Loading...
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2020 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "intel_gt.h"
8#include "intel_gt_clock_utils.h"
9
10static u32 read_reference_ts_freq(struct intel_uncore *uncore)
11{
12 u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
13 u32 base_freq, frac_freq;
14
15 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
16 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
17 base_freq *= 1000000;
18
19 frac_freq = ((ts_override &
20 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
21 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
22 frac_freq = 1000000 / (frac_freq + 1);
23
24 return base_freq + frac_freq;
25}
26
27static u32 gen10_get_crystal_clock_freq(struct intel_uncore *uncore,
28 u32 rpm_config_reg)
29{
30 u32 f19_2_mhz = 19200000;
31 u32 f24_mhz = 24000000;
32 u32 crystal_clock =
33 (rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
34 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
35
36 switch (crystal_clock) {
37 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
38 return f19_2_mhz;
39 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
40 return f24_mhz;
41 default:
42 MISSING_CASE(crystal_clock);
43 return 0;
44 }
45}
46
47static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
48 u32 rpm_config_reg)
49{
50 u32 f19_2_mhz = 19200000;
51 u32 f24_mhz = 24000000;
52 u32 f25_mhz = 25000000;
53 u32 f38_4_mhz = 38400000;
54 u32 crystal_clock =
55 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
56 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
57
58 switch (crystal_clock) {
59 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
60 return f24_mhz;
61 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
62 return f19_2_mhz;
63 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
64 return f38_4_mhz;
65 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
66 return f25_mhz;
67 default:
68 MISSING_CASE(crystal_clock);
69 return 0;
70 }
71}
72
73static u32 read_clock_frequency(struct intel_uncore *uncore)
74{
75 u32 f12_5_mhz = 12500000;
76 u32 f19_2_mhz = 19200000;
77 u32 f24_mhz = 24000000;
78
79 if (GRAPHICS_VER(uncore->i915) <= 4) {
80 /*
81 * PRMs say:
82 *
83 * "The value in this register increments once every 16
84 * hclks." (through the “Clocking Configuration”
85 * (“CLKCFG”) MCHBAR register)
86 */
87 return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000 / 16;
88 } else if (GRAPHICS_VER(uncore->i915) <= 8) {
89 /*
90 * PRMs say:
91 *
92 * "The PCU TSC counts 10ns increments; this timestamp
93 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
94 * rolling over every 1.5 hours).
95 */
96 return f12_5_mhz;
97 } else if (GRAPHICS_VER(uncore->i915) <= 9) {
98 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
99 u32 freq = 0;
100
101 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
102 freq = read_reference_ts_freq(uncore);
103 } else {
104 freq = IS_GEN9_LP(uncore->i915) ? f19_2_mhz : f24_mhz;
105
106 /*
107 * Now figure out how the command stream's timestamp
108 * register increments from this frequency (it might
109 * increment only every few clock cycle).
110 */
111 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
112 CTC_SHIFT_PARAMETER_SHIFT);
113 }
114
115 return freq;
116 } else if (GRAPHICS_VER(uncore->i915) <= 12) {
117 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
118 u32 freq = 0;
119
120 /*
121 * First figure out the reference frequency. There are 2 ways
122 * we can compute the frequency, either through the
123 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
124 * tells us which one we should use.
125 */
126 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
127 freq = read_reference_ts_freq(uncore);
128 } else {
129 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
130
131 if (GRAPHICS_VER(uncore->i915) <= 10)
132 freq = gen10_get_crystal_clock_freq(uncore, c0);
133 else
134 freq = gen11_get_crystal_clock_freq(uncore, c0);
135
136 /*
137 * Now figure out how the command stream's timestamp
138 * register increments from this frequency (it might
139 * increment only every few clock cycle).
140 */
141 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
142 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
143 }
144
145 return freq;
146 }
147
148 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
149 return 0;
150}
151
152void intel_gt_init_clock_frequency(struct intel_gt *gt)
153{
154 /*
155 * Note that on gen11+, the clock frequency may be reconfigured.
156 * We do not, and we assume nobody else does.
157 */
158 gt->clock_frequency = read_clock_frequency(gt->uncore);
159 if (gt->clock_frequency)
160 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
161
162 GT_TRACE(gt,
163 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
164 gt->clock_frequency / 1000,
165 gt->clock_period_ns,
166 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
167 USEC_PER_SEC));
168}
169
170#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
171void intel_gt_check_clock_frequency(const struct intel_gt *gt)
172{
173 if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
174 dev_err(gt->i915->drm.dev,
175 "GT clock frequency changed, was %uHz, now %uHz!\n",
176 gt->clock_frequency,
177 read_clock_frequency(gt->uncore));
178 }
179}
180#endif
181
182static u64 div_u64_roundup(u64 nom, u32 den)
183{
184 return div_u64(nom + den - 1, den);
185}
186
187u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
188{
189 return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
190}
191
192u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
193{
194 return intel_gt_clock_interval_to_ns(gt, 16 * count);
195}
196
197u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
198{
199 return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
200}
201
202u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
203{
204 u64 val;
205
206 /*
207 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
208 * 8300) freezing up around GPU hangs. Looks as if even
209 * scheduling/timer interrupts start misbehaving if the RPS
210 * EI/thresholds are "bad", leading to a very sluggish or even
211 * frozen machine.
212 */
213 val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
214 if (GRAPHICS_VER(gt->i915) == 6)
215 val = div_u64_roundup(val, 25) * 25;
216
217 return val;
218}
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2020 Intel Corporation
4 */
5
6#include "i915_drv.h"
7#include "i915_reg.h"
8#include "intel_gt.h"
9#include "intel_gt_clock_utils.h"
10#include "intel_gt_regs.h"
11
12static u32 read_reference_ts_freq(struct intel_uncore *uncore)
13{
14 u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
15 u32 base_freq, frac_freq;
16
17 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
18 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
19 base_freq *= 1000000;
20
21 frac_freq = ((ts_override &
22 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
23 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
24 frac_freq = 1000000 / (frac_freq + 1);
25
26 return base_freq + frac_freq;
27}
28
29static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
30 u32 rpm_config_reg)
31{
32 u32 f19_2_mhz = 19200000;
33 u32 f24_mhz = 24000000;
34 u32 f25_mhz = 25000000;
35 u32 f38_4_mhz = 38400000;
36 u32 crystal_clock =
37 (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
38 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
39
40 switch (crystal_clock) {
41 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
42 return f24_mhz;
43 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
44 return f19_2_mhz;
45 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
46 return f38_4_mhz;
47 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
48 return f25_mhz;
49 default:
50 MISSING_CASE(crystal_clock);
51 return 0;
52 }
53}
54
55static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
56{
57 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
58 u32 freq = 0;
59
60 /*
61 * Note that on gen11+, the clock frequency may be reconfigured.
62 * We do not, and we assume nobody else does.
63 *
64 * First figure out the reference frequency. There are 2 ways
65 * we can compute the frequency, either through the
66 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
67 * tells us which one we should use.
68 */
69 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
70 freq = read_reference_ts_freq(uncore);
71 } else {
72 u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
73
74 freq = gen11_get_crystal_clock_freq(uncore, c0);
75
76 /*
77 * Now figure out how the command stream's timestamp
78 * register increments from this frequency (it might
79 * increment only every few clock cycle).
80 */
81 freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
82 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
83 }
84
85 return freq;
86}
87
88static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
89{
90 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
91 u32 freq = 0;
92
93 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
94 freq = read_reference_ts_freq(uncore);
95 } else {
96 freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
97
98 /*
99 * Now figure out how the command stream's timestamp
100 * register increments from this frequency (it might
101 * increment only every few clock cycle).
102 */
103 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
104 CTC_SHIFT_PARAMETER_SHIFT);
105 }
106
107 return freq;
108}
109
110static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
111{
112 /*
113 * PRMs say:
114 *
115 * "The PCU TSC counts 10ns increments; this timestamp
116 * reflects bits 38:3 of the TSC (i.e. 80ns granularity,
117 * rolling over every 1.5 hours).
118 */
119 return 12500000;
120}
121
122static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
123{
124 /*
125 * 63:32 increments every 1000 ns
126 * 31:0 mbz
127 */
128 return 1000000000 / 1000;
129}
130
131static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
132{
133 /*
134 * 63:20 increments every 1/4 ns
135 * 19:0 mbz
136 *
137 * -> 63:32 increments every 1024 ns
138 */
139 return 1000000000 / 1024;
140}
141
142static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
143{
144 /*
145 * PRMs say:
146 *
147 * "The value in this register increments once every 16
148 * hclks." (through the “Clocking Configuration”
149 * (“CLKCFG”) MCHBAR register)
150 *
151 * Testing on actual hardware has shown there is no /16.
152 */
153 return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
154}
155
156static u32 read_clock_frequency(struct intel_uncore *uncore)
157{
158 if (GRAPHICS_VER(uncore->i915) >= 11)
159 return gen11_read_clock_frequency(uncore);
160 else if (GRAPHICS_VER(uncore->i915) >= 9)
161 return gen9_read_clock_frequency(uncore);
162 else if (GRAPHICS_VER(uncore->i915) >= 6)
163 return gen6_read_clock_frequency(uncore);
164 else if (GRAPHICS_VER(uncore->i915) == 5)
165 return gen5_read_clock_frequency(uncore);
166 else if (IS_G4X(uncore->i915))
167 return g4x_read_clock_frequency(uncore);
168 else if (GRAPHICS_VER(uncore->i915) == 4)
169 return gen4_read_clock_frequency(uncore);
170 else
171 return 0;
172}
173
174void intel_gt_init_clock_frequency(struct intel_gt *gt)
175{
176 gt->clock_frequency = read_clock_frequency(gt->uncore);
177
178 /* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
179 if (GRAPHICS_VER(gt->i915) == 11)
180 gt->clock_period_ns = NSEC_PER_SEC / 13750000;
181 else if (gt->clock_frequency)
182 gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
183
184 GT_TRACE(gt,
185 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
186 gt->clock_frequency / 1000,
187 gt->clock_period_ns,
188 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
189 USEC_PER_SEC));
190}
191
192#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
193void intel_gt_check_clock_frequency(const struct intel_gt *gt)
194{
195 if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
196 dev_err(gt->i915->drm.dev,
197 "GT clock frequency changed, was %uHz, now %uHz!\n",
198 gt->clock_frequency,
199 read_clock_frequency(gt->uncore));
200 }
201}
202#endif
203
204static u64 div_u64_roundup(u64 nom, u32 den)
205{
206 return div_u64(nom + den - 1, den);
207}
208
209u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210{
211 return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212}
213
214u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215{
216 return intel_gt_clock_interval_to_ns(gt, 16 * count);
217}
218
219u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220{
221 return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222}
223
224u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225{
226 u64 val;
227
228 /*
229 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230 * 8300) freezing up around GPU hangs. Looks as if even
231 * scheduling/timer interrupts start misbehaving if the RPS
232 * EI/thresholds are "bad", leading to a very sluggish or even
233 * frozen machine.
234 */
235 val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236 if (GRAPHICS_VER(gt->i915) == 6)
237 val = div_u64_roundup(val, 25) * 25;
238
239 return val;
240}