Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.14.15
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
 
 
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS		48
  57#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW		32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS		88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS		1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL	600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD	8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS	16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE		14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID	0x0100
  88#define TCP_URG_NOTYET	0x0200
  89#define TCP_URG_READ	0x0400
  90
  91#define TCP_RETR1	3	/*
  92				 * This is how many retries it does before it
  93				 * tries to figure out if the gateway is
  94				 * down. Minimal RFC value is 3; it corresponds
  95				 * to ~3sec-8min depending on RTO.
  96				 */
  97
  98#define TCP_RETR2	15	/*
  99				 * This should take at least
 100				 * 90 minutes to time out.
 101				 * RFC1122 says that the limit is 100 sec.
 102				 * 15 is ~13-30min depending on RTO.
 103				 */
 104
 105#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 106				 * when active opening a connection.
 107				 * RFC1122 says the minimum retry MUST
 108				 * be at least 180secs.  Nevertheless
 109				 * this value is corresponding to
 110				 * 63secs of retransmission with the
 111				 * current initial RTO.
 112				 */
 113
 114#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 115				 * when passive opening a connection.
 116				 * This is corresponding to 31secs of
 117				 * retransmission with the current
 118				 * initial RTO.
 119				 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122				  * state, about 60 seconds	*/
 123#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125				  * It used to be 3min, new value is 60sec,
 126				  * to combine FIN-WAIT-2 timeout with
 127				  * TIME-WAIT timer.
 128				  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 132#if HZ >= 100
 133#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN	((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN	4U
 137#define TCP_ATO_MIN	4U
 138#endif
 139#define TCP_RTO_MAX	((unsigned)(120*HZ))
 140#define TCP_RTO_MIN	((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 144						 * used as a fallback RTO for the
 145						 * initial data transmission if no
 146						 * valid RTT sample has been acquired,
 147						 * most likely due to retrans in 3WHS.
 148						 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151					                 * for local resources.
 152					                 */
 153#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 154#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 155#define TCP_KEEPALIVE_INTVL	(75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE	32767
 158#define MAX_TCP_KEEPINTVL	32767
 159#define MAX_TCP_KEEPCNT		127
 160#define MAX_TCP_SYNCNT		127
 161
 162#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 163
 164#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 166					 * after this time. It should be equal
 167					 * (or greater than) TCP_TIMEWAIT_LEN
 168					 * to provide reliability equal to one
 169					 * provided by timewait state.
 170					 */
 171#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 172					 * timestamps. It must be less than
 173					 * minimal timewait lifetime.
 174					 */
 175/*
 176 *	TCP option
 177 */
 178
 179#define TCPOPT_NOP		1	/* Padding */
 180#define TCPOPT_EOL		0	/* End of options */
 181#define TCPOPT_MSS		2	/* Segment size negotiating */
 182#define TCPOPT_WINDOW		3	/* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 187#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 189#define TCPOPT_EXP		254	/* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC	0xF989
 194#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED		12
 211#define TCPOLEN_WSCALE_ALIGNED		4
 212#define TCPOLEN_SACKPERM_ALIGNED	4
 213#define TCPOLEN_SACK_BASE		2
 214#define TCPOLEN_SACK_BASE_ALIGNED	4
 215#define TCPOLEN_SACK_PERBLOCK		8
 216#define TCPOLEN_MD5SIG_ALIGNED		20
 217#define TCPOLEN_MSS_ALIGNED		4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 223#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND		10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define	TFO_CLIENT_ENABLE	1
 233#define	TFO_SERVER_ENABLE	2
 234#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define	TFO_SERVER_WO_SOCKOPT1	0x400
 243
 244
 245/* sysctl variables for tcp */
 246extern int sysctl_tcp_max_orphans;
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 252
 253extern atomic_long_t tcp_memory_allocated;
 
 
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262		return true;
 263
 264	return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1) 	before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280	return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287		return true;
 288	return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296	int orphans = percpu_counter_read_positive(ocp);
 297
 298	if (orphans << shift > sysctl_tcp_max_orphans) {
 299		orphans = percpu_counter_sum_positive(ocp);
 300		if (orphans << shift > sysctl_tcp_max_orphans)
 301			return true;
 302	}
 303	return false;
 304}
 305
 
 
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb);
 326int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 327int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 
 
 329int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 330		 int flags);
 331int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 332			size_t size, int flags);
 333struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
 334			       struct page *page, int offset, size_t *size);
 335ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 336		 size_t size, int flags);
 337int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 338void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 339	      int size_goal);
 340void tcp_release_cb(struct sock *sk);
 341void tcp_wfree(struct sk_buff *skb);
 342void tcp_write_timer_handler(struct sock *sk);
 343void tcp_delack_timer_handler(struct sock *sk);
 344int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 345int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 346void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_space_adjust(struct sock *sk);
 348int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 349void tcp_twsk_destructor(struct sock *sk);
 
 350ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 351			struct pipe_inode_info *pipe, size_t len,
 352			unsigned int flags);
 
 
 353
 354void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 355static inline void tcp_dec_quickack_mode(struct sock *sk,
 356					 const unsigned int pkts)
 357{
 358	struct inet_connection_sock *icsk = inet_csk(sk);
 359
 360	if (icsk->icsk_ack.quick) {
 361		if (pkts >= icsk->icsk_ack.quick) {
 362			icsk->icsk_ack.quick = 0;
 363			/* Leaving quickack mode we deflate ATO. */
 364			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 365		} else
 366			icsk->icsk_ack.quick -= pkts;
 367	}
 368}
 369
 370#define	TCP_ECN_OK		1
 371#define	TCP_ECN_QUEUE_CWR	2
 372#define	TCP_ECN_DEMAND_CWR	4
 373#define	TCP_ECN_SEEN		8
 374
 375enum tcp_tw_status {
 376	TCP_TW_SUCCESS = 0,
 377	TCP_TW_RST = 1,
 378	TCP_TW_ACK = 2,
 379	TCP_TW_SYN = 3
 380};
 381
 382
 383enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 384					      struct sk_buff *skb,
 385					      const struct tcphdr *th);
 386struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 387			   struct request_sock *req, bool fastopen,
 388			   bool *lost_race);
 389int tcp_child_process(struct sock *parent, struct sock *child,
 390		      struct sk_buff *skb);
 391void tcp_enter_loss(struct sock *sk);
 392void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 393void tcp_clear_retrans(struct tcp_sock *tp);
 394void tcp_update_metrics(struct sock *sk);
 395void tcp_init_metrics(struct sock *sk);
 396void tcp_metrics_init(void);
 397bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 398void __tcp_close(struct sock *sk, long timeout);
 399void tcp_close(struct sock *sk, long timeout);
 400void tcp_init_sock(struct sock *sk);
 401void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 402__poll_t tcp_poll(struct file *file, struct socket *sock,
 403		      struct poll_table_struct *wait);
 
 
 404int tcp_getsockopt(struct sock *sk, int level, int optname,
 405		   char __user *optval, int __user *optlen);
 406bool tcp_bpf_bypass_getsockopt(int level, int optname);
 
 
 407int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 408		   unsigned int optlen);
 409void tcp_set_keepalive(struct sock *sk, int val);
 410void tcp_syn_ack_timeout(const struct request_sock *req);
 411int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 412		int flags, int *addr_len);
 413int tcp_set_rcvlowat(struct sock *sk, int val);
 414int tcp_set_window_clamp(struct sock *sk, int val);
 415void tcp_update_recv_tstamps(struct sk_buff *skb,
 416			     struct scm_timestamping_internal *tss);
 417void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 418			struct scm_timestamping_internal *tss);
 419void tcp_data_ready(struct sock *sk);
 420#ifdef CONFIG_MMU
 421int tcp_mmap(struct file *file, struct socket *sock,
 422	     struct vm_area_struct *vma);
 423#endif
 424void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 425		       struct tcp_options_received *opt_rx,
 426		       int estab, struct tcp_fastopen_cookie *foc);
 427const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 428
 429/*
 430 *	BPF SKB-less helpers
 431 */
 432u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 433			 struct tcphdr *th, u32 *cookie);
 434u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 435			 struct tcphdr *th, u32 *cookie);
 
 436u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 437			  const struct tcp_request_sock_ops *af_ops,
 438			  struct sock *sk, struct tcphdr *th);
 439/*
 440 *	TCP v4 functions exported for the inet6 API
 441 */
 442
 443void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 444void tcp_v4_mtu_reduced(struct sock *sk);
 445void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 446void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 447int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 448struct sock *tcp_create_openreq_child(const struct sock *sk,
 449				      struct request_sock *req,
 450				      struct sk_buff *skb);
 451void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 452struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 453				  struct request_sock *req,
 454				  struct dst_entry *dst,
 455				  struct request_sock *req_unhash,
 456				  bool *own_req);
 457int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 458int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 459int tcp_connect(struct sock *sk);
 460enum tcp_synack_type {
 461	TCP_SYNACK_NORMAL,
 462	TCP_SYNACK_FASTOPEN,
 463	TCP_SYNACK_COOKIE,
 464};
 465struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 466				struct request_sock *req,
 467				struct tcp_fastopen_cookie *foc,
 468				enum tcp_synack_type synack_type,
 469				struct sk_buff *syn_skb);
 470int tcp_disconnect(struct sock *sk, int flags);
 471
 472void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 473int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 474void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 475
 476/* From syncookies.c */
 477struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 478				 struct request_sock *req,
 479				 struct dst_entry *dst, u32 tsoff);
 480int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 481		      u32 cookie);
 482struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 483struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 
 484					    struct sock *sk, struct sk_buff *skb);
 485#ifdef CONFIG_SYN_COOKIES
 486
 487/* Syncookies use a monotonic timer which increments every 60 seconds.
 488 * This counter is used both as a hash input and partially encoded into
 489 * the cookie value.  A cookie is only validated further if the delta
 490 * between the current counter value and the encoded one is less than this,
 491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 492 * the counter advances immediately after a cookie is generated).
 493 */
 494#define MAX_SYNCOOKIE_AGE	2
 495#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 496#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 497
 498/* syncookies: remember time of last synqueue overflow
 499 * But do not dirty this field too often (once per second is enough)
 500 * It is racy as we do not hold a lock, but race is very minor.
 501 */
 502static inline void tcp_synq_overflow(const struct sock *sk)
 503{
 504	unsigned int last_overflow;
 505	unsigned int now = jiffies;
 506
 507	if (sk->sk_reuseport) {
 508		struct sock_reuseport *reuse;
 509
 510		reuse = rcu_dereference(sk->sk_reuseport_cb);
 511		if (likely(reuse)) {
 512			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 513			if (!time_between32(now, last_overflow,
 514					    last_overflow + HZ))
 515				WRITE_ONCE(reuse->synq_overflow_ts, now);
 516			return;
 517		}
 518	}
 519
 520	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 521	if (!time_between32(now, last_overflow, last_overflow + HZ))
 522		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 523}
 524
 525/* syncookies: no recent synqueue overflow on this listening socket? */
 526static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 527{
 528	unsigned int last_overflow;
 529	unsigned int now = jiffies;
 530
 531	if (sk->sk_reuseport) {
 532		struct sock_reuseport *reuse;
 533
 534		reuse = rcu_dereference(sk->sk_reuseport_cb);
 535		if (likely(reuse)) {
 536			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 537			return !time_between32(now, last_overflow - HZ,
 538					       last_overflow +
 539					       TCP_SYNCOOKIE_VALID);
 540		}
 541	}
 542
 543	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 544
 545	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 546	 * then we're under synflood. However, we have to use
 547	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 548	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 549	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 550	 * which could lead to rejecting a valid syncookie.
 551	 */
 552	return !time_between32(now, last_overflow - HZ,
 553			       last_overflow + TCP_SYNCOOKIE_VALID);
 554}
 555
 556static inline u32 tcp_cookie_time(void)
 557{
 558	u64 val = get_jiffies_64();
 559
 560	do_div(val, TCP_SYNCOOKIE_PERIOD);
 561	return val;
 562}
 563
 564u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 565			      u16 *mssp);
 566__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 567u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 568bool cookie_timestamp_decode(const struct net *net,
 569			     struct tcp_options_received *opt);
 570bool cookie_ecn_ok(const struct tcp_options_received *opt,
 571		   const struct net *net, const struct dst_entry *dst);
 572
 573/* From net/ipv6/syncookies.c */
 574int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 575		      u32 cookie);
 576struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 577
 578u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 579			      const struct tcphdr *th, u16 *mssp);
 580__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 581#endif
 582/* tcp_output.c */
 583
 
 
 584void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 585			       int nonagle);
 586int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 587int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 588void tcp_retransmit_timer(struct sock *sk);
 589void tcp_xmit_retransmit_queue(struct sock *);
 590void tcp_simple_retransmit(struct sock *);
 591void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 592int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 593enum tcp_queue {
 594	TCP_FRAG_IN_WRITE_QUEUE,
 595	TCP_FRAG_IN_RTX_QUEUE,
 596};
 597int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 598		 struct sk_buff *skb, u32 len,
 599		 unsigned int mss_now, gfp_t gfp);
 600
 601void tcp_send_probe0(struct sock *);
 602void tcp_send_partial(struct sock *);
 603int tcp_write_wakeup(struct sock *, int mib);
 604void tcp_send_fin(struct sock *sk);
 605void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 606int tcp_send_synack(struct sock *);
 607void tcp_push_one(struct sock *, unsigned int mss_now);
 608void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 609void tcp_send_ack(struct sock *sk);
 610void tcp_send_delayed_ack(struct sock *sk);
 611void tcp_send_loss_probe(struct sock *sk);
 612bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 613void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 614			     const struct sk_buff *next_skb);
 615
 616/* tcp_input.c */
 617void tcp_rearm_rto(struct sock *sk);
 618void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 619void tcp_reset(struct sock *sk, struct sk_buff *skb);
 620void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 621void tcp_fin(struct sock *sk);
 
 622
 623/* tcp_timer.c */
 624void tcp_init_xmit_timers(struct sock *);
 625static inline void tcp_clear_xmit_timers(struct sock *sk)
 626{
 627	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 628		__sock_put(sk);
 629
 630	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 631		__sock_put(sk);
 632
 633	inet_csk_clear_xmit_timers(sk);
 634}
 635
 636unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 637unsigned int tcp_current_mss(struct sock *sk);
 638u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 639
 640/* Bound MSS / TSO packet size with the half of the window */
 641static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 642{
 643	int cutoff;
 644
 645	/* When peer uses tiny windows, there is no use in packetizing
 646	 * to sub-MSS pieces for the sake of SWS or making sure there
 647	 * are enough packets in the pipe for fast recovery.
 648	 *
 649	 * On the other hand, for extremely large MSS devices, handling
 650	 * smaller than MSS windows in this way does make sense.
 651	 */
 652	if (tp->max_window > TCP_MSS_DEFAULT)
 653		cutoff = (tp->max_window >> 1);
 654	else
 655		cutoff = tp->max_window;
 656
 657	if (cutoff && pktsize > cutoff)
 658		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 659	else
 660		return pktsize;
 661}
 662
 663/* tcp.c */
 664void tcp_get_info(struct sock *, struct tcp_info *);
 665
 666/* Read 'sendfile()'-style from a TCP socket */
 667int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 668		  sk_read_actor_t recv_actor);
 
 
 
 669
 670void tcp_initialize_rcv_mss(struct sock *sk);
 671
 672int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 673int tcp_mss_to_mtu(struct sock *sk, int mss);
 674void tcp_mtup_init(struct sock *sk);
 675
 676static inline void tcp_bound_rto(const struct sock *sk)
 677{
 678	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 679		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 680}
 681
 682static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 683{
 684	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 685}
 686
 687static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 688{
 689	/* mptcp hooks are only on the slow path */
 690	if (sk_is_mptcp((struct sock *)tp))
 691		return;
 692
 693	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 694			       ntohl(TCP_FLAG_ACK) |
 695			       snd_wnd);
 696}
 697
 698static inline void tcp_fast_path_on(struct tcp_sock *tp)
 699{
 700	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 701}
 702
 703static inline void tcp_fast_path_check(struct sock *sk)
 704{
 705	struct tcp_sock *tp = tcp_sk(sk);
 706
 707	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 708	    tp->rcv_wnd &&
 709	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 710	    !tp->urg_data)
 711		tcp_fast_path_on(tp);
 712}
 713
 714/* Compute the actual rto_min value */
 715static inline u32 tcp_rto_min(struct sock *sk)
 716{
 717	const struct dst_entry *dst = __sk_dst_get(sk);
 718	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 719
 720	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 721		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 722	return rto_min;
 723}
 724
 725static inline u32 tcp_rto_min_us(struct sock *sk)
 726{
 727	return jiffies_to_usecs(tcp_rto_min(sk));
 728}
 729
 730static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 731{
 732	return dst_metric_locked(dst, RTAX_CC_ALGO);
 733}
 734
 735/* Minimum RTT in usec. ~0 means not available. */
 736static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 737{
 738	return minmax_get(&tp->rtt_min);
 739}
 740
 741/* Compute the actual receive window we are currently advertising.
 742 * Rcv_nxt can be after the window if our peer push more data
 743 * than the offered window.
 744 */
 745static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 746{
 747	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 748
 749	if (win < 0)
 750		win = 0;
 751	return (u32) win;
 752}
 753
 754/* Choose a new window, without checks for shrinking, and without
 755 * scaling applied to the result.  The caller does these things
 756 * if necessary.  This is a "raw" window selection.
 757 */
 758u32 __tcp_select_window(struct sock *sk);
 759
 760void tcp_send_window_probe(struct sock *sk);
 761
 762/* TCP uses 32bit jiffies to save some space.
 763 * Note that this is different from tcp_time_stamp, which
 764 * historically has been the same until linux-4.13.
 765 */
 766#define tcp_jiffies32 ((u32)jiffies)
 767
 768/*
 769 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 770 * It is no longer tied to jiffies, but to 1 ms clock.
 771 * Note: double check if you want to use tcp_jiffies32 instead of this.
 772 */
 773#define TCP_TS_HZ	1000
 774
 775static inline u64 tcp_clock_ns(void)
 776{
 777	return ktime_get_ns();
 778}
 779
 780static inline u64 tcp_clock_us(void)
 781{
 782	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 783}
 784
 785/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 786static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 787{
 788	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 789}
 790
 791/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 792static inline u32 tcp_ns_to_ts(u64 ns)
 793{
 794	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 795}
 796
 797/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 798static inline u32 tcp_time_stamp_raw(void)
 799{
 800	return tcp_ns_to_ts(tcp_clock_ns());
 801}
 802
 803void tcp_mstamp_refresh(struct tcp_sock *tp);
 804
 805static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 806{
 807	return max_t(s64, t1 - t0, 0);
 808}
 809
 810static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 811{
 812	return tcp_ns_to_ts(skb->skb_mstamp_ns);
 813}
 814
 815/* provide the departure time in us unit */
 816static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 817{
 818	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 819}
 820
 821
 822#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 823
 824#define TCPHDR_FIN 0x01
 825#define TCPHDR_SYN 0x02
 826#define TCPHDR_RST 0x04
 827#define TCPHDR_PSH 0x08
 828#define TCPHDR_ACK 0x10
 829#define TCPHDR_URG 0x20
 830#define TCPHDR_ECE 0x40
 831#define TCPHDR_CWR 0x80
 832
 833#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 834
 835/* This is what the send packet queuing engine uses to pass
 836 * TCP per-packet control information to the transmission code.
 837 * We also store the host-order sequence numbers in here too.
 838 * This is 44 bytes if IPV6 is enabled.
 839 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 840 */
 841struct tcp_skb_cb {
 842	__u32		seq;		/* Starting sequence number	*/
 843	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 844	union {
 845		/* Note : tcp_tw_isn is used in input path only
 846		 *	  (isn chosen by tcp_timewait_state_process())
 847		 *
 848		 * 	  tcp_gso_segs/size are used in write queue only,
 849		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 850		 */
 851		__u32		tcp_tw_isn;
 852		struct {
 853			u16	tcp_gso_segs;
 854			u16	tcp_gso_size;
 855		};
 856	};
 857	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 858
 859	__u8		sacked;		/* State flags for SACK.	*/
 860#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 861#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 862#define TCPCB_LOST		0x04	/* SKB is lost			*/
 863#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 864#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 865#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 866#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 867				TCPCB_REPAIRED)
 868
 869	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 870	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 871			eor:1,		/* Is skb MSG_EOR marked? */
 872			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 873			unused:5;
 874	__u32		ack_seq;	/* Sequence number ACK'd	*/
 875	union {
 876		struct {
 
 877			/* There is space for up to 24 bytes */
 878			__u32 in_flight:30,/* Bytes in flight at transmit */
 879			      is_app_limited:1, /* cwnd not fully used? */
 880			      unused:1;
 881			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 882			__u32 delivered;
 883			/* start of send pipeline phase */
 884			u64 first_tx_mstamp;
 885			/* when we reached the "delivered" count */
 886			u64 delivered_mstamp;
 887		} tx;   /* only used for outgoing skbs */
 888		union {
 889			struct inet_skb_parm	h4;
 890#if IS_ENABLED(CONFIG_IPV6)
 891			struct inet6_skb_parm	h6;
 892#endif
 893		} header;	/* For incoming skbs */
 894	};
 895};
 896
 897#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 898
 899extern const struct inet_connection_sock_af_ops ipv4_specific;
 900
 901#if IS_ENABLED(CONFIG_IPV6)
 902/* This is the variant of inet6_iif() that must be used by TCP,
 903 * as TCP moves IP6CB into a different location in skb->cb[]
 904 */
 905static inline int tcp_v6_iif(const struct sk_buff *skb)
 906{
 907	return TCP_SKB_CB(skb)->header.h6.iif;
 908}
 909
 910static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 911{
 912	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 913
 914	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 915}
 916
 917/* TCP_SKB_CB reference means this can not be used from early demux */
 918static inline int tcp_v6_sdif(const struct sk_buff *skb)
 919{
 920#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 921	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 922		return TCP_SKB_CB(skb)->header.h6.iif;
 923#endif
 924	return 0;
 925}
 926
 927extern const struct inet_connection_sock_af_ops ipv6_specific;
 928
 929INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 930INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 931INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 932
 933#endif
 934
 935/* TCP_SKB_CB reference means this can not be used from early demux */
 936static inline int tcp_v4_sdif(struct sk_buff *skb)
 937{
 938#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 939	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 940		return TCP_SKB_CB(skb)->header.h4.iif;
 941#endif
 942	return 0;
 943}
 944
 945/* Due to TSO, an SKB can be composed of multiple actual
 946 * packets.  To keep these tracked properly, we use this.
 947 */
 948static inline int tcp_skb_pcount(const struct sk_buff *skb)
 949{
 950	return TCP_SKB_CB(skb)->tcp_gso_segs;
 951}
 952
 953static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 954{
 955	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 956}
 957
 958static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 959{
 960	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 961}
 962
 963/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 964static inline int tcp_skb_mss(const struct sk_buff *skb)
 965{
 966	return TCP_SKB_CB(skb)->tcp_gso_size;
 967}
 968
 969static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 970{
 971	return likely(!TCP_SKB_CB(skb)->eor);
 972}
 973
 974static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 975					const struct sk_buff *from)
 976{
 977	return likely(tcp_skb_can_collapse_to(to) &&
 978		      mptcp_skb_can_collapse(to, from));
 
 979}
 980
 981/* Events passed to congestion control interface */
 982enum tcp_ca_event {
 983	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 984	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 985	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 986	CA_EVENT_LOSS,		/* loss timeout */
 987	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 988	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 989};
 990
 991/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 992enum tcp_ca_ack_event_flags {
 993	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 994	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 995	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 996};
 997
 998/*
 999 * Interface for adding new TCP congestion control handlers
1000 */
1001#define TCP_CA_NAME_MAX	16
1002#define TCP_CA_MAX	128
1003#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1004
1005#define TCP_CA_UNSPEC	0
1006
1007/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1008#define TCP_CONG_NON_RESTRICTED 0x1
1009/* Requires ECN/ECT set on all packets */
1010#define TCP_CONG_NEEDS_ECN	0x2
1011#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1012
1013union tcp_cc_info;
1014
1015struct ack_sample {
1016	u32 pkts_acked;
1017	s32 rtt_us;
1018	u32 in_flight;
1019};
1020
1021/* A rate sample measures the number of (original/retransmitted) data
1022 * packets delivered "delivered" over an interval of time "interval_us".
1023 * The tcp_rate.c code fills in the rate sample, and congestion
1024 * control modules that define a cong_control function to run at the end
1025 * of ACK processing can optionally chose to consult this sample when
1026 * setting cwnd and pacing rate.
1027 * A sample is invalid if "delivered" or "interval_us" is negative.
1028 */
1029struct rate_sample {
1030	u64  prior_mstamp; /* starting timestamp for interval */
1031	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 
1032	s32  delivered;		/* number of packets delivered over interval */
 
1033	long interval_us;	/* time for tp->delivered to incr "delivered" */
1034	u32 snd_interval_us;	/* snd interval for delivered packets */
1035	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1036	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1037	int  losses;		/* number of packets marked lost upon ACK */
1038	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1039	u32  prior_in_flight;	/* in flight before this ACK */
 
1040	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1041	bool is_retrans;	/* is sample from retransmission? */
1042	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1043};
1044
1045struct tcp_congestion_ops {
1046/* fast path fields are put first to fill one cache line */
1047
1048	/* return slow start threshold (required) */
1049	u32 (*ssthresh)(struct sock *sk);
1050
1051	/* do new cwnd calculation (required) */
1052	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1053
1054	/* call before changing ca_state (optional) */
1055	void (*set_state)(struct sock *sk, u8 new_state);
1056
1057	/* call when cwnd event occurs (optional) */
1058	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1059
1060	/* call when ack arrives (optional) */
1061	void (*in_ack_event)(struct sock *sk, u32 flags);
1062
1063	/* hook for packet ack accounting (optional) */
1064	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1065
1066	/* override sysctl_tcp_min_tso_segs */
1067	u32 (*min_tso_segs)(struct sock *sk);
1068
1069	/* call when packets are delivered to update cwnd and pacing rate,
1070	 * after all the ca_state processing. (optional)
1071	 */
1072	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1073
1074
1075	/* new value of cwnd after loss (required) */
1076	u32  (*undo_cwnd)(struct sock *sk);
1077	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1078	u32 (*sndbuf_expand)(struct sock *sk);
1079
1080/* control/slow paths put last */
1081	/* get info for inet_diag (optional) */
1082	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1083			   union tcp_cc_info *info);
1084
1085	char 			name[TCP_CA_NAME_MAX];
1086	struct module		*owner;
1087	struct list_head	list;
1088	u32			key;
1089	u32			flags;
1090
1091	/* initialize private data (optional) */
1092	void (*init)(struct sock *sk);
1093	/* cleanup private data  (optional) */
1094	void (*release)(struct sock *sk);
1095} ____cacheline_aligned_in_smp;
1096
1097int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1098void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1099
1100void tcp_assign_congestion_control(struct sock *sk);
1101void tcp_init_congestion_control(struct sock *sk);
1102void tcp_cleanup_congestion_control(struct sock *sk);
1103int tcp_set_default_congestion_control(struct net *net, const char *name);
1104void tcp_get_default_congestion_control(struct net *net, char *name);
1105void tcp_get_available_congestion_control(char *buf, size_t len);
1106void tcp_get_allowed_congestion_control(char *buf, size_t len);
1107int tcp_set_allowed_congestion_control(char *allowed);
1108int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1109			       bool cap_net_admin);
1110u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1111void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1112
1113u32 tcp_reno_ssthresh(struct sock *sk);
1114u32 tcp_reno_undo_cwnd(struct sock *sk);
1115void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1116extern struct tcp_congestion_ops tcp_reno;
1117
1118struct tcp_congestion_ops *tcp_ca_find(const char *name);
1119struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1120u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1121#ifdef CONFIG_INET
1122char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1123#else
1124static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1125{
1126	return NULL;
1127}
1128#endif
1129
1130static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1131{
1132	const struct inet_connection_sock *icsk = inet_csk(sk);
1133
1134	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1135}
1136
1137static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1138{
1139	struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141	if (icsk->icsk_ca_ops->set_state)
1142		icsk->icsk_ca_ops->set_state(sk, ca_state);
1143	icsk->icsk_ca_state = ca_state;
1144}
1145
1146static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1147{
1148	const struct inet_connection_sock *icsk = inet_csk(sk);
1149
1150	if (icsk->icsk_ca_ops->cwnd_event)
1151		icsk->icsk_ca_ops->cwnd_event(sk, event);
1152}
1153
 
 
 
1154/* From tcp_rate.c */
1155void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1156void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1157			    struct rate_sample *rs);
1158void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1159		  bool is_sack_reneg, struct rate_sample *rs);
1160void tcp_rate_check_app_limited(struct sock *sk);
1161
 
 
 
 
 
1162/* These functions determine how the current flow behaves in respect of SACK
1163 * handling. SACK is negotiated with the peer, and therefore it can vary
1164 * between different flows.
1165 *
1166 * tcp_is_sack - SACK enabled
1167 * tcp_is_reno - No SACK
1168 */
1169static inline int tcp_is_sack(const struct tcp_sock *tp)
1170{
1171	return likely(tp->rx_opt.sack_ok);
1172}
1173
1174static inline bool tcp_is_reno(const struct tcp_sock *tp)
1175{
1176	return !tcp_is_sack(tp);
1177}
1178
1179static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1180{
1181	return tp->sacked_out + tp->lost_out;
1182}
1183
1184/* This determines how many packets are "in the network" to the best
1185 * of our knowledge.  In many cases it is conservative, but where
1186 * detailed information is available from the receiver (via SACK
1187 * blocks etc.) we can make more aggressive calculations.
1188 *
1189 * Use this for decisions involving congestion control, use just
1190 * tp->packets_out to determine if the send queue is empty or not.
1191 *
1192 * Read this equation as:
1193 *
1194 *	"Packets sent once on transmission queue" MINUS
1195 *	"Packets left network, but not honestly ACKed yet" PLUS
1196 *	"Packets fast retransmitted"
1197 */
1198static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1199{
1200	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1201}
1202
1203#define TCP_INFINITE_SSTHRESH	0x7fffffff
1204
 
 
 
 
 
 
 
 
 
 
 
1205static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1206{
1207	return tp->snd_cwnd < tp->snd_ssthresh;
1208}
1209
1210static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1211{
1212	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1213}
1214
1215static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1216{
1217	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1218	       (1 << inet_csk(sk)->icsk_ca_state);
1219}
1220
1221/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1223 * ssthresh.
1224 */
1225static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1226{
1227	const struct tcp_sock *tp = tcp_sk(sk);
1228
1229	if (tcp_in_cwnd_reduction(sk))
1230		return tp->snd_ssthresh;
1231	else
1232		return max(tp->snd_ssthresh,
1233			   ((tp->snd_cwnd >> 1) +
1234			    (tp->snd_cwnd >> 2)));
1235}
1236
1237/* Use define here intentionally to get WARN_ON location shown at the caller */
1238#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1239
1240void tcp_enter_cwr(struct sock *sk);
1241__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1242
1243/* The maximum number of MSS of available cwnd for which TSO defers
1244 * sending if not using sysctl_tcp_tso_win_divisor.
1245 */
1246static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1247{
1248	return 3;
1249}
1250
1251/* Returns end sequence number of the receiver's advertised window */
1252static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1253{
1254	return tp->snd_una + tp->snd_wnd;
1255}
1256
1257/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1258 * flexible approach. The RFC suggests cwnd should not be raised unless
1259 * it was fully used previously. And that's exactly what we do in
1260 * congestion avoidance mode. But in slow start we allow cwnd to grow
1261 * as long as the application has used half the cwnd.
1262 * Example :
1263 *    cwnd is 10 (IW10), but application sends 9 frames.
1264 *    We allow cwnd to reach 18 when all frames are ACKed.
1265 * This check is safe because it's as aggressive as slow start which already
1266 * risks 100% overshoot. The advantage is that we discourage application to
1267 * either send more filler packets or data to artificially blow up the cwnd
1268 * usage, and allow application-limited process to probe bw more aggressively.
1269 */
1270static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1271{
1272	const struct tcp_sock *tp = tcp_sk(sk);
1273
 
 
 
1274	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1275	if (tcp_in_slow_start(tp))
1276		return tp->snd_cwnd < 2 * tp->max_packets_out;
1277
1278	return tp->is_cwnd_limited;
1279}
1280
1281/* BBR congestion control needs pacing.
1282 * Same remark for SO_MAX_PACING_RATE.
1283 * sch_fq packet scheduler is efficiently handling pacing,
1284 * but is not always installed/used.
1285 * Return true if TCP stack should pace packets itself.
1286 */
1287static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1288{
1289	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1290}
1291
1292/* Estimates in how many jiffies next packet for this flow can be sent.
1293 * Scheduling a retransmit timer too early would be silly.
1294 */
1295static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1296{
1297	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1298
1299	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1300}
1301
1302static inline void tcp_reset_xmit_timer(struct sock *sk,
1303					const int what,
1304					unsigned long when,
1305					const unsigned long max_when)
1306{
1307	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1308				  max_when);
1309}
1310
1311/* Something is really bad, we could not queue an additional packet,
1312 * because qdisc is full or receiver sent a 0 window, or we are paced.
1313 * We do not want to add fuel to the fire, or abort too early,
1314 * so make sure the timer we arm now is at least 200ms in the future,
1315 * regardless of current icsk_rto value (as it could be ~2ms)
1316 */
1317static inline unsigned long tcp_probe0_base(const struct sock *sk)
1318{
1319	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1320}
1321
1322/* Variant of inet_csk_rto_backoff() used for zero window probes */
1323static inline unsigned long tcp_probe0_when(const struct sock *sk,
1324					    unsigned long max_when)
1325{
1326	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1327			   inet_csk(sk)->icsk_backoff);
1328	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1329
1330	return (unsigned long)min_t(u64, when, max_when);
1331}
1332
1333static inline void tcp_check_probe_timer(struct sock *sk)
1334{
1335	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337				     tcp_probe0_base(sk), TCP_RTO_MAX);
1338}
1339
1340static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1341{
1342	tp->snd_wl1 = seq;
1343}
1344
1345static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1346{
1347	tp->snd_wl1 = seq;
1348}
1349
1350/*
1351 * Calculate(/check) TCP checksum
1352 */
1353static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1354				   __be32 daddr, __wsum base)
1355{
1356	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1357}
1358
1359static inline bool tcp_checksum_complete(struct sk_buff *skb)
1360{
1361	return !skb_csum_unnecessary(skb) &&
1362		__skb_checksum_complete(skb);
1363}
1364
1365bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
 
 
 
1366int tcp_filter(struct sock *sk, struct sk_buff *skb);
1367void tcp_set_state(struct sock *sk, int state);
1368void tcp_done(struct sock *sk);
1369int tcp_abort(struct sock *sk, int err);
1370
1371static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1372{
1373	rx_opt->dsack = 0;
1374	rx_opt->num_sacks = 0;
1375}
1376
1377void tcp_cwnd_restart(struct sock *sk, s32 delta);
1378
1379static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1380{
1381	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1382	struct tcp_sock *tp = tcp_sk(sk);
1383	s32 delta;
1384
1385	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1386	    ca_ops->cong_control)
1387		return;
1388	delta = tcp_jiffies32 - tp->lsndtime;
1389	if (delta > inet_csk(sk)->icsk_rto)
1390		tcp_cwnd_restart(sk, delta);
1391}
1392
1393/* Determine a window scaling and initial window to offer. */
1394void tcp_select_initial_window(const struct sock *sk, int __space,
1395			       __u32 mss, __u32 *rcv_wnd,
1396			       __u32 *window_clamp, int wscale_ok,
1397			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1398
1399static inline int tcp_win_from_space(const struct sock *sk, int space)
1400{
1401	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1402
1403	return tcp_adv_win_scale <= 0 ?
1404		(space>>(-tcp_adv_win_scale)) :
1405		space - (space>>tcp_adv_win_scale);
1406}
1407
1408/* Note: caller must be prepared to deal with negative returns */
1409static inline int tcp_space(const struct sock *sk)
1410{
1411	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1412				  READ_ONCE(sk->sk_backlog.len) -
1413				  atomic_read(&sk->sk_rmem_alloc));
1414}
1415
1416static inline int tcp_full_space(const struct sock *sk)
1417{
1418	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1419}
1420
 
 
 
 
 
 
 
 
 
 
 
1421void tcp_cleanup_rbuf(struct sock *sk, int copied);
1422
1423/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1424 * If 87.5 % (7/8) of the space has been consumed, we want to override
1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1426 * len/truesize ratio.
1427 */
1428static inline bool tcp_rmem_pressure(const struct sock *sk)
1429{
1430	int rcvbuf, threshold;
1431
1432	if (tcp_under_memory_pressure(sk))
1433		return true;
1434
1435	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436	threshold = rcvbuf - (rcvbuf >> 3);
1437
1438	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439}
1440
1441static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1442{
1443	const struct tcp_sock *tp = tcp_sk(sk);
1444	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1445
1446	if (avail <= 0)
1447		return false;
1448
1449	return (avail >= target) || tcp_rmem_pressure(sk) ||
1450	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1451}
1452
1453extern void tcp_openreq_init_rwin(struct request_sock *req,
1454				  const struct sock *sk_listener,
1455				  const struct dst_entry *dst);
1456
1457void tcp_enter_memory_pressure(struct sock *sk);
1458void tcp_leave_memory_pressure(struct sock *sk);
1459
1460static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461{
1462	struct net *net = sock_net((struct sock *)tp);
1463
1464	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
 
1465}
1466
1467static inline int keepalive_time_when(const struct tcp_sock *tp)
1468{
1469	struct net *net = sock_net((struct sock *)tp);
1470
1471	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
 
1472}
1473
1474static inline int keepalive_probes(const struct tcp_sock *tp)
1475{
1476	struct net *net = sock_net((struct sock *)tp);
1477
1478	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
 
1479}
1480
1481static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1482{
1483	const struct inet_connection_sock *icsk = &tp->inet_conn;
1484
1485	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1486			  tcp_jiffies32 - tp->rcv_tstamp);
1487}
1488
1489static inline int tcp_fin_time(const struct sock *sk)
1490{
1491	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
 
1492	const int rto = inet_csk(sk)->icsk_rto;
1493
1494	if (fin_timeout < (rto << 2) - (rto >> 1))
1495		fin_timeout = (rto << 2) - (rto >> 1);
1496
1497	return fin_timeout;
1498}
1499
1500static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1501				  int paws_win)
1502{
1503	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1504		return true;
1505	if (unlikely(!time_before32(ktime_get_seconds(),
1506				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1507		return true;
1508	/*
1509	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1510	 * then following tcp messages have valid values. Ignore 0 value,
1511	 * or else 'negative' tsval might forbid us to accept their packets.
1512	 */
1513	if (!rx_opt->ts_recent)
1514		return true;
1515	return false;
1516}
1517
1518static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1519				   int rst)
1520{
1521	if (tcp_paws_check(rx_opt, 0))
1522		return false;
1523
1524	/* RST segments are not recommended to carry timestamp,
1525	   and, if they do, it is recommended to ignore PAWS because
1526	   "their cleanup function should take precedence over timestamps."
1527	   Certainly, it is mistake. It is necessary to understand the reasons
1528	   of this constraint to relax it: if peer reboots, clock may go
1529	   out-of-sync and half-open connections will not be reset.
1530	   Actually, the problem would be not existing if all
1531	   the implementations followed draft about maintaining clock
1532	   via reboots. Linux-2.2 DOES NOT!
1533
1534	   However, we can relax time bounds for RST segments to MSL.
1535	 */
1536	if (rst && !time_before32(ktime_get_seconds(),
1537				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1538		return false;
1539	return true;
1540}
1541
1542bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1543			  int mib_idx, u32 *last_oow_ack_time);
1544
1545static inline void tcp_mib_init(struct net *net)
1546{
1547	/* See RFC 2012 */
1548	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1549	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1550	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1551	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1552}
1553
1554/* from STCP */
1555static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1556{
1557	tp->lost_skb_hint = NULL;
1558}
1559
1560static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1561{
1562	tcp_clear_retrans_hints_partial(tp);
1563	tp->retransmit_skb_hint = NULL;
1564}
1565
1566union tcp_md5_addr {
1567	struct in_addr  a4;
1568#if IS_ENABLED(CONFIG_IPV6)
1569	struct in6_addr	a6;
1570#endif
1571};
1572
1573/* - key database */
1574struct tcp_md5sig_key {
1575	struct hlist_node	node;
1576	u8			keylen;
1577	u8			family; /* AF_INET or AF_INET6 */
1578	u8			prefixlen;
 
1579	union tcp_md5_addr	addr;
1580	int			l3index; /* set if key added with L3 scope */
1581	u8			key[TCP_MD5SIG_MAXKEYLEN];
1582	struct rcu_head		rcu;
1583};
1584
1585/* - sock block */
1586struct tcp_md5sig_info {
1587	struct hlist_head	head;
1588	struct rcu_head		rcu;
1589};
1590
1591/* - pseudo header */
1592struct tcp4_pseudohdr {
1593	__be32		saddr;
1594	__be32		daddr;
1595	__u8		pad;
1596	__u8		protocol;
1597	__be16		len;
1598};
1599
1600struct tcp6_pseudohdr {
1601	struct in6_addr	saddr;
1602	struct in6_addr daddr;
1603	__be32		len;
1604	__be32		protocol;	/* including padding */
1605};
1606
1607union tcp_md5sum_block {
1608	struct tcp4_pseudohdr ip4;
1609#if IS_ENABLED(CONFIG_IPV6)
1610	struct tcp6_pseudohdr ip6;
1611#endif
1612};
1613
1614/* - pool: digest algorithm, hash description and scratch buffer */
1615struct tcp_md5sig_pool {
1616	struct ahash_request	*md5_req;
1617	void			*scratch;
1618};
1619
1620/* - functions */
1621int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1622			const struct sock *sk, const struct sk_buff *skb);
1623int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1624		   int family, u8 prefixlen, int l3index,
1625		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
 
 
 
 
1626int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1627		   int family, u8 prefixlen, int l3index);
1628struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1629					 const struct sock *addr_sk);
1630
1631#ifdef CONFIG_TCP_MD5SIG
1632#include <linux/jump_label.h>
1633extern struct static_key_false tcp_md5_needed;
1634struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1635					   const union tcp_md5_addr *addr,
1636					   int family);
1637static inline struct tcp_md5sig_key *
1638tcp_md5_do_lookup(const struct sock *sk, int l3index,
1639		  const union tcp_md5_addr *addr, int family)
1640{
1641	if (!static_branch_unlikely(&tcp_md5_needed))
1642		return NULL;
1643	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1644}
1645
 
 
 
 
 
 
1646#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1647#else
1648static inline struct tcp_md5sig_key *
1649tcp_md5_do_lookup(const struct sock *sk, int l3index,
1650		  const union tcp_md5_addr *addr, int family)
1651{
1652	return NULL;
1653}
 
 
 
 
 
 
 
 
1654#define tcp_twsk_md5_key(twsk)	NULL
1655#endif
1656
1657bool tcp_alloc_md5sig_pool(void);
1658
1659struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1660static inline void tcp_put_md5sig_pool(void)
1661{
1662	local_bh_enable();
1663}
1664
1665int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1666			  unsigned int header_len);
1667int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1668		     const struct tcp_md5sig_key *key);
1669
1670/* From tcp_fastopen.c */
1671void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1672			    struct tcp_fastopen_cookie *cookie);
1673void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1674			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1675			    u16 try_exp);
1676struct tcp_fastopen_request {
1677	/* Fast Open cookie. Size 0 means a cookie request */
1678	struct tcp_fastopen_cookie	cookie;
1679	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1680	size_t				size;
1681	int				copied;	/* queued in tcp_connect() */
1682	struct ubuf_info		*uarg;
1683};
1684void tcp_free_fastopen_req(struct tcp_sock *tp);
1685void tcp_fastopen_destroy_cipher(struct sock *sk);
1686void tcp_fastopen_ctx_destroy(struct net *net);
1687int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1688			      void *primary_key, void *backup_key);
1689int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1690			    u64 *key);
1691void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1692struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1693			      struct request_sock *req,
1694			      struct tcp_fastopen_cookie *foc,
1695			      const struct dst_entry *dst);
1696void tcp_fastopen_init_key_once(struct net *net);
1697bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1698			     struct tcp_fastopen_cookie *cookie);
1699bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1700#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1701#define TCP_FASTOPEN_KEY_MAX 2
1702#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1703	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1704
1705/* Fastopen key context */
1706struct tcp_fastopen_context {
1707	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1708	int		num;
1709	struct rcu_head	rcu;
1710};
1711
1712void tcp_fastopen_active_disable(struct sock *sk);
1713bool tcp_fastopen_active_should_disable(struct sock *sk);
1714void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1715void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1716
1717/* Caller needs to wrap with rcu_read_(un)lock() */
1718static inline
1719struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1720{
1721	struct tcp_fastopen_context *ctx;
1722
1723	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1724	if (!ctx)
1725		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1726	return ctx;
1727}
1728
1729static inline
1730bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1731			       const struct tcp_fastopen_cookie *orig)
1732{
1733	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1734	    orig->len == foc->len &&
1735	    !memcmp(orig->val, foc->val, foc->len))
1736		return true;
1737	return false;
1738}
1739
1740static inline
1741int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1742{
1743	return ctx->num;
1744}
1745
1746/* Latencies incurred by various limits for a sender. They are
1747 * chronograph-like stats that are mutually exclusive.
1748 */
1749enum tcp_chrono {
1750	TCP_CHRONO_UNSPEC,
1751	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1752	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1753	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1754	__TCP_CHRONO_MAX,
1755};
1756
1757void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1758void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1759
1760/* This helper is needed, because skb->tcp_tsorted_anchor uses
1761 * the same memory storage than skb->destructor/_skb_refdst
1762 */
1763static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1764{
1765	skb->destructor = NULL;
1766	skb->_skb_refdst = 0UL;
1767}
1768
1769#define tcp_skb_tsorted_save(skb) {		\
1770	unsigned long _save = skb->_skb_refdst;	\
1771	skb->_skb_refdst = 0UL;
1772
1773#define tcp_skb_tsorted_restore(skb)		\
1774	skb->_skb_refdst = _save;		\
1775}
1776
1777void tcp_write_queue_purge(struct sock *sk);
1778
1779static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1780{
1781	return skb_rb_first(&sk->tcp_rtx_queue);
1782}
1783
1784static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1785{
1786	return skb_rb_last(&sk->tcp_rtx_queue);
1787}
1788
1789static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1790{
1791	return skb_peek(&sk->sk_write_queue);
1792}
1793
1794static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1795{
1796	return skb_peek_tail(&sk->sk_write_queue);
1797}
1798
1799#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1800	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1801
1802static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1803{
1804	return skb_peek(&sk->sk_write_queue);
1805}
1806
1807static inline bool tcp_skb_is_last(const struct sock *sk,
1808				   const struct sk_buff *skb)
1809{
1810	return skb_queue_is_last(&sk->sk_write_queue, skb);
1811}
1812
1813/**
1814 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1815 * @sk: socket
1816 *
1817 * Since the write queue can have a temporary empty skb in it,
1818 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1819 */
1820static inline bool tcp_write_queue_empty(const struct sock *sk)
1821{
1822	const struct tcp_sock *tp = tcp_sk(sk);
1823
1824	return tp->write_seq == tp->snd_nxt;
1825}
1826
1827static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1828{
1829	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1830}
1831
1832static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1833{
1834	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1835}
1836
1837static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1838{
1839	__skb_queue_tail(&sk->sk_write_queue, skb);
1840
1841	/* Queue it, remembering where we must start sending. */
1842	if (sk->sk_write_queue.next == skb)
1843		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1844}
1845
1846/* Insert new before skb on the write queue of sk.  */
1847static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1848						  struct sk_buff *skb,
1849						  struct sock *sk)
1850{
1851	__skb_queue_before(&sk->sk_write_queue, skb, new);
1852}
1853
1854static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1855{
1856	tcp_skb_tsorted_anchor_cleanup(skb);
1857	__skb_unlink(skb, &sk->sk_write_queue);
1858}
1859
1860void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1861
1862static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1863{
1864	tcp_skb_tsorted_anchor_cleanup(skb);
1865	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1866}
1867
1868static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1869{
1870	list_del(&skb->tcp_tsorted_anchor);
1871	tcp_rtx_queue_unlink(skb, sk);
1872	sk_wmem_free_skb(sk, skb);
1873}
1874
1875static inline void tcp_push_pending_frames(struct sock *sk)
1876{
1877	if (tcp_send_head(sk)) {
1878		struct tcp_sock *tp = tcp_sk(sk);
1879
1880		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1881	}
1882}
1883
1884/* Start sequence of the skb just after the highest skb with SACKed
1885 * bit, valid only if sacked_out > 0 or when the caller has ensured
1886 * validity by itself.
1887 */
1888static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1889{
1890	if (!tp->sacked_out)
1891		return tp->snd_una;
1892
1893	if (tp->highest_sack == NULL)
1894		return tp->snd_nxt;
1895
1896	return TCP_SKB_CB(tp->highest_sack)->seq;
1897}
1898
1899static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1900{
1901	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1902}
1903
1904static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1905{
1906	return tcp_sk(sk)->highest_sack;
1907}
1908
1909static inline void tcp_highest_sack_reset(struct sock *sk)
1910{
1911	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1912}
1913
1914/* Called when old skb is about to be deleted and replaced by new skb */
1915static inline void tcp_highest_sack_replace(struct sock *sk,
1916					    struct sk_buff *old,
1917					    struct sk_buff *new)
1918{
1919	if (old == tcp_highest_sack(sk))
1920		tcp_sk(sk)->highest_sack = new;
1921}
1922
1923/* This helper checks if socket has IP_TRANSPARENT set */
1924static inline bool inet_sk_transparent(const struct sock *sk)
1925{
1926	switch (sk->sk_state) {
1927	case TCP_TIME_WAIT:
1928		return inet_twsk(sk)->tw_transparent;
1929	case TCP_NEW_SYN_RECV:
1930		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1931	}
1932	return inet_sk(sk)->transparent;
1933}
1934
1935/* Determines whether this is a thin stream (which may suffer from
1936 * increased latency). Used to trigger latency-reducing mechanisms.
1937 */
1938static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1939{
1940	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1941}
1942
1943/* /proc */
1944enum tcp_seq_states {
1945	TCP_SEQ_STATE_LISTENING,
1946	TCP_SEQ_STATE_ESTABLISHED,
1947};
1948
1949void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1950void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1951void tcp_seq_stop(struct seq_file *seq, void *v);
1952
1953struct tcp_seq_afinfo {
1954	sa_family_t			family;
1955};
1956
1957struct tcp_iter_state {
1958	struct seq_net_private	p;
1959	enum tcp_seq_states	state;
1960	struct sock		*syn_wait_sk;
1961	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1962	int			bucket, offset, sbucket, num;
1963	loff_t			last_pos;
1964};
1965
1966extern struct request_sock_ops tcp_request_sock_ops;
1967extern struct request_sock_ops tcp6_request_sock_ops;
1968
1969void tcp_v4_destroy_sock(struct sock *sk);
1970
1971struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1972				netdev_features_t features);
1973struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1974INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1975INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1976INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1977INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1978int tcp_gro_complete(struct sk_buff *skb);
1979
1980void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1981
1982static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1983{
1984	struct net *net = sock_net((struct sock *)tp);
1985	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1986}
1987
1988bool tcp_stream_memory_free(const struct sock *sk, int wake);
1989
1990#ifdef CONFIG_PROC_FS
1991int tcp4_proc_init(void);
1992void tcp4_proc_exit(void);
1993#endif
1994
1995int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1996int tcp_conn_request(struct request_sock_ops *rsk_ops,
1997		     const struct tcp_request_sock_ops *af_ops,
1998		     struct sock *sk, struct sk_buff *skb);
1999
2000/* TCP af-specific functions */
2001struct tcp_sock_af_ops {
2002#ifdef CONFIG_TCP_MD5SIG
2003	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2004						const struct sock *addr_sk);
2005	int		(*calc_md5_hash)(char *location,
2006					 const struct tcp_md5sig_key *md5,
2007					 const struct sock *sk,
2008					 const struct sk_buff *skb);
2009	int		(*md5_parse)(struct sock *sk,
2010				     int optname,
2011				     sockptr_t optval,
2012				     int optlen);
2013#endif
2014};
2015
2016struct tcp_request_sock_ops {
2017	u16 mss_clamp;
2018#ifdef CONFIG_TCP_MD5SIG
2019	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2020						 const struct sock *addr_sk);
2021	int		(*calc_md5_hash) (char *location,
2022					  const struct tcp_md5sig_key *md5,
2023					  const struct sock *sk,
2024					  const struct sk_buff *skb);
2025#endif
2026#ifdef CONFIG_SYN_COOKIES
2027	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2028				 __u16 *mss);
2029#endif
2030	struct dst_entry *(*route_req)(const struct sock *sk,
2031				       struct sk_buff *skb,
2032				       struct flowi *fl,
2033				       struct request_sock *req);
2034	u32 (*init_seq)(const struct sk_buff *skb);
2035	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2036	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2037			   struct flowi *fl, struct request_sock *req,
2038			   struct tcp_fastopen_cookie *foc,
2039			   enum tcp_synack_type synack_type,
2040			   struct sk_buff *syn_skb);
2041};
2042
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2044#if IS_ENABLED(CONFIG_IPV6)
2045extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2046#endif
2047
2048#ifdef CONFIG_SYN_COOKIES
2049static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2050					 const struct sock *sk, struct sk_buff *skb,
2051					 __u16 *mss)
2052{
2053	tcp_synq_overflow(sk);
2054	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2055	return ops->cookie_init_seq(skb, mss);
2056}
2057#else
2058static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2059					 const struct sock *sk, struct sk_buff *skb,
2060					 __u16 *mss)
2061{
2062	return 0;
2063}
2064#endif
2065
2066int tcpv4_offload_init(void);
2067
2068void tcp_v4_init(void);
2069void tcp_init(void);
2070
2071/* tcp_recovery.c */
2072void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2073void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2074extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2075				u32 reo_wnd);
2076extern bool tcp_rack_mark_lost(struct sock *sk);
2077extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2078			     u64 xmit_time);
2079extern void tcp_rack_reo_timeout(struct sock *sk);
2080extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082/* At how many usecs into the future should the RTO fire? */
2083static inline s64 tcp_rto_delta_us(const struct sock *sk)
2084{
2085	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2086	u32 rto = inet_csk(sk)->icsk_rto;
2087	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2088
2089	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2090}
2091
2092/*
2093 * Save and compile IPv4 options, return a pointer to it
2094 */
2095static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2096							 struct sk_buff *skb)
2097{
2098	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2099	struct ip_options_rcu *dopt = NULL;
2100
2101	if (opt->optlen) {
2102		int opt_size = sizeof(*dopt) + opt->optlen;
2103
2104		dopt = kmalloc(opt_size, GFP_ATOMIC);
2105		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2106			kfree(dopt);
2107			dopt = NULL;
2108		}
2109	}
2110	return dopt;
2111}
2112
2113/* locally generated TCP pure ACKs have skb->truesize == 2
2114 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2115 * This is much faster than dissecting the packet to find out.
2116 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2117 */
2118static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2119{
2120	return skb->truesize == 2;
2121}
2122
2123static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2124{
2125	skb->truesize = 2;
2126}
2127
2128static inline int tcp_inq(struct sock *sk)
2129{
2130	struct tcp_sock *tp = tcp_sk(sk);
2131	int answ;
2132
2133	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2134		answ = 0;
2135	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2136		   !tp->urg_data ||
2137		   before(tp->urg_seq, tp->copied_seq) ||
2138		   !before(tp->urg_seq, tp->rcv_nxt)) {
2139
2140		answ = tp->rcv_nxt - tp->copied_seq;
2141
2142		/* Subtract 1, if FIN was received */
2143		if (answ && sock_flag(sk, SOCK_DONE))
2144			answ--;
2145	} else {
2146		answ = tp->urg_seq - tp->copied_seq;
2147	}
2148
2149	return answ;
2150}
2151
2152int tcp_peek_len(struct socket *sock);
2153
2154static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2155{
2156	u16 segs_in;
2157
2158	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2159	tp->segs_in += segs_in;
 
 
 
 
2160	if (skb->len > tcp_hdrlen(skb))
2161		tp->data_segs_in += segs_in;
2162}
2163
2164/*
2165 * TCP listen path runs lockless.
2166 * We forced "struct sock" to be const qualified to make sure
2167 * we don't modify one of its field by mistake.
2168 * Here, we increment sk_drops which is an atomic_t, so we can safely
2169 * make sock writable again.
2170 */
2171static inline void tcp_listendrop(const struct sock *sk)
2172{
2173	atomic_inc(&((struct sock *)sk)->sk_drops);
2174	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2175}
2176
2177enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2178
2179/*
2180 * Interface for adding Upper Level Protocols over TCP
2181 */
2182
2183#define TCP_ULP_NAME_MAX	16
2184#define TCP_ULP_MAX		128
2185#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2186
2187struct tcp_ulp_ops {
2188	struct list_head	list;
2189
2190	/* initialize ulp */
2191	int (*init)(struct sock *sk);
2192	/* update ulp */
2193	void (*update)(struct sock *sk, struct proto *p,
2194		       void (*write_space)(struct sock *sk));
2195	/* cleanup ulp */
2196	void (*release)(struct sock *sk);
2197	/* diagnostic */
2198	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2199	size_t (*get_info_size)(const struct sock *sk);
2200	/* clone ulp */
2201	void (*clone)(const struct request_sock *req, struct sock *newsk,
2202		      const gfp_t priority);
2203
2204	char		name[TCP_ULP_NAME_MAX];
2205	struct module	*owner;
2206};
2207int tcp_register_ulp(struct tcp_ulp_ops *type);
2208void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2209int tcp_set_ulp(struct sock *sk, const char *name);
2210void tcp_get_available_ulp(char *buf, size_t len);
2211void tcp_cleanup_ulp(struct sock *sk);
2212void tcp_update_ulp(struct sock *sk, struct proto *p,
2213		    void (*write_space)(struct sock *sk));
2214
2215#define MODULE_ALIAS_TCP_ULP(name)				\
2216	__MODULE_INFO(alias, alias_userspace, name);		\
2217	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2218
2219#ifdef CONFIG_NET_SOCK_MSG
2220struct sk_msg;
2221struct sk_psock;
2222
2223#ifdef CONFIG_BPF_SYSCALL
2224struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2225int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2226void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2227#endif /* CONFIG_BPF_SYSCALL */
2228
2229int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2230			  int flags);
2231#endif /* CONFIG_NET_SOCK_MSG */
2232
2233#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2234static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2235{
2236}
2237#endif
2238
2239#ifdef CONFIG_CGROUP_BPF
2240static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2241				      struct sk_buff *skb,
2242				      unsigned int end_offset)
2243{
2244	skops->skb = skb;
2245	skops->skb_data_end = skb->data + end_offset;
2246}
2247#else
2248static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2249				      struct sk_buff *skb,
2250				      unsigned int end_offset)
2251{
2252}
2253#endif
2254
2255/* Call BPF_SOCK_OPS program that returns an int. If the return value
2256 * is < 0, then the BPF op failed (for example if the loaded BPF
2257 * program does not support the chosen operation or there is no BPF
2258 * program loaded).
2259 */
2260#ifdef CONFIG_BPF
2261static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2262{
2263	struct bpf_sock_ops_kern sock_ops;
2264	int ret;
2265
2266	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2267	if (sk_fullsock(sk)) {
2268		sock_ops.is_fullsock = 1;
2269		sock_owned_by_me(sk);
2270	}
2271
2272	sock_ops.sk = sk;
2273	sock_ops.op = op;
2274	if (nargs > 0)
2275		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2276
2277	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2278	if (ret == 0)
2279		ret = sock_ops.reply;
2280	else
2281		ret = -1;
2282	return ret;
2283}
2284
2285static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2286{
2287	u32 args[2] = {arg1, arg2};
2288
2289	return tcp_call_bpf(sk, op, 2, args);
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293				    u32 arg3)
2294{
2295	u32 args[3] = {arg1, arg2, arg3};
2296
2297	return tcp_call_bpf(sk, op, 3, args);
2298}
2299
2300#else
2301static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2302{
2303	return -EPERM;
2304}
2305
2306static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2307{
2308	return -EPERM;
2309}
2310
2311static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2312				    u32 arg3)
2313{
2314	return -EPERM;
2315}
2316
2317#endif
2318
2319static inline u32 tcp_timeout_init(struct sock *sk)
2320{
2321	int timeout;
2322
2323	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2324
2325	if (timeout <= 0)
2326		timeout = TCP_TIMEOUT_INIT;
2327	return timeout;
2328}
2329
2330static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2331{
2332	int rwnd;
2333
2334	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2335
2336	if (rwnd < 0)
2337		rwnd = 0;
2338	return rwnd;
2339}
2340
2341static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2342{
2343	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2344}
2345
2346static inline void tcp_bpf_rtt(struct sock *sk)
2347{
2348	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2349		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2350}
2351
2352#if IS_ENABLED(CONFIG_SMC)
2353extern struct static_key_false tcp_have_smc;
2354#endif
2355
2356#if IS_ENABLED(CONFIG_TLS_DEVICE)
2357void clean_acked_data_enable(struct inet_connection_sock *icsk,
2358			     void (*cad)(struct sock *sk, u32 ack_seq));
2359void clean_acked_data_disable(struct inet_connection_sock *icsk);
2360void clean_acked_data_flush(void);
2361#endif
2362
2363DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2364static inline void tcp_add_tx_delay(struct sk_buff *skb,
2365				    const struct tcp_sock *tp)
2366{
2367	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2368		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2369}
2370
2371/* Compute Earliest Departure Time for some control packets
2372 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2373 */
2374static inline u64 tcp_transmit_time(const struct sock *sk)
2375{
2376	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2377		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2378			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2379
2380		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2381	}
2382	return 0;
2383}
2384
2385#endif	/* _TCP_H */
v6.2
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
  52int tcp_orphan_count_sum(void);
  53
  54void tcp_time_wait(struct sock *sk, int state, int timeo);
  55
  56#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  57#define MAX_TCP_OPTION_SPACE 40
  58#define TCP_MIN_SND_MSS		48
  59#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  60
  61/*
  62 * Never offer a window over 32767 without using window scaling. Some
  63 * poor stacks do signed 16bit maths!
  64 */
  65#define MAX_TCP_WINDOW		32767U
  66
  67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  68#define TCP_MIN_MSS		88U
  69
  70/* The initial MTU to use for probing */
  71#define TCP_BASE_MSS		1024
  72
  73/* probing interval, default to 10 minutes as per RFC4821 */
  74#define TCP_PROBE_INTERVAL	600
  75
  76/* Specify interval when tcp mtu probing will stop */
  77#define TCP_PROBE_THRESHOLD	8
  78
  79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  80#define TCP_FASTRETRANS_THRESH 3
  81
  82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  83#define TCP_MAX_QUICKACKS	16U
  84
  85/* Maximal number of window scale according to RFC1323 */
  86#define TCP_MAX_WSCALE		14U
  87
  88/* urg_data states */
  89#define TCP_URG_VALID	0x0100
  90#define TCP_URG_NOTYET	0x0200
  91#define TCP_URG_READ	0x0400
  92
  93#define TCP_RETR1	3	/*
  94				 * This is how many retries it does before it
  95				 * tries to figure out if the gateway is
  96				 * down. Minimal RFC value is 3; it corresponds
  97				 * to ~3sec-8min depending on RTO.
  98				 */
  99
 100#define TCP_RETR2	15	/*
 101				 * This should take at least
 102				 * 90 minutes to time out.
 103				 * RFC1122 says that the limit is 100 sec.
 104				 * 15 is ~13-30min depending on RTO.
 105				 */
 106
 107#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 108				 * when active opening a connection.
 109				 * RFC1122 says the minimum retry MUST
 110				 * be at least 180secs.  Nevertheless
 111				 * this value is corresponding to
 112				 * 63secs of retransmission with the
 113				 * current initial RTO.
 114				 */
 115
 116#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 117				 * when passive opening a connection.
 118				 * This is corresponding to 31secs of
 119				 * retransmission with the current
 120				 * initial RTO.
 121				 */
 122
 123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 124				  * state, about 60 seconds	*/
 125#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 126                                 /* BSD style FIN_WAIT2 deadlock breaker.
 127				  * It used to be 3min, new value is 60sec,
 128				  * to combine FIN-WAIT-2 timeout with
 129				  * TIME-WAIT timer.
 130				  */
 131#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 132
 133#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 134#if HZ >= 100
 135#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 136#define TCP_ATO_MIN	((unsigned)(HZ/25))
 137#else
 138#define TCP_DELACK_MIN	4U
 139#define TCP_ATO_MIN	4U
 140#endif
 141#define TCP_RTO_MAX	((unsigned)(120*HZ))
 142#define TCP_RTO_MIN	((unsigned)(HZ/5))
 143#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 144#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 145#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 146						 * used as a fallback RTO for the
 147						 * initial data transmission if no
 148						 * valid RTT sample has been acquired,
 149						 * most likely due to retrans in 3WHS.
 150						 */
 151
 152#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 153					                 * for local resources.
 154					                 */
 155#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 156#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 157#define TCP_KEEPALIVE_INTVL	(75*HZ)
 158
 159#define MAX_TCP_KEEPIDLE	32767
 160#define MAX_TCP_KEEPINTVL	32767
 161#define MAX_TCP_KEEPCNT		127
 162#define MAX_TCP_SYNCNT		127
 163
 164#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 165
 166#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 167#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 168					 * after this time. It should be equal
 169					 * (or greater than) TCP_TIMEWAIT_LEN
 170					 * to provide reliability equal to one
 171					 * provided by timewait state.
 172					 */
 173#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 174					 * timestamps. It must be less than
 175					 * minimal timewait lifetime.
 176					 */
 177/*
 178 *	TCP option
 179 */
 180
 181#define TCPOPT_NOP		1	/* Padding */
 182#define TCPOPT_EOL		0	/* End of options */
 183#define TCPOPT_MSS		2	/* Segment size negotiating */
 184#define TCPOPT_WINDOW		3	/* Window scaling */
 185#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 186#define TCPOPT_SACK             5       /* SACK Block */
 187#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 188#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 189#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 190#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 191#define TCPOPT_EXP		254	/* Experimental */
 192/* Magic number to be after the option value for sharing TCP
 193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 194 */
 195#define TCPOPT_FASTOPEN_MAGIC	0xF989
 196#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 197
 198/*
 199 *     TCP option lengths
 200 */
 201
 202#define TCPOLEN_MSS            4
 203#define TCPOLEN_WINDOW         3
 204#define TCPOLEN_SACK_PERM      2
 205#define TCPOLEN_TIMESTAMP      10
 206#define TCPOLEN_MD5SIG         18
 207#define TCPOLEN_FASTOPEN_BASE  2
 208#define TCPOLEN_EXP_FASTOPEN_BASE  4
 209#define TCPOLEN_EXP_SMC_BASE   6
 210
 211/* But this is what stacks really send out. */
 212#define TCPOLEN_TSTAMP_ALIGNED		12
 213#define TCPOLEN_WSCALE_ALIGNED		4
 214#define TCPOLEN_SACKPERM_ALIGNED	4
 215#define TCPOLEN_SACK_BASE		2
 216#define TCPOLEN_SACK_BASE_ALIGNED	4
 217#define TCPOLEN_SACK_PERBLOCK		8
 218#define TCPOLEN_MD5SIG_ALIGNED		20
 219#define TCPOLEN_MSS_ALIGNED		4
 220#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 221
 222/* Flags in tp->nonagle */
 223#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 224#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 225#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 226
 227/* TCP thin-stream limits */
 228#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 229
 230/* TCP initial congestion window as per rfc6928 */
 231#define TCP_INIT_CWND		10
 232
 233/* Bit Flags for sysctl_tcp_fastopen */
 234#define	TFO_CLIENT_ENABLE	1
 235#define	TFO_SERVER_ENABLE	2
 236#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 237
 238/* Accept SYN data w/o any cookie option */
 239#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 240
 241/* Force enable TFO on all listeners, i.e., not requiring the
 242 * TCP_FASTOPEN socket option.
 243 */
 244#define	TFO_SERVER_WO_SOCKOPT1	0x400
 245
 246
 247/* sysctl variables for tcp */
 248extern int sysctl_tcp_max_orphans;
 249extern long sysctl_tcp_mem[3];
 250
 251#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 252#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 253#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 254
 255extern atomic_long_t tcp_memory_allocated;
 256DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 257
 258extern struct percpu_counter tcp_sockets_allocated;
 259extern unsigned long tcp_memory_pressure;
 260
 261/* optimized version of sk_under_memory_pressure() for TCP sockets */
 262static inline bool tcp_under_memory_pressure(const struct sock *sk)
 263{
 264	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 265	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 266		return true;
 267
 268	return READ_ONCE(tcp_memory_pressure);
 269}
 270/*
 271 * The next routines deal with comparing 32 bit unsigned ints
 272 * and worry about wraparound (automatic with unsigned arithmetic).
 273 */
 274
 275static inline bool before(__u32 seq1, __u32 seq2)
 276{
 277        return (__s32)(seq1-seq2) < 0;
 278}
 279#define after(seq2, seq1) 	before(seq1, seq2)
 280
 281/* is s2<=s1<=s3 ? */
 282static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 283{
 284	return seq3 - seq2 >= seq1 - seq2;
 285}
 286
 287static inline bool tcp_out_of_memory(struct sock *sk)
 288{
 289	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 290	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 291		return true;
 292	return false;
 293}
 294
 295static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
 
 
 296{
 297	sk_wmem_queued_add(sk, -skb->truesize);
 298	if (!skb_zcopy_pure(skb))
 299		sk_mem_uncharge(sk, skb->truesize);
 300	else
 301		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
 302	__kfree_skb(skb);
 
 
 
 303}
 304
 305void sk_forced_mem_schedule(struct sock *sk, int size);
 306
 307bool tcp_check_oom(struct sock *sk, int shift);
 308
 309
 310extern struct proto tcp_prot;
 311
 312#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 315#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 316
 317void tcp_tasklet_init(void);
 318
 319int tcp_v4_err(struct sk_buff *skb, u32);
 320
 321void tcp_shutdown(struct sock *sk, int how);
 322
 323int tcp_v4_early_demux(struct sk_buff *skb);
 324int tcp_v4_rcv(struct sk_buff *skb);
 325
 326void tcp_remove_empty_skb(struct sock *sk);
 327int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 328int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 329int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 330int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 331			 size_t size, struct ubuf_info *uarg);
 332int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 333		 int flags);
 334int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 335			size_t size, int flags);
 
 
 336ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 337		 size_t size, int flags);
 338int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 339void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 340	      int size_goal);
 341void tcp_release_cb(struct sock *sk);
 342void tcp_wfree(struct sk_buff *skb);
 343void tcp_write_timer_handler(struct sock *sk);
 344void tcp_delack_timer_handler(struct sock *sk);
 345int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 346int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 347void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 348void tcp_rcv_space_adjust(struct sock *sk);
 349int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 350void tcp_twsk_destructor(struct sock *sk);
 351void tcp_twsk_purge(struct list_head *net_exit_list, int family);
 352ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 353			struct pipe_inode_info *pipe, size_t len,
 354			unsigned int flags);
 355struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 356				     bool force_schedule);
 357
 358void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 359static inline void tcp_dec_quickack_mode(struct sock *sk,
 360					 const unsigned int pkts)
 361{
 362	struct inet_connection_sock *icsk = inet_csk(sk);
 363
 364	if (icsk->icsk_ack.quick) {
 365		if (pkts >= icsk->icsk_ack.quick) {
 366			icsk->icsk_ack.quick = 0;
 367			/* Leaving quickack mode we deflate ATO. */
 368			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 369		} else
 370			icsk->icsk_ack.quick -= pkts;
 371	}
 372}
 373
 374#define	TCP_ECN_OK		1
 375#define	TCP_ECN_QUEUE_CWR	2
 376#define	TCP_ECN_DEMAND_CWR	4
 377#define	TCP_ECN_SEEN		8
 378
 379enum tcp_tw_status {
 380	TCP_TW_SUCCESS = 0,
 381	TCP_TW_RST = 1,
 382	TCP_TW_ACK = 2,
 383	TCP_TW_SYN = 3
 384};
 385
 386
 387enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 388					      struct sk_buff *skb,
 389					      const struct tcphdr *th);
 390struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 391			   struct request_sock *req, bool fastopen,
 392			   bool *lost_race);
 393int tcp_child_process(struct sock *parent, struct sock *child,
 394		      struct sk_buff *skb);
 395void tcp_enter_loss(struct sock *sk);
 396void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
 397void tcp_clear_retrans(struct tcp_sock *tp);
 398void tcp_update_metrics(struct sock *sk);
 399void tcp_init_metrics(struct sock *sk);
 400void tcp_metrics_init(void);
 401bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 402void __tcp_close(struct sock *sk, long timeout);
 403void tcp_close(struct sock *sk, long timeout);
 404void tcp_init_sock(struct sock *sk);
 405void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 406__poll_t tcp_poll(struct file *file, struct socket *sock,
 407		      struct poll_table_struct *wait);
 408int do_tcp_getsockopt(struct sock *sk, int level,
 409		      int optname, sockptr_t optval, sockptr_t optlen);
 410int tcp_getsockopt(struct sock *sk, int level, int optname,
 411		   char __user *optval, int __user *optlen);
 412bool tcp_bpf_bypass_getsockopt(int level, int optname);
 413int do_tcp_setsockopt(struct sock *sk, int level, int optname,
 414		      sockptr_t optval, unsigned int optlen);
 415int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 416		   unsigned int optlen);
 417void tcp_set_keepalive(struct sock *sk, int val);
 418void tcp_syn_ack_timeout(const struct request_sock *req);
 419int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
 420		int flags, int *addr_len);
 421int tcp_set_rcvlowat(struct sock *sk, int val);
 422int tcp_set_window_clamp(struct sock *sk, int val);
 423void tcp_update_recv_tstamps(struct sk_buff *skb,
 424			     struct scm_timestamping_internal *tss);
 425void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
 426			struct scm_timestamping_internal *tss);
 427void tcp_data_ready(struct sock *sk);
 428#ifdef CONFIG_MMU
 429int tcp_mmap(struct file *file, struct socket *sock,
 430	     struct vm_area_struct *vma);
 431#endif
 432void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 433		       struct tcp_options_received *opt_rx,
 434		       int estab, struct tcp_fastopen_cookie *foc);
 435const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 436
 437/*
 438 *	BPF SKB-less helpers
 439 */
 440u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 441			 struct tcphdr *th, u32 *cookie);
 442u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 443			 struct tcphdr *th, u32 *cookie);
 444u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
 445u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 446			  const struct tcp_request_sock_ops *af_ops,
 447			  struct sock *sk, struct tcphdr *th);
 448/*
 449 *	TCP v4 functions exported for the inet6 API
 450 */
 451
 452void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 453void tcp_v4_mtu_reduced(struct sock *sk);
 454void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 455void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 456int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 457struct sock *tcp_create_openreq_child(const struct sock *sk,
 458				      struct request_sock *req,
 459				      struct sk_buff *skb);
 460void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 461struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 462				  struct request_sock *req,
 463				  struct dst_entry *dst,
 464				  struct request_sock *req_unhash,
 465				  bool *own_req);
 466int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 467int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 468int tcp_connect(struct sock *sk);
 469enum tcp_synack_type {
 470	TCP_SYNACK_NORMAL,
 471	TCP_SYNACK_FASTOPEN,
 472	TCP_SYNACK_COOKIE,
 473};
 474struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 475				struct request_sock *req,
 476				struct tcp_fastopen_cookie *foc,
 477				enum tcp_synack_type synack_type,
 478				struct sk_buff *syn_skb);
 479int tcp_disconnect(struct sock *sk, int flags);
 480
 481void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 482int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 483void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 484
 485/* From syncookies.c */
 486struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 487				 struct request_sock *req,
 488				 struct dst_entry *dst, u32 tsoff);
 489int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 490		      u32 cookie);
 491struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 492struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 493					    const struct tcp_request_sock_ops *af_ops,
 494					    struct sock *sk, struct sk_buff *skb);
 495#ifdef CONFIG_SYN_COOKIES
 496
 497/* Syncookies use a monotonic timer which increments every 60 seconds.
 498 * This counter is used both as a hash input and partially encoded into
 499 * the cookie value.  A cookie is only validated further if the delta
 500 * between the current counter value and the encoded one is less than this,
 501 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 502 * the counter advances immediately after a cookie is generated).
 503 */
 504#define MAX_SYNCOOKIE_AGE	2
 505#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 506#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 507
 508/* syncookies: remember time of last synqueue overflow
 509 * But do not dirty this field too often (once per second is enough)
 510 * It is racy as we do not hold a lock, but race is very minor.
 511 */
 512static inline void tcp_synq_overflow(const struct sock *sk)
 513{
 514	unsigned int last_overflow;
 515	unsigned int now = jiffies;
 516
 517	if (sk->sk_reuseport) {
 518		struct sock_reuseport *reuse;
 519
 520		reuse = rcu_dereference(sk->sk_reuseport_cb);
 521		if (likely(reuse)) {
 522			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 523			if (!time_between32(now, last_overflow,
 524					    last_overflow + HZ))
 525				WRITE_ONCE(reuse->synq_overflow_ts, now);
 526			return;
 527		}
 528	}
 529
 530	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 531	if (!time_between32(now, last_overflow, last_overflow + HZ))
 532		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 533}
 534
 535/* syncookies: no recent synqueue overflow on this listening socket? */
 536static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 537{
 538	unsigned int last_overflow;
 539	unsigned int now = jiffies;
 540
 541	if (sk->sk_reuseport) {
 542		struct sock_reuseport *reuse;
 543
 544		reuse = rcu_dereference(sk->sk_reuseport_cb);
 545		if (likely(reuse)) {
 546			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 547			return !time_between32(now, last_overflow - HZ,
 548					       last_overflow +
 549					       TCP_SYNCOOKIE_VALID);
 550		}
 551	}
 552
 553	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 554
 555	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 556	 * then we're under synflood. However, we have to use
 557	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 558	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 559	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 560	 * which could lead to rejecting a valid syncookie.
 561	 */
 562	return !time_between32(now, last_overflow - HZ,
 563			       last_overflow + TCP_SYNCOOKIE_VALID);
 564}
 565
 566static inline u32 tcp_cookie_time(void)
 567{
 568	u64 val = get_jiffies_64();
 569
 570	do_div(val, TCP_SYNCOOKIE_PERIOD);
 571	return val;
 572}
 573
 574u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 575			      u16 *mssp);
 576__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 577u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 578bool cookie_timestamp_decode(const struct net *net,
 579			     struct tcp_options_received *opt);
 580bool cookie_ecn_ok(const struct tcp_options_received *opt,
 581		   const struct net *net, const struct dst_entry *dst);
 582
 583/* From net/ipv6/syncookies.c */
 584int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 585		      u32 cookie);
 586struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 587
 588u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 589			      const struct tcphdr *th, u16 *mssp);
 590__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 591#endif
 592/* tcp_output.c */
 593
 594void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
 595void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
 596void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 597			       int nonagle);
 598int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 599int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 600void tcp_retransmit_timer(struct sock *sk);
 601void tcp_xmit_retransmit_queue(struct sock *);
 602void tcp_simple_retransmit(struct sock *);
 603void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 604int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 605enum tcp_queue {
 606	TCP_FRAG_IN_WRITE_QUEUE,
 607	TCP_FRAG_IN_RTX_QUEUE,
 608};
 609int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 610		 struct sk_buff *skb, u32 len,
 611		 unsigned int mss_now, gfp_t gfp);
 612
 613void tcp_send_probe0(struct sock *);
 614void tcp_send_partial(struct sock *);
 615int tcp_write_wakeup(struct sock *, int mib);
 616void tcp_send_fin(struct sock *sk);
 617void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 618int tcp_send_synack(struct sock *);
 619void tcp_push_one(struct sock *, unsigned int mss_now);
 620void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 621void tcp_send_ack(struct sock *sk);
 622void tcp_send_delayed_ack(struct sock *sk);
 623void tcp_send_loss_probe(struct sock *sk);
 624bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 625void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 626			     const struct sk_buff *next_skb);
 627
 628/* tcp_input.c */
 629void tcp_rearm_rto(struct sock *sk);
 630void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 631void tcp_reset(struct sock *sk, struct sk_buff *skb);
 632void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 633void tcp_fin(struct sock *sk);
 634void tcp_check_space(struct sock *sk);
 635
 636/* tcp_timer.c */
 637void tcp_init_xmit_timers(struct sock *);
 638static inline void tcp_clear_xmit_timers(struct sock *sk)
 639{
 640	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 641		__sock_put(sk);
 642
 643	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 644		__sock_put(sk);
 645
 646	inet_csk_clear_xmit_timers(sk);
 647}
 648
 649unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 650unsigned int tcp_current_mss(struct sock *sk);
 651u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
 652
 653/* Bound MSS / TSO packet size with the half of the window */
 654static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 655{
 656	int cutoff;
 657
 658	/* When peer uses tiny windows, there is no use in packetizing
 659	 * to sub-MSS pieces for the sake of SWS or making sure there
 660	 * are enough packets in the pipe for fast recovery.
 661	 *
 662	 * On the other hand, for extremely large MSS devices, handling
 663	 * smaller than MSS windows in this way does make sense.
 664	 */
 665	if (tp->max_window > TCP_MSS_DEFAULT)
 666		cutoff = (tp->max_window >> 1);
 667	else
 668		cutoff = tp->max_window;
 669
 670	if (cutoff && pktsize > cutoff)
 671		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 672	else
 673		return pktsize;
 674}
 675
 676/* tcp.c */
 677void tcp_get_info(struct sock *, struct tcp_info *);
 678
 679/* Read 'sendfile()'-style from a TCP socket */
 680int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 681		  sk_read_actor_t recv_actor);
 682int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
 683struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
 684void tcp_read_done(struct sock *sk, size_t len);
 685
 686void tcp_initialize_rcv_mss(struct sock *sk);
 687
 688int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 689int tcp_mss_to_mtu(struct sock *sk, int mss);
 690void tcp_mtup_init(struct sock *sk);
 691
 692static inline void tcp_bound_rto(const struct sock *sk)
 693{
 694	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 695		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 696}
 697
 698static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 699{
 700	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 701}
 702
 703static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 704{
 705	/* mptcp hooks are only on the slow path */
 706	if (sk_is_mptcp((struct sock *)tp))
 707		return;
 708
 709	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 710			       ntohl(TCP_FLAG_ACK) |
 711			       snd_wnd);
 712}
 713
 714static inline void tcp_fast_path_on(struct tcp_sock *tp)
 715{
 716	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 717}
 718
 719static inline void tcp_fast_path_check(struct sock *sk)
 720{
 721	struct tcp_sock *tp = tcp_sk(sk);
 722
 723	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 724	    tp->rcv_wnd &&
 725	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 726	    !tp->urg_data)
 727		tcp_fast_path_on(tp);
 728}
 729
 730/* Compute the actual rto_min value */
 731static inline u32 tcp_rto_min(struct sock *sk)
 732{
 733	const struct dst_entry *dst = __sk_dst_get(sk);
 734	u32 rto_min = inet_csk(sk)->icsk_rto_min;
 735
 736	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 737		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 738	return rto_min;
 739}
 740
 741static inline u32 tcp_rto_min_us(struct sock *sk)
 742{
 743	return jiffies_to_usecs(tcp_rto_min(sk));
 744}
 745
 746static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 747{
 748	return dst_metric_locked(dst, RTAX_CC_ALGO);
 749}
 750
 751/* Minimum RTT in usec. ~0 means not available. */
 752static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 753{
 754	return minmax_get(&tp->rtt_min);
 755}
 756
 757/* Compute the actual receive window we are currently advertising.
 758 * Rcv_nxt can be after the window if our peer push more data
 759 * than the offered window.
 760 */
 761static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 762{
 763	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 764
 765	if (win < 0)
 766		win = 0;
 767	return (u32) win;
 768}
 769
 770/* Choose a new window, without checks for shrinking, and without
 771 * scaling applied to the result.  The caller does these things
 772 * if necessary.  This is a "raw" window selection.
 773 */
 774u32 __tcp_select_window(struct sock *sk);
 775
 776void tcp_send_window_probe(struct sock *sk);
 777
 778/* TCP uses 32bit jiffies to save some space.
 779 * Note that this is different from tcp_time_stamp, which
 780 * historically has been the same until linux-4.13.
 781 */
 782#define tcp_jiffies32 ((u32)jiffies)
 783
 784/*
 785 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 786 * It is no longer tied to jiffies, but to 1 ms clock.
 787 * Note: double check if you want to use tcp_jiffies32 instead of this.
 788 */
 789#define TCP_TS_HZ	1000
 790
 791static inline u64 tcp_clock_ns(void)
 792{
 793	return ktime_get_ns();
 794}
 795
 796static inline u64 tcp_clock_us(void)
 797{
 798	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 799}
 800
 801/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 802static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 803{
 804	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 805}
 806
 807/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 808static inline u32 tcp_ns_to_ts(u64 ns)
 809{
 810	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 811}
 812
 813/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 814static inline u32 tcp_time_stamp_raw(void)
 815{
 816	return tcp_ns_to_ts(tcp_clock_ns());
 817}
 818
 819void tcp_mstamp_refresh(struct tcp_sock *tp);
 820
 821static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 822{
 823	return max_t(s64, t1 - t0, 0);
 824}
 825
 826static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 827{
 828	return tcp_ns_to_ts(skb->skb_mstamp_ns);
 829}
 830
 831/* provide the departure time in us unit */
 832static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 833{
 834	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 835}
 836
 837
 838#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 839
 840#define TCPHDR_FIN 0x01
 841#define TCPHDR_SYN 0x02
 842#define TCPHDR_RST 0x04
 843#define TCPHDR_PSH 0x08
 844#define TCPHDR_ACK 0x10
 845#define TCPHDR_URG 0x20
 846#define TCPHDR_ECE 0x40
 847#define TCPHDR_CWR 0x80
 848
 849#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 850
 851/* This is what the send packet queuing engine uses to pass
 852 * TCP per-packet control information to the transmission code.
 853 * We also store the host-order sequence numbers in here too.
 854 * This is 44 bytes if IPV6 is enabled.
 855 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 856 */
 857struct tcp_skb_cb {
 858	__u32		seq;		/* Starting sequence number	*/
 859	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 860	union {
 861		/* Note : tcp_tw_isn is used in input path only
 862		 *	  (isn chosen by tcp_timewait_state_process())
 863		 *
 864		 * 	  tcp_gso_segs/size are used in write queue only,
 865		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 866		 */
 867		__u32		tcp_tw_isn;
 868		struct {
 869			u16	tcp_gso_segs;
 870			u16	tcp_gso_size;
 871		};
 872	};
 873	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 874
 875	__u8		sacked;		/* State flags for SACK.	*/
 876#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 877#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 878#define TCPCB_LOST		0x04	/* SKB is lost			*/
 879#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 880#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 881#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 882#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 883				TCPCB_REPAIRED)
 884
 885	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 886	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 887			eor:1,		/* Is skb MSG_EOR marked? */
 888			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 889			unused:5;
 890	__u32		ack_seq;	/* Sequence number ACK'd	*/
 891	union {
 892		struct {
 893#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
 894			/* There is space for up to 24 bytes */
 895			__u32 is_app_limited:1, /* cwnd not fully used? */
 896			      delivered_ce:20,
 897			      unused:11;
 898			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 899			__u32 delivered;
 900			/* start of send pipeline phase */
 901			u64 first_tx_mstamp;
 902			/* when we reached the "delivered" count */
 903			u64 delivered_mstamp;
 904		} tx;   /* only used for outgoing skbs */
 905		union {
 906			struct inet_skb_parm	h4;
 907#if IS_ENABLED(CONFIG_IPV6)
 908			struct inet6_skb_parm	h6;
 909#endif
 910		} header;	/* For incoming skbs */
 911	};
 912};
 913
 914#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 915
 916extern const struct inet_connection_sock_af_ops ipv4_specific;
 917
 918#if IS_ENABLED(CONFIG_IPV6)
 919/* This is the variant of inet6_iif() that must be used by TCP,
 920 * as TCP moves IP6CB into a different location in skb->cb[]
 921 */
 922static inline int tcp_v6_iif(const struct sk_buff *skb)
 923{
 924	return TCP_SKB_CB(skb)->header.h6.iif;
 925}
 926
 927static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 928{
 929	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 930
 931	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 932}
 933
 934/* TCP_SKB_CB reference means this can not be used from early demux */
 935static inline int tcp_v6_sdif(const struct sk_buff *skb)
 936{
 937#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 938	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 939		return TCP_SKB_CB(skb)->header.h6.iif;
 940#endif
 941	return 0;
 942}
 943
 944extern const struct inet_connection_sock_af_ops ipv6_specific;
 945
 946INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 947INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 948void tcp_v6_early_demux(struct sk_buff *skb);
 949
 950#endif
 951
 952/* TCP_SKB_CB reference means this can not be used from early demux */
 953static inline int tcp_v4_sdif(struct sk_buff *skb)
 954{
 955#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 956	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 957		return TCP_SKB_CB(skb)->header.h4.iif;
 958#endif
 959	return 0;
 960}
 961
 962/* Due to TSO, an SKB can be composed of multiple actual
 963 * packets.  To keep these tracked properly, we use this.
 964 */
 965static inline int tcp_skb_pcount(const struct sk_buff *skb)
 966{
 967	return TCP_SKB_CB(skb)->tcp_gso_segs;
 968}
 969
 970static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 971{
 972	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 973}
 974
 975static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 976{
 977	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 978}
 979
 980/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 981static inline int tcp_skb_mss(const struct sk_buff *skb)
 982{
 983	return TCP_SKB_CB(skb)->tcp_gso_size;
 984}
 985
 986static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 987{
 988	return likely(!TCP_SKB_CB(skb)->eor);
 989}
 990
 991static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 992					const struct sk_buff *from)
 993{
 994	return likely(tcp_skb_can_collapse_to(to) &&
 995		      mptcp_skb_can_collapse(to, from) &&
 996		      skb_pure_zcopy_same(to, from));
 997}
 998
 999/* Events passed to congestion control interface */
1000enum tcp_ca_event {
1001	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1002	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1003	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1004	CA_EVENT_LOSS,		/* loss timeout */
1005	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1006	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1007};
1008
1009/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1010enum tcp_ca_ack_event_flags {
1011	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1012	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1013	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1014};
1015
1016/*
1017 * Interface for adding new TCP congestion control handlers
1018 */
1019#define TCP_CA_NAME_MAX	16
1020#define TCP_CA_MAX	128
1021#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1022
1023#define TCP_CA_UNSPEC	0
1024
1025/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1026#define TCP_CONG_NON_RESTRICTED 0x1
1027/* Requires ECN/ECT set on all packets */
1028#define TCP_CONG_NEEDS_ECN	0x2
1029#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1030
1031union tcp_cc_info;
1032
1033struct ack_sample {
1034	u32 pkts_acked;
1035	s32 rtt_us;
1036	u32 in_flight;
1037};
1038
1039/* A rate sample measures the number of (original/retransmitted) data
1040 * packets delivered "delivered" over an interval of time "interval_us".
1041 * The tcp_rate.c code fills in the rate sample, and congestion
1042 * control modules that define a cong_control function to run at the end
1043 * of ACK processing can optionally chose to consult this sample when
1044 * setting cwnd and pacing rate.
1045 * A sample is invalid if "delivered" or "interval_us" is negative.
1046 */
1047struct rate_sample {
1048	u64  prior_mstamp; /* starting timestamp for interval */
1049	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1050	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1051	s32  delivered;		/* number of packets delivered over interval */
1052	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1053	long interval_us;	/* time for tp->delivered to incr "delivered" */
1054	u32 snd_interval_us;	/* snd interval for delivered packets */
1055	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1056	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1057	int  losses;		/* number of packets marked lost upon ACK */
1058	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1059	u32  prior_in_flight;	/* in flight before this ACK */
1060	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1061	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1062	bool is_retrans;	/* is sample from retransmission? */
1063	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1064};
1065
1066struct tcp_congestion_ops {
1067/* fast path fields are put first to fill one cache line */
1068
1069	/* return slow start threshold (required) */
1070	u32 (*ssthresh)(struct sock *sk);
1071
1072	/* do new cwnd calculation (required) */
1073	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1074
1075	/* call before changing ca_state (optional) */
1076	void (*set_state)(struct sock *sk, u8 new_state);
1077
1078	/* call when cwnd event occurs (optional) */
1079	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1080
1081	/* call when ack arrives (optional) */
1082	void (*in_ack_event)(struct sock *sk, u32 flags);
1083
1084	/* hook for packet ack accounting (optional) */
1085	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1086
1087	/* override sysctl_tcp_min_tso_segs */
1088	u32 (*min_tso_segs)(struct sock *sk);
1089
1090	/* call when packets are delivered to update cwnd and pacing rate,
1091	 * after all the ca_state processing. (optional)
1092	 */
1093	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1094
1095
1096	/* new value of cwnd after loss (required) */
1097	u32  (*undo_cwnd)(struct sock *sk);
1098	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1099	u32 (*sndbuf_expand)(struct sock *sk);
1100
1101/* control/slow paths put last */
1102	/* get info for inet_diag (optional) */
1103	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1104			   union tcp_cc_info *info);
1105
1106	char 			name[TCP_CA_NAME_MAX];
1107	struct module		*owner;
1108	struct list_head	list;
1109	u32			key;
1110	u32			flags;
1111
1112	/* initialize private data (optional) */
1113	void (*init)(struct sock *sk);
1114	/* cleanup private data  (optional) */
1115	void (*release)(struct sock *sk);
1116} ____cacheline_aligned_in_smp;
1117
1118int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1119void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1120
1121void tcp_assign_congestion_control(struct sock *sk);
1122void tcp_init_congestion_control(struct sock *sk);
1123void tcp_cleanup_congestion_control(struct sock *sk);
1124int tcp_set_default_congestion_control(struct net *net, const char *name);
1125void tcp_get_default_congestion_control(struct net *net, char *name);
1126void tcp_get_available_congestion_control(char *buf, size_t len);
1127void tcp_get_allowed_congestion_control(char *buf, size_t len);
1128int tcp_set_allowed_congestion_control(char *allowed);
1129int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1130			       bool cap_net_admin);
1131u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1132void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1133
1134u32 tcp_reno_ssthresh(struct sock *sk);
1135u32 tcp_reno_undo_cwnd(struct sock *sk);
1136void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1137extern struct tcp_congestion_ops tcp_reno;
1138
1139struct tcp_congestion_ops *tcp_ca_find(const char *name);
1140struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1141u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1142#ifdef CONFIG_INET
1143char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1144#else
1145static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1146{
1147	return NULL;
1148}
1149#endif
1150
1151static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1152{
1153	const struct inet_connection_sock *icsk = inet_csk(sk);
1154
1155	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1156}
1157
 
 
 
 
 
 
 
 
 
1158static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1159{
1160	const struct inet_connection_sock *icsk = inet_csk(sk);
1161
1162	if (icsk->icsk_ca_ops->cwnd_event)
1163		icsk->icsk_ca_ops->cwnd_event(sk, event);
1164}
1165
1166/* From tcp_cong.c */
1167void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1168
1169/* From tcp_rate.c */
1170void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1171void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1172			    struct rate_sample *rs);
1173void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1174		  bool is_sack_reneg, struct rate_sample *rs);
1175void tcp_rate_check_app_limited(struct sock *sk);
1176
1177static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1178{
1179	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1180}
1181
1182/* These functions determine how the current flow behaves in respect of SACK
1183 * handling. SACK is negotiated with the peer, and therefore it can vary
1184 * between different flows.
1185 *
1186 * tcp_is_sack - SACK enabled
1187 * tcp_is_reno - No SACK
1188 */
1189static inline int tcp_is_sack(const struct tcp_sock *tp)
1190{
1191	return likely(tp->rx_opt.sack_ok);
1192}
1193
1194static inline bool tcp_is_reno(const struct tcp_sock *tp)
1195{
1196	return !tcp_is_sack(tp);
1197}
1198
1199static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1200{
1201	return tp->sacked_out + tp->lost_out;
1202}
1203
1204/* This determines how many packets are "in the network" to the best
1205 * of our knowledge.  In many cases it is conservative, but where
1206 * detailed information is available from the receiver (via SACK
1207 * blocks etc.) we can make more aggressive calculations.
1208 *
1209 * Use this for decisions involving congestion control, use just
1210 * tp->packets_out to determine if the send queue is empty or not.
1211 *
1212 * Read this equation as:
1213 *
1214 *	"Packets sent once on transmission queue" MINUS
1215 *	"Packets left network, but not honestly ACKed yet" PLUS
1216 *	"Packets fast retransmitted"
1217 */
1218static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1219{
1220	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1221}
1222
1223#define TCP_INFINITE_SSTHRESH	0x7fffffff
1224
1225static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1226{
1227	return tp->snd_cwnd;
1228}
1229
1230static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1231{
1232	WARN_ON_ONCE((int)val <= 0);
1233	tp->snd_cwnd = val;
1234}
1235
1236static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1237{
1238	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1239}
1240
1241static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1242{
1243	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1244}
1245
1246static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1247{
1248	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1249	       (1 << inet_csk(sk)->icsk_ca_state);
1250}
1251
1252/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1253 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1254 * ssthresh.
1255 */
1256static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1257{
1258	const struct tcp_sock *tp = tcp_sk(sk);
1259
1260	if (tcp_in_cwnd_reduction(sk))
1261		return tp->snd_ssthresh;
1262	else
1263		return max(tp->snd_ssthresh,
1264			   ((tcp_snd_cwnd(tp) >> 1) +
1265			    (tcp_snd_cwnd(tp) >> 2)));
1266}
1267
1268/* Use define here intentionally to get WARN_ON location shown at the caller */
1269#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1270
1271void tcp_enter_cwr(struct sock *sk);
1272__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1273
1274/* The maximum number of MSS of available cwnd for which TSO defers
1275 * sending if not using sysctl_tcp_tso_win_divisor.
1276 */
1277static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1278{
1279	return 3;
1280}
1281
1282/* Returns end sequence number of the receiver's advertised window */
1283static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1284{
1285	return tp->snd_una + tp->snd_wnd;
1286}
1287
1288/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1289 * flexible approach. The RFC suggests cwnd should not be raised unless
1290 * it was fully used previously. And that's exactly what we do in
1291 * congestion avoidance mode. But in slow start we allow cwnd to grow
1292 * as long as the application has used half the cwnd.
1293 * Example :
1294 *    cwnd is 10 (IW10), but application sends 9 frames.
1295 *    We allow cwnd to reach 18 when all frames are ACKed.
1296 * This check is safe because it's as aggressive as slow start which already
1297 * risks 100% overshoot. The advantage is that we discourage application to
1298 * either send more filler packets or data to artificially blow up the cwnd
1299 * usage, and allow application-limited process to probe bw more aggressively.
1300 */
1301static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1302{
1303	const struct tcp_sock *tp = tcp_sk(sk);
1304
1305	if (tp->is_cwnd_limited)
1306		return true;
1307
1308	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1309	if (tcp_in_slow_start(tp))
1310		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1311
1312	return false;
1313}
1314
1315/* BBR congestion control needs pacing.
1316 * Same remark for SO_MAX_PACING_RATE.
1317 * sch_fq packet scheduler is efficiently handling pacing,
1318 * but is not always installed/used.
1319 * Return true if TCP stack should pace packets itself.
1320 */
1321static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1322{
1323	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1324}
1325
1326/* Estimates in how many jiffies next packet for this flow can be sent.
1327 * Scheduling a retransmit timer too early would be silly.
1328 */
1329static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1330{
1331	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1332
1333	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1334}
1335
1336static inline void tcp_reset_xmit_timer(struct sock *sk,
1337					const int what,
1338					unsigned long when,
1339					const unsigned long max_when)
1340{
1341	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1342				  max_when);
1343}
1344
1345/* Something is really bad, we could not queue an additional packet,
1346 * because qdisc is full or receiver sent a 0 window, or we are paced.
1347 * We do not want to add fuel to the fire, or abort too early,
1348 * so make sure the timer we arm now is at least 200ms in the future,
1349 * regardless of current icsk_rto value (as it could be ~2ms)
1350 */
1351static inline unsigned long tcp_probe0_base(const struct sock *sk)
1352{
1353	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1354}
1355
1356/* Variant of inet_csk_rto_backoff() used for zero window probes */
1357static inline unsigned long tcp_probe0_when(const struct sock *sk,
1358					    unsigned long max_when)
1359{
1360	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1361			   inet_csk(sk)->icsk_backoff);
1362	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1363
1364	return (unsigned long)min_t(u64, when, max_when);
1365}
1366
1367static inline void tcp_check_probe_timer(struct sock *sk)
1368{
1369	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1370		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1371				     tcp_probe0_base(sk), TCP_RTO_MAX);
1372}
1373
1374static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1375{
1376	tp->snd_wl1 = seq;
1377}
1378
1379static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1380{
1381	tp->snd_wl1 = seq;
1382}
1383
1384/*
1385 * Calculate(/check) TCP checksum
1386 */
1387static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1388				   __be32 daddr, __wsum base)
1389{
1390	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1391}
1392
1393static inline bool tcp_checksum_complete(struct sk_buff *skb)
1394{
1395	return !skb_csum_unnecessary(skb) &&
1396		__skb_checksum_complete(skb);
1397}
1398
1399bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1400		     enum skb_drop_reason *reason);
1401
1402
1403int tcp_filter(struct sock *sk, struct sk_buff *skb);
1404void tcp_set_state(struct sock *sk, int state);
1405void tcp_done(struct sock *sk);
1406int tcp_abort(struct sock *sk, int err);
1407
1408static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1409{
1410	rx_opt->dsack = 0;
1411	rx_opt->num_sacks = 0;
1412}
1413
1414void tcp_cwnd_restart(struct sock *sk, s32 delta);
1415
1416static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1417{
1418	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1419	struct tcp_sock *tp = tcp_sk(sk);
1420	s32 delta;
1421
1422	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1423	    tp->packets_out || ca_ops->cong_control)
1424		return;
1425	delta = tcp_jiffies32 - tp->lsndtime;
1426	if (delta > inet_csk(sk)->icsk_rto)
1427		tcp_cwnd_restart(sk, delta);
1428}
1429
1430/* Determine a window scaling and initial window to offer. */
1431void tcp_select_initial_window(const struct sock *sk, int __space,
1432			       __u32 mss, __u32 *rcv_wnd,
1433			       __u32 *window_clamp, int wscale_ok,
1434			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1435
1436static inline int tcp_win_from_space(const struct sock *sk, int space)
1437{
1438	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1439
1440	return tcp_adv_win_scale <= 0 ?
1441		(space>>(-tcp_adv_win_scale)) :
1442		space - (space>>tcp_adv_win_scale);
1443}
1444
1445/* Note: caller must be prepared to deal with negative returns */
1446static inline int tcp_space(const struct sock *sk)
1447{
1448	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1449				  READ_ONCE(sk->sk_backlog.len) -
1450				  atomic_read(&sk->sk_rmem_alloc));
1451}
1452
1453static inline int tcp_full_space(const struct sock *sk)
1454{
1455	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1456}
1457
1458static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1459{
1460	int unused_mem = sk_unused_reserved_mem(sk);
1461	struct tcp_sock *tp = tcp_sk(sk);
1462
1463	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1464	if (unused_mem)
1465		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1466					 tcp_win_from_space(sk, unused_mem));
1467}
1468
1469void tcp_cleanup_rbuf(struct sock *sk, int copied);
1470
1471/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1472 * If 87.5 % (7/8) of the space has been consumed, we want to override
1473 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1474 * len/truesize ratio.
1475 */
1476static inline bool tcp_rmem_pressure(const struct sock *sk)
1477{
1478	int rcvbuf, threshold;
1479
1480	if (tcp_under_memory_pressure(sk))
1481		return true;
1482
1483	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1484	threshold = rcvbuf - (rcvbuf >> 3);
1485
1486	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1487}
1488
1489static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1490{
1491	const struct tcp_sock *tp = tcp_sk(sk);
1492	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1493
1494	if (avail <= 0)
1495		return false;
1496
1497	return (avail >= target) || tcp_rmem_pressure(sk) ||
1498	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1499}
1500
1501extern void tcp_openreq_init_rwin(struct request_sock *req,
1502				  const struct sock *sk_listener,
1503				  const struct dst_entry *dst);
1504
1505void tcp_enter_memory_pressure(struct sock *sk);
1506void tcp_leave_memory_pressure(struct sock *sk);
1507
1508static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1509{
1510	struct net *net = sock_net((struct sock *)tp);
1511
1512	return tp->keepalive_intvl ? :
1513		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1514}
1515
1516static inline int keepalive_time_when(const struct tcp_sock *tp)
1517{
1518	struct net *net = sock_net((struct sock *)tp);
1519
1520	return tp->keepalive_time ? :
1521		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1522}
1523
1524static inline int keepalive_probes(const struct tcp_sock *tp)
1525{
1526	struct net *net = sock_net((struct sock *)tp);
1527
1528	return tp->keepalive_probes ? :
1529		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1530}
1531
1532static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1533{
1534	const struct inet_connection_sock *icsk = &tp->inet_conn;
1535
1536	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1537			  tcp_jiffies32 - tp->rcv_tstamp);
1538}
1539
1540static inline int tcp_fin_time(const struct sock *sk)
1541{
1542	int fin_timeout = tcp_sk(sk)->linger2 ? :
1543		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1544	const int rto = inet_csk(sk)->icsk_rto;
1545
1546	if (fin_timeout < (rto << 2) - (rto >> 1))
1547		fin_timeout = (rto << 2) - (rto >> 1);
1548
1549	return fin_timeout;
1550}
1551
1552static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1553				  int paws_win)
1554{
1555	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1556		return true;
1557	if (unlikely(!time_before32(ktime_get_seconds(),
1558				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1559		return true;
1560	/*
1561	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1562	 * then following tcp messages have valid values. Ignore 0 value,
1563	 * or else 'negative' tsval might forbid us to accept their packets.
1564	 */
1565	if (!rx_opt->ts_recent)
1566		return true;
1567	return false;
1568}
1569
1570static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1571				   int rst)
1572{
1573	if (tcp_paws_check(rx_opt, 0))
1574		return false;
1575
1576	/* RST segments are not recommended to carry timestamp,
1577	   and, if they do, it is recommended to ignore PAWS because
1578	   "their cleanup function should take precedence over timestamps."
1579	   Certainly, it is mistake. It is necessary to understand the reasons
1580	   of this constraint to relax it: if peer reboots, clock may go
1581	   out-of-sync and half-open connections will not be reset.
1582	   Actually, the problem would be not existing if all
1583	   the implementations followed draft about maintaining clock
1584	   via reboots. Linux-2.2 DOES NOT!
1585
1586	   However, we can relax time bounds for RST segments to MSL.
1587	 */
1588	if (rst && !time_before32(ktime_get_seconds(),
1589				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1590		return false;
1591	return true;
1592}
1593
1594bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1595			  int mib_idx, u32 *last_oow_ack_time);
1596
1597static inline void tcp_mib_init(struct net *net)
1598{
1599	/* See RFC 2012 */
1600	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1601	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1602	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1603	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1604}
1605
1606/* from STCP */
1607static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1608{
1609	tp->lost_skb_hint = NULL;
1610}
1611
1612static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1613{
1614	tcp_clear_retrans_hints_partial(tp);
1615	tp->retransmit_skb_hint = NULL;
1616}
1617
1618union tcp_md5_addr {
1619	struct in_addr  a4;
1620#if IS_ENABLED(CONFIG_IPV6)
1621	struct in6_addr	a6;
1622#endif
1623};
1624
1625/* - key database */
1626struct tcp_md5sig_key {
1627	struct hlist_node	node;
1628	u8			keylen;
1629	u8			family; /* AF_INET or AF_INET6 */
1630	u8			prefixlen;
1631	u8			flags;
1632	union tcp_md5_addr	addr;
1633	int			l3index; /* set if key added with L3 scope */
1634	u8			key[TCP_MD5SIG_MAXKEYLEN];
1635	struct rcu_head		rcu;
1636};
1637
1638/* - sock block */
1639struct tcp_md5sig_info {
1640	struct hlist_head	head;
1641	struct rcu_head		rcu;
1642};
1643
1644/* - pseudo header */
1645struct tcp4_pseudohdr {
1646	__be32		saddr;
1647	__be32		daddr;
1648	__u8		pad;
1649	__u8		protocol;
1650	__be16		len;
1651};
1652
1653struct tcp6_pseudohdr {
1654	struct in6_addr	saddr;
1655	struct in6_addr daddr;
1656	__be32		len;
1657	__be32		protocol;	/* including padding */
1658};
1659
1660union tcp_md5sum_block {
1661	struct tcp4_pseudohdr ip4;
1662#if IS_ENABLED(CONFIG_IPV6)
1663	struct tcp6_pseudohdr ip6;
1664#endif
1665};
1666
1667/* - pool: digest algorithm, hash description and scratch buffer */
1668struct tcp_md5sig_pool {
1669	struct ahash_request	*md5_req;
1670	void			*scratch;
1671};
1672
1673/* - functions */
1674int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1675			const struct sock *sk, const struct sk_buff *skb);
1676int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1677		   int family, u8 prefixlen, int l3index, u8 flags,
1678		   const u8 *newkey, u8 newkeylen);
1679int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1680		     int family, u8 prefixlen, int l3index,
1681		     struct tcp_md5sig_key *key);
1682
1683int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1684		   int family, u8 prefixlen, int l3index, u8 flags);
1685struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1686					 const struct sock *addr_sk);
1687
1688#ifdef CONFIG_TCP_MD5SIG
1689#include <linux/jump_label.h>
1690extern struct static_key_false_deferred tcp_md5_needed;
1691struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1692					   const union tcp_md5_addr *addr,
1693					   int family);
1694static inline struct tcp_md5sig_key *
1695tcp_md5_do_lookup(const struct sock *sk, int l3index,
1696		  const union tcp_md5_addr *addr, int family)
1697{
1698	if (!static_branch_unlikely(&tcp_md5_needed.key))
1699		return NULL;
1700	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1701}
1702
1703enum skb_drop_reason
1704tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1705		     const void *saddr, const void *daddr,
1706		     int family, int dif, int sdif);
1707
1708
1709#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1710#else
1711static inline struct tcp_md5sig_key *
1712tcp_md5_do_lookup(const struct sock *sk, int l3index,
1713		  const union tcp_md5_addr *addr, int family)
1714{
1715	return NULL;
1716}
1717
1718static inline enum skb_drop_reason
1719tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1720		     const void *saddr, const void *daddr,
1721		     int family, int dif, int sdif)
1722{
1723	return SKB_NOT_DROPPED_YET;
1724}
1725#define tcp_twsk_md5_key(twsk)	NULL
1726#endif
1727
1728bool tcp_alloc_md5sig_pool(void);
1729
1730struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1731static inline void tcp_put_md5sig_pool(void)
1732{
1733	local_bh_enable();
1734}
1735
1736int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1737			  unsigned int header_len);
1738int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1739		     const struct tcp_md5sig_key *key);
1740
1741/* From tcp_fastopen.c */
1742void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1743			    struct tcp_fastopen_cookie *cookie);
1744void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1745			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1746			    u16 try_exp);
1747struct tcp_fastopen_request {
1748	/* Fast Open cookie. Size 0 means a cookie request */
1749	struct tcp_fastopen_cookie	cookie;
1750	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1751	size_t				size;
1752	int				copied;	/* queued in tcp_connect() */
1753	struct ubuf_info		*uarg;
1754};
1755void tcp_free_fastopen_req(struct tcp_sock *tp);
1756void tcp_fastopen_destroy_cipher(struct sock *sk);
1757void tcp_fastopen_ctx_destroy(struct net *net);
1758int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1759			      void *primary_key, void *backup_key);
1760int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1761			    u64 *key);
1762void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1763struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1764			      struct request_sock *req,
1765			      struct tcp_fastopen_cookie *foc,
1766			      const struct dst_entry *dst);
1767void tcp_fastopen_init_key_once(struct net *net);
1768bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1769			     struct tcp_fastopen_cookie *cookie);
1770bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1771#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1772#define TCP_FASTOPEN_KEY_MAX 2
1773#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1774	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1775
1776/* Fastopen key context */
1777struct tcp_fastopen_context {
1778	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1779	int		num;
1780	struct rcu_head	rcu;
1781};
1782
1783void tcp_fastopen_active_disable(struct sock *sk);
1784bool tcp_fastopen_active_should_disable(struct sock *sk);
1785void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1786void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1787
1788/* Caller needs to wrap with rcu_read_(un)lock() */
1789static inline
1790struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1791{
1792	struct tcp_fastopen_context *ctx;
1793
1794	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1795	if (!ctx)
1796		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1797	return ctx;
1798}
1799
1800static inline
1801bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1802			       const struct tcp_fastopen_cookie *orig)
1803{
1804	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1805	    orig->len == foc->len &&
1806	    !memcmp(orig->val, foc->val, foc->len))
1807		return true;
1808	return false;
1809}
1810
1811static inline
1812int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1813{
1814	return ctx->num;
1815}
1816
1817/* Latencies incurred by various limits for a sender. They are
1818 * chronograph-like stats that are mutually exclusive.
1819 */
1820enum tcp_chrono {
1821	TCP_CHRONO_UNSPEC,
1822	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1823	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1824	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1825	__TCP_CHRONO_MAX,
1826};
1827
1828void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1829void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1830
1831/* This helper is needed, because skb->tcp_tsorted_anchor uses
1832 * the same memory storage than skb->destructor/_skb_refdst
1833 */
1834static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1835{
1836	skb->destructor = NULL;
1837	skb->_skb_refdst = 0UL;
1838}
1839
1840#define tcp_skb_tsorted_save(skb) {		\
1841	unsigned long _save = skb->_skb_refdst;	\
1842	skb->_skb_refdst = 0UL;
1843
1844#define tcp_skb_tsorted_restore(skb)		\
1845	skb->_skb_refdst = _save;		\
1846}
1847
1848void tcp_write_queue_purge(struct sock *sk);
1849
1850static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1851{
1852	return skb_rb_first(&sk->tcp_rtx_queue);
1853}
1854
1855static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1856{
1857	return skb_rb_last(&sk->tcp_rtx_queue);
1858}
1859
 
 
 
 
 
1860static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1861{
1862	return skb_peek_tail(&sk->sk_write_queue);
1863}
1864
1865#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1866	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1867
1868static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1869{
1870	return skb_peek(&sk->sk_write_queue);
1871}
1872
1873static inline bool tcp_skb_is_last(const struct sock *sk,
1874				   const struct sk_buff *skb)
1875{
1876	return skb_queue_is_last(&sk->sk_write_queue, skb);
1877}
1878
1879/**
1880 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1881 * @sk: socket
1882 *
1883 * Since the write queue can have a temporary empty skb in it,
1884 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1885 */
1886static inline bool tcp_write_queue_empty(const struct sock *sk)
1887{
1888	const struct tcp_sock *tp = tcp_sk(sk);
1889
1890	return tp->write_seq == tp->snd_nxt;
1891}
1892
1893static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1894{
1895	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1896}
1897
1898static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1899{
1900	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1901}
1902
1903static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1904{
1905	__skb_queue_tail(&sk->sk_write_queue, skb);
1906
1907	/* Queue it, remembering where we must start sending. */
1908	if (sk->sk_write_queue.next == skb)
1909		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1910}
1911
1912/* Insert new before skb on the write queue of sk.  */
1913static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1914						  struct sk_buff *skb,
1915						  struct sock *sk)
1916{
1917	__skb_queue_before(&sk->sk_write_queue, skb, new);
1918}
1919
1920static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1921{
1922	tcp_skb_tsorted_anchor_cleanup(skb);
1923	__skb_unlink(skb, &sk->sk_write_queue);
1924}
1925
1926void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1927
1928static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1929{
1930	tcp_skb_tsorted_anchor_cleanup(skb);
1931	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1932}
1933
1934static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1935{
1936	list_del(&skb->tcp_tsorted_anchor);
1937	tcp_rtx_queue_unlink(skb, sk);
1938	tcp_wmem_free_skb(sk, skb);
1939}
1940
1941static inline void tcp_push_pending_frames(struct sock *sk)
1942{
1943	if (tcp_send_head(sk)) {
1944		struct tcp_sock *tp = tcp_sk(sk);
1945
1946		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1947	}
1948}
1949
1950/* Start sequence of the skb just after the highest skb with SACKed
1951 * bit, valid only if sacked_out > 0 or when the caller has ensured
1952 * validity by itself.
1953 */
1954static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1955{
1956	if (!tp->sacked_out)
1957		return tp->snd_una;
1958
1959	if (tp->highest_sack == NULL)
1960		return tp->snd_nxt;
1961
1962	return TCP_SKB_CB(tp->highest_sack)->seq;
1963}
1964
1965static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1966{
1967	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1968}
1969
1970static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1971{
1972	return tcp_sk(sk)->highest_sack;
1973}
1974
1975static inline void tcp_highest_sack_reset(struct sock *sk)
1976{
1977	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1978}
1979
1980/* Called when old skb is about to be deleted and replaced by new skb */
1981static inline void tcp_highest_sack_replace(struct sock *sk,
1982					    struct sk_buff *old,
1983					    struct sk_buff *new)
1984{
1985	if (old == tcp_highest_sack(sk))
1986		tcp_sk(sk)->highest_sack = new;
1987}
1988
1989/* This helper checks if socket has IP_TRANSPARENT set */
1990static inline bool inet_sk_transparent(const struct sock *sk)
1991{
1992	switch (sk->sk_state) {
1993	case TCP_TIME_WAIT:
1994		return inet_twsk(sk)->tw_transparent;
1995	case TCP_NEW_SYN_RECV:
1996		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1997	}
1998	return inet_sk(sk)->transparent;
1999}
2000
2001/* Determines whether this is a thin stream (which may suffer from
2002 * increased latency). Used to trigger latency-reducing mechanisms.
2003 */
2004static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2005{
2006	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2007}
2008
2009/* /proc */
2010enum tcp_seq_states {
2011	TCP_SEQ_STATE_LISTENING,
2012	TCP_SEQ_STATE_ESTABLISHED,
2013};
2014
2015void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2016void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2017void tcp_seq_stop(struct seq_file *seq, void *v);
2018
2019struct tcp_seq_afinfo {
2020	sa_family_t			family;
2021};
2022
2023struct tcp_iter_state {
2024	struct seq_net_private	p;
2025	enum tcp_seq_states	state;
2026	struct sock		*syn_wait_sk;
 
2027	int			bucket, offset, sbucket, num;
2028	loff_t			last_pos;
2029};
2030
2031extern struct request_sock_ops tcp_request_sock_ops;
2032extern struct request_sock_ops tcp6_request_sock_ops;
2033
2034void tcp_v4_destroy_sock(struct sock *sk);
2035
2036struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2037				netdev_features_t features);
2038struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2039INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2040INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2041INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2042INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2043int tcp_gro_complete(struct sk_buff *skb);
2044
2045void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2046
2047static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2048{
2049	struct net *net = sock_net((struct sock *)tp);
2050	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2051}
2052
2053bool tcp_stream_memory_free(const struct sock *sk, int wake);
2054
2055#ifdef CONFIG_PROC_FS
2056int tcp4_proc_init(void);
2057void tcp4_proc_exit(void);
2058#endif
2059
2060int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2061int tcp_conn_request(struct request_sock_ops *rsk_ops,
2062		     const struct tcp_request_sock_ops *af_ops,
2063		     struct sock *sk, struct sk_buff *skb);
2064
2065/* TCP af-specific functions */
2066struct tcp_sock_af_ops {
2067#ifdef CONFIG_TCP_MD5SIG
2068	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2069						const struct sock *addr_sk);
2070	int		(*calc_md5_hash)(char *location,
2071					 const struct tcp_md5sig_key *md5,
2072					 const struct sock *sk,
2073					 const struct sk_buff *skb);
2074	int		(*md5_parse)(struct sock *sk,
2075				     int optname,
2076				     sockptr_t optval,
2077				     int optlen);
2078#endif
2079};
2080
2081struct tcp_request_sock_ops {
2082	u16 mss_clamp;
2083#ifdef CONFIG_TCP_MD5SIG
2084	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2085						 const struct sock *addr_sk);
2086	int		(*calc_md5_hash) (char *location,
2087					  const struct tcp_md5sig_key *md5,
2088					  const struct sock *sk,
2089					  const struct sk_buff *skb);
2090#endif
2091#ifdef CONFIG_SYN_COOKIES
2092	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2093				 __u16 *mss);
2094#endif
2095	struct dst_entry *(*route_req)(const struct sock *sk,
2096				       struct sk_buff *skb,
2097				       struct flowi *fl,
2098				       struct request_sock *req);
2099	u32 (*init_seq)(const struct sk_buff *skb);
2100	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2101	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2102			   struct flowi *fl, struct request_sock *req,
2103			   struct tcp_fastopen_cookie *foc,
2104			   enum tcp_synack_type synack_type,
2105			   struct sk_buff *syn_skb);
2106};
2107
2108extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2109#if IS_ENABLED(CONFIG_IPV6)
2110extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2111#endif
2112
2113#ifdef CONFIG_SYN_COOKIES
2114static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2115					 const struct sock *sk, struct sk_buff *skb,
2116					 __u16 *mss)
2117{
2118	tcp_synq_overflow(sk);
2119	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2120	return ops->cookie_init_seq(skb, mss);
2121}
2122#else
2123static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2124					 const struct sock *sk, struct sk_buff *skb,
2125					 __u16 *mss)
2126{
2127	return 0;
2128}
2129#endif
2130
2131int tcpv4_offload_init(void);
2132
2133void tcp_v4_init(void);
2134void tcp_init(void);
2135
2136/* tcp_recovery.c */
2137void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2138void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2139extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2140				u32 reo_wnd);
2141extern bool tcp_rack_mark_lost(struct sock *sk);
2142extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2143			     u64 xmit_time);
2144extern void tcp_rack_reo_timeout(struct sock *sk);
2145extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2146
2147/* tcp_plb.c */
2148
2149/*
2150 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2151 * expects cong_ratio which represents fraction of traffic that experienced
2152 * congestion over a single RTT. In order to avoid floating point operations,
2153 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2154 */
2155#define TCP_PLB_SCALE 8
2156
2157/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2158struct tcp_plb_state {
2159	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2160		unused:3;
2161	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2162};
2163
2164static inline void tcp_plb_init(const struct sock *sk,
2165				struct tcp_plb_state *plb)
2166{
2167	plb->consec_cong_rounds = 0;
2168	plb->pause_until = 0;
2169}
2170void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2171			  const int cong_ratio);
2172void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2173void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2174
2175/* At how many usecs into the future should the RTO fire? */
2176static inline s64 tcp_rto_delta_us(const struct sock *sk)
2177{
2178	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2179	u32 rto = inet_csk(sk)->icsk_rto;
2180	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2181
2182	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2183}
2184
2185/*
2186 * Save and compile IPv4 options, return a pointer to it
2187 */
2188static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2189							 struct sk_buff *skb)
2190{
2191	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2192	struct ip_options_rcu *dopt = NULL;
2193
2194	if (opt->optlen) {
2195		int opt_size = sizeof(*dopt) + opt->optlen;
2196
2197		dopt = kmalloc(opt_size, GFP_ATOMIC);
2198		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2199			kfree(dopt);
2200			dopt = NULL;
2201		}
2202	}
2203	return dopt;
2204}
2205
2206/* locally generated TCP pure ACKs have skb->truesize == 2
2207 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2208 * This is much faster than dissecting the packet to find out.
2209 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2210 */
2211static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2212{
2213	return skb->truesize == 2;
2214}
2215
2216static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2217{
2218	skb->truesize = 2;
2219}
2220
2221static inline int tcp_inq(struct sock *sk)
2222{
2223	struct tcp_sock *tp = tcp_sk(sk);
2224	int answ;
2225
2226	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2227		answ = 0;
2228	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2229		   !tp->urg_data ||
2230		   before(tp->urg_seq, tp->copied_seq) ||
2231		   !before(tp->urg_seq, tp->rcv_nxt)) {
2232
2233		answ = tp->rcv_nxt - tp->copied_seq;
2234
2235		/* Subtract 1, if FIN was received */
2236		if (answ && sock_flag(sk, SOCK_DONE))
2237			answ--;
2238	} else {
2239		answ = tp->urg_seq - tp->copied_seq;
2240	}
2241
2242	return answ;
2243}
2244
2245int tcp_peek_len(struct socket *sock);
2246
2247static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2248{
2249	u16 segs_in;
2250
2251	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2252
2253	/* We update these fields while other threads might
2254	 * read them from tcp_get_info()
2255	 */
2256	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2257	if (skb->len > tcp_hdrlen(skb))
2258		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2259}
2260
2261/*
2262 * TCP listen path runs lockless.
2263 * We forced "struct sock" to be const qualified to make sure
2264 * we don't modify one of its field by mistake.
2265 * Here, we increment sk_drops which is an atomic_t, so we can safely
2266 * make sock writable again.
2267 */
2268static inline void tcp_listendrop(const struct sock *sk)
2269{
2270	atomic_inc(&((struct sock *)sk)->sk_drops);
2271	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2272}
2273
2274enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2275
2276/*
2277 * Interface for adding Upper Level Protocols over TCP
2278 */
2279
2280#define TCP_ULP_NAME_MAX	16
2281#define TCP_ULP_MAX		128
2282#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2283
2284struct tcp_ulp_ops {
2285	struct list_head	list;
2286
2287	/* initialize ulp */
2288	int (*init)(struct sock *sk);
2289	/* update ulp */
2290	void (*update)(struct sock *sk, struct proto *p,
2291		       void (*write_space)(struct sock *sk));
2292	/* cleanup ulp */
2293	void (*release)(struct sock *sk);
2294	/* diagnostic */
2295	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2296	size_t (*get_info_size)(const struct sock *sk);
2297	/* clone ulp */
2298	void (*clone)(const struct request_sock *req, struct sock *newsk,
2299		      const gfp_t priority);
2300
2301	char		name[TCP_ULP_NAME_MAX];
2302	struct module	*owner;
2303};
2304int tcp_register_ulp(struct tcp_ulp_ops *type);
2305void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2306int tcp_set_ulp(struct sock *sk, const char *name);
2307void tcp_get_available_ulp(char *buf, size_t len);
2308void tcp_cleanup_ulp(struct sock *sk);
2309void tcp_update_ulp(struct sock *sk, struct proto *p,
2310		    void (*write_space)(struct sock *sk));
2311
2312#define MODULE_ALIAS_TCP_ULP(name)				\
2313	__MODULE_INFO(alias, alias_userspace, name);		\
2314	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2315
2316#ifdef CONFIG_NET_SOCK_MSG
2317struct sk_msg;
2318struct sk_psock;
2319
2320#ifdef CONFIG_BPF_SYSCALL
2321struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2322int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2323void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2324#endif /* CONFIG_BPF_SYSCALL */
2325
2326int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2327			  struct sk_msg *msg, u32 bytes, int flags);
2328#endif /* CONFIG_NET_SOCK_MSG */
2329
2330#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2331static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2332{
2333}
2334#endif
2335
2336#ifdef CONFIG_CGROUP_BPF
2337static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2338				      struct sk_buff *skb,
2339				      unsigned int end_offset)
2340{
2341	skops->skb = skb;
2342	skops->skb_data_end = skb->data + end_offset;
2343}
2344#else
2345static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2346				      struct sk_buff *skb,
2347				      unsigned int end_offset)
2348{
2349}
2350#endif
2351
2352/* Call BPF_SOCK_OPS program that returns an int. If the return value
2353 * is < 0, then the BPF op failed (for example if the loaded BPF
2354 * program does not support the chosen operation or there is no BPF
2355 * program loaded).
2356 */
2357#ifdef CONFIG_BPF
2358static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2359{
2360	struct bpf_sock_ops_kern sock_ops;
2361	int ret;
2362
2363	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2364	if (sk_fullsock(sk)) {
2365		sock_ops.is_fullsock = 1;
2366		sock_owned_by_me(sk);
2367	}
2368
2369	sock_ops.sk = sk;
2370	sock_ops.op = op;
2371	if (nargs > 0)
2372		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2373
2374	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2375	if (ret == 0)
2376		ret = sock_ops.reply;
2377	else
2378		ret = -1;
2379	return ret;
2380}
2381
2382static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2383{
2384	u32 args[2] = {arg1, arg2};
2385
2386	return tcp_call_bpf(sk, op, 2, args);
2387}
2388
2389static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2390				    u32 arg3)
2391{
2392	u32 args[3] = {arg1, arg2, arg3};
2393
2394	return tcp_call_bpf(sk, op, 3, args);
2395}
2396
2397#else
2398static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2399{
2400	return -EPERM;
2401}
2402
2403static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2404{
2405	return -EPERM;
2406}
2407
2408static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2409				    u32 arg3)
2410{
2411	return -EPERM;
2412}
2413
2414#endif
2415
2416static inline u32 tcp_timeout_init(struct sock *sk)
2417{
2418	int timeout;
2419
2420	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2421
2422	if (timeout <= 0)
2423		timeout = TCP_TIMEOUT_INIT;
2424	return min_t(int, timeout, TCP_RTO_MAX);
2425}
2426
2427static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2428{
2429	int rwnd;
2430
2431	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2432
2433	if (rwnd < 0)
2434		rwnd = 0;
2435	return rwnd;
2436}
2437
2438static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2439{
2440	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2441}
2442
2443static inline void tcp_bpf_rtt(struct sock *sk)
2444{
2445	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2446		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2447}
2448
2449#if IS_ENABLED(CONFIG_SMC)
2450extern struct static_key_false tcp_have_smc;
2451#endif
2452
2453#if IS_ENABLED(CONFIG_TLS_DEVICE)
2454void clean_acked_data_enable(struct inet_connection_sock *icsk,
2455			     void (*cad)(struct sock *sk, u32 ack_seq));
2456void clean_acked_data_disable(struct inet_connection_sock *icsk);
2457void clean_acked_data_flush(void);
2458#endif
2459
2460DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2461static inline void tcp_add_tx_delay(struct sk_buff *skb,
2462				    const struct tcp_sock *tp)
2463{
2464	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2465		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2466}
2467
2468/* Compute Earliest Departure Time for some control packets
2469 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2470 */
2471static inline u64 tcp_transmit_time(const struct sock *sk)
2472{
2473	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2474		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2475			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2476
2477		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2478	}
2479	return 0;
2480}
2481
2482#endif	/* _TCP_H */