Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
   3 * Copyright © 2006-2009 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors:
  25 *	Eric Anholt <eric@anholt.net>
  26 *	Jesse Barnes <jesse.barnes@intel.com>
  27 */
  28
  29#include <linux/delay.h>
  30#include <linux/hdmi.h>
  31#include <linux/i2c.h>
  32#include <linux/slab.h>
 
  33
 
 
 
  34#include <drm/drm_atomic_helper.h>
  35#include <drm/drm_crtc.h>
  36#include <drm/drm_edid.h>
  37#include <drm/drm_hdcp.h>
  38#include <drm/drm_scdc_helper.h>
  39#include <drm/intel_lpe_audio.h>
  40
  41#include "i915_debugfs.h"
  42#include "i915_drv.h"
 
  43#include "intel_atomic.h"
  44#include "intel_connector.h"
  45#include "intel_ddi.h"
  46#include "intel_de.h"
  47#include "intel_display_types.h"
  48#include "intel_dp.h"
  49#include "intel_gmbus.h"
  50#include "intel_hdcp.h"
 
  51#include "intel_hdmi.h"
  52#include "intel_lspcon.h"
  53#include "intel_panel.h"
 
  54
  55static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  56{
  57	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  58}
  59
  60static void
  61assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  62{
  63	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  64	struct drm_i915_private *dev_priv = to_i915(dev);
  65	u32 enabled_bits;
  66
  67	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  68
  69	drm_WARN(dev,
  70		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
  71		 "HDMI port enabled, expecting disabled\n");
  72}
  73
  74static void
  75assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
  76				     enum transcoder cpu_transcoder)
  77{
  78	drm_WARN(&dev_priv->drm,
  79		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
  80		 TRANS_DDI_FUNC_ENABLE,
  81		 "HDMI transcoder function enabled, expecting disabled\n");
  82}
  83
  84static u32 g4x_infoframe_index(unsigned int type)
  85{
  86	switch (type) {
  87	case HDMI_PACKET_TYPE_GAMUT_METADATA:
  88		return VIDEO_DIP_SELECT_GAMUT;
  89	case HDMI_INFOFRAME_TYPE_AVI:
  90		return VIDEO_DIP_SELECT_AVI;
  91	case HDMI_INFOFRAME_TYPE_SPD:
  92		return VIDEO_DIP_SELECT_SPD;
  93	case HDMI_INFOFRAME_TYPE_VENDOR:
  94		return VIDEO_DIP_SELECT_VENDOR;
  95	default:
  96		MISSING_CASE(type);
  97		return 0;
  98	}
  99}
 100
 101static u32 g4x_infoframe_enable(unsigned int type)
 102{
 103	switch (type) {
 104	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 105		return VIDEO_DIP_ENABLE_GCP;
 106	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 107		return VIDEO_DIP_ENABLE_GAMUT;
 108	case DP_SDP_VSC:
 109		return 0;
 110	case HDMI_INFOFRAME_TYPE_AVI:
 111		return VIDEO_DIP_ENABLE_AVI;
 112	case HDMI_INFOFRAME_TYPE_SPD:
 113		return VIDEO_DIP_ENABLE_SPD;
 114	case HDMI_INFOFRAME_TYPE_VENDOR:
 115		return VIDEO_DIP_ENABLE_VENDOR;
 116	case HDMI_INFOFRAME_TYPE_DRM:
 117		return 0;
 118	default:
 119		MISSING_CASE(type);
 120		return 0;
 121	}
 122}
 123
 124static u32 hsw_infoframe_enable(unsigned int type)
 125{
 126	switch (type) {
 127	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 128		return VIDEO_DIP_ENABLE_GCP_HSW;
 129	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 130		return VIDEO_DIP_ENABLE_GMP_HSW;
 131	case DP_SDP_VSC:
 132		return VIDEO_DIP_ENABLE_VSC_HSW;
 133	case DP_SDP_PPS:
 134		return VDIP_ENABLE_PPS;
 135	case HDMI_INFOFRAME_TYPE_AVI:
 136		return VIDEO_DIP_ENABLE_AVI_HSW;
 137	case HDMI_INFOFRAME_TYPE_SPD:
 138		return VIDEO_DIP_ENABLE_SPD_HSW;
 139	case HDMI_INFOFRAME_TYPE_VENDOR:
 140		return VIDEO_DIP_ENABLE_VS_HSW;
 141	case HDMI_INFOFRAME_TYPE_DRM:
 142		return VIDEO_DIP_ENABLE_DRM_GLK;
 143	default:
 144		MISSING_CASE(type);
 145		return 0;
 146	}
 147}
 148
 149static i915_reg_t
 150hsw_dip_data_reg(struct drm_i915_private *dev_priv,
 151		 enum transcoder cpu_transcoder,
 152		 unsigned int type,
 153		 int i)
 154{
 155	switch (type) {
 156	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 157		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
 158	case DP_SDP_VSC:
 159		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
 160	case DP_SDP_PPS:
 161		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
 162	case HDMI_INFOFRAME_TYPE_AVI:
 163		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
 164	case HDMI_INFOFRAME_TYPE_SPD:
 165		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
 166	case HDMI_INFOFRAME_TYPE_VENDOR:
 167		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
 168	case HDMI_INFOFRAME_TYPE_DRM:
 169		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
 170	default:
 171		MISSING_CASE(type);
 172		return INVALID_MMIO_REG;
 173	}
 174}
 175
 176static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
 177			     unsigned int type)
 178{
 179	switch (type) {
 180	case DP_SDP_VSC:
 181		return VIDEO_DIP_VSC_DATA_SIZE;
 182	case DP_SDP_PPS:
 183		return VIDEO_DIP_PPS_DATA_SIZE;
 184	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 185		if (DISPLAY_VER(dev_priv) >= 11)
 186			return VIDEO_DIP_GMP_DATA_SIZE;
 187		else
 188			return VIDEO_DIP_DATA_SIZE;
 189	default:
 190		return VIDEO_DIP_DATA_SIZE;
 191	}
 192}
 193
 194static void g4x_write_infoframe(struct intel_encoder *encoder,
 195				const struct intel_crtc_state *crtc_state,
 196				unsigned int type,
 197				const void *frame, ssize_t len)
 198{
 199	const u32 *data = frame;
 200	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 201	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 202	int i;
 203
 204	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 205		 "Writing DIP with CTL reg disabled\n");
 206
 207	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 208	val |= g4x_infoframe_index(type);
 209
 210	val &= ~g4x_infoframe_enable(type);
 211
 212	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 213
 214	for (i = 0; i < len; i += 4) {
 215		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
 216		data++;
 217	}
 218	/* Write every possible data byte to force correct ECC calculation. */
 219	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 220		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
 221
 222	val |= g4x_infoframe_enable(type);
 223	val &= ~VIDEO_DIP_FREQ_MASK;
 224	val |= VIDEO_DIP_FREQ_VSYNC;
 225
 226	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 227	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
 228}
 229
 230static void g4x_read_infoframe(struct intel_encoder *encoder,
 231			       const struct intel_crtc_state *crtc_state,
 232			       unsigned int type,
 233			       void *frame, ssize_t len)
 234{
 235	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 236	u32 val, *data = frame;
 237	int i;
 238
 239	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 240
 241	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 242	val |= g4x_infoframe_index(type);
 243
 244	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 245
 246	for (i = 0; i < len; i += 4)
 247		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
 248}
 249
 250static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
 251				  const struct intel_crtc_state *pipe_config)
 252{
 253	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 254	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 255
 256	if ((val & VIDEO_DIP_ENABLE) == 0)
 257		return 0;
 258
 259	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 260		return 0;
 261
 262	return val & (VIDEO_DIP_ENABLE_AVI |
 263		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 264}
 265
 266static void ibx_write_infoframe(struct intel_encoder *encoder,
 267				const struct intel_crtc_state *crtc_state,
 268				unsigned int type,
 269				const void *frame, ssize_t len)
 270{
 271	const u32 *data = frame;
 272	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 273	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 274	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
 275	u32 val = intel_de_read(dev_priv, reg);
 276	int i;
 277
 278	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 279		 "Writing DIP with CTL reg disabled\n");
 280
 281	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 282	val |= g4x_infoframe_index(type);
 283
 284	val &= ~g4x_infoframe_enable(type);
 285
 286	intel_de_write(dev_priv, reg, val);
 287
 288	for (i = 0; i < len; i += 4) {
 289		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
 290			       *data);
 291		data++;
 292	}
 293	/* Write every possible data byte to force correct ECC calculation. */
 294	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 295		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 296
 297	val |= g4x_infoframe_enable(type);
 298	val &= ~VIDEO_DIP_FREQ_MASK;
 299	val |= VIDEO_DIP_FREQ_VSYNC;
 300
 301	intel_de_write(dev_priv, reg, val);
 302	intel_de_posting_read(dev_priv, reg);
 303}
 304
 305static void ibx_read_infoframe(struct intel_encoder *encoder,
 306			       const struct intel_crtc_state *crtc_state,
 307			       unsigned int type,
 308			       void *frame, ssize_t len)
 309{
 310	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 311	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 312	u32 val, *data = frame;
 313	int i;
 314
 315	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 316
 317	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 318	val |= g4x_infoframe_index(type);
 319
 320	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 321
 322	for (i = 0; i < len; i += 4)
 323		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 324}
 325
 326static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
 327				  const struct intel_crtc_state *pipe_config)
 328{
 329	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 330	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 331	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
 332	u32 val = intel_de_read(dev_priv, reg);
 333
 334	if ((val & VIDEO_DIP_ENABLE) == 0)
 335		return 0;
 336
 337	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 338		return 0;
 339
 340	return val & (VIDEO_DIP_ENABLE_AVI |
 341		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 342		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 343}
 344
 345static void cpt_write_infoframe(struct intel_encoder *encoder,
 346				const struct intel_crtc_state *crtc_state,
 347				unsigned int type,
 348				const void *frame, ssize_t len)
 349{
 350	const u32 *data = frame;
 351	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 352	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 353	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
 354	u32 val = intel_de_read(dev_priv, reg);
 355	int i;
 356
 357	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 358		 "Writing DIP with CTL reg disabled\n");
 359
 360	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 361	val |= g4x_infoframe_index(type);
 362
 363	/* The DIP control register spec says that we need to update the AVI
 364	 * infoframe without clearing its enable bit */
 365	if (type != HDMI_INFOFRAME_TYPE_AVI)
 366		val &= ~g4x_infoframe_enable(type);
 367
 368	intel_de_write(dev_priv, reg, val);
 369
 370	for (i = 0; i < len; i += 4) {
 371		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
 372			       *data);
 373		data++;
 374	}
 375	/* Write every possible data byte to force correct ECC calculation. */
 376	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 377		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 378
 379	val |= g4x_infoframe_enable(type);
 380	val &= ~VIDEO_DIP_FREQ_MASK;
 381	val |= VIDEO_DIP_FREQ_VSYNC;
 382
 383	intel_de_write(dev_priv, reg, val);
 384	intel_de_posting_read(dev_priv, reg);
 385}
 386
 387static void cpt_read_infoframe(struct intel_encoder *encoder,
 388			       const struct intel_crtc_state *crtc_state,
 389			       unsigned int type,
 390			       void *frame, ssize_t len)
 391{
 392	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 393	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 394	u32 val, *data = frame;
 395	int i;
 396
 397	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 398
 399	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 400	val |= g4x_infoframe_index(type);
 401
 402	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 403
 404	for (i = 0; i < len; i += 4)
 405		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 406}
 407
 408static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
 409				  const struct intel_crtc_state *pipe_config)
 410{
 411	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 412	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 413	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
 414
 415	if ((val & VIDEO_DIP_ENABLE) == 0)
 416		return 0;
 417
 418	return val & (VIDEO_DIP_ENABLE_AVI |
 419		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 420		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 421}
 422
 423static void vlv_write_infoframe(struct intel_encoder *encoder,
 424				const struct intel_crtc_state *crtc_state,
 425				unsigned int type,
 426				const void *frame, ssize_t len)
 427{
 428	const u32 *data = frame;
 429	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 430	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
 431	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
 432	u32 val = intel_de_read(dev_priv, reg);
 433	int i;
 434
 435	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 436		 "Writing DIP with CTL reg disabled\n");
 437
 438	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 439	val |= g4x_infoframe_index(type);
 440
 441	val &= ~g4x_infoframe_enable(type);
 442
 443	intel_de_write(dev_priv, reg, val);
 444
 445	for (i = 0; i < len; i += 4) {
 446		intel_de_write(dev_priv,
 447			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
 448		data++;
 449	}
 450	/* Write every possible data byte to force correct ECC calculation. */
 451	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 452		intel_de_write(dev_priv,
 453			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
 454
 455	val |= g4x_infoframe_enable(type);
 456	val &= ~VIDEO_DIP_FREQ_MASK;
 457	val |= VIDEO_DIP_FREQ_VSYNC;
 458
 459	intel_de_write(dev_priv, reg, val);
 460	intel_de_posting_read(dev_priv, reg);
 461}
 462
 463static void vlv_read_infoframe(struct intel_encoder *encoder,
 464			       const struct intel_crtc_state *crtc_state,
 465			       unsigned int type,
 466			       void *frame, ssize_t len)
 467{
 468	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 469	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 470	u32 val, *data = frame;
 471	int i;
 472
 473	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
 474
 475	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 476	val |= g4x_infoframe_index(type);
 477
 478	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
 479
 480	for (i = 0; i < len; i += 4)
 481		*data++ = intel_de_read(dev_priv,
 482				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
 483}
 484
 485static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
 486				  const struct intel_crtc_state *pipe_config)
 487{
 488	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 489	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 490	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
 491
 492	if ((val & VIDEO_DIP_ENABLE) == 0)
 493		return 0;
 494
 495	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 496		return 0;
 497
 498	return val & (VIDEO_DIP_ENABLE_AVI |
 499		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 500		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 501}
 502
 503void hsw_write_infoframe(struct intel_encoder *encoder,
 504			 const struct intel_crtc_state *crtc_state,
 505			 unsigned int type,
 506			 const void *frame, ssize_t len)
 507{
 508	const u32 *data = frame;
 509	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 510	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 511	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
 512	int data_size;
 513	int i;
 514	u32 val = intel_de_read(dev_priv, ctl_reg);
 515
 516	data_size = hsw_dip_data_size(dev_priv, type);
 517
 518	drm_WARN_ON(&dev_priv->drm, len > data_size);
 519
 520	val &= ~hsw_infoframe_enable(type);
 521	intel_de_write(dev_priv, ctl_reg, val);
 522
 523	for (i = 0; i < len; i += 4) {
 524		intel_de_write(dev_priv,
 525			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 526			       *data);
 527		data++;
 528	}
 529	/* Write every possible data byte to force correct ECC calculation. */
 530	for (; i < data_size; i += 4)
 531		intel_de_write(dev_priv,
 532			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 533			       0);
 534
 535	/* Wa_14013475917 */
 536	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
 537	    type == DP_SDP_VSC)
 538		return;
 539
 540	val |= hsw_infoframe_enable(type);
 541	intel_de_write(dev_priv, ctl_reg, val);
 542	intel_de_posting_read(dev_priv, ctl_reg);
 543}
 544
 545void hsw_read_infoframe(struct intel_encoder *encoder,
 546			const struct intel_crtc_state *crtc_state,
 547			unsigned int type, void *frame, ssize_t len)
 548{
 549	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 550	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 551	u32 *data = frame;
 552	int i;
 553
 554	for (i = 0; i < len; i += 4)
 555		*data++ = intel_de_read(dev_priv,
 556				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
 557}
 558
 559static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
 560				  const struct intel_crtc_state *pipe_config)
 561{
 562	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 563	u32 val = intel_de_read(dev_priv,
 564				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
 565	u32 mask;
 566
 567	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
 568		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
 569		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
 570
 571	if (DISPLAY_VER(dev_priv) >= 10)
 572		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
 573
 574	return val & mask;
 575}
 576
 577static const u8 infoframe_type_to_idx[] = {
 578	HDMI_PACKET_TYPE_GENERAL_CONTROL,
 579	HDMI_PACKET_TYPE_GAMUT_METADATA,
 580	DP_SDP_VSC,
 581	HDMI_INFOFRAME_TYPE_AVI,
 582	HDMI_INFOFRAME_TYPE_SPD,
 583	HDMI_INFOFRAME_TYPE_VENDOR,
 584	HDMI_INFOFRAME_TYPE_DRM,
 585};
 586
 587u32 intel_hdmi_infoframe_enable(unsigned int type)
 588{
 589	int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 592		if (infoframe_type_to_idx[i] == type)
 593			return BIT(i);
 594	}
 595
 596	return 0;
 597}
 598
 599u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
 600				  const struct intel_crtc_state *crtc_state)
 601{
 602	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 603	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 604	u32 val, ret = 0;
 605	int i;
 606
 607	val = dig_port->infoframes_enabled(encoder, crtc_state);
 608
 609	/* map from hardware bits to dip idx */
 610	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 611		unsigned int type = infoframe_type_to_idx[i];
 612
 613		if (HAS_DDI(dev_priv)) {
 614			if (val & hsw_infoframe_enable(type))
 615				ret |= BIT(i);
 616		} else {
 617			if (val & g4x_infoframe_enable(type))
 618				ret |= BIT(i);
 619		}
 620	}
 621
 622	return ret;
 623}
 624
 625/*
 626 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 627 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 628 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 629 * used for both technologies.
 630 *
 631 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 632 * DW1:       DB3       | DB2 | DB1 | DB0
 633 * DW2:       DB7       | DB6 | DB5 | DB4
 634 * DW3: ...
 635 *
 636 * (HB is Header Byte, DB is Data Byte)
 637 *
 638 * The hdmi pack() functions don't know about that hardware specific hole so we
 639 * trick them by giving an offset into the buffer and moving back the header
 640 * bytes by one.
 641 */
 642static void intel_write_infoframe(struct intel_encoder *encoder,
 643				  const struct intel_crtc_state *crtc_state,
 644				  enum hdmi_infoframe_type type,
 645				  const union hdmi_infoframe *frame)
 646{
 647	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 648	u8 buffer[VIDEO_DIP_DATA_SIZE];
 649	ssize_t len;
 650
 651	if ((crtc_state->infoframes.enable &
 652	     intel_hdmi_infoframe_enable(type)) == 0)
 653		return;
 654
 655	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
 656		return;
 657
 658	/* see comment above for the reason for this offset */
 659	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
 660	if (drm_WARN_ON(encoder->base.dev, len < 0))
 661		return;
 662
 663	/* Insert the 'hole' (see big comment above) at position 3 */
 664	memmove(&buffer[0], &buffer[1], 3);
 665	buffer[3] = 0;
 666	len++;
 667
 668	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
 669}
 670
 671void intel_read_infoframe(struct intel_encoder *encoder,
 672			  const struct intel_crtc_state *crtc_state,
 673			  enum hdmi_infoframe_type type,
 674			  union hdmi_infoframe *frame)
 675{
 676	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 677	u8 buffer[VIDEO_DIP_DATA_SIZE];
 678	int ret;
 679
 680	if ((crtc_state->infoframes.enable &
 681	     intel_hdmi_infoframe_enable(type)) == 0)
 682		return;
 683
 684	dig_port->read_infoframe(encoder, crtc_state,
 685				       type, buffer, sizeof(buffer));
 686
 687	/* Fill the 'hole' (see big comment above) at position 3 */
 688	memmove(&buffer[1], &buffer[0], 3);
 689
 690	/* see comment above for the reason for this offset */
 691	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
 692	if (ret) {
 693		drm_dbg_kms(encoder->base.dev,
 694			    "Failed to unpack infoframe type 0x%02x\n", type);
 695		return;
 696	}
 697
 698	if (frame->any.type != type)
 699		drm_dbg_kms(encoder->base.dev,
 700			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
 701			    frame->any.type, type);
 702}
 703
 704static bool
 705intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
 706				 struct intel_crtc_state *crtc_state,
 707				 struct drm_connector_state *conn_state)
 708{
 709	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
 710	const struct drm_display_mode *adjusted_mode =
 711		&crtc_state->hw.adjusted_mode;
 712	struct drm_connector *connector = conn_state->connector;
 713	int ret;
 714
 715	if (!crtc_state->has_infoframe)
 716		return true;
 717
 718	crtc_state->infoframes.enable |=
 719		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
 720
 721	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
 722						       adjusted_mode);
 723	if (ret)
 724		return false;
 725
 726	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
 727		frame->colorspace = HDMI_COLORSPACE_YUV420;
 728	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
 729		frame->colorspace = HDMI_COLORSPACE_YUV444;
 730	else
 731		frame->colorspace = HDMI_COLORSPACE_RGB;
 732
 733	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
 734
 735	/* nonsense combination */
 736	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
 737		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
 738
 739	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
 740		drm_hdmi_avi_infoframe_quant_range(frame, connector,
 741						   adjusted_mode,
 742						   crtc_state->limited_color_range ?
 743						   HDMI_QUANTIZATION_RANGE_LIMITED :
 744						   HDMI_QUANTIZATION_RANGE_FULL);
 745	} else {
 746		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
 747		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
 748	}
 749
 750	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
 751
 752	/* TODO: handle pixel repetition for YCBCR420 outputs */
 753
 754	ret = hdmi_avi_infoframe_check(frame);
 755	if (drm_WARN_ON(encoder->base.dev, ret))
 756		return false;
 757
 758	return true;
 759}
 760
 761static bool
 762intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
 763				 struct intel_crtc_state *crtc_state,
 764				 struct drm_connector_state *conn_state)
 765{
 766	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
 767	int ret;
 768
 769	if (!crtc_state->has_infoframe)
 770		return true;
 771
 772	crtc_state->infoframes.enable |=
 773		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
 774
 775	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
 776	if (drm_WARN_ON(encoder->base.dev, ret))
 777		return false;
 778
 779	frame->sdi = HDMI_SPD_SDI_PC;
 780
 781	ret = hdmi_spd_infoframe_check(frame);
 782	if (drm_WARN_ON(encoder->base.dev, ret))
 783		return false;
 784
 785	return true;
 786}
 787
 788static bool
 789intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
 790				  struct intel_crtc_state *crtc_state,
 791				  struct drm_connector_state *conn_state)
 792{
 793	struct hdmi_vendor_infoframe *frame =
 794		&crtc_state->infoframes.hdmi.vendor.hdmi;
 795	const struct drm_display_info *info =
 796		&conn_state->connector->display_info;
 797	int ret;
 798
 799	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
 800		return true;
 801
 802	crtc_state->infoframes.enable |=
 803		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
 804
 805	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
 806							  conn_state->connector,
 807							  &crtc_state->hw.adjusted_mode);
 808	if (drm_WARN_ON(encoder->base.dev, ret))
 809		return false;
 810
 811	ret = hdmi_vendor_infoframe_check(frame);
 812	if (drm_WARN_ON(encoder->base.dev, ret))
 813		return false;
 814
 815	return true;
 816}
 817
 818static bool
 819intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
 820				 struct intel_crtc_state *crtc_state,
 821				 struct drm_connector_state *conn_state)
 822{
 823	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
 824	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 825	int ret;
 826
 827	if (DISPLAY_VER(dev_priv) < 10)
 828		return true;
 829
 830	if (!crtc_state->has_infoframe)
 831		return true;
 832
 833	if (!conn_state->hdr_output_metadata)
 834		return true;
 835
 836	crtc_state->infoframes.enable |=
 837		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
 838
 839	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
 840	if (ret < 0) {
 841		drm_dbg_kms(&dev_priv->drm,
 842			    "couldn't set HDR metadata in infoframe\n");
 843		return false;
 844	}
 845
 846	ret = hdmi_drm_infoframe_check(frame);
 847	if (drm_WARN_ON(&dev_priv->drm, ret))
 848		return false;
 849
 850	return true;
 851}
 852
 853static void g4x_set_infoframes(struct intel_encoder *encoder,
 854			       bool enable,
 855			       const struct intel_crtc_state *crtc_state,
 856			       const struct drm_connector_state *conn_state)
 857{
 858	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 859	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 860	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
 861	i915_reg_t reg = VIDEO_DIP_CTL;
 862	u32 val = intel_de_read(dev_priv, reg);
 863	u32 port = VIDEO_DIP_PORT(encoder->port);
 864
 865	assert_hdmi_port_disabled(intel_hdmi);
 866
 867	/* If the registers were not initialized yet, they might be zeroes,
 868	 * which means we're selecting the AVI DIP and we're setting its
 869	 * frequency to once. This seems to really confuse the HW and make
 870	 * things stop working (the register spec says the AVI always needs to
 871	 * be sent every VSync). So here we avoid writing to the register more
 872	 * than we need and also explicitly select the AVI DIP and explicitly
 873	 * set its frequency to every VSync. Avoiding to write it twice seems to
 874	 * be enough to solve the problem, but being defensive shouldn't hurt us
 875	 * either. */
 876	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
 877
 878	if (!enable) {
 879		if (!(val & VIDEO_DIP_ENABLE))
 880			return;
 881		if (port != (val & VIDEO_DIP_PORT_MASK)) {
 882			drm_dbg_kms(&dev_priv->drm,
 883				    "video DIP still enabled on port %c\n",
 884				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 885			return;
 886		}
 887		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
 888			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 889		intel_de_write(dev_priv, reg, val);
 890		intel_de_posting_read(dev_priv, reg);
 891		return;
 892	}
 893
 894	if (port != (val & VIDEO_DIP_PORT_MASK)) {
 895		if (val & VIDEO_DIP_ENABLE) {
 896			drm_dbg_kms(&dev_priv->drm,
 897				    "video DIP already enabled on port %c\n",
 898				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 899			return;
 900		}
 901		val &= ~VIDEO_DIP_PORT_MASK;
 902		val |= port;
 903	}
 904
 905	val |= VIDEO_DIP_ENABLE;
 906	val &= ~(VIDEO_DIP_ENABLE_AVI |
 907		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 908
 909	intel_de_write(dev_priv, reg, val);
 910	intel_de_posting_read(dev_priv, reg);
 911
 912	intel_write_infoframe(encoder, crtc_state,
 913			      HDMI_INFOFRAME_TYPE_AVI,
 914			      &crtc_state->infoframes.avi);
 915	intel_write_infoframe(encoder, crtc_state,
 916			      HDMI_INFOFRAME_TYPE_SPD,
 917			      &crtc_state->infoframes.spd);
 918	intel_write_infoframe(encoder, crtc_state,
 919			      HDMI_INFOFRAME_TYPE_VENDOR,
 920			      &crtc_state->infoframes.hdmi);
 921}
 922
 923/*
 924 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 925 *
 926 * From HDMI specification 1.4a:
 927 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 928 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 929 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 930 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 931 *   phase of 0
 932 */
 933static bool gcp_default_phase_possible(int pipe_bpp,
 934				       const struct drm_display_mode *mode)
 935{
 936	unsigned int pixels_per_group;
 937
 938	switch (pipe_bpp) {
 939	case 30:
 940		/* 4 pixels in 5 clocks */
 941		pixels_per_group = 4;
 942		break;
 943	case 36:
 944		/* 2 pixels in 3 clocks */
 945		pixels_per_group = 2;
 946		break;
 947	case 48:
 948		/* 1 pixel in 2 clocks */
 949		pixels_per_group = 1;
 950		break;
 951	default:
 952		/* phase information not relevant for 8bpc */
 953		return false;
 954	}
 955
 956	return mode->crtc_hdisplay % pixels_per_group == 0 &&
 957		mode->crtc_htotal % pixels_per_group == 0 &&
 958		mode->crtc_hblank_start % pixels_per_group == 0 &&
 959		mode->crtc_hblank_end % pixels_per_group == 0 &&
 960		mode->crtc_hsync_start % pixels_per_group == 0 &&
 961		mode->crtc_hsync_end % pixels_per_group == 0 &&
 962		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
 963		 mode->crtc_htotal/2 % pixels_per_group == 0);
 964}
 965
 966static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
 967					 const struct intel_crtc_state *crtc_state,
 968					 const struct drm_connector_state *conn_state)
 969{
 970	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 971	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 972	i915_reg_t reg;
 973
 974	if ((crtc_state->infoframes.enable &
 975	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
 976		return false;
 977
 978	if (HAS_DDI(dev_priv))
 979		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
 980	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 981		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
 982	else if (HAS_PCH_SPLIT(dev_priv))
 983		reg = TVIDEO_DIP_GCP(crtc->pipe);
 984	else
 985		return false;
 986
 987	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
 988
 989	return true;
 990}
 991
 992void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
 993				   struct intel_crtc_state *crtc_state)
 994{
 995	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 996	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 997	i915_reg_t reg;
 998
 999	if ((crtc_state->infoframes.enable &
1000	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001		return;
1002
1003	if (HAS_DDI(dev_priv))
1004		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007	else if (HAS_PCH_SPLIT(dev_priv))
1008		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009	else
1010		return;
1011
1012	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013}
1014
1015static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016					     struct intel_crtc_state *crtc_state,
1017					     struct drm_connector_state *conn_state)
1018{
1019	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022		return;
1023
1024	crtc_state->infoframes.enable |=
1025		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027	/* Indicate color indication for deep color mode */
1028	if (crtc_state->pipe_bpp > 24)
1029		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031	/* Enable default_phase whenever the display mode is suitably aligned */
1032	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033				       &crtc_state->hw.adjusted_mode))
1034		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035}
1036
1037static void ibx_set_infoframes(struct intel_encoder *encoder,
1038			       bool enable,
1039			       const struct intel_crtc_state *crtc_state,
1040			       const struct drm_connector_state *conn_state)
1041{
1042	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047	u32 val = intel_de_read(dev_priv, reg);
1048	u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050	assert_hdmi_port_disabled(intel_hdmi);
1051
1052	/* See the big comment in g4x_set_infoframes() */
1053	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055	if (!enable) {
1056		if (!(val & VIDEO_DIP_ENABLE))
1057			return;
1058		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061		intel_de_write(dev_priv, reg, val);
1062		intel_de_posting_read(dev_priv, reg);
1063		return;
1064	}
1065
1066	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068			 "DIP already enabled on port %c\n",
1069			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070		val &= ~VIDEO_DIP_PORT_MASK;
1071		val |= port;
1072	}
1073
1074	val |= VIDEO_DIP_ENABLE;
1075	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080		val |= VIDEO_DIP_ENABLE_GCP;
1081
1082	intel_de_write(dev_priv, reg, val);
1083	intel_de_posting_read(dev_priv, reg);
1084
1085	intel_write_infoframe(encoder, crtc_state,
1086			      HDMI_INFOFRAME_TYPE_AVI,
1087			      &crtc_state->infoframes.avi);
1088	intel_write_infoframe(encoder, crtc_state,
1089			      HDMI_INFOFRAME_TYPE_SPD,
1090			      &crtc_state->infoframes.spd);
1091	intel_write_infoframe(encoder, crtc_state,
1092			      HDMI_INFOFRAME_TYPE_VENDOR,
1093			      &crtc_state->infoframes.hdmi);
1094}
1095
1096static void cpt_set_infoframes(struct intel_encoder *encoder,
1097			       bool enable,
1098			       const struct intel_crtc_state *crtc_state,
1099			       const struct drm_connector_state *conn_state)
1100{
1101	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105	u32 val = intel_de_read(dev_priv, reg);
1106
1107	assert_hdmi_port_disabled(intel_hdmi);
1108
1109	/* See the big comment in g4x_set_infoframes() */
1110	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112	if (!enable) {
1113		if (!(val & VIDEO_DIP_ENABLE))
1114			return;
1115		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118		intel_de_write(dev_priv, reg, val);
1119		intel_de_posting_read(dev_priv, reg);
1120		return;
1121	}
1122
1123	/* Set both together, unset both together: see the spec. */
1124	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129		val |= VIDEO_DIP_ENABLE_GCP;
1130
1131	intel_de_write(dev_priv, reg, val);
1132	intel_de_posting_read(dev_priv, reg);
1133
1134	intel_write_infoframe(encoder, crtc_state,
1135			      HDMI_INFOFRAME_TYPE_AVI,
1136			      &crtc_state->infoframes.avi);
1137	intel_write_infoframe(encoder, crtc_state,
1138			      HDMI_INFOFRAME_TYPE_SPD,
1139			      &crtc_state->infoframes.spd);
1140	intel_write_infoframe(encoder, crtc_state,
1141			      HDMI_INFOFRAME_TYPE_VENDOR,
1142			      &crtc_state->infoframes.hdmi);
1143}
1144
1145static void vlv_set_infoframes(struct intel_encoder *encoder,
1146			       bool enable,
1147			       const struct intel_crtc_state *crtc_state,
1148			       const struct drm_connector_state *conn_state)
1149{
1150	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154	u32 val = intel_de_read(dev_priv, reg);
1155	u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157	assert_hdmi_port_disabled(intel_hdmi);
1158
1159	/* See the big comment in g4x_set_infoframes() */
1160	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162	if (!enable) {
1163		if (!(val & VIDEO_DIP_ENABLE))
1164			return;
1165		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168		intel_de_write(dev_priv, reg, val);
1169		intel_de_posting_read(dev_priv, reg);
1170		return;
1171	}
1172
1173	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175			 "DIP already enabled on port %c\n",
1176			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177		val &= ~VIDEO_DIP_PORT_MASK;
1178		val |= port;
1179	}
1180
1181	val |= VIDEO_DIP_ENABLE;
1182	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187		val |= VIDEO_DIP_ENABLE_GCP;
1188
1189	intel_de_write(dev_priv, reg, val);
1190	intel_de_posting_read(dev_priv, reg);
1191
1192	intel_write_infoframe(encoder, crtc_state,
1193			      HDMI_INFOFRAME_TYPE_AVI,
1194			      &crtc_state->infoframes.avi);
1195	intel_write_infoframe(encoder, crtc_state,
1196			      HDMI_INFOFRAME_TYPE_SPD,
1197			      &crtc_state->infoframes.spd);
1198	intel_write_infoframe(encoder, crtc_state,
1199			      HDMI_INFOFRAME_TYPE_VENDOR,
1200			      &crtc_state->infoframes.hdmi);
1201}
1202
1203static void hsw_set_infoframes(struct intel_encoder *encoder,
1204			       bool enable,
1205			       const struct intel_crtc_state *crtc_state,
1206			       const struct drm_connector_state *conn_state)
1207{
1208	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210	u32 val = intel_de_read(dev_priv, reg);
1211
1212	assert_hdmi_transcoder_func_disabled(dev_priv,
1213					     crtc_state->cpu_transcoder);
1214
1215	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218		 VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220	if (!enable) {
1221		intel_de_write(dev_priv, reg, val);
1222		intel_de_posting_read(dev_priv, reg);
1223		return;
1224	}
1225
1226	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229	intel_de_write(dev_priv, reg, val);
1230	intel_de_posting_read(dev_priv, reg);
1231
1232	intel_write_infoframe(encoder, crtc_state,
1233			      HDMI_INFOFRAME_TYPE_AVI,
1234			      &crtc_state->infoframes.avi);
1235	intel_write_infoframe(encoder, crtc_state,
1236			      HDMI_INFOFRAME_TYPE_SPD,
1237			      &crtc_state->infoframes.spd);
1238	intel_write_infoframe(encoder, crtc_state,
1239			      HDMI_INFOFRAME_TYPE_VENDOR,
1240			      &crtc_state->infoframes.hdmi);
1241	intel_write_infoframe(encoder, crtc_state,
1242			      HDMI_INFOFRAME_TYPE_DRM,
1243			      &crtc_state->infoframes.drm);
1244}
1245
1246void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247{
1248	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249	struct i2c_adapter *adapter =
1250		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251
1252	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253		return;
1254
 
 
1255	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256		    enable ? "Enabling" : "Disabling");
1257
1258	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259}
1260
1261static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262				unsigned int offset, void *buffer, size_t size)
1263{
1264	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265	struct intel_hdmi *hdmi = &dig_port->hdmi;
1266	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267							      hdmi->ddc_bus);
1268	int ret;
1269	u8 start = offset & 0xff;
1270	struct i2c_msg msgs[] = {
1271		{
1272			.addr = DRM_HDCP_DDC_ADDR,
1273			.flags = 0,
1274			.len = 1,
1275			.buf = &start,
1276		},
1277		{
1278			.addr = DRM_HDCP_DDC_ADDR,
1279			.flags = I2C_M_RD,
1280			.len = size,
1281			.buf = buffer
1282		}
1283	};
1284	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285	if (ret == ARRAY_SIZE(msgs))
1286		return 0;
1287	return ret >= 0 ? -EIO : ret;
1288}
1289
1290static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291				 unsigned int offset, void *buffer, size_t size)
1292{
1293	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294	struct intel_hdmi *hdmi = &dig_port->hdmi;
1295	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296							      hdmi->ddc_bus);
1297	int ret;
1298	u8 *write_buf;
1299	struct i2c_msg msg;
1300
1301	write_buf = kzalloc(size + 1, GFP_KERNEL);
1302	if (!write_buf)
1303		return -ENOMEM;
1304
1305	write_buf[0] = offset & 0xff;
1306	memcpy(&write_buf[1], buffer, size);
1307
1308	msg.addr = DRM_HDCP_DDC_ADDR;
1309	msg.flags = 0,
1310	msg.len = size + 1,
1311	msg.buf = write_buf;
1312
1313	ret = i2c_transfer(adapter, &msg, 1);
1314	if (ret == 1)
1315		ret = 0;
1316	else if (ret >= 0)
1317		ret = -EIO;
1318
1319	kfree(write_buf);
1320	return ret;
1321}
1322
1323static
1324int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325				  u8 *an)
1326{
1327	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330							      hdmi->ddc_bus);
1331	int ret;
1332
1333	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334				    DRM_HDCP_AN_LEN);
1335	if (ret) {
1336		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337			    ret);
1338		return ret;
1339	}
1340
1341	ret = intel_gmbus_output_aksv(adapter);
1342	if (ret < 0) {
1343		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344		return ret;
1345	}
1346	return 0;
1347}
1348
1349static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350				     u8 *bksv)
1351{
1352	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353
1354	int ret;
1355	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356				   DRM_HDCP_KSV_LEN);
1357	if (ret)
1358		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359			    ret);
1360	return ret;
1361}
1362
1363static
1364int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365				 u8 *bstatus)
1366{
1367	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368
1369	int ret;
1370	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371				   bstatus, DRM_HDCP_BSTATUS_LEN);
1372	if (ret)
1373		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374			    ret);
1375	return ret;
1376}
1377
1378static
1379int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380				     bool *repeater_present)
1381{
1382	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383	int ret;
1384	u8 val;
1385
1386	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387	if (ret) {
1388		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389			    ret);
1390		return ret;
1391	}
1392	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393	return 0;
1394}
1395
1396static
1397int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398				  u8 *ri_prime)
1399{
1400	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401
1402	int ret;
1403	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404				   ri_prime, DRM_HDCP_RI_LEN);
1405	if (ret)
1406		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407			    ret);
1408	return ret;
1409}
1410
1411static
1412int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413				   bool *ksv_ready)
1414{
1415	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416	int ret;
1417	u8 val;
1418
1419	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420	if (ret) {
1421		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422			    ret);
1423		return ret;
1424	}
1425	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426	return 0;
1427}
1428
1429static
1430int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431				  int num_downstream, u8 *ksv_fifo)
1432{
1433	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434	int ret;
1435	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437	if (ret) {
1438		drm_dbg_kms(&i915->drm,
1439			    "Read ksv fifo over DDC failed (%d)\n", ret);
1440		return ret;
1441	}
1442	return 0;
1443}
1444
1445static
1446int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447				      int i, u32 *part)
1448{
1449	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450	int ret;
1451
1452	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453		return -EINVAL;
1454
1455	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456				   part, DRM_HDCP_V_PRIME_PART_LEN);
1457	if (ret)
1458		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459			    i, ret);
1460	return ret;
1461}
1462
1463static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464					   enum transcoder cpu_transcoder)
1465{
1466	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468	struct drm_crtc *crtc = connector->base.state->crtc;
1469	struct intel_crtc *intel_crtc = container_of(crtc,
1470						     struct intel_crtc, base);
1471	u32 scanline;
1472	int ret;
1473
1474	for (;;) {
1475		scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476		if (scanline > 100 && scanline < 200)
1477			break;
1478		usleep_range(25, 50);
1479	}
1480
1481	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482					 false, TRANS_DDI_HDCP_SIGNALLING);
1483	if (ret) {
1484		drm_err(&dev_priv->drm,
1485			"Disable HDCP signalling failed (%d)\n", ret);
1486		return ret;
1487	}
1488
1489	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490					 true, TRANS_DDI_HDCP_SIGNALLING);
1491	if (ret) {
1492		drm_err(&dev_priv->drm,
1493			"Enable HDCP signalling failed (%d)\n", ret);
1494		return ret;
1495	}
1496
1497	return 0;
1498}
1499
1500static
1501int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502				      enum transcoder cpu_transcoder,
1503				      bool enable)
1504{
1505	struct intel_hdmi *hdmi = &dig_port->hdmi;
1506	struct intel_connector *connector = hdmi->attached_connector;
1507	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508	int ret;
1509
1510	if (!enable)
1511		usleep_range(6, 60); /* Bspec says >= 6us */
1512
1513	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514					 cpu_transcoder, enable,
1515					 TRANS_DDI_HDCP_SIGNALLING);
1516	if (ret) {
1517		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518			enable ? "Enable" : "Disable", ret);
1519		return ret;
1520	}
1521
1522	/*
1523	 * WA: To fix incorrect positioning of the window of
1524	 * opportunity and enc_en signalling in KABYLAKE.
1525	 */
1526	if (IS_KABYLAKE(dev_priv) && enable)
1527		return kbl_repositioning_enc_en_signal(connector,
1528						       cpu_transcoder);
1529
1530	return 0;
1531}
1532
1533static
1534bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535				     struct intel_connector *connector)
1536{
1537	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538	enum port port = dig_port->base.port;
1539	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540	int ret;
1541	union {
1542		u32 reg;
1543		u8 shim[DRM_HDCP_RI_LEN];
1544	} ri;
1545
1546	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547	if (ret)
1548		return false;
1549
1550	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551
1552	/* Wait for Ri prime match */
1553	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558							port)));
1559		return false;
1560	}
1561	return true;
1562}
1563
1564static
1565bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566				struct intel_connector *connector)
1567{
1568	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569	int retry;
1570
1571	for (retry = 0; retry < 3; retry++)
1572		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573			return true;
1574
1575	drm_err(&i915->drm, "Link check failed\n");
1576	return false;
1577}
1578
1579struct hdcp2_hdmi_msg_timeout {
1580	u8 msg_id;
1581	u16 timeout;
1582};
1583
1584static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590};
1591
1592static
1593int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594				    u8 *rx_status)
1595{
1596	return intel_hdmi_hdcp_read(dig_port,
1597				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598				    rx_status,
1599				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1600}
1601
1602static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603{
1604	int i;
1605
1606	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607		if (is_paired)
1608			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609		else
1610			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611	}
1612
1613	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615			return hdcp2_msg_timeout[i].timeout;
1616	}
1617
1618	return -EINVAL;
1619}
1620
1621static int
1622hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623			      u8 msg_id, bool *msg_ready,
1624			      ssize_t *msg_sz)
1625{
1626	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628	int ret;
1629
1630	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631	if (ret < 0) {
1632		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633			    ret);
1634		return ret;
1635	}
1636
1637	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638		  rx_status[0]);
1639
1640	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642			     *msg_sz);
1643	else
1644		*msg_ready = *msg_sz;
1645
1646	return 0;
1647}
1648
1649static ssize_t
1650intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651			      u8 msg_id, bool paired)
1652{
1653	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654	bool msg_ready = false;
1655	int timeout, ret;
1656	ssize_t msg_sz = 0;
1657
1658	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659	if (timeout < 0)
1660		return timeout;
1661
1662	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663							     msg_id, &msg_ready,
1664							     &msg_sz),
1665			 !ret && msg_ready && msg_sz, timeout * 1000,
1666			 1000, 5 * 1000);
1667	if (ret)
1668		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669			    msg_id, ret, timeout);
1670
1671	return ret ? ret : msg_sz;
1672}
1673
1674static
1675int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676			       void *buf, size_t size)
1677{
1678	unsigned int offset;
1679
1680	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682}
1683
1684static
1685int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686			      u8 msg_id, void *buf, size_t size)
1687{
1688	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689	struct intel_hdmi *hdmi = &dig_port->hdmi;
1690	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691	unsigned int offset;
1692	ssize_t ret;
1693
1694	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695					    hdcp->is_paired);
1696	if (ret < 0)
1697		return ret;
1698
1699	/*
1700	 * Available msg size should be equal to or lesser than the
1701	 * available buffer.
1702	 */
1703	if (ret > size) {
1704		drm_dbg_kms(&i915->drm,
1705			    "msg_sz(%zd) is more than exp size(%zu)\n",
1706			    ret, size);
1707		return -1;
1708	}
1709
1710	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712	if (ret)
1713		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714			    msg_id, ret);
1715
1716	return ret;
1717}
1718
1719static
1720int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721				struct intel_connector *connector)
1722{
1723	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724	int ret;
1725
1726	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727	if (ret)
1728		return ret;
1729
1730	/*
1731	 * Re-auth request and Link Integrity Failures are represented by
1732	 * same bit. i.e reauth_req.
1733	 */
1734	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735		ret = HDCP_REAUTH_REQUEST;
1736	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737		ret = HDCP_TOPOLOGY_CHANGE;
1738
1739	return ret;
1740}
1741
1742static
1743int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744			     bool *capable)
1745{
1746	u8 hdcp2_version;
1747	int ret;
1748
1749	*capable = false;
1750	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751				   &hdcp2_version, sizeof(hdcp2_version));
1752	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753		*capable = true;
1754
1755	return ret;
1756}
1757
1758static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760	.read_bksv = intel_hdmi_hdcp_read_bksv,
1761	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762	.repeater_present = intel_hdmi_hdcp_repeater_present,
1763	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768	.check_link = intel_hdmi_hdcp_check_link,
1769	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1772	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773	.protocol = HDCP_PROTOCOL_HDMI,
1774};
1775
1776static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777{
1778	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779	int max_tmds_clock, vbt_max_tmds_clock;
1780
1781	if (DISPLAY_VER(dev_priv) >= 10)
1782		max_tmds_clock = 594000;
1783	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784		max_tmds_clock = 300000;
1785	else if (DISPLAY_VER(dev_priv) >= 5)
1786		max_tmds_clock = 225000;
1787	else
1788		max_tmds_clock = 165000;
1789
1790	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791	if (vbt_max_tmds_clock)
1792		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793
1794	return max_tmds_clock;
1795}
1796
1797static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798				const struct drm_connector_state *conn_state)
1799{
1800	return hdmi->has_hdmi_sink &&
1801		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802}
1803
 
 
 
 
 
1804static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805				 bool respect_downstream_limits,
1806				 bool has_hdmi_sink)
1807{
1808	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810
1811	if (respect_downstream_limits) {
1812		struct intel_connector *connector = hdmi->attached_connector;
1813		const struct drm_display_info *info = &connector->base.display_info;
1814
1815		if (hdmi->dp_dual_mode.max_tmds_clock)
1816			max_tmds_clock = min(max_tmds_clock,
1817					     hdmi->dp_dual_mode.max_tmds_clock);
1818
1819		if (info->max_tmds_clock)
1820			max_tmds_clock = min(max_tmds_clock,
1821					     info->max_tmds_clock);
1822		else if (!has_hdmi_sink)
1823			max_tmds_clock = min(max_tmds_clock, 165000);
1824	}
1825
1826	return max_tmds_clock;
1827}
1828
1829static enum drm_mode_status
1830hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831		      int clock, bool respect_downstream_limits,
1832		      bool has_hdmi_sink)
1833{
1834	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
 
1835
1836	if (clock < 25000)
1837		return MODE_CLOCK_LOW;
1838	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839					  has_hdmi_sink))
1840		return MODE_CLOCK_HIGH;
1841
1842	/* GLK DPLL can't generate 446-480 MHz */
1843	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844		return MODE_CLOCK_RANGE;
1845
1846	/* BXT/GLK DPLL can't generate 223-240 MHz */
1847	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848	    clock > 223333 && clock < 240000)
1849		return MODE_CLOCK_RANGE;
1850
1851	/* CHV DPLL can't generate 216-240 MHz */
1852	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853		return MODE_CLOCK_RANGE;
1854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855	return MODE_OK;
1856}
1857
1858static int intel_hdmi_port_clock(int clock, int bpc)
1859{
 
 
 
 
1860	/*
1861	 * Need to adjust the port link by:
1862	 *  1.5x for 12bpc
1863	 *  1.25x for 10bpc
1864	 */
1865	return clock * bpc / 8;
1866}
1867
1868static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1869				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870{
1871	struct drm_i915_private *i915 = to_i915(connector->dev);
1872	const struct drm_display_info *info = &connector->display_info;
1873	const struct drm_hdmi_info *hdmi = &info->hdmi;
1874
1875	switch (bpc) {
1876	case 12:
1877		if (HAS_GMCH(i915))
1878			return false;
1879
1880		if (!has_hdmi_sink)
1881			return false;
1882
1883		if (ycbcr420_output)
1884			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1885		else
1886			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1887	case 10:
1888		if (DISPLAY_VER(i915) < 11)
1889			return false;
1890
1891		if (!has_hdmi_sink)
1892			return false;
1893
1894		if (ycbcr420_output)
1895			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1896		else
1897			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1898	case 8:
1899		return true;
1900	default:
1901		MISSING_CASE(bpc);
1902		return false;
1903	}
1904}
1905
1906static enum drm_mode_status
1907intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1908			    bool has_hdmi_sink, bool ycbcr420_output)
1909{
 
1910	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1911	enum drm_mode_status status;
 
1912
1913	if (ycbcr420_output)
1914		clock /= 2;
 
 
 
 
 
 
 
 
 
 
 
1915
1916	/* check if we can do 8bpc */
1917	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1918				       true, has_hdmi_sink);
1919
1920	/* if we can't do 8bpc we may still be able to do 12bpc */
1921	if (status != MODE_OK &&
1922	    intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1923		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1924					       true, has_hdmi_sink);
1925
1926	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1927	if (status != MODE_OK &&
1928	    intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1929		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1930					       true, has_hdmi_sink);
1931
1932	return status;
1933}
1934
1935static enum drm_mode_status
1936intel_hdmi_mode_valid(struct drm_connector *connector,
1937		      struct drm_display_mode *mode)
1938{
1939	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1940	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1941	struct drm_i915_private *dev_priv = to_i915(dev);
1942	enum drm_mode_status status;
1943	int clock = mode->clock;
1944	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1945	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1946	bool ycbcr_420_only;
1947
1948	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1949		return MODE_NO_DBLESCAN;
1950
1951	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1952		clock *= 2;
1953
1954	if (clock > max_dotclk)
1955		return MODE_CLOCK_HIGH;
1956
1957	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1958		if (!has_hdmi_sink)
1959			return MODE_CLOCK_LOW;
1960		clock *= 2;
1961	}
1962
 
 
 
 
 
 
 
 
 
1963	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1964
1965	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1966	if (status != MODE_OK) {
1967		if (ycbcr_420_only ||
1968		    !connector->ycbcr_420_allowed ||
1969		    !drm_mode_is_420_also(&connector->display_info, mode))
1970			return status;
1971
1972		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1973		if (status != MODE_OK)
1974			return status;
1975	}
1976
1977	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1978}
1979
1980bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1981				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1982{
1983	struct drm_atomic_state *state = crtc_state->uapi.state;
1984	struct drm_connector_state *connector_state;
1985	struct drm_connector *connector;
1986	int i;
1987
1988	if (crtc_state->pipe_bpp < bpc * 3)
1989		return false;
1990
1991	for_each_new_connector_in_state(state, connector, connector_state, i) {
1992		if (connector_state->crtc != crtc_state->uapi.crtc)
1993			continue;
1994
1995		if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1996			return false;
1997	}
1998
1999	return true;
2000}
2001
2002static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2003				     int bpc)
2004{
2005	struct drm_i915_private *dev_priv =
2006		to_i915(crtc_state->uapi.crtc->dev);
2007	const struct drm_display_mode *adjusted_mode =
2008		&crtc_state->hw.adjusted_mode;
2009
2010	/*
2011	 * HDMI deep color affects the clocks, so it's only possible
2012	 * when not cloning with other encoder types.
2013	 */
2014	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2015		return false;
2016
2017	/* Display Wa_1405510057:icl,ehl */
2018	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2019	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2020	    (adjusted_mode->crtc_hblank_end -
2021	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2022		return false;
2023
2024	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2025					      crtc_state->has_hdmi_sink,
2026					      crtc_state->output_format ==
2027					      INTEL_OUTPUT_FORMAT_YCBCR420);
2028}
2029
2030static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2031				  struct intel_crtc_state *crtc_state,
2032				  int clock)
2033{
2034	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
 
2035	int bpc;
2036
2037	for (bpc = 12; bpc >= 10; bpc -= 2) {
2038		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2039		    hdmi_port_clock_valid(intel_hdmi,
2040					  intel_hdmi_port_clock(clock, bpc),
2041					  true, crtc_state->has_hdmi_sink) == MODE_OK)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042			return bpc;
2043	}
2044
2045	return 8;
2046}
2047
2048static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2049				    struct intel_crtc_state *crtc_state)
 
2050{
2051	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2052	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2053	const struct drm_display_mode *adjusted_mode =
2054		&crtc_state->hw.adjusted_mode;
2055	int bpc, clock = adjusted_mode->crtc_clock;
2056
2057	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2058		clock *= 2;
2059
2060	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2061	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2062		clock /= 2;
2063
2064	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2065
2066	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
 
2067
2068	/*
2069	 * pipe_bpp could already be below 8bpc due to
2070	 * FDI bandwidth constraints. We shouldn't bump it
2071	 * back up to 8bpc in that case.
2072	 */
2073	if (crtc_state->pipe_bpp > bpc * 3)
2074		crtc_state->pipe_bpp = bpc * 3;
2075
2076	drm_dbg_kms(&i915->drm,
2077		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2078		    bpc, crtc_state->pipe_bpp);
2079
2080	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2081				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2082		drm_dbg_kms(&i915->drm,
2083			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2084			    crtc_state->port_clock);
2085		return -EINVAL;
2086	}
2087
2088	return 0;
2089}
2090
2091bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2092				    const struct drm_connector_state *conn_state)
2093{
2094	const struct intel_digital_connector_state *intel_conn_state =
2095		to_intel_digital_connector_state(conn_state);
2096	const struct drm_display_mode *adjusted_mode =
2097		&crtc_state->hw.adjusted_mode;
2098
2099	/*
2100	 * Our YCbCr output is always limited range.
2101	 * crtc_state->limited_color_range only applies to RGB,
2102	 * and it must never be set for YCbCr or we risk setting
2103	 * some conflicting bits in PIPECONF which will mess up
2104	 * the colors on the monitor.
2105	 */
2106	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2107		return false;
2108
2109	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2110		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2111		return crtc_state->has_hdmi_sink &&
2112			drm_default_rgb_quant_range(adjusted_mode) ==
2113			HDMI_QUANTIZATION_RANGE_LIMITED;
2114	} else {
2115		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2116	}
2117}
2118
2119static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2120				 const struct intel_crtc_state *crtc_state,
2121				 const struct drm_connector_state *conn_state)
2122{
2123	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2124	const struct intel_digital_connector_state *intel_conn_state =
2125		to_intel_digital_connector_state(conn_state);
2126
2127	if (!crtc_state->has_hdmi_sink)
2128		return false;
2129
2130	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2131		return intel_hdmi->has_audio;
2132	else
2133		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2134}
2135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2136static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2137					    struct intel_crtc_state *crtc_state,
2138					    const struct drm_connector_state *conn_state)
 
2139{
2140	struct drm_connector *connector = conn_state->connector;
2141	struct drm_i915_private *i915 = to_i915(connector->dev);
2142	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
 
 
 
2143	int ret;
2144	bool ycbcr_420_only;
2145
2146	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2147	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2148		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2149	} else {
2150		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2151			drm_dbg_kms(&i915->drm,
2152				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2153		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2154	}
2155
2156	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2157	if (ret) {
2158		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2159		    connector->ycbcr_420_allowed &&
2160		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2161			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2162			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2163		}
 
2164	}
2165
2166	return ret;
2167}
2168
 
 
 
 
 
 
2169int intel_hdmi_compute_config(struct intel_encoder *encoder,
2170			      struct intel_crtc_state *pipe_config,
2171			      struct drm_connector_state *conn_state)
2172{
2173	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2174	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2175	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2176	struct drm_connector *connector = conn_state->connector;
2177	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2178	int ret;
2179
2180	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2181		return -EINVAL;
2182
2183	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2184	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2185							 conn_state);
 
2186
2187	if (pipe_config->has_hdmi_sink)
2188		pipe_config->has_infoframe = true;
2189
2190	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2191		pipe_config->pixel_multiplier = 2;
2192
2193	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2194		pipe_config->has_pch_encoder = true;
2195
2196	pipe_config->has_audio =
2197		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2198
2199	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
 
 
 
 
2200	if (ret)
 
 
 
 
 
2201		return ret;
 
2202
2203	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2204		ret = intel_pch_panel_fitting(pipe_config, conn_state);
2205		if (ret)
2206			return ret;
2207	}
2208
2209	pipe_config->limited_color_range =
2210		intel_hdmi_limited_color_range(pipe_config, conn_state);
2211
2212	if (conn_state->picture_aspect_ratio)
2213		adjusted_mode->picture_aspect_ratio =
2214			conn_state->picture_aspect_ratio;
2215
2216	pipe_config->lane_count = 4;
2217
2218	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2219		if (scdc->scrambling.low_rates)
2220			pipe_config->hdmi_scrambling = true;
2221
2222		if (pipe_config->port_clock > 340000) {
2223			pipe_config->hdmi_scrambling = true;
2224			pipe_config->hdmi_high_tmds_clock_ratio = true;
2225		}
2226	}
2227
2228	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2229					 conn_state);
2230
2231	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2232		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2233		return -EINVAL;
2234	}
2235
2236	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2237		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2238		return -EINVAL;
2239	}
2240
2241	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2242		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2243		return -EINVAL;
2244	}
2245
2246	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2247		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2248		return -EINVAL;
2249	}
2250
2251	return 0;
2252}
2253
 
 
 
 
 
 
 
 
 
 
 
2254static void
2255intel_hdmi_unset_edid(struct drm_connector *connector)
2256{
2257	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2258
2259	intel_hdmi->has_hdmi_sink = false;
2260	intel_hdmi->has_audio = false;
2261
2262	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2263	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2264
2265	kfree(to_intel_connector(connector)->detect_edid);
2266	to_intel_connector(connector)->detect_edid = NULL;
2267}
2268
2269static void
2270intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2271{
2272	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2273	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2274	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2275	struct i2c_adapter *adapter =
2276		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2277	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2278
2279	/*
2280	 * Type 1 DVI adaptors are not required to implement any
2281	 * registers, so we can't always detect their presence.
2282	 * Ideally we should be able to check the state of the
2283	 * CONFIG1 pin, but no such luck on our hardware.
2284	 *
2285	 * The only method left to us is to check the VBT to see
2286	 * if the port is a dual mode capable DP port. But let's
2287	 * only do that when we sucesfully read the EDID, to avoid
2288	 * confusing log messages about DP dual mode adaptors when
2289	 * there's nothing connected to the port.
2290	 */
2291	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2292		/* An overridden EDID imply that we want this port for testing.
2293		 * Make sure not to set limits for that port.
2294		 */
2295		if (has_edid && !connector->override_edid &&
2296		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2297			drm_dbg_kms(&dev_priv->drm,
2298				    "Assuming DP dual mode adaptor presence based on VBT\n");
2299			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2300		} else {
2301			type = DRM_DP_DUAL_MODE_NONE;
2302		}
2303	}
2304
2305	if (type == DRM_DP_DUAL_MODE_NONE)
2306		return;
2307
2308	hdmi->dp_dual_mode.type = type;
2309	hdmi->dp_dual_mode.max_tmds_clock =
2310		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2311
2312	drm_dbg_kms(&dev_priv->drm,
2313		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2314		    drm_dp_get_dual_mode_type_name(type),
2315		    hdmi->dp_dual_mode.max_tmds_clock);
 
 
 
 
 
 
 
 
2316}
2317
2318static bool
2319intel_hdmi_set_edid(struct drm_connector *connector)
2320{
2321	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2322	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2323	intel_wakeref_t wakeref;
2324	struct edid *edid;
2325	bool connected = false;
2326	struct i2c_adapter *i2c;
2327
2328	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2329
2330	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2331
2332	edid = drm_get_edid(connector, i2c);
2333
2334	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2335		drm_dbg_kms(&dev_priv->drm,
2336			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2337		intel_gmbus_force_bit(i2c, true);
2338		edid = drm_get_edid(connector, i2c);
2339		intel_gmbus_force_bit(i2c, false);
2340	}
2341
2342	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2343
2344	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2345
2346	to_intel_connector(connector)->detect_edid = edid;
2347	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2348		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2349		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2350
 
 
2351		connected = true;
2352	}
2353
 
 
2354	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2355
2356	return connected;
2357}
2358
2359static enum drm_connector_status
2360intel_hdmi_detect(struct drm_connector *connector, bool force)
2361{
2362	enum drm_connector_status status = connector_status_disconnected;
2363	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2364	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2365	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2366	intel_wakeref_t wakeref;
2367
2368	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2369		    connector->base.id, connector->name);
2370
2371	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2372		return connector_status_disconnected;
2373
2374	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2375
2376	if (DISPLAY_VER(dev_priv) >= 11 &&
2377	    !intel_digital_port_connected(encoder))
2378		goto out;
2379
2380	intel_hdmi_unset_edid(connector);
2381
2382	if (intel_hdmi_set_edid(connector))
2383		status = connector_status_connected;
2384
2385out:
2386	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2387
2388	if (status != connector_status_connected)
2389		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2390
2391	/*
2392	 * Make sure the refs for power wells enabled during detect are
2393	 * dropped to avoid a new detect cycle triggered by HPD polling.
2394	 */
2395	intel_display_power_flush_work(dev_priv);
2396
2397	return status;
2398}
2399
2400static void
2401intel_hdmi_force(struct drm_connector *connector)
2402{
2403	struct drm_i915_private *i915 = to_i915(connector->dev);
2404
2405	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2406		    connector->base.id, connector->name);
2407
2408	intel_hdmi_unset_edid(connector);
2409
2410	if (connector->status != connector_status_connected)
2411		return;
2412
2413	intel_hdmi_set_edid(connector);
2414}
2415
2416static int intel_hdmi_get_modes(struct drm_connector *connector)
2417{
2418	struct edid *edid;
2419
2420	edid = to_intel_connector(connector)->detect_edid;
2421	if (edid == NULL)
2422		return 0;
2423
2424	return intel_connector_update_modes(connector, edid);
2425}
2426
2427static struct i2c_adapter *
2428intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2429{
2430	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2431	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2432
2433	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2434}
2435
2436static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2437{
2438	struct drm_i915_private *i915 = to_i915(connector->dev);
2439	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440	struct kobject *i2c_kobj = &adapter->dev.kobj;
2441	struct kobject *connector_kobj = &connector->kdev->kobj;
2442	int ret;
2443
2444	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2445	if (ret)
2446		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2447}
2448
2449static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2450{
2451	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2452	struct kobject *i2c_kobj = &adapter->dev.kobj;
2453	struct kobject *connector_kobj = &connector->kdev->kobj;
2454
2455	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2456}
2457
2458static int
2459intel_hdmi_connector_register(struct drm_connector *connector)
2460{
2461	int ret;
2462
2463	ret = intel_connector_register(connector);
2464	if (ret)
2465		return ret;
2466
2467	intel_hdmi_create_i2c_symlink(connector);
2468
2469	return ret;
2470}
2471
2472static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2473{
2474	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2475
2476	cec_notifier_conn_unregister(n);
2477
2478	intel_hdmi_remove_i2c_symlink(connector);
2479	intel_connector_unregister(connector);
2480}
2481
2482static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2483	.detect = intel_hdmi_detect,
2484	.force = intel_hdmi_force,
2485	.fill_modes = drm_helper_probe_single_connector_modes,
2486	.atomic_get_property = intel_digital_connector_atomic_get_property,
2487	.atomic_set_property = intel_digital_connector_atomic_set_property,
2488	.late_register = intel_hdmi_connector_register,
2489	.early_unregister = intel_hdmi_connector_unregister,
2490	.destroy = intel_connector_destroy,
2491	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2492	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2493};
2494
2495static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2496	.get_modes = intel_hdmi_get_modes,
2497	.mode_valid = intel_hdmi_mode_valid,
2498	.atomic_check = intel_digital_connector_atomic_check,
2499};
2500
2501static void
2502intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2503{
2504	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2505
2506	intel_attach_force_audio_property(connector);
2507	intel_attach_broadcast_rgb_property(connector);
2508	intel_attach_aspect_ratio_property(connector);
2509
2510	intel_attach_hdmi_colorspace_property(connector);
2511	drm_connector_attach_content_type_property(connector);
2512
2513	if (DISPLAY_VER(dev_priv) >= 10)
2514		drm_connector_attach_hdr_output_metadata_property(connector);
2515
2516	if (!HAS_GMCH(dev_priv))
2517		drm_connector_attach_max_bpc_property(connector, 8, 12);
2518}
2519
2520/*
2521 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2522 * @encoder: intel_encoder
2523 * @connector: drm_connector
2524 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2525 *  or reset the high tmds clock ratio for scrambling
2526 * @scrambling: bool to Indicate if the function needs to set or reset
2527 *  sink scrambling
2528 *
2529 * This function handles scrambling on HDMI 2.0 capable sinks.
2530 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2531 * it enables scrambling. This should be called before enabling the HDMI
2532 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2533 * detect a scrambled clock within 100 ms.
2534 *
2535 * Returns:
2536 * True on success, false on failure.
2537 */
2538bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2539				       struct drm_connector *connector,
2540				       bool high_tmds_clock_ratio,
2541				       bool scrambling)
2542{
2543	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2544	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2545	struct drm_scrambling *sink_scrambling =
2546		&connector->display_info.hdmi.scdc.scrambling;
2547	struct i2c_adapter *adapter =
2548		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2549
2550	if (!sink_scrambling->supported)
2551		return true;
2552
2553	drm_dbg_kms(&dev_priv->drm,
2554		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2555		    connector->base.id, connector->name,
2556		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2557
2558	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2559	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2560						  high_tmds_clock_ratio) &&
2561		drm_scdc_set_scrambling(adapter, scrambling);
2562}
2563
2564static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2565{
2566	u8 ddc_pin;
2567
2568	switch (port) {
2569	case PORT_B:
2570		ddc_pin = GMBUS_PIN_DPB;
2571		break;
2572	case PORT_C:
2573		ddc_pin = GMBUS_PIN_DPC;
2574		break;
2575	case PORT_D:
2576		ddc_pin = GMBUS_PIN_DPD_CHV;
2577		break;
2578	default:
2579		MISSING_CASE(port);
2580		ddc_pin = GMBUS_PIN_DPB;
2581		break;
2582	}
2583	return ddc_pin;
2584}
2585
2586static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2587{
2588	u8 ddc_pin;
2589
2590	switch (port) {
2591	case PORT_B:
2592		ddc_pin = GMBUS_PIN_1_BXT;
2593		break;
2594	case PORT_C:
2595		ddc_pin = GMBUS_PIN_2_BXT;
2596		break;
2597	default:
2598		MISSING_CASE(port);
2599		ddc_pin = GMBUS_PIN_1_BXT;
2600		break;
2601	}
2602	return ddc_pin;
2603}
2604
2605static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2606			      enum port port)
2607{
2608	u8 ddc_pin;
2609
2610	switch (port) {
2611	case PORT_B:
2612		ddc_pin = GMBUS_PIN_1_BXT;
2613		break;
2614	case PORT_C:
2615		ddc_pin = GMBUS_PIN_2_BXT;
2616		break;
2617	case PORT_D:
2618		ddc_pin = GMBUS_PIN_4_CNP;
2619		break;
2620	case PORT_F:
2621		ddc_pin = GMBUS_PIN_3_BXT;
2622		break;
2623	default:
2624		MISSING_CASE(port);
2625		ddc_pin = GMBUS_PIN_1_BXT;
2626		break;
2627	}
2628	return ddc_pin;
2629}
2630
2631static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2632{
2633	enum phy phy = intel_port_to_phy(dev_priv, port);
2634
2635	if (intel_phy_is_combo(dev_priv, phy))
2636		return GMBUS_PIN_1_BXT + port;
2637	else if (intel_phy_is_tc(dev_priv, phy))
2638		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2639
2640	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2641	return GMBUS_PIN_2_BXT;
2642}
2643
2644static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2645{
2646	enum phy phy = intel_port_to_phy(dev_priv, port);
2647	u8 ddc_pin;
2648
2649	switch (phy) {
2650	case PHY_A:
2651		ddc_pin = GMBUS_PIN_1_BXT;
2652		break;
2653	case PHY_B:
2654		ddc_pin = GMBUS_PIN_2_BXT;
2655		break;
2656	case PHY_C:
2657		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2658		break;
2659	default:
2660		MISSING_CASE(phy);
2661		ddc_pin = GMBUS_PIN_1_BXT;
2662		break;
2663	}
2664	return ddc_pin;
2665}
2666
2667static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2668{
2669	enum phy phy = intel_port_to_phy(dev_priv, port);
2670
2671	WARN_ON(port == PORT_C);
2672
2673	/*
2674	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2675	 * final two outputs use type-c pins, even though they're actually
2676	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2677	 * all outputs.
2678	 */
2679	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2680		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2681
2682	return GMBUS_PIN_1_BXT + phy;
2683}
2684
2685static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2686{
2687	enum phy phy = intel_port_to_phy(i915, port);
2688
2689	drm_WARN_ON(&i915->drm, port == PORT_A);
2690
2691	/*
2692	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2693	 * final two outputs use type-c pins, even though they're actually
2694	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2695	 * all outputs.
2696	 */
2697	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2698		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2699
2700	return GMBUS_PIN_1_BXT + phy;
2701}
2702
2703static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2704{
2705	return intel_port_to_phy(dev_priv, port) + 1;
2706}
2707
2708static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2709{
2710	enum phy phy = intel_port_to_phy(dev_priv, port);
2711
2712	WARN_ON(port == PORT_B || port == PORT_C);
2713
2714	/*
2715	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2716	 * except first combo output.
2717	 */
2718	if (phy == PHY_A)
2719		return GMBUS_PIN_1_BXT;
2720
2721	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2722}
2723
2724static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2725			      enum port port)
2726{
2727	u8 ddc_pin;
2728
2729	switch (port) {
2730	case PORT_B:
2731		ddc_pin = GMBUS_PIN_DPB;
2732		break;
2733	case PORT_C:
2734		ddc_pin = GMBUS_PIN_DPC;
2735		break;
2736	case PORT_D:
2737		ddc_pin = GMBUS_PIN_DPD;
2738		break;
2739	default:
2740		MISSING_CASE(port);
2741		ddc_pin = GMBUS_PIN_DPB;
2742		break;
2743	}
2744	return ddc_pin;
2745}
2746
2747static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2748{
2749	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2750	enum port port = encoder->port;
2751	u8 ddc_pin;
2752
2753	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2754	if (ddc_pin) {
2755		drm_dbg_kms(&dev_priv->drm,
2756			    "Using DDC pin 0x%x for port %c (VBT)\n",
2757			    ddc_pin, port_name(port));
2758		return ddc_pin;
2759	}
2760
2761	if (IS_ALDERLAKE_S(dev_priv))
2762		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2763	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2764		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2765	else if (IS_ROCKETLAKE(dev_priv))
2766		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2767	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2768		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2769	else if (HAS_PCH_MCC(dev_priv))
2770		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2771	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2772		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2773	else if (HAS_PCH_CNP(dev_priv))
2774		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2775	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2776		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2777	else if (IS_CHERRYVIEW(dev_priv))
2778		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2779	else
2780		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2781
2782	drm_dbg_kms(&dev_priv->drm,
2783		    "Using DDC pin 0x%x for port %c (platform default)\n",
2784		    ddc_pin, port_name(port));
2785
2786	return ddc_pin;
2787}
2788
2789void intel_infoframe_init(struct intel_digital_port *dig_port)
2790{
2791	struct drm_i915_private *dev_priv =
2792		to_i915(dig_port->base.base.dev);
2793
2794	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2795		dig_port->write_infoframe = vlv_write_infoframe;
2796		dig_port->read_infoframe = vlv_read_infoframe;
2797		dig_port->set_infoframes = vlv_set_infoframes;
2798		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2799	} else if (IS_G4X(dev_priv)) {
2800		dig_port->write_infoframe = g4x_write_infoframe;
2801		dig_port->read_infoframe = g4x_read_infoframe;
2802		dig_port->set_infoframes = g4x_set_infoframes;
2803		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2804	} else if (HAS_DDI(dev_priv)) {
2805		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2806			dig_port->write_infoframe = lspcon_write_infoframe;
2807			dig_port->read_infoframe = lspcon_read_infoframe;
2808			dig_port->set_infoframes = lspcon_set_infoframes;
2809			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2810		} else {
2811			dig_port->write_infoframe = hsw_write_infoframe;
2812			dig_port->read_infoframe = hsw_read_infoframe;
2813			dig_port->set_infoframes = hsw_set_infoframes;
2814			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2815		}
2816	} else if (HAS_PCH_IBX(dev_priv)) {
2817		dig_port->write_infoframe = ibx_write_infoframe;
2818		dig_port->read_infoframe = ibx_read_infoframe;
2819		dig_port->set_infoframes = ibx_set_infoframes;
2820		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2821	} else {
2822		dig_port->write_infoframe = cpt_write_infoframe;
2823		dig_port->read_infoframe = cpt_read_infoframe;
2824		dig_port->set_infoframes = cpt_set_infoframes;
2825		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2826	}
2827}
2828
2829void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2830			       struct intel_connector *intel_connector)
2831{
2832	struct drm_connector *connector = &intel_connector->base;
2833	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2834	struct intel_encoder *intel_encoder = &dig_port->base;
2835	struct drm_device *dev = intel_encoder->base.dev;
2836	struct drm_i915_private *dev_priv = to_i915(dev);
2837	struct i2c_adapter *ddc;
2838	enum port port = intel_encoder->port;
2839	struct cec_connector_info conn_info;
2840
2841	drm_dbg_kms(&dev_priv->drm,
2842		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2843		    intel_encoder->base.base.id, intel_encoder->base.name);
2844
2845	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2846		return;
2847
2848	if (drm_WARN(dev, dig_port->max_lanes < 4,
2849		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2850		     dig_port->max_lanes, intel_encoder->base.base.id,
2851		     intel_encoder->base.name))
2852		return;
2853
2854	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2855	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2856
2857	drm_connector_init_with_ddc(dev, connector,
2858				    &intel_hdmi_connector_funcs,
2859				    DRM_MODE_CONNECTOR_HDMIA,
2860				    ddc);
2861	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2862
2863	connector->interlace_allowed = 1;
2864	connector->doublescan_allowed = 0;
2865	connector->stereo_allowed = 1;
2866
2867	if (DISPLAY_VER(dev_priv) >= 10)
2868		connector->ycbcr_420_allowed = true;
2869
2870	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2871
2872	if (HAS_DDI(dev_priv))
2873		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2874	else
2875		intel_connector->get_hw_state = intel_connector_get_hw_state;
2876
2877	intel_hdmi_add_properties(intel_hdmi, connector);
2878
2879	intel_connector_attach_encoder(intel_connector, intel_encoder);
2880	intel_hdmi->attached_connector = intel_connector;
2881
2882	if (is_hdcp_supported(dev_priv, port)) {
2883		int ret = intel_hdcp_init(intel_connector, dig_port,
2884					  &intel_hdmi_hdcp_shim);
2885		if (ret)
2886			drm_dbg_kms(&dev_priv->drm,
2887				    "HDCP init failed, skipping.\n");
2888	}
2889
2890	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2891	 * 0xd.  Failure to do so will result in spurious interrupts being
2892	 * generated on the port when a cable is not attached.
2893	 */
2894	if (IS_G45(dev_priv)) {
2895		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2896		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2897		               (temp & ~0xf) | 0xd);
2898	}
2899
2900	cec_fill_conn_info_from_drm(&conn_info, connector);
2901
2902	intel_hdmi->cec_notifier =
2903		cec_notifier_conn_register(dev->dev, port_identifier(port),
2904					   &conn_info);
2905	if (!intel_hdmi->cec_notifier)
2906		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2907}
2908
2909/*
2910 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2911 * @vactive: Vactive of a display mode
2912 *
2913 * @return: appropriate dsc slice height for a given mode.
2914 */
2915int intel_hdmi_dsc_get_slice_height(int vactive)
2916{
2917	int slice_height;
2918
2919	/*
2920	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2921	 * Select smallest slice height >=96, that results in a valid PPS and
2922	 * requires minimum padding lines required for final slice.
2923	 *
2924	 * Assumption : Vactive is even.
2925	 */
2926	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2927		if (vactive % slice_height == 0)
2928			return slice_height;
2929
2930	return 0;
2931}
2932
2933/*
2934 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2935 * and dsc decoder capabilities
2936 *
2937 * @crtc_state: intel crtc_state
2938 * @src_max_slices: maximum slices supported by the DSC encoder
2939 * @src_max_slice_width: maximum slice width supported by DSC encoder
2940 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2941 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2942 *
2943 * @return: num of dsc slices that can be supported by the dsc encoder
2944 * and decoder.
2945 */
2946int
2947intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2948			      int src_max_slices, int src_max_slice_width,
2949			      int hdmi_max_slices, int hdmi_throughput)
2950{
2951/* Pixel rates in KPixels/sec */
2952#define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2953/*
2954 * Rates at which the source and sink are required to process pixels in each
2955 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2956 */
2957#define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2958#define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2959
2960/* Spec limits the slice width to 2720 pixels */
2961#define MAX_HDMI_SLICE_WIDTH			2720
2962	int kslice_adjust;
2963	int adjusted_clk_khz;
2964	int min_slices;
2965	int target_slices;
2966	int max_throughput; /* max clock freq. in khz per slice */
2967	int max_slice_width;
2968	int slice_width;
2969	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2970
2971	if (!hdmi_throughput)
2972		return 0;
2973
2974	/*
2975	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2976	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2977	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2978	 * dividing adjusted clock value by 10.
2979	 */
2980	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2981	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2982		kslice_adjust = 10;
2983	else
2984		kslice_adjust = 5;
2985
2986	/*
2987	 * As per spec, the rate at which the source and the sink process
2988	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2989	 * This depends upon the pixel clock rate and output formats
2990	 * (kslice adjust).
2991	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2992	 * at max 340MHz, otherwise they can be processed at max 400MHz.
2993	 */
2994
2995	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2996
2997	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2998		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2999	else
3000		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3001
3002	/*
3003	 * Taking into account the sink's capability for maximum
3004	 * clock per slice (in MHz) as read from HF-VSDB.
3005	 */
3006	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3007
3008	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3009	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3010
3011	/*
3012	 * Keep on increasing the num of slices/line, starting from min_slices
3013	 * per line till we get such a number, for which the slice_width is
3014	 * just less than max_slice_width. The slices/line selected should be
3015	 * less than or equal to the max horizontal slices that the combination
3016	 * of PCON encoder and HDMI decoder can support.
3017	 */
3018	slice_width = max_slice_width;
3019
3020	do {
3021		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3022			target_slices = 1;
3023		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3024			target_slices = 2;
3025		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3026			target_slices = 4;
3027		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3028			target_slices = 8;
3029		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3030			target_slices = 12;
3031		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3032			target_slices = 16;
3033		else
3034			return 0;
3035
3036		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3037		if (slice_width >= max_slice_width)
3038			min_slices = target_slices + 1;
3039	} while (slice_width >= max_slice_width);
3040
3041	return target_slices;
3042}
3043
3044/*
3045 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3046 * source and sink capabilities.
3047 *
3048 * @src_fraction_bpp: fractional bpp supported by the source
3049 * @slice_width: dsc slice width supported by the source and sink
3050 * @num_slices: num of slices supported by the source and sink
3051 * @output_format: video output format
3052 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3053 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3054 *
3055 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3056 */
3057int
3058intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3059		       int output_format, bool hdmi_all_bpp,
3060		       int hdmi_max_chunk_bytes)
3061{
3062	int max_dsc_bpp, min_dsc_bpp;
3063	int target_bytes;
3064	bool bpp_found = false;
3065	int bpp_decrement_x16;
3066	int bpp_target;
3067	int bpp_target_x16;
3068
3069	/*
3070	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3071	 * Start with the max bpp and keep on decrementing with
3072	 * fractional bpp, if supported by PCON DSC encoder
3073	 *
3074	 * for each bpp we check if no of bytes can be supported by HDMI sink
3075	 */
3076
3077	/* Assuming: bpc as 8*/
3078	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3079		min_dsc_bpp = 6;
3080		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3081	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3082		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3083		min_dsc_bpp = 8;
3084		max_dsc_bpp = 3 * 8; /* 3*bpc */
3085	} else {
3086		/* Assuming 4:2:2 encoding */
3087		min_dsc_bpp = 7;
3088		max_dsc_bpp = 2 * 8; /* 2*bpc */
3089	}
3090
3091	/*
3092	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3093	 * Section 7.7.34 : Source shall not enable compressed Video
3094	 * Transport with bpp_target settings above 12 bpp unless
3095	 * DSC_all_bpp is set to 1.
3096	 */
3097	if (!hdmi_all_bpp)
3098		max_dsc_bpp = min(max_dsc_bpp, 12);
3099
3100	/*
3101	 * The Sink has a limit of compressed data in bytes for a scanline,
3102	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3103	 * The no. of bytes depend on the target bits per pixel that the
3104	 * source configures. So we start with the max_bpp and calculate
3105	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3106	 * till we get the target_chunk_bytes just less than what the sink's
3107	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3108	 *
3109	 * The decrement is according to the fractional support from PCON DSC
3110	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3111	 *
3112	 * bpp_target_x16 = bpp_target * 16
3113	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3114	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3115	 */
3116
3117	bpp_target = max_dsc_bpp;
3118
3119	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3120	if (!src_fractional_bpp)
3121		src_fractional_bpp = 1;
3122	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3123	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3124
3125	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3126		int bpp;
3127
3128		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3129		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3130		if (target_bytes <= hdmi_max_chunk_bytes) {
3131			bpp_found = true;
3132			break;
3133		}
3134		bpp_target_x16 -= bpp_decrement_x16;
3135	}
3136	if (bpp_found)
3137		return bpp_target_x16;
3138
3139	return 0;
3140}
v6.2
   1/*
   2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
   3 * Copyright © 2006-2009 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Authors:
  25 *	Eric Anholt <eric@anholt.net>
  26 *	Jesse Barnes <jesse.barnes@intel.com>
  27 */
  28
  29#include <linux/delay.h>
  30#include <linux/hdmi.h>
  31#include <linux/i2c.h>
  32#include <linux/slab.h>
  33#include <linux/string_helpers.h>
  34
  35#include <drm/display/drm_hdcp_helper.h>
  36#include <drm/display/drm_hdmi_helper.h>
  37#include <drm/display/drm_scdc_helper.h>
  38#include <drm/drm_atomic_helper.h>
  39#include <drm/drm_crtc.h>
  40#include <drm/drm_edid.h>
 
 
  41#include <drm/intel_lpe_audio.h>
  42
  43#include "i915_debugfs.h"
  44#include "i915_drv.h"
  45#include "i915_reg.h"
  46#include "intel_atomic.h"
  47#include "intel_connector.h"
  48#include "intel_ddi.h"
  49#include "intel_de.h"
  50#include "intel_display_types.h"
  51#include "intel_dp.h"
  52#include "intel_gmbus.h"
  53#include "intel_hdcp.h"
  54#include "intel_hdcp_regs.h"
  55#include "intel_hdmi.h"
  56#include "intel_lspcon.h"
  57#include "intel_panel.h"
  58#include "intel_snps_phy.h"
  59
  60static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
  61{
  62	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
  63}
  64
  65static void
  66assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  67{
  68	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
 
  69	u32 enabled_bits;
  70
  71	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  72
  73	drm_WARN(&dev_priv->drm,
  74		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
  75		 "HDMI port enabled, expecting disabled\n");
  76}
  77
  78static void
  79assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
  80				     enum transcoder cpu_transcoder)
  81{
  82	drm_WARN(&dev_priv->drm,
  83		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
  84		 TRANS_DDI_FUNC_ENABLE,
  85		 "HDMI transcoder function enabled, expecting disabled\n");
  86}
  87
  88static u32 g4x_infoframe_index(unsigned int type)
  89{
  90	switch (type) {
  91	case HDMI_PACKET_TYPE_GAMUT_METADATA:
  92		return VIDEO_DIP_SELECT_GAMUT;
  93	case HDMI_INFOFRAME_TYPE_AVI:
  94		return VIDEO_DIP_SELECT_AVI;
  95	case HDMI_INFOFRAME_TYPE_SPD:
  96		return VIDEO_DIP_SELECT_SPD;
  97	case HDMI_INFOFRAME_TYPE_VENDOR:
  98		return VIDEO_DIP_SELECT_VENDOR;
  99	default:
 100		MISSING_CASE(type);
 101		return 0;
 102	}
 103}
 104
 105static u32 g4x_infoframe_enable(unsigned int type)
 106{
 107	switch (type) {
 108	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 109		return VIDEO_DIP_ENABLE_GCP;
 110	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 111		return VIDEO_DIP_ENABLE_GAMUT;
 112	case DP_SDP_VSC:
 113		return 0;
 114	case HDMI_INFOFRAME_TYPE_AVI:
 115		return VIDEO_DIP_ENABLE_AVI;
 116	case HDMI_INFOFRAME_TYPE_SPD:
 117		return VIDEO_DIP_ENABLE_SPD;
 118	case HDMI_INFOFRAME_TYPE_VENDOR:
 119		return VIDEO_DIP_ENABLE_VENDOR;
 120	case HDMI_INFOFRAME_TYPE_DRM:
 121		return 0;
 122	default:
 123		MISSING_CASE(type);
 124		return 0;
 125	}
 126}
 127
 128static u32 hsw_infoframe_enable(unsigned int type)
 129{
 130	switch (type) {
 131	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
 132		return VIDEO_DIP_ENABLE_GCP_HSW;
 133	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 134		return VIDEO_DIP_ENABLE_GMP_HSW;
 135	case DP_SDP_VSC:
 136		return VIDEO_DIP_ENABLE_VSC_HSW;
 137	case DP_SDP_PPS:
 138		return VDIP_ENABLE_PPS;
 139	case HDMI_INFOFRAME_TYPE_AVI:
 140		return VIDEO_DIP_ENABLE_AVI_HSW;
 141	case HDMI_INFOFRAME_TYPE_SPD:
 142		return VIDEO_DIP_ENABLE_SPD_HSW;
 143	case HDMI_INFOFRAME_TYPE_VENDOR:
 144		return VIDEO_DIP_ENABLE_VS_HSW;
 145	case HDMI_INFOFRAME_TYPE_DRM:
 146		return VIDEO_DIP_ENABLE_DRM_GLK;
 147	default:
 148		MISSING_CASE(type);
 149		return 0;
 150	}
 151}
 152
 153static i915_reg_t
 154hsw_dip_data_reg(struct drm_i915_private *dev_priv,
 155		 enum transcoder cpu_transcoder,
 156		 unsigned int type,
 157		 int i)
 158{
 159	switch (type) {
 160	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 161		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
 162	case DP_SDP_VSC:
 163		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
 164	case DP_SDP_PPS:
 165		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
 166	case HDMI_INFOFRAME_TYPE_AVI:
 167		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
 168	case HDMI_INFOFRAME_TYPE_SPD:
 169		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
 170	case HDMI_INFOFRAME_TYPE_VENDOR:
 171		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
 172	case HDMI_INFOFRAME_TYPE_DRM:
 173		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
 174	default:
 175		MISSING_CASE(type);
 176		return INVALID_MMIO_REG;
 177	}
 178}
 179
 180static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
 181			     unsigned int type)
 182{
 183	switch (type) {
 184	case DP_SDP_VSC:
 185		return VIDEO_DIP_VSC_DATA_SIZE;
 186	case DP_SDP_PPS:
 187		return VIDEO_DIP_PPS_DATA_SIZE;
 188	case HDMI_PACKET_TYPE_GAMUT_METADATA:
 189		if (DISPLAY_VER(dev_priv) >= 11)
 190			return VIDEO_DIP_GMP_DATA_SIZE;
 191		else
 192			return VIDEO_DIP_DATA_SIZE;
 193	default:
 194		return VIDEO_DIP_DATA_SIZE;
 195	}
 196}
 197
 198static void g4x_write_infoframe(struct intel_encoder *encoder,
 199				const struct intel_crtc_state *crtc_state,
 200				unsigned int type,
 201				const void *frame, ssize_t len)
 202{
 203	const u32 *data = frame;
 204	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 205	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 206	int i;
 207
 208	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 209		 "Writing DIP with CTL reg disabled\n");
 210
 211	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 212	val |= g4x_infoframe_index(type);
 213
 214	val &= ~g4x_infoframe_enable(type);
 215
 216	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 217
 218	for (i = 0; i < len; i += 4) {
 219		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
 220		data++;
 221	}
 222	/* Write every possible data byte to force correct ECC calculation. */
 223	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 224		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
 225
 226	val |= g4x_infoframe_enable(type);
 227	val &= ~VIDEO_DIP_FREQ_MASK;
 228	val |= VIDEO_DIP_FREQ_VSYNC;
 229
 230	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 231	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
 232}
 233
 234static void g4x_read_infoframe(struct intel_encoder *encoder,
 235			       const struct intel_crtc_state *crtc_state,
 236			       unsigned int type,
 237			       void *frame, ssize_t len)
 238{
 239	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 240	u32 val, *data = frame;
 241	int i;
 242
 243	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 244
 245	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 246	val |= g4x_infoframe_index(type);
 247
 248	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
 249
 250	for (i = 0; i < len; i += 4)
 251		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
 252}
 253
 254static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
 255				  const struct intel_crtc_state *pipe_config)
 256{
 257	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 258	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
 259
 260	if ((val & VIDEO_DIP_ENABLE) == 0)
 261		return 0;
 262
 263	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 264		return 0;
 265
 266	return val & (VIDEO_DIP_ENABLE_AVI |
 267		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 268}
 269
 270static void ibx_write_infoframe(struct intel_encoder *encoder,
 271				const struct intel_crtc_state *crtc_state,
 272				unsigned int type,
 273				const void *frame, ssize_t len)
 274{
 275	const u32 *data = frame;
 276	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 277	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 278	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
 279	u32 val = intel_de_read(dev_priv, reg);
 280	int i;
 281
 282	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 283		 "Writing DIP with CTL reg disabled\n");
 284
 285	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 286	val |= g4x_infoframe_index(type);
 287
 288	val &= ~g4x_infoframe_enable(type);
 289
 290	intel_de_write(dev_priv, reg, val);
 291
 292	for (i = 0; i < len; i += 4) {
 293		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
 294			       *data);
 295		data++;
 296	}
 297	/* Write every possible data byte to force correct ECC calculation. */
 298	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 299		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
 300
 301	val |= g4x_infoframe_enable(type);
 302	val &= ~VIDEO_DIP_FREQ_MASK;
 303	val |= VIDEO_DIP_FREQ_VSYNC;
 304
 305	intel_de_write(dev_priv, reg, val);
 306	intel_de_posting_read(dev_priv, reg);
 307}
 308
 309static void ibx_read_infoframe(struct intel_encoder *encoder,
 310			       const struct intel_crtc_state *crtc_state,
 311			       unsigned int type,
 312			       void *frame, ssize_t len)
 313{
 314	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 315	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 316	u32 val, *data = frame;
 317	int i;
 318
 319	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 320
 321	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 322	val |= g4x_infoframe_index(type);
 323
 324	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 325
 326	for (i = 0; i < len; i += 4)
 327		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 328}
 329
 330static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
 331				  const struct intel_crtc_state *pipe_config)
 332{
 333	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 334	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 335	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
 336	u32 val = intel_de_read(dev_priv, reg);
 337
 338	if ((val & VIDEO_DIP_ENABLE) == 0)
 339		return 0;
 340
 341	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 342		return 0;
 343
 344	return val & (VIDEO_DIP_ENABLE_AVI |
 345		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 346		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 347}
 348
 349static void cpt_write_infoframe(struct intel_encoder *encoder,
 350				const struct intel_crtc_state *crtc_state,
 351				unsigned int type,
 352				const void *frame, ssize_t len)
 353{
 354	const u32 *data = frame;
 355	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 356	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 357	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
 358	u32 val = intel_de_read(dev_priv, reg);
 359	int i;
 360
 361	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 362		 "Writing DIP with CTL reg disabled\n");
 363
 364	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 365	val |= g4x_infoframe_index(type);
 366
 367	/* The DIP control register spec says that we need to update the AVI
 368	 * infoframe without clearing its enable bit */
 369	if (type != HDMI_INFOFRAME_TYPE_AVI)
 370		val &= ~g4x_infoframe_enable(type);
 371
 372	intel_de_write(dev_priv, reg, val);
 373
 374	for (i = 0; i < len; i += 4) {
 375		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
 376			       *data);
 377		data++;
 378	}
 379	/* Write every possible data byte to force correct ECC calculation. */
 380	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 381		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
 382
 383	val |= g4x_infoframe_enable(type);
 384	val &= ~VIDEO_DIP_FREQ_MASK;
 385	val |= VIDEO_DIP_FREQ_VSYNC;
 386
 387	intel_de_write(dev_priv, reg, val);
 388	intel_de_posting_read(dev_priv, reg);
 389}
 390
 391static void cpt_read_infoframe(struct intel_encoder *encoder,
 392			       const struct intel_crtc_state *crtc_state,
 393			       unsigned int type,
 394			       void *frame, ssize_t len)
 395{
 396	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 397	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 398	u32 val, *data = frame;
 399	int i;
 400
 401	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
 402
 403	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 404	val |= g4x_infoframe_index(type);
 405
 406	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
 407
 408	for (i = 0; i < len; i += 4)
 409		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
 410}
 411
 412static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
 413				  const struct intel_crtc_state *pipe_config)
 414{
 415	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 416	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 417	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
 418
 419	if ((val & VIDEO_DIP_ENABLE) == 0)
 420		return 0;
 421
 422	return val & (VIDEO_DIP_ENABLE_AVI |
 423		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 424		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 425}
 426
 427static void vlv_write_infoframe(struct intel_encoder *encoder,
 428				const struct intel_crtc_state *crtc_state,
 429				unsigned int type,
 430				const void *frame, ssize_t len)
 431{
 432	const u32 *data = frame;
 433	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 434	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 435	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
 436	u32 val = intel_de_read(dev_priv, reg);
 437	int i;
 438
 439	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
 440		 "Writing DIP with CTL reg disabled\n");
 441
 442	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 443	val |= g4x_infoframe_index(type);
 444
 445	val &= ~g4x_infoframe_enable(type);
 446
 447	intel_de_write(dev_priv, reg, val);
 448
 449	for (i = 0; i < len; i += 4) {
 450		intel_de_write(dev_priv,
 451			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
 452		data++;
 453	}
 454	/* Write every possible data byte to force correct ECC calculation. */
 455	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
 456		intel_de_write(dev_priv,
 457			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
 458
 459	val |= g4x_infoframe_enable(type);
 460	val &= ~VIDEO_DIP_FREQ_MASK;
 461	val |= VIDEO_DIP_FREQ_VSYNC;
 462
 463	intel_de_write(dev_priv, reg, val);
 464	intel_de_posting_read(dev_priv, reg);
 465}
 466
 467static void vlv_read_infoframe(struct intel_encoder *encoder,
 468			       const struct intel_crtc_state *crtc_state,
 469			       unsigned int type,
 470			       void *frame, ssize_t len)
 471{
 472	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 473	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 474	u32 val, *data = frame;
 475	int i;
 476
 477	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
 478
 479	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
 480	val |= g4x_infoframe_index(type);
 481
 482	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
 483
 484	for (i = 0; i < len; i += 4)
 485		*data++ = intel_de_read(dev_priv,
 486				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
 487}
 488
 489static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
 490				  const struct intel_crtc_state *pipe_config)
 491{
 492	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 493	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
 494	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
 495
 496	if ((val & VIDEO_DIP_ENABLE) == 0)
 497		return 0;
 498
 499	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
 500		return 0;
 501
 502	return val & (VIDEO_DIP_ENABLE_AVI |
 503		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
 504		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
 505}
 506
 507void hsw_write_infoframe(struct intel_encoder *encoder,
 508			 const struct intel_crtc_state *crtc_state,
 509			 unsigned int type,
 510			 const void *frame, ssize_t len)
 511{
 512	const u32 *data = frame;
 513	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 514	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 515	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
 516	int data_size;
 517	int i;
 518	u32 val = intel_de_read(dev_priv, ctl_reg);
 519
 520	data_size = hsw_dip_data_size(dev_priv, type);
 521
 522	drm_WARN_ON(&dev_priv->drm, len > data_size);
 523
 524	val &= ~hsw_infoframe_enable(type);
 525	intel_de_write(dev_priv, ctl_reg, val);
 526
 527	for (i = 0; i < len; i += 4) {
 528		intel_de_write(dev_priv,
 529			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 530			       *data);
 531		data++;
 532	}
 533	/* Write every possible data byte to force correct ECC calculation. */
 534	for (; i < data_size; i += 4)
 535		intel_de_write(dev_priv,
 536			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
 537			       0);
 538
 539	/* Wa_14013475917 */
 540	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
 541	    type == DP_SDP_VSC)
 542		return;
 543
 544	val |= hsw_infoframe_enable(type);
 545	intel_de_write(dev_priv, ctl_reg, val);
 546	intel_de_posting_read(dev_priv, ctl_reg);
 547}
 548
 549void hsw_read_infoframe(struct intel_encoder *encoder,
 550			const struct intel_crtc_state *crtc_state,
 551			unsigned int type, void *frame, ssize_t len)
 552{
 553	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 554	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
 555	u32 *data = frame;
 556	int i;
 557
 558	for (i = 0; i < len; i += 4)
 559		*data++ = intel_de_read(dev_priv,
 560				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
 561}
 562
 563static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
 564				  const struct intel_crtc_state *pipe_config)
 565{
 566	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 567	u32 val = intel_de_read(dev_priv,
 568				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
 569	u32 mask;
 570
 571	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
 572		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
 573		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
 574
 575	if (DISPLAY_VER(dev_priv) >= 10)
 576		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
 577
 578	return val & mask;
 579}
 580
 581static const u8 infoframe_type_to_idx[] = {
 582	HDMI_PACKET_TYPE_GENERAL_CONTROL,
 583	HDMI_PACKET_TYPE_GAMUT_METADATA,
 584	DP_SDP_VSC,
 585	HDMI_INFOFRAME_TYPE_AVI,
 586	HDMI_INFOFRAME_TYPE_SPD,
 587	HDMI_INFOFRAME_TYPE_VENDOR,
 588	HDMI_INFOFRAME_TYPE_DRM,
 589};
 590
 591u32 intel_hdmi_infoframe_enable(unsigned int type)
 592{
 593	int i;
 594
 595	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 596		if (infoframe_type_to_idx[i] == type)
 597			return BIT(i);
 598	}
 599
 600	return 0;
 601}
 602
 603u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
 604				  const struct intel_crtc_state *crtc_state)
 605{
 606	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 607	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 608	u32 val, ret = 0;
 609	int i;
 610
 611	val = dig_port->infoframes_enabled(encoder, crtc_state);
 612
 613	/* map from hardware bits to dip idx */
 614	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
 615		unsigned int type = infoframe_type_to_idx[i];
 616
 617		if (HAS_DDI(dev_priv)) {
 618			if (val & hsw_infoframe_enable(type))
 619				ret |= BIT(i);
 620		} else {
 621			if (val & g4x_infoframe_enable(type))
 622				ret |= BIT(i);
 623		}
 624	}
 625
 626	return ret;
 627}
 628
 629/*
 630 * The data we write to the DIP data buffer registers is 1 byte bigger than the
 631 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
 632 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
 633 * used for both technologies.
 634 *
 635 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
 636 * DW1:       DB3       | DB2 | DB1 | DB0
 637 * DW2:       DB7       | DB6 | DB5 | DB4
 638 * DW3: ...
 639 *
 640 * (HB is Header Byte, DB is Data Byte)
 641 *
 642 * The hdmi pack() functions don't know about that hardware specific hole so we
 643 * trick them by giving an offset into the buffer and moving back the header
 644 * bytes by one.
 645 */
 646static void intel_write_infoframe(struct intel_encoder *encoder,
 647				  const struct intel_crtc_state *crtc_state,
 648				  enum hdmi_infoframe_type type,
 649				  const union hdmi_infoframe *frame)
 650{
 651	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 652	u8 buffer[VIDEO_DIP_DATA_SIZE];
 653	ssize_t len;
 654
 655	if ((crtc_state->infoframes.enable &
 656	     intel_hdmi_infoframe_enable(type)) == 0)
 657		return;
 658
 659	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
 660		return;
 661
 662	/* see comment above for the reason for this offset */
 663	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
 664	if (drm_WARN_ON(encoder->base.dev, len < 0))
 665		return;
 666
 667	/* Insert the 'hole' (see big comment above) at position 3 */
 668	memmove(&buffer[0], &buffer[1], 3);
 669	buffer[3] = 0;
 670	len++;
 671
 672	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
 673}
 674
 675void intel_read_infoframe(struct intel_encoder *encoder,
 676			  const struct intel_crtc_state *crtc_state,
 677			  enum hdmi_infoframe_type type,
 678			  union hdmi_infoframe *frame)
 679{
 680	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 681	u8 buffer[VIDEO_DIP_DATA_SIZE];
 682	int ret;
 683
 684	if ((crtc_state->infoframes.enable &
 685	     intel_hdmi_infoframe_enable(type)) == 0)
 686		return;
 687
 688	dig_port->read_infoframe(encoder, crtc_state,
 689				       type, buffer, sizeof(buffer));
 690
 691	/* Fill the 'hole' (see big comment above) at position 3 */
 692	memmove(&buffer[1], &buffer[0], 3);
 693
 694	/* see comment above for the reason for this offset */
 695	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
 696	if (ret) {
 697		drm_dbg_kms(encoder->base.dev,
 698			    "Failed to unpack infoframe type 0x%02x\n", type);
 699		return;
 700	}
 701
 702	if (frame->any.type != type)
 703		drm_dbg_kms(encoder->base.dev,
 704			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
 705			    frame->any.type, type);
 706}
 707
 708static bool
 709intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
 710				 struct intel_crtc_state *crtc_state,
 711				 struct drm_connector_state *conn_state)
 712{
 713	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
 714	const struct drm_display_mode *adjusted_mode =
 715		&crtc_state->hw.adjusted_mode;
 716	struct drm_connector *connector = conn_state->connector;
 717	int ret;
 718
 719	if (!crtc_state->has_infoframe)
 720		return true;
 721
 722	crtc_state->infoframes.enable |=
 723		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
 724
 725	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
 726						       adjusted_mode);
 727	if (ret)
 728		return false;
 729
 730	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
 731		frame->colorspace = HDMI_COLORSPACE_YUV420;
 732	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
 733		frame->colorspace = HDMI_COLORSPACE_YUV444;
 734	else
 735		frame->colorspace = HDMI_COLORSPACE_RGB;
 736
 737	drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
 738
 739	/* nonsense combination */
 740	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
 741		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
 742
 743	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
 744		drm_hdmi_avi_infoframe_quant_range(frame, connector,
 745						   adjusted_mode,
 746						   crtc_state->limited_color_range ?
 747						   HDMI_QUANTIZATION_RANGE_LIMITED :
 748						   HDMI_QUANTIZATION_RANGE_FULL);
 749	} else {
 750		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
 751		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
 752	}
 753
 754	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
 755
 756	/* TODO: handle pixel repetition for YCBCR420 outputs */
 757
 758	ret = hdmi_avi_infoframe_check(frame);
 759	if (drm_WARN_ON(encoder->base.dev, ret))
 760		return false;
 761
 762	return true;
 763}
 764
 765static bool
 766intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
 767				 struct intel_crtc_state *crtc_state,
 768				 struct drm_connector_state *conn_state)
 769{
 770	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
 771	int ret;
 772
 773	if (!crtc_state->has_infoframe)
 774		return true;
 775
 776	crtc_state->infoframes.enable |=
 777		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
 778
 779	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
 780	if (drm_WARN_ON(encoder->base.dev, ret))
 781		return false;
 782
 783	frame->sdi = HDMI_SPD_SDI_PC;
 784
 785	ret = hdmi_spd_infoframe_check(frame);
 786	if (drm_WARN_ON(encoder->base.dev, ret))
 787		return false;
 788
 789	return true;
 790}
 791
 792static bool
 793intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
 794				  struct intel_crtc_state *crtc_state,
 795				  struct drm_connector_state *conn_state)
 796{
 797	struct hdmi_vendor_infoframe *frame =
 798		&crtc_state->infoframes.hdmi.vendor.hdmi;
 799	const struct drm_display_info *info =
 800		&conn_state->connector->display_info;
 801	int ret;
 802
 803	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
 804		return true;
 805
 806	crtc_state->infoframes.enable |=
 807		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
 808
 809	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
 810							  conn_state->connector,
 811							  &crtc_state->hw.adjusted_mode);
 812	if (drm_WARN_ON(encoder->base.dev, ret))
 813		return false;
 814
 815	ret = hdmi_vendor_infoframe_check(frame);
 816	if (drm_WARN_ON(encoder->base.dev, ret))
 817		return false;
 818
 819	return true;
 820}
 821
 822static bool
 823intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
 824				 struct intel_crtc_state *crtc_state,
 825				 struct drm_connector_state *conn_state)
 826{
 827	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
 828	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 829	int ret;
 830
 831	if (DISPLAY_VER(dev_priv) < 10)
 832		return true;
 833
 834	if (!crtc_state->has_infoframe)
 835		return true;
 836
 837	if (!conn_state->hdr_output_metadata)
 838		return true;
 839
 840	crtc_state->infoframes.enable |=
 841		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
 842
 843	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
 844	if (ret < 0) {
 845		drm_dbg_kms(&dev_priv->drm,
 846			    "couldn't set HDR metadata in infoframe\n");
 847		return false;
 848	}
 849
 850	ret = hdmi_drm_infoframe_check(frame);
 851	if (drm_WARN_ON(&dev_priv->drm, ret))
 852		return false;
 853
 854	return true;
 855}
 856
 857static void g4x_set_infoframes(struct intel_encoder *encoder,
 858			       bool enable,
 859			       const struct intel_crtc_state *crtc_state,
 860			       const struct drm_connector_state *conn_state)
 861{
 862	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 863	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 864	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
 865	i915_reg_t reg = VIDEO_DIP_CTL;
 866	u32 val = intel_de_read(dev_priv, reg);
 867	u32 port = VIDEO_DIP_PORT(encoder->port);
 868
 869	assert_hdmi_port_disabled(intel_hdmi);
 870
 871	/* If the registers were not initialized yet, they might be zeroes,
 872	 * which means we're selecting the AVI DIP and we're setting its
 873	 * frequency to once. This seems to really confuse the HW and make
 874	 * things stop working (the register spec says the AVI always needs to
 875	 * be sent every VSync). So here we avoid writing to the register more
 876	 * than we need and also explicitly select the AVI DIP and explicitly
 877	 * set its frequency to every VSync. Avoiding to write it twice seems to
 878	 * be enough to solve the problem, but being defensive shouldn't hurt us
 879	 * either. */
 880	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
 881
 882	if (!enable) {
 883		if (!(val & VIDEO_DIP_ENABLE))
 884			return;
 885		if (port != (val & VIDEO_DIP_PORT_MASK)) {
 886			drm_dbg_kms(&dev_priv->drm,
 887				    "video DIP still enabled on port %c\n",
 888				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 889			return;
 890		}
 891		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
 892			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 893		intel_de_write(dev_priv, reg, val);
 894		intel_de_posting_read(dev_priv, reg);
 895		return;
 896	}
 897
 898	if (port != (val & VIDEO_DIP_PORT_MASK)) {
 899		if (val & VIDEO_DIP_ENABLE) {
 900			drm_dbg_kms(&dev_priv->drm,
 901				    "video DIP already enabled on port %c\n",
 902				    (val & VIDEO_DIP_PORT_MASK) >> 29);
 903			return;
 904		}
 905		val &= ~VIDEO_DIP_PORT_MASK;
 906		val |= port;
 907	}
 908
 909	val |= VIDEO_DIP_ENABLE;
 910	val &= ~(VIDEO_DIP_ENABLE_AVI |
 911		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
 912
 913	intel_de_write(dev_priv, reg, val);
 914	intel_de_posting_read(dev_priv, reg);
 915
 916	intel_write_infoframe(encoder, crtc_state,
 917			      HDMI_INFOFRAME_TYPE_AVI,
 918			      &crtc_state->infoframes.avi);
 919	intel_write_infoframe(encoder, crtc_state,
 920			      HDMI_INFOFRAME_TYPE_SPD,
 921			      &crtc_state->infoframes.spd);
 922	intel_write_infoframe(encoder, crtc_state,
 923			      HDMI_INFOFRAME_TYPE_VENDOR,
 924			      &crtc_state->infoframes.hdmi);
 925}
 926
 927/*
 928 * Determine if default_phase=1 can be indicated in the GCP infoframe.
 929 *
 930 * From HDMI specification 1.4a:
 931 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
 932 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
 933 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
 934 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
 935 *   phase of 0
 936 */
 937static bool gcp_default_phase_possible(int pipe_bpp,
 938				       const struct drm_display_mode *mode)
 939{
 940	unsigned int pixels_per_group;
 941
 942	switch (pipe_bpp) {
 943	case 30:
 944		/* 4 pixels in 5 clocks */
 945		pixels_per_group = 4;
 946		break;
 947	case 36:
 948		/* 2 pixels in 3 clocks */
 949		pixels_per_group = 2;
 950		break;
 951	case 48:
 952		/* 1 pixel in 2 clocks */
 953		pixels_per_group = 1;
 954		break;
 955	default:
 956		/* phase information not relevant for 8bpc */
 957		return false;
 958	}
 959
 960	return mode->crtc_hdisplay % pixels_per_group == 0 &&
 961		mode->crtc_htotal % pixels_per_group == 0 &&
 962		mode->crtc_hblank_start % pixels_per_group == 0 &&
 963		mode->crtc_hblank_end % pixels_per_group == 0 &&
 964		mode->crtc_hsync_start % pixels_per_group == 0 &&
 965		mode->crtc_hsync_end % pixels_per_group == 0 &&
 966		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
 967		 mode->crtc_htotal/2 % pixels_per_group == 0);
 968}
 969
 970static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
 971					 const struct intel_crtc_state *crtc_state,
 972					 const struct drm_connector_state *conn_state)
 973{
 974	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 975	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 976	i915_reg_t reg;
 977
 978	if ((crtc_state->infoframes.enable &
 979	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
 980		return false;
 981
 982	if (HAS_DDI(dev_priv))
 983		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
 984	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 985		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
 986	else if (HAS_PCH_SPLIT(dev_priv))
 987		reg = TVIDEO_DIP_GCP(crtc->pipe);
 988	else
 989		return false;
 990
 991	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
 992
 993	return true;
 994}
 995
 996void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
 997				   struct intel_crtc_state *crtc_state)
 998{
 999	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1000	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1001	i915_reg_t reg;
1002
1003	if ((crtc_state->infoframes.enable &
1004	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1005		return;
1006
1007	if (HAS_DDI(dev_priv))
1008		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1009	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1010		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1011	else if (HAS_PCH_SPLIT(dev_priv))
1012		reg = TVIDEO_DIP_GCP(crtc->pipe);
1013	else
1014		return;
1015
1016	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1017}
1018
1019static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1020					     struct intel_crtc_state *crtc_state,
1021					     struct drm_connector_state *conn_state)
1022{
1023	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1024
1025	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1026		return;
1027
1028	crtc_state->infoframes.enable |=
1029		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1030
1031	/* Indicate color indication for deep color mode */
1032	if (crtc_state->pipe_bpp > 24)
1033		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1034
1035	/* Enable default_phase whenever the display mode is suitably aligned */
1036	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1037				       &crtc_state->hw.adjusted_mode))
1038		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1039}
1040
1041static void ibx_set_infoframes(struct intel_encoder *encoder,
1042			       bool enable,
1043			       const struct intel_crtc_state *crtc_state,
1044			       const struct drm_connector_state *conn_state)
1045{
1046	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1047	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1048	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1049	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1050	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1051	u32 val = intel_de_read(dev_priv, reg);
1052	u32 port = VIDEO_DIP_PORT(encoder->port);
1053
1054	assert_hdmi_port_disabled(intel_hdmi);
1055
1056	/* See the big comment in g4x_set_infoframes() */
1057	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1058
1059	if (!enable) {
1060		if (!(val & VIDEO_DIP_ENABLE))
1061			return;
1062		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1063			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1064			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1065		intel_de_write(dev_priv, reg, val);
1066		intel_de_posting_read(dev_priv, reg);
1067		return;
1068	}
1069
1070	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1071		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1072			 "DIP already enabled on port %c\n",
1073			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1074		val &= ~VIDEO_DIP_PORT_MASK;
1075		val |= port;
1076	}
1077
1078	val |= VIDEO_DIP_ENABLE;
1079	val &= ~(VIDEO_DIP_ENABLE_AVI |
1080		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1081		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1082
1083	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1084		val |= VIDEO_DIP_ENABLE_GCP;
1085
1086	intel_de_write(dev_priv, reg, val);
1087	intel_de_posting_read(dev_priv, reg);
1088
1089	intel_write_infoframe(encoder, crtc_state,
1090			      HDMI_INFOFRAME_TYPE_AVI,
1091			      &crtc_state->infoframes.avi);
1092	intel_write_infoframe(encoder, crtc_state,
1093			      HDMI_INFOFRAME_TYPE_SPD,
1094			      &crtc_state->infoframes.spd);
1095	intel_write_infoframe(encoder, crtc_state,
1096			      HDMI_INFOFRAME_TYPE_VENDOR,
1097			      &crtc_state->infoframes.hdmi);
1098}
1099
1100static void cpt_set_infoframes(struct intel_encoder *encoder,
1101			       bool enable,
1102			       const struct intel_crtc_state *crtc_state,
1103			       const struct drm_connector_state *conn_state)
1104{
1105	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1106	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1107	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1108	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1109	u32 val = intel_de_read(dev_priv, reg);
1110
1111	assert_hdmi_port_disabled(intel_hdmi);
1112
1113	/* See the big comment in g4x_set_infoframes() */
1114	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1115
1116	if (!enable) {
1117		if (!(val & VIDEO_DIP_ENABLE))
1118			return;
1119		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1120			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1121			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1122		intel_de_write(dev_priv, reg, val);
1123		intel_de_posting_read(dev_priv, reg);
1124		return;
1125	}
1126
1127	/* Set both together, unset both together: see the spec. */
1128	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1129	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1130		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1131
1132	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1133		val |= VIDEO_DIP_ENABLE_GCP;
1134
1135	intel_de_write(dev_priv, reg, val);
1136	intel_de_posting_read(dev_priv, reg);
1137
1138	intel_write_infoframe(encoder, crtc_state,
1139			      HDMI_INFOFRAME_TYPE_AVI,
1140			      &crtc_state->infoframes.avi);
1141	intel_write_infoframe(encoder, crtc_state,
1142			      HDMI_INFOFRAME_TYPE_SPD,
1143			      &crtc_state->infoframes.spd);
1144	intel_write_infoframe(encoder, crtc_state,
1145			      HDMI_INFOFRAME_TYPE_VENDOR,
1146			      &crtc_state->infoframes.hdmi);
1147}
1148
1149static void vlv_set_infoframes(struct intel_encoder *encoder,
1150			       bool enable,
1151			       const struct intel_crtc_state *crtc_state,
1152			       const struct drm_connector_state *conn_state)
1153{
1154	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1155	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1156	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1157	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1158	u32 val = intel_de_read(dev_priv, reg);
1159	u32 port = VIDEO_DIP_PORT(encoder->port);
1160
1161	assert_hdmi_port_disabled(intel_hdmi);
1162
1163	/* See the big comment in g4x_set_infoframes() */
1164	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1165
1166	if (!enable) {
1167		if (!(val & VIDEO_DIP_ENABLE))
1168			return;
1169		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1170			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1171			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1172		intel_de_write(dev_priv, reg, val);
1173		intel_de_posting_read(dev_priv, reg);
1174		return;
1175	}
1176
1177	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1178		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1179			 "DIP already enabled on port %c\n",
1180			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1181		val &= ~VIDEO_DIP_PORT_MASK;
1182		val |= port;
1183	}
1184
1185	val |= VIDEO_DIP_ENABLE;
1186	val &= ~(VIDEO_DIP_ENABLE_AVI |
1187		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1188		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1189
1190	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1191		val |= VIDEO_DIP_ENABLE_GCP;
1192
1193	intel_de_write(dev_priv, reg, val);
1194	intel_de_posting_read(dev_priv, reg);
1195
1196	intel_write_infoframe(encoder, crtc_state,
1197			      HDMI_INFOFRAME_TYPE_AVI,
1198			      &crtc_state->infoframes.avi);
1199	intel_write_infoframe(encoder, crtc_state,
1200			      HDMI_INFOFRAME_TYPE_SPD,
1201			      &crtc_state->infoframes.spd);
1202	intel_write_infoframe(encoder, crtc_state,
1203			      HDMI_INFOFRAME_TYPE_VENDOR,
1204			      &crtc_state->infoframes.hdmi);
1205}
1206
1207static void hsw_set_infoframes(struct intel_encoder *encoder,
1208			       bool enable,
1209			       const struct intel_crtc_state *crtc_state,
1210			       const struct drm_connector_state *conn_state)
1211{
1212	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1213	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1214	u32 val = intel_de_read(dev_priv, reg);
1215
1216	assert_hdmi_transcoder_func_disabled(dev_priv,
1217					     crtc_state->cpu_transcoder);
1218
1219	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1220		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1221		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1222		 VIDEO_DIP_ENABLE_DRM_GLK);
1223
1224	if (!enable) {
1225		intel_de_write(dev_priv, reg, val);
1226		intel_de_posting_read(dev_priv, reg);
1227		return;
1228	}
1229
1230	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1231		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1232
1233	intel_de_write(dev_priv, reg, val);
1234	intel_de_posting_read(dev_priv, reg);
1235
1236	intel_write_infoframe(encoder, crtc_state,
1237			      HDMI_INFOFRAME_TYPE_AVI,
1238			      &crtc_state->infoframes.avi);
1239	intel_write_infoframe(encoder, crtc_state,
1240			      HDMI_INFOFRAME_TYPE_SPD,
1241			      &crtc_state->infoframes.spd);
1242	intel_write_infoframe(encoder, crtc_state,
1243			      HDMI_INFOFRAME_TYPE_VENDOR,
1244			      &crtc_state->infoframes.hdmi);
1245	intel_write_infoframe(encoder, crtc_state,
1246			      HDMI_INFOFRAME_TYPE_DRM,
1247			      &crtc_state->infoframes.drm);
1248}
1249
1250void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1251{
1252	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1253	struct i2c_adapter *adapter;
 
1254
1255	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1256		return;
1257
1258	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1259
1260	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1261		    enable ? "Enabling" : "Disabling");
1262
1263	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1264}
1265
1266static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1267				unsigned int offset, void *buffer, size_t size)
1268{
1269	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1270	struct intel_hdmi *hdmi = &dig_port->hdmi;
1271	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1272							      hdmi->ddc_bus);
1273	int ret;
1274	u8 start = offset & 0xff;
1275	struct i2c_msg msgs[] = {
1276		{
1277			.addr = DRM_HDCP_DDC_ADDR,
1278			.flags = 0,
1279			.len = 1,
1280			.buf = &start,
1281		},
1282		{
1283			.addr = DRM_HDCP_DDC_ADDR,
1284			.flags = I2C_M_RD,
1285			.len = size,
1286			.buf = buffer
1287		}
1288	};
1289	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1290	if (ret == ARRAY_SIZE(msgs))
1291		return 0;
1292	return ret >= 0 ? -EIO : ret;
1293}
1294
1295static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1296				 unsigned int offset, void *buffer, size_t size)
1297{
1298	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1299	struct intel_hdmi *hdmi = &dig_port->hdmi;
1300	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1301							      hdmi->ddc_bus);
1302	int ret;
1303	u8 *write_buf;
1304	struct i2c_msg msg;
1305
1306	write_buf = kzalloc(size + 1, GFP_KERNEL);
1307	if (!write_buf)
1308		return -ENOMEM;
1309
1310	write_buf[0] = offset & 0xff;
1311	memcpy(&write_buf[1], buffer, size);
1312
1313	msg.addr = DRM_HDCP_DDC_ADDR;
1314	msg.flags = 0,
1315	msg.len = size + 1,
1316	msg.buf = write_buf;
1317
1318	ret = i2c_transfer(adapter, &msg, 1);
1319	if (ret == 1)
1320		ret = 0;
1321	else if (ret >= 0)
1322		ret = -EIO;
1323
1324	kfree(write_buf);
1325	return ret;
1326}
1327
1328static
1329int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1330				  u8 *an)
1331{
1332	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1333	struct intel_hdmi *hdmi = &dig_port->hdmi;
1334	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1335							      hdmi->ddc_bus);
1336	int ret;
1337
1338	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1339				    DRM_HDCP_AN_LEN);
1340	if (ret) {
1341		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1342			    ret);
1343		return ret;
1344	}
1345
1346	ret = intel_gmbus_output_aksv(adapter);
1347	if (ret < 0) {
1348		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1349		return ret;
1350	}
1351	return 0;
1352}
1353
1354static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1355				     u8 *bksv)
1356{
1357	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1358
1359	int ret;
1360	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1361				   DRM_HDCP_KSV_LEN);
1362	if (ret)
1363		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1364			    ret);
1365	return ret;
1366}
1367
1368static
1369int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1370				 u8 *bstatus)
1371{
1372	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1373
1374	int ret;
1375	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1376				   bstatus, DRM_HDCP_BSTATUS_LEN);
1377	if (ret)
1378		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1379			    ret);
1380	return ret;
1381}
1382
1383static
1384int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1385				     bool *repeater_present)
1386{
1387	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1388	int ret;
1389	u8 val;
1390
1391	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1392	if (ret) {
1393		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1394			    ret);
1395		return ret;
1396	}
1397	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1398	return 0;
1399}
1400
1401static
1402int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1403				  u8 *ri_prime)
1404{
1405	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1406
1407	int ret;
1408	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1409				   ri_prime, DRM_HDCP_RI_LEN);
1410	if (ret)
1411		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1412			    ret);
1413	return ret;
1414}
1415
1416static
1417int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1418				   bool *ksv_ready)
1419{
1420	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1421	int ret;
1422	u8 val;
1423
1424	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1425	if (ret) {
1426		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1427			    ret);
1428		return ret;
1429	}
1430	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1431	return 0;
1432}
1433
1434static
1435int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1436				  int num_downstream, u8 *ksv_fifo)
1437{
1438	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1439	int ret;
1440	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1441				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1442	if (ret) {
1443		drm_dbg_kms(&i915->drm,
1444			    "Read ksv fifo over DDC failed (%d)\n", ret);
1445		return ret;
1446	}
1447	return 0;
1448}
1449
1450static
1451int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1452				      int i, u32 *part)
1453{
1454	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1455	int ret;
1456
1457	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1458		return -EINVAL;
1459
1460	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1461				   part, DRM_HDCP_V_PRIME_PART_LEN);
1462	if (ret)
1463		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1464			    i, ret);
1465	return ret;
1466}
1467
1468static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1469					   enum transcoder cpu_transcoder)
1470{
1471	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1472	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1473	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
 
 
1474	u32 scanline;
1475	int ret;
1476
1477	for (;;) {
1478		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1479		if (scanline > 100 && scanline < 200)
1480			break;
1481		usleep_range(25, 50);
1482	}
1483
1484	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1485					 false, TRANS_DDI_HDCP_SIGNALLING);
1486	if (ret) {
1487		drm_err(&dev_priv->drm,
1488			"Disable HDCP signalling failed (%d)\n", ret);
1489		return ret;
1490	}
1491
1492	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1493					 true, TRANS_DDI_HDCP_SIGNALLING);
1494	if (ret) {
1495		drm_err(&dev_priv->drm,
1496			"Enable HDCP signalling failed (%d)\n", ret);
1497		return ret;
1498	}
1499
1500	return 0;
1501}
1502
1503static
1504int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1505				      enum transcoder cpu_transcoder,
1506				      bool enable)
1507{
1508	struct intel_hdmi *hdmi = &dig_port->hdmi;
1509	struct intel_connector *connector = hdmi->attached_connector;
1510	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1511	int ret;
1512
1513	if (!enable)
1514		usleep_range(6, 60); /* Bspec says >= 6us */
1515
1516	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1517					 cpu_transcoder, enable,
1518					 TRANS_DDI_HDCP_SIGNALLING);
1519	if (ret) {
1520		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1521			enable ? "Enable" : "Disable", ret);
1522		return ret;
1523	}
1524
1525	/*
1526	 * WA: To fix incorrect positioning of the window of
1527	 * opportunity and enc_en signalling in KABYLAKE.
1528	 */
1529	if (IS_KABYLAKE(dev_priv) && enable)
1530		return kbl_repositioning_enc_en_signal(connector,
1531						       cpu_transcoder);
1532
1533	return 0;
1534}
1535
1536static
1537bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1538				     struct intel_connector *connector)
1539{
1540	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1541	enum port port = dig_port->base.port;
1542	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1543	int ret;
1544	union {
1545		u32 reg;
1546		u8 shim[DRM_HDCP_RI_LEN];
1547	} ri;
1548
1549	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1550	if (ret)
1551		return false;
1552
1553	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1554
1555	/* Wait for Ri prime match */
1556	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1557		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1558		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1559		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1560			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1561							port)));
1562		return false;
1563	}
1564	return true;
1565}
1566
1567static
1568bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1569				struct intel_connector *connector)
1570{
1571	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1572	int retry;
1573
1574	for (retry = 0; retry < 3; retry++)
1575		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1576			return true;
1577
1578	drm_err(&i915->drm, "Link check failed\n");
1579	return false;
1580}
1581
1582struct hdcp2_hdmi_msg_timeout {
1583	u8 msg_id;
1584	u16 timeout;
1585};
1586
1587static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1588	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1589	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1590	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1591	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1592	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1593};
1594
1595static
1596int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1597				    u8 *rx_status)
1598{
1599	return intel_hdmi_hdcp_read(dig_port,
1600				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1601				    rx_status,
1602				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1603}
1604
1605static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1606{
1607	int i;
1608
1609	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1610		if (is_paired)
1611			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1612		else
1613			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1614	}
1615
1616	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1617		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1618			return hdcp2_msg_timeout[i].timeout;
1619	}
1620
1621	return -EINVAL;
1622}
1623
1624static int
1625hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1626			      u8 msg_id, bool *msg_ready,
1627			      ssize_t *msg_sz)
1628{
1629	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1630	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1631	int ret;
1632
1633	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1634	if (ret < 0) {
1635		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1636			    ret);
1637		return ret;
1638	}
1639
1640	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1641		  rx_status[0]);
1642
1643	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1644		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1645			     *msg_sz);
1646	else
1647		*msg_ready = *msg_sz;
1648
1649	return 0;
1650}
1651
1652static ssize_t
1653intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1654			      u8 msg_id, bool paired)
1655{
1656	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1657	bool msg_ready = false;
1658	int timeout, ret;
1659	ssize_t msg_sz = 0;
1660
1661	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1662	if (timeout < 0)
1663		return timeout;
1664
1665	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1666							     msg_id, &msg_ready,
1667							     &msg_sz),
1668			 !ret && msg_ready && msg_sz, timeout * 1000,
1669			 1000, 5 * 1000);
1670	if (ret)
1671		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1672			    msg_id, ret, timeout);
1673
1674	return ret ? ret : msg_sz;
1675}
1676
1677static
1678int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1679			       void *buf, size_t size)
1680{
1681	unsigned int offset;
1682
1683	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1684	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1685}
1686
1687static
1688int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1689			      u8 msg_id, void *buf, size_t size)
1690{
1691	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1692	struct intel_hdmi *hdmi = &dig_port->hdmi;
1693	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1694	unsigned int offset;
1695	ssize_t ret;
1696
1697	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1698					    hdcp->is_paired);
1699	if (ret < 0)
1700		return ret;
1701
1702	/*
1703	 * Available msg size should be equal to or lesser than the
1704	 * available buffer.
1705	 */
1706	if (ret > size) {
1707		drm_dbg_kms(&i915->drm,
1708			    "msg_sz(%zd) is more than exp size(%zu)\n",
1709			    ret, size);
1710		return -EINVAL;
1711	}
1712
1713	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1714	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1715	if (ret)
1716		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1717			    msg_id, ret);
1718
1719	return ret;
1720}
1721
1722static
1723int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1724				struct intel_connector *connector)
1725{
1726	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1727	int ret;
1728
1729	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1730	if (ret)
1731		return ret;
1732
1733	/*
1734	 * Re-auth request and Link Integrity Failures are represented by
1735	 * same bit. i.e reauth_req.
1736	 */
1737	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1738		ret = HDCP_REAUTH_REQUEST;
1739	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1740		ret = HDCP_TOPOLOGY_CHANGE;
1741
1742	return ret;
1743}
1744
1745static
1746int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1747			     bool *capable)
1748{
1749	u8 hdcp2_version;
1750	int ret;
1751
1752	*capable = false;
1753	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1754				   &hdcp2_version, sizeof(hdcp2_version));
1755	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1756		*capable = true;
1757
1758	return ret;
1759}
1760
1761static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1762	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1763	.read_bksv = intel_hdmi_hdcp_read_bksv,
1764	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1765	.repeater_present = intel_hdmi_hdcp_repeater_present,
1766	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1767	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1768	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1769	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1770	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1771	.check_link = intel_hdmi_hdcp_check_link,
1772	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1773	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1774	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1775	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1776	.protocol = HDCP_PROTOCOL_HDMI,
1777};
1778
1779static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1780{
1781	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1782	int max_tmds_clock, vbt_max_tmds_clock;
1783
1784	if (DISPLAY_VER(dev_priv) >= 10)
1785		max_tmds_clock = 594000;
1786	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1787		max_tmds_clock = 300000;
1788	else if (DISPLAY_VER(dev_priv) >= 5)
1789		max_tmds_clock = 225000;
1790	else
1791		max_tmds_clock = 165000;
1792
1793	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1794	if (vbt_max_tmds_clock)
1795		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1796
1797	return max_tmds_clock;
1798}
1799
1800static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1801				const struct drm_connector_state *conn_state)
1802{
1803	return hdmi->has_hdmi_sink &&
1804		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1805}
1806
1807static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1808{
1809	return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1810}
1811
1812static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1813				 bool respect_downstream_limits,
1814				 bool has_hdmi_sink)
1815{
1816	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1817	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1818
1819	if (respect_downstream_limits) {
1820		struct intel_connector *connector = hdmi->attached_connector;
1821		const struct drm_display_info *info = &connector->base.display_info;
1822
1823		if (hdmi->dp_dual_mode.max_tmds_clock)
1824			max_tmds_clock = min(max_tmds_clock,
1825					     hdmi->dp_dual_mode.max_tmds_clock);
1826
1827		if (info->max_tmds_clock)
1828			max_tmds_clock = min(max_tmds_clock,
1829					     info->max_tmds_clock);
1830		else if (!has_hdmi_sink)
1831			max_tmds_clock = min(max_tmds_clock, 165000);
1832	}
1833
1834	return max_tmds_clock;
1835}
1836
1837static enum drm_mode_status
1838hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1839		      int clock, bool respect_downstream_limits,
1840		      bool has_hdmi_sink)
1841{
1842	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1843	enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1844
1845	if (clock < 25000)
1846		return MODE_CLOCK_LOW;
1847	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1848					  has_hdmi_sink))
1849		return MODE_CLOCK_HIGH;
1850
1851	/* GLK DPLL can't generate 446-480 MHz */
1852	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1853		return MODE_CLOCK_RANGE;
1854
1855	/* BXT/GLK DPLL can't generate 223-240 MHz */
1856	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1857	    clock > 223333 && clock < 240000)
1858		return MODE_CLOCK_RANGE;
1859
1860	/* CHV DPLL can't generate 216-240 MHz */
1861	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1862		return MODE_CLOCK_RANGE;
1863
1864	/* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1865	if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1866		return MODE_CLOCK_RANGE;
1867
1868	/* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1869	if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1870		return MODE_CLOCK_RANGE;
1871
1872	/*
1873	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1874	 * set of link rates.
1875	 *
1876	 * FIXME: We will hopefully get an algorithmic way of programming
1877	 * the MPLLB for HDMI in the future.
1878	 */
1879	if (IS_DG2(dev_priv))
1880		return intel_snps_phy_check_hdmi_link_rate(clock);
1881
1882	return MODE_OK;
1883}
1884
1885int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output)
1886{
1887	/* YCBCR420 TMDS rate requirement is half the pixel clock */
1888	if (ycbcr420_output)
1889		clock /= 2;
1890
1891	/*
1892	 * Need to adjust the port link by:
1893	 *  1.5x for 12bpc
1894	 *  1.25x for 10bpc
1895	 */
1896	return DIV_ROUND_CLOSEST(clock * bpc, 8);
1897}
1898
1899static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1900{
1901	switch (bpc) {
1902	case 12:
1903		return !HAS_GMCH(i915);
1904	case 10:
1905		return DISPLAY_VER(i915) >= 11;
1906	case 8:
1907		return true;
1908	default:
1909		MISSING_CASE(bpc);
1910		return false;
1911	}
1912}
1913
1914static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1915					 int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1916{
 
1917	const struct drm_display_info *info = &connector->display_info;
1918	const struct drm_hdmi_info *hdmi = &info->hdmi;
1919
1920	switch (bpc) {
1921	case 12:
 
 
 
1922		if (!has_hdmi_sink)
1923			return false;
1924
1925		if (ycbcr420_output)
1926			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1927		else
1928			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1929	case 10:
 
 
 
1930		if (!has_hdmi_sink)
1931			return false;
1932
1933		if (ycbcr420_output)
1934			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1935		else
1936			return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1937	case 8:
1938		return true;
1939	default:
1940		MISSING_CASE(bpc);
1941		return false;
1942	}
1943}
1944
1945static enum drm_mode_status
1946intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1947			    bool has_hdmi_sink, bool ycbcr420_output)
1948{
1949	struct drm_i915_private *i915 = to_i915(connector->dev);
1950	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1951	enum drm_mode_status status = MODE_OK;
1952	int bpc;
1953
1954	/*
1955	 * Try all color depths since valid port clock range
1956	 * can have holes. Any mode that can be used with at
1957	 * least one color depth is accepted.
1958	 */
1959	for (bpc = 12; bpc >= 8; bpc -= 2) {
1960		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
1961
1962		if (!intel_hdmi_source_bpc_possible(i915, bpc))
1963			continue;
1964
1965		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1966			continue;
1967
1968		status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1969		if (status == MODE_OK)
1970			return MODE_OK;
1971	}
1972
1973	/* can never happen */
1974	drm_WARN_ON(&i915->drm, status == MODE_OK);
 
 
 
 
 
 
 
 
1975
1976	return status;
1977}
1978
1979static enum drm_mode_status
1980intel_hdmi_mode_valid(struct drm_connector *connector,
1981		      struct drm_display_mode *mode)
1982{
1983	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1984	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
 
1985	enum drm_mode_status status;
1986	int clock = mode->clock;
1987	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1988	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1989	bool ycbcr_420_only;
1990
1991	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1992		return MODE_NO_DBLESCAN;
1993
1994	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1995		clock *= 2;
1996
1997	if (clock > max_dotclk)
1998		return MODE_CLOCK_HIGH;
1999
2000	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2001		if (!has_hdmi_sink)
2002			return MODE_CLOCK_LOW;
2003		clock *= 2;
2004	}
2005
2006	/*
2007	 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2008	 * enumerated only if FRL is supported. Current platforms do not support
2009	 * FRL so prune the higher resolution modes that require doctclock more
2010	 * than 600MHz.
2011	 */
2012	if (clock > 600000)
2013		return MODE_CLOCK_HIGH;
2014
2015	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2016
2017	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
2018	if (status != MODE_OK) {
2019		if (ycbcr_420_only ||
2020		    !connector->ycbcr_420_allowed ||
2021		    !drm_mode_is_420_also(&connector->display_info, mode))
2022			return status;
2023
2024		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
2025		if (status != MODE_OK)
2026			return status;
2027	}
2028
2029	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2030}
2031
2032bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2033			     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
2034{
2035	struct drm_atomic_state *state = crtc_state->uapi.state;
2036	struct drm_connector_state *connector_state;
2037	struct drm_connector *connector;
2038	int i;
2039
 
 
 
2040	for_each_new_connector_in_state(state, connector, connector_state, i) {
2041		if (connector_state->crtc != crtc_state->uapi.crtc)
2042			continue;
2043
2044		if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2045			return false;
2046	}
2047
2048	return true;
2049}
2050
2051static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
 
2052{
2053	struct drm_i915_private *dev_priv =
2054		to_i915(crtc_state->uapi.crtc->dev);
2055	const struct drm_display_mode *adjusted_mode =
2056		&crtc_state->hw.adjusted_mode;
2057
2058	if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
 
 
 
 
2059		return false;
2060
2061	/* Display Wa_1405510057:icl,ehl */
2062	if (intel_hdmi_is_ycbcr420(crtc_state) &&
2063	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2064	    (adjusted_mode->crtc_hblank_end -
2065	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2066		return false;
2067
2068	return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink,
2069				       intel_hdmi_is_ycbcr420(crtc_state));
 
 
2070}
2071
2072static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2073				  struct intel_crtc_state *crtc_state,
2074				  int clock, bool respect_downstream_limits)
2075{
2076	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2077	bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state);
2078	int bpc;
2079
2080	/*
2081	 * pipe_bpp could already be below 8bpc due to FDI
2082	 * bandwidth constraints. HDMI minimum is 8bpc however.
2083	 */
2084	bpc = max(crtc_state->pipe_bpp / 3, 8);
2085
2086	/*
2087	 * We will never exceed downstream TMDS clock limits while
2088	 * attempting deep color. If the user insists on forcing an
2089	 * out of spec mode they will have to be satisfied with 8bpc.
2090	 */
2091	if (!respect_downstream_limits)
2092		bpc = 8;
2093
2094	for (; bpc >= 8; bpc -= 2) {
2095		int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output);
2096
2097		if (hdmi_bpc_possible(crtc_state, bpc) &&
2098		    hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2099					  respect_downstream_limits,
2100					  crtc_state->has_hdmi_sink) == MODE_OK)
2101			return bpc;
2102	}
2103
2104	return -EINVAL;
2105}
2106
2107static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2108				    struct intel_crtc_state *crtc_state,
2109				    bool respect_downstream_limits)
2110{
2111	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 
2112	const struct drm_display_mode *adjusted_mode =
2113		&crtc_state->hw.adjusted_mode;
2114	int bpc, clock = adjusted_mode->crtc_clock;
2115
2116	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2117		clock *= 2;
2118
2119	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2120				     respect_downstream_limits);
2121	if (bpc < 0)
2122		return bpc;
 
2123
2124	crtc_state->port_clock =
2125		intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state));
2126
2127	/*
2128	 * pipe_bpp could already be below 8bpc due to
2129	 * FDI bandwidth constraints. We shouldn't bump it
2130	 * back up to the HDMI minimum 8bpc in that case.
2131	 */
2132	crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
 
2133
2134	drm_dbg_kms(&i915->drm,
2135		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2136		    bpc, crtc_state->pipe_bpp);
2137
 
 
 
 
 
 
 
 
2138	return 0;
2139}
2140
2141bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2142				    const struct drm_connector_state *conn_state)
2143{
2144	const struct intel_digital_connector_state *intel_conn_state =
2145		to_intel_digital_connector_state(conn_state);
2146	const struct drm_display_mode *adjusted_mode =
2147		&crtc_state->hw.adjusted_mode;
2148
2149	/*
2150	 * Our YCbCr output is always limited range.
2151	 * crtc_state->limited_color_range only applies to RGB,
2152	 * and it must never be set for YCbCr or we risk setting
2153	 * some conflicting bits in PIPECONF which will mess up
2154	 * the colors on the monitor.
2155	 */
2156	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2157		return false;
2158
2159	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2160		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2161		return crtc_state->has_hdmi_sink &&
2162			drm_default_rgb_quant_range(adjusted_mode) ==
2163			HDMI_QUANTIZATION_RANGE_LIMITED;
2164	} else {
2165		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2166	}
2167}
2168
2169static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2170				 const struct intel_crtc_state *crtc_state,
2171				 const struct drm_connector_state *conn_state)
2172{
2173	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2174	const struct intel_digital_connector_state *intel_conn_state =
2175		to_intel_digital_connector_state(conn_state);
2176
2177	if (!crtc_state->has_hdmi_sink)
2178		return false;
2179
2180	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2181		return intel_hdmi->has_audio;
2182	else
2183		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2184}
2185
2186static enum intel_output_format
2187intel_hdmi_output_format(const struct intel_crtc_state *crtc_state,
2188			 struct intel_connector *connector,
2189			 bool ycbcr_420_output)
2190{
2191	if (!crtc_state->has_hdmi_sink)
2192		return INTEL_OUTPUT_FORMAT_RGB;
2193
2194	if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2195		return INTEL_OUTPUT_FORMAT_YCBCR420;
2196	else
2197		return INTEL_OUTPUT_FORMAT_RGB;
2198}
2199
2200static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2201					    struct intel_crtc_state *crtc_state,
2202					    const struct drm_connector_state *conn_state,
2203					    bool respect_downstream_limits)
2204{
2205	struct intel_connector *connector = to_intel_connector(conn_state->connector);
 
2206	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2207	const struct drm_display_info *info = &connector->base.display_info;
2208	struct drm_i915_private *i915 = to_i915(connector->base.dev);
2209	bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2210	int ret;
 
2211
2212	crtc_state->output_format =
2213		intel_hdmi_output_format(crtc_state, connector, ycbcr_420_only);
2214
2215	if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) {
2216		drm_dbg_kms(&i915->drm,
2217			    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
 
2218		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2219	}
2220
2221	ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2222	if (ret) {
2223		if (intel_hdmi_is_ycbcr420(crtc_state) ||
2224		    !connector->base.ycbcr_420_allowed ||
2225		    !drm_mode_is_420_also(info, adjusted_mode))
2226			return ret;
2227
2228		crtc_state->output_format = intel_hdmi_output_format(crtc_state, connector, true);
2229		ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2230	}
2231
2232	return ret;
2233}
2234
2235static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2236{
2237	return crtc_state->uapi.encoder_mask &&
2238		!is_power_of_2(crtc_state->uapi.encoder_mask);
2239}
2240
2241int intel_hdmi_compute_config(struct intel_encoder *encoder,
2242			      struct intel_crtc_state *pipe_config,
2243			      struct drm_connector_state *conn_state)
2244{
2245	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2246	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2247	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2248	struct drm_connector *connector = conn_state->connector;
2249	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2250	int ret;
2251
2252	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2253		return -EINVAL;
2254
2255	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2256	pipe_config->has_hdmi_sink =
2257		intel_has_hdmi_sink(intel_hdmi, conn_state) &&
2258		!intel_hdmi_is_cloned(pipe_config);
2259
2260	if (pipe_config->has_hdmi_sink)
2261		pipe_config->has_infoframe = true;
2262
2263	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2264		pipe_config->pixel_multiplier = 2;
2265
 
 
 
2266	pipe_config->has_audio =
2267		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2268
2269	/*
2270	 * Try to respect downstream TMDS clock limits first, if
2271	 * that fails assume the user might know something we don't.
2272	 */
2273	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2274	if (ret)
2275		ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2276	if (ret) {
2277		drm_dbg_kms(&dev_priv->drm,
2278			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2279			    pipe_config->hw.adjusted_mode.crtc_clock);
2280		return ret;
2281	}
2282
2283	if (intel_hdmi_is_ycbcr420(pipe_config)) {
2284		ret = intel_panel_fitting(pipe_config, conn_state);
2285		if (ret)
2286			return ret;
2287	}
2288
2289	pipe_config->limited_color_range =
2290		intel_hdmi_limited_color_range(pipe_config, conn_state);
2291
2292	if (conn_state->picture_aspect_ratio)
2293		adjusted_mode->picture_aspect_ratio =
2294			conn_state->picture_aspect_ratio;
2295
2296	pipe_config->lane_count = 4;
2297
2298	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2299		if (scdc->scrambling.low_rates)
2300			pipe_config->hdmi_scrambling = true;
2301
2302		if (pipe_config->port_clock > 340000) {
2303			pipe_config->hdmi_scrambling = true;
2304			pipe_config->hdmi_high_tmds_clock_ratio = true;
2305		}
2306	}
2307
2308	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2309					 conn_state);
2310
2311	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2312		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2313		return -EINVAL;
2314	}
2315
2316	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2317		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2318		return -EINVAL;
2319	}
2320
2321	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2322		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2323		return -EINVAL;
2324	}
2325
2326	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2327		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2328		return -EINVAL;
2329	}
2330
2331	return 0;
2332}
2333
2334void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2335{
2336	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2337
2338	/*
2339	 * Give a hand to buggy BIOSen which forget to turn
2340	 * the TMDS output buffers back on after a reboot.
2341	 */
2342	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2343}
2344
2345static void
2346intel_hdmi_unset_edid(struct drm_connector *connector)
2347{
2348	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2349
2350	intel_hdmi->has_hdmi_sink = false;
2351	intel_hdmi->has_audio = false;
2352
2353	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2354	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2355
2356	kfree(to_intel_connector(connector)->detect_edid);
2357	to_intel_connector(connector)->detect_edid = NULL;
2358}
2359
2360static void
2361intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2362{
2363	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2364	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2365	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2366	struct i2c_adapter *adapter =
2367		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2368	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2369
2370	/*
2371	 * Type 1 DVI adaptors are not required to implement any
2372	 * registers, so we can't always detect their presence.
2373	 * Ideally we should be able to check the state of the
2374	 * CONFIG1 pin, but no such luck on our hardware.
2375	 *
2376	 * The only method left to us is to check the VBT to see
2377	 * if the port is a dual mode capable DP port.
 
 
 
2378	 */
2379	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2380		if (!connector->force &&
 
 
 
2381		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2382			drm_dbg_kms(&dev_priv->drm,
2383				    "Assuming DP dual mode adaptor presence based on VBT\n");
2384			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2385		} else {
2386			type = DRM_DP_DUAL_MODE_NONE;
2387		}
2388	}
2389
2390	if (type == DRM_DP_DUAL_MODE_NONE)
2391		return;
2392
2393	hdmi->dp_dual_mode.type = type;
2394	hdmi->dp_dual_mode.max_tmds_clock =
2395		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2396
2397	drm_dbg_kms(&dev_priv->drm,
2398		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2399		    drm_dp_get_dual_mode_type_name(type),
2400		    hdmi->dp_dual_mode.max_tmds_clock);
2401
2402	/* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2403	if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2404	    !intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2405		drm_dbg_kms(&dev_priv->drm,
2406			    "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2407		hdmi->dp_dual_mode.max_tmds_clock = 0;
2408	}
2409}
2410
2411static bool
2412intel_hdmi_set_edid(struct drm_connector *connector)
2413{
2414	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2415	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2416	intel_wakeref_t wakeref;
2417	struct edid *edid;
2418	bool connected = false;
2419	struct i2c_adapter *i2c;
2420
2421	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2422
2423	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2424
2425	edid = drm_get_edid(connector, i2c);
2426
2427	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2428		drm_dbg_kms(&dev_priv->drm,
2429			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2430		intel_gmbus_force_bit(i2c, true);
2431		edid = drm_get_edid(connector, i2c);
2432		intel_gmbus_force_bit(i2c, false);
2433	}
2434
 
 
 
 
2435	to_intel_connector(connector)->detect_edid = edid;
2436	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2437		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2438		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2439
2440		intel_hdmi_dp_dual_mode_detect(connector);
2441
2442		connected = true;
2443	}
2444
2445	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2446
2447	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2448
2449	return connected;
2450}
2451
2452static enum drm_connector_status
2453intel_hdmi_detect(struct drm_connector *connector, bool force)
2454{
2455	enum drm_connector_status status = connector_status_disconnected;
2456	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2457	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2458	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2459	intel_wakeref_t wakeref;
2460
2461	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2462		    connector->base.id, connector->name);
2463
2464	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2465		return connector_status_disconnected;
2466
2467	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2468
2469	if (DISPLAY_VER(dev_priv) >= 11 &&
2470	    !intel_digital_port_connected(encoder))
2471		goto out;
2472
2473	intel_hdmi_unset_edid(connector);
2474
2475	if (intel_hdmi_set_edid(connector))
2476		status = connector_status_connected;
2477
2478out:
2479	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2480
2481	if (status != connector_status_connected)
2482		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2483
2484	/*
2485	 * Make sure the refs for power wells enabled during detect are
2486	 * dropped to avoid a new detect cycle triggered by HPD polling.
2487	 */
2488	intel_display_power_flush_work(dev_priv);
2489
2490	return status;
2491}
2492
2493static void
2494intel_hdmi_force(struct drm_connector *connector)
2495{
2496	struct drm_i915_private *i915 = to_i915(connector->dev);
2497
2498	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2499		    connector->base.id, connector->name);
2500
2501	intel_hdmi_unset_edid(connector);
2502
2503	if (connector->status != connector_status_connected)
2504		return;
2505
2506	intel_hdmi_set_edid(connector);
2507}
2508
2509static int intel_hdmi_get_modes(struct drm_connector *connector)
2510{
2511	struct edid *edid;
2512
2513	edid = to_intel_connector(connector)->detect_edid;
2514	if (edid == NULL)
2515		return 0;
2516
2517	return intel_connector_update_modes(connector, edid);
2518}
2519
2520static struct i2c_adapter *
2521intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2522{
2523	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2524	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2525
2526	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2527}
2528
2529static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2530{
2531	struct drm_i915_private *i915 = to_i915(connector->dev);
2532	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2533	struct kobject *i2c_kobj = &adapter->dev.kobj;
2534	struct kobject *connector_kobj = &connector->kdev->kobj;
2535	int ret;
2536
2537	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2538	if (ret)
2539		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2540}
2541
2542static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2543{
2544	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2545	struct kobject *i2c_kobj = &adapter->dev.kobj;
2546	struct kobject *connector_kobj = &connector->kdev->kobj;
2547
2548	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2549}
2550
2551static int
2552intel_hdmi_connector_register(struct drm_connector *connector)
2553{
2554	int ret;
2555
2556	ret = intel_connector_register(connector);
2557	if (ret)
2558		return ret;
2559
2560	intel_hdmi_create_i2c_symlink(connector);
2561
2562	return ret;
2563}
2564
2565static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2566{
2567	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2568
2569	cec_notifier_conn_unregister(n);
2570
2571	intel_hdmi_remove_i2c_symlink(connector);
2572	intel_connector_unregister(connector);
2573}
2574
2575static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2576	.detect = intel_hdmi_detect,
2577	.force = intel_hdmi_force,
2578	.fill_modes = drm_helper_probe_single_connector_modes,
2579	.atomic_get_property = intel_digital_connector_atomic_get_property,
2580	.atomic_set_property = intel_digital_connector_atomic_set_property,
2581	.late_register = intel_hdmi_connector_register,
2582	.early_unregister = intel_hdmi_connector_unregister,
2583	.destroy = intel_connector_destroy,
2584	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2585	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2586};
2587
2588static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2589	.get_modes = intel_hdmi_get_modes,
2590	.mode_valid = intel_hdmi_mode_valid,
2591	.atomic_check = intel_digital_connector_atomic_check,
2592};
2593
2594static void
2595intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2596{
2597	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2598
2599	intel_attach_force_audio_property(connector);
2600	intel_attach_broadcast_rgb_property(connector);
2601	intel_attach_aspect_ratio_property(connector);
2602
2603	intel_attach_hdmi_colorspace_property(connector);
2604	drm_connector_attach_content_type_property(connector);
2605
2606	if (DISPLAY_VER(dev_priv) >= 10)
2607		drm_connector_attach_hdr_output_metadata_property(connector);
2608
2609	if (!HAS_GMCH(dev_priv))
2610		drm_connector_attach_max_bpc_property(connector, 8, 12);
2611}
2612
2613/*
2614 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2615 * @encoder: intel_encoder
2616 * @connector: drm_connector
2617 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2618 *  or reset the high tmds clock ratio for scrambling
2619 * @scrambling: bool to Indicate if the function needs to set or reset
2620 *  sink scrambling
2621 *
2622 * This function handles scrambling on HDMI 2.0 capable sinks.
2623 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2624 * it enables scrambling. This should be called before enabling the HDMI
2625 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2626 * detect a scrambled clock within 100 ms.
2627 *
2628 * Returns:
2629 * True on success, false on failure.
2630 */
2631bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2632				       struct drm_connector *connector,
2633				       bool high_tmds_clock_ratio,
2634				       bool scrambling)
2635{
2636	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2637	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2638	struct drm_scrambling *sink_scrambling =
2639		&connector->display_info.hdmi.scdc.scrambling;
2640	struct i2c_adapter *adapter =
2641		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2642
2643	if (!sink_scrambling->supported)
2644		return true;
2645
2646	drm_dbg_kms(&dev_priv->drm,
2647		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2648		    connector->base.id, connector->name,
2649		    str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2650
2651	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2652	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2653						  high_tmds_clock_ratio) &&
2654		drm_scdc_set_scrambling(adapter, scrambling);
2655}
2656
2657static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2658{
2659	u8 ddc_pin;
2660
2661	switch (port) {
2662	case PORT_B:
2663		ddc_pin = GMBUS_PIN_DPB;
2664		break;
2665	case PORT_C:
2666		ddc_pin = GMBUS_PIN_DPC;
2667		break;
2668	case PORT_D:
2669		ddc_pin = GMBUS_PIN_DPD_CHV;
2670		break;
2671	default:
2672		MISSING_CASE(port);
2673		ddc_pin = GMBUS_PIN_DPB;
2674		break;
2675	}
2676	return ddc_pin;
2677}
2678
2679static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2680{
2681	u8 ddc_pin;
2682
2683	switch (port) {
2684	case PORT_B:
2685		ddc_pin = GMBUS_PIN_1_BXT;
2686		break;
2687	case PORT_C:
2688		ddc_pin = GMBUS_PIN_2_BXT;
2689		break;
2690	default:
2691		MISSING_CASE(port);
2692		ddc_pin = GMBUS_PIN_1_BXT;
2693		break;
2694	}
2695	return ddc_pin;
2696}
2697
2698static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2699			      enum port port)
2700{
2701	u8 ddc_pin;
2702
2703	switch (port) {
2704	case PORT_B:
2705		ddc_pin = GMBUS_PIN_1_BXT;
2706		break;
2707	case PORT_C:
2708		ddc_pin = GMBUS_PIN_2_BXT;
2709		break;
2710	case PORT_D:
2711		ddc_pin = GMBUS_PIN_4_CNP;
2712		break;
2713	case PORT_F:
2714		ddc_pin = GMBUS_PIN_3_BXT;
2715		break;
2716	default:
2717		MISSING_CASE(port);
2718		ddc_pin = GMBUS_PIN_1_BXT;
2719		break;
2720	}
2721	return ddc_pin;
2722}
2723
2724static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2725{
2726	enum phy phy = intel_port_to_phy(dev_priv, port);
2727
2728	if (intel_phy_is_combo(dev_priv, phy))
2729		return GMBUS_PIN_1_BXT + port;
2730	else if (intel_phy_is_tc(dev_priv, phy))
2731		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2732
2733	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2734	return GMBUS_PIN_2_BXT;
2735}
2736
2737static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2738{
2739	enum phy phy = intel_port_to_phy(dev_priv, port);
2740	u8 ddc_pin;
2741
2742	switch (phy) {
2743	case PHY_A:
2744		ddc_pin = GMBUS_PIN_1_BXT;
2745		break;
2746	case PHY_B:
2747		ddc_pin = GMBUS_PIN_2_BXT;
2748		break;
2749	case PHY_C:
2750		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2751		break;
2752	default:
2753		MISSING_CASE(phy);
2754		ddc_pin = GMBUS_PIN_1_BXT;
2755		break;
2756	}
2757	return ddc_pin;
2758}
2759
2760static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2761{
2762	enum phy phy = intel_port_to_phy(dev_priv, port);
2763
2764	WARN_ON(port == PORT_C);
2765
2766	/*
2767	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2768	 * final two outputs use type-c pins, even though they're actually
2769	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2770	 * all outputs.
2771	 */
2772	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2773		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2774
2775	return GMBUS_PIN_1_BXT + phy;
2776}
2777
2778static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2779{
2780	enum phy phy = intel_port_to_phy(i915, port);
2781
2782	drm_WARN_ON(&i915->drm, port == PORT_A);
2783
2784	/*
2785	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2786	 * final two outputs use type-c pins, even though they're actually
2787	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2788	 * all outputs.
2789	 */
2790	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2791		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2792
2793	return GMBUS_PIN_1_BXT + phy;
2794}
2795
2796static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2797{
2798	return intel_port_to_phy(dev_priv, port) + 1;
2799}
2800
2801static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2802{
2803	enum phy phy = intel_port_to_phy(dev_priv, port);
2804
2805	WARN_ON(port == PORT_B || port == PORT_C);
2806
2807	/*
2808	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2809	 * except first combo output.
2810	 */
2811	if (phy == PHY_A)
2812		return GMBUS_PIN_1_BXT;
2813
2814	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2815}
2816
2817static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2818			      enum port port)
2819{
2820	u8 ddc_pin;
2821
2822	switch (port) {
2823	case PORT_B:
2824		ddc_pin = GMBUS_PIN_DPB;
2825		break;
2826	case PORT_C:
2827		ddc_pin = GMBUS_PIN_DPC;
2828		break;
2829	case PORT_D:
2830		ddc_pin = GMBUS_PIN_DPD;
2831		break;
2832	default:
2833		MISSING_CASE(port);
2834		ddc_pin = GMBUS_PIN_DPB;
2835		break;
2836	}
2837	return ddc_pin;
2838}
2839
2840static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2841{
2842	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2843	enum port port = encoder->port;
2844	u8 ddc_pin;
2845
2846	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2847	if (ddc_pin) {
2848		drm_dbg_kms(&dev_priv->drm,
2849			    "Using DDC pin 0x%x for port %c (VBT)\n",
2850			    ddc_pin, port_name(port));
2851		return ddc_pin;
2852	}
2853
2854	if (IS_ALDERLAKE_S(dev_priv))
2855		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2856	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2857		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2858	else if (IS_ROCKETLAKE(dev_priv))
2859		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2860	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2861		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2862	else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv))
2863		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2864	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2865		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2866	else if (HAS_PCH_CNP(dev_priv))
2867		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2868	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2869		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2870	else if (IS_CHERRYVIEW(dev_priv))
2871		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2872	else
2873		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2874
2875	drm_dbg_kms(&dev_priv->drm,
2876		    "Using DDC pin 0x%x for port %c (platform default)\n",
2877		    ddc_pin, port_name(port));
2878
2879	return ddc_pin;
2880}
2881
2882void intel_infoframe_init(struct intel_digital_port *dig_port)
2883{
2884	struct drm_i915_private *dev_priv =
2885		to_i915(dig_port->base.base.dev);
2886
2887	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2888		dig_port->write_infoframe = vlv_write_infoframe;
2889		dig_port->read_infoframe = vlv_read_infoframe;
2890		dig_port->set_infoframes = vlv_set_infoframes;
2891		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2892	} else if (IS_G4X(dev_priv)) {
2893		dig_port->write_infoframe = g4x_write_infoframe;
2894		dig_port->read_infoframe = g4x_read_infoframe;
2895		dig_port->set_infoframes = g4x_set_infoframes;
2896		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2897	} else if (HAS_DDI(dev_priv)) {
2898		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2899			dig_port->write_infoframe = lspcon_write_infoframe;
2900			dig_port->read_infoframe = lspcon_read_infoframe;
2901			dig_port->set_infoframes = lspcon_set_infoframes;
2902			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2903		} else {
2904			dig_port->write_infoframe = hsw_write_infoframe;
2905			dig_port->read_infoframe = hsw_read_infoframe;
2906			dig_port->set_infoframes = hsw_set_infoframes;
2907			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2908		}
2909	} else if (HAS_PCH_IBX(dev_priv)) {
2910		dig_port->write_infoframe = ibx_write_infoframe;
2911		dig_port->read_infoframe = ibx_read_infoframe;
2912		dig_port->set_infoframes = ibx_set_infoframes;
2913		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2914	} else {
2915		dig_port->write_infoframe = cpt_write_infoframe;
2916		dig_port->read_infoframe = cpt_read_infoframe;
2917		dig_port->set_infoframes = cpt_set_infoframes;
2918		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2919	}
2920}
2921
2922void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2923			       struct intel_connector *intel_connector)
2924{
2925	struct drm_connector *connector = &intel_connector->base;
2926	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2927	struct intel_encoder *intel_encoder = &dig_port->base;
2928	struct drm_device *dev = intel_encoder->base.dev;
2929	struct drm_i915_private *dev_priv = to_i915(dev);
2930	struct i2c_adapter *ddc;
2931	enum port port = intel_encoder->port;
2932	struct cec_connector_info conn_info;
2933
2934	drm_dbg_kms(&dev_priv->drm,
2935		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2936		    intel_encoder->base.base.id, intel_encoder->base.name);
2937
2938	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2939		return;
2940
2941	if (drm_WARN(dev, dig_port->max_lanes < 4,
2942		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2943		     dig_port->max_lanes, intel_encoder->base.base.id,
2944		     intel_encoder->base.name))
2945		return;
2946
2947	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2948	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2949
2950	drm_connector_init_with_ddc(dev, connector,
2951				    &intel_hdmi_connector_funcs,
2952				    DRM_MODE_CONNECTOR_HDMIA,
2953				    ddc);
2954	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2955
2956	connector->interlace_allowed = true;
2957	connector->stereo_allowed = true;
 
2958
2959	if (DISPLAY_VER(dev_priv) >= 10)
2960		connector->ycbcr_420_allowed = true;
2961
2962	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2963
2964	if (HAS_DDI(dev_priv))
2965		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2966	else
2967		intel_connector->get_hw_state = intel_connector_get_hw_state;
2968
2969	intel_hdmi_add_properties(intel_hdmi, connector);
2970
2971	intel_connector_attach_encoder(intel_connector, intel_encoder);
2972	intel_hdmi->attached_connector = intel_connector;
2973
2974	if (is_hdcp_supported(dev_priv, port)) {
2975		int ret = intel_hdcp_init(intel_connector, dig_port,
2976					  &intel_hdmi_hdcp_shim);
2977		if (ret)
2978			drm_dbg_kms(&dev_priv->drm,
2979				    "HDCP init failed, skipping.\n");
2980	}
2981
2982	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2983	 * 0xd.  Failure to do so will result in spurious interrupts being
2984	 * generated on the port when a cable is not attached.
2985	 */
2986	if (IS_G45(dev_priv)) {
2987		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2988		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2989		               (temp & ~0xf) | 0xd);
2990	}
2991
2992	cec_fill_conn_info_from_drm(&conn_info, connector);
2993
2994	intel_hdmi->cec_notifier =
2995		cec_notifier_conn_register(dev->dev, port_identifier(port),
2996					   &conn_info);
2997	if (!intel_hdmi->cec_notifier)
2998		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2999}
3000
3001/*
3002 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3003 * @vactive: Vactive of a display mode
3004 *
3005 * @return: appropriate dsc slice height for a given mode.
3006 */
3007int intel_hdmi_dsc_get_slice_height(int vactive)
3008{
3009	int slice_height;
3010
3011	/*
3012	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3013	 * Select smallest slice height >=96, that results in a valid PPS and
3014	 * requires minimum padding lines required for final slice.
3015	 *
3016	 * Assumption : Vactive is even.
3017	 */
3018	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3019		if (vactive % slice_height == 0)
3020			return slice_height;
3021
3022	return 0;
3023}
3024
3025/*
3026 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3027 * and dsc decoder capabilities
3028 *
3029 * @crtc_state: intel crtc_state
3030 * @src_max_slices: maximum slices supported by the DSC encoder
3031 * @src_max_slice_width: maximum slice width supported by DSC encoder
3032 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3033 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3034 *
3035 * @return: num of dsc slices that can be supported by the dsc encoder
3036 * and decoder.
3037 */
3038int
3039intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3040			      int src_max_slices, int src_max_slice_width,
3041			      int hdmi_max_slices, int hdmi_throughput)
3042{
3043/* Pixel rates in KPixels/sec */
3044#define HDMI_DSC_PEAK_PIXEL_RATE		2720000
3045/*
3046 * Rates at which the source and sink are required to process pixels in each
3047 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3048 */
3049#define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
3050#define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
3051
3052/* Spec limits the slice width to 2720 pixels */
3053#define MAX_HDMI_SLICE_WIDTH			2720
3054	int kslice_adjust;
3055	int adjusted_clk_khz;
3056	int min_slices;
3057	int target_slices;
3058	int max_throughput; /* max clock freq. in khz per slice */
3059	int max_slice_width;
3060	int slice_width;
3061	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3062
3063	if (!hdmi_throughput)
3064		return 0;
3065
3066	/*
3067	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3068	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3069	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3070	 * dividing adjusted clock value by 10.
3071	 */
3072	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3073	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3074		kslice_adjust = 10;
3075	else
3076		kslice_adjust = 5;
3077
3078	/*
3079	 * As per spec, the rate at which the source and the sink process
3080	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3081	 * This depends upon the pixel clock rate and output formats
3082	 * (kslice adjust).
3083	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3084	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3085	 */
3086
3087	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3088
3089	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3090		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3091	else
3092		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3093
3094	/*
3095	 * Taking into account the sink's capability for maximum
3096	 * clock per slice (in MHz) as read from HF-VSDB.
3097	 */
3098	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3099
3100	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3101	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3102
3103	/*
3104	 * Keep on increasing the num of slices/line, starting from min_slices
3105	 * per line till we get such a number, for which the slice_width is
3106	 * just less than max_slice_width. The slices/line selected should be
3107	 * less than or equal to the max horizontal slices that the combination
3108	 * of PCON encoder and HDMI decoder can support.
3109	 */
3110	slice_width = max_slice_width;
3111
3112	do {
3113		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3114			target_slices = 1;
3115		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3116			target_slices = 2;
3117		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3118			target_slices = 4;
3119		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3120			target_slices = 8;
3121		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3122			target_slices = 12;
3123		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3124			target_slices = 16;
3125		else
3126			return 0;
3127
3128		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3129		if (slice_width >= max_slice_width)
3130			min_slices = target_slices + 1;
3131	} while (slice_width >= max_slice_width);
3132
3133	return target_slices;
3134}
3135
3136/*
3137 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3138 * source and sink capabilities.
3139 *
3140 * @src_fraction_bpp: fractional bpp supported by the source
3141 * @slice_width: dsc slice width supported by the source and sink
3142 * @num_slices: num of slices supported by the source and sink
3143 * @output_format: video output format
3144 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3145 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3146 *
3147 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3148 */
3149int
3150intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3151		       int output_format, bool hdmi_all_bpp,
3152		       int hdmi_max_chunk_bytes)
3153{
3154	int max_dsc_bpp, min_dsc_bpp;
3155	int target_bytes;
3156	bool bpp_found = false;
3157	int bpp_decrement_x16;
3158	int bpp_target;
3159	int bpp_target_x16;
3160
3161	/*
3162	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3163	 * Start with the max bpp and keep on decrementing with
3164	 * fractional bpp, if supported by PCON DSC encoder
3165	 *
3166	 * for each bpp we check if no of bytes can be supported by HDMI sink
3167	 */
3168
3169	/* Assuming: bpc as 8*/
3170	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3171		min_dsc_bpp = 6;
3172		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3173	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3174		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3175		min_dsc_bpp = 8;
3176		max_dsc_bpp = 3 * 8; /* 3*bpc */
3177	} else {
3178		/* Assuming 4:2:2 encoding */
3179		min_dsc_bpp = 7;
3180		max_dsc_bpp = 2 * 8; /* 2*bpc */
3181	}
3182
3183	/*
3184	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3185	 * Section 7.7.34 : Source shall not enable compressed Video
3186	 * Transport with bpp_target settings above 12 bpp unless
3187	 * DSC_all_bpp is set to 1.
3188	 */
3189	if (!hdmi_all_bpp)
3190		max_dsc_bpp = min(max_dsc_bpp, 12);
3191
3192	/*
3193	 * The Sink has a limit of compressed data in bytes for a scanline,
3194	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3195	 * The no. of bytes depend on the target bits per pixel that the
3196	 * source configures. So we start with the max_bpp and calculate
3197	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3198	 * till we get the target_chunk_bytes just less than what the sink's
3199	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3200	 *
3201	 * The decrement is according to the fractional support from PCON DSC
3202	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3203	 *
3204	 * bpp_target_x16 = bpp_target * 16
3205	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3206	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3207	 */
3208
3209	bpp_target = max_dsc_bpp;
3210
3211	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3212	if (!src_fractional_bpp)
3213		src_fractional_bpp = 1;
3214	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3215	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3216
3217	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3218		int bpp;
3219
3220		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3221		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3222		if (target_bytes <= hdmi_max_chunk_bytes) {
3223			bpp_found = true;
3224			break;
3225		}
3226		bpp_target_x16 -= bpp_decrement_x16;
3227	}
3228	if (bpp_found)
3229		return bpp_target_x16;
3230
3231	return 0;
3232}