Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright © 2006 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21 * SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_dp_helper.h>
 
 
  29
  30#include "display/intel_display.h"
  31#include "display/intel_display_types.h"
  32#include "display/intel_gmbus.h"
  33
  34#include "i915_drv.h"
 
  35
  36#define _INTEL_BIOS_PRIVATE
  37#include "intel_vbt_defs.h"
  38
  39/**
  40 * DOC: Video BIOS Table (VBT)
  41 *
  42 * The Video BIOS Table, or VBT, provides platform and board specific
  43 * configuration information to the driver that is not discoverable or available
  44 * through other means. The configuration is mostly related to display
  45 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
  46 * the PCI ROM.
  47 *
  48 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
  49 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
  50 * contain the actual configuration information. The VBT Header, and thus the
  51 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
  52 * BDB Header. The data blocks are concatenated after the BDB Header. The data
  53 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
  54 * data. (Block 53, the MIPI Sequence Block is an exception.)
  55 *
  56 * The driver parses the VBT during load. The relevant information is stored in
  57 * driver private data for ease of use, and the actual VBT is not read after
  58 * that.
  59 */
  60
  61/* Wrapper for VBT child device config */
  62struct intel_bios_encoder_data {
  63	struct drm_i915_private *i915;
  64
  65	struct child_device_config child;
  66	struct dsc_compression_parameters_entry *dsc;
  67	struct list_head node;
  68};
  69
  70#define	SLAVE_ADDR1	0x70
  71#define	SLAVE_ADDR2	0x72
  72
  73/* Get BDB block size given a pointer to Block ID. */
  74static u32 _get_blocksize(const u8 *block_base)
  75{
  76	/* The MIPI Sequence Block v3+ has a separate size field. */
  77	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
  78		return *((const u32 *)(block_base + 4));
  79	else
  80		return *((const u16 *)(block_base + 1));
  81}
  82
  83/* Get BDB block size give a pointer to data after Block ID and Block Size. */
  84static u32 get_blocksize(const void *block_data)
  85{
  86	return _get_blocksize(block_data - 3);
  87}
  88
  89static const void *
  90find_section(const void *_bdb, enum bdb_block_id section_id)
  91{
  92	const struct bdb_header *bdb = _bdb;
  93	const u8 *base = _bdb;
  94	int index = 0;
  95	u32 total, current_size;
  96	enum bdb_block_id current_id;
  97
  98	/* skip to first section */
  99	index += bdb->header_size;
 100	total = bdb->bdb_size;
 101
 102	/* walk the sections looking for section_id */
 103	while (index + 3 < total) {
 104		current_id = *(base + index);
 105		current_size = _get_blocksize(base + index);
 106		index += 3;
 107
 108		if (index + current_size > total)
 109			return NULL;
 110
 111		if (current_id == section_id)
 112			return base + index;
 113
 114		index += current_size;
 115	}
 116
 117	return NULL;
 118}
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120static void
 121fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
 122			const struct lvds_dvo_timing *dvo_timing)
 123{
 124	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
 125		dvo_timing->hactive_lo;
 126	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
 127		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
 128	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
 129		((dvo_timing->hsync_pulse_width_hi << 8) |
 130			dvo_timing->hsync_pulse_width_lo);
 131	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
 132		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
 133
 134	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
 135		dvo_timing->vactive_lo;
 136	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
 137		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
 138	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
 139		((dvo_timing->vsync_pulse_width_hi << 4) |
 140			dvo_timing->vsync_pulse_width_lo);
 141	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
 142		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
 143	panel_fixed_mode->clock = dvo_timing->clock * 10;
 144	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 145
 146	if (dvo_timing->hsync_positive)
 147		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 148	else
 149		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 150
 151	if (dvo_timing->vsync_positive)
 152		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
 153	else
 154		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
 155
 156	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
 157		dvo_timing->himage_lo;
 158	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
 159		dvo_timing->vimage_lo;
 160
 161	/* Some VBTs have bogus h/vtotal values */
 162	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
 163		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
 164	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
 165		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
 166
 167	drm_mode_set_name(panel_fixed_mode);
 168}
 169
 170static const struct lvds_dvo_timing *
 171get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
 172		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
 173		    int index)
 174{
 175	/*
 176	 * the size of fp_timing varies on the different platform.
 177	 * So calculate the DVO timing relative offset in LVDS data
 178	 * entry to get the DVO timing entry
 179	 */
 180
 181	int lfp_data_size =
 182		lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
 183		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
 184	int dvo_timing_offset =
 185		lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
 186		lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
 187	char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
 188
 189	return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
 190}
 191
 192/* get lvds_fp_timing entry
 193 * this function may return NULL if the corresponding entry is invalid
 194 */
 195static const struct lvds_fp_timing *
 196get_lvds_fp_timing(const struct bdb_header *bdb,
 197		   const struct bdb_lvds_lfp_data *data,
 198		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
 199		   int index)
 200{
 201	size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
 202	u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
 203	size_t ofs;
 204
 205	if (index >= ARRAY_SIZE(ptrs->ptr))
 206		return NULL;
 207	ofs = ptrs->ptr[index].fp_timing_offset;
 208	if (ofs < data_ofs ||
 209	    ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
 
 
 
 
 
 
 
 
 
 
 210		return NULL;
 211	return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 214/* Parse general panel options */
 215static void
 216parse_panel_options(struct drm_i915_private *i915,
 217		    const struct bdb_header *bdb)
 218{
 219	const struct bdb_lvds_options *lvds_options;
 220	int panel_type;
 221	int drrs_mode;
 222	int ret;
 223
 224	lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
 225	if (!lvds_options)
 226		return;
 227
 228	i915->vbt.lvds_dither = lvds_options->pixel_dither;
 229
 230	ret = intel_opregion_get_panel_type(i915);
 231	if (ret >= 0) {
 232		drm_WARN_ON(&i915->drm, ret > 0xf);
 233		panel_type = ret;
 234		drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
 235			    panel_type);
 236	} else {
 237		if (lvds_options->panel_type > 0xf) {
 238			drm_dbg_kms(&i915->drm,
 239				    "Invalid VBT panel type 0x%x\n",
 240				    lvds_options->panel_type);
 241			return;
 242		}
 243		panel_type = lvds_options->panel_type;
 244		drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
 245			    panel_type);
 246	}
 247
 248	i915->vbt.panel_type = panel_type;
 249
 250	drrs_mode = (lvds_options->dps_panel_type_bits
 251				>> (panel_type * 2)) & MODE_MASK;
 252	/*
 253	 * VBT has static DRRS = 0 and seamless DRRS = 2.
 254	 * The below piece of code is required to adjust vbt.drrs_type
 255	 * to match the enum drrs_support_type.
 256	 */
 257	switch (drrs_mode) {
 258	case 0:
 259		i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
 260		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
 261		break;
 262	case 2:
 263		i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
 264		drm_dbg_kms(&i915->drm,
 265			    "DRRS supported mode is seamless\n");
 266		break;
 267	default:
 268		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
 269		drm_dbg_kms(&i915->drm,
 270			    "DRRS not supported (VBT input)\n");
 271		break;
 272	}
 273}
 274
 275/* Try to find integrated panel timing data */
 276static void
 277parse_lfp_panel_dtd(struct drm_i915_private *i915,
 278		    const struct bdb_header *bdb)
 
 
 279{
 280	const struct bdb_lvds_lfp_data *lvds_lfp_data;
 281	const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
 282	const struct lvds_dvo_timing *panel_dvo_timing;
 283	const struct lvds_fp_timing *fp_timing;
 284	struct drm_display_mode *panel_fixed_mode;
 285	int panel_type = i915->vbt.panel_type;
 286
 287	lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
 288	if (!lvds_lfp_data)
 289		return;
 290
 291	lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
 292	if (!lvds_lfp_data_ptrs)
 293		return;
 294
 295	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
 296					       lvds_lfp_data_ptrs,
 297					       panel_type);
 298
 299	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 300	if (!panel_fixed_mode)
 301		return;
 302
 303	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
 304
 305	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
 306
 307	drm_dbg_kms(&i915->drm,
 308		    "Found panel mode in BIOS VBT legacy lfp table:\n");
 309	drm_mode_debug_printmodeline(panel_fixed_mode);
 310
 311	fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
 312				       lvds_lfp_data_ptrs,
 313				       panel_type);
 314	if (fp_timing) {
 315		/* check the resolution, just to be sure */
 316		if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
 317		    fp_timing->y_res == panel_fixed_mode->vdisplay) {
 318			i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
 319			drm_dbg_kms(&i915->drm,
 320				    "VBT initial LVDS value %x\n",
 321				    i915->vbt.bios_lvds_val);
 322		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323	}
 324}
 325
 326static void
 327parse_generic_dtd(struct drm_i915_private *i915,
 328		  const struct bdb_header *bdb)
 329{
 330	const struct bdb_generic_dtd *generic_dtd;
 331	const struct generic_dtd_entry *dtd;
 332	struct drm_display_mode *panel_fixed_mode;
 333	int num_dtd;
 334
 335	generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
 
 
 
 
 
 
 
 
 
 
 
 336	if (!generic_dtd)
 337		return;
 338
 339	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
 340		drm_err(&i915->drm, "GDTD size %u is too small.\n",
 341			generic_dtd->gdtd_size);
 342		return;
 343	} else if (generic_dtd->gdtd_size !=
 344		   sizeof(struct generic_dtd_entry)) {
 345		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
 346			generic_dtd->gdtd_size);
 347		/* DTD has unknown fields, but keep going */
 348	}
 349
 350	num_dtd = (get_blocksize(generic_dtd) -
 351		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
 352	if (i915->vbt.panel_type >= num_dtd) {
 353		drm_err(&i915->drm,
 354			"Panel type %d not found in table of %d DTD's\n",
 355			i915->vbt.panel_type, num_dtd);
 356		return;
 357	}
 358
 359	dtd = &generic_dtd->dtd[i915->vbt.panel_type];
 360
 361	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 362	if (!panel_fixed_mode)
 363		return;
 364
 365	panel_fixed_mode->hdisplay = dtd->hactive;
 366	panel_fixed_mode->hsync_start =
 367		panel_fixed_mode->hdisplay + dtd->hfront_porch;
 368	panel_fixed_mode->hsync_end =
 369		panel_fixed_mode->hsync_start + dtd->hsync;
 370	panel_fixed_mode->htotal =
 371		panel_fixed_mode->hdisplay + dtd->hblank;
 372
 373	panel_fixed_mode->vdisplay = dtd->vactive;
 374	panel_fixed_mode->vsync_start =
 375		panel_fixed_mode->vdisplay + dtd->vfront_porch;
 376	panel_fixed_mode->vsync_end =
 377		panel_fixed_mode->vsync_start + dtd->vsync;
 378	panel_fixed_mode->vtotal =
 379		panel_fixed_mode->vdisplay + dtd->vblank;
 380
 381	panel_fixed_mode->clock = dtd->pixel_clock;
 382	panel_fixed_mode->width_mm = dtd->width_mm;
 383	panel_fixed_mode->height_mm = dtd->height_mm;
 384
 385	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 386	drm_mode_set_name(panel_fixed_mode);
 387
 388	if (dtd->hsync_positive_polarity)
 389		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 390	else
 391		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 392
 393	if (dtd->vsync_positive_polarity)
 394		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
 395	else
 396		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
 397
 398	drm_dbg_kms(&i915->drm,
 399		    "Found panel mode in BIOS VBT generic dtd table:\n");
 400	drm_mode_debug_printmodeline(panel_fixed_mode);
 401
 402	i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
 403}
 404
 405static void
 406parse_panel_dtd(struct drm_i915_private *i915,
 407		const struct bdb_header *bdb)
 408{
 409	/*
 410	 * Older VBTs provided provided DTD information for internal displays
 411	 * through the "LFP panel DTD" block (42).  As of VBT revision 229,
 412	 * that block is now deprecated and DTD information should be provided
 413	 * via a newer "generic DTD" block (58).  Just to be safe, we'll
 414	 * try the new generic DTD block first on VBT >= 229, but still fall
 415	 * back to trying the old LFP block if that fails.
 416	 */
 417	if (bdb->version >= 229)
 418		parse_generic_dtd(i915, bdb);
 419	if (!i915->vbt.lfp_lvds_vbt_mode)
 420		parse_lfp_panel_dtd(i915, bdb);
 421}
 422
 423static void
 424parse_lfp_backlight(struct drm_i915_private *i915,
 425		    const struct bdb_header *bdb)
 426{
 427	const struct bdb_lfp_backlight_data *backlight_data;
 428	const struct lfp_backlight_data_entry *entry;
 429	int panel_type = i915->vbt.panel_type;
 430	u16 level;
 431
 432	backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
 433	if (!backlight_data)
 434		return;
 435
 436	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
 437		drm_dbg_kms(&i915->drm,
 438			    "Unsupported backlight data entry size %u\n",
 439			    backlight_data->entry_size);
 440		return;
 441	}
 442
 443	entry = &backlight_data->data[panel_type];
 444
 445	i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
 446	if (!i915->vbt.backlight.present) {
 447		drm_dbg_kms(&i915->drm,
 448			    "PWM backlight not present in VBT (type %u)\n",
 449			    entry->type);
 450		return;
 451	}
 452
 453	i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
 454	if (bdb->version >= 191) {
 455		size_t exp_size;
 456
 457		if (bdb->version >= 236)
 458			exp_size = sizeof(struct bdb_lfp_backlight_data);
 459		else if (bdb->version >= 234)
 460			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
 461		else
 462			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
 463
 464		if (get_blocksize(backlight_data) >= exp_size) {
 465			const struct lfp_backlight_control_method *method;
 466
 467			method = &backlight_data->backlight_control[panel_type];
 468			i915->vbt.backlight.type = method->type;
 469			i915->vbt.backlight.controller = method->controller;
 470		}
 471	}
 472
 473	i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
 474	i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
 475
 476	if (bdb->version >= 234) {
 477		u16 min_level;
 478		bool scale;
 479
 480		level = backlight_data->brightness_level[panel_type].level;
 481		min_level = backlight_data->brightness_min_level[panel_type].level;
 482
 483		if (bdb->version >= 236)
 484			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
 485		else
 486			scale = level > 255;
 487
 488		if (scale)
 489			min_level = min_level / 255;
 490
 491		if (min_level > 255) {
 492			drm_warn(&i915->drm, "Brightness min level > 255\n");
 493			level = 255;
 494		}
 495		i915->vbt.backlight.min_brightness = min_level;
 
 
 
 496	} else {
 497		level = backlight_data->level[panel_type];
 498		i915->vbt.backlight.min_brightness = entry->min_brightness;
 499	}
 500
 501	drm_dbg_kms(&i915->drm,
 502		    "VBT backlight PWM modulation frequency %u Hz, "
 503		    "active %s, min brightness %u, level %u, controller %u\n",
 504		    i915->vbt.backlight.pwm_freq_hz,
 505		    i915->vbt.backlight.active_low_pwm ? "low" : "high",
 506		    i915->vbt.backlight.min_brightness,
 507		    level,
 508		    i915->vbt.backlight.controller);
 509}
 510
 511/* Try to find sdvo panel data */
 512static void
 513parse_sdvo_panel_data(struct drm_i915_private *i915,
 514		      const struct bdb_header *bdb)
 515{
 516	const struct bdb_sdvo_panel_dtds *dtds;
 517	struct drm_display_mode *panel_fixed_mode;
 518	int index;
 519
 520	index = i915->params.vbt_sdvo_panel_type;
 521	if (index == -2) {
 522		drm_dbg_kms(&i915->drm,
 523			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
 524		return;
 525	}
 526
 527	if (index == -1) {
 528		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
 529
 530		sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
 531		if (!sdvo_lvds_options)
 532			return;
 533
 534		index = sdvo_lvds_options->panel_type;
 535	}
 536
 537	dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
 538	if (!dtds)
 539		return;
 540
 541	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 542	if (!panel_fixed_mode)
 543		return;
 544
 545	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
 546
 547	i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
 548
 549	drm_dbg_kms(&i915->drm,
 550		    "Found SDVO panel mode in BIOS VBT tables:\n");
 551	drm_mode_debug_printmodeline(panel_fixed_mode);
 552}
 553
 554static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
 555				    bool alternate)
 556{
 557	switch (DISPLAY_VER(i915)) {
 558	case 2:
 559		return alternate ? 66667 : 48000;
 560	case 3:
 561	case 4:
 562		return alternate ? 100000 : 96000;
 563	default:
 564		return alternate ? 100000 : 120000;
 565	}
 566}
 567
 568static void
 569parse_general_features(struct drm_i915_private *i915,
 570		       const struct bdb_header *bdb)
 571{
 572	const struct bdb_general_features *general;
 573
 574	general = find_section(bdb, BDB_GENERAL_FEATURES);
 575	if (!general)
 576		return;
 577
 578	i915->vbt.int_tv_support = general->int_tv_support;
 579	/* int_crt_support can't be trusted on earlier platforms */
 580	if (bdb->version >= 155 &&
 581	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
 582		i915->vbt.int_crt_support = general->int_crt_support;
 583	i915->vbt.lvds_use_ssc = general->enable_ssc;
 584	i915->vbt.lvds_ssc_freq =
 585		intel_bios_ssc_frequency(i915, general->ssc_freq);
 586	i915->vbt.display_clock_mode = general->display_clock_mode;
 587	i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
 588	if (bdb->version >= 181) {
 589		i915->vbt.orientation = general->rotate_180 ?
 590			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
 591			DRM_MODE_PANEL_ORIENTATION_NORMAL;
 592	} else {
 593		i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
 594	}
 
 
 
 
 
 
 595	drm_dbg_kms(&i915->drm,
 596		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
 597		    i915->vbt.int_tv_support,
 598		    i915->vbt.int_crt_support,
 599		    i915->vbt.lvds_use_ssc,
 600		    i915->vbt.lvds_ssc_freq,
 601		    i915->vbt.display_clock_mode,
 602		    i915->vbt.fdi_rx_polarity_inverted);
 603}
 604
 605static const struct child_device_config *
 606child_device_ptr(const struct bdb_general_definitions *defs, int i)
 607{
 608	return (const void *) &defs->devices[i * defs->child_dev_size];
 609}
 610
 611static void
 612parse_sdvo_device_mapping(struct drm_i915_private *i915)
 613{
 614	struct sdvo_device_mapping *mapping;
 615	const struct intel_bios_encoder_data *devdata;
 616	const struct child_device_config *child;
 617	int count = 0;
 618
 619	/*
 620	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
 621	 * accurate and doesn't have to be, as long as it's not too strict.
 622	 */
 623	if (!IS_DISPLAY_VER(i915, 3, 7)) {
 624		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
 625		return;
 626	}
 627
 628	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
 629		child = &devdata->child;
 630
 631		if (child->slave_addr != SLAVE_ADDR1 &&
 632		    child->slave_addr != SLAVE_ADDR2) {
 633			/*
 634			 * If the slave address is neither 0x70 nor 0x72,
 635			 * it is not a SDVO device. Skip it.
 636			 */
 637			continue;
 638		}
 639		if (child->dvo_port != DEVICE_PORT_DVOB &&
 640		    child->dvo_port != DEVICE_PORT_DVOC) {
 641			/* skip the incorrect SDVO port */
 642			drm_dbg_kms(&i915->drm,
 643				    "Incorrect SDVO port. Skip it\n");
 644			continue;
 645		}
 646		drm_dbg_kms(&i915->drm,
 647			    "the SDVO device with slave addr %2x is found on"
 648			    " %s port\n",
 649			    child->slave_addr,
 650			    (child->dvo_port == DEVICE_PORT_DVOB) ?
 651			    "SDVOB" : "SDVOC");
 652		mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
 653		if (!mapping->initialized) {
 654			mapping->dvo_port = child->dvo_port;
 655			mapping->slave_addr = child->slave_addr;
 656			mapping->dvo_wiring = child->dvo_wiring;
 657			mapping->ddc_pin = child->ddc_pin;
 658			mapping->i2c_pin = child->i2c_pin;
 659			mapping->initialized = 1;
 660			drm_dbg_kms(&i915->drm,
 661				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
 662				    mapping->dvo_port, mapping->slave_addr,
 663				    mapping->dvo_wiring, mapping->ddc_pin,
 664				    mapping->i2c_pin);
 665		} else {
 666			drm_dbg_kms(&i915->drm,
 667				    "Maybe one SDVO port is shared by "
 668				    "two SDVO device.\n");
 669		}
 670		if (child->slave2_addr) {
 671			/* Maybe this is a SDVO device with multiple inputs */
 672			/* And the mapping info is not added */
 673			drm_dbg_kms(&i915->drm,
 674				    "there exists the slave2_addr. Maybe this"
 675				    " is a SDVO device with multiple inputs.\n");
 676		}
 677		count++;
 678	}
 679
 680	if (!count) {
 681		/* No SDVO device info is found */
 682		drm_dbg_kms(&i915->drm,
 683			    "No SDVO device info is found in VBT\n");
 684	}
 685}
 686
 687static void
 688parse_driver_features(struct drm_i915_private *i915,
 689		      const struct bdb_header *bdb)
 690{
 691	const struct bdb_driver_features *driver;
 692
 693	driver = find_section(bdb, BDB_DRIVER_FEATURES);
 694	if (!driver)
 695		return;
 696
 697	if (DISPLAY_VER(i915) >= 5) {
 698		/*
 699		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
 700		 * to mean "eDP". The VBT spec doesn't agree with that
 701		 * interpretation, but real world VBTs seem to.
 702		 */
 703		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
 704			i915->vbt.int_lvds_support = 0;
 705	} else {
 706		/*
 707		 * FIXME it's not clear which BDB version has the LVDS config
 708		 * bits defined. Revision history in the VBT spec says:
 709		 * "0.92 | Add two definitions for VBT value of LVDS Active
 710		 *  Config (00b and 11b values defined) | 06/13/2005"
 711		 * but does not the specify the BDB version.
 712		 *
 713		 * So far version 134 (on i945gm) is the oldest VBT observed
 714		 * in the wild with the bits correctly populated. Version
 715		 * 108 (on i85x) does not have the bits correctly populated.
 716		 */
 717		if (bdb->version >= 134 &&
 718		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
 719		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
 720			i915->vbt.int_lvds_support = 0;
 721	}
 
 
 
 
 
 
 
 722
 723	if (bdb->version < 228) {
 
 
 
 
 724		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
 725			    driver->drrs_enabled);
 726		/*
 727		 * If DRRS is not supported, drrs_type has to be set to 0.
 728		 * This is because, VBT is configured in such a way that
 729		 * static DRRS is 0 and DRRS not supported is represented by
 730		 * driver->drrs_enabled=false
 731		 */
 732		if (!driver->drrs_enabled)
 733			i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
 
 
 
 
 
 
 
 
 734
 735		i915->vbt.psr.enable = driver->psr_enabled;
 736	}
 737}
 738
 739static void
 740parse_power_conservation_features(struct drm_i915_private *i915,
 741				  const struct bdb_header *bdb)
 742{
 743	const struct bdb_lfp_power *power;
 744	u8 panel_type = i915->vbt.panel_type;
 745
 746	if (bdb->version < 228)
 
 
 747		return;
 748
 749	power = find_section(bdb, BDB_LFP_POWER);
 750	if (!power)
 751		return;
 752
 753	i915->vbt.psr.enable = power->psr & BIT(panel_type);
 754
 755	/*
 756	 * If DRRS is not supported, drrs_type has to be set to 0.
 757	 * This is because, VBT is configured in such a way that
 758	 * static DRRS is 0 and DRRS not supported is represented by
 759	 * power->drrs & BIT(panel_type)=false
 760	 */
 761	if (!(power->drrs & BIT(panel_type)))
 762		i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
 
 
 
 
 
 
 
 
 
 
 
 763
 764	if (bdb->version >= 232)
 765		i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
 
 766}
 767
 768static void
 769parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
 
 770{
 771	const struct bdb_edp *edp;
 772	const struct edp_power_seq *edp_pps;
 773	const struct edp_fast_link_params *edp_link_params;
 774	int panel_type = i915->vbt.panel_type;
 775
 776	edp = find_section(bdb, BDB_EDP);
 777	if (!edp)
 778		return;
 779
 780	switch ((edp->color_depth >> (panel_type * 2)) & 3) {
 781	case EDP_18BPP:
 782		i915->vbt.edp.bpp = 18;
 783		break;
 784	case EDP_24BPP:
 785		i915->vbt.edp.bpp = 24;
 786		break;
 787	case EDP_30BPP:
 788		i915->vbt.edp.bpp = 30;
 789		break;
 790	}
 791
 792	/* Get the eDP sequencing and link info */
 793	edp_pps = &edp->power_seqs[panel_type];
 794	edp_link_params = &edp->fast_link_params[panel_type];
 795
 796	i915->vbt.edp.pps = *edp_pps;
 797
 798	switch (edp_link_params->rate) {
 799	case EDP_RATE_1_62:
 800		i915->vbt.edp.rate = DP_LINK_BW_1_62;
 801		break;
 802	case EDP_RATE_2_7:
 803		i915->vbt.edp.rate = DP_LINK_BW_2_7;
 804		break;
 805	default:
 806		drm_dbg_kms(&i915->drm,
 807			    "VBT has unknown eDP link rate value %u\n",
 808			     edp_link_params->rate);
 809		break;
 
 
 
 
 
 
 
 
 810	}
 811
 812	switch (edp_link_params->lanes) {
 813	case EDP_LANE_1:
 814		i915->vbt.edp.lanes = 1;
 815		break;
 816	case EDP_LANE_2:
 817		i915->vbt.edp.lanes = 2;
 818		break;
 819	case EDP_LANE_4:
 820		i915->vbt.edp.lanes = 4;
 821		break;
 822	default:
 823		drm_dbg_kms(&i915->drm,
 824			    "VBT has unknown eDP lane count value %u\n",
 825			    edp_link_params->lanes);
 826		break;
 827	}
 828
 829	switch (edp_link_params->preemphasis) {
 830	case EDP_PREEMPHASIS_NONE:
 831		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
 832		break;
 833	case EDP_PREEMPHASIS_3_5dB:
 834		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
 835		break;
 836	case EDP_PREEMPHASIS_6dB:
 837		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
 838		break;
 839	case EDP_PREEMPHASIS_9_5dB:
 840		i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
 841		break;
 842	default:
 843		drm_dbg_kms(&i915->drm,
 844			    "VBT has unknown eDP pre-emphasis value %u\n",
 845			    edp_link_params->preemphasis);
 846		break;
 847	}
 848
 849	switch (edp_link_params->vswing) {
 850	case EDP_VSWING_0_4V:
 851		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
 852		break;
 853	case EDP_VSWING_0_6V:
 854		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
 855		break;
 856	case EDP_VSWING_0_8V:
 857		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
 858		break;
 859	case EDP_VSWING_1_2V:
 860		i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
 861		break;
 862	default:
 863		drm_dbg_kms(&i915->drm,
 864			    "VBT has unknown eDP voltage swing value %u\n",
 865			    edp_link_params->vswing);
 866		break;
 867	}
 868
 869	if (bdb->version >= 173) {
 870		u8 vswing;
 871
 872		/* Don't read from VBT if module parameter has valid value*/
 873		if (i915->params.edp_vswing) {
 874			i915->vbt.edp.low_vswing =
 875				i915->params.edp_vswing == 1;
 876		} else {
 877			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
 878			i915->vbt.edp.low_vswing = vswing == 0;
 879		}
 880	}
 
 
 
 
 
 
 
 881}
 882
 883static void
 884parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
 
 885{
 886	const struct bdb_psr *psr;
 887	const struct psr_table *psr_table;
 888	int panel_type = i915->vbt.panel_type;
 889
 890	psr = find_section(bdb, BDB_PSR);
 891	if (!psr) {
 892		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
 893		return;
 894	}
 895
 896	psr_table = &psr->psr_table[panel_type];
 897
 898	i915->vbt.psr.full_link = psr_table->full_link;
 899	i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
 900
 901	/* Allowed VBT values goes from 0 to 15 */
 902	i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
 903		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
 904
 905	switch (psr_table->lines_to_wait) {
 906	case 0:
 907		i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
 908		break;
 909	case 1:
 910		i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
 911		break;
 912	case 2:
 913		i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
 914		break;
 915	case 3:
 916		i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
 917		break;
 918	default:
 919		drm_dbg_kms(&i915->drm,
 920			    "VBT has unknown PSR lines to wait %u\n",
 921			    psr_table->lines_to_wait);
 922		break;
 923	}
 924
 925	/*
 926	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
 927	 * Old decimal value is wake up time in multiples of 100 us.
 928	 */
 929	if (bdb->version >= 205 &&
 930	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
 931		switch (psr_table->tp1_wakeup_time) {
 932		case 0:
 933			i915->vbt.psr.tp1_wakeup_time_us = 500;
 934			break;
 935		case 1:
 936			i915->vbt.psr.tp1_wakeup_time_us = 100;
 937			break;
 938		case 3:
 939			i915->vbt.psr.tp1_wakeup_time_us = 0;
 940			break;
 941		default:
 942			drm_dbg_kms(&i915->drm,
 943				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
 944				    psr_table->tp1_wakeup_time);
 945			fallthrough;
 946		case 2:
 947			i915->vbt.psr.tp1_wakeup_time_us = 2500;
 948			break;
 949		}
 950
 951		switch (psr_table->tp2_tp3_wakeup_time) {
 952		case 0:
 953			i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
 954			break;
 955		case 1:
 956			i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
 957			break;
 958		case 3:
 959			i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
 960			break;
 961		default:
 962			drm_dbg_kms(&i915->drm,
 963				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
 964				    psr_table->tp2_tp3_wakeup_time);
 965			fallthrough;
 966		case 2:
 967			i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
 968		break;
 969		}
 970	} else {
 971		i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
 972		i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
 973	}
 974
 975	if (bdb->version >= 226) {
 976		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
 977
 978		wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
 979		switch (wakeup_time) {
 980		case 0:
 981			wakeup_time = 500;
 982			break;
 983		case 1:
 984			wakeup_time = 100;
 985			break;
 986		case 3:
 987			wakeup_time = 50;
 988			break;
 989		default:
 990		case 2:
 991			wakeup_time = 2500;
 992			break;
 993		}
 994		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
 995	} else {
 996		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
 997		i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
 998	}
 999}
1000
1001static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1002				      u16 version, enum port port)
 
1003{
1004	if (!i915->vbt.dsi.config->dual_link || version < 197) {
1005		i915->vbt.dsi.bl_ports = BIT(port);
1006		if (i915->vbt.dsi.config->cabc_supported)
1007			i915->vbt.dsi.cabc_ports = BIT(port);
 
 
1008
1009		return;
1010	}
1011
1012	switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1013	case DL_DCS_PORT_A:
1014		i915->vbt.dsi.bl_ports = BIT(PORT_A);
1015		break;
1016	case DL_DCS_PORT_C:
1017		i915->vbt.dsi.bl_ports = BIT(PORT_C);
1018		break;
1019	default:
1020	case DL_DCS_PORT_A_AND_C:
1021		i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1022		break;
1023	}
1024
1025	if (!i915->vbt.dsi.config->cabc_supported)
1026		return;
1027
1028	switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1029	case DL_DCS_PORT_A:
1030		i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1031		break;
1032	case DL_DCS_PORT_C:
1033		i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1034		break;
1035	default:
1036	case DL_DCS_PORT_A_AND_C:
1037		i915->vbt.dsi.cabc_ports =
1038					BIT(PORT_A) | BIT(PORT_C);
1039		break;
1040	}
1041}
1042
1043static void
1044parse_mipi_config(struct drm_i915_private *i915,
1045		  const struct bdb_header *bdb)
1046{
1047	const struct bdb_mipi_config *start;
1048	const struct mipi_config *config;
1049	const struct mipi_pps_data *pps;
1050	int panel_type = i915->vbt.panel_type;
1051	enum port port;
1052
1053	/* parse MIPI blocks only if LFP type is MIPI */
1054	if (!intel_bios_is_dsi_present(i915, &port))
1055		return;
1056
1057	/* Initialize this to undefined indicating no generic MIPI support */
1058	i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1059
1060	/* Block #40 is already parsed and panel_fixed_mode is
1061	 * stored in i915->lfp_lvds_vbt_mode
1062	 * resuse this when needed
1063	 */
1064
1065	/* Parse #52 for panel index used from panel_type already
1066	 * parsed
1067	 */
1068	start = find_section(bdb, BDB_MIPI_CONFIG);
1069	if (!start) {
1070		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1071		return;
1072	}
1073
1074	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1075		panel_type);
1076
1077	/*
1078	 * get hold of the correct configuration block and pps data as per
1079	 * the panel_type as index
1080	 */
1081	config = &start->config[panel_type];
1082	pps = &start->pps[panel_type];
1083
1084	/* store as of now full data. Trim when we realise all is not needed */
1085	i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1086	if (!i915->vbt.dsi.config)
1087		return;
1088
1089	i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1090	if (!i915->vbt.dsi.pps) {
1091		kfree(i915->vbt.dsi.config);
1092		return;
1093	}
1094
1095	parse_dsi_backlight_ports(i915, bdb->version, port);
1096
1097	/* FIXME is the 90 vs. 270 correct? */
1098	switch (config->rotation) {
1099	case ENABLE_ROTATION_0:
1100		/*
1101		 * Most (all?) VBTs claim 0 degrees despite having
1102		 * an upside down panel, thus we do not trust this.
1103		 */
1104		i915->vbt.dsi.orientation =
1105			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1106		break;
1107	case ENABLE_ROTATION_90:
1108		i915->vbt.dsi.orientation =
1109			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1110		break;
1111	case ENABLE_ROTATION_180:
1112		i915->vbt.dsi.orientation =
1113			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1114		break;
1115	case ENABLE_ROTATION_270:
1116		i915->vbt.dsi.orientation =
1117			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1118		break;
1119	}
1120
1121	/* We have mandatory mipi config blocks. Initialize as generic panel */
1122	i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1123}
1124
1125/* Find the sequence block and size for the given panel. */
1126static const u8 *
1127find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1128			  u16 panel_id, u32 *seq_size)
1129{
1130	u32 total = get_blocksize(sequence);
1131	const u8 *data = &sequence->data[0];
1132	u8 current_id;
1133	u32 current_size;
1134	int header_size = sequence->version >= 3 ? 5 : 3;
1135	int index = 0;
1136	int i;
1137
1138	/* skip new block size */
1139	if (sequence->version >= 3)
1140		data += 4;
1141
1142	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1143		if (index + header_size > total) {
1144			DRM_ERROR("Invalid sequence block (header)\n");
1145			return NULL;
1146		}
1147
1148		current_id = *(data + index);
1149		if (sequence->version >= 3)
1150			current_size = *((const u32 *)(data + index + 1));
1151		else
1152			current_size = *((const u16 *)(data + index + 1));
1153
1154		index += header_size;
1155
1156		if (index + current_size > total) {
1157			DRM_ERROR("Invalid sequence block\n");
1158			return NULL;
1159		}
1160
1161		if (current_id == panel_id) {
1162			*seq_size = current_size;
1163			return data + index;
1164		}
1165
1166		index += current_size;
1167	}
1168
1169	DRM_ERROR("Sequence block detected but no valid configuration\n");
1170
1171	return NULL;
1172}
1173
1174static int goto_next_sequence(const u8 *data, int index, int total)
1175{
1176	u16 len;
1177
1178	/* Skip Sequence Byte. */
1179	for (index = index + 1; index < total; index += len) {
1180		u8 operation_byte = *(data + index);
1181		index++;
1182
1183		switch (operation_byte) {
1184		case MIPI_SEQ_ELEM_END:
1185			return index;
1186		case MIPI_SEQ_ELEM_SEND_PKT:
1187			if (index + 4 > total)
1188				return 0;
1189
1190			len = *((const u16 *)(data + index + 2)) + 4;
1191			break;
1192		case MIPI_SEQ_ELEM_DELAY:
1193			len = 4;
1194			break;
1195		case MIPI_SEQ_ELEM_GPIO:
1196			len = 2;
1197			break;
1198		case MIPI_SEQ_ELEM_I2C:
1199			if (index + 7 > total)
1200				return 0;
1201			len = *(data + index + 6) + 7;
1202			break;
1203		default:
1204			DRM_ERROR("Unknown operation byte\n");
1205			return 0;
1206		}
1207	}
1208
1209	return 0;
1210}
1211
1212static int goto_next_sequence_v3(const u8 *data, int index, int total)
1213{
1214	int seq_end;
1215	u16 len;
1216	u32 size_of_sequence;
1217
1218	/*
1219	 * Could skip sequence based on Size of Sequence alone, but also do some
1220	 * checking on the structure.
1221	 */
1222	if (total < 5) {
1223		DRM_ERROR("Too small sequence size\n");
1224		return 0;
1225	}
1226
1227	/* Skip Sequence Byte. */
1228	index++;
1229
1230	/*
1231	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1232	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1233	 * byte.
1234	 */
1235	size_of_sequence = *((const u32 *)(data + index));
1236	index += 4;
1237
1238	seq_end = index + size_of_sequence;
1239	if (seq_end > total) {
1240		DRM_ERROR("Invalid sequence size\n");
1241		return 0;
1242	}
1243
1244	for (; index < total; index += len) {
1245		u8 operation_byte = *(data + index);
1246		index++;
1247
1248		if (operation_byte == MIPI_SEQ_ELEM_END) {
1249			if (index != seq_end) {
1250				DRM_ERROR("Invalid element structure\n");
1251				return 0;
1252			}
1253			return index;
1254		}
1255
1256		len = *(data + index);
1257		index++;
1258
1259		/*
1260		 * FIXME: Would be nice to check elements like for v1/v2 in
1261		 * goto_next_sequence() above.
1262		 */
1263		switch (operation_byte) {
1264		case MIPI_SEQ_ELEM_SEND_PKT:
1265		case MIPI_SEQ_ELEM_DELAY:
1266		case MIPI_SEQ_ELEM_GPIO:
1267		case MIPI_SEQ_ELEM_I2C:
1268		case MIPI_SEQ_ELEM_SPI:
1269		case MIPI_SEQ_ELEM_PMIC:
1270			break;
1271		default:
1272			DRM_ERROR("Unknown operation byte %u\n",
1273				  operation_byte);
1274			break;
1275		}
1276	}
1277
1278	return 0;
1279}
1280
1281/*
1282 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1283 * skip all delay + gpio operands and stop at the first DSI packet op.
1284 */
1285static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
 
1286{
1287	const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1288	int index, len;
1289
1290	if (drm_WARN_ON(&i915->drm,
1291			!data || i915->vbt.dsi.seq_version != 1))
1292		return 0;
1293
1294	/* index = 1 to skip sequence byte */
1295	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1296		switch (data[index]) {
1297		case MIPI_SEQ_ELEM_SEND_PKT:
1298			return index == 1 ? 0 : index;
1299		case MIPI_SEQ_ELEM_DELAY:
1300			len = 5; /* 1 byte for operand + uint32 */
1301			break;
1302		case MIPI_SEQ_ELEM_GPIO:
1303			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1304			break;
1305		default:
1306			return 0;
1307		}
1308	}
1309
1310	return 0;
1311}
1312
1313/*
1314 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1315 * The deassert must be done before calling intel_dsi_device_ready, so for
1316 * these devices we split the init OTP sequence into a deassert sequence and
1317 * the actual init OTP part.
1318 */
1319static void fixup_mipi_sequences(struct drm_i915_private *i915)
 
1320{
1321	u8 *init_otp;
1322	int len;
1323
1324	/* Limit this to VLV for now. */
1325	if (!IS_VALLEYVIEW(i915))
1326		return;
1327
1328	/* Limit this to v1 vid-mode sequences */
1329	if (i915->vbt.dsi.config->is_cmd_mode ||
1330	    i915->vbt.dsi.seq_version != 1)
1331		return;
1332
1333	/* Only do this if there are otp and assert seqs and no deassert seq */
1334	if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1335	    !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1336	    i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1337		return;
1338
1339	/* The deassert-sequence ends at the first DSI packet */
1340	len = get_init_otp_deassert_fragment_len(i915);
1341	if (!len)
1342		return;
1343
1344	drm_dbg_kms(&i915->drm,
1345		    "Using init OTP fragment to deassert reset\n");
1346
1347	/* Copy the fragment, update seq byte and terminate it */
1348	init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1349	i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1350	if (!i915->vbt.dsi.deassert_seq)
1351		return;
1352	i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1353	i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1354	/* Use the copy for deassert */
1355	i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1356		i915->vbt.dsi.deassert_seq;
1357	/* Replace the last byte of the fragment with init OTP seq byte */
1358	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1359	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1360	i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1361}
1362
1363static void
1364parse_mipi_sequence(struct drm_i915_private *i915,
1365		    const struct bdb_header *bdb)
1366{
1367	int panel_type = i915->vbt.panel_type;
1368	const struct bdb_mipi_sequence *sequence;
1369	const u8 *seq_data;
1370	u32 seq_size;
1371	u8 *data;
1372	int index = 0;
1373
1374	/* Only our generic panel driver uses the sequence block. */
1375	if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1376		return;
1377
1378	sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1379	if (!sequence) {
1380		drm_dbg_kms(&i915->drm,
1381			    "No MIPI Sequence found, parsing complete\n");
1382		return;
1383	}
1384
1385	/* Fail gracefully for forward incompatible sequence block. */
1386	if (sequence->version >= 4) {
1387		drm_err(&i915->drm,
1388			"Unable to parse MIPI Sequence Block v%u\n",
1389			sequence->version);
1390		return;
1391	}
1392
1393	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1394		sequence->version);
1395
1396	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1397	if (!seq_data)
1398		return;
1399
1400	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1401	if (!data)
1402		return;
1403
1404	/* Parse the sequences, store pointers to each sequence. */
1405	for (;;) {
1406		u8 seq_id = *(data + index);
1407		if (seq_id == MIPI_SEQ_END)
1408			break;
1409
1410		if (seq_id >= MIPI_SEQ_MAX) {
1411			drm_err(&i915->drm, "Unknown sequence %u\n",
1412				seq_id);
1413			goto err;
1414		}
1415
1416		/* Log about presence of sequences we won't run. */
1417		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1418			drm_dbg_kms(&i915->drm,
1419				    "Unsupported sequence %u\n", seq_id);
1420
1421		i915->vbt.dsi.sequence[seq_id] = data + index;
1422
1423		if (sequence->version >= 3)
1424			index = goto_next_sequence_v3(data, index, seq_size);
1425		else
1426			index = goto_next_sequence(data, index, seq_size);
1427		if (!index) {
1428			drm_err(&i915->drm, "Invalid sequence %u\n",
1429				seq_id);
1430			goto err;
1431		}
1432	}
1433
1434	i915->vbt.dsi.data = data;
1435	i915->vbt.dsi.size = seq_size;
1436	i915->vbt.dsi.seq_version = sequence->version;
1437
1438	fixup_mipi_sequences(i915);
1439
1440	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1441	return;
1442
1443err:
1444	kfree(data);
1445	memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1446}
1447
1448static void
1449parse_compression_parameters(struct drm_i915_private *i915,
1450			     const struct bdb_header *bdb)
1451{
1452	const struct bdb_compression_parameters *params;
1453	struct intel_bios_encoder_data *devdata;
1454	const struct child_device_config *child;
1455	u16 block_size;
1456	int index;
1457
1458	if (bdb->version < 198)
1459		return;
1460
1461	params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1462	if (params) {
1463		/* Sanity checks */
1464		if (params->entry_size != sizeof(params->data[0])) {
1465			drm_dbg_kms(&i915->drm,
1466				    "VBT: unsupported compression param entry size\n");
1467			return;
1468		}
1469
1470		block_size = get_blocksize(params);
1471		if (block_size < sizeof(*params)) {
1472			drm_dbg_kms(&i915->drm,
1473				    "VBT: expected 16 compression param entries\n");
1474			return;
1475		}
1476	}
1477
1478	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1479		child = &devdata->child;
1480
1481		if (!child->compression_enable)
1482			continue;
1483
1484		if (!params) {
1485			drm_dbg_kms(&i915->drm,
1486				    "VBT: compression params not available\n");
1487			continue;
1488		}
1489
1490		if (child->compression_method_cps) {
1491			drm_dbg_kms(&i915->drm,
1492				    "VBT: CPS compression not supported\n");
1493			continue;
1494		}
1495
1496		index = child->compression_structure_index;
1497
1498		devdata->dsc = kmemdup(&params->data[index],
1499				       sizeof(*devdata->dsc), GFP_KERNEL);
1500	}
1501}
1502
1503static u8 translate_iboost(u8 val)
1504{
1505	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1506
1507	if (val >= ARRAY_SIZE(mapping)) {
1508		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1509		return 0;
1510	}
1511	return mapping[val];
1512}
1513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1515{
1516	const struct ddi_vbt_port_info *info;
1517	enum port port;
1518
1519	if (!ddc_pin)
1520		return PORT_NONE;
1521
1522	for_each_port(port) {
1523		info = &i915->vbt.ddi_port_info[port];
1524
1525		if (info->devdata && ddc_pin == info->alternate_ddc_pin)
1526			return port;
1527	}
1528
1529	return PORT_NONE;
1530}
1531
1532static void sanitize_ddc_pin(struct drm_i915_private *i915,
1533			     enum port port)
1534{
1535	struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1536	struct child_device_config *child;
 
1537	enum port p;
1538
1539	p = get_port_by_ddc_pin(i915, info->alternate_ddc_pin);
 
 
 
 
 
 
 
 
 
 
 
 
 
1540	if (p == PORT_NONE)
1541		return;
1542
1543	drm_dbg_kms(&i915->drm,
1544		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
1545		    "disabling port %c DVI/HDMI support\n",
1546		    port_name(port), info->alternate_ddc_pin,
1547		    port_name(p), port_name(p));
1548
1549	/*
1550	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1551	 * couldn't exist on the shared port. Otherwise they share the same ddc
1552	 * pin and system couldn't communicate with them separately.
1553	 *
1554	 * Give inverse child device order the priority, last one wins. Yes,
1555	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1556	 * port A and port E with the same AUX ch and we must pick port E :(
1557	 */
1558	info = &i915->vbt.ddi_port_info[p];
1559	child = &info->devdata->child;
1560
1561	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1562	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1563
1564	info->alternate_ddc_pin = 0;
1565}
1566
1567static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1568{
1569	const struct ddi_vbt_port_info *info;
1570	enum port port;
1571
1572	if (!aux_ch)
1573		return PORT_NONE;
1574
1575	for_each_port(port) {
1576		info = &i915->vbt.ddi_port_info[port];
1577
1578		if (info->devdata && aux_ch == info->alternate_aux_channel)
1579			return port;
1580	}
1581
1582	return PORT_NONE;
1583}
1584
1585static void sanitize_aux_ch(struct drm_i915_private *i915,
1586			    enum port port)
1587{
1588	struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1589	struct child_device_config *child;
1590	enum port p;
1591
1592	p = get_port_by_aux_ch(i915, info->alternate_aux_channel);
1593	if (p == PORT_NONE)
1594		return;
1595
1596	drm_dbg_kms(&i915->drm,
1597		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
1598		    "disabling port %c DP support\n",
1599		    port_name(port), info->alternate_aux_channel,
1600		    port_name(p), port_name(p));
1601
1602	/*
1603	 * If we have multiple ports supposedly sharing the aux channel, then DP
1604	 * couldn't exist on the shared port. Otherwise they share the same aux
1605	 * channel and system couldn't communicate with them separately.
1606	 *
1607	 * Give inverse child device order the priority, last one wins. Yes,
1608	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1609	 * port A and port E with the same AUX ch and we must pick port E :(
1610	 */
1611	info = &i915->vbt.ddi_port_info[p];
1612	child = &info->devdata->child;
1613
1614	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1615	info->alternate_aux_channel = 0;
1616}
1617
1618static const u8 cnp_ddc_pin_map[] = {
1619	[0] = 0, /* N/A */
1620	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1621	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1622	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1623	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1624};
1625
1626static const u8 icp_ddc_pin_map[] = {
1627	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1628	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1629	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1630	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1631	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1632	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1633	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1634	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1635	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1636};
1637
1638static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1639	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1640	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1641	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1642	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1643};
1644
1645static const u8 adls_ddc_pin_map[] = {
1646	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1647	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1648	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1649	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1650	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1651};
1652
1653static const u8 gen9bc_tgp_ddc_pin_map[] = {
1654	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1655	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1656	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1657};
1658
1659static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1660{
1661	const u8 *ddc_pin_map;
1662	int n_entries;
1663
1664	if (IS_ALDERLAKE_S(i915)) {
1665		ddc_pin_map = adls_ddc_pin_map;
1666		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1667	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1668		return vbt_pin;
1669	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1670		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1671		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1672	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
1673		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1674		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1675	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1676		ddc_pin_map = icp_ddc_pin_map;
1677		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1678	} else if (HAS_PCH_CNP(i915)) {
1679		ddc_pin_map = cnp_ddc_pin_map;
1680		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1681	} else {
1682		/* Assuming direct map */
1683		return vbt_pin;
 
 
 
 
 
1684	}
1685
1686	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1687		return ddc_pin_map[vbt_pin];
1688
1689	drm_dbg_kms(&i915->drm,
1690		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1691		    vbt_pin);
1692	return 0;
1693}
1694
1695static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1696				    const int port_mapping[][3], u8 dvo_port)
1697{
1698	enum port port;
1699	int i;
1700
1701	for (port = PORT_A; port < n_ports; port++) {
1702		for (i = 0; i < n_dvo; i++) {
1703			if (port_mapping[port][i] == -1)
1704				break;
1705
1706			if (dvo_port == port_mapping[port][i])
1707				return port;
1708		}
1709	}
1710
1711	return PORT_NONE;
1712}
1713
1714static enum port dvo_port_to_port(struct drm_i915_private *i915,
1715				  u8 dvo_port)
1716{
1717	/*
1718	 * Each DDI port can have more than one value on the "DVO Port" field,
1719	 * so look for all the possible values for each port.
1720	 */
1721	static const int port_mapping[][3] = {
1722		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1723		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1724		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1725		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1726		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1727		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1728		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1729		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1730		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1731	};
1732	/*
1733	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1734	 * map to DDI A,B,TC1,TC2 respectively.
1735	 */
1736	static const int rkl_port_mapping[][3] = {
1737		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1738		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1739		[PORT_C] = { -1 },
1740		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1741		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1742	};
1743	/*
1744	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1745	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
1746	 */
1747	static const int adls_port_mapping[][3] = {
1748		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1749		[PORT_B] = { -1 },
1750		[PORT_C] = { -1 },
1751		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1752		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1753		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1754		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1755	};
1756	static const int xelpd_port_mapping[][3] = {
1757		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1758		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1759		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1760		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1761		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1762		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1763		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1764		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1765		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1766	};
1767
1768	if (DISPLAY_VER(i915) == 13)
1769		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
1770					  ARRAY_SIZE(xelpd_port_mapping[0]),
1771					  xelpd_port_mapping,
1772					  dvo_port);
1773	else if (IS_ALDERLAKE_S(i915))
1774		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1775					  ARRAY_SIZE(adls_port_mapping[0]),
1776					  adls_port_mapping,
1777					  dvo_port);
1778	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1779		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1780					  ARRAY_SIZE(rkl_port_mapping[0]),
1781					  rkl_port_mapping,
1782					  dvo_port);
1783	else
1784		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1785					  ARRAY_SIZE(port_mapping[0]),
1786					  port_mapping,
1787					  dvo_port);
1788}
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1791{
1792	switch (vbt_max_link_rate) {
1793	default:
1794	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1795		return 0;
1796	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1797		return 2000000;
1798	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1799		return 1350000;
1800	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1801		return 1000000;
1802	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1803		return 810000;
1804	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1805		return 540000;
1806	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1807		return 270000;
1808	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1809		return 162000;
1810	}
1811}
1812
1813static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1814{
1815	switch (vbt_max_link_rate) {
1816	default:
1817	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1818		return 810000;
1819	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1820		return 540000;
1821	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1822		return 270000;
1823	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1824		return 162000;
1825	}
1826}
1827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1829				 enum port port)
1830{
1831	struct drm_i915_private *i915 = devdata->i915;
1832	bool is_hdmi;
1833
1834	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
1835		return;
1836
1837	if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1838		return;
1839
1840	is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1841
1842	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1843		    is_hdmi ? "/HDMI" : "");
1844
1845	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1846	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1847}
1848
1849static bool
1850intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1851{
1852	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1853}
1854
1855bool
1856intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1857{
1858	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1859}
1860
1861bool
1862intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1863{
1864	return intel_bios_encoder_supports_dvi(devdata) &&
1865		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1866}
1867
1868bool
1869intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1870{
1871	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1872}
1873
1874static bool
1875intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1876{
1877	return intel_bios_encoder_supports_dp(devdata) &&
1878		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1879}
1880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1881static bool is_port_valid(struct drm_i915_private *i915, enum port port)
1882{
1883	/*
1884	 * On some ICL/CNL SKUs port F is not present, but broken VBTs mark
1885	 * the port as present. Only try to initialize port F for the
1886	 * SKUs that may actually have it.
1887	 */
1888	if (port == PORT_F && (IS_ICELAKE(i915) || IS_CANNONLAKE(i915)))
1889		return IS_ICL_WITH_PORT_F(i915) || IS_CNL_WITH_PORT_F(i915);
1890
1891	return true;
1892}
1893
1894static void parse_ddi_port(struct drm_i915_private *i915,
1895			   struct intel_bios_encoder_data *devdata)
1896{
 
1897	const struct child_device_config *child = &devdata->child;
1898	struct ddi_vbt_port_info *info;
1899	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
1900	int dp_boost_level, hdmi_boost_level;
1901	enum port port;
1902
1903	port = dvo_port_to_port(i915, child->dvo_port);
1904	if (port == PORT_NONE)
1905		return;
1906
1907	if (!is_port_valid(i915, port)) {
1908		drm_dbg_kms(&i915->drm,
1909			    "VBT reports port %c as supported, but that can't be true: skipping\n",
1910			    port_name(port));
1911		return;
1912	}
1913
1914	info = &i915->vbt.ddi_port_info[port];
1915
1916	if (info->devdata) {
1917		drm_dbg_kms(&i915->drm,
1918			    "More than one child device for port %c in VBT, using the first.\n",
1919			    port_name(port));
1920		return;
1921	}
1922
1923	sanitize_device_type(devdata, port);
1924
1925	is_dvi = intel_bios_encoder_supports_dvi(devdata);
1926	is_dp = intel_bios_encoder_supports_dp(devdata);
1927	is_crt = intel_bios_encoder_supports_crt(devdata);
1928	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
1929	is_edp = intel_bios_encoder_supports_edp(devdata);
1930
1931	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
1932	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
1933
1934	drm_dbg_kms(&i915->drm,
1935		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1936		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1937		    HAS_LSPCON(i915) && child->lspcon,
1938		    supports_typec_usb, supports_tbt,
1939		    devdata->dsc != NULL);
1940
1941	if (is_dvi) {
1942		u8 ddc_pin;
1943
1944		ddc_pin = map_ddc_pin(i915, child->ddc_pin);
1945		if (intel_gmbus_is_valid_pin(i915, ddc_pin)) {
1946			info->alternate_ddc_pin = ddc_pin;
1947			sanitize_ddc_pin(i915, port);
1948		} else {
1949			drm_dbg_kms(&i915->drm,
1950				    "Port %c has invalid DDC pin %d, "
1951				    "sticking to defaults\n",
1952				    port_name(port), ddc_pin);
1953		}
1954	}
1955
1956	if (is_dp) {
1957		info->alternate_aux_channel = child->aux_channel;
1958
1959		sanitize_aux_ch(i915, port);
1960	}
1961
1962	if (i915->vbt.version >= 158) {
1963		/* The VBT HDMI level shift values match the table we have. */
1964		u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1965		drm_dbg_kms(&i915->drm,
1966			    "Port %c VBT HDMI level shift: %d\n",
1967			    port_name(port),
1968			    hdmi_level_shift);
1969		info->hdmi_level_shift = hdmi_level_shift;
1970		info->hdmi_level_shift_set = true;
1971	}
1972
1973	if (i915->vbt.version >= 204) {
1974		int max_tmds_clock;
1975
1976		switch (child->hdmi_max_data_rate) {
1977		default:
1978			MISSING_CASE(child->hdmi_max_data_rate);
1979			fallthrough;
1980		case HDMI_MAX_DATA_RATE_PLATFORM:
1981			max_tmds_clock = 0;
1982			break;
1983		case HDMI_MAX_DATA_RATE_297:
1984			max_tmds_clock = 297000;
1985			break;
1986		case HDMI_MAX_DATA_RATE_165:
1987			max_tmds_clock = 165000;
1988			break;
1989		}
1990
1991		if (max_tmds_clock)
1992			drm_dbg_kms(&i915->drm,
1993				    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
1994				    port_name(port), max_tmds_clock);
1995		info->max_tmds_clock = max_tmds_clock;
1996	}
1997
1998	/* I_boost config for SKL and above */
1999	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2000	if (dp_boost_level)
2001		drm_dbg_kms(&i915->drm,
2002			    "Port %c VBT (e)DP boost level: %d\n",
2003			    port_name(port), dp_boost_level);
2004
2005	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2006	if (hdmi_boost_level)
2007		drm_dbg_kms(&i915->drm,
2008			    "Port %c VBT HDMI boost level: %d\n",
2009			    port_name(port), hdmi_boost_level);
2010
2011	/* DP max link rate for CNL+ */
2012	if (i915->vbt.version >= 216) {
2013		if (i915->vbt.version >= 230)
2014			info->dp_max_link_rate = parse_bdb_230_dp_max_link_rate(child->dp_max_link_rate);
2015		else
2016			info->dp_max_link_rate = parse_bdb_216_dp_max_link_rate(child->dp_max_link_rate);
2017
2018		drm_dbg_kms(&i915->drm,
2019			    "Port %c VBT DP max link rate: %d\n",
2020			    port_name(port), info->dp_max_link_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2021	}
2022
2023	info->devdata = devdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024}
2025
2026static void parse_ddi_ports(struct drm_i915_private *i915)
2027{
2028	struct intel_bios_encoder_data *devdata;
 
2029
2030	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2031		return;
2032
2033	if (i915->vbt.version < 155)
2034		return;
2035
2036	list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2037		parse_ddi_port(i915, devdata);
 
 
2038}
2039
2040static void
2041parse_general_definitions(struct drm_i915_private *i915,
2042			  const struct bdb_header *bdb)
2043{
2044	const struct bdb_general_definitions *defs;
2045	struct intel_bios_encoder_data *devdata;
2046	const struct child_device_config *child;
2047	int i, child_device_num;
2048	u8 expected_size;
2049	u16 block_size;
2050	int bus_pin;
2051
2052	defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2053	if (!defs) {
2054		drm_dbg_kms(&i915->drm,
2055			    "No general definition block is found, no devices defined.\n");
2056		return;
2057	}
2058
2059	block_size = get_blocksize(defs);
2060	if (block_size < sizeof(*defs)) {
2061		drm_dbg_kms(&i915->drm,
2062			    "General definitions block too small (%u)\n",
2063			    block_size);
2064		return;
2065	}
2066
2067	bus_pin = defs->crt_ddc_gmbus_pin;
2068	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2069	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2070		i915->vbt.crt_ddc_pin = bus_pin;
2071
2072	if (bdb->version < 106) {
2073		expected_size = 22;
2074	} else if (bdb->version < 111) {
2075		expected_size = 27;
2076	} else if (bdb->version < 195) {
2077		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2078	} else if (bdb->version == 195) {
2079		expected_size = 37;
2080	} else if (bdb->version <= 215) {
2081		expected_size = 38;
2082	} else if (bdb->version <= 237) {
2083		expected_size = 39;
2084	} else {
2085		expected_size = sizeof(*child);
2086		BUILD_BUG_ON(sizeof(*child) < 39);
2087		drm_dbg(&i915->drm,
2088			"Expected child device config size for VBT version %u not known; assuming %u\n",
2089			bdb->version, expected_size);
2090	}
2091
2092	/* Flag an error for unexpected size, but continue anyway. */
2093	if (defs->child_dev_size != expected_size)
2094		drm_err(&i915->drm,
2095			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2096			defs->child_dev_size, expected_size, bdb->version);
2097
2098	/* The legacy sized child device config is the minimum we need. */
2099	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2100		drm_dbg_kms(&i915->drm,
2101			    "Child device config size %u is too small.\n",
2102			    defs->child_dev_size);
2103		return;
2104	}
2105
2106	/* get the number of child device */
2107	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2108
2109	for (i = 0; i < child_device_num; i++) {
2110		child = child_device_ptr(defs, i);
2111		if (!child->device_type)
2112			continue;
2113
2114		drm_dbg_kms(&i915->drm,
2115			    "Found VBT child device with type 0x%x\n",
2116			    child->device_type);
2117
2118		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2119		if (!devdata)
2120			break;
2121
2122		devdata->i915 = i915;
2123
2124		/*
2125		 * Copy as much as we know (sizeof) and is available
2126		 * (child_dev_size) of the child device config. Accessing the
2127		 * data must depend on VBT version.
2128		 */
2129		memcpy(&devdata->child, child,
2130		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2131
2132		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2133	}
2134
2135	if (list_empty(&i915->vbt.display_devices))
2136		drm_dbg_kms(&i915->drm,
2137			    "no child dev is parsed from VBT\n");
2138}
2139
2140/* Common defaults which may be overridden by VBT. */
2141static void
2142init_vbt_defaults(struct drm_i915_private *i915)
2143{
2144	i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2145
2146	/* Default to having backlight */
2147	i915->vbt.backlight.present = true;
2148
2149	/* LFP panel data */
2150	i915->vbt.lvds_dither = 1;
2151
2152	/* SDVO panel data */
2153	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2154
2155	/* general features */
2156	i915->vbt.int_tv_support = 1;
2157	i915->vbt.int_crt_support = 1;
2158
2159	/* driver features */
2160	i915->vbt.int_lvds_support = 1;
2161
2162	/* Default to using SSC */
2163	i915->vbt.lvds_use_ssc = 1;
2164	/*
2165	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2166	 * clock for LVDS.
2167	 */
2168	i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2169							   !HAS_PCH_SPLIT(i915));
2170	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2171		    i915->vbt.lvds_ssc_freq);
 
 
 
 
 
 
 
 
 
 
 
2172}
2173
2174/* Defaults to initialize only if there is no VBT. */
2175static void
2176init_vbt_missing_defaults(struct drm_i915_private *i915)
2177{
2178	enum port port;
2179	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2180		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2181
2182	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2183		return;
2184
2185	for_each_port_masked(port, ports) {
2186		struct intel_bios_encoder_data *devdata;
2187		struct child_device_config *child;
2188		enum phy phy = intel_port_to_phy(i915, port);
2189
2190		/*
2191		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2192		 * to detect it.
2193		 */
2194		if (intel_phy_is_tc(i915, phy))
2195			continue;
2196
2197		/* Create fake child device config */
2198		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2199		if (!devdata)
2200			break;
2201
2202		devdata->i915 = i915;
2203		child = &devdata->child;
2204
2205		if (port == PORT_F)
2206			child->dvo_port = DVO_PORT_HDMIF;
2207		else if (port == PORT_E)
2208			child->dvo_port = DVO_PORT_HDMIE;
2209		else
2210			child->dvo_port = DVO_PORT_HDMIA + port;
2211
2212		if (port != PORT_A && port != PORT_E)
2213			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2214
2215		if (port != PORT_E)
2216			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2217
2218		if (port == PORT_A)
2219			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2220
2221		list_add_tail(&devdata->node, &i915->vbt.display_devices);
2222
2223		drm_dbg_kms(&i915->drm,
2224			    "Generating default VBT child device with type 0x04%x on port %c\n",
2225			    child->device_type, port_name(port));
2226	}
2227
2228	/* Bypass some minimum baseline VBT version checks */
2229	i915->vbt.version = 155;
2230}
2231
2232static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2233{
2234	const void *_vbt = vbt;
2235
2236	return _vbt + vbt->bdb_offset;
2237}
2238
2239/**
2240 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2241 * @buf:	pointer to a buffer to validate
2242 * @size:	size of the buffer
2243 *
2244 * Returns true on valid VBT.
2245 */
2246bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2247{
2248	const struct vbt_header *vbt = buf;
2249	const struct bdb_header *bdb;
2250
2251	if (!vbt)
2252		return false;
2253
2254	if (sizeof(struct vbt_header) > size) {
2255		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2256		return false;
2257	}
2258
2259	if (memcmp(vbt->signature, "$VBT", 4)) {
2260		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2261		return false;
2262	}
2263
2264	if (vbt->vbt_size > size) {
2265		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2266		return false;
2267	}
2268
2269	size = vbt->vbt_size;
2270
2271	if (range_overflows_t(size_t,
2272			      vbt->bdb_offset,
2273			      sizeof(struct bdb_header),
2274			      size)) {
2275		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2276		return false;
2277	}
2278
2279	bdb = get_bdb_header(vbt);
2280	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2281		DRM_DEBUG_DRIVER("BDB incomplete\n");
2282		return false;
2283	}
2284
2285	return vbt;
2286}
2287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2289{
2290	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2291	void __iomem *p = NULL, *oprom;
2292	struct vbt_header *vbt;
2293	u16 vbt_size;
2294	size_t i, size;
2295
2296	oprom = pci_map_rom(pdev, &size);
2297	if (!oprom)
2298		return NULL;
2299
2300	/* Scour memory looking for the VBT signature. */
2301	for (i = 0; i + 4 < size; i += 4) {
2302		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2303			continue;
2304
2305		p = oprom + i;
2306		size -= i;
2307		break;
2308	}
2309
2310	if (!p)
2311		goto err_unmap_oprom;
2312
2313	if (sizeof(struct vbt_header) > size) {
2314		drm_dbg(&i915->drm, "VBT header incomplete\n");
2315		goto err_unmap_oprom;
2316	}
2317
2318	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2319	if (vbt_size > size) {
2320		drm_dbg(&i915->drm,
2321			"VBT incomplete (vbt_size overflows)\n");
2322		goto err_unmap_oprom;
2323	}
2324
2325	/* The rest will be validated by intel_bios_is_valid_vbt() */
2326	vbt = kmalloc(vbt_size, GFP_KERNEL);
2327	if (!vbt)
2328		goto err_unmap_oprom;
2329
2330	memcpy_fromio(vbt, p, vbt_size);
2331
2332	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2333		goto err_free_vbt;
2334
2335	pci_unmap_rom(pdev, oprom);
2336
 
 
2337	return vbt;
2338
2339err_free_vbt:
2340	kfree(vbt);
2341err_unmap_oprom:
2342	pci_unmap_rom(pdev, oprom);
2343
2344	return NULL;
2345}
2346
2347/**
2348 * intel_bios_init - find VBT and initialize settings from the BIOS
2349 * @i915: i915 device instance
2350 *
2351 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2352 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2353 * initialize some defaults if the VBT is not present at all.
2354 */
2355void intel_bios_init(struct drm_i915_private *i915)
2356{
2357	const struct vbt_header *vbt = i915->opregion.vbt;
2358	struct vbt_header *oprom_vbt = NULL;
2359	const struct bdb_header *bdb;
2360
2361	INIT_LIST_HEAD(&i915->vbt.display_devices);
 
2362
2363	if (!HAS_DISPLAY(i915)) {
2364		drm_dbg_kms(&i915->drm,
2365			    "Skipping VBT init due to disabled display.\n");
2366		return;
2367	}
2368
2369	init_vbt_defaults(i915);
2370
2371	/* If the OpRegion does not have VBT, look in PCI ROM. */
 
 
 
 
 
 
 
 
2372	if (!vbt) {
2373		oprom_vbt = oprom_get_vbt(i915);
2374		if (!oprom_vbt)
2375			goto out;
2376
2377		vbt = oprom_vbt;
2378
2379		drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2380	}
2381
 
 
 
2382	bdb = get_bdb_header(vbt);
2383	i915->vbt.version = bdb->version;
2384
2385	drm_dbg_kms(&i915->drm,
2386		    "VBT signature \"%.*s\", BDB version %d\n",
2387		    (int)sizeof(vbt->signature), vbt->signature, bdb->version);
 
 
2388
2389	/* Grab useful general definitions */
2390	parse_general_features(i915, bdb);
2391	parse_general_definitions(i915, bdb);
2392	parse_panel_options(i915, bdb);
2393	parse_panel_dtd(i915, bdb);
2394	parse_lfp_backlight(i915, bdb);
2395	parse_sdvo_panel_data(i915, bdb);
2396	parse_driver_features(i915, bdb);
2397	parse_power_conservation_features(i915, bdb);
2398	parse_edp(i915, bdb);
2399	parse_psr(i915, bdb);
2400	parse_mipi_config(i915, bdb);
2401	parse_mipi_sequence(i915, bdb);
2402
2403	/* Depends on child device list */
2404	parse_compression_parameters(i915, bdb);
2405
2406out:
2407	if (!vbt) {
2408		drm_info(&i915->drm,
2409			 "Failed to find VBIOS tables (VBT)\n");
2410		init_vbt_missing_defaults(i915);
2411	}
2412
2413	/* Further processing on pre-parsed or generated child device data */
2414	parse_sdvo_device_mapping(i915);
2415	parse_ddi_ports(i915);
2416
2417	kfree(oprom_vbt);
2418}
2419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2420/**
2421 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2422 * @i915: i915 device instance
2423 */
2424void intel_bios_driver_remove(struct drm_i915_private *i915)
2425{
2426	struct intel_bios_encoder_data *devdata, *n;
 
2427
2428	list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2429		list_del(&devdata->node);
2430		kfree(devdata->dsc);
2431		kfree(devdata);
2432	}
2433
2434	kfree(i915->vbt.sdvo_lvds_vbt_mode);
2435	i915->vbt.sdvo_lvds_vbt_mode = NULL;
2436	kfree(i915->vbt.lfp_lvds_vbt_mode);
2437	i915->vbt.lfp_lvds_vbt_mode = NULL;
2438	kfree(i915->vbt.dsi.data);
2439	i915->vbt.dsi.data = NULL;
2440	kfree(i915->vbt.dsi.pps);
2441	i915->vbt.dsi.pps = NULL;
2442	kfree(i915->vbt.dsi.config);
2443	i915->vbt.dsi.config = NULL;
2444	kfree(i915->vbt.dsi.deassert_seq);
2445	i915->vbt.dsi.deassert_seq = NULL;
 
 
 
 
 
 
 
 
2446}
2447
2448/**
2449 * intel_bios_is_tv_present - is integrated TV present in VBT
2450 * @i915: i915 device instance
2451 *
2452 * Return true if TV is present. If no child devices were parsed from VBT,
2453 * assume TV is present.
2454 */
2455bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2456{
2457	const struct intel_bios_encoder_data *devdata;
2458	const struct child_device_config *child;
2459
2460	if (!i915->vbt.int_tv_support)
2461		return false;
2462
2463	if (list_empty(&i915->vbt.display_devices))
2464		return true;
2465
2466	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2467		child = &devdata->child;
2468
2469		/*
2470		 * If the device type is not TV, continue.
2471		 */
2472		switch (child->device_type) {
2473		case DEVICE_TYPE_INT_TV:
2474		case DEVICE_TYPE_TV:
2475		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2476			break;
2477		default:
2478			continue;
2479		}
2480		/* Only when the addin_offset is non-zero, it is regarded
2481		 * as present.
2482		 */
2483		if (child->addin_offset)
2484			return true;
2485	}
2486
2487	return false;
2488}
2489
2490/**
2491 * intel_bios_is_lvds_present - is LVDS present in VBT
2492 * @i915:	i915 device instance
2493 * @i2c_pin:	i2c pin for LVDS if present
2494 *
2495 * Return true if LVDS is present. If no child devices were parsed from VBT,
2496 * assume LVDS is present.
2497 */
2498bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2499{
2500	const struct intel_bios_encoder_data *devdata;
2501	const struct child_device_config *child;
2502
2503	if (list_empty(&i915->vbt.display_devices))
2504		return true;
2505
2506	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2507		child = &devdata->child;
2508
2509		/* If the device type is not LFP, continue.
2510		 * We have to check both the new identifiers as well as the
2511		 * old for compatibility with some BIOSes.
2512		 */
2513		if (child->device_type != DEVICE_TYPE_INT_LFP &&
2514		    child->device_type != DEVICE_TYPE_LFP)
2515			continue;
2516
2517		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2518			*i2c_pin = child->i2c_pin;
2519
2520		/* However, we cannot trust the BIOS writers to populate
2521		 * the VBT correctly.  Since LVDS requires additional
2522		 * information from AIM blocks, a non-zero addin offset is
2523		 * a good indicator that the LVDS is actually present.
2524		 */
2525		if (child->addin_offset)
2526			return true;
2527
2528		/* But even then some BIOS writers perform some black magic
2529		 * and instantiate the device without reference to any
2530		 * additional data.  Trust that if the VBT was written into
2531		 * the OpRegion then they have validated the LVDS's existence.
2532		 */
2533		if (i915->opregion.vbt)
2534			return true;
2535	}
2536
2537	return false;
2538}
2539
2540/**
2541 * intel_bios_is_port_present - is the specified digital port present
2542 * @i915:	i915 device instance
2543 * @port:	port to check
2544 *
2545 * Return true if the device in %port is present.
2546 */
2547bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2548{
2549	const struct intel_bios_encoder_data *devdata;
2550	const struct child_device_config *child;
2551	static const struct {
2552		u16 dp, hdmi;
2553	} port_mapping[] = {
2554		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2555		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2556		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2557		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2558		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2559	};
2560
2561	if (HAS_DDI(i915)) {
2562		const struct ddi_vbt_port_info *port_info =
2563			&i915->vbt.ddi_port_info[port];
2564
2565		return port_info->devdata;
2566	}
2567
2568	/* FIXME maybe deal with port A as well? */
2569	if (drm_WARN_ON(&i915->drm,
2570			port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2571		return false;
2572
2573	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2574		child = &devdata->child;
2575
2576		if ((child->dvo_port == port_mapping[port].dp ||
2577		     child->dvo_port == port_mapping[port].hdmi) &&
2578		    (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2579					   DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2580			return true;
2581	}
2582
2583	return false;
2584}
2585
2586/**
2587 * intel_bios_is_port_edp - is the device in given port eDP
2588 * @i915:	i915 device instance
2589 * @port:	port to check
2590 *
2591 * Return true if the device in %port is eDP.
2592 */
2593bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2594{
2595	const struct intel_bios_encoder_data *devdata;
2596	const struct child_device_config *child;
2597	static const short port_mapping[] = {
2598		[PORT_B] = DVO_PORT_DPB,
2599		[PORT_C] = DVO_PORT_DPC,
2600		[PORT_D] = DVO_PORT_DPD,
2601		[PORT_E] = DVO_PORT_DPE,
2602		[PORT_F] = DVO_PORT_DPF,
2603	};
2604
2605	if (HAS_DDI(i915)) {
2606		const struct intel_bios_encoder_data *devdata;
2607
2608		devdata = intel_bios_encoder_data_lookup(i915, port);
2609
2610		return devdata && intel_bios_encoder_supports_edp(devdata);
2611	}
2612
2613	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2614		child = &devdata->child;
2615
2616		if (child->dvo_port == port_mapping[port] &&
2617		    (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2618		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2619			return true;
2620	}
2621
2622	return false;
2623}
2624
2625static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2626				      enum port port)
2627{
2628	static const struct {
2629		u16 dp, hdmi;
2630	} port_mapping[] = {
2631		/*
2632		 * Buggy VBTs may declare DP ports as having
2633		 * HDMI type dvo_port :( So let's check both.
2634		 */
2635		[PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2636		[PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2637		[PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2638		[PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2639		[PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2640	};
2641
2642	if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2643		return false;
2644
2645	if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2646	    (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2647		return false;
2648
2649	if (child->dvo_port == port_mapping[port].dp)
2650		return true;
2651
2652	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2653	if (child->dvo_port == port_mapping[port].hdmi &&
2654	    child->aux_channel != 0)
2655		return true;
2656
2657	return false;
2658}
2659
2660bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2661				     enum port port)
2662{
2663	const struct intel_bios_encoder_data *devdata;
2664
2665	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2666		if (child_dev_is_dp_dual_mode(&devdata->child, port))
2667			return true;
2668	}
2669
2670	return false;
2671}
2672
2673/**
2674 * intel_bios_is_dsi_present - is DSI present in VBT
2675 * @i915:	i915 device instance
2676 * @port:	port for DSI if present
2677 *
2678 * Return true if DSI is present, and return the port in %port.
2679 */
2680bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2681			       enum port *port)
2682{
2683	const struct intel_bios_encoder_data *devdata;
2684	const struct child_device_config *child;
2685	u8 dvo_port;
2686
2687	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2688		child = &devdata->child;
2689
2690		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2691			continue;
2692
2693		dvo_port = child->dvo_port;
2694
2695		if (dvo_port == DVO_PORT_MIPIA ||
2696		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
2697		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
2698			if (port)
2699				*port = dvo_port - DVO_PORT_MIPIA;
2700			return true;
2701		} else if (dvo_port == DVO_PORT_MIPIB ||
2702			   dvo_port == DVO_PORT_MIPIC ||
2703			   dvo_port == DVO_PORT_MIPID) {
2704			drm_dbg_kms(&i915->drm,
2705				    "VBT has unsupported DSI port %c\n",
2706				    port_name(dvo_port - DVO_PORT_MIPIA));
 
2707		}
 
 
 
 
2708	}
2709
2710	return false;
2711}
2712
2713static void fill_dsc(struct intel_crtc_state *crtc_state,
2714		     struct dsc_compression_parameters_entry *dsc,
2715		     int dsc_max_bpc)
2716{
2717	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2718	int bpc = 8;
2719
2720	vdsc_cfg->dsc_version_major = dsc->version_major;
2721	vdsc_cfg->dsc_version_minor = dsc->version_minor;
2722
2723	if (dsc->support_12bpc && dsc_max_bpc >= 12)
2724		bpc = 12;
2725	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2726		bpc = 10;
2727	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2728		bpc = 8;
2729	else
2730		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2731			      dsc_max_bpc);
2732
2733	crtc_state->pipe_bpp = bpc * 3;
2734
2735	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2736					     VBT_DSC_MAX_BPP(dsc->max_bpp));
2737
2738	/*
2739	 * FIXME: This is ugly, and slice count should take DSC engine
2740	 * throughput etc. into account.
2741	 *
2742	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2743	 */
2744	if (dsc->slices_per_line & BIT(2)) {
2745		crtc_state->dsc.slice_count = 4;
2746	} else if (dsc->slices_per_line & BIT(1)) {
2747		crtc_state->dsc.slice_count = 2;
2748	} else {
2749		/* FIXME */
2750		if (!(dsc->slices_per_line & BIT(0)))
2751			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2752
2753		crtc_state->dsc.slice_count = 1;
2754	}
2755
2756	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2757	    crtc_state->dsc.slice_count != 0)
2758		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2759			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
2760			      crtc_state->dsc.slice_count);
2761
2762	/*
2763	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
2764	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2765	 */
2766	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2767							    dsc->rc_buffer_size);
2768
2769	/* FIXME: DSI spec says bpc + 1 for this one */
2770	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2771
2772	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2773
2774	vdsc_cfg->slice_height = dsc->slice_height;
2775}
2776
2777/* FIXME: initially DSI specific */
2778bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2779			       struct intel_crtc_state *crtc_state,
2780			       int dsc_max_bpc)
2781{
2782	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2783	const struct intel_bios_encoder_data *devdata;
2784	const struct child_device_config *child;
2785
2786	list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2787		child = &devdata->child;
2788
2789		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2790			continue;
2791
2792		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2793			if (!devdata->dsc)
2794				return false;
2795
2796			if (crtc_state)
2797				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2798
2799			return true;
2800		}
2801	}
2802
2803	return false;
2804}
2805
2806/**
2807 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2808 * @i915:	i915 device instance
2809 * @port:	port to check
2810 *
2811 * Return true if HPD should be inverted for %port.
2812 */
2813bool
2814intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2815				enum port port)
2816{
2817	const struct intel_bios_encoder_data *devdata =
2818		i915->vbt.ddi_port_info[port].devdata;
2819
2820	if (drm_WARN_ON_ONCE(&i915->drm,
2821			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
2822		return false;
2823
2824	return devdata && devdata->child.hpd_invert;
2825}
2826
2827/**
2828 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2829 * @i915:	i915 device instance
2830 * @port:	port to check
2831 *
2832 * Return true if LSPCON is present on this port
2833 */
2834bool
2835intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2836			     enum port port)
2837{
2838	const struct intel_bios_encoder_data *devdata =
2839		i915->vbt.ddi_port_info[port].devdata;
2840
2841	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2842}
2843
2844/**
2845 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2846 * @i915:       i915 device instance
2847 * @port:       port to check
2848 *
2849 * Return true if port requires lane reversal
2850 */
2851bool
2852intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2853				   enum port port)
2854{
2855	const struct intel_bios_encoder_data *devdata =
2856		i915->vbt.ddi_port_info[port].devdata;
2857
2858	return devdata && devdata->child.lane_reversal;
2859}
2860
2861enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2862				   enum port port)
2863{
2864	const struct ddi_vbt_port_info *info =
2865		&i915->vbt.ddi_port_info[port];
2866	enum aux_ch aux_ch;
2867
2868	if (!info->alternate_aux_channel) {
2869		aux_ch = (enum aux_ch)port;
2870
2871		drm_dbg_kms(&i915->drm,
2872			    "using AUX %c for port %c (platform default)\n",
2873			    aux_ch_name(aux_ch), port_name(port));
2874		return aux_ch;
2875	}
2876
2877	/*
2878	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2879	 * map to DDI A,B,TC1,TC2 respectively.
2880	 *
2881	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2882	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2883	 */
2884	switch (info->alternate_aux_channel) {
2885	case DP_AUX_A:
2886		aux_ch = AUX_CH_A;
2887		break;
2888	case DP_AUX_B:
2889		if (IS_ALDERLAKE_S(i915))
2890			aux_ch = AUX_CH_USBC1;
2891		else
2892			aux_ch = AUX_CH_B;
2893		break;
2894	case DP_AUX_C:
2895		if (IS_ALDERLAKE_S(i915))
2896			aux_ch = AUX_CH_USBC2;
2897		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2898			aux_ch = AUX_CH_USBC1;
2899		else
2900			aux_ch = AUX_CH_C;
2901		break;
2902	case DP_AUX_D:
2903		if (DISPLAY_VER(i915) == 13)
2904			aux_ch = AUX_CH_D_XELPD;
2905		else if (IS_ALDERLAKE_S(i915))
2906			aux_ch = AUX_CH_USBC3;
2907		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2908			aux_ch = AUX_CH_USBC2;
2909		else
2910			aux_ch = AUX_CH_D;
2911		break;
2912	case DP_AUX_E:
2913		if (DISPLAY_VER(i915) == 13)
2914			aux_ch = AUX_CH_E_XELPD;
2915		else if (IS_ALDERLAKE_S(i915))
2916			aux_ch = AUX_CH_USBC4;
2917		else
2918			aux_ch = AUX_CH_E;
2919		break;
2920	case DP_AUX_F:
2921		if (DISPLAY_VER(i915) == 13)
2922			aux_ch = AUX_CH_USBC1;
2923		else
2924			aux_ch = AUX_CH_F;
2925		break;
2926	case DP_AUX_G:
2927		if (DISPLAY_VER(i915) == 13)
2928			aux_ch = AUX_CH_USBC2;
2929		else
2930			aux_ch = AUX_CH_G;
2931		break;
2932	case DP_AUX_H:
2933		if (DISPLAY_VER(i915) == 13)
2934			aux_ch = AUX_CH_USBC3;
2935		else
2936			aux_ch = AUX_CH_H;
2937		break;
2938	case DP_AUX_I:
2939		if (DISPLAY_VER(i915) == 13)
2940			aux_ch = AUX_CH_USBC4;
2941		else
2942			aux_ch = AUX_CH_I;
2943		break;
2944	default:
2945		MISSING_CASE(info->alternate_aux_channel);
2946		aux_ch = AUX_CH_A;
2947		break;
2948	}
2949
2950	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
2951		    aux_ch_name(aux_ch), port_name(port));
2952
2953	return aux_ch;
2954}
2955
2956int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2957{
2958	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 
2959
2960	return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock;
2961}
2962
 
2963int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2964{
2965	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2966	const struct ddi_vbt_port_info *info =
2967		&i915->vbt.ddi_port_info[encoder->port];
2968
2969	return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1;
2970}
2971
2972int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
2973{
2974	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
2975		return 0;
2976
2977	return translate_iboost(devdata->child.dp_iboost_level);
2978}
2979
2980int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
2981{
2982	if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
2983		return 0;
2984
2985	return translate_iboost(devdata->child.hdmi_iboost_level);
2986}
2987
2988int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
2989{
2990	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 
 
 
 
 
 
 
 
 
2991
2992	return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate;
2993}
2994
2995int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
2996{
2997	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
 
 
 
 
2998
2999	return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin;
3000}
3001
3002bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3003{
3004	return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
3005}
3006
3007bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3008{
3009	return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
3010}
3011
3012const struct intel_bios_encoder_data *
3013intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3014{
3015	return i915->vbt.ddi_port_info[port].devdata;
3016}
v6.2
   1/*
   2 * Copyright © 2006 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21 * SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_edid.h>
  29#include <drm/display/drm_dp_helper.h>
  30#include <drm/display/drm_dsc_helper.h>
  31
  32#include "display/intel_display.h"
  33#include "display/intel_display_types.h"
  34#include "display/intel_gmbus.h"
  35
  36#include "i915_drv.h"
  37#include "i915_reg.h"
  38
  39#define _INTEL_BIOS_PRIVATE
  40#include "intel_vbt_defs.h"
  41
  42/**
  43 * DOC: Video BIOS Table (VBT)
  44 *
  45 * The Video BIOS Table, or VBT, provides platform and board specific
  46 * configuration information to the driver that is not discoverable or available
  47 * through other means. The configuration is mostly related to display
  48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
  49 * the PCI ROM.
  50 *
  51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
  52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
  53 * contain the actual configuration information. The VBT Header, and thus the
  54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
  55 * BDB Header. The data blocks are concatenated after the BDB Header. The data
  56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
  57 * data. (Block 53, the MIPI Sequence Block is an exception.)
  58 *
  59 * The driver parses the VBT during load. The relevant information is stored in
  60 * driver private data for ease of use, and the actual VBT is not read after
  61 * that.
  62 */
  63
  64/* Wrapper for VBT child device config */
  65struct intel_bios_encoder_data {
  66	struct drm_i915_private *i915;
  67
  68	struct child_device_config child;
  69	struct dsc_compression_parameters_entry *dsc;
  70	struct list_head node;
  71};
  72
  73#define	SLAVE_ADDR1	0x70
  74#define	SLAVE_ADDR2	0x72
  75
  76/* Get BDB block size given a pointer to Block ID. */
  77static u32 _get_blocksize(const u8 *block_base)
  78{
  79	/* The MIPI Sequence Block v3+ has a separate size field. */
  80	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
  81		return *((const u32 *)(block_base + 4));
  82	else
  83		return *((const u16 *)(block_base + 1));
  84}
  85
  86/* Get BDB block size give a pointer to data after Block ID and Block Size. */
  87static u32 get_blocksize(const void *block_data)
  88{
  89	return _get_blocksize(block_data - 3);
  90}
  91
  92static const void *
  93find_raw_section(const void *_bdb, enum bdb_block_id section_id)
  94{
  95	const struct bdb_header *bdb = _bdb;
  96	const u8 *base = _bdb;
  97	int index = 0;
  98	u32 total, current_size;
  99	enum bdb_block_id current_id;
 100
 101	/* skip to first section */
 102	index += bdb->header_size;
 103	total = bdb->bdb_size;
 104
 105	/* walk the sections looking for section_id */
 106	while (index + 3 < total) {
 107		current_id = *(base + index);
 108		current_size = _get_blocksize(base + index);
 109		index += 3;
 110
 111		if (index + current_size > total)
 112			return NULL;
 113
 114		if (current_id == section_id)
 115			return base + index;
 116
 117		index += current_size;
 118	}
 119
 120	return NULL;
 121}
 122
 123/*
 124 * Offset from the start of BDB to the start of the
 125 * block data (just past the block header).
 126 */
 127static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
 128{
 129	const void *block;
 130
 131	block = find_raw_section(bdb, section_id);
 132	if (!block)
 133		return 0;
 134
 135	return block - bdb;
 136}
 137
 138struct bdb_block_entry {
 139	struct list_head node;
 140	enum bdb_block_id section_id;
 141	u8 data[];
 142};
 143
 144static const void *
 145find_section(struct drm_i915_private *i915,
 146	     enum bdb_block_id section_id)
 147{
 148	struct bdb_block_entry *entry;
 149
 150	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
 151		if (entry->section_id == section_id)
 152			return entry->data + 3;
 153	}
 154
 155	return NULL;
 156}
 157
 158static const struct {
 159	enum bdb_block_id section_id;
 160	size_t min_size;
 161} bdb_blocks[] = {
 162	{ .section_id = BDB_GENERAL_FEATURES,
 163	  .min_size = sizeof(struct bdb_general_features), },
 164	{ .section_id = BDB_GENERAL_DEFINITIONS,
 165	  .min_size = sizeof(struct bdb_general_definitions), },
 166	{ .section_id = BDB_PSR,
 167	  .min_size = sizeof(struct bdb_psr), },
 168	{ .section_id = BDB_DRIVER_FEATURES,
 169	  .min_size = sizeof(struct bdb_driver_features), },
 170	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
 171	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
 172	{ .section_id = BDB_SDVO_PANEL_DTDS,
 173	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
 174	{ .section_id = BDB_EDP,
 175	  .min_size = sizeof(struct bdb_edp), },
 176	{ .section_id = BDB_LVDS_OPTIONS,
 177	  .min_size = sizeof(struct bdb_lvds_options), },
 178	/*
 179	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
 180	 * so keep the two ordered.
 181	 */
 182	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
 183	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
 184	{ .section_id = BDB_LVDS_LFP_DATA,
 185	  .min_size = 0, /* special case */ },
 186	{ .section_id = BDB_LVDS_BACKLIGHT,
 187	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
 188	{ .section_id = BDB_LFP_POWER,
 189	  .min_size = sizeof(struct bdb_lfp_power), },
 190	{ .section_id = BDB_MIPI_CONFIG,
 191	  .min_size = sizeof(struct bdb_mipi_config), },
 192	{ .section_id = BDB_MIPI_SEQUENCE,
 193	  .min_size = sizeof(struct bdb_mipi_sequence) },
 194	{ .section_id = BDB_COMPRESSION_PARAMETERS,
 195	  .min_size = sizeof(struct bdb_compression_parameters), },
 196	{ .section_id = BDB_GENERIC_DTD,
 197	  .min_size = sizeof(struct bdb_generic_dtd), },
 198};
 199
 200static size_t lfp_data_min_size(struct drm_i915_private *i915)
 201{
 202	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 203	size_t size;
 204
 205	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 206	if (!ptrs)
 207		return 0;
 208
 209	size = sizeof(struct bdb_lvds_lfp_data);
 210	if (ptrs->panel_name.table_size)
 211		size = max(size, ptrs->panel_name.offset +
 212			   sizeof(struct bdb_lvds_lfp_data_tail));
 213
 214	return size;
 215}
 216
 217static bool validate_lfp_data_ptrs(const void *bdb,
 218				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
 219{
 220	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
 221	int data_block_size, lfp_data_size;
 222	const void *data_block;
 223	int i;
 224
 225	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
 226	if (!data_block)
 227		return false;
 228
 229	data_block_size = get_blocksize(data_block);
 230	if (data_block_size == 0)
 231		return false;
 232
 233	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
 234	if (ptrs->lvds_entries != 3)
 235		return false;
 236
 237	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
 238	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
 239	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
 240	panel_name_size = ptrs->panel_name.table_size;
 241
 242	/* fp_timing has variable size */
 243	if (fp_timing_size < 32 ||
 244	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
 245	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
 246		return false;
 247
 248	/* panel_name is not present in old VBTs */
 249	if (panel_name_size != 0 &&
 250	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
 251		return false;
 252
 253	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
 254	if (16 * lfp_data_size > data_block_size)
 255		return false;
 256
 257	/* make sure the table entries have uniform size */
 258	for (i = 1; i < 16; i++) {
 259		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
 260		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
 261		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
 262			return false;
 263
 264		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
 265		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
 266		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
 267			return false;
 268	}
 269
 270	/*
 271	 * Except for vlv/chv machines all real VBTs seem to have 6
 272	 * unaccounted bytes in the fp_timing table. And it doesn't
 273	 * appear to be a really intentional hole as the fp_timing
 274	 * 0xffff terminator is always within those 6 missing bytes.
 275	 */
 276	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
 277		fp_timing_size += 6;
 278
 279	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
 280		return false;
 281
 282	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
 283	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
 284	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
 285		return false;
 286
 287	/* make sure the tables fit inside the data block */
 288	for (i = 0; i < 16; i++) {
 289		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
 290		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
 291		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
 292			return false;
 293	}
 294
 295	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
 296		return false;
 297
 298	/* make sure fp_timing terminators are present at expected locations */
 299	for (i = 0; i < 16; i++) {
 300		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
 301			fp_timing_size - 2;
 302
 303		if (*t != 0xffff)
 304			return false;
 305	}
 306
 307	return true;
 308}
 309
 310/* make the data table offsets relative to the data block */
 311static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
 312{
 313	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
 314	u32 offset;
 315	int i;
 316
 317	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
 318
 319	for (i = 0; i < 16; i++) {
 320		if (ptrs->ptr[i].fp_timing.offset < offset ||
 321		    ptrs->ptr[i].dvo_timing.offset < offset ||
 322		    ptrs->ptr[i].panel_pnp_id.offset < offset)
 323			return false;
 324
 325		ptrs->ptr[i].fp_timing.offset -= offset;
 326		ptrs->ptr[i].dvo_timing.offset -= offset;
 327		ptrs->ptr[i].panel_pnp_id.offset -= offset;
 328	}
 329
 330	if (ptrs->panel_name.table_size) {
 331		if (ptrs->panel_name.offset < offset)
 332			return false;
 333
 334		ptrs->panel_name.offset -= offset;
 335	}
 336
 337	return validate_lfp_data_ptrs(bdb, ptrs);
 338}
 339
 340static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
 341			     int table_size, int total_size)
 342{
 343	if (total_size < table_size)
 344		return total_size;
 345
 346	table->table_size = table_size;
 347	table->offset = total_size - table_size;
 348
 349	return total_size - table_size;
 350}
 351
 352static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
 353			      const struct lvds_lfp_data_ptr_table *prev,
 354			      int size)
 355{
 356	next->table_size = prev->table_size;
 357	next->offset = prev->offset + size;
 358}
 359
 360static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
 361				    const void *bdb)
 362{
 363	int i, size, table_size, block_size, offset, fp_timing_size;
 364	struct bdb_lvds_lfp_data_ptrs *ptrs;
 365	const void *block;
 366	void *ptrs_block;
 367
 368	/*
 369	 * The hardcoded fp_timing_size is only valid for
 370	 * modernish VBTs. All older VBTs definitely should
 371	 * include block 41 and thus we don't need to
 372	 * generate one.
 373	 */
 374	if (i915->display.vbt.version < 155)
 375		return NULL;
 376
 377	fp_timing_size = 38;
 378
 379	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
 380	if (!block)
 381		return NULL;
 382
 383	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
 384
 385	block_size = get_blocksize(block);
 386
 387	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
 388		sizeof(struct lvds_pnp_id);
 389	if (size * 16 > block_size)
 390		return NULL;
 391
 392	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
 393	if (!ptrs_block)
 394		return NULL;
 395
 396	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
 397	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
 398	ptrs = ptrs_block + 3;
 399
 400	table_size = sizeof(struct lvds_pnp_id);
 401	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
 402
 403	table_size = sizeof(struct lvds_dvo_timing);
 404	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
 405
 406	table_size = fp_timing_size;
 407	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
 408
 409	if (ptrs->ptr[0].fp_timing.table_size)
 410		ptrs->lvds_entries++;
 411	if (ptrs->ptr[0].dvo_timing.table_size)
 412		ptrs->lvds_entries++;
 413	if (ptrs->ptr[0].panel_pnp_id.table_size)
 414		ptrs->lvds_entries++;
 415
 416	if (size != 0 || ptrs->lvds_entries != 3) {
 417		kfree(ptrs_block);
 418		return NULL;
 419	}
 420
 421	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
 422		sizeof(struct lvds_pnp_id);
 423	for (i = 1; i < 16; i++) {
 424		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
 425		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
 426		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
 427	}
 428
 429	table_size = sizeof(struct lvds_lfp_panel_name);
 430
 431	if (16 * (size + table_size) <= block_size) {
 432		ptrs->panel_name.table_size = table_size;
 433		ptrs->panel_name.offset = size * 16;
 434	}
 435
 436	offset = block - bdb;
 437
 438	for (i = 0; i < 16; i++) {
 439		ptrs->ptr[i].fp_timing.offset += offset;
 440		ptrs->ptr[i].dvo_timing.offset += offset;
 441		ptrs->ptr[i].panel_pnp_id.offset += offset;
 442	}
 443
 444	if (ptrs->panel_name.table_size)
 445		ptrs->panel_name.offset += offset;
 446
 447	return ptrs_block;
 448}
 449
 450static void
 451init_bdb_block(struct drm_i915_private *i915,
 452	       const void *bdb, enum bdb_block_id section_id,
 453	       size_t min_size)
 454{
 455	struct bdb_block_entry *entry;
 456	void *temp_block = NULL;
 457	const void *block;
 458	size_t block_size;
 459
 460	block = find_raw_section(bdb, section_id);
 461
 462	/* Modern VBTs lack the LFP data table pointers block, make one up */
 463	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
 464		temp_block = generate_lfp_data_ptrs(i915, bdb);
 465		if (temp_block)
 466			block = temp_block + 3;
 467	}
 468	if (!block)
 469		return;
 470
 471	drm_WARN(&i915->drm, min_size == 0,
 472		 "Block %d min_size is zero\n", section_id);
 473
 474	block_size = get_blocksize(block);
 475
 476	/*
 477	 * Version number and new block size are considered
 478	 * part of the header for MIPI sequenece block v3+.
 479	 */
 480	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
 481		block_size += 5;
 482
 483	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
 484			GFP_KERNEL);
 485	if (!entry) {
 486		kfree(temp_block);
 487		return;
 488	}
 489
 490	entry->section_id = section_id;
 491	memcpy(entry->data, block - 3, block_size + 3);
 492
 493	kfree(temp_block);
 494
 495	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
 496		    section_id, block_size, min_size);
 497
 498	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
 499	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
 500		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
 501		kfree(entry);
 502		return;
 503	}
 504
 505	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
 506}
 507
 508static void init_bdb_blocks(struct drm_i915_private *i915,
 509			    const void *bdb)
 510{
 511	int i;
 512
 513	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
 514		enum bdb_block_id section_id = bdb_blocks[i].section_id;
 515		size_t min_size = bdb_blocks[i].min_size;
 516
 517		if (section_id == BDB_LVDS_LFP_DATA)
 518			min_size = lfp_data_min_size(i915);
 519
 520		init_bdb_block(i915, bdb, section_id, min_size);
 521	}
 522}
 523
 524static void
 525fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
 526			const struct lvds_dvo_timing *dvo_timing)
 527{
 528	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
 529		dvo_timing->hactive_lo;
 530	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
 531		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
 532	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
 533		((dvo_timing->hsync_pulse_width_hi << 8) |
 534			dvo_timing->hsync_pulse_width_lo);
 535	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
 536		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
 537
 538	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
 539		dvo_timing->vactive_lo;
 540	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
 541		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
 542	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
 543		((dvo_timing->vsync_pulse_width_hi << 4) |
 544			dvo_timing->vsync_pulse_width_lo);
 545	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
 546		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
 547	panel_fixed_mode->clock = dvo_timing->clock * 10;
 548	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 549
 550	if (dvo_timing->hsync_positive)
 551		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 552	else
 553		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 554
 555	if (dvo_timing->vsync_positive)
 556		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
 557	else
 558		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
 559
 560	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
 561		dvo_timing->himage_lo;
 562	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
 563		dvo_timing->vimage_lo;
 564
 565	/* Some VBTs have bogus h/vtotal values */
 566	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
 567		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
 568	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
 569		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
 570
 571	drm_mode_set_name(panel_fixed_mode);
 572}
 573
 574static const struct lvds_dvo_timing *
 575get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
 576		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
 577		    int index)
 578{
 579	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580}
 581
 
 
 
 582static const struct lvds_fp_timing *
 583get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
 
 584		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
 585		   int index)
 586{
 587	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
 588}
 
 589
 590static const struct lvds_pnp_id *
 591get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
 592		const struct bdb_lvds_lfp_data_ptrs *ptrs,
 593		int index)
 594{
 595	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
 596}
 597
 598static const struct bdb_lvds_lfp_data_tail *
 599get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
 600		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
 601{
 602	if (ptrs->panel_name.table_size)
 603		return (const void *)data + ptrs->panel_name.offset;
 604	else
 605		return NULL;
 606}
 607
 608static void dump_pnp_id(struct drm_i915_private *i915,
 609			const struct lvds_pnp_id *pnp_id,
 610			const char *name)
 611{
 612	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
 613	char vend[4];
 614
 615	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
 616		    name, drm_edid_decode_mfg_id(mfg_name, vend),
 617		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
 618		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
 619}
 620
 621static int opregion_get_panel_type(struct drm_i915_private *i915,
 622				   const struct intel_bios_encoder_data *devdata,
 623				   const struct edid *edid)
 624{
 625	return intel_opregion_get_panel_type(i915);
 626}
 627
 628static int vbt_get_panel_type(struct drm_i915_private *i915,
 629			      const struct intel_bios_encoder_data *devdata,
 630			      const struct edid *edid)
 631{
 632	const struct bdb_lvds_options *lvds_options;
 633
 634	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
 635	if (!lvds_options)
 636		return -1;
 637
 638	if (lvds_options->panel_type > 0xf &&
 639	    lvds_options->panel_type != 0xff) {
 640		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
 641			    lvds_options->panel_type);
 642		return -1;
 643	}
 644
 645	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
 646		return lvds_options->panel_type2;
 647
 648	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
 649
 650	return lvds_options->panel_type;
 651}
 652
 653static int pnpid_get_panel_type(struct drm_i915_private *i915,
 654				const struct intel_bios_encoder_data *devdata,
 655				const struct edid *edid)
 656{
 657	const struct bdb_lvds_lfp_data *data;
 658	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 659	const struct lvds_pnp_id *edid_id;
 660	struct lvds_pnp_id edid_id_nodate;
 661	int i, best = -1;
 662
 663	if (!edid)
 664		return -1;
 665
 666	edid_id = (const void *)&edid->mfg_id[0];
 667
 668	edid_id_nodate = *edid_id;
 669	edid_id_nodate.mfg_week = 0;
 670	edid_id_nodate.mfg_year = 0;
 671
 672	dump_pnp_id(i915, edid_id, "EDID");
 673
 674	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 675	if (!ptrs)
 676		return -1;
 677
 678	data = find_section(i915, BDB_LVDS_LFP_DATA);
 679	if (!data)
 680		return -1;
 681
 682	for (i = 0; i < 16; i++) {
 683		const struct lvds_pnp_id *vbt_id =
 684			get_lvds_pnp_id(data, ptrs, i);
 685
 686		/* full match? */
 687		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
 688			return i;
 689
 690		/*
 691		 * Accept a match w/o date if no full match is found,
 692		 * and the VBT entry does not specify a date.
 693		 */
 694		if (best < 0 &&
 695		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
 696			best = i;
 697	}
 698
 699	return best;
 700}
 701
 702static int fallback_get_panel_type(struct drm_i915_private *i915,
 703				   const struct intel_bios_encoder_data *devdata,
 704				   const struct edid *edid)
 705{
 706	return 0;
 707}
 708
 709enum panel_type {
 710	PANEL_TYPE_OPREGION,
 711	PANEL_TYPE_VBT,
 712	PANEL_TYPE_PNPID,
 713	PANEL_TYPE_FALLBACK,
 714};
 715
 716static int get_panel_type(struct drm_i915_private *i915,
 717			  const struct intel_bios_encoder_data *devdata,
 718			  const struct edid *edid)
 719{
 720	struct {
 721		const char *name;
 722		int (*get_panel_type)(struct drm_i915_private *i915,
 723				      const struct intel_bios_encoder_data *devdata,
 724				      const struct edid *edid);
 725		int panel_type;
 726	} panel_types[] = {
 727		[PANEL_TYPE_OPREGION] = {
 728			.name = "OpRegion",
 729			.get_panel_type = opregion_get_panel_type,
 730		},
 731		[PANEL_TYPE_VBT] = {
 732			.name = "VBT",
 733			.get_panel_type = vbt_get_panel_type,
 734		},
 735		[PANEL_TYPE_PNPID] = {
 736			.name = "PNPID",
 737			.get_panel_type = pnpid_get_panel_type,
 738		},
 739		[PANEL_TYPE_FALLBACK] = {
 740			.name = "fallback",
 741			.get_panel_type = fallback_get_panel_type,
 742		},
 743	};
 744	int i;
 745
 746	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
 747		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid);
 748
 749		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
 750			    panel_types[i].panel_type != 0xff);
 751
 752		if (panel_types[i].panel_type >= 0)
 753			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
 754				    panel_types[i].name, panel_types[i].panel_type);
 755	}
 756
 757	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
 758		i = PANEL_TYPE_OPREGION;
 759	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
 760		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
 761		i = PANEL_TYPE_PNPID;
 762	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
 763		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
 764		i = PANEL_TYPE_VBT;
 765	else
 766		i = PANEL_TYPE_FALLBACK;
 767
 768	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
 769		    panel_types[i].name, panel_types[i].panel_type);
 770
 771	return panel_types[i].panel_type;
 772}
 773
 774static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
 775{
 776	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
 777}
 778
 779static bool panel_bool(unsigned int value, int panel_type)
 780{
 781	return panel_bits(value, panel_type, 1);
 782}
 783
 784/* Parse general panel options */
 785static void
 786parse_panel_options(struct drm_i915_private *i915,
 787		    struct intel_panel *panel)
 788{
 789	const struct bdb_lvds_options *lvds_options;
 790	int panel_type = panel->vbt.panel_type;
 791	int drrs_mode;
 
 792
 793	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
 794	if (!lvds_options)
 795		return;
 796
 797	panel->vbt.lvds_dither = lvds_options->pixel_dither;
 798
 799	/*
 800	 * Empirical evidence indicates the block size can be
 801	 * either 4,14,16,24+ bytes. For older VBTs no clear
 802	 * relationship between the block size vs. BDB version.
 803	 */
 804	if (get_blocksize(lvds_options) < 16)
 805		return;
 
 
 
 
 
 
 
 
 
 
 
 
 806
 807	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
 808			       panel_type, 2);
 809	/*
 810	 * VBT has static DRRS = 0 and seamless DRRS = 2.
 811	 * The below piece of code is required to adjust vbt.drrs_type
 812	 * to match the enum drrs_support_type.
 813	 */
 814	switch (drrs_mode) {
 815	case 0:
 816		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
 817		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
 818		break;
 819	case 2:
 820		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
 821		drm_dbg_kms(&i915->drm,
 822			    "DRRS supported mode is seamless\n");
 823		break;
 824	default:
 825		panel->vbt.drrs_type = DRRS_TYPE_NONE;
 826		drm_dbg_kms(&i915->drm,
 827			    "DRRS not supported (VBT input)\n");
 828		break;
 829	}
 830}
 831
 
 832static void
 833parse_lfp_panel_dtd(struct drm_i915_private *i915,
 834		    struct intel_panel *panel,
 835		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
 836		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
 837{
 
 
 838	const struct lvds_dvo_timing *panel_dvo_timing;
 839	const struct lvds_fp_timing *fp_timing;
 840	struct drm_display_mode *panel_fixed_mode;
 841	int panel_type = panel->vbt.panel_type;
 
 
 
 
 
 
 
 
 842
 843	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
 844					       lvds_lfp_data_ptrs,
 845					       panel_type);
 846
 847	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 848	if (!panel_fixed_mode)
 849		return;
 850
 851	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
 852
 853	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
 854
 855	drm_dbg_kms(&i915->drm,
 856		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
 857		    DRM_MODE_ARG(panel_fixed_mode));
 858
 859	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
 860				       lvds_lfp_data_ptrs,
 861				       panel_type);
 862
 863	/* check the resolution, just to be sure */
 864	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
 865	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
 866		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
 867		drm_dbg_kms(&i915->drm,
 868			    "VBT initial LVDS value %x\n",
 869			    panel->vbt.bios_lvds_val);
 870	}
 871}
 872
 873static void
 874parse_lfp_data(struct drm_i915_private *i915,
 875	       struct intel_panel *panel)
 876{
 877	const struct bdb_lvds_lfp_data *data;
 878	const struct bdb_lvds_lfp_data_tail *tail;
 879	const struct bdb_lvds_lfp_data_ptrs *ptrs;
 880	const struct lvds_pnp_id *pnp_id;
 881	int panel_type = panel->vbt.panel_type;
 882
 883	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
 884	if (!ptrs)
 885		return;
 886
 887	data = find_section(i915, BDB_LVDS_LFP_DATA);
 888	if (!data)
 889		return;
 890
 891	if (!panel->vbt.lfp_lvds_vbt_mode)
 892		parse_lfp_panel_dtd(i915, panel, data, ptrs);
 893
 894	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
 895	dump_pnp_id(i915, pnp_id, "Panel");
 896
 897	tail = get_lfp_data_tail(data, ptrs);
 898	if (!tail)
 899		return;
 900
 901	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
 902		    (int)sizeof(tail->panel_name[0].name),
 903		    tail->panel_name[panel_type].name);
 904
 905	if (i915->display.vbt.version >= 188) {
 906		panel->vbt.seamless_drrs_min_refresh_rate =
 907			tail->seamless_drrs_min_refresh_rate[panel_type];
 908		drm_dbg_kms(&i915->drm,
 909			    "Seamless DRRS min refresh rate: %d Hz\n",
 910			    panel->vbt.seamless_drrs_min_refresh_rate);
 911	}
 912}
 913
 914static void
 915parse_generic_dtd(struct drm_i915_private *i915,
 916		  struct intel_panel *panel)
 917{
 918	const struct bdb_generic_dtd *generic_dtd;
 919	const struct generic_dtd_entry *dtd;
 920	struct drm_display_mode *panel_fixed_mode;
 921	int num_dtd;
 922
 923	/*
 924	 * Older VBTs provided DTD information for internal displays through
 925	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
 926	 * DTD information should be provided via a newer "generic DTD"
 927	 * block (58).  Just to be safe, we'll try the new generic DTD block
 928	 * first on VBT >= 229, but still fall back to trying the old LFP
 929	 * block if that fails.
 930	 */
 931	if (i915->display.vbt.version < 229)
 932		return;
 933
 934	generic_dtd = find_section(i915, BDB_GENERIC_DTD);
 935	if (!generic_dtd)
 936		return;
 937
 938	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
 939		drm_err(&i915->drm, "GDTD size %u is too small.\n",
 940			generic_dtd->gdtd_size);
 941		return;
 942	} else if (generic_dtd->gdtd_size !=
 943		   sizeof(struct generic_dtd_entry)) {
 944		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
 945			generic_dtd->gdtd_size);
 946		/* DTD has unknown fields, but keep going */
 947	}
 948
 949	num_dtd = (get_blocksize(generic_dtd) -
 950		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
 951	if (panel->vbt.panel_type >= num_dtd) {
 952		drm_err(&i915->drm,
 953			"Panel type %d not found in table of %d DTD's\n",
 954			panel->vbt.panel_type, num_dtd);
 955		return;
 956	}
 957
 958	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
 959
 960	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
 961	if (!panel_fixed_mode)
 962		return;
 963
 964	panel_fixed_mode->hdisplay = dtd->hactive;
 965	panel_fixed_mode->hsync_start =
 966		panel_fixed_mode->hdisplay + dtd->hfront_porch;
 967	panel_fixed_mode->hsync_end =
 968		panel_fixed_mode->hsync_start + dtd->hsync;
 969	panel_fixed_mode->htotal =
 970		panel_fixed_mode->hdisplay + dtd->hblank;
 971
 972	panel_fixed_mode->vdisplay = dtd->vactive;
 973	panel_fixed_mode->vsync_start =
 974		panel_fixed_mode->vdisplay + dtd->vfront_porch;
 975	panel_fixed_mode->vsync_end =
 976		panel_fixed_mode->vsync_start + dtd->vsync;
 977	panel_fixed_mode->vtotal =
 978		panel_fixed_mode->vdisplay + dtd->vblank;
 979
 980	panel_fixed_mode->clock = dtd->pixel_clock;
 981	panel_fixed_mode->width_mm = dtd->width_mm;
 982	panel_fixed_mode->height_mm = dtd->height_mm;
 983
 984	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
 985	drm_mode_set_name(panel_fixed_mode);
 986
 987	if (dtd->hsync_positive_polarity)
 988		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
 989	else
 990		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
 991
 992	if (dtd->vsync_positive_polarity)
 993		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
 994	else
 995		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
 996
 997	drm_dbg_kms(&i915->drm,
 998		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
 999		    DRM_MODE_ARG(panel_fixed_mode));
1000
1001	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002}
1003
1004static void
1005parse_lfp_backlight(struct drm_i915_private *i915,
1006		    struct intel_panel *panel)
1007{
1008	const struct bdb_lfp_backlight_data *backlight_data;
1009	const struct lfp_backlight_data_entry *entry;
1010	int panel_type = panel->vbt.panel_type;
1011	u16 level;
1012
1013	backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
1014	if (!backlight_data)
1015		return;
1016
1017	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1018		drm_dbg_kms(&i915->drm,
1019			    "Unsupported backlight data entry size %u\n",
1020			    backlight_data->entry_size);
1021		return;
1022	}
1023
1024	entry = &backlight_data->data[panel_type];
1025
1026	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1027	if (!panel->vbt.backlight.present) {
1028		drm_dbg_kms(&i915->drm,
1029			    "PWM backlight not present in VBT (type %u)\n",
1030			    entry->type);
1031		return;
1032	}
1033
1034	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1035	if (i915->display.vbt.version >= 191) {
1036		size_t exp_size;
1037
1038		if (i915->display.vbt.version >= 236)
1039			exp_size = sizeof(struct bdb_lfp_backlight_data);
1040		else if (i915->display.vbt.version >= 234)
1041			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1042		else
1043			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1044
1045		if (get_blocksize(backlight_data) >= exp_size) {
1046			const struct lfp_backlight_control_method *method;
1047
1048			method = &backlight_data->backlight_control[panel_type];
1049			panel->vbt.backlight.type = method->type;
1050			panel->vbt.backlight.controller = method->controller;
1051		}
1052	}
1053
1054	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056
1057	if (i915->display.vbt.version >= 234) {
1058		u16 min_level;
1059		bool scale;
1060
1061		level = backlight_data->brightness_level[panel_type].level;
1062		min_level = backlight_data->brightness_min_level[panel_type].level;
1063
1064		if (i915->display.vbt.version >= 236)
1065			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066		else
1067			scale = level > 255;
1068
1069		if (scale)
1070			min_level = min_level / 255;
1071
1072		if (min_level > 255) {
1073			drm_warn(&i915->drm, "Brightness min level > 255\n");
1074			level = 255;
1075		}
1076		panel->vbt.backlight.min_brightness = min_level;
1077
1078		panel->vbt.backlight.brightness_precision_bits =
1079			backlight_data->brightness_precision_bits[panel_type];
1080	} else {
1081		level = backlight_data->level[panel_type];
1082		panel->vbt.backlight.min_brightness = entry->min_brightness;
1083	}
1084
1085	drm_dbg_kms(&i915->drm,
1086		    "VBT backlight PWM modulation frequency %u Hz, "
1087		    "active %s, min brightness %u, level %u, controller %u\n",
1088		    panel->vbt.backlight.pwm_freq_hz,
1089		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1090		    panel->vbt.backlight.min_brightness,
1091		    level,
1092		    panel->vbt.backlight.controller);
1093}
1094
1095/* Try to find sdvo panel data */
1096static void
1097parse_sdvo_panel_data(struct drm_i915_private *i915,
1098		      struct intel_panel *panel)
1099{
1100	const struct bdb_sdvo_panel_dtds *dtds;
1101	struct drm_display_mode *panel_fixed_mode;
1102	int index;
1103
1104	index = i915->params.vbt_sdvo_panel_type;
1105	if (index == -2) {
1106		drm_dbg_kms(&i915->drm,
1107			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1108		return;
1109	}
1110
1111	if (index == -1) {
1112		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1113
1114		sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1115		if (!sdvo_lvds_options)
1116			return;
1117
1118		index = sdvo_lvds_options->panel_type;
1119	}
1120
1121	dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1122	if (!dtds)
1123		return;
1124
1125	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1126	if (!panel_fixed_mode)
1127		return;
1128
1129	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1130
1131	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1132
1133	drm_dbg_kms(&i915->drm,
1134		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1135		    DRM_MODE_ARG(panel_fixed_mode));
1136}
1137
1138static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1139				    bool alternate)
1140{
1141	switch (DISPLAY_VER(i915)) {
1142	case 2:
1143		return alternate ? 66667 : 48000;
1144	case 3:
1145	case 4:
1146		return alternate ? 100000 : 96000;
1147	default:
1148		return alternate ? 100000 : 120000;
1149	}
1150}
1151
1152static void
1153parse_general_features(struct drm_i915_private *i915)
 
1154{
1155	const struct bdb_general_features *general;
1156
1157	general = find_section(i915, BDB_GENERAL_FEATURES);
1158	if (!general)
1159		return;
1160
1161	i915->display.vbt.int_tv_support = general->int_tv_support;
1162	/* int_crt_support can't be trusted on earlier platforms */
1163	if (i915->display.vbt.version >= 155 &&
1164	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1165		i915->display.vbt.int_crt_support = general->int_crt_support;
1166	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1167	i915->display.vbt.lvds_ssc_freq =
1168		intel_bios_ssc_frequency(i915, general->ssc_freq);
1169	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1170	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1171	if (i915->display.vbt.version >= 181) {
1172		i915->display.vbt.orientation = general->rotate_180 ?
1173			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1174			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1175	} else {
1176		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1177	}
1178
1179	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1180		i915->display.vbt.override_afc_startup = true;
1181		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1182	}
1183
1184	drm_dbg_kms(&i915->drm,
1185		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1186		    i915->display.vbt.int_tv_support,
1187		    i915->display.vbt.int_crt_support,
1188		    i915->display.vbt.lvds_use_ssc,
1189		    i915->display.vbt.lvds_ssc_freq,
1190		    i915->display.vbt.display_clock_mode,
1191		    i915->display.vbt.fdi_rx_polarity_inverted);
1192}
1193
1194static const struct child_device_config *
1195child_device_ptr(const struct bdb_general_definitions *defs, int i)
1196{
1197	return (const void *) &defs->devices[i * defs->child_dev_size];
1198}
1199
1200static void
1201parse_sdvo_device_mapping(struct drm_i915_private *i915)
1202{
1203	struct sdvo_device_mapping *mapping;
1204	const struct intel_bios_encoder_data *devdata;
1205	const struct child_device_config *child;
1206	int count = 0;
1207
1208	/*
1209	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1210	 * accurate and doesn't have to be, as long as it's not too strict.
1211	 */
1212	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1213		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1214		return;
1215	}
1216
1217	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1218		child = &devdata->child;
1219
1220		if (child->slave_addr != SLAVE_ADDR1 &&
1221		    child->slave_addr != SLAVE_ADDR2) {
1222			/*
1223			 * If the slave address is neither 0x70 nor 0x72,
1224			 * it is not a SDVO device. Skip it.
1225			 */
1226			continue;
1227		}
1228		if (child->dvo_port != DEVICE_PORT_DVOB &&
1229		    child->dvo_port != DEVICE_PORT_DVOC) {
1230			/* skip the incorrect SDVO port */
1231			drm_dbg_kms(&i915->drm,
1232				    "Incorrect SDVO port. Skip it\n");
1233			continue;
1234		}
1235		drm_dbg_kms(&i915->drm,
1236			    "the SDVO device with slave addr %2x is found on"
1237			    " %s port\n",
1238			    child->slave_addr,
1239			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1240			    "SDVOB" : "SDVOC");
1241		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1242		if (!mapping->initialized) {
1243			mapping->dvo_port = child->dvo_port;
1244			mapping->slave_addr = child->slave_addr;
1245			mapping->dvo_wiring = child->dvo_wiring;
1246			mapping->ddc_pin = child->ddc_pin;
1247			mapping->i2c_pin = child->i2c_pin;
1248			mapping->initialized = 1;
1249			drm_dbg_kms(&i915->drm,
1250				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1251				    mapping->dvo_port, mapping->slave_addr,
1252				    mapping->dvo_wiring, mapping->ddc_pin,
1253				    mapping->i2c_pin);
1254		} else {
1255			drm_dbg_kms(&i915->drm,
1256				    "Maybe one SDVO port is shared by "
1257				    "two SDVO device.\n");
1258		}
1259		if (child->slave2_addr) {
1260			/* Maybe this is a SDVO device with multiple inputs */
1261			/* And the mapping info is not added */
1262			drm_dbg_kms(&i915->drm,
1263				    "there exists the slave2_addr. Maybe this"
1264				    " is a SDVO device with multiple inputs.\n");
1265		}
1266		count++;
1267	}
1268
1269	if (!count) {
1270		/* No SDVO device info is found */
1271		drm_dbg_kms(&i915->drm,
1272			    "No SDVO device info is found in VBT\n");
1273	}
1274}
1275
1276static void
1277parse_driver_features(struct drm_i915_private *i915)
 
1278{
1279	const struct bdb_driver_features *driver;
1280
1281	driver = find_section(i915, BDB_DRIVER_FEATURES);
1282	if (!driver)
1283		return;
1284
1285	if (DISPLAY_VER(i915) >= 5) {
1286		/*
1287		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1288		 * to mean "eDP". The VBT spec doesn't agree with that
1289		 * interpretation, but real world VBTs seem to.
1290		 */
1291		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1292			i915->display.vbt.int_lvds_support = 0;
1293	} else {
1294		/*
1295		 * FIXME it's not clear which BDB version has the LVDS config
1296		 * bits defined. Revision history in the VBT spec says:
1297		 * "0.92 | Add two definitions for VBT value of LVDS Active
1298		 *  Config (00b and 11b values defined) | 06/13/2005"
1299		 * but does not the specify the BDB version.
1300		 *
1301		 * So far version 134 (on i945gm) is the oldest VBT observed
1302		 * in the wild with the bits correctly populated. Version
1303		 * 108 (on i85x) does not have the bits correctly populated.
1304		 */
1305		if (i915->display.vbt.version >= 134 &&
1306		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1307		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1308			i915->display.vbt.int_lvds_support = 0;
1309	}
1310}
1311
1312static void
1313parse_panel_driver_features(struct drm_i915_private *i915,
1314			    struct intel_panel *panel)
1315{
1316	const struct bdb_driver_features *driver;
1317
1318	driver = find_section(i915, BDB_DRIVER_FEATURES);
1319	if (!driver)
1320		return;
1321
1322	if (i915->display.vbt.version < 228) {
1323		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1324			    driver->drrs_enabled);
1325		/*
1326		 * If DRRS is not supported, drrs_type has to be set to 0.
1327		 * This is because, VBT is configured in such a way that
1328		 * static DRRS is 0 and DRRS not supported is represented by
1329		 * driver->drrs_enabled=false
1330		 */
1331		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1332			/*
1333			 * FIXME Should DMRRS perhaps be treated as seamless
1334			 * but without the automatic downclocking?
1335			 */
1336			if (driver->dmrrs_enabled)
1337				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1338			else
1339				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1340		}
1341
1342		panel->vbt.psr.enable = driver->psr_enabled;
1343	}
1344}
1345
1346static void
1347parse_power_conservation_features(struct drm_i915_private *i915,
1348				  struct intel_panel *panel)
1349{
1350	const struct bdb_lfp_power *power;
1351	u8 panel_type = panel->vbt.panel_type;
1352
1353	panel->vbt.vrr = true; /* matches Windows behaviour */
1354
1355	if (i915->display.vbt.version < 228)
1356		return;
1357
1358	power = find_section(i915, BDB_LFP_POWER);
1359	if (!power)
1360		return;
1361
1362	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1363
1364	/*
1365	 * If DRRS is not supported, drrs_type has to be set to 0.
1366	 * This is because, VBT is configured in such a way that
1367	 * static DRRS is 0 and DRRS not supported is represented by
1368	 * power->drrs & BIT(panel_type)=false
1369	 */
1370	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1371		/*
1372		 * FIXME Should DMRRS perhaps be treated as seamless
1373		 * but without the automatic downclocking?
1374		 */
1375		if (panel_bool(power->dmrrs, panel_type))
1376			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1377		else
1378			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1379	}
1380
1381	if (i915->display.vbt.version >= 232)
1382		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1383
1384	if (i915->display.vbt.version >= 233)
1385		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1386					    panel_type);
1387}
1388
1389static void
1390parse_edp(struct drm_i915_private *i915,
1391	  struct intel_panel *panel)
1392{
1393	const struct bdb_edp *edp;
1394	const struct edp_power_seq *edp_pps;
1395	const struct edp_fast_link_params *edp_link_params;
1396	int panel_type = panel->vbt.panel_type;
1397
1398	edp = find_section(i915, BDB_EDP);
1399	if (!edp)
1400		return;
1401
1402	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1403	case EDP_18BPP:
1404		panel->vbt.edp.bpp = 18;
1405		break;
1406	case EDP_24BPP:
1407		panel->vbt.edp.bpp = 24;
1408		break;
1409	case EDP_30BPP:
1410		panel->vbt.edp.bpp = 30;
1411		break;
1412	}
1413
1414	/* Get the eDP sequencing and link info */
1415	edp_pps = &edp->power_seqs[panel_type];
1416	edp_link_params = &edp->fast_link_params[panel_type];
1417
1418	panel->vbt.edp.pps = *edp_pps;
1419
1420	if (i915->display.vbt.version >= 224) {
1421		panel->vbt.edp.rate =
1422			edp->edp_fast_link_training_rate[panel_type] * 20;
1423	} else {
1424		switch (edp_link_params->rate) {
1425		case EDP_RATE_1_62:
1426			panel->vbt.edp.rate = 162000;
1427			break;
1428		case EDP_RATE_2_7:
1429			panel->vbt.edp.rate = 270000;
1430			break;
1431		case EDP_RATE_5_4:
1432			panel->vbt.edp.rate = 540000;
1433			break;
1434		default:
1435			drm_dbg_kms(&i915->drm,
1436				    "VBT has unknown eDP link rate value %u\n",
1437				    edp_link_params->rate);
1438			break;
1439		}
1440	}
1441
1442	switch (edp_link_params->lanes) {
1443	case EDP_LANE_1:
1444		panel->vbt.edp.lanes = 1;
1445		break;
1446	case EDP_LANE_2:
1447		panel->vbt.edp.lanes = 2;
1448		break;
1449	case EDP_LANE_4:
1450		panel->vbt.edp.lanes = 4;
1451		break;
1452	default:
1453		drm_dbg_kms(&i915->drm,
1454			    "VBT has unknown eDP lane count value %u\n",
1455			    edp_link_params->lanes);
1456		break;
1457	}
1458
1459	switch (edp_link_params->preemphasis) {
1460	case EDP_PREEMPHASIS_NONE:
1461		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1462		break;
1463	case EDP_PREEMPHASIS_3_5dB:
1464		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1465		break;
1466	case EDP_PREEMPHASIS_6dB:
1467		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1468		break;
1469	case EDP_PREEMPHASIS_9_5dB:
1470		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1471		break;
1472	default:
1473		drm_dbg_kms(&i915->drm,
1474			    "VBT has unknown eDP pre-emphasis value %u\n",
1475			    edp_link_params->preemphasis);
1476		break;
1477	}
1478
1479	switch (edp_link_params->vswing) {
1480	case EDP_VSWING_0_4V:
1481		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1482		break;
1483	case EDP_VSWING_0_6V:
1484		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1485		break;
1486	case EDP_VSWING_0_8V:
1487		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1488		break;
1489	case EDP_VSWING_1_2V:
1490		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1491		break;
1492	default:
1493		drm_dbg_kms(&i915->drm,
1494			    "VBT has unknown eDP voltage swing value %u\n",
1495			    edp_link_params->vswing);
1496		break;
1497	}
1498
1499	if (i915->display.vbt.version >= 173) {
1500		u8 vswing;
1501
1502		/* Don't read from VBT if module parameter has valid value*/
1503		if (i915->params.edp_vswing) {
1504			panel->vbt.edp.low_vswing =
1505				i915->params.edp_vswing == 1;
1506		} else {
1507			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1508			panel->vbt.edp.low_vswing = vswing == 0;
1509		}
1510	}
1511
1512	panel->vbt.edp.drrs_msa_timing_delay =
1513		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1514
1515	if (i915->display.vbt.version >= 244)
1516		panel->vbt.edp.max_link_rate =
1517			edp->edp_max_port_link_rate[panel_type] * 20;
1518}
1519
1520static void
1521parse_psr(struct drm_i915_private *i915,
1522	  struct intel_panel *panel)
1523{
1524	const struct bdb_psr *psr;
1525	const struct psr_table *psr_table;
1526	int panel_type = panel->vbt.panel_type;
1527
1528	psr = find_section(i915, BDB_PSR);
1529	if (!psr) {
1530		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1531		return;
1532	}
1533
1534	psr_table = &psr->psr_table[panel_type];
1535
1536	panel->vbt.psr.full_link = psr_table->full_link;
1537	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1538
1539	/* Allowed VBT values goes from 0 to 15 */
1540	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1541		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543	/*
1544	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1545	 * Old decimal value is wake up time in multiples of 100 us.
1546	 */
1547	if (i915->display.vbt.version >= 205 &&
1548	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1549		switch (psr_table->tp1_wakeup_time) {
1550		case 0:
1551			panel->vbt.psr.tp1_wakeup_time_us = 500;
1552			break;
1553		case 1:
1554			panel->vbt.psr.tp1_wakeup_time_us = 100;
1555			break;
1556		case 3:
1557			panel->vbt.psr.tp1_wakeup_time_us = 0;
1558			break;
1559		default:
1560			drm_dbg_kms(&i915->drm,
1561				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1562				    psr_table->tp1_wakeup_time);
1563			fallthrough;
1564		case 2:
1565			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1566			break;
1567		}
1568
1569		switch (psr_table->tp2_tp3_wakeup_time) {
1570		case 0:
1571			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1572			break;
1573		case 1:
1574			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1575			break;
1576		case 3:
1577			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1578			break;
1579		default:
1580			drm_dbg_kms(&i915->drm,
1581				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1582				    psr_table->tp2_tp3_wakeup_time);
1583			fallthrough;
1584		case 2:
1585			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1586		break;
1587		}
1588	} else {
1589		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1590		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1591	}
1592
1593	if (i915->display.vbt.version >= 226) {
1594		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1595
1596		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1597		switch (wakeup_time) {
1598		case 0:
1599			wakeup_time = 500;
1600			break;
1601		case 1:
1602			wakeup_time = 100;
1603			break;
1604		case 3:
1605			wakeup_time = 50;
1606			break;
1607		default:
1608		case 2:
1609			wakeup_time = 2500;
1610			break;
1611		}
1612		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1613	} else {
1614		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1615		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1616	}
1617}
1618
1619static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1620				      struct intel_panel *panel,
1621				      enum port port)
1622{
1623	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1624
1625	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1626		panel->vbt.dsi.bl_ports = BIT(port);
1627		if (panel->vbt.dsi.config->cabc_supported)
1628			panel->vbt.dsi.cabc_ports = BIT(port);
1629
1630		return;
1631	}
1632
1633	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1634	case DL_DCS_PORT_A:
1635		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1636		break;
1637	case DL_DCS_PORT_C:
1638		panel->vbt.dsi.bl_ports = BIT(port_bc);
1639		break;
1640	default:
1641	case DL_DCS_PORT_A_AND_C:
1642		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1643		break;
1644	}
1645
1646	if (!panel->vbt.dsi.config->cabc_supported)
1647		return;
1648
1649	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1650	case DL_DCS_PORT_A:
1651		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1652		break;
1653	case DL_DCS_PORT_C:
1654		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1655		break;
1656	default:
1657	case DL_DCS_PORT_A_AND_C:
1658		panel->vbt.dsi.cabc_ports =
1659					BIT(PORT_A) | BIT(port_bc);
1660		break;
1661	}
1662}
1663
1664static void
1665parse_mipi_config(struct drm_i915_private *i915,
1666		  struct intel_panel *panel)
1667{
1668	const struct bdb_mipi_config *start;
1669	const struct mipi_config *config;
1670	const struct mipi_pps_data *pps;
1671	int panel_type = panel->vbt.panel_type;
1672	enum port port;
1673
1674	/* parse MIPI blocks only if LFP type is MIPI */
1675	if (!intel_bios_is_dsi_present(i915, &port))
1676		return;
1677
1678	/* Initialize this to undefined indicating no generic MIPI support */
1679	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1680
1681	/* Block #40 is already parsed and panel_fixed_mode is
1682	 * stored in i915->lfp_lvds_vbt_mode
1683	 * resuse this when needed
1684	 */
1685
1686	/* Parse #52 for panel index used from panel_type already
1687	 * parsed
1688	 */
1689	start = find_section(i915, BDB_MIPI_CONFIG);
1690	if (!start) {
1691		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1692		return;
1693	}
1694
1695	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1696		panel_type);
1697
1698	/*
1699	 * get hold of the correct configuration block and pps data as per
1700	 * the panel_type as index
1701	 */
1702	config = &start->config[panel_type];
1703	pps = &start->pps[panel_type];
1704
1705	/* store as of now full data. Trim when we realise all is not needed */
1706	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1707	if (!panel->vbt.dsi.config)
1708		return;
1709
1710	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1711	if (!panel->vbt.dsi.pps) {
1712		kfree(panel->vbt.dsi.config);
1713		return;
1714	}
1715
1716	parse_dsi_backlight_ports(i915, panel, port);
1717
1718	/* FIXME is the 90 vs. 270 correct? */
1719	switch (config->rotation) {
1720	case ENABLE_ROTATION_0:
1721		/*
1722		 * Most (all?) VBTs claim 0 degrees despite having
1723		 * an upside down panel, thus we do not trust this.
1724		 */
1725		panel->vbt.dsi.orientation =
1726			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1727		break;
1728	case ENABLE_ROTATION_90:
1729		panel->vbt.dsi.orientation =
1730			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1731		break;
1732	case ENABLE_ROTATION_180:
1733		panel->vbt.dsi.orientation =
1734			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1735		break;
1736	case ENABLE_ROTATION_270:
1737		panel->vbt.dsi.orientation =
1738			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1739		break;
1740	}
1741
1742	/* We have mandatory mipi config blocks. Initialize as generic panel */
1743	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1744}
1745
1746/* Find the sequence block and size for the given panel. */
1747static const u8 *
1748find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1749			  u16 panel_id, u32 *seq_size)
1750{
1751	u32 total = get_blocksize(sequence);
1752	const u8 *data = &sequence->data[0];
1753	u8 current_id;
1754	u32 current_size;
1755	int header_size = sequence->version >= 3 ? 5 : 3;
1756	int index = 0;
1757	int i;
1758
1759	/* skip new block size */
1760	if (sequence->version >= 3)
1761		data += 4;
1762
1763	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1764		if (index + header_size > total) {
1765			DRM_ERROR("Invalid sequence block (header)\n");
1766			return NULL;
1767		}
1768
1769		current_id = *(data + index);
1770		if (sequence->version >= 3)
1771			current_size = *((const u32 *)(data + index + 1));
1772		else
1773			current_size = *((const u16 *)(data + index + 1));
1774
1775		index += header_size;
1776
1777		if (index + current_size > total) {
1778			DRM_ERROR("Invalid sequence block\n");
1779			return NULL;
1780		}
1781
1782		if (current_id == panel_id) {
1783			*seq_size = current_size;
1784			return data + index;
1785		}
1786
1787		index += current_size;
1788	}
1789
1790	DRM_ERROR("Sequence block detected but no valid configuration\n");
1791
1792	return NULL;
1793}
1794
1795static int goto_next_sequence(const u8 *data, int index, int total)
1796{
1797	u16 len;
1798
1799	/* Skip Sequence Byte. */
1800	for (index = index + 1; index < total; index += len) {
1801		u8 operation_byte = *(data + index);
1802		index++;
1803
1804		switch (operation_byte) {
1805		case MIPI_SEQ_ELEM_END:
1806			return index;
1807		case MIPI_SEQ_ELEM_SEND_PKT:
1808			if (index + 4 > total)
1809				return 0;
1810
1811			len = *((const u16 *)(data + index + 2)) + 4;
1812			break;
1813		case MIPI_SEQ_ELEM_DELAY:
1814			len = 4;
1815			break;
1816		case MIPI_SEQ_ELEM_GPIO:
1817			len = 2;
1818			break;
1819		case MIPI_SEQ_ELEM_I2C:
1820			if (index + 7 > total)
1821				return 0;
1822			len = *(data + index + 6) + 7;
1823			break;
1824		default:
1825			DRM_ERROR("Unknown operation byte\n");
1826			return 0;
1827		}
1828	}
1829
1830	return 0;
1831}
1832
1833static int goto_next_sequence_v3(const u8 *data, int index, int total)
1834{
1835	int seq_end;
1836	u16 len;
1837	u32 size_of_sequence;
1838
1839	/*
1840	 * Could skip sequence based on Size of Sequence alone, but also do some
1841	 * checking on the structure.
1842	 */
1843	if (total < 5) {
1844		DRM_ERROR("Too small sequence size\n");
1845		return 0;
1846	}
1847
1848	/* Skip Sequence Byte. */
1849	index++;
1850
1851	/*
1852	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1853	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1854	 * byte.
1855	 */
1856	size_of_sequence = *((const u32 *)(data + index));
1857	index += 4;
1858
1859	seq_end = index + size_of_sequence;
1860	if (seq_end > total) {
1861		DRM_ERROR("Invalid sequence size\n");
1862		return 0;
1863	}
1864
1865	for (; index < total; index += len) {
1866		u8 operation_byte = *(data + index);
1867		index++;
1868
1869		if (operation_byte == MIPI_SEQ_ELEM_END) {
1870			if (index != seq_end) {
1871				DRM_ERROR("Invalid element structure\n");
1872				return 0;
1873			}
1874			return index;
1875		}
1876
1877		len = *(data + index);
1878		index++;
1879
1880		/*
1881		 * FIXME: Would be nice to check elements like for v1/v2 in
1882		 * goto_next_sequence() above.
1883		 */
1884		switch (operation_byte) {
1885		case MIPI_SEQ_ELEM_SEND_PKT:
1886		case MIPI_SEQ_ELEM_DELAY:
1887		case MIPI_SEQ_ELEM_GPIO:
1888		case MIPI_SEQ_ELEM_I2C:
1889		case MIPI_SEQ_ELEM_SPI:
1890		case MIPI_SEQ_ELEM_PMIC:
1891			break;
1892		default:
1893			DRM_ERROR("Unknown operation byte %u\n",
1894				  operation_byte);
1895			break;
1896		}
1897	}
1898
1899	return 0;
1900}
1901
1902/*
1903 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1904 * skip all delay + gpio operands and stop at the first DSI packet op.
1905 */
1906static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1907					      struct intel_panel *panel)
1908{
1909	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1910	int index, len;
1911
1912	if (drm_WARN_ON(&i915->drm,
1913			!data || panel->vbt.dsi.seq_version != 1))
1914		return 0;
1915
1916	/* index = 1 to skip sequence byte */
1917	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1918		switch (data[index]) {
1919		case MIPI_SEQ_ELEM_SEND_PKT:
1920			return index == 1 ? 0 : index;
1921		case MIPI_SEQ_ELEM_DELAY:
1922			len = 5; /* 1 byte for operand + uint32 */
1923			break;
1924		case MIPI_SEQ_ELEM_GPIO:
1925			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1926			break;
1927		default:
1928			return 0;
1929		}
1930	}
1931
1932	return 0;
1933}
1934
1935/*
1936 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1937 * The deassert must be done before calling intel_dsi_device_ready, so for
1938 * these devices we split the init OTP sequence into a deassert sequence and
1939 * the actual init OTP part.
1940 */
1941static void fixup_mipi_sequences(struct drm_i915_private *i915,
1942				 struct intel_panel *panel)
1943{
1944	u8 *init_otp;
1945	int len;
1946
1947	/* Limit this to VLV for now. */
1948	if (!IS_VALLEYVIEW(i915))
1949		return;
1950
1951	/* Limit this to v1 vid-mode sequences */
1952	if (panel->vbt.dsi.config->is_cmd_mode ||
1953	    panel->vbt.dsi.seq_version != 1)
1954		return;
1955
1956	/* Only do this if there are otp and assert seqs and no deassert seq */
1957	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1958	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1959	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1960		return;
1961
1962	/* The deassert-sequence ends at the first DSI packet */
1963	len = get_init_otp_deassert_fragment_len(i915, panel);
1964	if (!len)
1965		return;
1966
1967	drm_dbg_kms(&i915->drm,
1968		    "Using init OTP fragment to deassert reset\n");
1969
1970	/* Copy the fragment, update seq byte and terminate it */
1971	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1972	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1973	if (!panel->vbt.dsi.deassert_seq)
1974		return;
1975	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1976	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1977	/* Use the copy for deassert */
1978	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1979		panel->vbt.dsi.deassert_seq;
1980	/* Replace the last byte of the fragment with init OTP seq byte */
1981	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1982	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1983	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1984}
1985
1986static void
1987parse_mipi_sequence(struct drm_i915_private *i915,
1988		    struct intel_panel *panel)
1989{
1990	int panel_type = panel->vbt.panel_type;
1991	const struct bdb_mipi_sequence *sequence;
1992	const u8 *seq_data;
1993	u32 seq_size;
1994	u8 *data;
1995	int index = 0;
1996
1997	/* Only our generic panel driver uses the sequence block. */
1998	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1999		return;
2000
2001	sequence = find_section(i915, BDB_MIPI_SEQUENCE);
2002	if (!sequence) {
2003		drm_dbg_kms(&i915->drm,
2004			    "No MIPI Sequence found, parsing complete\n");
2005		return;
2006	}
2007
2008	/* Fail gracefully for forward incompatible sequence block. */
2009	if (sequence->version >= 4) {
2010		drm_err(&i915->drm,
2011			"Unable to parse MIPI Sequence Block v%u\n",
2012			sequence->version);
2013		return;
2014	}
2015
2016	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2017		sequence->version);
2018
2019	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2020	if (!seq_data)
2021		return;
2022
2023	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2024	if (!data)
2025		return;
2026
2027	/* Parse the sequences, store pointers to each sequence. */
2028	for (;;) {
2029		u8 seq_id = *(data + index);
2030		if (seq_id == MIPI_SEQ_END)
2031			break;
2032
2033		if (seq_id >= MIPI_SEQ_MAX) {
2034			drm_err(&i915->drm, "Unknown sequence %u\n",
2035				seq_id);
2036			goto err;
2037		}
2038
2039		/* Log about presence of sequences we won't run. */
2040		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2041			drm_dbg_kms(&i915->drm,
2042				    "Unsupported sequence %u\n", seq_id);
2043
2044		panel->vbt.dsi.sequence[seq_id] = data + index;
2045
2046		if (sequence->version >= 3)
2047			index = goto_next_sequence_v3(data, index, seq_size);
2048		else
2049			index = goto_next_sequence(data, index, seq_size);
2050		if (!index) {
2051			drm_err(&i915->drm, "Invalid sequence %u\n",
2052				seq_id);
2053			goto err;
2054		}
2055	}
2056
2057	panel->vbt.dsi.data = data;
2058	panel->vbt.dsi.size = seq_size;
2059	panel->vbt.dsi.seq_version = sequence->version;
2060
2061	fixup_mipi_sequences(i915, panel);
2062
2063	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2064	return;
2065
2066err:
2067	kfree(data);
2068	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2069}
2070
2071static void
2072parse_compression_parameters(struct drm_i915_private *i915)
 
2073{
2074	const struct bdb_compression_parameters *params;
2075	struct intel_bios_encoder_data *devdata;
2076	const struct child_device_config *child;
2077	u16 block_size;
2078	int index;
2079
2080	if (i915->display.vbt.version < 198)
2081		return;
2082
2083	params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2084	if (params) {
2085		/* Sanity checks */
2086		if (params->entry_size != sizeof(params->data[0])) {
2087			drm_dbg_kms(&i915->drm,
2088				    "VBT: unsupported compression param entry size\n");
2089			return;
2090		}
2091
2092		block_size = get_blocksize(params);
2093		if (block_size < sizeof(*params)) {
2094			drm_dbg_kms(&i915->drm,
2095				    "VBT: expected 16 compression param entries\n");
2096			return;
2097		}
2098	}
2099
2100	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2101		child = &devdata->child;
2102
2103		if (!child->compression_enable)
2104			continue;
2105
2106		if (!params) {
2107			drm_dbg_kms(&i915->drm,
2108				    "VBT: compression params not available\n");
2109			continue;
2110		}
2111
2112		if (child->compression_method_cps) {
2113			drm_dbg_kms(&i915->drm,
2114				    "VBT: CPS compression not supported\n");
2115			continue;
2116		}
2117
2118		index = child->compression_structure_index;
2119
2120		devdata->dsc = kmemdup(&params->data[index],
2121				       sizeof(*devdata->dsc), GFP_KERNEL);
2122	}
2123}
2124
2125static u8 translate_iboost(u8 val)
2126{
2127	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2128
2129	if (val >= ARRAY_SIZE(mapping)) {
2130		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2131		return 0;
2132	}
2133	return mapping[val];
2134}
2135
2136static const u8 cnp_ddc_pin_map[] = {
2137	[0] = 0, /* N/A */
2138	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2139	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2140	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2141	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2142};
2143
2144static const u8 icp_ddc_pin_map[] = {
2145	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2146	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2147	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2148	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2149	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2150	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2151	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2152	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2153	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2154};
2155
2156static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2157	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2158	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2159	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2160	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2161};
2162
2163static const u8 adls_ddc_pin_map[] = {
2164	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2165	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2166	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2167	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2168	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2169};
2170
2171static const u8 gen9bc_tgp_ddc_pin_map[] = {
2172	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2173	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2174	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2175};
2176
2177static const u8 adlp_ddc_pin_map[] = {
2178	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2179	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2180	[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2181	[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2182	[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2183	[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2184};
2185
2186static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2187{
2188	const u8 *ddc_pin_map;
2189	int n_entries;
2190
2191	if (HAS_PCH_MTP(i915) || IS_ALDERLAKE_P(i915)) {
2192		ddc_pin_map = adlp_ddc_pin_map;
2193		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2194	} else if (IS_ALDERLAKE_S(i915)) {
2195		ddc_pin_map = adls_ddc_pin_map;
2196		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2197	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2198		return vbt_pin;
2199	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2200		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2201		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2202	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2203		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2204		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2205	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2206		ddc_pin_map = icp_ddc_pin_map;
2207		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2208	} else if (HAS_PCH_CNP(i915)) {
2209		ddc_pin_map = cnp_ddc_pin_map;
2210		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2211	} else {
2212		/* Assuming direct map */
2213		return vbt_pin;
2214	}
2215
2216	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2217		return ddc_pin_map[vbt_pin];
2218
2219	drm_dbg_kms(&i915->drm,
2220		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2221		    vbt_pin);
2222	return 0;
2223}
2224
2225static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2226{
2227	const struct intel_bios_encoder_data *devdata;
2228	enum port port;
2229
2230	if (!ddc_pin)
2231		return PORT_NONE;
2232
2233	for_each_port(port) {
2234		devdata = i915->display.vbt.ports[port];
2235
2236		if (devdata && ddc_pin == devdata->child.ddc_pin)
2237			return port;
2238	}
2239
2240	return PORT_NONE;
2241}
2242
2243static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2244			     enum port port)
2245{
2246	struct drm_i915_private *i915 = devdata->i915;
2247	struct child_device_config *child;
2248	u8 mapped_ddc_pin;
2249	enum port p;
2250
2251	if (!devdata->child.ddc_pin)
2252		return;
2253
2254	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2255	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2256		drm_dbg_kms(&i915->drm,
2257			    "Port %c has invalid DDC pin %d, "
2258			    "sticking to defaults\n",
2259			    port_name(port), mapped_ddc_pin);
2260		devdata->child.ddc_pin = 0;
2261		return;
2262	}
2263
2264	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2265	if (p == PORT_NONE)
2266		return;
2267
2268	drm_dbg_kms(&i915->drm,
2269		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
2270		    "disabling port %c DVI/HDMI support\n",
2271		    port_name(port), mapped_ddc_pin,
2272		    port_name(p), port_name(p));
2273
2274	/*
2275	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2276	 * couldn't exist on the shared port. Otherwise they share the same ddc
2277	 * pin and system couldn't communicate with them separately.
2278	 *
2279	 * Give inverse child device order the priority, last one wins. Yes,
2280	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2281	 * port A and port E with the same AUX ch and we must pick port E :(
2282	 */
2283	child = &i915->display.vbt.ports[p]->child;
 
2284
2285	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2286	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2287
2288	child->ddc_pin = 0;
2289}
2290
2291static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2292{
2293	const struct intel_bios_encoder_data *devdata;
2294	enum port port;
2295
2296	if (!aux_ch)
2297		return PORT_NONE;
2298
2299	for_each_port(port) {
2300		devdata = i915->display.vbt.ports[port];
2301
2302		if (devdata && aux_ch == devdata->child.aux_channel)
2303			return port;
2304	}
2305
2306	return PORT_NONE;
2307}
2308
2309static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2310			    enum port port)
2311{
2312	struct drm_i915_private *i915 = devdata->i915;
2313	struct child_device_config *child;
2314	enum port p;
2315
2316	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2317	if (p == PORT_NONE)
2318		return;
2319
2320	drm_dbg_kms(&i915->drm,
2321		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
2322		    "disabling port %c DP support\n",
2323		    port_name(port), devdata->child.aux_channel,
2324		    port_name(p), port_name(p));
2325
2326	/*
2327	 * If we have multiple ports supposedly sharing the aux channel, then DP
2328	 * couldn't exist on the shared port. Otherwise they share the same aux
2329	 * channel and system couldn't communicate with them separately.
2330	 *
2331	 * Give inverse child device order the priority, last one wins. Yes,
2332	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2333	 * port A and port E with the same AUX ch and we must pick port E :(
2334	 */
2335	child = &i915->display.vbt.ports[p]->child;
 
2336
2337	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2338	child->aux_channel = 0;
2339}
2340
2341static u8 dvo_port_type(u8 dvo_port)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342{
2343	switch (dvo_port) {
2344	case DVO_PORT_HDMIA:
2345	case DVO_PORT_HDMIB:
2346	case DVO_PORT_HDMIC:
2347	case DVO_PORT_HDMID:
2348	case DVO_PORT_HDMIE:
2349	case DVO_PORT_HDMIF:
2350	case DVO_PORT_HDMIG:
2351	case DVO_PORT_HDMIH:
2352	case DVO_PORT_HDMII:
2353		return DVO_PORT_HDMIA;
2354	case DVO_PORT_DPA:
2355	case DVO_PORT_DPB:
2356	case DVO_PORT_DPC:
2357	case DVO_PORT_DPD:
2358	case DVO_PORT_DPE:
2359	case DVO_PORT_DPF:
2360	case DVO_PORT_DPG:
2361	case DVO_PORT_DPH:
2362	case DVO_PORT_DPI:
2363		return DVO_PORT_DPA;
2364	case DVO_PORT_MIPIA:
2365	case DVO_PORT_MIPIB:
2366	case DVO_PORT_MIPIC:
2367	case DVO_PORT_MIPID:
2368		return DVO_PORT_MIPIA;
2369	default:
2370		return dvo_port;
2371	}
 
 
 
 
 
 
 
 
2372}
2373
2374static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2375				    const int port_mapping[][3], u8 dvo_port)
2376{
2377	enum port port;
2378	int i;
2379
2380	for (port = PORT_A; port < n_ports; port++) {
2381		for (i = 0; i < n_dvo; i++) {
2382			if (port_mapping[port][i] == -1)
2383				break;
2384
2385			if (dvo_port == port_mapping[port][i])
2386				return port;
2387		}
2388	}
2389
2390	return PORT_NONE;
2391}
2392
2393static enum port dvo_port_to_port(struct drm_i915_private *i915,
2394				  u8 dvo_port)
2395{
2396	/*
2397	 * Each DDI port can have more than one value on the "DVO Port" field,
2398	 * so look for all the possible values for each port.
2399	 */
2400	static const int port_mapping[][3] = {
2401		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2402		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2403		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2404		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2405		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2406		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2407		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2408		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2409		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2410	};
2411	/*
2412	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2413	 * map to DDI A,B,TC1,TC2 respectively.
2414	 */
2415	static const int rkl_port_mapping[][3] = {
2416		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2417		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2418		[PORT_C] = { -1 },
2419		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2420		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2421	};
2422	/*
2423	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2424	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2425	 */
2426	static const int adls_port_mapping[][3] = {
2427		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2428		[PORT_B] = { -1 },
2429		[PORT_C] = { -1 },
2430		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2431		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2432		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2433		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2434	};
2435	static const int xelpd_port_mapping[][3] = {
2436		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2437		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2438		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2439		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2440		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2441		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2442		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2443		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2444		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2445	};
2446
2447	if (DISPLAY_VER(i915) >= 13)
2448		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2449					  ARRAY_SIZE(xelpd_port_mapping[0]),
2450					  xelpd_port_mapping,
2451					  dvo_port);
2452	else if (IS_ALDERLAKE_S(i915))
2453		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2454					  ARRAY_SIZE(adls_port_mapping[0]),
2455					  adls_port_mapping,
2456					  dvo_port);
2457	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2458		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2459					  ARRAY_SIZE(rkl_port_mapping[0]),
2460					  rkl_port_mapping,
2461					  dvo_port);
2462	else
2463		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2464					  ARRAY_SIZE(port_mapping[0]),
2465					  port_mapping,
2466					  dvo_port);
2467}
2468
2469static enum port
2470dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2471{
2472	switch (dvo_port) {
2473	case DVO_PORT_MIPIA:
2474		return PORT_A;
2475	case DVO_PORT_MIPIC:
2476		if (DISPLAY_VER(i915) >= 11)
2477			return PORT_B;
2478		else
2479			return PORT_C;
2480	default:
2481		return PORT_NONE;
2482	}
2483}
2484
2485static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2486{
2487	switch (vbt_max_link_rate) {
2488	default:
2489	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2490		return 0;
2491	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2492		return 2000000;
2493	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2494		return 1350000;
2495	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2496		return 1000000;
2497	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2498		return 810000;
2499	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2500		return 540000;
2501	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2502		return 270000;
2503	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2504		return 162000;
2505	}
2506}
2507
2508static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2509{
2510	switch (vbt_max_link_rate) {
2511	default:
2512	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2513		return 810000;
2514	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2515		return 540000;
2516	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2517		return 270000;
2518	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2519		return 162000;
2520	}
2521}
2522
2523static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2524{
2525	if (!devdata || devdata->i915->display.vbt.version < 216)
2526		return 0;
2527
2528	if (devdata->i915->display.vbt.version >= 230)
2529		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2530	else
2531		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2532}
2533
2534static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2535{
2536	if (!devdata || devdata->i915->display.vbt.version < 244)
2537		return 0;
2538
2539	return devdata->child.dp_max_lane_count + 1;
2540}
2541
2542static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2543				 enum port port)
2544{
2545	struct drm_i915_private *i915 = devdata->i915;
2546	bool is_hdmi;
2547
2548	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2549		return;
2550
2551	if (!intel_bios_encoder_supports_dvi(devdata))
2552		return;
2553
2554	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2555
2556	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2557		    is_hdmi ? "/HDMI" : "");
2558
2559	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2560	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2561}
2562
2563static bool
2564intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2565{
2566	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2567}
2568
2569bool
2570intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2571{
2572	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2573}
2574
2575bool
2576intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2577{
2578	return intel_bios_encoder_supports_dvi(devdata) &&
2579		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2580}
2581
2582bool
2583intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2584{
2585	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2586}
2587
2588static bool
2589intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2590{
2591	return intel_bios_encoder_supports_dp(devdata) &&
2592		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2593}
2594
2595static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2596{
2597	if (!devdata || devdata->i915->display.vbt.version < 158)
2598		return -1;
2599
2600	return devdata->child.hdmi_level_shifter_value;
2601}
2602
2603static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2604{
2605	if (!devdata || devdata->i915->display.vbt.version < 204)
2606		return 0;
2607
2608	switch (devdata->child.hdmi_max_data_rate) {
2609	default:
2610		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2611		fallthrough;
2612	case HDMI_MAX_DATA_RATE_PLATFORM:
2613		return 0;
2614	case HDMI_MAX_DATA_RATE_594:
2615		return 594000;
2616	case HDMI_MAX_DATA_RATE_340:
2617		return 340000;
2618	case HDMI_MAX_DATA_RATE_300:
2619		return 300000;
2620	case HDMI_MAX_DATA_RATE_297:
2621		return 297000;
2622	case HDMI_MAX_DATA_RATE_165:
2623		return 165000;
2624	}
2625}
2626
2627static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2628{
2629	/*
2630	 * On some ICL SKUs port F is not present, but broken VBTs mark
2631	 * the port as present. Only try to initialize port F for the
2632	 * SKUs that may actually have it.
2633	 */
2634	if (port == PORT_F && IS_ICELAKE(i915))
2635		return IS_ICL_WITH_PORT_F(i915);
2636
2637	return true;
2638}
2639
2640static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2641			   enum port port)
2642{
2643	struct drm_i915_private *i915 = devdata->i915;
2644	const struct child_device_config *child = &devdata->child;
 
2645	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2646	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647
2648	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2649	is_dp = intel_bios_encoder_supports_dp(devdata);
2650	is_crt = intel_bios_encoder_supports_crt(devdata);
2651	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2652	is_edp = intel_bios_encoder_supports_edp(devdata);
2653
2654	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2655	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2656
2657	drm_dbg_kms(&i915->drm,
2658		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2659		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2660		    HAS_LSPCON(i915) && child->lspcon,
2661		    supports_typec_usb, supports_tbt,
2662		    devdata->dsc != NULL);
2663
2664	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2665	if (hdmi_level_shift >= 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2666		drm_dbg_kms(&i915->drm,
2667			    "Port %c VBT HDMI level shift: %d\n",
2668			    port_name(port), hdmi_level_shift);
 
 
 
2669	}
2670
2671	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2672	if (max_tmds_clock)
2673		drm_dbg_kms(&i915->drm,
2674			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2675			    port_name(port), max_tmds_clock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2676
2677	/* I_boost config for SKL and above */
2678	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2679	if (dp_boost_level)
2680		drm_dbg_kms(&i915->drm,
2681			    "Port %c VBT (e)DP boost level: %d\n",
2682			    port_name(port), dp_boost_level);
2683
2684	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2685	if (hdmi_boost_level)
2686		drm_dbg_kms(&i915->drm,
2687			    "Port %c VBT HDMI boost level: %d\n",
2688			    port_name(port), hdmi_boost_level);
2689
2690	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2691	if (dp_max_link_rate)
 
 
 
 
 
2692		drm_dbg_kms(&i915->drm,
2693			    "Port %c VBT DP max link rate: %d\n",
2694			    port_name(port), dp_max_link_rate);
2695
2696	/*
2697	 * FIXME need to implement support for VBT
2698	 * vswing/preemph tables should this ever trigger.
2699	 */
2700	drm_WARN(&i915->drm, child->use_vbt_vswing,
2701		 "Port %c asks to use VBT vswing/preemph tables\n",
2702		 port_name(port));
2703}
2704
2705static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2706{
2707	struct drm_i915_private *i915 = devdata->i915;
2708	const struct child_device_config *child = &devdata->child;
2709	enum port port;
2710
2711	port = dvo_port_to_port(i915, child->dvo_port);
2712	if (port == PORT_NONE)
2713		return;
2714
2715	if (!is_port_valid(i915, port)) {
2716		drm_dbg_kms(&i915->drm,
2717			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2718			    port_name(port));
2719		return;
2720	}
2721
2722	if (i915->display.vbt.ports[port]) {
2723		drm_dbg_kms(&i915->drm,
2724			    "More than one child device for port %c in VBT, using the first.\n",
2725			    port_name(port));
2726		return;
2727	}
2728
2729	sanitize_device_type(devdata, port);
2730
2731	if (intel_bios_encoder_supports_dvi(devdata))
2732		sanitize_ddc_pin(devdata, port);
2733
2734	if (intel_bios_encoder_supports_dp(devdata))
2735		sanitize_aux_ch(devdata, port);
2736
2737	i915->display.vbt.ports[port] = devdata;
2738}
2739
2740static bool has_ddi_port_info(struct drm_i915_private *i915)
2741{
2742	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2743}
2744
2745static void parse_ddi_ports(struct drm_i915_private *i915)
2746{
2747	struct intel_bios_encoder_data *devdata;
2748	enum port port;
2749
2750	if (!has_ddi_port_info(i915))
2751		return;
2752
2753	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2754		parse_ddi_port(devdata);
2755
2756	for_each_port(port) {
2757		if (i915->display.vbt.ports[port])
2758			print_ddi_port(i915->display.vbt.ports[port], port);
2759	}
2760}
2761
2762static void
2763parse_general_definitions(struct drm_i915_private *i915)
 
2764{
2765	const struct bdb_general_definitions *defs;
2766	struct intel_bios_encoder_data *devdata;
2767	const struct child_device_config *child;
2768	int i, child_device_num;
2769	u8 expected_size;
2770	u16 block_size;
2771	int bus_pin;
2772
2773	defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2774	if (!defs) {
2775		drm_dbg_kms(&i915->drm,
2776			    "No general definition block is found, no devices defined.\n");
2777		return;
2778	}
2779
2780	block_size = get_blocksize(defs);
2781	if (block_size < sizeof(*defs)) {
2782		drm_dbg_kms(&i915->drm,
2783			    "General definitions block too small (%u)\n",
2784			    block_size);
2785		return;
2786	}
2787
2788	bus_pin = defs->crt_ddc_gmbus_pin;
2789	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2790	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2791		i915->display.vbt.crt_ddc_pin = bus_pin;
2792
2793	if (i915->display.vbt.version < 106) {
2794		expected_size = 22;
2795	} else if (i915->display.vbt.version < 111) {
2796		expected_size = 27;
2797	} else if (i915->display.vbt.version < 195) {
2798		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2799	} else if (i915->display.vbt.version == 195) {
2800		expected_size = 37;
2801	} else if (i915->display.vbt.version <= 215) {
2802		expected_size = 38;
2803	} else if (i915->display.vbt.version <= 237) {
2804		expected_size = 39;
2805	} else {
2806		expected_size = sizeof(*child);
2807		BUILD_BUG_ON(sizeof(*child) < 39);
2808		drm_dbg(&i915->drm,
2809			"Expected child device config size for VBT version %u not known; assuming %u\n",
2810			i915->display.vbt.version, expected_size);
2811	}
2812
2813	/* Flag an error for unexpected size, but continue anyway. */
2814	if (defs->child_dev_size != expected_size)
2815		drm_err(&i915->drm,
2816			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2817			defs->child_dev_size, expected_size, i915->display.vbt.version);
2818
2819	/* The legacy sized child device config is the minimum we need. */
2820	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2821		drm_dbg_kms(&i915->drm,
2822			    "Child device config size %u is too small.\n",
2823			    defs->child_dev_size);
2824		return;
2825	}
2826
2827	/* get the number of child device */
2828	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2829
2830	for (i = 0; i < child_device_num; i++) {
2831		child = child_device_ptr(defs, i);
2832		if (!child->device_type)
2833			continue;
2834
2835		drm_dbg_kms(&i915->drm,
2836			    "Found VBT child device with type 0x%x\n",
2837			    child->device_type);
2838
2839		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2840		if (!devdata)
2841			break;
2842
2843		devdata->i915 = i915;
2844
2845		/*
2846		 * Copy as much as we know (sizeof) and is available
2847		 * (child_dev_size) of the child device config. Accessing the
2848		 * data must depend on VBT version.
2849		 */
2850		memcpy(&devdata->child, child,
2851		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2852
2853		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2854	}
2855
2856	if (list_empty(&i915->display.vbt.display_devices))
2857		drm_dbg_kms(&i915->drm,
2858			    "no child dev is parsed from VBT\n");
2859}
2860
2861/* Common defaults which may be overridden by VBT. */
2862static void
2863init_vbt_defaults(struct drm_i915_private *i915)
2864{
2865	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
 
 
 
 
 
 
 
 
 
2866
2867	/* general features */
2868	i915->display.vbt.int_tv_support = 1;
2869	i915->display.vbt.int_crt_support = 1;
2870
2871	/* driver features */
2872	i915->display.vbt.int_lvds_support = 1;
2873
2874	/* Default to using SSC */
2875	i915->display.vbt.lvds_use_ssc = 1;
2876	/*
2877	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2878	 * clock for LVDS.
2879	 */
2880	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2881								   !HAS_PCH_SPLIT(i915));
2882	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2883		    i915->display.vbt.lvds_ssc_freq);
2884}
2885
2886/* Common defaults which may be overridden by VBT. */
2887static void
2888init_vbt_panel_defaults(struct intel_panel *panel)
2889{
2890	/* Default to having backlight */
2891	panel->vbt.backlight.present = true;
2892
2893	/* LFP panel data */
2894	panel->vbt.lvds_dither = true;
2895}
2896
2897/* Defaults to initialize only if there is no VBT. */
2898static void
2899init_vbt_missing_defaults(struct drm_i915_private *i915)
2900{
2901	enum port port;
2902	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2903		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2904
2905	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2906		return;
2907
2908	for_each_port_masked(port, ports) {
2909		struct intel_bios_encoder_data *devdata;
2910		struct child_device_config *child;
2911		enum phy phy = intel_port_to_phy(i915, port);
2912
2913		/*
2914		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2915		 * to detect it.
2916		 */
2917		if (intel_phy_is_tc(i915, phy))
2918			continue;
2919
2920		/* Create fake child device config */
2921		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2922		if (!devdata)
2923			break;
2924
2925		devdata->i915 = i915;
2926		child = &devdata->child;
2927
2928		if (port == PORT_F)
2929			child->dvo_port = DVO_PORT_HDMIF;
2930		else if (port == PORT_E)
2931			child->dvo_port = DVO_PORT_HDMIE;
2932		else
2933			child->dvo_port = DVO_PORT_HDMIA + port;
2934
2935		if (port != PORT_A && port != PORT_E)
2936			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2937
2938		if (port != PORT_E)
2939			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2940
2941		if (port == PORT_A)
2942			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2943
2944		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2945
2946		drm_dbg_kms(&i915->drm,
2947			    "Generating default VBT child device with type 0x04%x on port %c\n",
2948			    child->device_type, port_name(port));
2949	}
2950
2951	/* Bypass some minimum baseline VBT version checks */
2952	i915->display.vbt.version = 155;
2953}
2954
2955static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2956{
2957	const void *_vbt = vbt;
2958
2959	return _vbt + vbt->bdb_offset;
2960}
2961
2962/**
2963 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2964 * @buf:	pointer to a buffer to validate
2965 * @size:	size of the buffer
2966 *
2967 * Returns true on valid VBT.
2968 */
2969bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2970{
2971	const struct vbt_header *vbt = buf;
2972	const struct bdb_header *bdb;
2973
2974	if (!vbt)
2975		return false;
2976
2977	if (sizeof(struct vbt_header) > size) {
2978		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2979		return false;
2980	}
2981
2982	if (memcmp(vbt->signature, "$VBT", 4)) {
2983		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2984		return false;
2985	}
2986
2987	if (vbt->vbt_size > size) {
2988		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2989		return false;
2990	}
2991
2992	size = vbt->vbt_size;
2993
2994	if (range_overflows_t(size_t,
2995			      vbt->bdb_offset,
2996			      sizeof(struct bdb_header),
2997			      size)) {
2998		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2999		return false;
3000	}
3001
3002	bdb = get_bdb_header(vbt);
3003	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3004		DRM_DEBUG_DRIVER("BDB incomplete\n");
3005		return false;
3006	}
3007
3008	return vbt;
3009}
3010
3011static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
3012{
3013	u32 count, data, found, store = 0;
3014	u32 static_region, oprom_offset;
3015	u32 oprom_size = 0x200000;
3016	u16 vbt_size;
3017	u32 *vbt;
3018
3019	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3020	static_region &= OPTIONROM_SPI_REGIONID_MASK;
3021	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3022
3023	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3024	oprom_offset &= OROM_OFFSET_MASK;
3025
3026	for (count = 0; count < oprom_size; count += 4) {
3027		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3028		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3029
3030		if (data == *((const u32 *)"$VBT")) {
3031			found = oprom_offset + count;
3032			break;
3033		}
3034	}
3035
3036	if (count >= oprom_size)
3037		goto err_not_found;
3038
3039	/* Get VBT size and allocate space for the VBT */
3040	intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3041		   offsetof(struct vbt_header, vbt_size));
3042	vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3043	vbt_size &= 0xffff;
3044
3045	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3046	if (!vbt)
3047		goto err_not_found;
3048
3049	for (count = 0; count < vbt_size; count += 4) {
3050		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3051		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3052		*(vbt + store++) = data;
3053	}
3054
3055	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3056		goto err_free_vbt;
3057
3058	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3059
3060	return (struct vbt_header *)vbt;
3061
3062err_free_vbt:
3063	kfree(vbt);
3064err_not_found:
3065	return NULL;
3066}
3067
3068static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3069{
3070	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3071	void __iomem *p = NULL, *oprom;
3072	struct vbt_header *vbt;
3073	u16 vbt_size;
3074	size_t i, size;
3075
3076	oprom = pci_map_rom(pdev, &size);
3077	if (!oprom)
3078		return NULL;
3079
3080	/* Scour memory looking for the VBT signature. */
3081	for (i = 0; i + 4 < size; i += 4) {
3082		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3083			continue;
3084
3085		p = oprom + i;
3086		size -= i;
3087		break;
3088	}
3089
3090	if (!p)
3091		goto err_unmap_oprom;
3092
3093	if (sizeof(struct vbt_header) > size) {
3094		drm_dbg(&i915->drm, "VBT header incomplete\n");
3095		goto err_unmap_oprom;
3096	}
3097
3098	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3099	if (vbt_size > size) {
3100		drm_dbg(&i915->drm,
3101			"VBT incomplete (vbt_size overflows)\n");
3102		goto err_unmap_oprom;
3103	}
3104
3105	/* The rest will be validated by intel_bios_is_valid_vbt() */
3106	vbt = kmalloc(vbt_size, GFP_KERNEL);
3107	if (!vbt)
3108		goto err_unmap_oprom;
3109
3110	memcpy_fromio(vbt, p, vbt_size);
3111
3112	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3113		goto err_free_vbt;
3114
3115	pci_unmap_rom(pdev, oprom);
3116
3117	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3118
3119	return vbt;
3120
3121err_free_vbt:
3122	kfree(vbt);
3123err_unmap_oprom:
3124	pci_unmap_rom(pdev, oprom);
3125
3126	return NULL;
3127}
3128
3129/**
3130 * intel_bios_init - find VBT and initialize settings from the BIOS
3131 * @i915: i915 device instance
3132 *
3133 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3134 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3135 * initialize some defaults if the VBT is not present at all.
3136 */
3137void intel_bios_init(struct drm_i915_private *i915)
3138{
3139	const struct vbt_header *vbt = i915->display.opregion.vbt;
3140	struct vbt_header *oprom_vbt = NULL;
3141	const struct bdb_header *bdb;
3142
3143	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3144	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3145
3146	if (!HAS_DISPLAY(i915)) {
3147		drm_dbg_kms(&i915->drm,
3148			    "Skipping VBT init due to disabled display.\n");
3149		return;
3150	}
3151
3152	init_vbt_defaults(i915);
3153
3154	/*
3155	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3156	 * PCI mapping
3157	 */
3158	if (!vbt && IS_DGFX(i915)) {
3159		oprom_vbt = spi_oprom_get_vbt(i915);
3160		vbt = oprom_vbt;
3161	}
3162
3163	if (!vbt) {
3164		oprom_vbt = oprom_get_vbt(i915);
 
 
 
3165		vbt = oprom_vbt;
 
 
3166	}
3167
3168	if (!vbt)
3169		goto out;
3170
3171	bdb = get_bdb_header(vbt);
3172	i915->display.vbt.version = bdb->version;
3173
3174	drm_dbg_kms(&i915->drm,
3175		    "VBT signature \"%.*s\", BDB version %d\n",
3176		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3177
3178	init_bdb_blocks(i915, bdb);
3179
3180	/* Grab useful general definitions */
3181	parse_general_features(i915);
3182	parse_general_definitions(i915);
3183	parse_driver_features(i915);
 
 
 
 
 
 
 
 
 
3184
3185	/* Depends on child device list */
3186	parse_compression_parameters(i915);
3187
3188out:
3189	if (!vbt) {
3190		drm_info(&i915->drm,
3191			 "Failed to find VBIOS tables (VBT)\n");
3192		init_vbt_missing_defaults(i915);
3193	}
3194
3195	/* Further processing on pre-parsed or generated child device data */
3196	parse_sdvo_device_mapping(i915);
3197	parse_ddi_ports(i915);
3198
3199	kfree(oprom_vbt);
3200}
3201
3202void intel_bios_init_panel(struct drm_i915_private *i915,
3203			   struct intel_panel *panel,
3204			   const struct intel_bios_encoder_data *devdata,
3205			   const struct edid *edid)
3206{
3207	init_vbt_panel_defaults(panel);
3208
3209	panel->vbt.panel_type = get_panel_type(i915, devdata, edid);
3210
3211	parse_panel_options(i915, panel);
3212	parse_generic_dtd(i915, panel);
3213	parse_lfp_data(i915, panel);
3214	parse_lfp_backlight(i915, panel);
3215	parse_sdvo_panel_data(i915, panel);
3216	parse_panel_driver_features(i915, panel);
3217	parse_power_conservation_features(i915, panel);
3218	parse_edp(i915, panel);
3219	parse_psr(i915, panel);
3220	parse_mipi_config(i915, panel);
3221	parse_mipi_sequence(i915, panel);
3222}
3223
3224/**
3225 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3226 * @i915: i915 device instance
3227 */
3228void intel_bios_driver_remove(struct drm_i915_private *i915)
3229{
3230	struct intel_bios_encoder_data *devdata, *nd;
3231	struct bdb_block_entry *entry, *ne;
3232
3233	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3234		list_del(&devdata->node);
3235		kfree(devdata->dsc);
3236		kfree(devdata);
3237	}
3238
3239	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3240		list_del(&entry->node);
3241		kfree(entry);
3242	}
3243}
3244
3245void intel_bios_fini_panel(struct intel_panel *panel)
3246{
3247	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3248	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3249	kfree(panel->vbt.lfp_lvds_vbt_mode);
3250	panel->vbt.lfp_lvds_vbt_mode = NULL;
3251	kfree(panel->vbt.dsi.data);
3252	panel->vbt.dsi.data = NULL;
3253	kfree(panel->vbt.dsi.pps);
3254	panel->vbt.dsi.pps = NULL;
3255	kfree(panel->vbt.dsi.config);
3256	panel->vbt.dsi.config = NULL;
3257	kfree(panel->vbt.dsi.deassert_seq);
3258	panel->vbt.dsi.deassert_seq = NULL;
3259}
3260
3261/**
3262 * intel_bios_is_tv_present - is integrated TV present in VBT
3263 * @i915: i915 device instance
3264 *
3265 * Return true if TV is present. If no child devices were parsed from VBT,
3266 * assume TV is present.
3267 */
3268bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3269{
3270	const struct intel_bios_encoder_data *devdata;
3271	const struct child_device_config *child;
3272
3273	if (!i915->display.vbt.int_tv_support)
3274		return false;
3275
3276	if (list_empty(&i915->display.vbt.display_devices))
3277		return true;
3278
3279	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3280		child = &devdata->child;
3281
3282		/*
3283		 * If the device type is not TV, continue.
3284		 */
3285		switch (child->device_type) {
3286		case DEVICE_TYPE_INT_TV:
3287		case DEVICE_TYPE_TV:
3288		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3289			break;
3290		default:
3291			continue;
3292		}
3293		/* Only when the addin_offset is non-zero, it is regarded
3294		 * as present.
3295		 */
3296		if (child->addin_offset)
3297			return true;
3298	}
3299
3300	return false;
3301}
3302
3303/**
3304 * intel_bios_is_lvds_present - is LVDS present in VBT
3305 * @i915:	i915 device instance
3306 * @i2c_pin:	i2c pin for LVDS if present
3307 *
3308 * Return true if LVDS is present. If no child devices were parsed from VBT,
3309 * assume LVDS is present.
3310 */
3311bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3312{
3313	const struct intel_bios_encoder_data *devdata;
3314	const struct child_device_config *child;
3315
3316	if (list_empty(&i915->display.vbt.display_devices))
3317		return true;
3318
3319	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3320		child = &devdata->child;
3321
3322		/* If the device type is not LFP, continue.
3323		 * We have to check both the new identifiers as well as the
3324		 * old for compatibility with some BIOSes.
3325		 */
3326		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3327		    child->device_type != DEVICE_TYPE_LFP)
3328			continue;
3329
3330		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3331			*i2c_pin = child->i2c_pin;
3332
3333		/* However, we cannot trust the BIOS writers to populate
3334		 * the VBT correctly.  Since LVDS requires additional
3335		 * information from AIM blocks, a non-zero addin offset is
3336		 * a good indicator that the LVDS is actually present.
3337		 */
3338		if (child->addin_offset)
3339			return true;
3340
3341		/* But even then some BIOS writers perform some black magic
3342		 * and instantiate the device without reference to any
3343		 * additional data.  Trust that if the VBT was written into
3344		 * the OpRegion then they have validated the LVDS's existence.
3345		 */
3346		if (i915->display.opregion.vbt)
3347			return true;
3348	}
3349
3350	return false;
3351}
3352
3353/**
3354 * intel_bios_is_port_present - is the specified digital port present
3355 * @i915:	i915 device instance
3356 * @port:	port to check
3357 *
3358 * Return true if the device in %port is present.
3359 */
3360bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3361{
3362	if (WARN_ON(!has_ddi_port_info(i915)))
3363		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3364
3365	return i915->display.vbt.ports[port];
3366}
3367
3368/**
3369 * intel_bios_is_port_edp - is the device in given port eDP
3370 * @i915:	i915 device instance
3371 * @port:	port to check
3372 *
3373 * Return true if the device in %port is eDP.
3374 */
3375bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3376{
3377	const struct intel_bios_encoder_data *devdata =
3378		intel_bios_encoder_data_lookup(i915, port);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3379
3380	return devdata && intel_bios_encoder_supports_edp(devdata);
3381}
3382
3383static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
 
3384{
3385	const struct child_device_config *child = &devdata->child;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386
3387	if (!intel_bios_encoder_supports_dp(devdata) ||
3388	    !intel_bios_encoder_supports_hdmi(devdata))
3389		return false;
3390
3391	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3392		return true;
3393
3394	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3395	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3396	    child->aux_channel != 0)
3397		return true;
3398
3399	return false;
3400}
3401
3402bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3403				     enum port port)
3404{
3405	const struct intel_bios_encoder_data *devdata =
3406		intel_bios_encoder_data_lookup(i915, port);
 
 
 
 
3407
3408	return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3409}
3410
3411/**
3412 * intel_bios_is_dsi_present - is DSI present in VBT
3413 * @i915:	i915 device instance
3414 * @port:	port for DSI if present
3415 *
3416 * Return true if DSI is present, and return the port in %port.
3417 */
3418bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3419			       enum port *port)
3420{
3421	const struct intel_bios_encoder_data *devdata;
3422	const struct child_device_config *child;
3423	u8 dvo_port;
3424
3425	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3426		child = &devdata->child;
3427
3428		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3429			continue;
3430
3431		dvo_port = child->dvo_port;
3432
3433		if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
 
 
 
 
 
 
 
 
3434			drm_dbg_kms(&i915->drm,
3435				    "VBT has unsupported DSI port %c\n",
3436				    port_name(dvo_port - DVO_PORT_MIPIA));
3437			continue;
3438		}
3439
3440		if (port)
3441			*port = dsi_dvo_port_to_port(i915, dvo_port);
3442		return true;
3443	}
3444
3445	return false;
3446}
3447
3448static void fill_dsc(struct intel_crtc_state *crtc_state,
3449		     struct dsc_compression_parameters_entry *dsc,
3450		     int dsc_max_bpc)
3451{
3452	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3453	int bpc = 8;
3454
3455	vdsc_cfg->dsc_version_major = dsc->version_major;
3456	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3457
3458	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3459		bpc = 12;
3460	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3461		bpc = 10;
3462	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3463		bpc = 8;
3464	else
3465		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3466			      dsc_max_bpc);
3467
3468	crtc_state->pipe_bpp = bpc * 3;
3469
3470	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3471					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3472
3473	/*
3474	 * FIXME: This is ugly, and slice count should take DSC engine
3475	 * throughput etc. into account.
3476	 *
3477	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3478	 */
3479	if (dsc->slices_per_line & BIT(2)) {
3480		crtc_state->dsc.slice_count = 4;
3481	} else if (dsc->slices_per_line & BIT(1)) {
3482		crtc_state->dsc.slice_count = 2;
3483	} else {
3484		/* FIXME */
3485		if (!(dsc->slices_per_line & BIT(0)))
3486			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3487
3488		crtc_state->dsc.slice_count = 1;
3489	}
3490
3491	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3492	    crtc_state->dsc.slice_count != 0)
3493		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3494			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3495			      crtc_state->dsc.slice_count);
3496
3497	/*
3498	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3499	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3500	 */
3501	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3502							    dsc->rc_buffer_size);
3503
3504	/* FIXME: DSI spec says bpc + 1 for this one */
3505	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3506
3507	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3508
3509	vdsc_cfg->slice_height = dsc->slice_height;
3510}
3511
3512/* FIXME: initially DSI specific */
3513bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3514			       struct intel_crtc_state *crtc_state,
3515			       int dsc_max_bpc)
3516{
3517	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3518	const struct intel_bios_encoder_data *devdata;
3519	const struct child_device_config *child;
3520
3521	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3522		child = &devdata->child;
3523
3524		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3525			continue;
3526
3527		if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3528			if (!devdata->dsc)
3529				return false;
3530
3531			if (crtc_state)
3532				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3533
3534			return true;
3535		}
3536	}
3537
3538	return false;
3539}
3540
3541/**
3542 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3543 * @i915:	i915 device instance
3544 * @port:	port to check
3545 *
3546 * Return true if HPD should be inverted for %port.
3547 */
3548bool
3549intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3550				enum port port)
3551{
3552	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
 
3553
3554	if (drm_WARN_ON_ONCE(&i915->drm,
3555			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3556		return false;
3557
3558	return devdata && devdata->child.hpd_invert;
3559}
3560
3561/**
3562 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3563 * @i915:	i915 device instance
3564 * @port:	port to check
3565 *
3566 * Return true if LSPCON is present on this port
3567 */
3568bool
3569intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3570			     enum port port)
3571{
3572	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
 
3573
3574	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3575}
3576
3577/**
3578 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3579 * @i915:       i915 device instance
3580 * @port:       port to check
3581 *
3582 * Return true if port requires lane reversal
3583 */
3584bool
3585intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3586				   enum port port)
3587{
3588	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
 
3589
3590	return devdata && devdata->child.lane_reversal;
3591}
3592
3593enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3594				   enum port port)
3595{
3596	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
 
3597	enum aux_ch aux_ch;
3598
3599	if (!devdata || !devdata->child.aux_channel) {
3600		aux_ch = (enum aux_ch)port;
3601
3602		drm_dbg_kms(&i915->drm,
3603			    "using AUX %c for port %c (platform default)\n",
3604			    aux_ch_name(aux_ch), port_name(port));
3605		return aux_ch;
3606	}
3607
3608	/*
3609	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3610	 * map to DDI A,B,TC1,TC2 respectively.
3611	 *
3612	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3613	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3614	 */
3615	switch (devdata->child.aux_channel) {
3616	case DP_AUX_A:
3617		aux_ch = AUX_CH_A;
3618		break;
3619	case DP_AUX_B:
3620		if (IS_ALDERLAKE_S(i915))
3621			aux_ch = AUX_CH_USBC1;
3622		else
3623			aux_ch = AUX_CH_B;
3624		break;
3625	case DP_AUX_C:
3626		if (IS_ALDERLAKE_S(i915))
3627			aux_ch = AUX_CH_USBC2;
3628		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3629			aux_ch = AUX_CH_USBC1;
3630		else
3631			aux_ch = AUX_CH_C;
3632		break;
3633	case DP_AUX_D:
3634		if (DISPLAY_VER(i915) >= 13)
3635			aux_ch = AUX_CH_D_XELPD;
3636		else if (IS_ALDERLAKE_S(i915))
3637			aux_ch = AUX_CH_USBC3;
3638		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3639			aux_ch = AUX_CH_USBC2;
3640		else
3641			aux_ch = AUX_CH_D;
3642		break;
3643	case DP_AUX_E:
3644		if (DISPLAY_VER(i915) >= 13)
3645			aux_ch = AUX_CH_E_XELPD;
3646		else if (IS_ALDERLAKE_S(i915))
3647			aux_ch = AUX_CH_USBC4;
3648		else
3649			aux_ch = AUX_CH_E;
3650		break;
3651	case DP_AUX_F:
3652		if (DISPLAY_VER(i915) >= 13)
3653			aux_ch = AUX_CH_USBC1;
3654		else
3655			aux_ch = AUX_CH_F;
3656		break;
3657	case DP_AUX_G:
3658		if (DISPLAY_VER(i915) >= 13)
3659			aux_ch = AUX_CH_USBC2;
3660		else
3661			aux_ch = AUX_CH_G;
3662		break;
3663	case DP_AUX_H:
3664		if (DISPLAY_VER(i915) >= 13)
3665			aux_ch = AUX_CH_USBC3;
3666		else
3667			aux_ch = AUX_CH_H;
3668		break;
3669	case DP_AUX_I:
3670		if (DISPLAY_VER(i915) >= 13)
3671			aux_ch = AUX_CH_USBC4;
3672		else
3673			aux_ch = AUX_CH_I;
3674		break;
3675	default:
3676		MISSING_CASE(devdata->child.aux_channel);
3677		aux_ch = AUX_CH_A;
3678		break;
3679	}
3680
3681	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3682		    aux_ch_name(aux_ch), port_name(port));
3683
3684	return aux_ch;
3685}
3686
3687int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3688{
3689	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3690	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3691
3692	return _intel_bios_max_tmds_clock(devdata);
3693}
3694
3695/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3696int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3697{
3698	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3699	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
 
3700
3701	return _intel_bios_hdmi_level_shift(devdata);
3702}
3703
3704int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3705{
3706	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3707		return 0;
3708
3709	return translate_iboost(devdata->child.dp_iboost_level);
3710}
3711
3712int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3713{
3714	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3715		return 0;
3716
3717	return translate_iboost(devdata->child.hdmi_iboost_level);
3718}
3719
3720int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3721{
3722	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3723	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3724
3725	return _intel_bios_dp_max_link_rate(devdata);
3726}
3727
3728int intel_bios_dp_max_lane_count(struct intel_encoder *encoder)
3729{
3730	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3731	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3732
3733	return _intel_bios_dp_max_lane_count(devdata);
3734}
3735
3736int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3737{
3738	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3739	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3740
3741	if (!devdata || !devdata->child.ddc_pin)
3742		return 0;
3743
3744	return map_ddc_pin(i915, devdata->child.ddc_pin);
3745}
3746
3747bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3748{
3749	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3750}
3751
3752bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3753{
3754	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3755}
3756
3757const struct intel_bios_encoder_data *
3758intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3759{
3760	return i915->display.vbt.ports[port];
3761}