Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 */
10
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13
14#include "f2fs.h"
15#include "node.h"
16#include <trace/events/f2fs.h>
17
18static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
19 unsigned int ofs)
20{
21 if (cached_re) {
22 if (cached_re->ofs <= ofs &&
23 cached_re->ofs + cached_re->len > ofs) {
24 return cached_re;
25 }
26 }
27 return NULL;
28}
29
30static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
31 unsigned int ofs)
32{
33 struct rb_node *node = root->rb_root.rb_node;
34 struct rb_entry *re;
35
36 while (node) {
37 re = rb_entry(node, struct rb_entry, rb_node);
38
39 if (ofs < re->ofs)
40 node = node->rb_left;
41 else if (ofs >= re->ofs + re->len)
42 node = node->rb_right;
43 else
44 return re;
45 }
46 return NULL;
47}
48
49struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
50 struct rb_entry *cached_re, unsigned int ofs)
51{
52 struct rb_entry *re;
53
54 re = __lookup_rb_tree_fast(cached_re, ofs);
55 if (!re)
56 return __lookup_rb_tree_slow(root, ofs);
57
58 return re;
59}
60
61struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
62 struct rb_root_cached *root,
63 struct rb_node **parent,
64 unsigned long long key, bool *leftmost)
65{
66 struct rb_node **p = &root->rb_root.rb_node;
67 struct rb_entry *re;
68
69 while (*p) {
70 *parent = *p;
71 re = rb_entry(*parent, struct rb_entry, rb_node);
72
73 if (key < re->key) {
74 p = &(*p)->rb_left;
75 } else {
76 p = &(*p)->rb_right;
77 *leftmost = false;
78 }
79 }
80
81 return p;
82}
83
84struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
85 struct rb_root_cached *root,
86 struct rb_node **parent,
87 unsigned int ofs, bool *leftmost)
88{
89 struct rb_node **p = &root->rb_root.rb_node;
90 struct rb_entry *re;
91
92 while (*p) {
93 *parent = *p;
94 re = rb_entry(*parent, struct rb_entry, rb_node);
95
96 if (ofs < re->ofs) {
97 p = &(*p)->rb_left;
98 } else if (ofs >= re->ofs + re->len) {
99 p = &(*p)->rb_right;
100 *leftmost = false;
101 } else {
102 f2fs_bug_on(sbi, 1);
103 }
104 }
105
106 return p;
107}
108
109/*
110 * lookup rb entry in position of @ofs in rb-tree,
111 * if hit, return the entry, otherwise, return NULL
112 * @prev_ex: extent before ofs
113 * @next_ex: extent after ofs
114 * @insert_p: insert point for new extent at ofs
115 * in order to simpfy the insertion after.
116 * tree must stay unchanged between lookup and insertion.
117 */
118struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
119 struct rb_entry *cached_re,
120 unsigned int ofs,
121 struct rb_entry **prev_entry,
122 struct rb_entry **next_entry,
123 struct rb_node ***insert_p,
124 struct rb_node **insert_parent,
125 bool force, bool *leftmost)
126{
127 struct rb_node **pnode = &root->rb_root.rb_node;
128 struct rb_node *parent = NULL, *tmp_node;
129 struct rb_entry *re = cached_re;
130
131 *insert_p = NULL;
132 *insert_parent = NULL;
133 *prev_entry = NULL;
134 *next_entry = NULL;
135
136 if (RB_EMPTY_ROOT(&root->rb_root))
137 return NULL;
138
139 if (re) {
140 if (re->ofs <= ofs && re->ofs + re->len > ofs)
141 goto lookup_neighbors;
142 }
143
144 if (leftmost)
145 *leftmost = true;
146
147 while (*pnode) {
148 parent = *pnode;
149 re = rb_entry(*pnode, struct rb_entry, rb_node);
150
151 if (ofs < re->ofs) {
152 pnode = &(*pnode)->rb_left;
153 } else if (ofs >= re->ofs + re->len) {
154 pnode = &(*pnode)->rb_right;
155 if (leftmost)
156 *leftmost = false;
157 } else {
158 goto lookup_neighbors;
159 }
160 }
161
162 *insert_p = pnode;
163 *insert_parent = parent;
164
165 re = rb_entry(parent, struct rb_entry, rb_node);
166 tmp_node = parent;
167 if (parent && ofs > re->ofs)
168 tmp_node = rb_next(parent);
169 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
170
171 tmp_node = parent;
172 if (parent && ofs < re->ofs)
173 tmp_node = rb_prev(parent);
174 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
175 return NULL;
176
177lookup_neighbors:
178 if (ofs == re->ofs || force) {
179 /* lookup prev node for merging backward later */
180 tmp_node = rb_prev(&re->rb_node);
181 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
182 }
183 if (ofs == re->ofs + re->len - 1 || force) {
184 /* lookup next node for merging frontward later */
185 tmp_node = rb_next(&re->rb_node);
186 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
187 }
188 return re;
189}
190
191bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
192 struct rb_root_cached *root, bool check_key)
193{
194#ifdef CONFIG_F2FS_CHECK_FS
195 struct rb_node *cur = rb_first_cached(root), *next;
196 struct rb_entry *cur_re, *next_re;
197
198 if (!cur)
199 return true;
200
201 while (cur) {
202 next = rb_next(cur);
203 if (!next)
204 return true;
205
206 cur_re = rb_entry(cur, struct rb_entry, rb_node);
207 next_re = rb_entry(next, struct rb_entry, rb_node);
208
209 if (check_key) {
210 if (cur_re->key > next_re->key) {
211 f2fs_info(sbi, "inconsistent rbtree, "
212 "cur(%llu) next(%llu)",
213 cur_re->key, next_re->key);
214 return false;
215 }
216 goto next;
217 }
218
219 if (cur_re->ofs + cur_re->len > next_re->ofs) {
220 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
221 cur_re->ofs, cur_re->len,
222 next_re->ofs, next_re->len);
223 return false;
224 }
225next:
226 cur = next;
227 }
228#endif
229 return true;
230}
231
232static struct kmem_cache *extent_tree_slab;
233static struct kmem_cache *extent_node_slab;
234
235static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
236 struct extent_tree *et, struct extent_info *ei,
237 struct rb_node *parent, struct rb_node **p,
238 bool leftmost)
239{
240 struct extent_node *en;
241
242 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
243 if (!en)
244 return NULL;
245
246 en->ei = *ei;
247 INIT_LIST_HEAD(&en->list);
248 en->et = et;
249
250 rb_link_node(&en->rb_node, parent, p);
251 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
252 atomic_inc(&et->node_cnt);
253 atomic_inc(&sbi->total_ext_node);
254 return en;
255}
256
257static void __detach_extent_node(struct f2fs_sb_info *sbi,
258 struct extent_tree *et, struct extent_node *en)
259{
260 rb_erase_cached(&en->rb_node, &et->root);
261 atomic_dec(&et->node_cnt);
262 atomic_dec(&sbi->total_ext_node);
263
264 if (et->cached_en == en)
265 et->cached_en = NULL;
266 kmem_cache_free(extent_node_slab, en);
267}
268
269/*
270 * Flow to release an extent_node:
271 * 1. list_del_init
272 * 2. __detach_extent_node
273 * 3. kmem_cache_free.
274 */
275static void __release_extent_node(struct f2fs_sb_info *sbi,
276 struct extent_tree *et, struct extent_node *en)
277{
278 spin_lock(&sbi->extent_lock);
279 f2fs_bug_on(sbi, list_empty(&en->list));
280 list_del_init(&en->list);
281 spin_unlock(&sbi->extent_lock);
282
283 __detach_extent_node(sbi, et, en);
284}
285
286static struct extent_tree *__grab_extent_tree(struct inode *inode)
287{
288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
289 struct extent_tree *et;
290 nid_t ino = inode->i_ino;
291
292 mutex_lock(&sbi->extent_tree_lock);
293 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
294 if (!et) {
295 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
296 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
297 memset(et, 0, sizeof(struct extent_tree));
298 et->ino = ino;
299 et->root = RB_ROOT_CACHED;
300 et->cached_en = NULL;
301 rwlock_init(&et->lock);
302 INIT_LIST_HEAD(&et->list);
303 atomic_set(&et->node_cnt, 0);
304 atomic_inc(&sbi->total_ext_tree);
305 } else {
306 atomic_dec(&sbi->total_zombie_tree);
307 list_del_init(&et->list);
308 }
309 mutex_unlock(&sbi->extent_tree_lock);
310
311 /* never died until evict_inode */
312 F2FS_I(inode)->extent_tree = et;
313
314 return et;
315}
316
317static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
318 struct extent_tree *et, struct extent_info *ei)
319{
320 struct rb_node **p = &et->root.rb_root.rb_node;
321 struct extent_node *en;
322
323 en = __attach_extent_node(sbi, et, ei, NULL, p, true);
324 if (!en)
325 return NULL;
326
327 et->largest = en->ei;
328 et->cached_en = en;
329 return en;
330}
331
332static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
333 struct extent_tree *et)
334{
335 struct rb_node *node, *next;
336 struct extent_node *en;
337 unsigned int count = atomic_read(&et->node_cnt);
338
339 node = rb_first_cached(&et->root);
340 while (node) {
341 next = rb_next(node);
342 en = rb_entry(node, struct extent_node, rb_node);
343 __release_extent_node(sbi, et, en);
344 node = next;
345 }
346
347 return count - atomic_read(&et->node_cnt);
348}
349
350static void __drop_largest_extent(struct extent_tree *et,
351 pgoff_t fofs, unsigned int len)
352{
353 if (fofs < et->largest.fofs + et->largest.len &&
354 fofs + len > et->largest.fofs) {
355 et->largest.len = 0;
356 et->largest_updated = true;
357 }
358}
359
360/* return true, if inode page is changed */
361static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
362{
363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
364 struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL;
365 struct extent_tree *et;
366 struct extent_node *en;
367 struct extent_info ei;
368
369 if (!f2fs_may_extent_tree(inode)) {
370 /* drop largest extent */
371 if (i_ext && i_ext->len) {
372 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
373 i_ext->len = 0;
374 set_page_dirty(ipage);
375 return;
376 }
377 return;
378 }
379
380 et = __grab_extent_tree(inode);
381
382 if (!i_ext || !i_ext->len)
383 return;
384
385 get_extent_info(&ei, i_ext);
386
387 write_lock(&et->lock);
388 if (atomic_read(&et->node_cnt))
389 goto out;
390
391 en = __init_extent_tree(sbi, et, &ei);
392 if (en) {
393 spin_lock(&sbi->extent_lock);
394 list_add_tail(&en->list, &sbi->extent_list);
395 spin_unlock(&sbi->extent_lock);
396 }
397out:
398 write_unlock(&et->lock);
399}
400
401void f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
402{
403 __f2fs_init_extent_tree(inode, ipage);
404
405 if (!F2FS_I(inode)->extent_tree)
406 set_inode_flag(inode, FI_NO_EXTENT);
407}
408
409static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
410 struct extent_info *ei)
411{
412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
413 struct extent_tree *et = F2FS_I(inode)->extent_tree;
414 struct extent_node *en;
415 bool ret = false;
416
417 f2fs_bug_on(sbi, !et);
418
419 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
420
421 read_lock(&et->lock);
422
423 if (et->largest.fofs <= pgofs &&
424 et->largest.fofs + et->largest.len > pgofs) {
425 *ei = et->largest;
426 ret = true;
427 stat_inc_largest_node_hit(sbi);
428 goto out;
429 }
430
431 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
432 (struct rb_entry *)et->cached_en, pgofs);
433 if (!en)
434 goto out;
435
436 if (en == et->cached_en)
437 stat_inc_cached_node_hit(sbi);
438 else
439 stat_inc_rbtree_node_hit(sbi);
440
441 *ei = en->ei;
442 spin_lock(&sbi->extent_lock);
443 if (!list_empty(&en->list)) {
444 list_move_tail(&en->list, &sbi->extent_list);
445 et->cached_en = en;
446 }
447 spin_unlock(&sbi->extent_lock);
448 ret = true;
449out:
450 stat_inc_total_hit(sbi);
451 read_unlock(&et->lock);
452
453 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
454 return ret;
455}
456
457static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
458 struct extent_tree *et, struct extent_info *ei,
459 struct extent_node *prev_ex,
460 struct extent_node *next_ex)
461{
462 struct extent_node *en = NULL;
463
464 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
465 prev_ex->ei.len += ei->len;
466 ei = &prev_ex->ei;
467 en = prev_ex;
468 }
469
470 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
471 next_ex->ei.fofs = ei->fofs;
472 next_ex->ei.blk = ei->blk;
473 next_ex->ei.len += ei->len;
474 if (en)
475 __release_extent_node(sbi, et, prev_ex);
476
477 en = next_ex;
478 }
479
480 if (!en)
481 return NULL;
482
483 __try_update_largest_extent(et, en);
484
485 spin_lock(&sbi->extent_lock);
486 if (!list_empty(&en->list)) {
487 list_move_tail(&en->list, &sbi->extent_list);
488 et->cached_en = en;
489 }
490 spin_unlock(&sbi->extent_lock);
491 return en;
492}
493
494static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
495 struct extent_tree *et, struct extent_info *ei,
496 struct rb_node **insert_p,
497 struct rb_node *insert_parent,
498 bool leftmost)
499{
500 struct rb_node **p;
501 struct rb_node *parent = NULL;
502 struct extent_node *en = NULL;
503
504 if (insert_p && insert_parent) {
505 parent = insert_parent;
506 p = insert_p;
507 goto do_insert;
508 }
509
510 leftmost = true;
511
512 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
513 ei->fofs, &leftmost);
514do_insert:
515 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
516 if (!en)
517 return NULL;
518
519 __try_update_largest_extent(et, en);
520
521 /* update in global extent list */
522 spin_lock(&sbi->extent_lock);
523 list_add_tail(&en->list, &sbi->extent_list);
524 et->cached_en = en;
525 spin_unlock(&sbi->extent_lock);
526 return en;
527}
528
529static void f2fs_update_extent_tree_range(struct inode *inode,
530 pgoff_t fofs, block_t blkaddr, unsigned int len)
531{
532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
533 struct extent_tree *et = F2FS_I(inode)->extent_tree;
534 struct extent_node *en = NULL, *en1 = NULL;
535 struct extent_node *prev_en = NULL, *next_en = NULL;
536 struct extent_info ei, dei, prev;
537 struct rb_node **insert_p = NULL, *insert_parent = NULL;
538 unsigned int end = fofs + len;
539 unsigned int pos = (unsigned int)fofs;
540 bool updated = false;
541 bool leftmost = false;
542
543 if (!et)
544 return;
545
546 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
547
548 write_lock(&et->lock);
549
550 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
551 write_unlock(&et->lock);
552 return;
553 }
554
555 prev = et->largest;
556 dei.len = 0;
557
558 /*
559 * drop largest extent before lookup, in case it's already
560 * been shrunk from extent tree
561 */
562 __drop_largest_extent(et, fofs, len);
563
564 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
565 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
566 (struct rb_entry *)et->cached_en, fofs,
567 (struct rb_entry **)&prev_en,
568 (struct rb_entry **)&next_en,
569 &insert_p, &insert_parent, false,
570 &leftmost);
571 if (!en)
572 en = next_en;
573
574 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
575 while (en && en->ei.fofs < end) {
576 unsigned int org_end;
577 int parts = 0; /* # of parts current extent split into */
578
579 next_en = en1 = NULL;
580
581 dei = en->ei;
582 org_end = dei.fofs + dei.len;
583 f2fs_bug_on(sbi, pos >= org_end);
584
585 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
586 en->ei.len = pos - en->ei.fofs;
587 prev_en = en;
588 parts = 1;
589 }
590
591 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
592 if (parts) {
593 set_extent_info(&ei, end,
594 end - dei.fofs + dei.blk,
595 org_end - end);
596 en1 = __insert_extent_tree(sbi, et, &ei,
597 NULL, NULL, true);
598 next_en = en1;
599 } else {
600 en->ei.fofs = end;
601 en->ei.blk += end - dei.fofs;
602 en->ei.len -= end - dei.fofs;
603 next_en = en;
604 }
605 parts++;
606 }
607
608 if (!next_en) {
609 struct rb_node *node = rb_next(&en->rb_node);
610
611 next_en = rb_entry_safe(node, struct extent_node,
612 rb_node);
613 }
614
615 if (parts)
616 __try_update_largest_extent(et, en);
617 else
618 __release_extent_node(sbi, et, en);
619
620 /*
621 * if original extent is split into zero or two parts, extent
622 * tree has been altered by deletion or insertion, therefore
623 * invalidate pointers regard to tree.
624 */
625 if (parts != 1) {
626 insert_p = NULL;
627 insert_parent = NULL;
628 }
629 en = next_en;
630 }
631
632 /* 3. update extent in extent cache */
633 if (blkaddr) {
634
635 set_extent_info(&ei, fofs, blkaddr, len);
636 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
637 __insert_extent_tree(sbi, et, &ei,
638 insert_p, insert_parent, leftmost);
639
640 /* give up extent_cache, if split and small updates happen */
641 if (dei.len >= 1 &&
642 prev.len < F2FS_MIN_EXTENT_LEN &&
643 et->largest.len < F2FS_MIN_EXTENT_LEN) {
644 et->largest.len = 0;
645 et->largest_updated = true;
646 set_inode_flag(inode, FI_NO_EXTENT);
647 }
648 }
649
650 if (is_inode_flag_set(inode, FI_NO_EXTENT))
651 __free_extent_tree(sbi, et);
652
653 if (et->largest_updated) {
654 et->largest_updated = false;
655 updated = true;
656 }
657
658 write_unlock(&et->lock);
659
660 if (updated)
661 f2fs_mark_inode_dirty_sync(inode, true);
662}
663
664unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
665{
666 struct extent_tree *et, *next;
667 struct extent_node *en;
668 unsigned int node_cnt = 0, tree_cnt = 0;
669 int remained;
670
671 if (!test_opt(sbi, EXTENT_CACHE))
672 return 0;
673
674 if (!atomic_read(&sbi->total_zombie_tree))
675 goto free_node;
676
677 if (!mutex_trylock(&sbi->extent_tree_lock))
678 goto out;
679
680 /* 1. remove unreferenced extent tree */
681 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
682 if (atomic_read(&et->node_cnt)) {
683 write_lock(&et->lock);
684 node_cnt += __free_extent_tree(sbi, et);
685 write_unlock(&et->lock);
686 }
687 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
688 list_del_init(&et->list);
689 radix_tree_delete(&sbi->extent_tree_root, et->ino);
690 kmem_cache_free(extent_tree_slab, et);
691 atomic_dec(&sbi->total_ext_tree);
692 atomic_dec(&sbi->total_zombie_tree);
693 tree_cnt++;
694
695 if (node_cnt + tree_cnt >= nr_shrink)
696 goto unlock_out;
697 cond_resched();
698 }
699 mutex_unlock(&sbi->extent_tree_lock);
700
701free_node:
702 /* 2. remove LRU extent entries */
703 if (!mutex_trylock(&sbi->extent_tree_lock))
704 goto out;
705
706 remained = nr_shrink - (node_cnt + tree_cnt);
707
708 spin_lock(&sbi->extent_lock);
709 for (; remained > 0; remained--) {
710 if (list_empty(&sbi->extent_list))
711 break;
712 en = list_first_entry(&sbi->extent_list,
713 struct extent_node, list);
714 et = en->et;
715 if (!write_trylock(&et->lock)) {
716 /* refresh this extent node's position in extent list */
717 list_move_tail(&en->list, &sbi->extent_list);
718 continue;
719 }
720
721 list_del_init(&en->list);
722 spin_unlock(&sbi->extent_lock);
723
724 __detach_extent_node(sbi, et, en);
725
726 write_unlock(&et->lock);
727 node_cnt++;
728 spin_lock(&sbi->extent_lock);
729 }
730 spin_unlock(&sbi->extent_lock);
731
732unlock_out:
733 mutex_unlock(&sbi->extent_tree_lock);
734out:
735 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
736
737 return node_cnt + tree_cnt;
738}
739
740unsigned int f2fs_destroy_extent_node(struct inode *inode)
741{
742 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
743 struct extent_tree *et = F2FS_I(inode)->extent_tree;
744 unsigned int node_cnt = 0;
745
746 if (!et || !atomic_read(&et->node_cnt))
747 return 0;
748
749 write_lock(&et->lock);
750 node_cnt = __free_extent_tree(sbi, et);
751 write_unlock(&et->lock);
752
753 return node_cnt;
754}
755
756void f2fs_drop_extent_tree(struct inode *inode)
757{
758 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
759 struct extent_tree *et = F2FS_I(inode)->extent_tree;
760 bool updated = false;
761
762 if (!f2fs_may_extent_tree(inode))
763 return;
764
765 set_inode_flag(inode, FI_NO_EXTENT);
766
767 write_lock(&et->lock);
768 __free_extent_tree(sbi, et);
769 if (et->largest.len) {
770 et->largest.len = 0;
771 updated = true;
772 }
773 write_unlock(&et->lock);
774 if (updated)
775 f2fs_mark_inode_dirty_sync(inode, true);
776}
777
778void f2fs_destroy_extent_tree(struct inode *inode)
779{
780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781 struct extent_tree *et = F2FS_I(inode)->extent_tree;
782 unsigned int node_cnt = 0;
783
784 if (!et)
785 return;
786
787 if (inode->i_nlink && !is_bad_inode(inode) &&
788 atomic_read(&et->node_cnt)) {
789 mutex_lock(&sbi->extent_tree_lock);
790 list_add_tail(&et->list, &sbi->zombie_list);
791 atomic_inc(&sbi->total_zombie_tree);
792 mutex_unlock(&sbi->extent_tree_lock);
793 return;
794 }
795
796 /* free all extent info belong to this extent tree */
797 node_cnt = f2fs_destroy_extent_node(inode);
798
799 /* delete extent tree entry in radix tree */
800 mutex_lock(&sbi->extent_tree_lock);
801 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
802 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
803 kmem_cache_free(extent_tree_slab, et);
804 atomic_dec(&sbi->total_ext_tree);
805 mutex_unlock(&sbi->extent_tree_lock);
806
807 F2FS_I(inode)->extent_tree = NULL;
808
809 trace_f2fs_destroy_extent_tree(inode, node_cnt);
810}
811
812bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
813 struct extent_info *ei)
814{
815 if (!f2fs_may_extent_tree(inode))
816 return false;
817
818 return f2fs_lookup_extent_tree(inode, pgofs, ei);
819}
820
821void f2fs_update_extent_cache(struct dnode_of_data *dn)
822{
823 pgoff_t fofs;
824 block_t blkaddr;
825
826 if (!f2fs_may_extent_tree(dn->inode))
827 return;
828
829 if (dn->data_blkaddr == NEW_ADDR)
830 blkaddr = NULL_ADDR;
831 else
832 blkaddr = dn->data_blkaddr;
833
834 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
835 dn->ofs_in_node;
836 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
837}
838
839void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
840 pgoff_t fofs, block_t blkaddr, unsigned int len)
841
842{
843 if (!f2fs_may_extent_tree(dn->inode))
844 return;
845
846 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
847}
848
849void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
850{
851 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
852 mutex_init(&sbi->extent_tree_lock);
853 INIT_LIST_HEAD(&sbi->extent_list);
854 spin_lock_init(&sbi->extent_lock);
855 atomic_set(&sbi->total_ext_tree, 0);
856 INIT_LIST_HEAD(&sbi->zombie_list);
857 atomic_set(&sbi->total_zombie_tree, 0);
858 atomic_set(&sbi->total_ext_node, 0);
859}
860
861int __init f2fs_create_extent_cache(void)
862{
863 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
864 sizeof(struct extent_tree));
865 if (!extent_tree_slab)
866 return -ENOMEM;
867 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
868 sizeof(struct extent_node));
869 if (!extent_node_slab) {
870 kmem_cache_destroy(extent_tree_slab);
871 return -ENOMEM;
872 }
873 return 0;
874}
875
876void f2fs_destroy_extent_cache(void)
877{
878 kmem_cache_destroy(extent_node_slab);
879 kmem_cache_destroy(extent_tree_slab);
880}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * f2fs extent cache support
4 *
5 * Copyright (c) 2015 Motorola Mobility
6 * Copyright (c) 2015 Samsung Electronics
7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
8 * Chao Yu <chao2.yu@samsung.com>
9 *
10 * block_age-based extent cache added by:
11 * Copyright (c) 2022 xiaomi Co., Ltd.
12 * http://www.xiaomi.com/
13 */
14
15#include <linux/fs.h>
16#include <linux/f2fs_fs.h>
17
18#include "f2fs.h"
19#include "node.h"
20#include <trace/events/f2fs.h>
21
22static void __set_extent_info(struct extent_info *ei,
23 unsigned int fofs, unsigned int len,
24 block_t blk, bool keep_clen,
25 unsigned long age, unsigned long last_blocks,
26 enum extent_type type)
27{
28 ei->fofs = fofs;
29 ei->len = len;
30
31 if (type == EX_READ) {
32 ei->blk = blk;
33 if (keep_clen)
34 return;
35#ifdef CONFIG_F2FS_FS_COMPRESSION
36 ei->c_len = 0;
37#endif
38 } else if (type == EX_BLOCK_AGE) {
39 ei->age = age;
40 ei->last_blocks = last_blocks;
41 }
42}
43
44static bool __may_read_extent_tree(struct inode *inode)
45{
46 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
47
48 if (!test_opt(sbi, READ_EXTENT_CACHE))
49 return false;
50 if (is_inode_flag_set(inode, FI_NO_EXTENT))
51 return false;
52 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
53 !f2fs_sb_has_readonly(sbi))
54 return false;
55 return S_ISREG(inode->i_mode);
56}
57
58static bool __may_age_extent_tree(struct inode *inode)
59{
60 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
61
62 if (!test_opt(sbi, AGE_EXTENT_CACHE))
63 return false;
64 /* don't cache block age info for cold file */
65 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE))
66 return false;
67 if (file_is_cold(inode))
68 return false;
69
70 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
71}
72
73static bool __init_may_extent_tree(struct inode *inode, enum extent_type type)
74{
75 if (type == EX_READ)
76 return __may_read_extent_tree(inode);
77 else if (type == EX_BLOCK_AGE)
78 return __may_age_extent_tree(inode);
79 return false;
80}
81
82static bool __may_extent_tree(struct inode *inode, enum extent_type type)
83{
84 /*
85 * for recovered files during mount do not create extents
86 * if shrinker is not registered.
87 */
88 if (list_empty(&F2FS_I_SB(inode)->s_list))
89 return false;
90
91 return __init_may_extent_tree(inode, type);
92}
93
94static void __try_update_largest_extent(struct extent_tree *et,
95 struct extent_node *en)
96{
97 if (et->type != EX_READ)
98 return;
99 if (en->ei.len <= et->largest.len)
100 return;
101
102 et->largest = en->ei;
103 et->largest_updated = true;
104}
105
106static bool __is_extent_mergeable(struct extent_info *back,
107 struct extent_info *front, enum extent_type type)
108{
109 if (type == EX_READ) {
110#ifdef CONFIG_F2FS_FS_COMPRESSION
111 if (back->c_len && back->len != back->c_len)
112 return false;
113 if (front->c_len && front->len != front->c_len)
114 return false;
115#endif
116 return (back->fofs + back->len == front->fofs &&
117 back->blk + back->len == front->blk);
118 } else if (type == EX_BLOCK_AGE) {
119 return (back->fofs + back->len == front->fofs &&
120 abs(back->age - front->age) <= SAME_AGE_REGION &&
121 abs(back->last_blocks - front->last_blocks) <=
122 SAME_AGE_REGION);
123 }
124 return false;
125}
126
127static bool __is_back_mergeable(struct extent_info *cur,
128 struct extent_info *back, enum extent_type type)
129{
130 return __is_extent_mergeable(back, cur, type);
131}
132
133static bool __is_front_mergeable(struct extent_info *cur,
134 struct extent_info *front, enum extent_type type)
135{
136 return __is_extent_mergeable(cur, front, type);
137}
138
139static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
140 unsigned int ofs)
141{
142 if (cached_re) {
143 if (cached_re->ofs <= ofs &&
144 cached_re->ofs + cached_re->len > ofs) {
145 return cached_re;
146 }
147 }
148 return NULL;
149}
150
151static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
152 unsigned int ofs)
153{
154 struct rb_node *node = root->rb_root.rb_node;
155 struct rb_entry *re;
156
157 while (node) {
158 re = rb_entry(node, struct rb_entry, rb_node);
159
160 if (ofs < re->ofs)
161 node = node->rb_left;
162 else if (ofs >= re->ofs + re->len)
163 node = node->rb_right;
164 else
165 return re;
166 }
167 return NULL;
168}
169
170struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
171 struct rb_entry *cached_re, unsigned int ofs)
172{
173 struct rb_entry *re;
174
175 re = __lookup_rb_tree_fast(cached_re, ofs);
176 if (!re)
177 return __lookup_rb_tree_slow(root, ofs);
178
179 return re;
180}
181
182struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
183 struct rb_root_cached *root,
184 struct rb_node **parent,
185 unsigned long long key, bool *leftmost)
186{
187 struct rb_node **p = &root->rb_root.rb_node;
188 struct rb_entry *re;
189
190 while (*p) {
191 *parent = *p;
192 re = rb_entry(*parent, struct rb_entry, rb_node);
193
194 if (key < re->key) {
195 p = &(*p)->rb_left;
196 } else {
197 p = &(*p)->rb_right;
198 *leftmost = false;
199 }
200 }
201
202 return p;
203}
204
205struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
206 struct rb_root_cached *root,
207 struct rb_node **parent,
208 unsigned int ofs, bool *leftmost)
209{
210 struct rb_node **p = &root->rb_root.rb_node;
211 struct rb_entry *re;
212
213 while (*p) {
214 *parent = *p;
215 re = rb_entry(*parent, struct rb_entry, rb_node);
216
217 if (ofs < re->ofs) {
218 p = &(*p)->rb_left;
219 } else if (ofs >= re->ofs + re->len) {
220 p = &(*p)->rb_right;
221 *leftmost = false;
222 } else {
223 f2fs_bug_on(sbi, 1);
224 }
225 }
226
227 return p;
228}
229
230/*
231 * lookup rb entry in position of @ofs in rb-tree,
232 * if hit, return the entry, otherwise, return NULL
233 * @prev_ex: extent before ofs
234 * @next_ex: extent after ofs
235 * @insert_p: insert point for new extent at ofs
236 * in order to simpfy the insertion after.
237 * tree must stay unchanged between lookup and insertion.
238 */
239struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
240 struct rb_entry *cached_re,
241 unsigned int ofs,
242 struct rb_entry **prev_entry,
243 struct rb_entry **next_entry,
244 struct rb_node ***insert_p,
245 struct rb_node **insert_parent,
246 bool force, bool *leftmost)
247{
248 struct rb_node **pnode = &root->rb_root.rb_node;
249 struct rb_node *parent = NULL, *tmp_node;
250 struct rb_entry *re = cached_re;
251
252 *insert_p = NULL;
253 *insert_parent = NULL;
254 *prev_entry = NULL;
255 *next_entry = NULL;
256
257 if (RB_EMPTY_ROOT(&root->rb_root))
258 return NULL;
259
260 if (re) {
261 if (re->ofs <= ofs && re->ofs + re->len > ofs)
262 goto lookup_neighbors;
263 }
264
265 if (leftmost)
266 *leftmost = true;
267
268 while (*pnode) {
269 parent = *pnode;
270 re = rb_entry(*pnode, struct rb_entry, rb_node);
271
272 if (ofs < re->ofs) {
273 pnode = &(*pnode)->rb_left;
274 } else if (ofs >= re->ofs + re->len) {
275 pnode = &(*pnode)->rb_right;
276 if (leftmost)
277 *leftmost = false;
278 } else {
279 goto lookup_neighbors;
280 }
281 }
282
283 *insert_p = pnode;
284 *insert_parent = parent;
285
286 re = rb_entry(parent, struct rb_entry, rb_node);
287 tmp_node = parent;
288 if (parent && ofs > re->ofs)
289 tmp_node = rb_next(parent);
290 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
291
292 tmp_node = parent;
293 if (parent && ofs < re->ofs)
294 tmp_node = rb_prev(parent);
295 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
296 return NULL;
297
298lookup_neighbors:
299 if (ofs == re->ofs || force) {
300 /* lookup prev node for merging backward later */
301 tmp_node = rb_prev(&re->rb_node);
302 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
303 }
304 if (ofs == re->ofs + re->len - 1 || force) {
305 /* lookup next node for merging frontward later */
306 tmp_node = rb_next(&re->rb_node);
307 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
308 }
309 return re;
310}
311
312bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
313 struct rb_root_cached *root, bool check_key)
314{
315#ifdef CONFIG_F2FS_CHECK_FS
316 struct rb_node *cur = rb_first_cached(root), *next;
317 struct rb_entry *cur_re, *next_re;
318
319 if (!cur)
320 return true;
321
322 while (cur) {
323 next = rb_next(cur);
324 if (!next)
325 return true;
326
327 cur_re = rb_entry(cur, struct rb_entry, rb_node);
328 next_re = rb_entry(next, struct rb_entry, rb_node);
329
330 if (check_key) {
331 if (cur_re->key > next_re->key) {
332 f2fs_info(sbi, "inconsistent rbtree, "
333 "cur(%llu) next(%llu)",
334 cur_re->key, next_re->key);
335 return false;
336 }
337 goto next;
338 }
339
340 if (cur_re->ofs + cur_re->len > next_re->ofs) {
341 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
342 cur_re->ofs, cur_re->len,
343 next_re->ofs, next_re->len);
344 return false;
345 }
346next:
347 cur = next;
348 }
349#endif
350 return true;
351}
352
353static struct kmem_cache *extent_tree_slab;
354static struct kmem_cache *extent_node_slab;
355
356static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
357 struct extent_tree *et, struct extent_info *ei,
358 struct rb_node *parent, struct rb_node **p,
359 bool leftmost)
360{
361 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
362 struct extent_node *en;
363
364 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
365 if (!en)
366 return NULL;
367
368 en->ei = *ei;
369 INIT_LIST_HEAD(&en->list);
370 en->et = et;
371
372 rb_link_node(&en->rb_node, parent, p);
373 rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
374 atomic_inc(&et->node_cnt);
375 atomic_inc(&eti->total_ext_node);
376 return en;
377}
378
379static void __detach_extent_node(struct f2fs_sb_info *sbi,
380 struct extent_tree *et, struct extent_node *en)
381{
382 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
383
384 rb_erase_cached(&en->rb_node, &et->root);
385 atomic_dec(&et->node_cnt);
386 atomic_dec(&eti->total_ext_node);
387
388 if (et->cached_en == en)
389 et->cached_en = NULL;
390 kmem_cache_free(extent_node_slab, en);
391}
392
393/*
394 * Flow to release an extent_node:
395 * 1. list_del_init
396 * 2. __detach_extent_node
397 * 3. kmem_cache_free.
398 */
399static void __release_extent_node(struct f2fs_sb_info *sbi,
400 struct extent_tree *et, struct extent_node *en)
401{
402 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
403
404 spin_lock(&eti->extent_lock);
405 f2fs_bug_on(sbi, list_empty(&en->list));
406 list_del_init(&en->list);
407 spin_unlock(&eti->extent_lock);
408
409 __detach_extent_node(sbi, et, en);
410}
411
412static struct extent_tree *__grab_extent_tree(struct inode *inode,
413 enum extent_type type)
414{
415 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
416 struct extent_tree_info *eti = &sbi->extent_tree[type];
417 struct extent_tree *et;
418 nid_t ino = inode->i_ino;
419
420 mutex_lock(&eti->extent_tree_lock);
421 et = radix_tree_lookup(&eti->extent_tree_root, ino);
422 if (!et) {
423 et = f2fs_kmem_cache_alloc(extent_tree_slab,
424 GFP_NOFS, true, NULL);
425 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et);
426 memset(et, 0, sizeof(struct extent_tree));
427 et->ino = ino;
428 et->type = type;
429 et->root = RB_ROOT_CACHED;
430 et->cached_en = NULL;
431 rwlock_init(&et->lock);
432 INIT_LIST_HEAD(&et->list);
433 atomic_set(&et->node_cnt, 0);
434 atomic_inc(&eti->total_ext_tree);
435 } else {
436 atomic_dec(&eti->total_zombie_tree);
437 list_del_init(&et->list);
438 }
439 mutex_unlock(&eti->extent_tree_lock);
440
441 /* never died until evict_inode */
442 F2FS_I(inode)->extent_tree[type] = et;
443
444 return et;
445}
446
447static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
448 struct extent_tree *et)
449{
450 struct rb_node *node, *next;
451 struct extent_node *en;
452 unsigned int count = atomic_read(&et->node_cnt);
453
454 node = rb_first_cached(&et->root);
455 while (node) {
456 next = rb_next(node);
457 en = rb_entry(node, struct extent_node, rb_node);
458 __release_extent_node(sbi, et, en);
459 node = next;
460 }
461
462 return count - atomic_read(&et->node_cnt);
463}
464
465static void __drop_largest_extent(struct extent_tree *et,
466 pgoff_t fofs, unsigned int len)
467{
468 if (fofs < et->largest.fofs + et->largest.len &&
469 fofs + len > et->largest.fofs) {
470 et->largest.len = 0;
471 et->largest_updated = true;
472 }
473}
474
475void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage)
476{
477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
478 struct extent_tree_info *eti = &sbi->extent_tree[EX_READ];
479 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext;
480 struct extent_tree *et;
481 struct extent_node *en;
482 struct extent_info ei;
483
484 if (!__may_extent_tree(inode, EX_READ)) {
485 /* drop largest read extent */
486 if (i_ext && i_ext->len) {
487 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
488 i_ext->len = 0;
489 set_page_dirty(ipage);
490 }
491 goto out;
492 }
493
494 et = __grab_extent_tree(inode, EX_READ);
495
496 if (!i_ext || !i_ext->len)
497 goto out;
498
499 get_read_extent_info(&ei, i_ext);
500
501 write_lock(&et->lock);
502 if (atomic_read(&et->node_cnt))
503 goto unlock_out;
504
505 en = __attach_extent_node(sbi, et, &ei, NULL,
506 &et->root.rb_root.rb_node, true);
507 if (en) {
508 et->largest = en->ei;
509 et->cached_en = en;
510
511 spin_lock(&eti->extent_lock);
512 list_add_tail(&en->list, &eti->extent_list);
513 spin_unlock(&eti->extent_lock);
514 }
515unlock_out:
516 write_unlock(&et->lock);
517out:
518 if (!F2FS_I(inode)->extent_tree[EX_READ])
519 set_inode_flag(inode, FI_NO_EXTENT);
520}
521
522void f2fs_init_age_extent_tree(struct inode *inode)
523{
524 if (!__init_may_extent_tree(inode, EX_BLOCK_AGE))
525 return;
526 __grab_extent_tree(inode, EX_BLOCK_AGE);
527}
528
529void f2fs_init_extent_tree(struct inode *inode)
530{
531 /* initialize read cache */
532 if (__init_may_extent_tree(inode, EX_READ))
533 __grab_extent_tree(inode, EX_READ);
534
535 /* initialize block age cache */
536 if (__init_may_extent_tree(inode, EX_BLOCK_AGE))
537 __grab_extent_tree(inode, EX_BLOCK_AGE);
538}
539
540static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
541 struct extent_info *ei, enum extent_type type)
542{
543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
544 struct extent_tree_info *eti = &sbi->extent_tree[type];
545 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
546 struct extent_node *en;
547 bool ret = false;
548
549 if (!et)
550 return false;
551
552 trace_f2fs_lookup_extent_tree_start(inode, pgofs, type);
553
554 read_lock(&et->lock);
555
556 if (type == EX_READ &&
557 et->largest.fofs <= pgofs &&
558 et->largest.fofs + et->largest.len > pgofs) {
559 *ei = et->largest;
560 ret = true;
561 stat_inc_largest_node_hit(sbi);
562 goto out;
563 }
564
565 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
566 (struct rb_entry *)et->cached_en, pgofs);
567 if (!en)
568 goto out;
569
570 if (en == et->cached_en)
571 stat_inc_cached_node_hit(sbi, type);
572 else
573 stat_inc_rbtree_node_hit(sbi, type);
574
575 *ei = en->ei;
576 spin_lock(&eti->extent_lock);
577 if (!list_empty(&en->list)) {
578 list_move_tail(&en->list, &eti->extent_list);
579 et->cached_en = en;
580 }
581 spin_unlock(&eti->extent_lock);
582 ret = true;
583out:
584 stat_inc_total_hit(sbi, type);
585 read_unlock(&et->lock);
586
587 if (type == EX_READ)
588 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei);
589 else if (type == EX_BLOCK_AGE)
590 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei);
591 return ret;
592}
593
594static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
595 struct extent_tree *et, struct extent_info *ei,
596 struct extent_node *prev_ex,
597 struct extent_node *next_ex)
598{
599 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
600 struct extent_node *en = NULL;
601
602 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) {
603 prev_ex->ei.len += ei->len;
604 ei = &prev_ex->ei;
605 en = prev_ex;
606 }
607
608 if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) {
609 next_ex->ei.fofs = ei->fofs;
610 next_ex->ei.len += ei->len;
611 if (et->type == EX_READ)
612 next_ex->ei.blk = ei->blk;
613 if (en)
614 __release_extent_node(sbi, et, prev_ex);
615
616 en = next_ex;
617 }
618
619 if (!en)
620 return NULL;
621
622 __try_update_largest_extent(et, en);
623
624 spin_lock(&eti->extent_lock);
625 if (!list_empty(&en->list)) {
626 list_move_tail(&en->list, &eti->extent_list);
627 et->cached_en = en;
628 }
629 spin_unlock(&eti->extent_lock);
630 return en;
631}
632
633static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
634 struct extent_tree *et, struct extent_info *ei,
635 struct rb_node **insert_p,
636 struct rb_node *insert_parent,
637 bool leftmost)
638{
639 struct extent_tree_info *eti = &sbi->extent_tree[et->type];
640 struct rb_node **p;
641 struct rb_node *parent = NULL;
642 struct extent_node *en = NULL;
643
644 if (insert_p && insert_parent) {
645 parent = insert_parent;
646 p = insert_p;
647 goto do_insert;
648 }
649
650 leftmost = true;
651
652 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
653 ei->fofs, &leftmost);
654do_insert:
655 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
656 if (!en)
657 return NULL;
658
659 __try_update_largest_extent(et, en);
660
661 /* update in global extent list */
662 spin_lock(&eti->extent_lock);
663 list_add_tail(&en->list, &eti->extent_list);
664 et->cached_en = en;
665 spin_unlock(&eti->extent_lock);
666 return en;
667}
668
669static void __update_extent_tree_range(struct inode *inode,
670 struct extent_info *tei, enum extent_type type)
671{
672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
674 struct extent_node *en = NULL, *en1 = NULL;
675 struct extent_node *prev_en = NULL, *next_en = NULL;
676 struct extent_info ei, dei, prev;
677 struct rb_node **insert_p = NULL, *insert_parent = NULL;
678 unsigned int fofs = tei->fofs, len = tei->len;
679 unsigned int end = fofs + len;
680 bool updated = false;
681 bool leftmost = false;
682
683 if (!et)
684 return;
685
686 if (type == EX_READ)
687 trace_f2fs_update_read_extent_tree_range(inode, fofs, len,
688 tei->blk, 0);
689 else if (type == EX_BLOCK_AGE)
690 trace_f2fs_update_age_extent_tree_range(inode, fofs, len,
691 tei->age, tei->last_blocks);
692
693 write_lock(&et->lock);
694
695 if (type == EX_READ) {
696 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
697 write_unlock(&et->lock);
698 return;
699 }
700
701 prev = et->largest;
702 dei.len = 0;
703
704 /*
705 * drop largest extent before lookup, in case it's already
706 * been shrunk from extent tree
707 */
708 __drop_largest_extent(et, fofs, len);
709 }
710
711 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
712 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
713 (struct rb_entry *)et->cached_en, fofs,
714 (struct rb_entry **)&prev_en,
715 (struct rb_entry **)&next_en,
716 &insert_p, &insert_parent, false,
717 &leftmost);
718 if (!en)
719 en = next_en;
720
721 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
722 while (en && en->ei.fofs < end) {
723 unsigned int org_end;
724 int parts = 0; /* # of parts current extent split into */
725
726 next_en = en1 = NULL;
727
728 dei = en->ei;
729 org_end = dei.fofs + dei.len;
730 f2fs_bug_on(sbi, fofs >= org_end);
731
732 if (fofs > dei.fofs && (type != EX_READ ||
733 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) {
734 en->ei.len = fofs - en->ei.fofs;
735 prev_en = en;
736 parts = 1;
737 }
738
739 if (end < org_end && (type != EX_READ ||
740 org_end - end >= F2FS_MIN_EXTENT_LEN)) {
741 if (parts) {
742 __set_extent_info(&ei,
743 end, org_end - end,
744 end - dei.fofs + dei.blk, false,
745 dei.age, dei.last_blocks,
746 type);
747 en1 = __insert_extent_tree(sbi, et, &ei,
748 NULL, NULL, true);
749 next_en = en1;
750 } else {
751 __set_extent_info(&en->ei,
752 end, en->ei.len - (end - dei.fofs),
753 en->ei.blk + (end - dei.fofs), true,
754 dei.age, dei.last_blocks,
755 type);
756 next_en = en;
757 }
758 parts++;
759 }
760
761 if (!next_en) {
762 struct rb_node *node = rb_next(&en->rb_node);
763
764 next_en = rb_entry_safe(node, struct extent_node,
765 rb_node);
766 }
767
768 if (parts)
769 __try_update_largest_extent(et, en);
770 else
771 __release_extent_node(sbi, et, en);
772
773 /*
774 * if original extent is split into zero or two parts, extent
775 * tree has been altered by deletion or insertion, therefore
776 * invalidate pointers regard to tree.
777 */
778 if (parts != 1) {
779 insert_p = NULL;
780 insert_parent = NULL;
781 }
782 en = next_en;
783 }
784
785 if (type == EX_BLOCK_AGE)
786 goto update_age_extent_cache;
787
788 /* 3. update extent in read extent cache */
789 BUG_ON(type != EX_READ);
790
791 if (tei->blk) {
792 __set_extent_info(&ei, fofs, len, tei->blk, false,
793 0, 0, EX_READ);
794 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
795 __insert_extent_tree(sbi, et, &ei,
796 insert_p, insert_parent, leftmost);
797
798 /* give up extent_cache, if split and small updates happen */
799 if (dei.len >= 1 &&
800 prev.len < F2FS_MIN_EXTENT_LEN &&
801 et->largest.len < F2FS_MIN_EXTENT_LEN) {
802 et->largest.len = 0;
803 et->largest_updated = true;
804 set_inode_flag(inode, FI_NO_EXTENT);
805 }
806 }
807
808 if (is_inode_flag_set(inode, FI_NO_EXTENT))
809 __free_extent_tree(sbi, et);
810
811 if (et->largest_updated) {
812 et->largest_updated = false;
813 updated = true;
814 }
815 goto out_read_extent_cache;
816update_age_extent_cache:
817 if (!tei->last_blocks)
818 goto out_read_extent_cache;
819
820 __set_extent_info(&ei, fofs, len, 0, false,
821 tei->age, tei->last_blocks, EX_BLOCK_AGE);
822 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
823 __insert_extent_tree(sbi, et, &ei,
824 insert_p, insert_parent, leftmost);
825out_read_extent_cache:
826 write_unlock(&et->lock);
827
828 if (updated)
829 f2fs_mark_inode_dirty_sync(inode, true);
830}
831
832#ifdef CONFIG_F2FS_FS_COMPRESSION
833void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
834 pgoff_t fofs, block_t blkaddr, unsigned int llen,
835 unsigned int c_len)
836{
837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
839 struct extent_node *en = NULL;
840 struct extent_node *prev_en = NULL, *next_en = NULL;
841 struct extent_info ei;
842 struct rb_node **insert_p = NULL, *insert_parent = NULL;
843 bool leftmost = false;
844
845 trace_f2fs_update_read_extent_tree_range(inode, fofs, llen,
846 blkaddr, c_len);
847
848 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
849 if (is_inode_flag_set(inode, FI_NO_EXTENT))
850 return;
851
852 write_lock(&et->lock);
853
854 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
855 (struct rb_entry *)et->cached_en, fofs,
856 (struct rb_entry **)&prev_en,
857 (struct rb_entry **)&next_en,
858 &insert_p, &insert_parent, false,
859 &leftmost);
860 if (en)
861 goto unlock_out;
862
863 __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ);
864 ei.c_len = c_len;
865
866 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
867 __insert_extent_tree(sbi, et, &ei,
868 insert_p, insert_parent, leftmost);
869unlock_out:
870 write_unlock(&et->lock);
871}
872#endif
873
874static unsigned long long __calculate_block_age(unsigned long long new,
875 unsigned long long old)
876{
877 unsigned long long diff;
878
879 diff = (new >= old) ? new - (new - old) : new + (old - new);
880
881 return div_u64(diff * LAST_AGE_WEIGHT, 100);
882}
883
884/* This returns a new age and allocated blocks in ei */
885static int __get_new_block_age(struct inode *inode, struct extent_info *ei,
886 block_t blkaddr)
887{
888 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
889 loff_t f_size = i_size_read(inode);
890 unsigned long long cur_blocks =
891 atomic64_read(&sbi->allocated_data_blocks);
892 struct extent_info tei = *ei; /* only fofs and len are valid */
893
894 /*
895 * When I/O is not aligned to a PAGE_SIZE, update will happen to the last
896 * file block even in seq write. So don't record age for newly last file
897 * block here.
898 */
899 if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) &&
900 blkaddr == NEW_ADDR)
901 return -EINVAL;
902
903 if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) {
904 unsigned long long cur_age;
905
906 if (cur_blocks >= tei.last_blocks)
907 cur_age = cur_blocks - tei.last_blocks;
908 else
909 /* allocated_data_blocks overflow */
910 cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks;
911
912 if (tei.age)
913 ei->age = __calculate_block_age(cur_age, tei.age);
914 else
915 ei->age = cur_age;
916 ei->last_blocks = cur_blocks;
917 WARN_ON(ei->age > cur_blocks);
918 return 0;
919 }
920
921 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
922
923 /* the data block was allocated for the first time */
924 if (blkaddr == NEW_ADDR)
925 goto out;
926
927 if (__is_valid_data_blkaddr(blkaddr) &&
928 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
929 f2fs_bug_on(sbi, 1);
930 return -EINVAL;
931 }
932out:
933 /*
934 * init block age with zero, this can happen when the block age extent
935 * was reclaimed due to memory constraint or system reboot
936 */
937 ei->age = 0;
938 ei->last_blocks = cur_blocks;
939 return 0;
940}
941
942static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type)
943{
944 struct extent_info ei = {};
945
946 if (!__may_extent_tree(dn->inode, type))
947 return;
948
949 ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
950 dn->ofs_in_node;
951 ei.len = 1;
952
953 if (type == EX_READ) {
954 if (dn->data_blkaddr == NEW_ADDR)
955 ei.blk = NULL_ADDR;
956 else
957 ei.blk = dn->data_blkaddr;
958 } else if (type == EX_BLOCK_AGE) {
959 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr))
960 return;
961 }
962 __update_extent_tree_range(dn->inode, &ei, type);
963}
964
965static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink,
966 enum extent_type type)
967{
968 struct extent_tree_info *eti = &sbi->extent_tree[type];
969 struct extent_tree *et, *next;
970 struct extent_node *en;
971 unsigned int node_cnt = 0, tree_cnt = 0;
972 int remained;
973
974 if (!atomic_read(&eti->total_zombie_tree))
975 goto free_node;
976
977 if (!mutex_trylock(&eti->extent_tree_lock))
978 goto out;
979
980 /* 1. remove unreferenced extent tree */
981 list_for_each_entry_safe(et, next, &eti->zombie_list, list) {
982 if (atomic_read(&et->node_cnt)) {
983 write_lock(&et->lock);
984 node_cnt += __free_extent_tree(sbi, et);
985 write_unlock(&et->lock);
986 }
987 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
988 list_del_init(&et->list);
989 radix_tree_delete(&eti->extent_tree_root, et->ino);
990 kmem_cache_free(extent_tree_slab, et);
991 atomic_dec(&eti->total_ext_tree);
992 atomic_dec(&eti->total_zombie_tree);
993 tree_cnt++;
994
995 if (node_cnt + tree_cnt >= nr_shrink)
996 goto unlock_out;
997 cond_resched();
998 }
999 mutex_unlock(&eti->extent_tree_lock);
1000
1001free_node:
1002 /* 2. remove LRU extent entries */
1003 if (!mutex_trylock(&eti->extent_tree_lock))
1004 goto out;
1005
1006 remained = nr_shrink - (node_cnt + tree_cnt);
1007
1008 spin_lock(&eti->extent_lock);
1009 for (; remained > 0; remained--) {
1010 if (list_empty(&eti->extent_list))
1011 break;
1012 en = list_first_entry(&eti->extent_list,
1013 struct extent_node, list);
1014 et = en->et;
1015 if (!write_trylock(&et->lock)) {
1016 /* refresh this extent node's position in extent list */
1017 list_move_tail(&en->list, &eti->extent_list);
1018 continue;
1019 }
1020
1021 list_del_init(&en->list);
1022 spin_unlock(&eti->extent_lock);
1023
1024 __detach_extent_node(sbi, et, en);
1025
1026 write_unlock(&et->lock);
1027 node_cnt++;
1028 spin_lock(&eti->extent_lock);
1029 }
1030 spin_unlock(&eti->extent_lock);
1031
1032unlock_out:
1033 mutex_unlock(&eti->extent_tree_lock);
1034out:
1035 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type);
1036
1037 return node_cnt + tree_cnt;
1038}
1039
1040/* read extent cache operations */
1041bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
1042 struct extent_info *ei)
1043{
1044 if (!__may_extent_tree(inode, EX_READ))
1045 return false;
1046
1047 return __lookup_extent_tree(inode, pgofs, ei, EX_READ);
1048}
1049
1050void f2fs_update_read_extent_cache(struct dnode_of_data *dn)
1051{
1052 return __update_extent_cache(dn, EX_READ);
1053}
1054
1055void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
1056 pgoff_t fofs, block_t blkaddr, unsigned int len)
1057{
1058 struct extent_info ei = {
1059 .fofs = fofs,
1060 .len = len,
1061 .blk = blkaddr,
1062 };
1063
1064 if (!__may_extent_tree(dn->inode, EX_READ))
1065 return;
1066
1067 __update_extent_tree_range(dn->inode, &ei, EX_READ);
1068}
1069
1070unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1071{
1072 if (!test_opt(sbi, READ_EXTENT_CACHE))
1073 return 0;
1074
1075 return __shrink_extent_tree(sbi, nr_shrink, EX_READ);
1076}
1077
1078/* block age extent cache operations */
1079bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
1080 struct extent_info *ei)
1081{
1082 if (!__may_extent_tree(inode, EX_BLOCK_AGE))
1083 return false;
1084
1085 return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE);
1086}
1087
1088void f2fs_update_age_extent_cache(struct dnode_of_data *dn)
1089{
1090 return __update_extent_cache(dn, EX_BLOCK_AGE);
1091}
1092
1093void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
1094 pgoff_t fofs, unsigned int len)
1095{
1096 struct extent_info ei = {
1097 .fofs = fofs,
1098 .len = len,
1099 };
1100
1101 if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE))
1102 return;
1103
1104 __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE);
1105}
1106
1107unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
1108{
1109 if (!test_opt(sbi, AGE_EXTENT_CACHE))
1110 return 0;
1111
1112 return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE);
1113}
1114
1115static unsigned int __destroy_extent_node(struct inode *inode,
1116 enum extent_type type)
1117{
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1119 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1120 unsigned int node_cnt = 0;
1121
1122 if (!et || !atomic_read(&et->node_cnt))
1123 return 0;
1124
1125 write_lock(&et->lock);
1126 node_cnt = __free_extent_tree(sbi, et);
1127 write_unlock(&et->lock);
1128
1129 return node_cnt;
1130}
1131
1132void f2fs_destroy_extent_node(struct inode *inode)
1133{
1134 __destroy_extent_node(inode, EX_READ);
1135 __destroy_extent_node(inode, EX_BLOCK_AGE);
1136}
1137
1138static void __drop_extent_tree(struct inode *inode, enum extent_type type)
1139{
1140 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1142 bool updated = false;
1143
1144 if (!__may_extent_tree(inode, type))
1145 return;
1146
1147 write_lock(&et->lock);
1148 __free_extent_tree(sbi, et);
1149 if (type == EX_READ) {
1150 set_inode_flag(inode, FI_NO_EXTENT);
1151 if (et->largest.len) {
1152 et->largest.len = 0;
1153 updated = true;
1154 }
1155 }
1156 write_unlock(&et->lock);
1157 if (updated)
1158 f2fs_mark_inode_dirty_sync(inode, true);
1159}
1160
1161void f2fs_drop_extent_tree(struct inode *inode)
1162{
1163 __drop_extent_tree(inode, EX_READ);
1164 __drop_extent_tree(inode, EX_BLOCK_AGE);
1165}
1166
1167static void __destroy_extent_tree(struct inode *inode, enum extent_type type)
1168{
1169 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1170 struct extent_tree_info *eti = &sbi->extent_tree[type];
1171 struct extent_tree *et = F2FS_I(inode)->extent_tree[type];
1172 unsigned int node_cnt = 0;
1173
1174 if (!et)
1175 return;
1176
1177 if (inode->i_nlink && !is_bad_inode(inode) &&
1178 atomic_read(&et->node_cnt)) {
1179 mutex_lock(&eti->extent_tree_lock);
1180 list_add_tail(&et->list, &eti->zombie_list);
1181 atomic_inc(&eti->total_zombie_tree);
1182 mutex_unlock(&eti->extent_tree_lock);
1183 return;
1184 }
1185
1186 /* free all extent info belong to this extent tree */
1187 node_cnt = __destroy_extent_node(inode, type);
1188
1189 /* delete extent tree entry in radix tree */
1190 mutex_lock(&eti->extent_tree_lock);
1191 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
1192 radix_tree_delete(&eti->extent_tree_root, inode->i_ino);
1193 kmem_cache_free(extent_tree_slab, et);
1194 atomic_dec(&eti->total_ext_tree);
1195 mutex_unlock(&eti->extent_tree_lock);
1196
1197 F2FS_I(inode)->extent_tree[type] = NULL;
1198
1199 trace_f2fs_destroy_extent_tree(inode, node_cnt, type);
1200}
1201
1202void f2fs_destroy_extent_tree(struct inode *inode)
1203{
1204 __destroy_extent_tree(inode, EX_READ);
1205 __destroy_extent_tree(inode, EX_BLOCK_AGE);
1206}
1207
1208static void __init_extent_tree_info(struct extent_tree_info *eti)
1209{
1210 INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO);
1211 mutex_init(&eti->extent_tree_lock);
1212 INIT_LIST_HEAD(&eti->extent_list);
1213 spin_lock_init(&eti->extent_lock);
1214 atomic_set(&eti->total_ext_tree, 0);
1215 INIT_LIST_HEAD(&eti->zombie_list);
1216 atomic_set(&eti->total_zombie_tree, 0);
1217 atomic_set(&eti->total_ext_node, 0);
1218}
1219
1220void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
1221{
1222 __init_extent_tree_info(&sbi->extent_tree[EX_READ]);
1223 __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]);
1224
1225 /* initialize for block age extents */
1226 atomic64_set(&sbi->allocated_data_blocks, 0);
1227 sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD;
1228 sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD;
1229}
1230
1231int __init f2fs_create_extent_cache(void)
1232{
1233 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1234 sizeof(struct extent_tree));
1235 if (!extent_tree_slab)
1236 return -ENOMEM;
1237 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1238 sizeof(struct extent_node));
1239 if (!extent_node_slab) {
1240 kmem_cache_destroy(extent_tree_slab);
1241 return -ENOMEM;
1242 }
1243 return 0;
1244}
1245
1246void f2fs_destroy_extent_cache(void)
1247{
1248 kmem_cache_destroy(extent_node_slab);
1249 kmem_cache_destroy(extent_tree_slab);
1250}