Loading...
1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/drm_hdcp.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_display_power.h"
21#include "intel_de.h"
22#include "intel_display_types.h"
23#include "intel_hdcp.h"
24#include "intel_sideband.h"
25#include "intel_connector.h"
26
27#define KEY_LOAD_TRIES 5
28#define HDCP2_LC_RETRY_CNT 3
29
30static int intel_conn_to_vcpi(struct intel_connector *connector)
31{
32 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
33 return connector->port ? connector->port->vcpi.vcpi : 0;
34}
35
36static bool
37intel_streams_type1_capable(struct intel_connector *connector)
38{
39 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
40 bool capable = false;
41
42 if (!shim)
43 return capable;
44
45 if (shim->streams_type1_capable)
46 shim->streams_type1_capable(connector, &capable);
47
48 return capable;
49}
50
51/*
52 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
53 * content_type for all streams in DP MST topology because security f/w doesn't
54 * have any provision to mark content_type for each stream separately, it marks
55 * all available streams with the content_type proivided at the time of port
56 * authentication. This may prohibit the userspace to use type1 content on
57 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
58 * DP MST topology. Though it is not compulsory, security fw should change its
59 * policy to mark different content_types for different streams.
60 */
61static int
62intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
63{
64 struct drm_connector_list_iter conn_iter;
65 struct intel_digital_port *conn_dig_port;
66 struct intel_connector *connector;
67 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
68 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
69 bool enforce_type0 = false;
70 int k;
71
72 data->k = 0;
73
74 if (dig_port->hdcp_auth_status)
75 return 0;
76
77 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
78 for_each_intel_connector_iter(connector, &conn_iter) {
79 if (connector->base.status == connector_status_disconnected)
80 continue;
81
82 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
83 continue;
84
85 conn_dig_port = intel_attached_dig_port(connector);
86 if (conn_dig_port != dig_port)
87 continue;
88
89 if (!enforce_type0 && !intel_streams_type1_capable(connector))
90 enforce_type0 = true;
91
92 data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
93 data->k++;
94
95 /* if there is only one active stream */
96 if (dig_port->dp.active_mst_links <= 1)
97 break;
98 }
99 drm_connector_list_iter_end(&conn_iter);
100
101 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
102 return -EINVAL;
103
104 /*
105 * Apply common protection level across all streams in DP MST Topology.
106 * Use highest supported content type for all streams in DP MST Topology.
107 */
108 for (k = 0; k < data->k; k++)
109 data->streams[k].stream_type =
110 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
111
112 return 0;
113}
114
115static
116bool intel_hdcp_is_ksv_valid(u8 *ksv)
117{
118 int i, ones = 0;
119 /* KSV has 20 1's and 20 0's */
120 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
121 ones += hweight8(ksv[i]);
122 if (ones != 20)
123 return false;
124
125 return true;
126}
127
128static
129int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
130 const struct intel_hdcp_shim *shim, u8 *bksv)
131{
132 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
133 int ret, i, tries = 2;
134
135 /* HDCP spec states that we must retry the bksv if it is invalid */
136 for (i = 0; i < tries; i++) {
137 ret = shim->read_bksv(dig_port, bksv);
138 if (ret)
139 return ret;
140 if (intel_hdcp_is_ksv_valid(bksv))
141 break;
142 }
143 if (i == tries) {
144 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
145 return -ENODEV;
146 }
147
148 return 0;
149}
150
151/* Is HDCP1.4 capable on Platform and Sink */
152bool intel_hdcp_capable(struct intel_connector *connector)
153{
154 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
155 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
156 bool capable = false;
157 u8 bksv[5];
158
159 if (!shim)
160 return capable;
161
162 if (shim->hdcp_capable) {
163 shim->hdcp_capable(dig_port, &capable);
164 } else {
165 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
166 capable = true;
167 }
168
169 return capable;
170}
171
172/* Is HDCP2.2 capable on Platform and Sink */
173bool intel_hdcp2_capable(struct intel_connector *connector)
174{
175 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
176 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
177 struct intel_hdcp *hdcp = &connector->hdcp;
178 bool capable = false;
179
180 /* I915 support for HDCP2.2 */
181 if (!hdcp->hdcp2_supported)
182 return false;
183
184 /* MEI interface is solid */
185 mutex_lock(&dev_priv->hdcp_comp_mutex);
186 if (!dev_priv->hdcp_comp_added || !dev_priv->hdcp_master) {
187 mutex_unlock(&dev_priv->hdcp_comp_mutex);
188 return false;
189 }
190 mutex_unlock(&dev_priv->hdcp_comp_mutex);
191
192 /* Sink's capability for HDCP2.2 */
193 hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
194
195 return capable;
196}
197
198static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
199 enum transcoder cpu_transcoder, enum port port)
200{
201 return intel_de_read(dev_priv,
202 HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
203 HDCP_STATUS_ENC;
204}
205
206static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
207 enum transcoder cpu_transcoder, enum port port)
208{
209 return intel_de_read(dev_priv,
210 HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
211 LINK_ENCRYPTION_STATUS;
212}
213
214static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
215 const struct intel_hdcp_shim *shim)
216{
217 int ret, read_ret;
218 bool ksv_ready;
219
220 /* Poll for ksv list ready (spec says max time allowed is 5s) */
221 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
222 &ksv_ready),
223 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
224 100 * 1000);
225 if (ret)
226 return ret;
227 if (read_ret)
228 return read_ret;
229 if (!ksv_ready)
230 return -ETIMEDOUT;
231
232 return 0;
233}
234
235static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
236{
237 enum i915_power_well_id id;
238 intel_wakeref_t wakeref;
239 bool enabled = false;
240
241 /*
242 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
243 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
244 */
245 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
246 id = HSW_DISP_PW_GLOBAL;
247 else
248 id = SKL_DISP_PW_1;
249
250 /* PG1 (power well #1) needs to be enabled */
251 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
252 enabled = intel_display_power_well_is_enabled(dev_priv, id);
253
254 /*
255 * Another req for hdcp key loadability is enabled state of pll for
256 * cdclk. Without active crtc we wont land here. So we are assuming that
257 * cdclk is already on.
258 */
259
260 return enabled;
261}
262
263static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
264{
265 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
266 intel_de_write(dev_priv, HDCP_KEY_STATUS,
267 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
268}
269
270static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
271{
272 int ret;
273 u32 val;
274
275 val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
276 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
277 return 0;
278
279 /*
280 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
281 * out of reset. So if Key is not already loaded, its an error state.
282 */
283 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
284 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
285 return -ENXIO;
286
287 /*
288 * Initiate loading the HDCP key from fuses.
289 *
290 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
291 * version 9 platforms (minus BXT) differ in the key load trigger
292 * process from other platforms. These platforms use the GT Driver
293 * Mailbox interface.
294 */
295 if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
296 ret = sandybridge_pcode_write(dev_priv,
297 SKL_PCODE_LOAD_HDCP_KEYS, 1);
298 if (ret) {
299 drm_err(&dev_priv->drm,
300 "Failed to initiate HDCP key load (%d)\n",
301 ret);
302 return ret;
303 }
304 } else {
305 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
306 }
307
308 /* Wait for the keys to load (500us) */
309 ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
310 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
311 10, 1, &val);
312 if (ret)
313 return ret;
314 else if (!(val & HDCP_KEY_LOAD_STATUS))
315 return -ENXIO;
316
317 /* Send Aksv over to PCH display for use in authentication */
318 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
319
320 return 0;
321}
322
323/* Returns updated SHA-1 index */
324static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
325{
326 intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
327 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
328 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
329 return -ETIMEDOUT;
330 }
331 return 0;
332}
333
334static
335u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
336 enum transcoder cpu_transcoder, enum port port)
337{
338 if (DISPLAY_VER(dev_priv) >= 12) {
339 switch (cpu_transcoder) {
340 case TRANSCODER_A:
341 return HDCP_TRANSA_REP_PRESENT |
342 HDCP_TRANSA_SHA1_M0;
343 case TRANSCODER_B:
344 return HDCP_TRANSB_REP_PRESENT |
345 HDCP_TRANSB_SHA1_M0;
346 case TRANSCODER_C:
347 return HDCP_TRANSC_REP_PRESENT |
348 HDCP_TRANSC_SHA1_M0;
349 case TRANSCODER_D:
350 return HDCP_TRANSD_REP_PRESENT |
351 HDCP_TRANSD_SHA1_M0;
352 default:
353 drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
354 cpu_transcoder);
355 return -EINVAL;
356 }
357 }
358
359 switch (port) {
360 case PORT_A:
361 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
362 case PORT_B:
363 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
364 case PORT_C:
365 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
366 case PORT_D:
367 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
368 case PORT_E:
369 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
370 default:
371 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
372 return -EINVAL;
373 }
374}
375
376static
377int intel_hdcp_validate_v_prime(struct intel_connector *connector,
378 const struct intel_hdcp_shim *shim,
379 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
380{
381 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
382 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
383 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
384 enum port port = dig_port->base.port;
385 u32 vprime, sha_text, sha_leftovers, rep_ctl;
386 int ret, i, j, sha_idx;
387
388 /* Process V' values from the receiver */
389 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
390 ret = shim->read_v_prime_part(dig_port, i, &vprime);
391 if (ret)
392 return ret;
393 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
394 }
395
396 /*
397 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
398 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
399 * stream is written via the HDCP_SHA_TEXT register in 32-bit
400 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
401 * index will keep track of our progress through the 64 bytes as well as
402 * helping us work the 40-bit KSVs through our 32-bit register.
403 *
404 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
405 */
406 sha_idx = 0;
407 sha_text = 0;
408 sha_leftovers = 0;
409 rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
410 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
411 for (i = 0; i < num_downstream; i++) {
412 unsigned int sha_empty;
413 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
414
415 /* Fill up the empty slots in sha_text and write it out */
416 sha_empty = sizeof(sha_text) - sha_leftovers;
417 for (j = 0; j < sha_empty; j++) {
418 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
419 sha_text |= ksv[j] << off;
420 }
421
422 ret = intel_write_sha_text(dev_priv, sha_text);
423 if (ret < 0)
424 return ret;
425
426 /* Programming guide writes this every 64 bytes */
427 sha_idx += sizeof(sha_text);
428 if (!(sha_idx % 64))
429 intel_de_write(dev_priv, HDCP_REP_CTL,
430 rep_ctl | HDCP_SHA1_TEXT_32);
431
432 /* Store the leftover bytes from the ksv in sha_text */
433 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
434 sha_text = 0;
435 for (j = 0; j < sha_leftovers; j++)
436 sha_text |= ksv[sha_empty + j] <<
437 ((sizeof(sha_text) - j - 1) * 8);
438
439 /*
440 * If we still have room in sha_text for more data, continue.
441 * Otherwise, write it out immediately.
442 */
443 if (sizeof(sha_text) > sha_leftovers)
444 continue;
445
446 ret = intel_write_sha_text(dev_priv, sha_text);
447 if (ret < 0)
448 return ret;
449 sha_leftovers = 0;
450 sha_text = 0;
451 sha_idx += sizeof(sha_text);
452 }
453
454 /*
455 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
456 * bytes are leftover from the last ksv, we might be able to fit them
457 * all in sha_text (first 2 cases), or we might need to split them up
458 * into 2 writes (last 2 cases).
459 */
460 if (sha_leftovers == 0) {
461 /* Write 16 bits of text, 16 bits of M0 */
462 intel_de_write(dev_priv, HDCP_REP_CTL,
463 rep_ctl | HDCP_SHA1_TEXT_16);
464 ret = intel_write_sha_text(dev_priv,
465 bstatus[0] << 8 | bstatus[1]);
466 if (ret < 0)
467 return ret;
468 sha_idx += sizeof(sha_text);
469
470 /* Write 32 bits of M0 */
471 intel_de_write(dev_priv, HDCP_REP_CTL,
472 rep_ctl | HDCP_SHA1_TEXT_0);
473 ret = intel_write_sha_text(dev_priv, 0);
474 if (ret < 0)
475 return ret;
476 sha_idx += sizeof(sha_text);
477
478 /* Write 16 bits of M0 */
479 intel_de_write(dev_priv, HDCP_REP_CTL,
480 rep_ctl | HDCP_SHA1_TEXT_16);
481 ret = intel_write_sha_text(dev_priv, 0);
482 if (ret < 0)
483 return ret;
484 sha_idx += sizeof(sha_text);
485
486 } else if (sha_leftovers == 1) {
487 /* Write 24 bits of text, 8 bits of M0 */
488 intel_de_write(dev_priv, HDCP_REP_CTL,
489 rep_ctl | HDCP_SHA1_TEXT_24);
490 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
491 /* Only 24-bits of data, must be in the LSB */
492 sha_text = (sha_text & 0xffffff00) >> 8;
493 ret = intel_write_sha_text(dev_priv, sha_text);
494 if (ret < 0)
495 return ret;
496 sha_idx += sizeof(sha_text);
497
498 /* Write 32 bits of M0 */
499 intel_de_write(dev_priv, HDCP_REP_CTL,
500 rep_ctl | HDCP_SHA1_TEXT_0);
501 ret = intel_write_sha_text(dev_priv, 0);
502 if (ret < 0)
503 return ret;
504 sha_idx += sizeof(sha_text);
505
506 /* Write 24 bits of M0 */
507 intel_de_write(dev_priv, HDCP_REP_CTL,
508 rep_ctl | HDCP_SHA1_TEXT_8);
509 ret = intel_write_sha_text(dev_priv, 0);
510 if (ret < 0)
511 return ret;
512 sha_idx += sizeof(sha_text);
513
514 } else if (sha_leftovers == 2) {
515 /* Write 32 bits of text */
516 intel_de_write(dev_priv, HDCP_REP_CTL,
517 rep_ctl | HDCP_SHA1_TEXT_32);
518 sha_text |= bstatus[0] << 8 | bstatus[1];
519 ret = intel_write_sha_text(dev_priv, sha_text);
520 if (ret < 0)
521 return ret;
522 sha_idx += sizeof(sha_text);
523
524 /* Write 64 bits of M0 */
525 intel_de_write(dev_priv, HDCP_REP_CTL,
526 rep_ctl | HDCP_SHA1_TEXT_0);
527 for (i = 0; i < 2; i++) {
528 ret = intel_write_sha_text(dev_priv, 0);
529 if (ret < 0)
530 return ret;
531 sha_idx += sizeof(sha_text);
532 }
533
534 /*
535 * Terminate the SHA-1 stream by hand. For the other leftover
536 * cases this is appended by the hardware.
537 */
538 intel_de_write(dev_priv, HDCP_REP_CTL,
539 rep_ctl | HDCP_SHA1_TEXT_32);
540 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
541 ret = intel_write_sha_text(dev_priv, sha_text);
542 if (ret < 0)
543 return ret;
544 sha_idx += sizeof(sha_text);
545 } else if (sha_leftovers == 3) {
546 /* Write 32 bits of text (filled from LSB) */
547 intel_de_write(dev_priv, HDCP_REP_CTL,
548 rep_ctl | HDCP_SHA1_TEXT_32);
549 sha_text |= bstatus[0];
550 ret = intel_write_sha_text(dev_priv, sha_text);
551 if (ret < 0)
552 return ret;
553 sha_idx += sizeof(sha_text);
554
555 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
556 intel_de_write(dev_priv, HDCP_REP_CTL,
557 rep_ctl | HDCP_SHA1_TEXT_8);
558 ret = intel_write_sha_text(dev_priv, bstatus[1]);
559 if (ret < 0)
560 return ret;
561 sha_idx += sizeof(sha_text);
562
563 /* Write 32 bits of M0 */
564 intel_de_write(dev_priv, HDCP_REP_CTL,
565 rep_ctl | HDCP_SHA1_TEXT_0);
566 ret = intel_write_sha_text(dev_priv, 0);
567 if (ret < 0)
568 return ret;
569 sha_idx += sizeof(sha_text);
570
571 /* Write 8 bits of M0 */
572 intel_de_write(dev_priv, HDCP_REP_CTL,
573 rep_ctl | HDCP_SHA1_TEXT_24);
574 ret = intel_write_sha_text(dev_priv, 0);
575 if (ret < 0)
576 return ret;
577 sha_idx += sizeof(sha_text);
578 } else {
579 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
580 sha_leftovers);
581 return -EINVAL;
582 }
583
584 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
585 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
586 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
587 ret = intel_write_sha_text(dev_priv, 0);
588 if (ret < 0)
589 return ret;
590 sha_idx += sizeof(sha_text);
591 }
592
593 /*
594 * Last write gets the length of the concatenation in bits. That is:
595 * - 5 bytes per device
596 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
597 */
598 sha_text = (num_downstream * 5 + 10) * 8;
599 ret = intel_write_sha_text(dev_priv, sha_text);
600 if (ret < 0)
601 return ret;
602
603 /* Tell the HW we're done with the hash and wait for it to ACK */
604 intel_de_write(dev_priv, HDCP_REP_CTL,
605 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
606 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
607 HDCP_SHA1_COMPLETE, 1)) {
608 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
609 return -ETIMEDOUT;
610 }
611 if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
612 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
613 return -ENXIO;
614 }
615
616 return 0;
617}
618
619/* Implements Part 2 of the HDCP authorization procedure */
620static
621int intel_hdcp_auth_downstream(struct intel_connector *connector)
622{
623 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
624 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
625 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
626 u8 bstatus[2], num_downstream, *ksv_fifo;
627 int ret, i, tries = 3;
628
629 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
630 if (ret) {
631 drm_dbg_kms(&dev_priv->drm,
632 "KSV list failed to become ready (%d)\n", ret);
633 return ret;
634 }
635
636 ret = shim->read_bstatus(dig_port, bstatus);
637 if (ret)
638 return ret;
639
640 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
641 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
642 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
643 return -EPERM;
644 }
645
646 /*
647 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
648 * the HDCP encryption. That implies that repeater can't have its own
649 * display. As there is no consumption of encrypted content in the
650 * repeater with 0 downstream devices, we are failing the
651 * authentication.
652 */
653 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
654 if (num_downstream == 0) {
655 drm_dbg_kms(&dev_priv->drm,
656 "Repeater with zero downstream devices\n");
657 return -EINVAL;
658 }
659
660 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
661 if (!ksv_fifo) {
662 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
663 return -ENOMEM;
664 }
665
666 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
667 if (ret)
668 goto err;
669
670 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
671 num_downstream) > 0) {
672 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
673 ret = -EPERM;
674 goto err;
675 }
676
677 /*
678 * When V prime mismatches, DP Spec mandates re-read of
679 * V prime atleast twice.
680 */
681 for (i = 0; i < tries; i++) {
682 ret = intel_hdcp_validate_v_prime(connector, shim,
683 ksv_fifo, num_downstream,
684 bstatus);
685 if (!ret)
686 break;
687 }
688
689 if (i == tries) {
690 drm_dbg_kms(&dev_priv->drm,
691 "V Prime validation failed.(%d)\n", ret);
692 goto err;
693 }
694
695 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
696 num_downstream);
697 ret = 0;
698err:
699 kfree(ksv_fifo);
700 return ret;
701}
702
703/* Implements Part 1 of the HDCP authorization procedure */
704static int intel_hdcp_auth(struct intel_connector *connector)
705{
706 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
707 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
708 struct intel_hdcp *hdcp = &connector->hdcp;
709 const struct intel_hdcp_shim *shim = hdcp->shim;
710 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
711 enum port port = dig_port->base.port;
712 unsigned long r0_prime_gen_start;
713 int ret, i, tries = 2;
714 union {
715 u32 reg[2];
716 u8 shim[DRM_HDCP_AN_LEN];
717 } an;
718 union {
719 u32 reg[2];
720 u8 shim[DRM_HDCP_KSV_LEN];
721 } bksv;
722 union {
723 u32 reg;
724 u8 shim[DRM_HDCP_RI_LEN];
725 } ri;
726 bool repeater_present, hdcp_capable;
727
728 /*
729 * Detects whether the display is HDCP capable. Although we check for
730 * valid Bksv below, the HDCP over DP spec requires that we check
731 * whether the display supports HDCP before we write An. For HDMI
732 * displays, this is not necessary.
733 */
734 if (shim->hdcp_capable) {
735 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
736 if (ret)
737 return ret;
738 if (!hdcp_capable) {
739 drm_dbg_kms(&dev_priv->drm,
740 "Panel is not HDCP capable\n");
741 return -EINVAL;
742 }
743 }
744
745 /* Initialize An with 2 random values and acquire it */
746 for (i = 0; i < 2; i++)
747 intel_de_write(dev_priv,
748 HDCP_ANINIT(dev_priv, cpu_transcoder, port),
749 get_random_u32());
750 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
751 HDCP_CONF_CAPTURE_AN);
752
753 /* Wait for An to be acquired */
754 if (intel_de_wait_for_set(dev_priv,
755 HDCP_STATUS(dev_priv, cpu_transcoder, port),
756 HDCP_STATUS_AN_READY, 1)) {
757 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
758 return -ETIMEDOUT;
759 }
760
761 an.reg[0] = intel_de_read(dev_priv,
762 HDCP_ANLO(dev_priv, cpu_transcoder, port));
763 an.reg[1] = intel_de_read(dev_priv,
764 HDCP_ANHI(dev_priv, cpu_transcoder, port));
765 ret = shim->write_an_aksv(dig_port, an.shim);
766 if (ret)
767 return ret;
768
769 r0_prime_gen_start = jiffies;
770
771 memset(&bksv, 0, sizeof(bksv));
772
773 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
774 if (ret < 0)
775 return ret;
776
777 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
778 drm_err(&dev_priv->drm, "BKSV is revoked\n");
779 return -EPERM;
780 }
781
782 intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
783 bksv.reg[0]);
784 intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
785 bksv.reg[1]);
786
787 ret = shim->repeater_present(dig_port, &repeater_present);
788 if (ret)
789 return ret;
790 if (repeater_present)
791 intel_de_write(dev_priv, HDCP_REP_CTL,
792 intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
793
794 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
795 if (ret)
796 return ret;
797
798 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
799 HDCP_CONF_AUTH_AND_ENC);
800
801 /* Wait for R0 ready */
802 if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
803 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
804 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
805 return -ETIMEDOUT;
806 }
807
808 /*
809 * Wait for R0' to become available. The spec says 100ms from Aksv, but
810 * some monitors can take longer than this. We'll set the timeout at
811 * 300ms just to be sure.
812 *
813 * On DP, there's an R0_READY bit available but no such bit
814 * exists on HDMI. Since the upper-bound is the same, we'll just do
815 * the stupid thing instead of polling on one and not the other.
816 */
817 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
818
819 tries = 3;
820
821 /*
822 * DP HDCP Spec mandates the two more reattempt to read R0, incase
823 * of R0 mismatch.
824 */
825 for (i = 0; i < tries; i++) {
826 ri.reg = 0;
827 ret = shim->read_ri_prime(dig_port, ri.shim);
828 if (ret)
829 return ret;
830 intel_de_write(dev_priv,
831 HDCP_RPRIME(dev_priv, cpu_transcoder, port),
832 ri.reg);
833
834 /* Wait for Ri prime match */
835 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
836 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
837 break;
838 }
839
840 if (i == tries) {
841 drm_dbg_kms(&dev_priv->drm,
842 "Timed out waiting for Ri prime match (%x)\n",
843 intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
844 cpu_transcoder, port)));
845 return -ETIMEDOUT;
846 }
847
848 /* Wait for encryption confirmation */
849 if (intel_de_wait_for_set(dev_priv,
850 HDCP_STATUS(dev_priv, cpu_transcoder, port),
851 HDCP_STATUS_ENC,
852 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
853 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
854 return -ETIMEDOUT;
855 }
856
857 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
858 if (shim->stream_encryption) {
859 ret = shim->stream_encryption(connector, true);
860 if (ret) {
861 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
862 connector->base.name, connector->base.base.id);
863 return ret;
864 }
865 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
866 transcoder_name(hdcp->stream_transcoder));
867 }
868
869 if (repeater_present)
870 return intel_hdcp_auth_downstream(connector);
871
872 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
873 return 0;
874}
875
876static int _intel_hdcp_disable(struct intel_connector *connector)
877{
878 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
879 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
880 struct intel_hdcp *hdcp = &connector->hdcp;
881 enum port port = dig_port->base.port;
882 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
883 u32 repeater_ctl;
884 int ret;
885
886 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
887 connector->base.name, connector->base.base.id);
888
889 if (hdcp->shim->stream_encryption) {
890 ret = hdcp->shim->stream_encryption(connector, false);
891 if (ret) {
892 drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
893 connector->base.name, connector->base.base.id);
894 return ret;
895 }
896 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
897 transcoder_name(hdcp->stream_transcoder));
898 /*
899 * If there are other connectors on this port using HDCP,
900 * don't disable it until it disabled HDCP encryption for
901 * all connectors in MST topology.
902 */
903 if (dig_port->num_hdcp_streams > 0)
904 return 0;
905 }
906
907 hdcp->hdcp_encrypted = false;
908 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
909 if (intel_de_wait_for_clear(dev_priv,
910 HDCP_STATUS(dev_priv, cpu_transcoder, port),
911 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
912 drm_err(&dev_priv->drm,
913 "Failed to disable HDCP, timeout clearing status\n");
914 return -ETIMEDOUT;
915 }
916
917 repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
918 port);
919 intel_de_write(dev_priv, HDCP_REP_CTL,
920 intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
921
922 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
923 if (ret) {
924 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
925 return ret;
926 }
927
928 drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
929 return 0;
930}
931
932static int _intel_hdcp_enable(struct intel_connector *connector)
933{
934 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
935 struct intel_hdcp *hdcp = &connector->hdcp;
936 int i, ret, tries = 3;
937
938 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
939 connector->base.name, connector->base.base.id);
940
941 if (!hdcp_key_loadable(dev_priv)) {
942 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
943 return -ENXIO;
944 }
945
946 for (i = 0; i < KEY_LOAD_TRIES; i++) {
947 ret = intel_hdcp_load_keys(dev_priv);
948 if (!ret)
949 break;
950 intel_hdcp_clear_keys(dev_priv);
951 }
952 if (ret) {
953 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
954 ret);
955 return ret;
956 }
957
958 /* Incase of authentication failures, HDCP spec expects reauth. */
959 for (i = 0; i < tries; i++) {
960 ret = intel_hdcp_auth(connector);
961 if (!ret) {
962 hdcp->hdcp_encrypted = true;
963 return 0;
964 }
965
966 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
967
968 /* Ensuring HDCP encryption and signalling are stopped. */
969 _intel_hdcp_disable(connector);
970 }
971
972 drm_dbg_kms(&dev_priv->drm,
973 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
974 return ret;
975}
976
977static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
978{
979 return container_of(hdcp, struct intel_connector, hdcp);
980}
981
982static void intel_hdcp_update_value(struct intel_connector *connector,
983 u64 value, bool update_property)
984{
985 struct drm_device *dev = connector->base.dev;
986 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
987 struct intel_hdcp *hdcp = &connector->hdcp;
988
989 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
990
991 if (hdcp->value == value)
992 return;
993
994 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
995
996 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
997 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
998 dig_port->num_hdcp_streams--;
999 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1000 dig_port->num_hdcp_streams++;
1001 }
1002
1003 hdcp->value = value;
1004 if (update_property) {
1005 drm_connector_get(&connector->base);
1006 schedule_work(&hdcp->prop_work);
1007 }
1008}
1009
1010/* Implements Part 3 of the HDCP authorization procedure */
1011static int intel_hdcp_check_link(struct intel_connector *connector)
1012{
1013 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1014 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1015 struct intel_hdcp *hdcp = &connector->hdcp;
1016 enum port port = dig_port->base.port;
1017 enum transcoder cpu_transcoder;
1018 int ret = 0;
1019
1020 mutex_lock(&hdcp->mutex);
1021 mutex_lock(&dig_port->hdcp_mutex);
1022
1023 cpu_transcoder = hdcp->cpu_transcoder;
1024
1025 /* Check_link valid only when HDCP1.4 is enabled */
1026 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1027 !hdcp->hdcp_encrypted) {
1028 ret = -EINVAL;
1029 goto out;
1030 }
1031
1032 if (drm_WARN_ON(&dev_priv->drm,
1033 !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1034 drm_err(&dev_priv->drm,
1035 "%s:%d HDCP link stopped encryption,%x\n",
1036 connector->base.name, connector->base.base.id,
1037 intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1038 ret = -ENXIO;
1039 intel_hdcp_update_value(connector,
1040 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1041 true);
1042 goto out;
1043 }
1044
1045 if (hdcp->shim->check_link(dig_port, connector)) {
1046 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1047 intel_hdcp_update_value(connector,
1048 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1049 }
1050 goto out;
1051 }
1052
1053 drm_dbg_kms(&dev_priv->drm,
1054 "[%s:%d] HDCP link failed, retrying authentication\n",
1055 connector->base.name, connector->base.base.id);
1056
1057 ret = _intel_hdcp_disable(connector);
1058 if (ret) {
1059 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1060 intel_hdcp_update_value(connector,
1061 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1062 true);
1063 goto out;
1064 }
1065
1066 ret = _intel_hdcp_enable(connector);
1067 if (ret) {
1068 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1069 intel_hdcp_update_value(connector,
1070 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1071 true);
1072 goto out;
1073 }
1074
1075out:
1076 mutex_unlock(&dig_port->hdcp_mutex);
1077 mutex_unlock(&hdcp->mutex);
1078 return ret;
1079}
1080
1081static void intel_hdcp_prop_work(struct work_struct *work)
1082{
1083 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1084 prop_work);
1085 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1086 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1087
1088 drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1089 mutex_lock(&hdcp->mutex);
1090
1091 /*
1092 * This worker is only used to flip between ENABLED/DESIRED. Either of
1093 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1094 * we're running just after hdcp has been disabled, so just exit
1095 */
1096 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1097 drm_hdcp_update_content_protection(&connector->base,
1098 hdcp->value);
1099
1100 mutex_unlock(&hdcp->mutex);
1101 drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1102
1103 drm_connector_put(&connector->base);
1104}
1105
1106bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1107{
1108 return INTEL_INFO(dev_priv)->display.has_hdcp &&
1109 (DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1110}
1111
1112static int
1113hdcp2_prepare_ake_init(struct intel_connector *connector,
1114 struct hdcp2_ake_init *ake_data)
1115{
1116 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1117 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1118 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1119 struct i915_hdcp_comp_master *comp;
1120 int ret;
1121
1122 mutex_lock(&dev_priv->hdcp_comp_mutex);
1123 comp = dev_priv->hdcp_master;
1124
1125 if (!comp || !comp->ops) {
1126 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1127 return -EINVAL;
1128 }
1129
1130 ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1131 if (ret)
1132 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1133 ret);
1134 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1135
1136 return ret;
1137}
1138
1139static int
1140hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1141 struct hdcp2_ake_send_cert *rx_cert,
1142 bool *paired,
1143 struct hdcp2_ake_no_stored_km *ek_pub_km,
1144 size_t *msg_sz)
1145{
1146 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1147 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1148 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1149 struct i915_hdcp_comp_master *comp;
1150 int ret;
1151
1152 mutex_lock(&dev_priv->hdcp_comp_mutex);
1153 comp = dev_priv->hdcp_master;
1154
1155 if (!comp || !comp->ops) {
1156 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1157 return -EINVAL;
1158 }
1159
1160 ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1161 rx_cert, paired,
1162 ek_pub_km, msg_sz);
1163 if (ret < 0)
1164 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1165 ret);
1166 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1167
1168 return ret;
1169}
1170
1171static int hdcp2_verify_hprime(struct intel_connector *connector,
1172 struct hdcp2_ake_send_hprime *rx_hprime)
1173{
1174 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1175 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1176 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1177 struct i915_hdcp_comp_master *comp;
1178 int ret;
1179
1180 mutex_lock(&dev_priv->hdcp_comp_mutex);
1181 comp = dev_priv->hdcp_master;
1182
1183 if (!comp || !comp->ops) {
1184 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1185 return -EINVAL;
1186 }
1187
1188 ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1189 if (ret < 0)
1190 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1191 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1192
1193 return ret;
1194}
1195
1196static int
1197hdcp2_store_pairing_info(struct intel_connector *connector,
1198 struct hdcp2_ake_send_pairing_info *pairing_info)
1199{
1200 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1201 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1202 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1203 struct i915_hdcp_comp_master *comp;
1204 int ret;
1205
1206 mutex_lock(&dev_priv->hdcp_comp_mutex);
1207 comp = dev_priv->hdcp_master;
1208
1209 if (!comp || !comp->ops) {
1210 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1211 return -EINVAL;
1212 }
1213
1214 ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1215 if (ret < 0)
1216 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1217 ret);
1218 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1219
1220 return ret;
1221}
1222
1223static int
1224hdcp2_prepare_lc_init(struct intel_connector *connector,
1225 struct hdcp2_lc_init *lc_init)
1226{
1227 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1228 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1229 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1230 struct i915_hdcp_comp_master *comp;
1231 int ret;
1232
1233 mutex_lock(&dev_priv->hdcp_comp_mutex);
1234 comp = dev_priv->hdcp_master;
1235
1236 if (!comp || !comp->ops) {
1237 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1238 return -EINVAL;
1239 }
1240
1241 ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1242 if (ret < 0)
1243 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1244 ret);
1245 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1246
1247 return ret;
1248}
1249
1250static int
1251hdcp2_verify_lprime(struct intel_connector *connector,
1252 struct hdcp2_lc_send_lprime *rx_lprime)
1253{
1254 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1256 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1257 struct i915_hdcp_comp_master *comp;
1258 int ret;
1259
1260 mutex_lock(&dev_priv->hdcp_comp_mutex);
1261 comp = dev_priv->hdcp_master;
1262
1263 if (!comp || !comp->ops) {
1264 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1265 return -EINVAL;
1266 }
1267
1268 ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1269 if (ret < 0)
1270 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1271 ret);
1272 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1273
1274 return ret;
1275}
1276
1277static int hdcp2_prepare_skey(struct intel_connector *connector,
1278 struct hdcp2_ske_send_eks *ske_data)
1279{
1280 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1281 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1282 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1283 struct i915_hdcp_comp_master *comp;
1284 int ret;
1285
1286 mutex_lock(&dev_priv->hdcp_comp_mutex);
1287 comp = dev_priv->hdcp_master;
1288
1289 if (!comp || !comp->ops) {
1290 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1291 return -EINVAL;
1292 }
1293
1294 ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1295 if (ret < 0)
1296 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1297 ret);
1298 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1299
1300 return ret;
1301}
1302
1303static int
1304hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1305 struct hdcp2_rep_send_receiverid_list
1306 *rep_topology,
1307 struct hdcp2_rep_send_ack *rep_send_ack)
1308{
1309 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1310 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1311 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1312 struct i915_hdcp_comp_master *comp;
1313 int ret;
1314
1315 mutex_lock(&dev_priv->hdcp_comp_mutex);
1316 comp = dev_priv->hdcp_master;
1317
1318 if (!comp || !comp->ops) {
1319 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1320 return -EINVAL;
1321 }
1322
1323 ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1324 rep_topology,
1325 rep_send_ack);
1326 if (ret < 0)
1327 drm_dbg_kms(&dev_priv->drm,
1328 "Verify rep topology failed. %d\n", ret);
1329 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1330
1331 return ret;
1332}
1333
1334static int
1335hdcp2_verify_mprime(struct intel_connector *connector,
1336 struct hdcp2_rep_stream_ready *stream_ready)
1337{
1338 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1339 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1340 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1341 struct i915_hdcp_comp_master *comp;
1342 int ret;
1343
1344 mutex_lock(&dev_priv->hdcp_comp_mutex);
1345 comp = dev_priv->hdcp_master;
1346
1347 if (!comp || !comp->ops) {
1348 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1349 return -EINVAL;
1350 }
1351
1352 ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1353 if (ret < 0)
1354 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1355 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1356
1357 return ret;
1358}
1359
1360static int hdcp2_authenticate_port(struct intel_connector *connector)
1361{
1362 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1363 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1364 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1365 struct i915_hdcp_comp_master *comp;
1366 int ret;
1367
1368 mutex_lock(&dev_priv->hdcp_comp_mutex);
1369 comp = dev_priv->hdcp_master;
1370
1371 if (!comp || !comp->ops) {
1372 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1373 return -EINVAL;
1374 }
1375
1376 ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1377 if (ret < 0)
1378 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1379 ret);
1380 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1381
1382 return ret;
1383}
1384
1385static int hdcp2_close_mei_session(struct intel_connector *connector)
1386{
1387 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1388 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1389 struct i915_hdcp_comp_master *comp;
1390 int ret;
1391
1392 mutex_lock(&dev_priv->hdcp_comp_mutex);
1393 comp = dev_priv->hdcp_master;
1394
1395 if (!comp || !comp->ops) {
1396 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1397 return -EINVAL;
1398 }
1399
1400 ret = comp->ops->close_hdcp_session(comp->mei_dev,
1401 &dig_port->hdcp_port_data);
1402 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1403
1404 return ret;
1405}
1406
1407static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1408{
1409 return hdcp2_close_mei_session(connector);
1410}
1411
1412/* Authentication flow starts from here */
1413static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1414{
1415 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1416 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1417 struct intel_hdcp *hdcp = &connector->hdcp;
1418 union {
1419 struct hdcp2_ake_init ake_init;
1420 struct hdcp2_ake_send_cert send_cert;
1421 struct hdcp2_ake_no_stored_km no_stored_km;
1422 struct hdcp2_ake_send_hprime send_hprime;
1423 struct hdcp2_ake_send_pairing_info pairing_info;
1424 } msgs;
1425 const struct intel_hdcp_shim *shim = hdcp->shim;
1426 size_t size;
1427 int ret;
1428
1429 /* Init for seq_num */
1430 hdcp->seq_num_v = 0;
1431 hdcp->seq_num_m = 0;
1432
1433 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1434 if (ret < 0)
1435 return ret;
1436
1437 ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1438 sizeof(msgs.ake_init));
1439 if (ret < 0)
1440 return ret;
1441
1442 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1443 &msgs.send_cert, sizeof(msgs.send_cert));
1444 if (ret < 0)
1445 return ret;
1446
1447 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1448 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1449 return -EINVAL;
1450 }
1451
1452 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1453
1454 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1455 msgs.send_cert.cert_rx.receiver_id,
1456 1) > 0) {
1457 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1458 return -EPERM;
1459 }
1460
1461 /*
1462 * Here msgs.no_stored_km will hold msgs corresponding to the km
1463 * stored also.
1464 */
1465 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1466 &hdcp->is_paired,
1467 &msgs.no_stored_km, &size);
1468 if (ret < 0)
1469 return ret;
1470
1471 ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1472 if (ret < 0)
1473 return ret;
1474
1475 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1476 &msgs.send_hprime, sizeof(msgs.send_hprime));
1477 if (ret < 0)
1478 return ret;
1479
1480 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1481 if (ret < 0)
1482 return ret;
1483
1484 if (!hdcp->is_paired) {
1485 /* Pairing is required */
1486 ret = shim->read_2_2_msg(dig_port,
1487 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1488 &msgs.pairing_info,
1489 sizeof(msgs.pairing_info));
1490 if (ret < 0)
1491 return ret;
1492
1493 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1494 if (ret < 0)
1495 return ret;
1496 hdcp->is_paired = true;
1497 }
1498
1499 return 0;
1500}
1501
1502static int hdcp2_locality_check(struct intel_connector *connector)
1503{
1504 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1505 struct intel_hdcp *hdcp = &connector->hdcp;
1506 union {
1507 struct hdcp2_lc_init lc_init;
1508 struct hdcp2_lc_send_lprime send_lprime;
1509 } msgs;
1510 const struct intel_hdcp_shim *shim = hdcp->shim;
1511 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1512
1513 for (i = 0; i < tries; i++) {
1514 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1515 if (ret < 0)
1516 continue;
1517
1518 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1519 sizeof(msgs.lc_init));
1520 if (ret < 0)
1521 continue;
1522
1523 ret = shim->read_2_2_msg(dig_port,
1524 HDCP_2_2_LC_SEND_LPRIME,
1525 &msgs.send_lprime,
1526 sizeof(msgs.send_lprime));
1527 if (ret < 0)
1528 continue;
1529
1530 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1531 if (!ret)
1532 break;
1533 }
1534
1535 return ret;
1536}
1537
1538static int hdcp2_session_key_exchange(struct intel_connector *connector)
1539{
1540 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1541 struct intel_hdcp *hdcp = &connector->hdcp;
1542 struct hdcp2_ske_send_eks send_eks;
1543 int ret;
1544
1545 ret = hdcp2_prepare_skey(connector, &send_eks);
1546 if (ret < 0)
1547 return ret;
1548
1549 ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1550 sizeof(send_eks));
1551 if (ret < 0)
1552 return ret;
1553
1554 return 0;
1555}
1556
1557static
1558int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1559{
1560 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1561 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1562 struct intel_hdcp *hdcp = &connector->hdcp;
1563 union {
1564 struct hdcp2_rep_stream_manage stream_manage;
1565 struct hdcp2_rep_stream_ready stream_ready;
1566 } msgs;
1567 const struct intel_hdcp_shim *shim = hdcp->shim;
1568 int ret, streams_size_delta, i;
1569
1570 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1571 return -ERANGE;
1572
1573 /* Prepare RepeaterAuth_Stream_Manage msg */
1574 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1575 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1576
1577 msgs.stream_manage.k = cpu_to_be16(data->k);
1578
1579 for (i = 0; i < data->k; i++) {
1580 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1581 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1582 }
1583
1584 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1585 sizeof(struct hdcp2_streamid_type);
1586 /* Send it to Repeater */
1587 ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1588 sizeof(msgs.stream_manage) - streams_size_delta);
1589 if (ret < 0)
1590 goto out;
1591
1592 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1593 &msgs.stream_ready, sizeof(msgs.stream_ready));
1594 if (ret < 0)
1595 goto out;
1596
1597 data->seq_num_m = hdcp->seq_num_m;
1598
1599 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1600
1601out:
1602 hdcp->seq_num_m++;
1603
1604 return ret;
1605}
1606
1607static
1608int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1609{
1610 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1611 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1612 struct intel_hdcp *hdcp = &connector->hdcp;
1613 union {
1614 struct hdcp2_rep_send_receiverid_list recvid_list;
1615 struct hdcp2_rep_send_ack rep_ack;
1616 } msgs;
1617 const struct intel_hdcp_shim *shim = hdcp->shim;
1618 u32 seq_num_v, device_cnt;
1619 u8 *rx_info;
1620 int ret;
1621
1622 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1623 &msgs.recvid_list, sizeof(msgs.recvid_list));
1624 if (ret < 0)
1625 return ret;
1626
1627 rx_info = msgs.recvid_list.rx_info;
1628
1629 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1630 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1631 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1632 return -EINVAL;
1633 }
1634
1635 /* Converting and Storing the seq_num_v to local variable as DWORD */
1636 seq_num_v =
1637 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1638
1639 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1640 drm_dbg_kms(&dev_priv->drm,
1641 "Non zero Seq_num_v at first RecvId_List msg\n");
1642 return -EINVAL;
1643 }
1644
1645 if (seq_num_v < hdcp->seq_num_v) {
1646 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1647 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1648 return -EINVAL;
1649 }
1650
1651 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1652 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1653 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1654 msgs.recvid_list.receiver_ids,
1655 device_cnt) > 0) {
1656 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1657 return -EPERM;
1658 }
1659
1660 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1661 &msgs.recvid_list,
1662 &msgs.rep_ack);
1663 if (ret < 0)
1664 return ret;
1665
1666 hdcp->seq_num_v = seq_num_v;
1667 ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1668 sizeof(msgs.rep_ack));
1669 if (ret < 0)
1670 return ret;
1671
1672 return 0;
1673}
1674
1675static int hdcp2_authenticate_sink(struct intel_connector *connector)
1676{
1677 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1678 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1679 struct intel_hdcp *hdcp = &connector->hdcp;
1680 const struct intel_hdcp_shim *shim = hdcp->shim;
1681 int ret;
1682
1683 ret = hdcp2_authentication_key_exchange(connector);
1684 if (ret < 0) {
1685 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1686 return ret;
1687 }
1688
1689 ret = hdcp2_locality_check(connector);
1690 if (ret < 0) {
1691 drm_dbg_kms(&i915->drm,
1692 "Locality Check failed. Err : %d\n", ret);
1693 return ret;
1694 }
1695
1696 ret = hdcp2_session_key_exchange(connector);
1697 if (ret < 0) {
1698 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1699 return ret;
1700 }
1701
1702 if (shim->config_stream_type) {
1703 ret = shim->config_stream_type(dig_port,
1704 hdcp->is_repeater,
1705 hdcp->content_type);
1706 if (ret < 0)
1707 return ret;
1708 }
1709
1710 if (hdcp->is_repeater) {
1711 ret = hdcp2_authenticate_repeater_topology(connector);
1712 if (ret < 0) {
1713 drm_dbg_kms(&i915->drm,
1714 "Repeater Auth Failed. Err: %d\n", ret);
1715 return ret;
1716 }
1717 }
1718
1719 return ret;
1720}
1721
1722static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1723{
1724 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1726 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1727 struct intel_hdcp *hdcp = &connector->hdcp;
1728 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1729 enum port port = dig_port->base.port;
1730 int ret = 0;
1731
1732 if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1733 LINK_ENCRYPTION_STATUS)) {
1734 drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1735 connector->base.name, connector->base.base.id);
1736 ret = -EPERM;
1737 goto link_recover;
1738 }
1739
1740 if (hdcp->shim->stream_2_2_encryption) {
1741 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1742 if (ret) {
1743 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1744 connector->base.name, connector->base.base.id);
1745 return ret;
1746 }
1747 drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1748 transcoder_name(hdcp->stream_transcoder));
1749 }
1750
1751 return 0;
1752
1753link_recover:
1754 if (hdcp2_deauthenticate_port(connector) < 0)
1755 drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1756
1757 dig_port->hdcp_auth_status = false;
1758 data->k = 0;
1759
1760 return ret;
1761}
1762
1763static int hdcp2_enable_encryption(struct intel_connector *connector)
1764{
1765 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1766 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1767 struct intel_hdcp *hdcp = &connector->hdcp;
1768 enum port port = dig_port->base.port;
1769 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1770 int ret;
1771
1772 drm_WARN_ON(&dev_priv->drm,
1773 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1774 LINK_ENCRYPTION_STATUS);
1775 if (hdcp->shim->toggle_signalling) {
1776 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1777 true);
1778 if (ret) {
1779 drm_err(&dev_priv->drm,
1780 "Failed to enable HDCP signalling. %d\n",
1781 ret);
1782 return ret;
1783 }
1784 }
1785
1786 if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1787 LINK_AUTH_STATUS) {
1788 /* Link is Authenticated. Now set for Encryption */
1789 intel_de_write(dev_priv,
1790 HDCP2_CTL(dev_priv, cpu_transcoder, port),
1791 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1792 }
1793
1794 ret = intel_de_wait_for_set(dev_priv,
1795 HDCP2_STATUS(dev_priv, cpu_transcoder,
1796 port),
1797 LINK_ENCRYPTION_STATUS,
1798 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1799 dig_port->hdcp_auth_status = true;
1800
1801 return ret;
1802}
1803
1804static int hdcp2_disable_encryption(struct intel_connector *connector)
1805{
1806 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1807 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1808 struct intel_hdcp *hdcp = &connector->hdcp;
1809 enum port port = dig_port->base.port;
1810 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1811 int ret;
1812
1813 drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1814 LINK_ENCRYPTION_STATUS));
1815
1816 intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1817 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1818
1819 ret = intel_de_wait_for_clear(dev_priv,
1820 HDCP2_STATUS(dev_priv, cpu_transcoder,
1821 port),
1822 LINK_ENCRYPTION_STATUS,
1823 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1824 if (ret == -ETIMEDOUT)
1825 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1826
1827 if (hdcp->shim->toggle_signalling) {
1828 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1829 false);
1830 if (ret) {
1831 drm_err(&dev_priv->drm,
1832 "Failed to disable HDCP signalling. %d\n",
1833 ret);
1834 return ret;
1835 }
1836 }
1837
1838 return ret;
1839}
1840
1841static int
1842hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1843{
1844 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1845 int i, tries = 3, ret;
1846
1847 if (!connector->hdcp.is_repeater)
1848 return 0;
1849
1850 for (i = 0; i < tries; i++) {
1851 ret = _hdcp2_propagate_stream_management_info(connector);
1852 if (!ret)
1853 break;
1854
1855 /* Lets restart the auth incase of seq_num_m roll over */
1856 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1857 drm_dbg_kms(&i915->drm,
1858 "seq_num_m roll over.(%d)\n", ret);
1859 break;
1860 }
1861
1862 drm_dbg_kms(&i915->drm,
1863 "HDCP2 stream management %d of %d Failed.(%d)\n",
1864 i + 1, tries, ret);
1865 }
1866
1867 return ret;
1868}
1869
1870static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1871{
1872 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1874 int ret = 0, i, tries = 3;
1875
1876 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1877 ret = hdcp2_authenticate_sink(connector);
1878 if (!ret) {
1879 ret = hdcp2_propagate_stream_management_info(connector);
1880 if (ret) {
1881 drm_dbg_kms(&i915->drm,
1882 "Stream management failed.(%d)\n",
1883 ret);
1884 break;
1885 }
1886
1887 ret = hdcp2_authenticate_port(connector);
1888 if (!ret)
1889 break;
1890 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1891 ret);
1892 }
1893
1894 /* Clearing the mei hdcp session */
1895 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1896 i + 1, tries, ret);
1897 if (hdcp2_deauthenticate_port(connector) < 0)
1898 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1899 }
1900
1901 if (!ret && !dig_port->hdcp_auth_status) {
1902 /*
1903 * Ensuring the required 200mSec min time interval between
1904 * Session Key Exchange and encryption.
1905 */
1906 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1907 ret = hdcp2_enable_encryption(connector);
1908 if (ret < 0) {
1909 drm_dbg_kms(&i915->drm,
1910 "Encryption Enable Failed.(%d)\n", ret);
1911 if (hdcp2_deauthenticate_port(connector) < 0)
1912 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1913 }
1914 }
1915
1916 if (!ret)
1917 ret = hdcp2_enable_stream_encryption(connector);
1918
1919 return ret;
1920}
1921
1922static int _intel_hdcp2_enable(struct intel_connector *connector)
1923{
1924 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1925 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1926 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1927 struct intel_hdcp *hdcp = &connector->hdcp;
1928 int ret;
1929
1930 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1931 connector->base.name, connector->base.base.id,
1932 hdcp->content_type);
1933
1934 /* Stream which requires encryption */
1935 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
1936 data->k = 1;
1937 data->streams[0].stream_type = hdcp->content_type;
1938 } else {
1939 ret = intel_hdcp_required_content_stream(dig_port);
1940 if (ret)
1941 return ret;
1942 }
1943
1944 ret = hdcp2_authenticate_and_encrypt(connector);
1945 if (ret) {
1946 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
1947 hdcp->content_type, ret);
1948 return ret;
1949 }
1950
1951 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1952 connector->base.name, connector->base.base.id,
1953 hdcp->content_type);
1954
1955 hdcp->hdcp2_encrypted = true;
1956 return 0;
1957}
1958
1959static int
1960_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1961{
1962 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1963 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1964 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1965 struct intel_hdcp *hdcp = &connector->hdcp;
1966 int ret;
1967
1968 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1969 connector->base.name, connector->base.base.id);
1970
1971 if (hdcp->shim->stream_2_2_encryption) {
1972 ret = hdcp->shim->stream_2_2_encryption(connector, false);
1973 if (ret) {
1974 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1975 connector->base.name, connector->base.base.id);
1976 return ret;
1977 }
1978 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1979 transcoder_name(hdcp->stream_transcoder));
1980
1981 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1982 return 0;
1983 }
1984
1985 ret = hdcp2_disable_encryption(connector);
1986
1987 if (hdcp2_deauthenticate_port(connector) < 0)
1988 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1989
1990 connector->hdcp.hdcp2_encrypted = false;
1991 dig_port->hdcp_auth_status = false;
1992 data->k = 0;
1993
1994 return ret;
1995}
1996
1997/* Implements the Link Integrity Check for HDCP2.2 */
1998static int intel_hdcp2_check_link(struct intel_connector *connector)
1999{
2000 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2001 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2002 struct intel_hdcp *hdcp = &connector->hdcp;
2003 enum port port = dig_port->base.port;
2004 enum transcoder cpu_transcoder;
2005 int ret = 0;
2006
2007 mutex_lock(&hdcp->mutex);
2008 mutex_lock(&dig_port->hdcp_mutex);
2009 cpu_transcoder = hdcp->cpu_transcoder;
2010
2011 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2012 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2013 !hdcp->hdcp2_encrypted) {
2014 ret = -EINVAL;
2015 goto out;
2016 }
2017
2018 if (drm_WARN_ON(&dev_priv->drm,
2019 !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2020 drm_err(&dev_priv->drm,
2021 "HDCP2.2 link stopped the encryption, %x\n",
2022 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2023 ret = -ENXIO;
2024 _intel_hdcp2_disable(connector, true);
2025 intel_hdcp_update_value(connector,
2026 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2027 true);
2028 goto out;
2029 }
2030
2031 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2032 if (ret == HDCP_LINK_PROTECTED) {
2033 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2034 intel_hdcp_update_value(connector,
2035 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2036 true);
2037 }
2038 goto out;
2039 }
2040
2041 if (ret == HDCP_TOPOLOGY_CHANGE) {
2042 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2043 goto out;
2044
2045 drm_dbg_kms(&dev_priv->drm,
2046 "HDCP2.2 Downstream topology change\n");
2047 ret = hdcp2_authenticate_repeater_topology(connector);
2048 if (!ret) {
2049 intel_hdcp_update_value(connector,
2050 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2051 true);
2052 goto out;
2053 }
2054 drm_dbg_kms(&dev_priv->drm,
2055 "[%s:%d] Repeater topology auth failed.(%d)\n",
2056 connector->base.name, connector->base.base.id,
2057 ret);
2058 } else {
2059 drm_dbg_kms(&dev_priv->drm,
2060 "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2061 connector->base.name, connector->base.base.id);
2062 }
2063
2064 ret = _intel_hdcp2_disable(connector, true);
2065 if (ret) {
2066 drm_err(&dev_priv->drm,
2067 "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2068 connector->base.name, connector->base.base.id, ret);
2069 intel_hdcp_update_value(connector,
2070 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2071 goto out;
2072 }
2073
2074 ret = _intel_hdcp2_enable(connector);
2075 if (ret) {
2076 drm_dbg_kms(&dev_priv->drm,
2077 "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2078 connector->base.name, connector->base.base.id,
2079 ret);
2080 intel_hdcp_update_value(connector,
2081 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2082 true);
2083 goto out;
2084 }
2085
2086out:
2087 mutex_unlock(&dig_port->hdcp_mutex);
2088 mutex_unlock(&hdcp->mutex);
2089 return ret;
2090}
2091
2092static void intel_hdcp_check_work(struct work_struct *work)
2093{
2094 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2095 struct intel_hdcp,
2096 check_work);
2097 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2098
2099 if (drm_connector_is_unregistered(&connector->base))
2100 return;
2101
2102 if (!intel_hdcp2_check_link(connector))
2103 schedule_delayed_work(&hdcp->check_work,
2104 DRM_HDCP2_CHECK_PERIOD_MS);
2105 else if (!intel_hdcp_check_link(connector))
2106 schedule_delayed_work(&hdcp->check_work,
2107 DRM_HDCP_CHECK_PERIOD_MS);
2108}
2109
2110static int i915_hdcp_component_bind(struct device *i915_kdev,
2111 struct device *mei_kdev, void *data)
2112{
2113 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2114
2115 drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2116 mutex_lock(&dev_priv->hdcp_comp_mutex);
2117 dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
2118 dev_priv->hdcp_master->mei_dev = mei_kdev;
2119 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2120
2121 return 0;
2122}
2123
2124static void i915_hdcp_component_unbind(struct device *i915_kdev,
2125 struct device *mei_kdev, void *data)
2126{
2127 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2128
2129 drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2130 mutex_lock(&dev_priv->hdcp_comp_mutex);
2131 dev_priv->hdcp_master = NULL;
2132 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2133}
2134
2135static const struct component_ops i915_hdcp_component_ops = {
2136 .bind = i915_hdcp_component_bind,
2137 .unbind = i915_hdcp_component_unbind,
2138};
2139
2140static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2141{
2142 switch (port) {
2143 case PORT_A:
2144 return MEI_DDI_A;
2145 case PORT_B ... PORT_F:
2146 return (enum mei_fw_ddi)port;
2147 default:
2148 return MEI_DDI_INVALID_PORT;
2149 }
2150}
2151
2152static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2153{
2154 switch (cpu_transcoder) {
2155 case TRANSCODER_A ... TRANSCODER_D:
2156 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2157 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2158 return MEI_INVALID_TRANSCODER;
2159 }
2160}
2161
2162static int initialize_hdcp_port_data(struct intel_connector *connector,
2163 struct intel_digital_port *dig_port,
2164 const struct intel_hdcp_shim *shim)
2165{
2166 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2167 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2168 struct intel_hdcp *hdcp = &connector->hdcp;
2169 enum port port = dig_port->base.port;
2170
2171 if (DISPLAY_VER(dev_priv) < 12)
2172 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2173 else
2174 /*
2175 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2176 * with zero(INVALID PORT index).
2177 */
2178 data->fw_ddi = MEI_DDI_INVALID_PORT;
2179
2180 /*
2181 * As associated transcoder is set and modified at modeset, here fw_tc
2182 * is initialized to zero (invalid transcoder index). This will be
2183 * retained for <Gen12 forever.
2184 */
2185 data->fw_tc = MEI_INVALID_TRANSCODER;
2186
2187 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2188 data->protocol = (u8)shim->protocol;
2189
2190 if (!data->streams)
2191 data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2192 sizeof(struct hdcp2_streamid_type),
2193 GFP_KERNEL);
2194 if (!data->streams) {
2195 drm_err(&dev_priv->drm, "Out of Memory\n");
2196 return -ENOMEM;
2197 }
2198 /* For SST */
2199 data->streams[0].stream_id = 0;
2200 data->streams[0].stream_type = hdcp->content_type;
2201
2202 return 0;
2203}
2204
2205static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2206{
2207 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2208 return false;
2209
2210 return (DISPLAY_VER(dev_priv) >= 10 ||
2211 IS_KABYLAKE(dev_priv) ||
2212 IS_COFFEELAKE(dev_priv) ||
2213 IS_COMETLAKE(dev_priv));
2214}
2215
2216void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2217{
2218 int ret;
2219
2220 if (!is_hdcp2_supported(dev_priv))
2221 return;
2222
2223 mutex_lock(&dev_priv->hdcp_comp_mutex);
2224 drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2225
2226 dev_priv->hdcp_comp_added = true;
2227 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2228 ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2229 I915_COMPONENT_HDCP);
2230 if (ret < 0) {
2231 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2232 ret);
2233 mutex_lock(&dev_priv->hdcp_comp_mutex);
2234 dev_priv->hdcp_comp_added = false;
2235 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2236 return;
2237 }
2238}
2239
2240static void intel_hdcp2_init(struct intel_connector *connector,
2241 struct intel_digital_port *dig_port,
2242 const struct intel_hdcp_shim *shim)
2243{
2244 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2245 struct intel_hdcp *hdcp = &connector->hdcp;
2246 int ret;
2247
2248 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2249 if (ret) {
2250 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2251 return;
2252 }
2253
2254 hdcp->hdcp2_supported = true;
2255}
2256
2257int intel_hdcp_init(struct intel_connector *connector,
2258 struct intel_digital_port *dig_port,
2259 const struct intel_hdcp_shim *shim)
2260{
2261 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2262 struct intel_hdcp *hdcp = &connector->hdcp;
2263 int ret;
2264
2265 if (!shim)
2266 return -EINVAL;
2267
2268 if (is_hdcp2_supported(dev_priv))
2269 intel_hdcp2_init(connector, dig_port, shim);
2270
2271 ret =
2272 drm_connector_attach_content_protection_property(&connector->base,
2273 hdcp->hdcp2_supported);
2274 if (ret) {
2275 hdcp->hdcp2_supported = false;
2276 kfree(dig_port->hdcp_port_data.streams);
2277 return ret;
2278 }
2279
2280 hdcp->shim = shim;
2281 mutex_init(&hdcp->mutex);
2282 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2283 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2284 init_waitqueue_head(&hdcp->cp_irq_queue);
2285
2286 return 0;
2287}
2288
2289int intel_hdcp_enable(struct intel_connector *connector,
2290 const struct intel_crtc_state *pipe_config, u8 content_type)
2291{
2292 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2293 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2294 struct intel_hdcp *hdcp = &connector->hdcp;
2295 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2296 int ret = -EINVAL;
2297
2298 if (!hdcp->shim)
2299 return -ENOENT;
2300
2301 if (!connector->encoder) {
2302 drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2303 connector->base.name, connector->base.base.id);
2304 return -ENODEV;
2305 }
2306
2307 mutex_lock(&hdcp->mutex);
2308 mutex_lock(&dig_port->hdcp_mutex);
2309 drm_WARN_ON(&dev_priv->drm,
2310 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2311 hdcp->content_type = content_type;
2312
2313 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2314 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2315 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2316 } else {
2317 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2318 hdcp->stream_transcoder = INVALID_TRANSCODER;
2319 }
2320
2321 if (DISPLAY_VER(dev_priv) >= 12)
2322 dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2323
2324 /*
2325 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2326 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2327 */
2328 if (intel_hdcp2_capable(connector)) {
2329 ret = _intel_hdcp2_enable(connector);
2330 if (!ret)
2331 check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2332 }
2333
2334 /*
2335 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2336 * be attempted.
2337 */
2338 if (ret && intel_hdcp_capable(connector) &&
2339 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2340 ret = _intel_hdcp_enable(connector);
2341 }
2342
2343 if (!ret) {
2344 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2345 intel_hdcp_update_value(connector,
2346 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2347 true);
2348 }
2349
2350 mutex_unlock(&dig_port->hdcp_mutex);
2351 mutex_unlock(&hdcp->mutex);
2352 return ret;
2353}
2354
2355int intel_hdcp_disable(struct intel_connector *connector)
2356{
2357 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2358 struct intel_hdcp *hdcp = &connector->hdcp;
2359 int ret = 0;
2360
2361 if (!hdcp->shim)
2362 return -ENOENT;
2363
2364 mutex_lock(&hdcp->mutex);
2365 mutex_lock(&dig_port->hdcp_mutex);
2366
2367 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2368 goto out;
2369
2370 intel_hdcp_update_value(connector,
2371 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2372 if (hdcp->hdcp2_encrypted)
2373 ret = _intel_hdcp2_disable(connector, false);
2374 else if (hdcp->hdcp_encrypted)
2375 ret = _intel_hdcp_disable(connector);
2376
2377out:
2378 mutex_unlock(&dig_port->hdcp_mutex);
2379 mutex_unlock(&hdcp->mutex);
2380 cancel_delayed_work_sync(&hdcp->check_work);
2381 return ret;
2382}
2383
2384void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2385 struct intel_encoder *encoder,
2386 const struct intel_crtc_state *crtc_state,
2387 const struct drm_connector_state *conn_state)
2388{
2389 struct intel_connector *connector =
2390 to_intel_connector(conn_state->connector);
2391 struct intel_hdcp *hdcp = &connector->hdcp;
2392 bool content_protection_type_changed, desired_and_not_enabled = false;
2393
2394 if (!connector->hdcp.shim)
2395 return;
2396
2397 content_protection_type_changed =
2398 (conn_state->hdcp_content_type != hdcp->content_type &&
2399 conn_state->content_protection !=
2400 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2401
2402 /*
2403 * During the HDCP encryption session if Type change is requested,
2404 * disable the HDCP and reenable it with new TYPE value.
2405 */
2406 if (conn_state->content_protection ==
2407 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2408 content_protection_type_changed)
2409 intel_hdcp_disable(connector);
2410
2411 /*
2412 * Mark the hdcp state as DESIRED after the hdcp disable of type
2413 * change procedure.
2414 */
2415 if (content_protection_type_changed) {
2416 mutex_lock(&hdcp->mutex);
2417 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2418 drm_connector_get(&connector->base);
2419 schedule_work(&hdcp->prop_work);
2420 mutex_unlock(&hdcp->mutex);
2421 }
2422
2423 if (conn_state->content_protection ==
2424 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2425 mutex_lock(&hdcp->mutex);
2426 /* Avoid enabling hdcp, if it already ENABLED */
2427 desired_and_not_enabled =
2428 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2429 mutex_unlock(&hdcp->mutex);
2430 /*
2431 * If HDCP already ENABLED and CP property is DESIRED, schedule
2432 * prop_work to update correct CP property to user space.
2433 */
2434 if (!desired_and_not_enabled && !content_protection_type_changed) {
2435 drm_connector_get(&connector->base);
2436 schedule_work(&hdcp->prop_work);
2437 }
2438 }
2439
2440 if (desired_and_not_enabled || content_protection_type_changed)
2441 intel_hdcp_enable(connector,
2442 crtc_state,
2443 (u8)conn_state->hdcp_content_type);
2444}
2445
2446void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2447{
2448 mutex_lock(&dev_priv->hdcp_comp_mutex);
2449 if (!dev_priv->hdcp_comp_added) {
2450 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2451 return;
2452 }
2453
2454 dev_priv->hdcp_comp_added = false;
2455 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2456
2457 component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2458}
2459
2460void intel_hdcp_cleanup(struct intel_connector *connector)
2461{
2462 struct intel_hdcp *hdcp = &connector->hdcp;
2463
2464 if (!hdcp->shim)
2465 return;
2466
2467 /*
2468 * If the connector is registered, it's possible userspace could kick
2469 * off another HDCP enable, which would re-spawn the workers.
2470 */
2471 drm_WARN_ON(connector->base.dev,
2472 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2473
2474 /*
2475 * Now that the connector is not registered, check_work won't be run,
2476 * but cancel any outstanding instances of it
2477 */
2478 cancel_delayed_work_sync(&hdcp->check_work);
2479
2480 /*
2481 * We don't cancel prop_work in the same way as check_work since it
2482 * requires connection_mutex which could be held while calling this
2483 * function. Instead, we rely on the connector references grabbed before
2484 * scheduling prop_work to ensure the connector is alive when prop_work
2485 * is run. So if we're in the destroy path (which is where this
2486 * function should be called), we're "guaranteed" that prop_work is not
2487 * active (tl;dr This Should Never Happen).
2488 */
2489 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2490
2491 mutex_lock(&hdcp->mutex);
2492 hdcp->shim = NULL;
2493 mutex_unlock(&hdcp->mutex);
2494}
2495
2496void intel_hdcp_atomic_check(struct drm_connector *connector,
2497 struct drm_connector_state *old_state,
2498 struct drm_connector_state *new_state)
2499{
2500 u64 old_cp = old_state->content_protection;
2501 u64 new_cp = new_state->content_protection;
2502 struct drm_crtc_state *crtc_state;
2503
2504 if (!new_state->crtc) {
2505 /*
2506 * If the connector is being disabled with CP enabled, mark it
2507 * desired so it's re-enabled when the connector is brought back
2508 */
2509 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2510 new_state->content_protection =
2511 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2512 return;
2513 }
2514
2515 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2516 new_state->crtc);
2517 /*
2518 * Fix the HDCP uapi content protection state in case of modeset.
2519 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2520 * need to be sent if there is transition from ENABLED->DESIRED.
2521 */
2522 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2523 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2524 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2525 new_state->content_protection =
2526 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2527
2528 /*
2529 * Nothing to do if the state didn't change, or HDCP was activated since
2530 * the last commit. And also no change in hdcp content type.
2531 */
2532 if (old_cp == new_cp ||
2533 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2534 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2535 if (old_state->hdcp_content_type ==
2536 new_state->hdcp_content_type)
2537 return;
2538 }
2539
2540 crtc_state->mode_changed = true;
2541}
2542
2543/* Handles the CP_IRQ raised from the DP HDCP sink */
2544void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2545{
2546 struct intel_hdcp *hdcp = &connector->hdcp;
2547
2548 if (!hdcp->shim)
2549 return;
2550
2551 atomic_inc(&connector->hdcp.cp_irq_count);
2552 wake_up_all(&connector->hdcp.cp_irq_queue);
2553
2554 schedule_delayed_work(&hdcp->check_work, 0);
2555}
1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/display/drm_hdcp_helper.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_connector.h"
21#include "intel_de.h"
22#include "intel_display_power.h"
23#include "intel_display_power_well.h"
24#include "intel_display_types.h"
25#include "intel_hdcp.h"
26#include "intel_hdcp_regs.h"
27#include "intel_pcode.h"
28
29#define KEY_LOAD_TRIES 5
30#define HDCP2_LC_RETRY_CNT 3
31
32static int intel_conn_to_vcpi(struct intel_connector *connector)
33{
34 struct drm_dp_mst_topology_mgr *mgr;
35 struct drm_dp_mst_atomic_payload *payload;
36 struct drm_dp_mst_topology_state *mst_state;
37 int vcpi = 0;
38
39 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
40 if (!connector->port)
41 return 0;
42 mgr = connector->port->mgr;
43
44 drm_modeset_lock(&mgr->base.lock, NULL);
45 mst_state = to_drm_dp_mst_topology_state(mgr->base.state);
46 payload = drm_atomic_get_mst_payload_state(mst_state, connector->port);
47 if (drm_WARN_ON(mgr->dev, !payload))
48 goto out;
49
50 vcpi = payload->vcpi;
51 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
52 vcpi = 0;
53 goto out;
54 }
55out:
56 drm_modeset_unlock(&mgr->base.lock);
57 return vcpi;
58}
59
60/*
61 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
62 * content_type for all streams in DP MST topology because security f/w doesn't
63 * have any provision to mark content_type for each stream separately, it marks
64 * all available streams with the content_type proivided at the time of port
65 * authentication. This may prohibit the userspace to use type1 content on
66 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
67 * DP MST topology. Though it is not compulsory, security fw should change its
68 * policy to mark different content_types for different streams.
69 */
70static int
71intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
72{
73 struct drm_connector_list_iter conn_iter;
74 struct intel_digital_port *conn_dig_port;
75 struct intel_connector *connector;
76 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
77 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
78 bool enforce_type0 = false;
79 int k;
80
81 data->k = 0;
82
83 if (dig_port->hdcp_auth_status)
84 return 0;
85
86 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
87 for_each_intel_connector_iter(connector, &conn_iter) {
88 if (connector->base.status == connector_status_disconnected)
89 continue;
90
91 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
92 continue;
93
94 conn_dig_port = intel_attached_dig_port(connector);
95 if (conn_dig_port != dig_port)
96 continue;
97
98 if (!enforce_type0 && !dig_port->hdcp_mst_type1_capable)
99 enforce_type0 = true;
100
101 data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
102 data->k++;
103
104 /* if there is only one active stream */
105 if (dig_port->dp.active_mst_links <= 1)
106 break;
107 }
108 drm_connector_list_iter_end(&conn_iter);
109
110 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
111 return -EINVAL;
112
113 /*
114 * Apply common protection level across all streams in DP MST Topology.
115 * Use highest supported content type for all streams in DP MST Topology.
116 */
117 for (k = 0; k < data->k; k++)
118 data->streams[k].stream_type =
119 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
120
121 return 0;
122}
123
124static int intel_hdcp_prepare_streams(struct intel_connector *connector)
125{
126 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
127 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
128 struct intel_hdcp *hdcp = &connector->hdcp;
129 int ret;
130
131 if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
132 data->k = 1;
133 data->streams[0].stream_type = hdcp->content_type;
134 } else {
135 ret = intel_hdcp_required_content_stream(dig_port);
136 if (ret)
137 return ret;
138 }
139
140 return 0;
141}
142
143static
144bool intel_hdcp_is_ksv_valid(u8 *ksv)
145{
146 int i, ones = 0;
147 /* KSV has 20 1's and 20 0's */
148 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
149 ones += hweight8(ksv[i]);
150 if (ones != 20)
151 return false;
152
153 return true;
154}
155
156static
157int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
158 const struct intel_hdcp_shim *shim, u8 *bksv)
159{
160 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
161 int ret, i, tries = 2;
162
163 /* HDCP spec states that we must retry the bksv if it is invalid */
164 for (i = 0; i < tries; i++) {
165 ret = shim->read_bksv(dig_port, bksv);
166 if (ret)
167 return ret;
168 if (intel_hdcp_is_ksv_valid(bksv))
169 break;
170 }
171 if (i == tries) {
172 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
173 return -ENODEV;
174 }
175
176 return 0;
177}
178
179/* Is HDCP1.4 capable on Platform and Sink */
180bool intel_hdcp_capable(struct intel_connector *connector)
181{
182 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
183 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
184 bool capable = false;
185 u8 bksv[5];
186
187 if (!shim)
188 return capable;
189
190 if (shim->hdcp_capable) {
191 shim->hdcp_capable(dig_port, &capable);
192 } else {
193 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
194 capable = true;
195 }
196
197 return capable;
198}
199
200/* Is HDCP2.2 capable on Platform and Sink */
201bool intel_hdcp2_capable(struct intel_connector *connector)
202{
203 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
204 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
205 struct intel_hdcp *hdcp = &connector->hdcp;
206 bool capable = false;
207
208 /* I915 support for HDCP2.2 */
209 if (!hdcp->hdcp2_supported)
210 return false;
211
212 /* MEI interface is solid */
213 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
214 if (!dev_priv->display.hdcp.comp_added || !dev_priv->display.hdcp.master) {
215 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
216 return false;
217 }
218 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
219
220 /* Sink's capability for HDCP2.2 */
221 hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
222
223 return capable;
224}
225
226static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
227 enum transcoder cpu_transcoder, enum port port)
228{
229 return intel_de_read(dev_priv,
230 HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
231 HDCP_STATUS_ENC;
232}
233
234static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
235 enum transcoder cpu_transcoder, enum port port)
236{
237 return intel_de_read(dev_priv,
238 HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
239 LINK_ENCRYPTION_STATUS;
240}
241
242static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
243 const struct intel_hdcp_shim *shim)
244{
245 int ret, read_ret;
246 bool ksv_ready;
247
248 /* Poll for ksv list ready (spec says max time allowed is 5s) */
249 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
250 &ksv_ready),
251 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
252 100 * 1000);
253 if (ret)
254 return ret;
255 if (read_ret)
256 return read_ret;
257 if (!ksv_ready)
258 return -ETIMEDOUT;
259
260 return 0;
261}
262
263static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
264{
265 enum i915_power_well_id id;
266 intel_wakeref_t wakeref;
267 bool enabled = false;
268
269 /*
270 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
271 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
272 */
273 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
274 id = HSW_DISP_PW_GLOBAL;
275 else
276 id = SKL_DISP_PW_1;
277
278 /* PG1 (power well #1) needs to be enabled */
279 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
280 enabled = intel_display_power_well_is_enabled(dev_priv, id);
281
282 /*
283 * Another req for hdcp key loadability is enabled state of pll for
284 * cdclk. Without active crtc we wont land here. So we are assuming that
285 * cdclk is already on.
286 */
287
288 return enabled;
289}
290
291static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
292{
293 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
294 intel_de_write(dev_priv, HDCP_KEY_STATUS,
295 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
296}
297
298static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
299{
300 int ret;
301 u32 val;
302
303 val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
304 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
305 return 0;
306
307 /*
308 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
309 * out of reset. So if Key is not already loaded, its an error state.
310 */
311 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
312 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
313 return -ENXIO;
314
315 /*
316 * Initiate loading the HDCP key from fuses.
317 *
318 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
319 * version 9 platforms (minus BXT) differ in the key load trigger
320 * process from other platforms. These platforms use the GT Driver
321 * Mailbox interface.
322 */
323 if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
324 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
325 if (ret) {
326 drm_err(&dev_priv->drm,
327 "Failed to initiate HDCP key load (%d)\n",
328 ret);
329 return ret;
330 }
331 } else {
332 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
333 }
334
335 /* Wait for the keys to load (500us) */
336 ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
337 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
338 10, 1, &val);
339 if (ret)
340 return ret;
341 else if (!(val & HDCP_KEY_LOAD_STATUS))
342 return -ENXIO;
343
344 /* Send Aksv over to PCH display for use in authentication */
345 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
346
347 return 0;
348}
349
350/* Returns updated SHA-1 index */
351static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
352{
353 intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
354 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
355 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
356 return -ETIMEDOUT;
357 }
358 return 0;
359}
360
361static
362u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
363 enum transcoder cpu_transcoder, enum port port)
364{
365 if (DISPLAY_VER(dev_priv) >= 12) {
366 switch (cpu_transcoder) {
367 case TRANSCODER_A:
368 return HDCP_TRANSA_REP_PRESENT |
369 HDCP_TRANSA_SHA1_M0;
370 case TRANSCODER_B:
371 return HDCP_TRANSB_REP_PRESENT |
372 HDCP_TRANSB_SHA1_M0;
373 case TRANSCODER_C:
374 return HDCP_TRANSC_REP_PRESENT |
375 HDCP_TRANSC_SHA1_M0;
376 case TRANSCODER_D:
377 return HDCP_TRANSD_REP_PRESENT |
378 HDCP_TRANSD_SHA1_M0;
379 default:
380 drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
381 cpu_transcoder);
382 return -EINVAL;
383 }
384 }
385
386 switch (port) {
387 case PORT_A:
388 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
389 case PORT_B:
390 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
391 case PORT_C:
392 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
393 case PORT_D:
394 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
395 case PORT_E:
396 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
397 default:
398 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
399 return -EINVAL;
400 }
401}
402
403static
404int intel_hdcp_validate_v_prime(struct intel_connector *connector,
405 const struct intel_hdcp_shim *shim,
406 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
407{
408 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
409 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
410 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
411 enum port port = dig_port->base.port;
412 u32 vprime, sha_text, sha_leftovers, rep_ctl;
413 int ret, i, j, sha_idx;
414
415 /* Process V' values from the receiver */
416 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
417 ret = shim->read_v_prime_part(dig_port, i, &vprime);
418 if (ret)
419 return ret;
420 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
421 }
422
423 /*
424 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
425 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
426 * stream is written via the HDCP_SHA_TEXT register in 32-bit
427 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
428 * index will keep track of our progress through the 64 bytes as well as
429 * helping us work the 40-bit KSVs through our 32-bit register.
430 *
431 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
432 */
433 sha_idx = 0;
434 sha_text = 0;
435 sha_leftovers = 0;
436 rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
437 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
438 for (i = 0; i < num_downstream; i++) {
439 unsigned int sha_empty;
440 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
441
442 /* Fill up the empty slots in sha_text and write it out */
443 sha_empty = sizeof(sha_text) - sha_leftovers;
444 for (j = 0; j < sha_empty; j++) {
445 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
446 sha_text |= ksv[j] << off;
447 }
448
449 ret = intel_write_sha_text(dev_priv, sha_text);
450 if (ret < 0)
451 return ret;
452
453 /* Programming guide writes this every 64 bytes */
454 sha_idx += sizeof(sha_text);
455 if (!(sha_idx % 64))
456 intel_de_write(dev_priv, HDCP_REP_CTL,
457 rep_ctl | HDCP_SHA1_TEXT_32);
458
459 /* Store the leftover bytes from the ksv in sha_text */
460 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
461 sha_text = 0;
462 for (j = 0; j < sha_leftovers; j++)
463 sha_text |= ksv[sha_empty + j] <<
464 ((sizeof(sha_text) - j - 1) * 8);
465
466 /*
467 * If we still have room in sha_text for more data, continue.
468 * Otherwise, write it out immediately.
469 */
470 if (sizeof(sha_text) > sha_leftovers)
471 continue;
472
473 ret = intel_write_sha_text(dev_priv, sha_text);
474 if (ret < 0)
475 return ret;
476 sha_leftovers = 0;
477 sha_text = 0;
478 sha_idx += sizeof(sha_text);
479 }
480
481 /*
482 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
483 * bytes are leftover from the last ksv, we might be able to fit them
484 * all in sha_text (first 2 cases), or we might need to split them up
485 * into 2 writes (last 2 cases).
486 */
487 if (sha_leftovers == 0) {
488 /* Write 16 bits of text, 16 bits of M0 */
489 intel_de_write(dev_priv, HDCP_REP_CTL,
490 rep_ctl | HDCP_SHA1_TEXT_16);
491 ret = intel_write_sha_text(dev_priv,
492 bstatus[0] << 8 | bstatus[1]);
493 if (ret < 0)
494 return ret;
495 sha_idx += sizeof(sha_text);
496
497 /* Write 32 bits of M0 */
498 intel_de_write(dev_priv, HDCP_REP_CTL,
499 rep_ctl | HDCP_SHA1_TEXT_0);
500 ret = intel_write_sha_text(dev_priv, 0);
501 if (ret < 0)
502 return ret;
503 sha_idx += sizeof(sha_text);
504
505 /* Write 16 bits of M0 */
506 intel_de_write(dev_priv, HDCP_REP_CTL,
507 rep_ctl | HDCP_SHA1_TEXT_16);
508 ret = intel_write_sha_text(dev_priv, 0);
509 if (ret < 0)
510 return ret;
511 sha_idx += sizeof(sha_text);
512
513 } else if (sha_leftovers == 1) {
514 /* Write 24 bits of text, 8 bits of M0 */
515 intel_de_write(dev_priv, HDCP_REP_CTL,
516 rep_ctl | HDCP_SHA1_TEXT_24);
517 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
518 /* Only 24-bits of data, must be in the LSB */
519 sha_text = (sha_text & 0xffffff00) >> 8;
520 ret = intel_write_sha_text(dev_priv, sha_text);
521 if (ret < 0)
522 return ret;
523 sha_idx += sizeof(sha_text);
524
525 /* Write 32 bits of M0 */
526 intel_de_write(dev_priv, HDCP_REP_CTL,
527 rep_ctl | HDCP_SHA1_TEXT_0);
528 ret = intel_write_sha_text(dev_priv, 0);
529 if (ret < 0)
530 return ret;
531 sha_idx += sizeof(sha_text);
532
533 /* Write 24 bits of M0 */
534 intel_de_write(dev_priv, HDCP_REP_CTL,
535 rep_ctl | HDCP_SHA1_TEXT_8);
536 ret = intel_write_sha_text(dev_priv, 0);
537 if (ret < 0)
538 return ret;
539 sha_idx += sizeof(sha_text);
540
541 } else if (sha_leftovers == 2) {
542 /* Write 32 bits of text */
543 intel_de_write(dev_priv, HDCP_REP_CTL,
544 rep_ctl | HDCP_SHA1_TEXT_32);
545 sha_text |= bstatus[0] << 8 | bstatus[1];
546 ret = intel_write_sha_text(dev_priv, sha_text);
547 if (ret < 0)
548 return ret;
549 sha_idx += sizeof(sha_text);
550
551 /* Write 64 bits of M0 */
552 intel_de_write(dev_priv, HDCP_REP_CTL,
553 rep_ctl | HDCP_SHA1_TEXT_0);
554 for (i = 0; i < 2; i++) {
555 ret = intel_write_sha_text(dev_priv, 0);
556 if (ret < 0)
557 return ret;
558 sha_idx += sizeof(sha_text);
559 }
560
561 /*
562 * Terminate the SHA-1 stream by hand. For the other leftover
563 * cases this is appended by the hardware.
564 */
565 intel_de_write(dev_priv, HDCP_REP_CTL,
566 rep_ctl | HDCP_SHA1_TEXT_32);
567 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
568 ret = intel_write_sha_text(dev_priv, sha_text);
569 if (ret < 0)
570 return ret;
571 sha_idx += sizeof(sha_text);
572 } else if (sha_leftovers == 3) {
573 /* Write 32 bits of text (filled from LSB) */
574 intel_de_write(dev_priv, HDCP_REP_CTL,
575 rep_ctl | HDCP_SHA1_TEXT_32);
576 sha_text |= bstatus[0];
577 ret = intel_write_sha_text(dev_priv, sha_text);
578 if (ret < 0)
579 return ret;
580 sha_idx += sizeof(sha_text);
581
582 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
583 intel_de_write(dev_priv, HDCP_REP_CTL,
584 rep_ctl | HDCP_SHA1_TEXT_8);
585 ret = intel_write_sha_text(dev_priv, bstatus[1]);
586 if (ret < 0)
587 return ret;
588 sha_idx += sizeof(sha_text);
589
590 /* Write 32 bits of M0 */
591 intel_de_write(dev_priv, HDCP_REP_CTL,
592 rep_ctl | HDCP_SHA1_TEXT_0);
593 ret = intel_write_sha_text(dev_priv, 0);
594 if (ret < 0)
595 return ret;
596 sha_idx += sizeof(sha_text);
597
598 /* Write 8 bits of M0 */
599 intel_de_write(dev_priv, HDCP_REP_CTL,
600 rep_ctl | HDCP_SHA1_TEXT_24);
601 ret = intel_write_sha_text(dev_priv, 0);
602 if (ret < 0)
603 return ret;
604 sha_idx += sizeof(sha_text);
605 } else {
606 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
607 sha_leftovers);
608 return -EINVAL;
609 }
610
611 intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
612 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
613 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
614 ret = intel_write_sha_text(dev_priv, 0);
615 if (ret < 0)
616 return ret;
617 sha_idx += sizeof(sha_text);
618 }
619
620 /*
621 * Last write gets the length of the concatenation in bits. That is:
622 * - 5 bytes per device
623 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
624 */
625 sha_text = (num_downstream * 5 + 10) * 8;
626 ret = intel_write_sha_text(dev_priv, sha_text);
627 if (ret < 0)
628 return ret;
629
630 /* Tell the HW we're done with the hash and wait for it to ACK */
631 intel_de_write(dev_priv, HDCP_REP_CTL,
632 rep_ctl | HDCP_SHA1_COMPLETE_HASH);
633 if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
634 HDCP_SHA1_COMPLETE, 1)) {
635 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
636 return -ETIMEDOUT;
637 }
638 if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
639 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
640 return -ENXIO;
641 }
642
643 return 0;
644}
645
646/* Implements Part 2 of the HDCP authorization procedure */
647static
648int intel_hdcp_auth_downstream(struct intel_connector *connector)
649{
650 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
651 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
652 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
653 u8 bstatus[2], num_downstream, *ksv_fifo;
654 int ret, i, tries = 3;
655
656 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
657 if (ret) {
658 drm_dbg_kms(&dev_priv->drm,
659 "KSV list failed to become ready (%d)\n", ret);
660 return ret;
661 }
662
663 ret = shim->read_bstatus(dig_port, bstatus);
664 if (ret)
665 return ret;
666
667 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
668 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
669 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
670 return -EPERM;
671 }
672
673 /*
674 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
675 * the HDCP encryption. That implies that repeater can't have its own
676 * display. As there is no consumption of encrypted content in the
677 * repeater with 0 downstream devices, we are failing the
678 * authentication.
679 */
680 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
681 if (num_downstream == 0) {
682 drm_dbg_kms(&dev_priv->drm,
683 "Repeater with zero downstream devices\n");
684 return -EINVAL;
685 }
686
687 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
688 if (!ksv_fifo) {
689 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
690 return -ENOMEM;
691 }
692
693 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
694 if (ret)
695 goto err;
696
697 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
698 num_downstream) > 0) {
699 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
700 ret = -EPERM;
701 goto err;
702 }
703
704 /*
705 * When V prime mismatches, DP Spec mandates re-read of
706 * V prime atleast twice.
707 */
708 for (i = 0; i < tries; i++) {
709 ret = intel_hdcp_validate_v_prime(connector, shim,
710 ksv_fifo, num_downstream,
711 bstatus);
712 if (!ret)
713 break;
714 }
715
716 if (i == tries) {
717 drm_dbg_kms(&dev_priv->drm,
718 "V Prime validation failed.(%d)\n", ret);
719 goto err;
720 }
721
722 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
723 num_downstream);
724 ret = 0;
725err:
726 kfree(ksv_fifo);
727 return ret;
728}
729
730/* Implements Part 1 of the HDCP authorization procedure */
731static int intel_hdcp_auth(struct intel_connector *connector)
732{
733 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
734 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
735 struct intel_hdcp *hdcp = &connector->hdcp;
736 const struct intel_hdcp_shim *shim = hdcp->shim;
737 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
738 enum port port = dig_port->base.port;
739 unsigned long r0_prime_gen_start;
740 int ret, i, tries = 2;
741 union {
742 u32 reg[2];
743 u8 shim[DRM_HDCP_AN_LEN];
744 } an;
745 union {
746 u32 reg[2];
747 u8 shim[DRM_HDCP_KSV_LEN];
748 } bksv;
749 union {
750 u32 reg;
751 u8 shim[DRM_HDCP_RI_LEN];
752 } ri;
753 bool repeater_present, hdcp_capable;
754
755 /*
756 * Detects whether the display is HDCP capable. Although we check for
757 * valid Bksv below, the HDCP over DP spec requires that we check
758 * whether the display supports HDCP before we write An. For HDMI
759 * displays, this is not necessary.
760 */
761 if (shim->hdcp_capable) {
762 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
763 if (ret)
764 return ret;
765 if (!hdcp_capable) {
766 drm_dbg_kms(&dev_priv->drm,
767 "Panel is not HDCP capable\n");
768 return -EINVAL;
769 }
770 }
771
772 /* Initialize An with 2 random values and acquire it */
773 for (i = 0; i < 2; i++)
774 intel_de_write(dev_priv,
775 HDCP_ANINIT(dev_priv, cpu_transcoder, port),
776 get_random_u32());
777 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
778 HDCP_CONF_CAPTURE_AN);
779
780 /* Wait for An to be acquired */
781 if (intel_de_wait_for_set(dev_priv,
782 HDCP_STATUS(dev_priv, cpu_transcoder, port),
783 HDCP_STATUS_AN_READY, 1)) {
784 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
785 return -ETIMEDOUT;
786 }
787
788 an.reg[0] = intel_de_read(dev_priv,
789 HDCP_ANLO(dev_priv, cpu_transcoder, port));
790 an.reg[1] = intel_de_read(dev_priv,
791 HDCP_ANHI(dev_priv, cpu_transcoder, port));
792 ret = shim->write_an_aksv(dig_port, an.shim);
793 if (ret)
794 return ret;
795
796 r0_prime_gen_start = jiffies;
797
798 memset(&bksv, 0, sizeof(bksv));
799
800 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
801 if (ret < 0)
802 return ret;
803
804 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
805 drm_err(&dev_priv->drm, "BKSV is revoked\n");
806 return -EPERM;
807 }
808
809 intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
810 bksv.reg[0]);
811 intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
812 bksv.reg[1]);
813
814 ret = shim->repeater_present(dig_port, &repeater_present);
815 if (ret)
816 return ret;
817 if (repeater_present)
818 intel_de_write(dev_priv, HDCP_REP_CTL,
819 intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
820
821 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
822 if (ret)
823 return ret;
824
825 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
826 HDCP_CONF_AUTH_AND_ENC);
827
828 /* Wait for R0 ready */
829 if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
830 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
831 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
832 return -ETIMEDOUT;
833 }
834
835 /*
836 * Wait for R0' to become available. The spec says 100ms from Aksv, but
837 * some monitors can take longer than this. We'll set the timeout at
838 * 300ms just to be sure.
839 *
840 * On DP, there's an R0_READY bit available but no such bit
841 * exists on HDMI. Since the upper-bound is the same, we'll just do
842 * the stupid thing instead of polling on one and not the other.
843 */
844 wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
845
846 tries = 3;
847
848 /*
849 * DP HDCP Spec mandates the two more reattempt to read R0, incase
850 * of R0 mismatch.
851 */
852 for (i = 0; i < tries; i++) {
853 ri.reg = 0;
854 ret = shim->read_ri_prime(dig_port, ri.shim);
855 if (ret)
856 return ret;
857 intel_de_write(dev_priv,
858 HDCP_RPRIME(dev_priv, cpu_transcoder, port),
859 ri.reg);
860
861 /* Wait for Ri prime match */
862 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
863 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
864 break;
865 }
866
867 if (i == tries) {
868 drm_dbg_kms(&dev_priv->drm,
869 "Timed out waiting for Ri prime match (%x)\n",
870 intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
871 cpu_transcoder, port)));
872 return -ETIMEDOUT;
873 }
874
875 /* Wait for encryption confirmation */
876 if (intel_de_wait_for_set(dev_priv,
877 HDCP_STATUS(dev_priv, cpu_transcoder, port),
878 HDCP_STATUS_ENC,
879 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
880 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
881 return -ETIMEDOUT;
882 }
883
884 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
885 if (shim->stream_encryption) {
886 ret = shim->stream_encryption(connector, true);
887 if (ret) {
888 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
889 connector->base.name, connector->base.base.id);
890 return ret;
891 }
892 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
893 transcoder_name(hdcp->stream_transcoder));
894 }
895
896 if (repeater_present)
897 return intel_hdcp_auth_downstream(connector);
898
899 drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
900 return 0;
901}
902
903static int _intel_hdcp_disable(struct intel_connector *connector)
904{
905 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
906 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
907 struct intel_hdcp *hdcp = &connector->hdcp;
908 enum port port = dig_port->base.port;
909 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
910 u32 repeater_ctl;
911 int ret;
912
913 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
914 connector->base.name, connector->base.base.id);
915
916 if (hdcp->shim->stream_encryption) {
917 ret = hdcp->shim->stream_encryption(connector, false);
918 if (ret) {
919 drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
920 connector->base.name, connector->base.base.id);
921 return ret;
922 }
923 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
924 transcoder_name(hdcp->stream_transcoder));
925 /*
926 * If there are other connectors on this port using HDCP,
927 * don't disable it until it disabled HDCP encryption for
928 * all connectors in MST topology.
929 */
930 if (dig_port->num_hdcp_streams > 0)
931 return 0;
932 }
933
934 hdcp->hdcp_encrypted = false;
935 intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
936 if (intel_de_wait_for_clear(dev_priv,
937 HDCP_STATUS(dev_priv, cpu_transcoder, port),
938 ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
939 drm_err(&dev_priv->drm,
940 "Failed to disable HDCP, timeout clearing status\n");
941 return -ETIMEDOUT;
942 }
943
944 repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
945 port);
946 intel_de_write(dev_priv, HDCP_REP_CTL,
947 intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
948
949 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
950 if (ret) {
951 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
952 return ret;
953 }
954
955 drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
956 return 0;
957}
958
959static int _intel_hdcp_enable(struct intel_connector *connector)
960{
961 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
962 struct intel_hdcp *hdcp = &connector->hdcp;
963 int i, ret, tries = 3;
964
965 drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
966 connector->base.name, connector->base.base.id);
967
968 if (!hdcp_key_loadable(dev_priv)) {
969 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
970 return -ENXIO;
971 }
972
973 for (i = 0; i < KEY_LOAD_TRIES; i++) {
974 ret = intel_hdcp_load_keys(dev_priv);
975 if (!ret)
976 break;
977 intel_hdcp_clear_keys(dev_priv);
978 }
979 if (ret) {
980 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
981 ret);
982 return ret;
983 }
984
985 /* Incase of authentication failures, HDCP spec expects reauth. */
986 for (i = 0; i < tries; i++) {
987 ret = intel_hdcp_auth(connector);
988 if (!ret) {
989 hdcp->hdcp_encrypted = true;
990 return 0;
991 }
992
993 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
994
995 /* Ensuring HDCP encryption and signalling are stopped. */
996 _intel_hdcp_disable(connector);
997 }
998
999 drm_dbg_kms(&dev_priv->drm,
1000 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1001 return ret;
1002}
1003
1004static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1005{
1006 return container_of(hdcp, struct intel_connector, hdcp);
1007}
1008
1009static void intel_hdcp_update_value(struct intel_connector *connector,
1010 u64 value, bool update_property)
1011{
1012 struct drm_device *dev = connector->base.dev;
1013 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1014 struct intel_hdcp *hdcp = &connector->hdcp;
1015
1016 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1017
1018 if (hdcp->value == value)
1019 return;
1020
1021 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1022
1023 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1024 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1025 dig_port->num_hdcp_streams--;
1026 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1027 dig_port->num_hdcp_streams++;
1028 }
1029
1030 hdcp->value = value;
1031 if (update_property) {
1032 drm_connector_get(&connector->base);
1033 schedule_work(&hdcp->prop_work);
1034 }
1035}
1036
1037/* Implements Part 3 of the HDCP authorization procedure */
1038static int intel_hdcp_check_link(struct intel_connector *connector)
1039{
1040 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1041 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1042 struct intel_hdcp *hdcp = &connector->hdcp;
1043 enum port port = dig_port->base.port;
1044 enum transcoder cpu_transcoder;
1045 int ret = 0;
1046
1047 mutex_lock(&hdcp->mutex);
1048 mutex_lock(&dig_port->hdcp_mutex);
1049
1050 cpu_transcoder = hdcp->cpu_transcoder;
1051
1052 /* Check_link valid only when HDCP1.4 is enabled */
1053 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1054 !hdcp->hdcp_encrypted) {
1055 ret = -EINVAL;
1056 goto out;
1057 }
1058
1059 if (drm_WARN_ON(&dev_priv->drm,
1060 !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1061 drm_err(&dev_priv->drm,
1062 "%s:%d HDCP link stopped encryption,%x\n",
1063 connector->base.name, connector->base.base.id,
1064 intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1065 ret = -ENXIO;
1066 intel_hdcp_update_value(connector,
1067 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1068 true);
1069 goto out;
1070 }
1071
1072 if (hdcp->shim->check_link(dig_port, connector)) {
1073 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1074 intel_hdcp_update_value(connector,
1075 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1076 }
1077 goto out;
1078 }
1079
1080 drm_dbg_kms(&dev_priv->drm,
1081 "[%s:%d] HDCP link failed, retrying authentication\n",
1082 connector->base.name, connector->base.base.id);
1083
1084 ret = _intel_hdcp_disable(connector);
1085 if (ret) {
1086 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1087 intel_hdcp_update_value(connector,
1088 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1089 true);
1090 goto out;
1091 }
1092
1093 ret = _intel_hdcp_enable(connector);
1094 if (ret) {
1095 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1096 intel_hdcp_update_value(connector,
1097 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1098 true);
1099 goto out;
1100 }
1101
1102out:
1103 mutex_unlock(&dig_port->hdcp_mutex);
1104 mutex_unlock(&hdcp->mutex);
1105 return ret;
1106}
1107
1108static void intel_hdcp_prop_work(struct work_struct *work)
1109{
1110 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1111 prop_work);
1112 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1113 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1114
1115 drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1116 mutex_lock(&hdcp->mutex);
1117
1118 /*
1119 * This worker is only used to flip between ENABLED/DESIRED. Either of
1120 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1121 * we're running just after hdcp has been disabled, so just exit
1122 */
1123 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1124 drm_hdcp_update_content_protection(&connector->base,
1125 hdcp->value);
1126
1127 mutex_unlock(&hdcp->mutex);
1128 drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1129
1130 drm_connector_put(&connector->base);
1131}
1132
1133bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1134{
1135 return RUNTIME_INFO(dev_priv)->has_hdcp &&
1136 (DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1137}
1138
1139static int
1140hdcp2_prepare_ake_init(struct intel_connector *connector,
1141 struct hdcp2_ake_init *ake_data)
1142{
1143 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1144 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1145 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1146 struct i915_hdcp_comp_master *comp;
1147 int ret;
1148
1149 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1150 comp = dev_priv->display.hdcp.master;
1151
1152 if (!comp || !comp->ops) {
1153 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1154 return -EINVAL;
1155 }
1156
1157 ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1158 if (ret)
1159 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1160 ret);
1161 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1162
1163 return ret;
1164}
1165
1166static int
1167hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1168 struct hdcp2_ake_send_cert *rx_cert,
1169 bool *paired,
1170 struct hdcp2_ake_no_stored_km *ek_pub_km,
1171 size_t *msg_sz)
1172{
1173 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1176 struct i915_hdcp_comp_master *comp;
1177 int ret;
1178
1179 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1180 comp = dev_priv->display.hdcp.master;
1181
1182 if (!comp || !comp->ops) {
1183 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1184 return -EINVAL;
1185 }
1186
1187 ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1188 rx_cert, paired,
1189 ek_pub_km, msg_sz);
1190 if (ret < 0)
1191 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1192 ret);
1193 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1194
1195 return ret;
1196}
1197
1198static int hdcp2_verify_hprime(struct intel_connector *connector,
1199 struct hdcp2_ake_send_hprime *rx_hprime)
1200{
1201 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1202 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1203 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1204 struct i915_hdcp_comp_master *comp;
1205 int ret;
1206
1207 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1208 comp = dev_priv->display.hdcp.master;
1209
1210 if (!comp || !comp->ops) {
1211 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1212 return -EINVAL;
1213 }
1214
1215 ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1216 if (ret < 0)
1217 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1218 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1219
1220 return ret;
1221}
1222
1223static int
1224hdcp2_store_pairing_info(struct intel_connector *connector,
1225 struct hdcp2_ake_send_pairing_info *pairing_info)
1226{
1227 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1228 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1229 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1230 struct i915_hdcp_comp_master *comp;
1231 int ret;
1232
1233 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1234 comp = dev_priv->display.hdcp.master;
1235
1236 if (!comp || !comp->ops) {
1237 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1238 return -EINVAL;
1239 }
1240
1241 ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1242 if (ret < 0)
1243 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1244 ret);
1245 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1246
1247 return ret;
1248}
1249
1250static int
1251hdcp2_prepare_lc_init(struct intel_connector *connector,
1252 struct hdcp2_lc_init *lc_init)
1253{
1254 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1256 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1257 struct i915_hdcp_comp_master *comp;
1258 int ret;
1259
1260 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1261 comp = dev_priv->display.hdcp.master;
1262
1263 if (!comp || !comp->ops) {
1264 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1265 return -EINVAL;
1266 }
1267
1268 ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1269 if (ret < 0)
1270 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1271 ret);
1272 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1273
1274 return ret;
1275}
1276
1277static int
1278hdcp2_verify_lprime(struct intel_connector *connector,
1279 struct hdcp2_lc_send_lprime *rx_lprime)
1280{
1281 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1282 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1283 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1284 struct i915_hdcp_comp_master *comp;
1285 int ret;
1286
1287 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1288 comp = dev_priv->display.hdcp.master;
1289
1290 if (!comp || !comp->ops) {
1291 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1292 return -EINVAL;
1293 }
1294
1295 ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1296 if (ret < 0)
1297 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1298 ret);
1299 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1300
1301 return ret;
1302}
1303
1304static int hdcp2_prepare_skey(struct intel_connector *connector,
1305 struct hdcp2_ske_send_eks *ske_data)
1306{
1307 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1308 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1309 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1310 struct i915_hdcp_comp_master *comp;
1311 int ret;
1312
1313 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1314 comp = dev_priv->display.hdcp.master;
1315
1316 if (!comp || !comp->ops) {
1317 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1318 return -EINVAL;
1319 }
1320
1321 ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1322 if (ret < 0)
1323 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1324 ret);
1325 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1326
1327 return ret;
1328}
1329
1330static int
1331hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1332 struct hdcp2_rep_send_receiverid_list
1333 *rep_topology,
1334 struct hdcp2_rep_send_ack *rep_send_ack)
1335{
1336 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1337 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1338 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1339 struct i915_hdcp_comp_master *comp;
1340 int ret;
1341
1342 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1343 comp = dev_priv->display.hdcp.master;
1344
1345 if (!comp || !comp->ops) {
1346 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1347 return -EINVAL;
1348 }
1349
1350 ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1351 rep_topology,
1352 rep_send_ack);
1353 if (ret < 0)
1354 drm_dbg_kms(&dev_priv->drm,
1355 "Verify rep topology failed. %d\n", ret);
1356 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1357
1358 return ret;
1359}
1360
1361static int
1362hdcp2_verify_mprime(struct intel_connector *connector,
1363 struct hdcp2_rep_stream_ready *stream_ready)
1364{
1365 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1366 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1367 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1368 struct i915_hdcp_comp_master *comp;
1369 int ret;
1370
1371 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1372 comp = dev_priv->display.hdcp.master;
1373
1374 if (!comp || !comp->ops) {
1375 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1376 return -EINVAL;
1377 }
1378
1379 ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1380 if (ret < 0)
1381 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1382 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1383
1384 return ret;
1385}
1386
1387static int hdcp2_authenticate_port(struct intel_connector *connector)
1388{
1389 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1390 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1391 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1392 struct i915_hdcp_comp_master *comp;
1393 int ret;
1394
1395 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1396 comp = dev_priv->display.hdcp.master;
1397
1398 if (!comp || !comp->ops) {
1399 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1400 return -EINVAL;
1401 }
1402
1403 ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1404 if (ret < 0)
1405 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1406 ret);
1407 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1408
1409 return ret;
1410}
1411
1412static int hdcp2_close_mei_session(struct intel_connector *connector)
1413{
1414 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1415 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1416 struct i915_hdcp_comp_master *comp;
1417 int ret;
1418
1419 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
1420 comp = dev_priv->display.hdcp.master;
1421
1422 if (!comp || !comp->ops) {
1423 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1424 return -EINVAL;
1425 }
1426
1427 ret = comp->ops->close_hdcp_session(comp->mei_dev,
1428 &dig_port->hdcp_port_data);
1429 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
1430
1431 return ret;
1432}
1433
1434static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1435{
1436 return hdcp2_close_mei_session(connector);
1437}
1438
1439/* Authentication flow starts from here */
1440static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1441{
1442 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1443 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1444 struct intel_hdcp *hdcp = &connector->hdcp;
1445 union {
1446 struct hdcp2_ake_init ake_init;
1447 struct hdcp2_ake_send_cert send_cert;
1448 struct hdcp2_ake_no_stored_km no_stored_km;
1449 struct hdcp2_ake_send_hprime send_hprime;
1450 struct hdcp2_ake_send_pairing_info pairing_info;
1451 } msgs;
1452 const struct intel_hdcp_shim *shim = hdcp->shim;
1453 size_t size;
1454 int ret;
1455
1456 /* Init for seq_num */
1457 hdcp->seq_num_v = 0;
1458 hdcp->seq_num_m = 0;
1459
1460 ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1461 if (ret < 0)
1462 return ret;
1463
1464 ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1465 sizeof(msgs.ake_init));
1466 if (ret < 0)
1467 return ret;
1468
1469 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1470 &msgs.send_cert, sizeof(msgs.send_cert));
1471 if (ret < 0)
1472 return ret;
1473
1474 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1475 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1476 return -EINVAL;
1477 }
1478
1479 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1480
1481 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1482 msgs.send_cert.cert_rx.receiver_id,
1483 1) > 0) {
1484 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1485 return -EPERM;
1486 }
1487
1488 /*
1489 * Here msgs.no_stored_km will hold msgs corresponding to the km
1490 * stored also.
1491 */
1492 ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1493 &hdcp->is_paired,
1494 &msgs.no_stored_km, &size);
1495 if (ret < 0)
1496 return ret;
1497
1498 ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1499 if (ret < 0)
1500 return ret;
1501
1502 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1503 &msgs.send_hprime, sizeof(msgs.send_hprime));
1504 if (ret < 0)
1505 return ret;
1506
1507 ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1508 if (ret < 0)
1509 return ret;
1510
1511 if (!hdcp->is_paired) {
1512 /* Pairing is required */
1513 ret = shim->read_2_2_msg(dig_port,
1514 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1515 &msgs.pairing_info,
1516 sizeof(msgs.pairing_info));
1517 if (ret < 0)
1518 return ret;
1519
1520 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1521 if (ret < 0)
1522 return ret;
1523 hdcp->is_paired = true;
1524 }
1525
1526 return 0;
1527}
1528
1529static int hdcp2_locality_check(struct intel_connector *connector)
1530{
1531 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1532 struct intel_hdcp *hdcp = &connector->hdcp;
1533 union {
1534 struct hdcp2_lc_init lc_init;
1535 struct hdcp2_lc_send_lprime send_lprime;
1536 } msgs;
1537 const struct intel_hdcp_shim *shim = hdcp->shim;
1538 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1539
1540 for (i = 0; i < tries; i++) {
1541 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1542 if (ret < 0)
1543 continue;
1544
1545 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1546 sizeof(msgs.lc_init));
1547 if (ret < 0)
1548 continue;
1549
1550 ret = shim->read_2_2_msg(dig_port,
1551 HDCP_2_2_LC_SEND_LPRIME,
1552 &msgs.send_lprime,
1553 sizeof(msgs.send_lprime));
1554 if (ret < 0)
1555 continue;
1556
1557 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1558 if (!ret)
1559 break;
1560 }
1561
1562 return ret;
1563}
1564
1565static int hdcp2_session_key_exchange(struct intel_connector *connector)
1566{
1567 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1568 struct intel_hdcp *hdcp = &connector->hdcp;
1569 struct hdcp2_ske_send_eks send_eks;
1570 int ret;
1571
1572 ret = hdcp2_prepare_skey(connector, &send_eks);
1573 if (ret < 0)
1574 return ret;
1575
1576 ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1577 sizeof(send_eks));
1578 if (ret < 0)
1579 return ret;
1580
1581 return 0;
1582}
1583
1584static
1585int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1586{
1587 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1588 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1589 struct intel_hdcp *hdcp = &connector->hdcp;
1590 union {
1591 struct hdcp2_rep_stream_manage stream_manage;
1592 struct hdcp2_rep_stream_ready stream_ready;
1593 } msgs;
1594 const struct intel_hdcp_shim *shim = hdcp->shim;
1595 int ret, streams_size_delta, i;
1596
1597 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1598 return -ERANGE;
1599
1600 /* Prepare RepeaterAuth_Stream_Manage msg */
1601 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1602 drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1603
1604 msgs.stream_manage.k = cpu_to_be16(data->k);
1605
1606 for (i = 0; i < data->k; i++) {
1607 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1608 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1609 }
1610
1611 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1612 sizeof(struct hdcp2_streamid_type);
1613 /* Send it to Repeater */
1614 ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1615 sizeof(msgs.stream_manage) - streams_size_delta);
1616 if (ret < 0)
1617 goto out;
1618
1619 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1620 &msgs.stream_ready, sizeof(msgs.stream_ready));
1621 if (ret < 0)
1622 goto out;
1623
1624 data->seq_num_m = hdcp->seq_num_m;
1625
1626 ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1627
1628out:
1629 hdcp->seq_num_m++;
1630
1631 return ret;
1632}
1633
1634static
1635int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1636{
1637 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1638 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1639 struct intel_hdcp *hdcp = &connector->hdcp;
1640 union {
1641 struct hdcp2_rep_send_receiverid_list recvid_list;
1642 struct hdcp2_rep_send_ack rep_ack;
1643 } msgs;
1644 const struct intel_hdcp_shim *shim = hdcp->shim;
1645 u32 seq_num_v, device_cnt;
1646 u8 *rx_info;
1647 int ret;
1648
1649 ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1650 &msgs.recvid_list, sizeof(msgs.recvid_list));
1651 if (ret < 0)
1652 return ret;
1653
1654 rx_info = msgs.recvid_list.rx_info;
1655
1656 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1657 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1658 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1659 return -EINVAL;
1660 }
1661
1662 /*
1663 * MST topology is not Type 1 capable if it contains a downstream
1664 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1665 */
1666 dig_port->hdcp_mst_type1_capable =
1667 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1668 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1669
1670 /* Converting and Storing the seq_num_v to local variable as DWORD */
1671 seq_num_v =
1672 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1673
1674 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1675 drm_dbg_kms(&dev_priv->drm,
1676 "Non zero Seq_num_v at first RecvId_List msg\n");
1677 return -EINVAL;
1678 }
1679
1680 if (seq_num_v < hdcp->seq_num_v) {
1681 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1682 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1683 return -EINVAL;
1684 }
1685
1686 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1687 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1688 if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1689 msgs.recvid_list.receiver_ids,
1690 device_cnt) > 0) {
1691 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1692 return -EPERM;
1693 }
1694
1695 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1696 &msgs.recvid_list,
1697 &msgs.rep_ack);
1698 if (ret < 0)
1699 return ret;
1700
1701 hdcp->seq_num_v = seq_num_v;
1702 ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1703 sizeof(msgs.rep_ack));
1704 if (ret < 0)
1705 return ret;
1706
1707 return 0;
1708}
1709
1710static int hdcp2_authenticate_sink(struct intel_connector *connector)
1711{
1712 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1713 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1714 struct intel_hdcp *hdcp = &connector->hdcp;
1715 const struct intel_hdcp_shim *shim = hdcp->shim;
1716 int ret;
1717
1718 ret = hdcp2_authentication_key_exchange(connector);
1719 if (ret < 0) {
1720 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1721 return ret;
1722 }
1723
1724 ret = hdcp2_locality_check(connector);
1725 if (ret < 0) {
1726 drm_dbg_kms(&i915->drm,
1727 "Locality Check failed. Err : %d\n", ret);
1728 return ret;
1729 }
1730
1731 ret = hdcp2_session_key_exchange(connector);
1732 if (ret < 0) {
1733 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1734 return ret;
1735 }
1736
1737 if (shim->config_stream_type) {
1738 ret = shim->config_stream_type(dig_port,
1739 hdcp->is_repeater,
1740 hdcp->content_type);
1741 if (ret < 0)
1742 return ret;
1743 }
1744
1745 if (hdcp->is_repeater) {
1746 ret = hdcp2_authenticate_repeater_topology(connector);
1747 if (ret < 0) {
1748 drm_dbg_kms(&i915->drm,
1749 "Repeater Auth Failed. Err: %d\n", ret);
1750 return ret;
1751 }
1752 }
1753
1754 return ret;
1755}
1756
1757static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1758{
1759 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1760 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1761 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1762 struct intel_hdcp *hdcp = &connector->hdcp;
1763 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1764 enum port port = dig_port->base.port;
1765 int ret = 0;
1766
1767 if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1768 LINK_ENCRYPTION_STATUS)) {
1769 drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1770 connector->base.name, connector->base.base.id);
1771 ret = -EPERM;
1772 goto link_recover;
1773 }
1774
1775 if (hdcp->shim->stream_2_2_encryption) {
1776 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1777 if (ret) {
1778 drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1779 connector->base.name, connector->base.base.id);
1780 return ret;
1781 }
1782 drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1783 transcoder_name(hdcp->stream_transcoder));
1784 }
1785
1786 return 0;
1787
1788link_recover:
1789 if (hdcp2_deauthenticate_port(connector) < 0)
1790 drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1791
1792 dig_port->hdcp_auth_status = false;
1793 data->k = 0;
1794
1795 return ret;
1796}
1797
1798static int hdcp2_enable_encryption(struct intel_connector *connector)
1799{
1800 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1801 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1802 struct intel_hdcp *hdcp = &connector->hdcp;
1803 enum port port = dig_port->base.port;
1804 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1805 int ret;
1806
1807 drm_WARN_ON(&dev_priv->drm,
1808 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1809 LINK_ENCRYPTION_STATUS);
1810 if (hdcp->shim->toggle_signalling) {
1811 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1812 true);
1813 if (ret) {
1814 drm_err(&dev_priv->drm,
1815 "Failed to enable HDCP signalling. %d\n",
1816 ret);
1817 return ret;
1818 }
1819 }
1820
1821 if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1822 LINK_AUTH_STATUS) {
1823 /* Link is Authenticated. Now set for Encryption */
1824 intel_de_write(dev_priv,
1825 HDCP2_CTL(dev_priv, cpu_transcoder, port),
1826 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1827 }
1828
1829 ret = intel_de_wait_for_set(dev_priv,
1830 HDCP2_STATUS(dev_priv, cpu_transcoder,
1831 port),
1832 LINK_ENCRYPTION_STATUS,
1833 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1834 dig_port->hdcp_auth_status = true;
1835
1836 return ret;
1837}
1838
1839static int hdcp2_disable_encryption(struct intel_connector *connector)
1840{
1841 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1842 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1843 struct intel_hdcp *hdcp = &connector->hdcp;
1844 enum port port = dig_port->base.port;
1845 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1846 int ret;
1847
1848 drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1849 LINK_ENCRYPTION_STATUS));
1850
1851 intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1852 intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1853
1854 ret = intel_de_wait_for_clear(dev_priv,
1855 HDCP2_STATUS(dev_priv, cpu_transcoder,
1856 port),
1857 LINK_ENCRYPTION_STATUS,
1858 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1859 if (ret == -ETIMEDOUT)
1860 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1861
1862 if (hdcp->shim->toggle_signalling) {
1863 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1864 false);
1865 if (ret) {
1866 drm_err(&dev_priv->drm,
1867 "Failed to disable HDCP signalling. %d\n",
1868 ret);
1869 return ret;
1870 }
1871 }
1872
1873 return ret;
1874}
1875
1876static int
1877hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1878{
1879 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1880 int i, tries = 3, ret;
1881
1882 if (!connector->hdcp.is_repeater)
1883 return 0;
1884
1885 for (i = 0; i < tries; i++) {
1886 ret = _hdcp2_propagate_stream_management_info(connector);
1887 if (!ret)
1888 break;
1889
1890 /* Lets restart the auth incase of seq_num_m roll over */
1891 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1892 drm_dbg_kms(&i915->drm,
1893 "seq_num_m roll over.(%d)\n", ret);
1894 break;
1895 }
1896
1897 drm_dbg_kms(&i915->drm,
1898 "HDCP2 stream management %d of %d Failed.(%d)\n",
1899 i + 1, tries, ret);
1900 }
1901
1902 return ret;
1903}
1904
1905static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1906{
1907 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1908 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1909 int ret = 0, i, tries = 3;
1910
1911 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1912 ret = hdcp2_authenticate_sink(connector);
1913 if (!ret) {
1914 ret = intel_hdcp_prepare_streams(connector);
1915 if (ret) {
1916 drm_dbg_kms(&i915->drm,
1917 "Prepare streams failed.(%d)\n",
1918 ret);
1919 break;
1920 }
1921
1922 ret = hdcp2_propagate_stream_management_info(connector);
1923 if (ret) {
1924 drm_dbg_kms(&i915->drm,
1925 "Stream management failed.(%d)\n",
1926 ret);
1927 break;
1928 }
1929
1930 ret = hdcp2_authenticate_port(connector);
1931 if (!ret)
1932 break;
1933 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1934 ret);
1935 }
1936
1937 /* Clearing the mei hdcp session */
1938 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1939 i + 1, tries, ret);
1940 if (hdcp2_deauthenticate_port(connector) < 0)
1941 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1942 }
1943
1944 if (!ret && !dig_port->hdcp_auth_status) {
1945 /*
1946 * Ensuring the required 200mSec min time interval between
1947 * Session Key Exchange and encryption.
1948 */
1949 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1950 ret = hdcp2_enable_encryption(connector);
1951 if (ret < 0) {
1952 drm_dbg_kms(&i915->drm,
1953 "Encryption Enable Failed.(%d)\n", ret);
1954 if (hdcp2_deauthenticate_port(connector) < 0)
1955 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1956 }
1957 }
1958
1959 if (!ret)
1960 ret = hdcp2_enable_stream_encryption(connector);
1961
1962 return ret;
1963}
1964
1965static int _intel_hdcp2_enable(struct intel_connector *connector)
1966{
1967 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1968 struct intel_hdcp *hdcp = &connector->hdcp;
1969 int ret;
1970
1971 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1972 connector->base.name, connector->base.base.id,
1973 hdcp->content_type);
1974
1975 ret = hdcp2_authenticate_and_encrypt(connector);
1976 if (ret) {
1977 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
1978 hdcp->content_type, ret);
1979 return ret;
1980 }
1981
1982 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1983 connector->base.name, connector->base.base.id,
1984 hdcp->content_type);
1985
1986 hdcp->hdcp2_encrypted = true;
1987 return 0;
1988}
1989
1990static int
1991_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1992{
1993 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1994 struct drm_i915_private *i915 = to_i915(connector->base.dev);
1995 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1996 struct intel_hdcp *hdcp = &connector->hdcp;
1997 int ret;
1998
1999 drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
2000 connector->base.name, connector->base.base.id);
2001
2002 if (hdcp->shim->stream_2_2_encryption) {
2003 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2004 if (ret) {
2005 drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
2006 connector->base.name, connector->base.base.id);
2007 return ret;
2008 }
2009 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2010 transcoder_name(hdcp->stream_transcoder));
2011
2012 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2013 return 0;
2014 }
2015
2016 ret = hdcp2_disable_encryption(connector);
2017
2018 if (hdcp2_deauthenticate_port(connector) < 0)
2019 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2020
2021 connector->hdcp.hdcp2_encrypted = false;
2022 dig_port->hdcp_auth_status = false;
2023 data->k = 0;
2024
2025 return ret;
2026}
2027
2028/* Implements the Link Integrity Check for HDCP2.2 */
2029static int intel_hdcp2_check_link(struct intel_connector *connector)
2030{
2031 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2032 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2033 struct intel_hdcp *hdcp = &connector->hdcp;
2034 enum port port = dig_port->base.port;
2035 enum transcoder cpu_transcoder;
2036 int ret = 0;
2037
2038 mutex_lock(&hdcp->mutex);
2039 mutex_lock(&dig_port->hdcp_mutex);
2040 cpu_transcoder = hdcp->cpu_transcoder;
2041
2042 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2043 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2044 !hdcp->hdcp2_encrypted) {
2045 ret = -EINVAL;
2046 goto out;
2047 }
2048
2049 if (drm_WARN_ON(&dev_priv->drm,
2050 !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2051 drm_err(&dev_priv->drm,
2052 "HDCP2.2 link stopped the encryption, %x\n",
2053 intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2054 ret = -ENXIO;
2055 _intel_hdcp2_disable(connector, true);
2056 intel_hdcp_update_value(connector,
2057 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2058 true);
2059 goto out;
2060 }
2061
2062 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2063 if (ret == HDCP_LINK_PROTECTED) {
2064 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2065 intel_hdcp_update_value(connector,
2066 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2067 true);
2068 }
2069 goto out;
2070 }
2071
2072 if (ret == HDCP_TOPOLOGY_CHANGE) {
2073 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2074 goto out;
2075
2076 drm_dbg_kms(&dev_priv->drm,
2077 "HDCP2.2 Downstream topology change\n");
2078 ret = hdcp2_authenticate_repeater_topology(connector);
2079 if (!ret) {
2080 intel_hdcp_update_value(connector,
2081 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2082 true);
2083 goto out;
2084 }
2085 drm_dbg_kms(&dev_priv->drm,
2086 "[%s:%d] Repeater topology auth failed.(%d)\n",
2087 connector->base.name, connector->base.base.id,
2088 ret);
2089 } else {
2090 drm_dbg_kms(&dev_priv->drm,
2091 "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2092 connector->base.name, connector->base.base.id);
2093 }
2094
2095 ret = _intel_hdcp2_disable(connector, true);
2096 if (ret) {
2097 drm_err(&dev_priv->drm,
2098 "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2099 connector->base.name, connector->base.base.id, ret);
2100 intel_hdcp_update_value(connector,
2101 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2102 goto out;
2103 }
2104
2105 ret = _intel_hdcp2_enable(connector);
2106 if (ret) {
2107 drm_dbg_kms(&dev_priv->drm,
2108 "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2109 connector->base.name, connector->base.base.id,
2110 ret);
2111 intel_hdcp_update_value(connector,
2112 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2113 true);
2114 goto out;
2115 }
2116
2117out:
2118 mutex_unlock(&dig_port->hdcp_mutex);
2119 mutex_unlock(&hdcp->mutex);
2120 return ret;
2121}
2122
2123static void intel_hdcp_check_work(struct work_struct *work)
2124{
2125 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2126 struct intel_hdcp,
2127 check_work);
2128 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2129
2130 if (drm_connector_is_unregistered(&connector->base))
2131 return;
2132
2133 if (!intel_hdcp2_check_link(connector))
2134 schedule_delayed_work(&hdcp->check_work,
2135 DRM_HDCP2_CHECK_PERIOD_MS);
2136 else if (!intel_hdcp_check_link(connector))
2137 schedule_delayed_work(&hdcp->check_work,
2138 DRM_HDCP_CHECK_PERIOD_MS);
2139}
2140
2141static int i915_hdcp_component_bind(struct device *i915_kdev,
2142 struct device *mei_kdev, void *data)
2143{
2144 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2145
2146 drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2147 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2148 dev_priv->display.hdcp.master = (struct i915_hdcp_comp_master *)data;
2149 dev_priv->display.hdcp.master->mei_dev = mei_kdev;
2150 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2151
2152 return 0;
2153}
2154
2155static void i915_hdcp_component_unbind(struct device *i915_kdev,
2156 struct device *mei_kdev, void *data)
2157{
2158 struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2159
2160 drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2161 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2162 dev_priv->display.hdcp.master = NULL;
2163 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2164}
2165
2166static const struct component_ops i915_hdcp_component_ops = {
2167 .bind = i915_hdcp_component_bind,
2168 .unbind = i915_hdcp_component_unbind,
2169};
2170
2171static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2172{
2173 switch (port) {
2174 case PORT_A:
2175 return MEI_DDI_A;
2176 case PORT_B ... PORT_F:
2177 return (enum mei_fw_ddi)port;
2178 default:
2179 return MEI_DDI_INVALID_PORT;
2180 }
2181}
2182
2183static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2184{
2185 switch (cpu_transcoder) {
2186 case TRANSCODER_A ... TRANSCODER_D:
2187 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2188 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2189 return MEI_INVALID_TRANSCODER;
2190 }
2191}
2192
2193static int initialize_hdcp_port_data(struct intel_connector *connector,
2194 struct intel_digital_port *dig_port,
2195 const struct intel_hdcp_shim *shim)
2196{
2197 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2198 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2199 struct intel_hdcp *hdcp = &connector->hdcp;
2200 enum port port = dig_port->base.port;
2201
2202 if (DISPLAY_VER(dev_priv) < 12)
2203 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2204 else
2205 /*
2206 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2207 * with zero(INVALID PORT index).
2208 */
2209 data->fw_ddi = MEI_DDI_INVALID_PORT;
2210
2211 /*
2212 * As associated transcoder is set and modified at modeset, here fw_tc
2213 * is initialized to zero (invalid transcoder index). This will be
2214 * retained for <Gen12 forever.
2215 */
2216 data->fw_tc = MEI_INVALID_TRANSCODER;
2217
2218 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2219 data->protocol = (u8)shim->protocol;
2220
2221 if (!data->streams)
2222 data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2223 sizeof(struct hdcp2_streamid_type),
2224 GFP_KERNEL);
2225 if (!data->streams) {
2226 drm_err(&dev_priv->drm, "Out of Memory\n");
2227 return -ENOMEM;
2228 }
2229 /* For SST */
2230 data->streams[0].stream_id = 0;
2231 data->streams[0].stream_type = hdcp->content_type;
2232
2233 return 0;
2234}
2235
2236static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2237{
2238 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2239 return false;
2240
2241 return (DISPLAY_VER(dev_priv) >= 10 ||
2242 IS_KABYLAKE(dev_priv) ||
2243 IS_COFFEELAKE(dev_priv) ||
2244 IS_COMETLAKE(dev_priv));
2245}
2246
2247void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2248{
2249 int ret;
2250
2251 if (!is_hdcp2_supported(dev_priv))
2252 return;
2253
2254 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2255 drm_WARN_ON(&dev_priv->drm, dev_priv->display.hdcp.comp_added);
2256
2257 dev_priv->display.hdcp.comp_added = true;
2258 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2259 ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2260 I915_COMPONENT_HDCP);
2261 if (ret < 0) {
2262 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2263 ret);
2264 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2265 dev_priv->display.hdcp.comp_added = false;
2266 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2267 return;
2268 }
2269}
2270
2271static void intel_hdcp2_init(struct intel_connector *connector,
2272 struct intel_digital_port *dig_port,
2273 const struct intel_hdcp_shim *shim)
2274{
2275 struct drm_i915_private *i915 = to_i915(connector->base.dev);
2276 struct intel_hdcp *hdcp = &connector->hdcp;
2277 int ret;
2278
2279 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2280 if (ret) {
2281 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2282 return;
2283 }
2284
2285 hdcp->hdcp2_supported = true;
2286}
2287
2288int intel_hdcp_init(struct intel_connector *connector,
2289 struct intel_digital_port *dig_port,
2290 const struct intel_hdcp_shim *shim)
2291{
2292 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2293 struct intel_hdcp *hdcp = &connector->hdcp;
2294 int ret;
2295
2296 if (!shim)
2297 return -EINVAL;
2298
2299 if (is_hdcp2_supported(dev_priv))
2300 intel_hdcp2_init(connector, dig_port, shim);
2301
2302 ret =
2303 drm_connector_attach_content_protection_property(&connector->base,
2304 hdcp->hdcp2_supported);
2305 if (ret) {
2306 hdcp->hdcp2_supported = false;
2307 kfree(dig_port->hdcp_port_data.streams);
2308 return ret;
2309 }
2310
2311 hdcp->shim = shim;
2312 mutex_init(&hdcp->mutex);
2313 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2314 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2315 init_waitqueue_head(&hdcp->cp_irq_queue);
2316
2317 return 0;
2318}
2319
2320int intel_hdcp_enable(struct intel_connector *connector,
2321 const struct intel_crtc_state *pipe_config, u8 content_type)
2322{
2323 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2324 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2325 struct intel_hdcp *hdcp = &connector->hdcp;
2326 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2327 int ret = -EINVAL;
2328
2329 if (!hdcp->shim)
2330 return -ENOENT;
2331
2332 if (!connector->encoder) {
2333 drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2334 connector->base.name, connector->base.base.id);
2335 return -ENODEV;
2336 }
2337
2338 mutex_lock(&hdcp->mutex);
2339 mutex_lock(&dig_port->hdcp_mutex);
2340 drm_WARN_ON(&dev_priv->drm,
2341 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2342 hdcp->content_type = content_type;
2343
2344 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2345 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2346 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2347 } else {
2348 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2349 hdcp->stream_transcoder = INVALID_TRANSCODER;
2350 }
2351
2352 if (DISPLAY_VER(dev_priv) >= 12)
2353 dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2354
2355 /*
2356 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2357 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2358 */
2359 if (intel_hdcp2_capable(connector)) {
2360 ret = _intel_hdcp2_enable(connector);
2361 if (!ret)
2362 check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2363 }
2364
2365 /*
2366 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2367 * be attempted.
2368 */
2369 if (ret && intel_hdcp_capable(connector) &&
2370 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2371 ret = _intel_hdcp_enable(connector);
2372 }
2373
2374 if (!ret) {
2375 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2376 intel_hdcp_update_value(connector,
2377 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2378 true);
2379 }
2380
2381 mutex_unlock(&dig_port->hdcp_mutex);
2382 mutex_unlock(&hdcp->mutex);
2383 return ret;
2384}
2385
2386int intel_hdcp_disable(struct intel_connector *connector)
2387{
2388 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2389 struct intel_hdcp *hdcp = &connector->hdcp;
2390 int ret = 0;
2391
2392 if (!hdcp->shim)
2393 return -ENOENT;
2394
2395 mutex_lock(&hdcp->mutex);
2396 mutex_lock(&dig_port->hdcp_mutex);
2397
2398 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2399 goto out;
2400
2401 intel_hdcp_update_value(connector,
2402 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2403 if (hdcp->hdcp2_encrypted)
2404 ret = _intel_hdcp2_disable(connector, false);
2405 else if (hdcp->hdcp_encrypted)
2406 ret = _intel_hdcp_disable(connector);
2407
2408out:
2409 mutex_unlock(&dig_port->hdcp_mutex);
2410 mutex_unlock(&hdcp->mutex);
2411 cancel_delayed_work_sync(&hdcp->check_work);
2412 return ret;
2413}
2414
2415void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2416 struct intel_encoder *encoder,
2417 const struct intel_crtc_state *crtc_state,
2418 const struct drm_connector_state *conn_state)
2419{
2420 struct intel_connector *connector =
2421 to_intel_connector(conn_state->connector);
2422 struct intel_hdcp *hdcp = &connector->hdcp;
2423 bool content_protection_type_changed, desired_and_not_enabled = false;
2424
2425 if (!connector->hdcp.shim)
2426 return;
2427
2428 content_protection_type_changed =
2429 (conn_state->hdcp_content_type != hdcp->content_type &&
2430 conn_state->content_protection !=
2431 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2432
2433 /*
2434 * During the HDCP encryption session if Type change is requested,
2435 * disable the HDCP and reenable it with new TYPE value.
2436 */
2437 if (conn_state->content_protection ==
2438 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2439 content_protection_type_changed)
2440 intel_hdcp_disable(connector);
2441
2442 /*
2443 * Mark the hdcp state as DESIRED after the hdcp disable of type
2444 * change procedure.
2445 */
2446 if (content_protection_type_changed) {
2447 mutex_lock(&hdcp->mutex);
2448 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2449 drm_connector_get(&connector->base);
2450 schedule_work(&hdcp->prop_work);
2451 mutex_unlock(&hdcp->mutex);
2452 }
2453
2454 if (conn_state->content_protection ==
2455 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2456 mutex_lock(&hdcp->mutex);
2457 /* Avoid enabling hdcp, if it already ENABLED */
2458 desired_and_not_enabled =
2459 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2460 mutex_unlock(&hdcp->mutex);
2461 /*
2462 * If HDCP already ENABLED and CP property is DESIRED, schedule
2463 * prop_work to update correct CP property to user space.
2464 */
2465 if (!desired_and_not_enabled && !content_protection_type_changed) {
2466 drm_connector_get(&connector->base);
2467 schedule_work(&hdcp->prop_work);
2468 }
2469 }
2470
2471 if (desired_and_not_enabled || content_protection_type_changed)
2472 intel_hdcp_enable(connector,
2473 crtc_state,
2474 (u8)conn_state->hdcp_content_type);
2475}
2476
2477void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2478{
2479 mutex_lock(&dev_priv->display.hdcp.comp_mutex);
2480 if (!dev_priv->display.hdcp.comp_added) {
2481 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2482 return;
2483 }
2484
2485 dev_priv->display.hdcp.comp_added = false;
2486 mutex_unlock(&dev_priv->display.hdcp.comp_mutex);
2487
2488 component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2489}
2490
2491void intel_hdcp_cleanup(struct intel_connector *connector)
2492{
2493 struct intel_hdcp *hdcp = &connector->hdcp;
2494
2495 if (!hdcp->shim)
2496 return;
2497
2498 /*
2499 * If the connector is registered, it's possible userspace could kick
2500 * off another HDCP enable, which would re-spawn the workers.
2501 */
2502 drm_WARN_ON(connector->base.dev,
2503 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2504
2505 /*
2506 * Now that the connector is not registered, check_work won't be run,
2507 * but cancel any outstanding instances of it
2508 */
2509 cancel_delayed_work_sync(&hdcp->check_work);
2510
2511 /*
2512 * We don't cancel prop_work in the same way as check_work since it
2513 * requires connection_mutex which could be held while calling this
2514 * function. Instead, we rely on the connector references grabbed before
2515 * scheduling prop_work to ensure the connector is alive when prop_work
2516 * is run. So if we're in the destroy path (which is where this
2517 * function should be called), we're "guaranteed" that prop_work is not
2518 * active (tl;dr This Should Never Happen).
2519 */
2520 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2521
2522 mutex_lock(&hdcp->mutex);
2523 hdcp->shim = NULL;
2524 mutex_unlock(&hdcp->mutex);
2525}
2526
2527void intel_hdcp_atomic_check(struct drm_connector *connector,
2528 struct drm_connector_state *old_state,
2529 struct drm_connector_state *new_state)
2530{
2531 u64 old_cp = old_state->content_protection;
2532 u64 new_cp = new_state->content_protection;
2533 struct drm_crtc_state *crtc_state;
2534
2535 if (!new_state->crtc) {
2536 /*
2537 * If the connector is being disabled with CP enabled, mark it
2538 * desired so it's re-enabled when the connector is brought back
2539 */
2540 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2541 new_state->content_protection =
2542 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2543 return;
2544 }
2545
2546 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2547 new_state->crtc);
2548 /*
2549 * Fix the HDCP uapi content protection state in case of modeset.
2550 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2551 * need to be sent if there is transition from ENABLED->DESIRED.
2552 */
2553 if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2554 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2555 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2556 new_state->content_protection =
2557 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2558
2559 /*
2560 * Nothing to do if the state didn't change, or HDCP was activated since
2561 * the last commit. And also no change in hdcp content type.
2562 */
2563 if (old_cp == new_cp ||
2564 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2565 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2566 if (old_state->hdcp_content_type ==
2567 new_state->hdcp_content_type)
2568 return;
2569 }
2570
2571 crtc_state->mode_changed = true;
2572}
2573
2574/* Handles the CP_IRQ raised from the DP HDCP sink */
2575void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2576{
2577 struct intel_hdcp *hdcp = &connector->hdcp;
2578
2579 if (!hdcp->shim)
2580 return;
2581
2582 atomic_inc(&connector->hdcp.cp_irq_count);
2583 wake_up_all(&connector->hdcp.cp_irq_queue);
2584
2585 schedule_delayed_work(&hdcp->check_work, 0);
2586}