
1374static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1375{
1376 tp->snd_wl1 = seq;
1377}
1378
1379static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1380{
1381 tp->snd_wl1 = seq;
1382}
1383
1384/*
1385 * Calculate(/check) TCP checksum
1386 */
1387static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1388 __be32 daddr, __wsum base)
1389{
1390 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1391}
1392
1393static inline bool tcp_checksum_complete(struct sk_buff *skb)
1394{
1395 return !skb_csum_unnecessary(skb) &&
1396 __skb_checksum_complete(skb);
1397}
1398
1399bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1400 enum skb_drop_reason *reason);
1401
1402
1403int tcp_filter(struct sock *sk, struct sk_buff *skb);
1404void tcp_set_state(struct sock *sk, int state);
1405void tcp_done(struct sock *sk);
1406int tcp_abort(struct sock *sk, int err);
1407
1408static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1409{
1410 rx_opt->dsack = 0;
1411 rx_opt->num_sacks = 0;
1412}
1413
1414void tcp_cwnd_restart(struct sock *sk, s32 delta);
1415
1416static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1417{
1418 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1419 struct tcp_sock *tp = tcp_sk(sk);
1420 s32 delta;
1421
1422 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1423 tp->packets_out || ca_ops->cong_control)
1424 return;
1425 delta = tcp_jiffies32 - tp->lsndtime;
1426 if (delta > inet_csk(sk)->icsk_rto)
1427 tcp_cwnd_restart(sk, delta);
1428}
1429
1430/* Determine a window scaling and initial window to offer. */
1431void tcp_select_initial_window(const struct sock *sk, int __space,
1432 __u32 mss, __u32 *rcv_wnd,
1433 __u32 *window_clamp, int wscale_ok,
1434 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1435
1436static inline int tcp_win_from_space(const struct sock *sk, int space)
1437{
1438 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1439
1440 return tcp_adv_win_scale <= 0 ?
1441 (space>>(-tcp_adv_win_scale)) :
1442 space - (space>>tcp_adv_win_scale);
1443}
1444
1445/* Note: caller must be prepared to deal with negative returns */
1446static inline int tcp_space(const struct sock *sk)
1447{
1448 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1449 READ_ONCE(sk->sk_backlog.len) -
1450 atomic_read(&sk->sk_rmem_alloc));
1451}
1452
1453static inline int tcp_full_space(const struct sock *sk)
1454{
1455 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1456}
1457
1458static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1459{
1460 int unused_mem = sk_unused_reserved_mem(sk);
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1464 if (unused_mem)
1465 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1466 tcp_win_from_space(sk, unused_mem));
1467}
1468
1469void tcp_cleanup_rbuf(struct sock *sk, int copied);
1470
1471/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1472 * If 87.5 % (7/8) of the space has been consumed, we want to override
1473 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1474 * len/truesize ratio.
1475 */
1476static inline bool tcp_rmem_pressure(const struct sock *sk)
1477{
1478 int rcvbuf, threshold;
1479
1480 if (tcp_under_memory_pressure(sk))
1481 return true;
1482
1483 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1484 threshold = rcvbuf - (rcvbuf >> 3);
1485
1486 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1487}
1488
1489static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1490{
1491 const struct tcp_sock *tp = tcp_sk(sk);
1492 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1493
1494 if (avail <= 0)
1495 return false;
1496
1497 return (avail >= target) || tcp_rmem_pressure(sk) ||
1498 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1499}
1500
1501extern void tcp_openreq_init_rwin(struct request_sock *req,
1502 const struct sock *sk_listener,
1503 const struct dst_entry *dst);
1504
1505void tcp_enter_memory_pressure(struct sock *sk);
1506void tcp_leave_memory_pressure(struct sock *sk);
1507
1508static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1509{
1510 struct net *net = sock_net((struct sock *)tp);
1511
1512 return tp->keepalive_intvl ? :
1513 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1514}
1515
1516static inline int keepalive_time_when(const struct tcp_sock *tp)
1517{
1518 struct net *net = sock_net((struct sock *)tp);
1519
1520 return tp->keepalive_time ? :
1521 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1522}
1523
1524static inline int keepalive_probes(const struct tcp_sock *tp)
1525{
1526 struct net *net = sock_net((struct sock *)tp);
1527
1528 return tp->keepalive_probes ? :
1529 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1530}
1531
1532static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1533{
1534 const struct inet_connection_sock *icsk = &tp->inet_conn;
1535
1536 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1537 tcp_jiffies32 - tp->rcv_tstamp);
1538}
1539
1540static inline int tcp_fin_time(const struct sock *sk)
1541{
1542 int fin_timeout = tcp_sk(sk)->linger2 ? :
1543 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1544 const int rto = inet_csk(sk)->icsk_rto;
1545
1546 if (fin_timeout < (rto << 2) - (rto >> 1))
1547 fin_timeout = (rto << 2) - (rto >> 1);
1548
1549 return fin_timeout;
1550}
1551
1552static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1553 int paws_win)
1554{
1555 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1556 return true;
1557 if (unlikely(!time_before32(ktime_get_seconds(),
1558 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1559 return true;
1560 /*
1561 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1562 * then following tcp messages have valid values. Ignore 0 value,
1563 * or else 'negative' tsval might forbid us to accept their packets.
1564 */
1565 if (!rx_opt->ts_recent)
1566 return true;
1567 return false;
1568}
1569
1570static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1571 int rst)
1572{
1573 if (tcp_paws_check(rx_opt, 0))
1574 return false;
1575
1576 /* RST segments are not recommended to carry timestamp,
1577 and, if they do, it is recommended to ignore PAWS because
1578 "their cleanup function should take precedence over timestamps."
1579 Certainly, it is mistake. It is necessary to understand the reasons
1580 of this constraint to relax it: if peer reboots, clock may go
1581 out-of-sync and half-open connections will not be reset.
1582 Actually, the problem would be not existing if all
1583 the implementations followed draft about maintaining clock
1584 via reboots. Linux-2.2 DOES NOT!
1585
1586 However, we can relax time bounds for RST segments to MSL.
1587 */
1588 if (rst && !time_before32(ktime_get_seconds(),
1589 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1590 return false;
1591 return true;
1592}
1593
1594bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1595 int mib_idx, u32 *last_oow_ack_time);
1596
1597static inline void tcp_mib_init(struct net *net)
1598{
1599 /* See RFC 2012 */
1600 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1601 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1602 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1603 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1604}
1605
1606/* from STCP */
1607static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1608{
1609 tp->lost_skb_hint = NULL;
1610}
1611
1612static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1613{
1614 tcp_clear_retrans_hints_partial(tp);
1615 tp->retransmit_skb_hint = NULL;
1616}
1617
1618union tcp_md5_addr {
1619 struct in_addr a4;
1620#if IS_ENABLED(CONFIG_IPV6)
1621 struct in6_addr a6;
1622#endif
1623};
1624
1625/* - key database */
1626struct tcp_md5sig_key {
1627 struct hlist_node node;
1628 u8 keylen;
1629 u8 family; /* AF_INET or AF_INET6 */
1630 u8 prefixlen;
1631 u8 flags;
1632 union tcp_md5_addr addr;
1633 int l3index; /* set if key added with L3 scope */
1634 u8 key[TCP_MD5SIG_MAXKEYLEN];
1635 struct rcu_head rcu;
1636};
1637
1638/* - sock block */
1639struct tcp_md5sig_info {
1640 struct hlist_head head;
1641 struct rcu_head rcu;
1642};
1643
1644/* - pseudo header */
1645struct tcp4_pseudohdr {
1646 __be32 saddr;
1647 __be32 daddr;
1648 __u8 pad;
1649 __u8 protocol;
1650 __be16 len;
1651};
1652
1653struct tcp6_pseudohdr {
1654 struct in6_addr saddr;
1655 struct in6_addr daddr;
1656 __be32 len;
1657 __be32 protocol; /* including padding */
1658};
1659
1660union tcp_md5sum_block {
1661 struct tcp4_pseudohdr ip4;
1662#if IS_ENABLED(CONFIG_IPV6)
1663 struct tcp6_pseudohdr ip6;
1664#endif
1665};
1666
1667/* - pool: digest algorithm, hash description and scratch buffer */
1668struct tcp_md5sig_pool {
1669 struct ahash_request *md5_req;
1670 void *scratch;
1671};
1672
1673/* - functions */
1674int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1675 const struct sock *sk, const struct sk_buff *skb);
1676int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1677 int family, u8 prefixlen, int l3index, u8 flags,
1678 const u8 *newkey, u8 newkeylen);
1679int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1680 int family, u8 prefixlen, int l3index,
1681 struct tcp_md5sig_key *key);
1682
1683int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1684 int family, u8 prefixlen, int l3index, u8 flags);
1685struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1686 const struct sock *addr_sk);
1687
1688#ifdef CONFIG_TCP_MD5SIG
1689#include <linux/jump_label.h>
1690extern struct static_key_false_deferred tcp_md5_needed;
1691struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1692 const union tcp_md5_addr *addr,
1693 int family);
1694static inline struct tcp_md5sig_key *
1695tcp_md5_do_lookup(const struct sock *sk, int l3index,
1696 const union tcp_md5_addr *addr, int family)
1697{
1698 if (!static_branch_unlikely(&tcp_md5_needed.key))
1699 return NULL;
1700 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1701}
1702
1703enum skb_drop_reason
1704tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1705 const void *saddr, const void *daddr,
1706 int family, int dif, int sdif);
1707
1708
1709#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1710#else
1711static inline struct tcp_md5sig_key *
1712tcp_md5_do_lookup(const struct sock *sk, int l3index,
1713 const union tcp_md5_addr *addr, int family)
1714{
1715 return NULL;
1716}
1717
1718static inline enum skb_drop_reason
1719tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1720 const void *saddr, const void *daddr,
1721 int family, int dif, int sdif)
1722{
1723 return SKB_NOT_DROPPED_YET;
1724}
1725#define tcp_twsk_md5_key(twsk) NULL
1726#endif
1727
1728bool tcp_alloc_md5sig_pool(void);
1729
1730struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1731static inline void tcp_put_md5sig_pool(void)
1732{
1733 local_bh_enable();
1734}
1735
1736int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1737 unsigned int header_len);
1738int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1739 const struct tcp_md5sig_key *key);
1740
1741/* From tcp_fastopen.c */
1742void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1743 struct tcp_fastopen_cookie *cookie);
1744void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1745 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1746 u16 try_exp);
1747struct tcp_fastopen_request {
1748 /* Fast Open cookie. Size 0 means a cookie request */
1749 struct tcp_fastopen_cookie cookie;
1750 struct msghdr *data; /* data in MSG_FASTOPEN */
1751 size_t size;
1752 int copied; /* queued in tcp_connect() */
1753 struct ubuf_info *uarg;
1754};
1755void tcp_free_fastopen_req(struct tcp_sock *tp);
1756void tcp_fastopen_destroy_cipher(struct sock *sk);
1757void tcp_fastopen_ctx_destroy(struct net *net);
1758int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1759 void *primary_key, void *backup_key);
1760int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1761 u64 *key);
1762void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1763struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1764 struct request_sock *req,
1765 struct tcp_fastopen_cookie *foc,
1766 const struct dst_entry *dst);
1767void tcp_fastopen_init_key_once(struct net *net);
1768bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1769 struct tcp_fastopen_cookie *cookie);
1770bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1771#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1772#define TCP_FASTOPEN_KEY_MAX 2
1773#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1774 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1775
1776/* Fastopen key context */
1777struct tcp_fastopen_context {
1778 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1779 int num;
1780 struct rcu_head rcu;
1781};
1782
1783void tcp_fastopen_active_disable(struct sock *sk);
1784bool tcp_fastopen_active_should_disable(struct sock *sk);
1785void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1786void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1787
1788/* Caller needs to wrap with rcu_read_(un)lock() */
1789static inline
1790struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1791{
1792 struct tcp_fastopen_context *ctx;
1793
1794 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1795 if (!ctx)
1796 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1797 return ctx;
1798}
1799
1800static inline
1801bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1802 const struct tcp_fastopen_cookie *orig)
1803{
1804 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1805 orig->len == foc->len &&
1806 !memcmp(orig->val, foc->val, foc->len))
1807 return true;
1808 return false;
1809}
1810
1811static inline
1812int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1813{
1814 return ctx->num;
1815}
1816
1817/* Latencies incurred by various limits for a sender. They are
1818 * chronograph-like stats that are mutually exclusive.
1819 */
1820enum tcp_chrono {
1821 TCP_CHRONO_UNSPEC,
1822 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1823 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1824 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1825 __TCP_CHRONO_MAX,
1826};
1827
1828void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1829void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1830
1831/* This helper is needed, because skb->tcp_tsorted_anchor uses
1832 * the same memory storage than skb->destructor/_skb_refdst
1833 */
1834static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1835{
1836 skb->destructor = NULL;
1837 skb->_skb_refdst = 0UL;
1838}
1839
1840#define tcp_skb_tsorted_save(skb) { \
1841 unsigned long _save = skb->_skb_refdst; \
1842 skb->_skb_refdst = 0UL;
1843
1844#define tcp_skb_tsorted_restore(skb) \
1845 skb->_skb_refdst = _save; \
1846}
1847
1848void tcp_write_queue_purge(struct sock *sk);
1849
1850static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1851{
1852 return skb_rb_first(&sk->tcp_rtx_queue);
1853}
1854
1855static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1856{
1857 return skb_rb_last(&sk->tcp_rtx_queue);
1858}
1859
1860static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1861{
1862 return skb_peek_tail(&sk->sk_write_queue);
1863}
1864
1865#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1866 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1867
1868static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1869{
1870 return skb_peek(&sk->sk_write_queue);
1871}
1872
1873static inline bool tcp_skb_is_last(const struct sock *sk,
1874 const struct sk_buff *skb)
1875{
1876 return skb_queue_is_last(&sk->sk_write_queue, skb);
1877}
1878
1879/**
1880 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1881 * @sk: socket
1882 *
1883 * Since the write queue can have a temporary empty skb in it,
1884 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1885 */
1886static inline bool tcp_write_queue_empty(const struct sock *sk)
1887{
1888 const struct tcp_sock *tp = tcp_sk(sk);
1889
1890 return tp->write_seq == tp->snd_nxt;
1891}
1892
1893static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1894{
1895 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1896}
1897
1898static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1899{
1900 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1901}
1902
1903static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1904{
1905 __skb_queue_tail(&sk->sk_write_queue, skb);
1906
1907 /* Queue it, remembering where we must start sending. */
1908 if (sk->sk_write_queue.next == skb)
1909 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1910}
1911
1912/* Insert new before skb on the write queue of sk. */
1913static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1914 struct sk_buff *skb,
1915 struct sock *sk)
1916{
1917 __skb_queue_before(&sk->sk_write_queue, skb, new);
1918}
1919
1920static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1921{
1922 tcp_skb_tsorted_anchor_cleanup(skb);
1923 __skb_unlink(skb, &sk->sk_write_queue);
1924}
1925
1926void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1927
1928static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1929{
1930 tcp_skb_tsorted_anchor_cleanup(skb);
1931 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1932}
1933
1934static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1935{
1936 list_del(&skb->tcp_tsorted_anchor);
1937 tcp_rtx_queue_unlink(skb, sk);
1938 tcp_wmem_free_skb(sk, skb);
1939}
1940
1941static inline void tcp_push_pending_frames(struct sock *sk)
1942{
1943 if (tcp_send_head(sk)) {
1944 struct tcp_sock *tp = tcp_sk(sk);
1945
1946 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1947 }
1948}
1949
1950/* Start sequence of the skb just after the highest skb with SACKed
1951 * bit, valid only if sacked_out > 0 or when the caller has ensured
1952 * validity by itself.
1953 */
1954static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1955{
1956 if (!tp->sacked_out)
1957 return tp->snd_una;
1958
1959 if (tp->highest_sack == NULL)
1960 return tp->snd_nxt;
1961
1962 return TCP_SKB_CB(tp->highest_sack)->seq;
1963}
1964
1965static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1966{
1967 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1968}
1969
1970static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1971{
1972 return tcp_sk(sk)->highest_sack;
1973}
1974
1975static inline void tcp_highest_sack_reset(struct sock *sk)
1976{
1977 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1978}
1979
1980/* Called when old skb is about to be deleted and replaced by new skb */
1981static inline void tcp_highest_sack_replace(struct sock *sk,
1982 struct sk_buff *old,
1983 struct sk_buff *new)
1984{
1985 if (old == tcp_highest_sack(sk))
1986 tcp_sk(sk)->highest_sack = new;
1987}
1988
1989/* This helper checks if socket has IP_TRANSPARENT set */
1990static inline bool inet_sk_transparent(const struct sock *sk)
1991{
1992 switch (sk->sk_state) {
1993 case TCP_TIME_WAIT:
1994 return inet_twsk(sk)->tw_transparent;
1995 case TCP_NEW_SYN_RECV:
1996 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1997 }
1998 return inet_sk(sk)->transparent;
1999}
2000
2001/* Determines whether this is a thin stream (which may suffer from
2002 * increased latency). Used to trigger latency-reducing mechanisms.
2003 */
2004static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2005{
2006 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2007}
2008
2009/* /proc */
2010enum tcp_seq_states {
2011 TCP_SEQ_STATE_LISTENING,
2012 TCP_SEQ_STATE_ESTABLISHED,
2013};
2014
2015void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2016void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2017void tcp_seq_stop(struct seq_file *seq, void *v);
2018
2019struct tcp_seq_afinfo {
2020 sa_family_t family;
2021};
2022
2023struct tcp_iter_state {
2024 struct seq_net_private p;
2025 enum tcp_seq_states state;
2026 struct sock *syn_wait_sk;
2027 int bucket, offset, sbucket, num;
2028 loff_t last_pos;
2029};
2030
2031extern struct request_sock_ops tcp_request_sock_ops;
2032extern struct request_sock_ops tcp6_request_sock_ops;
2033
2034void tcp_v4_destroy_sock(struct sock *sk);
2035
2036struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2037 netdev_features_t features);
2038struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2039INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2040INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2041INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2042INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2043int tcp_gro_complete(struct sk_buff *skb);
2044
2045void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2046
2047static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2048{
2049 struct net *net = sock_net((struct sock *)tp);
2050 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2051}
2052
2053bool tcp_stream_memory_free(const struct sock *sk, int wake);
2054
2055#ifdef CONFIG_PROC_FS
2056int tcp4_proc_init(void);
2057void tcp4_proc_exit(void);
2058#endif
2059
2060int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2061int tcp_conn_request(struct request_sock_ops *rsk_ops,
2062 const struct tcp_request_sock_ops *af_ops,
2063 struct sock *sk, struct sk_buff *skb);
2064
2065/* TCP af-specific functions */
2066struct tcp_sock_af_ops {
2067#ifdef CONFIG_TCP_MD5SIG
2068 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2069 const struct sock *addr_sk);
2070 int (*calc_md5_hash)(char *location,
2071 const struct tcp_md5sig_key *md5,
2072 const struct sock *sk,
2073 const struct sk_buff *skb);
2074 int (*md5_parse)(struct sock *sk,
2075 int optname,
2076 sockptr_t optval,
2077 int optlen);
2078#endif
2079};
2080
2081struct tcp_request_sock_ops {
2082 u16 mss_clamp;
2083#ifdef CONFIG_TCP_MD5SIG
2084 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2085 const struct sock *addr_sk);
2086 int (*calc_md5_hash) (char *location,
2087 const struct tcp_md5sig_key *md5,
2088 const struct sock *sk,
2089 const struct sk_buff *skb);
2090#endif
2091#ifdef CONFIG_SYN_COOKIES
2092 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2093 __u16 *mss);
2094#endif
2095 struct dst_entry *(*route_req)(const struct sock *sk,
2096 struct sk_buff *skb,
2097 struct flowi *fl,
2098 struct request_sock *req);
2099 u32 (*init_seq)(const struct sk_buff *skb);
2100 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2101 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2102 struct flowi *fl, struct request_sock *req,
2103 struct tcp_fastopen_cookie *foc,
2104 enum tcp_synack_type synack_type,
2105 struct sk_buff *syn_skb);
2106};
2107
2108extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2109#if IS_ENABLED(CONFIG_IPV6)
2110extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2111#endif
2112
2113#ifdef CONFIG_SYN_COOKIES
2114static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2115 const struct sock *sk, struct sk_buff *skb,
2116 __u16 *mss)
2117{
2118 tcp_synq_overflow(sk);
2119 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2120 return ops->cookie_init_seq(skb, mss);
2121}
2122#else
2123static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2124 const struct sock *sk, struct sk_buff *skb,
2125 __u16 *mss)
2126{
2127 return 0;
2128}
2129#endif
2130
2131int tcpv4_offload_init(void);
2132
2133void tcp_v4_init(void);
2134void tcp_init(void);
2135
2136/* tcp_recovery.c */
2137void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2138void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2139extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2140 u32 reo_wnd);
2141extern bool tcp_rack_mark_lost(struct sock *sk);
2142extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2143 u64 xmit_time);
2144extern void tcp_rack_reo_timeout(struct sock *sk);
2145extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2146
2147/* tcp_plb.c */
2148
2149/*
2150 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2151 * expects cong_ratio which represents fraction of traffic that experienced
2152 * congestion over a single RTT. In order to avoid floating point operations,
2153 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2154 */
2155#define TCP_PLB_SCALE 8
2156
2157/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2158struct tcp_plb_state {
2159 u8 consec_cong_rounds:5, /* consecutive congested rounds */
2160 unused:3;
2161 u32 pause_until; /* jiffies32 when PLB can resume rerouting */
2162};
2163
2164static inline void tcp_plb_init(const struct sock *sk,
2165 struct tcp_plb_state *plb)
2166{
2167 plb->consec_cong_rounds = 0;
2168 plb->pause_until = 0;
2169}
2170void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2171 const int cong_ratio);
2172void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2173void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2174
2175/* At how many usecs into the future should the RTO fire? */
2176static inline s64 tcp_rto_delta_us(const struct sock *sk)
2177{
2178 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2179 u32 rto = inet_csk(sk)->icsk_rto;
2180 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2181
2182 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2183}
2184
2185/*
2186 * Save and compile IPv4 options, return a pointer to it
2187 */
2188static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2189 struct sk_buff *skb)
2190{
2191 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2192 struct ip_options_rcu *dopt = NULL;
2193
2194 if (opt->optlen) {
2195 int opt_size = sizeof(*dopt) + opt->optlen;
2196
2197 dopt = kmalloc(opt_size, GFP_ATOMIC);
2198 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2199 kfree(dopt);
2200 dopt = NULL;
2201 }
2202 }
2203 return dopt;
2204}
2205
2206/* locally generated TCP pure ACKs have skb->truesize == 2
2207 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2208 * This is much faster than dissecting the packet to find out.
2209 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2210 */
2211static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2212{
2213 return skb->truesize == 2;
2214}
2215
2216static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2217{
2218 skb->truesize = 2;
2219}
2220
2221static inline int tcp_inq(struct sock *sk)
2222{
2223 struct tcp_sock *tp = tcp_sk(sk);
2224 int answ;
2225
2226 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2227 answ = 0;
2228 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2229 !tp->urg_data ||
2230 before(tp->urg_seq, tp->copied_seq) ||
2231 !before(tp->urg_seq, tp->rcv_nxt)) {
2232
2233 answ = tp->rcv_nxt - tp->copied_seq;
2234
2235 /* Subtract 1, if FIN was received */
2236 if (answ && sock_flag(sk, SOCK_DONE))
2237 answ--;
2238 } else {
2239 answ = tp->urg_seq - tp->copied_seq;
2240 }
2241
2242 return answ;
2243}
2244
2245int tcp_peek_len(struct socket *sock);
2246
2247static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2248{
2249 u16 segs_in;
2250
2251 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2252
2253 /* We update these fields while other threads might
2254 * read them from tcp_get_info()
2255 */
2256 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2257 if (skb->len > tcp_hdrlen(skb))
2258 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2259}
2260
2261/*
2262 * TCP listen path runs lockless.
2263 * We forced "struct sock" to be const qualified to make sure
2264 * we don't modify one of its field by mistake.
2265 * Here, we increment sk_drops which is an atomic_t, so we can safely
2266 * make sock writable again.
2267 */
2268static inline void tcp_listendrop(const struct sock *sk)
2269{
2270 atomic_inc(&((struct sock *)sk)->sk_drops);
2271 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2272}
2273
2274enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2275
2276/*
2277 * Interface for adding Upper Level Protocols over TCP
2278 */
2279
2280#define TCP_ULP_NAME_MAX 16
2281#define TCP_ULP_MAX 128
2282#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2283
2284struct tcp_ulp_ops {
2285 struct list_head list;
2286
2287 /* initialize ulp */
2288 int (*init)(struct sock *sk);
2289 /* update ulp */
2290 void (*update)(struct sock *sk, struct proto *p,
2291 void (*write_space)(struct sock *sk));
2292 /* cleanup ulp */
2293 void (*release)(struct sock *sk);
2294 /* diagnostic */
2295 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2296 size_t (*get_info_size)(const struct sock *sk);
2297 /* clone ulp */
2298 void (*clone)(const struct request_sock *req, struct sock *newsk,
2299 const gfp_t priority);
2300
2301 char name[TCP_ULP_NAME_MAX];
2302 struct module *owner;
2303};
2304int tcp_register_ulp(struct tcp_ulp_ops *type);
2305void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2306int tcp_set_ulp(struct sock *sk, const char *name);
2307void tcp_get_available_ulp(char *buf, size_t len);
2308void tcp_cleanup_ulp(struct sock *sk);
2309void tcp_update_ulp(struct sock *sk, struct proto *p,
2310 void (*write_space)(struct sock *sk));
2311
2312#define MODULE_ALIAS_TCP_ULP(name) \
2313 __MODULE_INFO(alias, alias_userspace, name); \
2314 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2315
2316#ifdef CONFIG_NET_SOCK_MSG
2317struct sk_msg;
2318struct sk_psock;
2319
2320#ifdef CONFIG_BPF_SYSCALL
2321struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2322int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2323void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2324#endif /* CONFIG_BPF_SYSCALL */
2325
2326int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2327 struct sk_msg *msg, u32 bytes, int flags);
2328#endif /* CONFIG_NET_SOCK_MSG */
2329
2330#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2331static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2332{
2333}
2334#endif
2335
2336#ifdef CONFIG_CGROUP_BPF
2337static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2338 struct sk_buff *skb,
2339 unsigned int end_offset)
2340{
2341 skops->skb = skb;
2342 skops->skb_data_end = skb->data + end_offset;
2343}
2344#else
2345static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2346 struct sk_buff *skb,
2347 unsigned int end_offset)
2348{
2349}
2350#endif
2351
2352/* Call BPF_SOCK_OPS program that returns an int. If the return value
2353 * is < 0, then the BPF op failed (for example if the loaded BPF
2354 * program does not support the chosen operation or there is no BPF
2355 * program loaded).
2356 */
2357#ifdef CONFIG_BPF
2358static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2359{
2360 struct bpf_sock_ops_kern sock_ops;
2361 int ret;
2362
2363 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2364 if (sk_fullsock(sk)) {
2365 sock_ops.is_fullsock = 1;
2366 sock_owned_by_me(sk);
2367 }
2368
2369 sock_ops.sk = sk;
2370 sock_ops.op = op;
2371 if (nargs > 0)
2372 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2373
2374 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2375 if (ret == 0)
2376 ret = sock_ops.reply;
2377 else
2378 ret = -1;
2379 return ret;
2380}
2381
2382static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2383{
2384 u32 args[2] = {arg1, arg2};
2385
2386 return tcp_call_bpf(sk, op, 2, args);
2387}
2388
2389static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2390 u32 arg3)
2391{
2392 u32 args[3] = {arg1, arg2, arg3};
2393
2394 return tcp_call_bpf(sk, op, 3, args);
2395}
2396
2397#else
2398static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2399{
2400 return -EPERM;
2401}
2402
2403static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2404{
2405 return -EPERM;
2406}
2407
2408static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2409 u32 arg3)
2410{
2411 return -EPERM;
2412}
2413
2414#endif
2415
2416static inline u32 tcp_timeout_init(struct sock *sk)
2417{
2418 int timeout;
2419
2420 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2421
2422 if (timeout <= 0)
2423 timeout = TCP_TIMEOUT_INIT;
2424 return min_t(int, timeout, TCP_RTO_MAX);
2425}
2426
2427static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2428{
2429 int rwnd;
2430
2431 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2432
2433 if (rwnd < 0)
2434 rwnd = 0;
2435 return rwnd;
2436}
2437
2438static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2439{
2440 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2441}
2442
2443static inline void tcp_bpf_rtt(struct sock *sk)
2444{
2445 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2446 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2447}
2448
2449#if IS_ENABLED(CONFIG_SMC)
2450extern struct static_key_false tcp_have_smc;
2451#endif
2452
2453#if IS_ENABLED(CONFIG_TLS_DEVICE)
2454void clean_acked_data_enable(struct inet_connection_sock *icsk,
2455 void (*cad)(struct sock *sk, u32 ack_seq));
2456void clean_acked_data_disable(struct inet_connection_sock *icsk);
2457void clean_acked_data_flush(void);
2458#endif
2459
2460DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2461static inline void tcp_add_tx_delay(struct sk_buff *skb,
2462 const struct tcp_sock *tp)
2463{
2464 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2465 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2466}
2467
2468/* Compute Earliest Departure Time for some control packets
2469 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2470 */
2471static inline u64 tcp_transmit_time(const struct sock *sk)
2472{
2473 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2474 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2475 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2476
2477 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2478 }
2479 return 0;
2480}
2481
2482#endif /* _TCP_H */