Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/cacheinfo.h>
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/debugfs.h>
18#include <linux/kthread.h>
19#include <linux/mman.h>
20#include <linux/perf_event.h>
21#include <linux/pm_qos.h>
22#include <linux/slab.h>
23#include <linux/uaccess.h>
24
25#include <asm/cacheflush.h>
26#include <asm/intel-family.h>
27#include <asm/resctrl.h>
28#include <asm/perf_event.h>
29
30#include "../../events/perf_event.h" /* For X86_CONFIG() */
31#include "internal.h"
32
33#define CREATE_TRACE_POINTS
34#include "pseudo_lock_event.h"
35
36/*
37 * The bits needed to disable hardware prefetching varies based on the
38 * platform. During initialization we will discover which bits to use.
39 */
40static u64 prefetch_disable_bits;
41
42/*
43 * Major number assigned to and shared by all devices exposing
44 * pseudo-locked regions.
45 */
46static unsigned int pseudo_lock_major;
47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
48static struct class *pseudo_lock_class;
49
50/**
51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
52 * @void: It takes no parameters.
53 *
54 * Capture the list of platforms that have been validated to support
55 * pseudo-locking. This includes testing to ensure pseudo-locked regions
56 * with low cache miss rates can be created under variety of load conditions
57 * as well as that these pseudo-locked regions can maintain their low cache
58 * miss rates under variety of load conditions for significant lengths of time.
59 *
60 * After a platform has been validated to support pseudo-locking its
61 * hardware prefetch disable bits are included here as they are documented
62 * in the SDM.
63 *
64 * When adding a platform here also add support for its cache events to
65 * measure_cycles_perf_fn()
66 *
67 * Return:
68 * If platform is supported, the bits to disable hardware prefetchers, 0
69 * if platform is not supported.
70 */
71static u64 get_prefetch_disable_bits(void)
72{
73 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
74 boot_cpu_data.x86 != 6)
75 return 0;
76
77 switch (boot_cpu_data.x86_model) {
78 case INTEL_FAM6_BROADWELL_X:
79 /*
80 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
81 * as:
82 * 0 L2 Hardware Prefetcher Disable (R/W)
83 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
84 * 2 DCU Hardware Prefetcher Disable (R/W)
85 * 3 DCU IP Prefetcher Disable (R/W)
86 * 63:4 Reserved
87 */
88 return 0xF;
89 case INTEL_FAM6_ATOM_GOLDMONT:
90 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
91 /*
92 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
93 * as:
94 * 0 L2 Hardware Prefetcher Disable (R/W)
95 * 1 Reserved
96 * 2 DCU Hardware Prefetcher Disable (R/W)
97 * 63:3 Reserved
98 */
99 return 0x5;
100 }
101
102 return 0;
103}
104
105/**
106 * pseudo_lock_minor_get - Obtain available minor number
107 * @minor: Pointer to where new minor number will be stored
108 *
109 * A bitmask is used to track available minor numbers. Here the next free
110 * minor number is marked as unavailable and returned.
111 *
112 * Return: 0 on success, <0 on failure.
113 */
114static int pseudo_lock_minor_get(unsigned int *minor)
115{
116 unsigned long first_bit;
117
118 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
119
120 if (first_bit == MINORBITS)
121 return -ENOSPC;
122
123 __clear_bit(first_bit, &pseudo_lock_minor_avail);
124 *minor = first_bit;
125
126 return 0;
127}
128
129/**
130 * pseudo_lock_minor_release - Return minor number to available
131 * @minor: The minor number made available
132 */
133static void pseudo_lock_minor_release(unsigned int minor)
134{
135 __set_bit(minor, &pseudo_lock_minor_avail);
136}
137
138/**
139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
140 * @minor: The minor number of the device representing pseudo-locked region
141 *
142 * When the character device is accessed we need to determine which
143 * pseudo-locked region it belongs to. This is done by matching the minor
144 * number of the device to the pseudo-locked region it belongs.
145 *
146 * Minor numbers are assigned at the time a pseudo-locked region is associated
147 * with a cache instance.
148 *
149 * Return: On success return pointer to resource group owning the pseudo-locked
150 * region, NULL on failure.
151 */
152static struct rdtgroup *region_find_by_minor(unsigned int minor)
153{
154 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
155
156 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
157 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
158 rdtgrp_match = rdtgrp;
159 break;
160 }
161 }
162 return rdtgrp_match;
163}
164
165/**
166 * struct pseudo_lock_pm_req - A power management QoS request list entry
167 * @list: Entry within the @pm_reqs list for a pseudo-locked region
168 * @req: PM QoS request
169 */
170struct pseudo_lock_pm_req {
171 struct list_head list;
172 struct dev_pm_qos_request req;
173};
174
175static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
176{
177 struct pseudo_lock_pm_req *pm_req, *next;
178
179 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
180 dev_pm_qos_remove_request(&pm_req->req);
181 list_del(&pm_req->list);
182 kfree(pm_req);
183 }
184}
185
186/**
187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
188 * @plr: Pseudo-locked region
189 *
190 * To prevent the cache from being affected by power management entering
191 * C6 has to be avoided. This is accomplished by requesting a latency
192 * requirement lower than lowest C6 exit latency of all supported
193 * platforms as found in the cpuidle state tables in the intel_idle driver.
194 * At this time it is possible to do so with a single latency requirement
195 * for all supported platforms.
196 *
197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
198 * the ACPI latencies need to be considered while keeping in mind that C2
199 * may be set to map to deeper sleep states. In this case the latency
200 * requirement needs to prevent entering C2 also.
201 *
202 * Return: 0 on success, <0 on failure
203 */
204static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
205{
206 struct pseudo_lock_pm_req *pm_req;
207 int cpu;
208 int ret;
209
210 for_each_cpu(cpu, &plr->d->cpu_mask) {
211 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
212 if (!pm_req) {
213 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
214 ret = -ENOMEM;
215 goto out_err;
216 }
217 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
218 &pm_req->req,
219 DEV_PM_QOS_RESUME_LATENCY,
220 30);
221 if (ret < 0) {
222 rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
223 cpu);
224 kfree(pm_req);
225 ret = -1;
226 goto out_err;
227 }
228 list_add(&pm_req->list, &plr->pm_reqs);
229 }
230
231 return 0;
232
233out_err:
234 pseudo_lock_cstates_relax(plr);
235 return ret;
236}
237
238/**
239 * pseudo_lock_region_clear - Reset pseudo-lock region data
240 * @plr: pseudo-lock region
241 *
242 * All content of the pseudo-locked region is reset - any memory allocated
243 * freed.
244 *
245 * Return: void
246 */
247static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
248{
249 plr->size = 0;
250 plr->line_size = 0;
251 kfree(plr->kmem);
252 plr->kmem = NULL;
253 plr->r = NULL;
254 if (plr->d)
255 plr->d->plr = NULL;
256 plr->d = NULL;
257 plr->cbm = 0;
258 plr->debugfs_dir = NULL;
259}
260
261/**
262 * pseudo_lock_region_init - Initialize pseudo-lock region information
263 * @plr: pseudo-lock region
264 *
265 * Called after user provided a schemata to be pseudo-locked. From the
266 * schemata the &struct pseudo_lock_region is on entry already initialized
267 * with the resource, domain, and capacity bitmask. Here the information
268 * required for pseudo-locking is deduced from this data and &struct
269 * pseudo_lock_region initialized further. This information includes:
270 * - size in bytes of the region to be pseudo-locked
271 * - cache line size to know the stride with which data needs to be accessed
272 * to be pseudo-locked
273 * - a cpu associated with the cache instance on which the pseudo-locking
274 * flow can be executed
275 *
276 * Return: 0 on success, <0 on failure. Descriptive error will be written
277 * to last_cmd_status buffer.
278 */
279static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
280{
281 struct cpu_cacheinfo *ci;
282 int ret;
283 int i;
284
285 /* Pick the first cpu we find that is associated with the cache. */
286 plr->cpu = cpumask_first(&plr->d->cpu_mask);
287
288 if (!cpu_online(plr->cpu)) {
289 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
290 plr->cpu);
291 ret = -ENODEV;
292 goto out_region;
293 }
294
295 ci = get_cpu_cacheinfo(plr->cpu);
296
297 plr->size = rdtgroup_cbm_to_size(plr->r, plr->d, plr->cbm);
298
299 for (i = 0; i < ci->num_leaves; i++) {
300 if (ci->info_list[i].level == plr->r->cache_level) {
301 plr->line_size = ci->info_list[i].coherency_line_size;
302 return 0;
303 }
304 }
305
306 ret = -1;
307 rdt_last_cmd_puts("Unable to determine cache line size\n");
308out_region:
309 pseudo_lock_region_clear(plr);
310 return ret;
311}
312
313/**
314 * pseudo_lock_init - Initialize a pseudo-lock region
315 * @rdtgrp: resource group to which new pseudo-locked region will belong
316 *
317 * A pseudo-locked region is associated with a resource group. When this
318 * association is created the pseudo-locked region is initialized. The
319 * details of the pseudo-locked region are not known at this time so only
320 * allocation is done and association established.
321 *
322 * Return: 0 on success, <0 on failure
323 */
324static int pseudo_lock_init(struct rdtgroup *rdtgrp)
325{
326 struct pseudo_lock_region *plr;
327
328 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
329 if (!plr)
330 return -ENOMEM;
331
332 init_waitqueue_head(&plr->lock_thread_wq);
333 INIT_LIST_HEAD(&plr->pm_reqs);
334 rdtgrp->plr = plr;
335 return 0;
336}
337
338/**
339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
340 * @plr: pseudo-lock region
341 *
342 * Initialize the details required to set up the pseudo-locked region and
343 * allocate the contiguous memory that will be pseudo-locked to the cache.
344 *
345 * Return: 0 on success, <0 on failure. Descriptive error will be written
346 * to last_cmd_status buffer.
347 */
348static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
349{
350 int ret;
351
352 ret = pseudo_lock_region_init(plr);
353 if (ret < 0)
354 return ret;
355
356 /*
357 * We do not yet support contiguous regions larger than
358 * KMALLOC_MAX_SIZE.
359 */
360 if (plr->size > KMALLOC_MAX_SIZE) {
361 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
362 ret = -E2BIG;
363 goto out_region;
364 }
365
366 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
367 if (!plr->kmem) {
368 rdt_last_cmd_puts("Unable to allocate memory\n");
369 ret = -ENOMEM;
370 goto out_region;
371 }
372
373 ret = 0;
374 goto out;
375out_region:
376 pseudo_lock_region_clear(plr);
377out:
378 return ret;
379}
380
381/**
382 * pseudo_lock_free - Free a pseudo-locked region
383 * @rdtgrp: resource group to which pseudo-locked region belonged
384 *
385 * The pseudo-locked region's resources have already been released, or not
386 * yet created at this point. Now it can be freed and disassociated from the
387 * resource group.
388 *
389 * Return: void
390 */
391static void pseudo_lock_free(struct rdtgroup *rdtgrp)
392{
393 pseudo_lock_region_clear(rdtgrp->plr);
394 kfree(rdtgrp->plr);
395 rdtgrp->plr = NULL;
396}
397
398/**
399 * pseudo_lock_fn - Load kernel memory into cache
400 * @_rdtgrp: resource group to which pseudo-lock region belongs
401 *
402 * This is the core pseudo-locking flow.
403 *
404 * First we ensure that the kernel memory cannot be found in the cache.
405 * Then, while taking care that there will be as little interference as
406 * possible, the memory to be loaded is accessed while core is running
407 * with class of service set to the bitmask of the pseudo-locked region.
408 * After this is complete no future CAT allocations will be allowed to
409 * overlap with this bitmask.
410 *
411 * Local register variables are utilized to ensure that the memory region
412 * to be locked is the only memory access made during the critical locking
413 * loop.
414 *
415 * Return: 0. Waiter on waitqueue will be woken on completion.
416 */
417static int pseudo_lock_fn(void *_rdtgrp)
418{
419 struct rdtgroup *rdtgrp = _rdtgrp;
420 struct pseudo_lock_region *plr = rdtgrp->plr;
421 u32 rmid_p, closid_p;
422 unsigned long i;
423#ifdef CONFIG_KASAN
424 /*
425 * The registers used for local register variables are also used
426 * when KASAN is active. When KASAN is active we use a regular
427 * variable to ensure we always use a valid pointer, but the cost
428 * is that this variable will enter the cache through evicting the
429 * memory we are trying to lock into the cache. Thus expect lower
430 * pseudo-locking success rate when KASAN is active.
431 */
432 unsigned int line_size;
433 unsigned int size;
434 void *mem_r;
435#else
436 register unsigned int line_size asm("esi");
437 register unsigned int size asm("edi");
438 register void *mem_r asm(_ASM_BX);
439#endif /* CONFIG_KASAN */
440
441 /*
442 * Make sure none of the allocated memory is cached. If it is we
443 * will get a cache hit in below loop from outside of pseudo-locked
444 * region.
445 * wbinvd (as opposed to clflush/clflushopt) is required to
446 * increase likelihood that allocated cache portion will be filled
447 * with associated memory.
448 */
449 native_wbinvd();
450
451 /*
452 * Always called with interrupts enabled. By disabling interrupts
453 * ensure that we will not be preempted during this critical section.
454 */
455 local_irq_disable();
456
457 /*
458 * Call wrmsr and rdmsr as directly as possible to avoid tracing
459 * clobbering local register variables or affecting cache accesses.
460 *
461 * Disable the hardware prefetcher so that when the end of the memory
462 * being pseudo-locked is reached the hardware will not read beyond
463 * the buffer and evict pseudo-locked memory read earlier from the
464 * cache.
465 */
466 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
467 closid_p = this_cpu_read(pqr_state.cur_closid);
468 rmid_p = this_cpu_read(pqr_state.cur_rmid);
469 mem_r = plr->kmem;
470 size = plr->size;
471 line_size = plr->line_size;
472 /*
473 * Critical section begin: start by writing the closid associated
474 * with the capacity bitmask of the cache region being
475 * pseudo-locked followed by reading of kernel memory to load it
476 * into the cache.
477 */
478 __wrmsr(IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
479 /*
480 * Cache was flushed earlier. Now access kernel memory to read it
481 * into cache region associated with just activated plr->closid.
482 * Loop over data twice:
483 * - In first loop the cache region is shared with the page walker
484 * as it populates the paging structure caches (including TLB).
485 * - In the second loop the paging structure caches are used and
486 * cache region is populated with the memory being referenced.
487 */
488 for (i = 0; i < size; i += PAGE_SIZE) {
489 /*
490 * Add a barrier to prevent speculative execution of this
491 * loop reading beyond the end of the buffer.
492 */
493 rmb();
494 asm volatile("mov (%0,%1,1), %%eax\n\t"
495 :
496 : "r" (mem_r), "r" (i)
497 : "%eax", "memory");
498 }
499 for (i = 0; i < size; i += line_size) {
500 /*
501 * Add a barrier to prevent speculative execution of this
502 * loop reading beyond the end of the buffer.
503 */
504 rmb();
505 asm volatile("mov (%0,%1,1), %%eax\n\t"
506 :
507 : "r" (mem_r), "r" (i)
508 : "%eax", "memory");
509 }
510 /*
511 * Critical section end: restore closid with capacity bitmask that
512 * does not overlap with pseudo-locked region.
513 */
514 __wrmsr(IA32_PQR_ASSOC, rmid_p, closid_p);
515
516 /* Re-enable the hardware prefetcher(s) */
517 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
518 local_irq_enable();
519
520 plr->thread_done = 1;
521 wake_up_interruptible(&plr->lock_thread_wq);
522 return 0;
523}
524
525/**
526 * rdtgroup_monitor_in_progress - Test if monitoring in progress
527 * @rdtgrp: resource group being queried
528 *
529 * Return: 1 if monitor groups have been created for this resource
530 * group, 0 otherwise.
531 */
532static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
533{
534 return !list_empty(&rdtgrp->mon.crdtgrp_list);
535}
536
537/**
538 * rdtgroup_locksetup_user_restrict - Restrict user access to group
539 * @rdtgrp: resource group needing access restricted
540 *
541 * A resource group used for cache pseudo-locking cannot have cpus or tasks
542 * assigned to it. This is communicated to the user by restricting access
543 * to all the files that can be used to make such changes.
544 *
545 * Permissions restored with rdtgroup_locksetup_user_restore()
546 *
547 * Return: 0 on success, <0 on failure. If a failure occurs during the
548 * restriction of access an attempt will be made to restore permissions but
549 * the state of the mode of these files will be uncertain when a failure
550 * occurs.
551 */
552static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
553{
554 int ret;
555
556 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
557 if (ret)
558 return ret;
559
560 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
561 if (ret)
562 goto err_tasks;
563
564 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
565 if (ret)
566 goto err_cpus;
567
568 if (rdt_mon_capable) {
569 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
570 if (ret)
571 goto err_cpus_list;
572 }
573
574 ret = 0;
575 goto out;
576
577err_cpus_list:
578 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
579err_cpus:
580 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
581err_tasks:
582 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
583out:
584 return ret;
585}
586
587/**
588 * rdtgroup_locksetup_user_restore - Restore user access to group
589 * @rdtgrp: resource group needing access restored
590 *
591 * Restore all file access previously removed using
592 * rdtgroup_locksetup_user_restrict()
593 *
594 * Return: 0 on success, <0 on failure. If a failure occurs during the
595 * restoration of access an attempt will be made to restrict permissions
596 * again but the state of the mode of these files will be uncertain when
597 * a failure occurs.
598 */
599static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
600{
601 int ret;
602
603 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
604 if (ret)
605 return ret;
606
607 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
608 if (ret)
609 goto err_tasks;
610
611 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
612 if (ret)
613 goto err_cpus;
614
615 if (rdt_mon_capable) {
616 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
617 if (ret)
618 goto err_cpus_list;
619 }
620
621 ret = 0;
622 goto out;
623
624err_cpus_list:
625 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
626err_cpus:
627 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
628err_tasks:
629 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
630out:
631 return ret;
632}
633
634/**
635 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
636 * @rdtgrp: resource group requested to enter locksetup mode
637 *
638 * A resource group enters locksetup mode to reflect that it would be used
639 * to represent a pseudo-locked region and is in the process of being set
640 * up to do so. A resource group used for a pseudo-locked region would
641 * lose the closid associated with it so we cannot allow it to have any
642 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
643 * future. Monitoring of a pseudo-locked region is not allowed either.
644 *
645 * The above and more restrictions on a pseudo-locked region are checked
646 * for and enforced before the resource group enters the locksetup mode.
647 *
648 * Returns: 0 if the resource group successfully entered locksetup mode, <0
649 * on failure. On failure the last_cmd_status buffer is updated with text to
650 * communicate details of failure to the user.
651 */
652int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
653{
654 int ret;
655
656 /*
657 * The default resource group can neither be removed nor lose the
658 * default closid associated with it.
659 */
660 if (rdtgrp == &rdtgroup_default) {
661 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
662 return -EINVAL;
663 }
664
665 /*
666 * Cache Pseudo-locking not supported when CDP is enabled.
667 *
668 * Some things to consider if you would like to enable this
669 * support (using L3 CDP as example):
670 * - When CDP is enabled two separate resources are exposed,
671 * L3DATA and L3CODE, but they are actually on the same cache.
672 * The implication for pseudo-locking is that if a
673 * pseudo-locked region is created on a domain of one
674 * resource (eg. L3CODE), then a pseudo-locked region cannot
675 * be created on that same domain of the other resource
676 * (eg. L3DATA). This is because the creation of a
677 * pseudo-locked region involves a call to wbinvd that will
678 * affect all cache allocations on particular domain.
679 * - Considering the previous, it may be possible to only
680 * expose one of the CDP resources to pseudo-locking and
681 * hide the other. For example, we could consider to only
682 * expose L3DATA and since the L3 cache is unified it is
683 * still possible to place instructions there are execute it.
684 * - If only one region is exposed to pseudo-locking we should
685 * still keep in mind that availability of a portion of cache
686 * for pseudo-locking should take into account both resources.
687 * Similarly, if a pseudo-locked region is created in one
688 * resource, the portion of cache used by it should be made
689 * unavailable to all future allocations from both resources.
690 */
691 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled ||
692 rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) {
693 rdt_last_cmd_puts("CDP enabled\n");
694 return -EINVAL;
695 }
696
697 /*
698 * Not knowing the bits to disable prefetching implies that this
699 * platform does not support Cache Pseudo-Locking.
700 */
701 prefetch_disable_bits = get_prefetch_disable_bits();
702 if (prefetch_disable_bits == 0) {
703 rdt_last_cmd_puts("Pseudo-locking not supported\n");
704 return -EINVAL;
705 }
706
707 if (rdtgroup_monitor_in_progress(rdtgrp)) {
708 rdt_last_cmd_puts("Monitoring in progress\n");
709 return -EINVAL;
710 }
711
712 if (rdtgroup_tasks_assigned(rdtgrp)) {
713 rdt_last_cmd_puts("Tasks assigned to resource group\n");
714 return -EINVAL;
715 }
716
717 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
718 rdt_last_cmd_puts("CPUs assigned to resource group\n");
719 return -EINVAL;
720 }
721
722 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
723 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
724 return -EIO;
725 }
726
727 ret = pseudo_lock_init(rdtgrp);
728 if (ret) {
729 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
730 goto out_release;
731 }
732
733 /*
734 * If this system is capable of monitoring a rmid would have been
735 * allocated when the control group was created. This is not needed
736 * anymore when this group would be used for pseudo-locking. This
737 * is safe to call on platforms not capable of monitoring.
738 */
739 free_rmid(rdtgrp->mon.rmid);
740
741 ret = 0;
742 goto out;
743
744out_release:
745 rdtgroup_locksetup_user_restore(rdtgrp);
746out:
747 return ret;
748}
749
750/**
751 * rdtgroup_locksetup_exit - resource group exist locksetup mode
752 * @rdtgrp: resource group
753 *
754 * When a resource group exits locksetup mode the earlier restrictions are
755 * lifted.
756 *
757 * Return: 0 on success, <0 on failure
758 */
759int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
760{
761 int ret;
762
763 if (rdt_mon_capable) {
764 ret = alloc_rmid();
765 if (ret < 0) {
766 rdt_last_cmd_puts("Out of RMIDs\n");
767 return ret;
768 }
769 rdtgrp->mon.rmid = ret;
770 }
771
772 ret = rdtgroup_locksetup_user_restore(rdtgrp);
773 if (ret) {
774 free_rmid(rdtgrp->mon.rmid);
775 return ret;
776 }
777
778 pseudo_lock_free(rdtgrp);
779 return 0;
780}
781
782/**
783 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
784 * @d: RDT domain
785 * @cbm: CBM to test
786 *
787 * @d represents a cache instance and @cbm a capacity bitmask that is
788 * considered for it. Determine if @cbm overlaps with any existing
789 * pseudo-locked region on @d.
790 *
791 * @cbm is unsigned long, even if only 32 bits are used, to make the
792 * bitmap functions work correctly.
793 *
794 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
795 * otherwise.
796 */
797bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
798{
799 unsigned int cbm_len;
800 unsigned long cbm_b;
801
802 if (d->plr) {
803 cbm_len = d->plr->r->cache.cbm_len;
804 cbm_b = d->plr->cbm;
805 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
806 return true;
807 }
808 return false;
809}
810
811/**
812 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
813 * @d: RDT domain under test
814 *
815 * The setup of a pseudo-locked region affects all cache instances within
816 * the hierarchy of the region. It is thus essential to know if any
817 * pseudo-locked regions exist within a cache hierarchy to prevent any
818 * attempts to create new pseudo-locked regions in the same hierarchy.
819 *
820 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
821 * if it is not possible to test due to memory allocation issue,
822 * false otherwise.
823 */
824bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
825{
826 cpumask_var_t cpu_with_psl;
827 struct rdt_resource *r;
828 struct rdt_domain *d_i;
829 bool ret = false;
830
831 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
832 return true;
833
834 /*
835 * First determine which cpus have pseudo-locked regions
836 * associated with them.
837 */
838 for_each_alloc_enabled_rdt_resource(r) {
839 list_for_each_entry(d_i, &r->domains, list) {
840 if (d_i->plr)
841 cpumask_or(cpu_with_psl, cpu_with_psl,
842 &d_i->cpu_mask);
843 }
844 }
845
846 /*
847 * Next test if new pseudo-locked region would intersect with
848 * existing region.
849 */
850 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
851 ret = true;
852
853 free_cpumask_var(cpu_with_psl);
854 return ret;
855}
856
857/**
858 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
859 * @_plr: pseudo-lock region to measure
860 *
861 * There is no deterministic way to test if a memory region is cached. One
862 * way is to measure how long it takes to read the memory, the speed of
863 * access is a good way to learn how close to the cpu the data was. Even
864 * more, if the prefetcher is disabled and the memory is read at a stride
865 * of half the cache line, then a cache miss will be easy to spot since the
866 * read of the first half would be significantly slower than the read of
867 * the second half.
868 *
869 * Return: 0. Waiter on waitqueue will be woken on completion.
870 */
871static int measure_cycles_lat_fn(void *_plr)
872{
873 struct pseudo_lock_region *plr = _plr;
874 unsigned long i;
875 u64 start, end;
876 void *mem_r;
877
878 local_irq_disable();
879 /*
880 * Disable hardware prefetchers.
881 */
882 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
883 mem_r = READ_ONCE(plr->kmem);
884 /*
885 * Dummy execute of the time measurement to load the needed
886 * instructions into the L1 instruction cache.
887 */
888 start = rdtsc_ordered();
889 for (i = 0; i < plr->size; i += 32) {
890 start = rdtsc_ordered();
891 asm volatile("mov (%0,%1,1), %%eax\n\t"
892 :
893 : "r" (mem_r), "r" (i)
894 : "%eax", "memory");
895 end = rdtsc_ordered();
896 trace_pseudo_lock_mem_latency((u32)(end - start));
897 }
898 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
899 local_irq_enable();
900 plr->thread_done = 1;
901 wake_up_interruptible(&plr->lock_thread_wq);
902 return 0;
903}
904
905/*
906 * Create a perf_event_attr for the hit and miss perf events that will
907 * be used during the performance measurement. A perf_event maintains
908 * a pointer to its perf_event_attr so a unique attribute structure is
909 * created for each perf_event.
910 *
911 * The actual configuration of the event is set right before use in order
912 * to use the X86_CONFIG macro.
913 */
914static struct perf_event_attr perf_miss_attr = {
915 .type = PERF_TYPE_RAW,
916 .size = sizeof(struct perf_event_attr),
917 .pinned = 1,
918 .disabled = 0,
919 .exclude_user = 1,
920};
921
922static struct perf_event_attr perf_hit_attr = {
923 .type = PERF_TYPE_RAW,
924 .size = sizeof(struct perf_event_attr),
925 .pinned = 1,
926 .disabled = 0,
927 .exclude_user = 1,
928};
929
930struct residency_counts {
931 u64 miss_before, hits_before;
932 u64 miss_after, hits_after;
933};
934
935static int measure_residency_fn(struct perf_event_attr *miss_attr,
936 struct perf_event_attr *hit_attr,
937 struct pseudo_lock_region *plr,
938 struct residency_counts *counts)
939{
940 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
941 struct perf_event *miss_event, *hit_event;
942 int hit_pmcnum, miss_pmcnum;
943 unsigned int line_size;
944 unsigned int size;
945 unsigned long i;
946 void *mem_r;
947 u64 tmp;
948
949 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
950 NULL, NULL, NULL);
951 if (IS_ERR(miss_event))
952 goto out;
953
954 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
955 NULL, NULL, NULL);
956 if (IS_ERR(hit_event))
957 goto out_miss;
958
959 local_irq_disable();
960 /*
961 * Check any possible error state of events used by performing
962 * one local read.
963 */
964 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
965 local_irq_enable();
966 goto out_hit;
967 }
968 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
969 local_irq_enable();
970 goto out_hit;
971 }
972
973 /*
974 * Disable hardware prefetchers.
975 */
976 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
977
978 /* Initialize rest of local variables */
979 /*
980 * Performance event has been validated right before this with
981 * interrupts disabled - it is thus safe to read the counter index.
982 */
983 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
984 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
985 line_size = READ_ONCE(plr->line_size);
986 mem_r = READ_ONCE(plr->kmem);
987 size = READ_ONCE(plr->size);
988
989 /*
990 * Read counter variables twice - first to load the instructions
991 * used in L1 cache, second to capture accurate value that does not
992 * include cache misses incurred because of instruction loads.
993 */
994 rdpmcl(hit_pmcnum, hits_before);
995 rdpmcl(miss_pmcnum, miss_before);
996 /*
997 * From SDM: Performing back-to-back fast reads are not guaranteed
998 * to be monotonic.
999 * Use LFENCE to ensure all previous instructions are retired
1000 * before proceeding.
1001 */
1002 rmb();
1003 rdpmcl(hit_pmcnum, hits_before);
1004 rdpmcl(miss_pmcnum, miss_before);
1005 /*
1006 * Use LFENCE to ensure all previous instructions are retired
1007 * before proceeding.
1008 */
1009 rmb();
1010 for (i = 0; i < size; i += line_size) {
1011 /*
1012 * Add a barrier to prevent speculative execution of this
1013 * loop reading beyond the end of the buffer.
1014 */
1015 rmb();
1016 asm volatile("mov (%0,%1,1), %%eax\n\t"
1017 :
1018 : "r" (mem_r), "r" (i)
1019 : "%eax", "memory");
1020 }
1021 /*
1022 * Use LFENCE to ensure all previous instructions are retired
1023 * before proceeding.
1024 */
1025 rmb();
1026 rdpmcl(hit_pmcnum, hits_after);
1027 rdpmcl(miss_pmcnum, miss_after);
1028 /*
1029 * Use LFENCE to ensure all previous instructions are retired
1030 * before proceeding.
1031 */
1032 rmb();
1033 /* Re-enable hardware prefetchers */
1034 wrmsr(MSR_MISC_FEATURE_CONTROL, 0x0, 0x0);
1035 local_irq_enable();
1036out_hit:
1037 perf_event_release_kernel(hit_event);
1038out_miss:
1039 perf_event_release_kernel(miss_event);
1040out:
1041 /*
1042 * All counts will be zero on failure.
1043 */
1044 counts->miss_before = miss_before;
1045 counts->hits_before = hits_before;
1046 counts->miss_after = miss_after;
1047 counts->hits_after = hits_after;
1048 return 0;
1049}
1050
1051static int measure_l2_residency(void *_plr)
1052{
1053 struct pseudo_lock_region *plr = _plr;
1054 struct residency_counts counts = {0};
1055
1056 /*
1057 * Non-architectural event for the Goldmont Microarchitecture
1058 * from Intel x86 Architecture Software Developer Manual (SDM):
1059 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1060 * Umask values:
1061 * L2_HIT 02H
1062 * L2_MISS 10H
1063 */
1064 switch (boot_cpu_data.x86_model) {
1065 case INTEL_FAM6_ATOM_GOLDMONT:
1066 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1067 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1068 .umask = 0x10);
1069 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1070 .umask = 0x2);
1071 break;
1072 default:
1073 goto out;
1074 }
1075
1076 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1077 /*
1078 * If a failure prevented the measurements from succeeding
1079 * tracepoints will still be written and all counts will be zero.
1080 */
1081 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1082 counts.miss_after - counts.miss_before);
1083out:
1084 plr->thread_done = 1;
1085 wake_up_interruptible(&plr->lock_thread_wq);
1086 return 0;
1087}
1088
1089static int measure_l3_residency(void *_plr)
1090{
1091 struct pseudo_lock_region *plr = _plr;
1092 struct residency_counts counts = {0};
1093
1094 /*
1095 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1096 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1097 * this platform the following events are used instead:
1098 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1099 * REFERENCE 4FH
1100 * MISS 41H
1101 */
1102
1103 switch (boot_cpu_data.x86_model) {
1104 case INTEL_FAM6_BROADWELL_X:
1105 /* On BDW the hit event counts references, not hits */
1106 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1107 .umask = 0x4f);
1108 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1109 .umask = 0x41);
1110 break;
1111 default:
1112 goto out;
1113 }
1114
1115 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1116 /*
1117 * If a failure prevented the measurements from succeeding
1118 * tracepoints will still be written and all counts will be zero.
1119 */
1120
1121 counts.miss_after -= counts.miss_before;
1122 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1123 /*
1124 * On BDW references and misses are counted, need to adjust.
1125 * Sometimes the "hits" counter is a bit more than the
1126 * references, for example, x references but x + 1 hits.
1127 * To not report invalid hit values in this case we treat
1128 * that as misses equal to references.
1129 */
1130 /* First compute the number of cache references measured */
1131 counts.hits_after -= counts.hits_before;
1132 /* Next convert references to cache hits */
1133 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1134 } else {
1135 counts.hits_after -= counts.hits_before;
1136 }
1137
1138 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1139out:
1140 plr->thread_done = 1;
1141 wake_up_interruptible(&plr->lock_thread_wq);
1142 return 0;
1143}
1144
1145/**
1146 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1147 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1148 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1149 *
1150 * The measurement of latency to access a pseudo-locked region should be
1151 * done from a cpu that is associated with that pseudo-locked region.
1152 * Determine which cpu is associated with this region and start a thread on
1153 * that cpu to perform the measurement, wait for that thread to complete.
1154 *
1155 * Return: 0 on success, <0 on failure
1156 */
1157static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1158{
1159 struct pseudo_lock_region *plr = rdtgrp->plr;
1160 struct task_struct *thread;
1161 unsigned int cpu;
1162 int ret = -1;
1163
1164 cpus_read_lock();
1165 mutex_lock(&rdtgroup_mutex);
1166
1167 if (rdtgrp->flags & RDT_DELETED) {
1168 ret = -ENODEV;
1169 goto out;
1170 }
1171
1172 if (!plr->d) {
1173 ret = -ENODEV;
1174 goto out;
1175 }
1176
1177 plr->thread_done = 0;
1178 cpu = cpumask_first(&plr->d->cpu_mask);
1179 if (!cpu_online(cpu)) {
1180 ret = -ENODEV;
1181 goto out;
1182 }
1183
1184 plr->cpu = cpu;
1185
1186 if (sel == 1)
1187 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1188 cpu_to_node(cpu),
1189 "pseudo_lock_measure/%u",
1190 cpu);
1191 else if (sel == 2)
1192 thread = kthread_create_on_node(measure_l2_residency, plr,
1193 cpu_to_node(cpu),
1194 "pseudo_lock_measure/%u",
1195 cpu);
1196 else if (sel == 3)
1197 thread = kthread_create_on_node(measure_l3_residency, plr,
1198 cpu_to_node(cpu),
1199 "pseudo_lock_measure/%u",
1200 cpu);
1201 else
1202 goto out;
1203
1204 if (IS_ERR(thread)) {
1205 ret = PTR_ERR(thread);
1206 goto out;
1207 }
1208 kthread_bind(thread, cpu);
1209 wake_up_process(thread);
1210
1211 ret = wait_event_interruptible(plr->lock_thread_wq,
1212 plr->thread_done == 1);
1213 if (ret < 0)
1214 goto out;
1215
1216 ret = 0;
1217
1218out:
1219 mutex_unlock(&rdtgroup_mutex);
1220 cpus_read_unlock();
1221 return ret;
1222}
1223
1224static ssize_t pseudo_lock_measure_trigger(struct file *file,
1225 const char __user *user_buf,
1226 size_t count, loff_t *ppos)
1227{
1228 struct rdtgroup *rdtgrp = file->private_data;
1229 size_t buf_size;
1230 char buf[32];
1231 int ret;
1232 int sel;
1233
1234 buf_size = min(count, (sizeof(buf) - 1));
1235 if (copy_from_user(buf, user_buf, buf_size))
1236 return -EFAULT;
1237
1238 buf[buf_size] = '\0';
1239 ret = kstrtoint(buf, 10, &sel);
1240 if (ret == 0) {
1241 if (sel != 1 && sel != 2 && sel != 3)
1242 return -EINVAL;
1243 ret = debugfs_file_get(file->f_path.dentry);
1244 if (ret)
1245 return ret;
1246 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1247 if (ret == 0)
1248 ret = count;
1249 debugfs_file_put(file->f_path.dentry);
1250 }
1251
1252 return ret;
1253}
1254
1255static const struct file_operations pseudo_measure_fops = {
1256 .write = pseudo_lock_measure_trigger,
1257 .open = simple_open,
1258 .llseek = default_llseek,
1259};
1260
1261/**
1262 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1263 * @rdtgrp: resource group to which pseudo-lock region belongs
1264 *
1265 * Called when a resource group in the pseudo-locksetup mode receives a
1266 * valid schemata that should be pseudo-locked. Since the resource group is
1267 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1268 * allocated and initialized with the essential information. If a failure
1269 * occurs the resource group remains in the pseudo-locksetup mode with the
1270 * &struct pseudo_lock_region associated with it, but cleared from all
1271 * information and ready for the user to re-attempt pseudo-locking by
1272 * writing the schemata again.
1273 *
1274 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1275 * on failure. Descriptive error will be written to last_cmd_status buffer.
1276 */
1277int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1278{
1279 struct pseudo_lock_region *plr = rdtgrp->plr;
1280 struct task_struct *thread;
1281 unsigned int new_minor;
1282 struct device *dev;
1283 int ret;
1284
1285 ret = pseudo_lock_region_alloc(plr);
1286 if (ret < 0)
1287 return ret;
1288
1289 ret = pseudo_lock_cstates_constrain(plr);
1290 if (ret < 0) {
1291 ret = -EINVAL;
1292 goto out_region;
1293 }
1294
1295 plr->thread_done = 0;
1296
1297 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1298 cpu_to_node(plr->cpu),
1299 "pseudo_lock/%u", plr->cpu);
1300 if (IS_ERR(thread)) {
1301 ret = PTR_ERR(thread);
1302 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1303 goto out_cstates;
1304 }
1305
1306 kthread_bind(thread, plr->cpu);
1307 wake_up_process(thread);
1308
1309 ret = wait_event_interruptible(plr->lock_thread_wq,
1310 plr->thread_done == 1);
1311 if (ret < 0) {
1312 /*
1313 * If the thread does not get on the CPU for whatever
1314 * reason and the process which sets up the region is
1315 * interrupted then this will leave the thread in runnable
1316 * state and once it gets on the CPU it will dereference
1317 * the cleared, but not freed, plr struct resulting in an
1318 * empty pseudo-locking loop.
1319 */
1320 rdt_last_cmd_puts("Locking thread interrupted\n");
1321 goto out_cstates;
1322 }
1323
1324 ret = pseudo_lock_minor_get(&new_minor);
1325 if (ret < 0) {
1326 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1327 goto out_cstates;
1328 }
1329
1330 /*
1331 * Unlock access but do not release the reference. The
1332 * pseudo-locked region will still be here on return.
1333 *
1334 * The mutex has to be released temporarily to avoid a potential
1335 * deadlock with the mm->mmap_lock which is obtained in the
1336 * device_create() and debugfs_create_dir() callpath below as well as
1337 * before the mmap() callback is called.
1338 */
1339 mutex_unlock(&rdtgroup_mutex);
1340
1341 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1342 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1343 debugfs_resctrl);
1344 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1345 debugfs_create_file("pseudo_lock_measure", 0200,
1346 plr->debugfs_dir, rdtgrp,
1347 &pseudo_measure_fops);
1348 }
1349
1350 dev = device_create(pseudo_lock_class, NULL,
1351 MKDEV(pseudo_lock_major, new_minor),
1352 rdtgrp, "%s", rdtgrp->kn->name);
1353
1354 mutex_lock(&rdtgroup_mutex);
1355
1356 if (IS_ERR(dev)) {
1357 ret = PTR_ERR(dev);
1358 rdt_last_cmd_printf("Failed to create character device: %d\n",
1359 ret);
1360 goto out_debugfs;
1361 }
1362
1363 /* We released the mutex - check if group was removed while we did so */
1364 if (rdtgrp->flags & RDT_DELETED) {
1365 ret = -ENODEV;
1366 goto out_device;
1367 }
1368
1369 plr->minor = new_minor;
1370
1371 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1372 closid_free(rdtgrp->closid);
1373 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1374 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1375
1376 ret = 0;
1377 goto out;
1378
1379out_device:
1380 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1381out_debugfs:
1382 debugfs_remove_recursive(plr->debugfs_dir);
1383 pseudo_lock_minor_release(new_minor);
1384out_cstates:
1385 pseudo_lock_cstates_relax(plr);
1386out_region:
1387 pseudo_lock_region_clear(plr);
1388out:
1389 return ret;
1390}
1391
1392/**
1393 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1394 * @rdtgrp: resource group to which the pseudo-locked region belongs
1395 *
1396 * The removal of a pseudo-locked region can be initiated when the resource
1397 * group is removed from user space via a "rmdir" from userspace or the
1398 * unmount of the resctrl filesystem. On removal the resource group does
1399 * not go back to pseudo-locksetup mode before it is removed, instead it is
1400 * removed directly. There is thus asymmetry with the creation where the
1401 * &struct pseudo_lock_region is removed here while it was not created in
1402 * rdtgroup_pseudo_lock_create().
1403 *
1404 * Return: void
1405 */
1406void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1407{
1408 struct pseudo_lock_region *plr = rdtgrp->plr;
1409
1410 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1411 /*
1412 * Default group cannot be a pseudo-locked region so we can
1413 * free closid here.
1414 */
1415 closid_free(rdtgrp->closid);
1416 goto free;
1417 }
1418
1419 pseudo_lock_cstates_relax(plr);
1420 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1421 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1422 pseudo_lock_minor_release(plr->minor);
1423
1424free:
1425 pseudo_lock_free(rdtgrp);
1426}
1427
1428static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1429{
1430 struct rdtgroup *rdtgrp;
1431
1432 mutex_lock(&rdtgroup_mutex);
1433
1434 rdtgrp = region_find_by_minor(iminor(inode));
1435 if (!rdtgrp) {
1436 mutex_unlock(&rdtgroup_mutex);
1437 return -ENODEV;
1438 }
1439
1440 filp->private_data = rdtgrp;
1441 atomic_inc(&rdtgrp->waitcount);
1442 /* Perform a non-seekable open - llseek is not supported */
1443 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1444
1445 mutex_unlock(&rdtgroup_mutex);
1446
1447 return 0;
1448}
1449
1450static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1451{
1452 struct rdtgroup *rdtgrp;
1453
1454 mutex_lock(&rdtgroup_mutex);
1455 rdtgrp = filp->private_data;
1456 WARN_ON(!rdtgrp);
1457 if (!rdtgrp) {
1458 mutex_unlock(&rdtgroup_mutex);
1459 return -ENODEV;
1460 }
1461 filp->private_data = NULL;
1462 atomic_dec(&rdtgrp->waitcount);
1463 mutex_unlock(&rdtgroup_mutex);
1464 return 0;
1465}
1466
1467static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1468{
1469 /* Not supported */
1470 return -EINVAL;
1471}
1472
1473static const struct vm_operations_struct pseudo_mmap_ops = {
1474 .mremap = pseudo_lock_dev_mremap,
1475};
1476
1477static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1478{
1479 unsigned long vsize = vma->vm_end - vma->vm_start;
1480 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1481 struct pseudo_lock_region *plr;
1482 struct rdtgroup *rdtgrp;
1483 unsigned long physical;
1484 unsigned long psize;
1485
1486 mutex_lock(&rdtgroup_mutex);
1487
1488 rdtgrp = filp->private_data;
1489 WARN_ON(!rdtgrp);
1490 if (!rdtgrp) {
1491 mutex_unlock(&rdtgroup_mutex);
1492 return -ENODEV;
1493 }
1494
1495 plr = rdtgrp->plr;
1496
1497 if (!plr->d) {
1498 mutex_unlock(&rdtgroup_mutex);
1499 return -ENODEV;
1500 }
1501
1502 /*
1503 * Task is required to run with affinity to the cpus associated
1504 * with the pseudo-locked region. If this is not the case the task
1505 * may be scheduled elsewhere and invalidate entries in the
1506 * pseudo-locked region.
1507 */
1508 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1509 mutex_unlock(&rdtgroup_mutex);
1510 return -EINVAL;
1511 }
1512
1513 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1514 psize = plr->size - off;
1515
1516 if (off > plr->size) {
1517 mutex_unlock(&rdtgroup_mutex);
1518 return -ENOSPC;
1519 }
1520
1521 /*
1522 * Ensure changes are carried directly to the memory being mapped,
1523 * do not allow copy-on-write mapping.
1524 */
1525 if (!(vma->vm_flags & VM_SHARED)) {
1526 mutex_unlock(&rdtgroup_mutex);
1527 return -EINVAL;
1528 }
1529
1530 if (vsize > psize) {
1531 mutex_unlock(&rdtgroup_mutex);
1532 return -ENOSPC;
1533 }
1534
1535 memset(plr->kmem + off, 0, vsize);
1536
1537 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1538 vsize, vma->vm_page_prot)) {
1539 mutex_unlock(&rdtgroup_mutex);
1540 return -EAGAIN;
1541 }
1542 vma->vm_ops = &pseudo_mmap_ops;
1543 mutex_unlock(&rdtgroup_mutex);
1544 return 0;
1545}
1546
1547static const struct file_operations pseudo_lock_dev_fops = {
1548 .owner = THIS_MODULE,
1549 .llseek = no_llseek,
1550 .read = NULL,
1551 .write = NULL,
1552 .open = pseudo_lock_dev_open,
1553 .release = pseudo_lock_dev_release,
1554 .mmap = pseudo_lock_dev_mmap,
1555};
1556
1557static char *pseudo_lock_devnode(struct device *dev, umode_t *mode)
1558{
1559 struct rdtgroup *rdtgrp;
1560
1561 rdtgrp = dev_get_drvdata(dev);
1562 if (mode)
1563 *mode = 0600;
1564 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1565}
1566
1567int rdt_pseudo_lock_init(void)
1568{
1569 int ret;
1570
1571 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1572 if (ret < 0)
1573 return ret;
1574
1575 pseudo_lock_major = ret;
1576
1577 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1578 if (IS_ERR(pseudo_lock_class)) {
1579 ret = PTR_ERR(pseudo_lock_class);
1580 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1581 return ret;
1582 }
1583
1584 pseudo_lock_class->devnode = pseudo_lock_devnode;
1585 return 0;
1586}
1587
1588void rdt_pseudo_lock_release(void)
1589{
1590 class_destroy(pseudo_lock_class);
1591 pseudo_lock_class = NULL;
1592 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1593 pseudo_lock_major = 0;
1594}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/cacheinfo.h>
15#include <linux/cpu.h>
16#include <linux/cpumask.h>
17#include <linux/debugfs.h>
18#include <linux/kthread.h>
19#include <linux/mman.h>
20#include <linux/perf_event.h>
21#include <linux/pm_qos.h>
22#include <linux/slab.h>
23#include <linux/uaccess.h>
24
25#include <asm/cacheflush.h>
26#include <asm/intel-family.h>
27#include <asm/resctrl.h>
28#include <asm/perf_event.h>
29
30#include "../../events/perf_event.h" /* For X86_CONFIG() */
31#include "internal.h"
32
33#define CREATE_TRACE_POINTS
34#include "pseudo_lock_event.h"
35
36/*
37 * The bits needed to disable hardware prefetching varies based on the
38 * platform. During initialization we will discover which bits to use.
39 */
40static u64 prefetch_disable_bits;
41
42/*
43 * Major number assigned to and shared by all devices exposing
44 * pseudo-locked regions.
45 */
46static unsigned int pseudo_lock_major;
47static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
48static struct class *pseudo_lock_class;
49
50/**
51 * get_prefetch_disable_bits - prefetch disable bits of supported platforms
52 * @void: It takes no parameters.
53 *
54 * Capture the list of platforms that have been validated to support
55 * pseudo-locking. This includes testing to ensure pseudo-locked regions
56 * with low cache miss rates can be created under variety of load conditions
57 * as well as that these pseudo-locked regions can maintain their low cache
58 * miss rates under variety of load conditions for significant lengths of time.
59 *
60 * After a platform has been validated to support pseudo-locking its
61 * hardware prefetch disable bits are included here as they are documented
62 * in the SDM.
63 *
64 * When adding a platform here also add support for its cache events to
65 * measure_cycles_perf_fn()
66 *
67 * Return:
68 * If platform is supported, the bits to disable hardware prefetchers, 0
69 * if platform is not supported.
70 */
71static u64 get_prefetch_disable_bits(void)
72{
73 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
74 boot_cpu_data.x86 != 6)
75 return 0;
76
77 switch (boot_cpu_data.x86_model) {
78 case INTEL_FAM6_BROADWELL_X:
79 /*
80 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
81 * as:
82 * 0 L2 Hardware Prefetcher Disable (R/W)
83 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
84 * 2 DCU Hardware Prefetcher Disable (R/W)
85 * 3 DCU IP Prefetcher Disable (R/W)
86 * 63:4 Reserved
87 */
88 return 0xF;
89 case INTEL_FAM6_ATOM_GOLDMONT:
90 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
91 /*
92 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
93 * as:
94 * 0 L2 Hardware Prefetcher Disable (R/W)
95 * 1 Reserved
96 * 2 DCU Hardware Prefetcher Disable (R/W)
97 * 63:3 Reserved
98 */
99 return 0x5;
100 }
101
102 return 0;
103}
104
105/**
106 * pseudo_lock_minor_get - Obtain available minor number
107 * @minor: Pointer to where new minor number will be stored
108 *
109 * A bitmask is used to track available minor numbers. Here the next free
110 * minor number is marked as unavailable and returned.
111 *
112 * Return: 0 on success, <0 on failure.
113 */
114static int pseudo_lock_minor_get(unsigned int *minor)
115{
116 unsigned long first_bit;
117
118 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
119
120 if (first_bit == MINORBITS)
121 return -ENOSPC;
122
123 __clear_bit(first_bit, &pseudo_lock_minor_avail);
124 *minor = first_bit;
125
126 return 0;
127}
128
129/**
130 * pseudo_lock_minor_release - Return minor number to available
131 * @minor: The minor number made available
132 */
133static void pseudo_lock_minor_release(unsigned int minor)
134{
135 __set_bit(minor, &pseudo_lock_minor_avail);
136}
137
138/**
139 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
140 * @minor: The minor number of the device representing pseudo-locked region
141 *
142 * When the character device is accessed we need to determine which
143 * pseudo-locked region it belongs to. This is done by matching the minor
144 * number of the device to the pseudo-locked region it belongs.
145 *
146 * Minor numbers are assigned at the time a pseudo-locked region is associated
147 * with a cache instance.
148 *
149 * Return: On success return pointer to resource group owning the pseudo-locked
150 * region, NULL on failure.
151 */
152static struct rdtgroup *region_find_by_minor(unsigned int minor)
153{
154 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
155
156 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
157 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
158 rdtgrp_match = rdtgrp;
159 break;
160 }
161 }
162 return rdtgrp_match;
163}
164
165/**
166 * struct pseudo_lock_pm_req - A power management QoS request list entry
167 * @list: Entry within the @pm_reqs list for a pseudo-locked region
168 * @req: PM QoS request
169 */
170struct pseudo_lock_pm_req {
171 struct list_head list;
172 struct dev_pm_qos_request req;
173};
174
175static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
176{
177 struct pseudo_lock_pm_req *pm_req, *next;
178
179 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
180 dev_pm_qos_remove_request(&pm_req->req);
181 list_del(&pm_req->list);
182 kfree(pm_req);
183 }
184}
185
186/**
187 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
188 * @plr: Pseudo-locked region
189 *
190 * To prevent the cache from being affected by power management entering
191 * C6 has to be avoided. This is accomplished by requesting a latency
192 * requirement lower than lowest C6 exit latency of all supported
193 * platforms as found in the cpuidle state tables in the intel_idle driver.
194 * At this time it is possible to do so with a single latency requirement
195 * for all supported platforms.
196 *
197 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
198 * the ACPI latencies need to be considered while keeping in mind that C2
199 * may be set to map to deeper sleep states. In this case the latency
200 * requirement needs to prevent entering C2 also.
201 *
202 * Return: 0 on success, <0 on failure
203 */
204static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
205{
206 struct pseudo_lock_pm_req *pm_req;
207 int cpu;
208 int ret;
209
210 for_each_cpu(cpu, &plr->d->cpu_mask) {
211 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
212 if (!pm_req) {
213 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
214 ret = -ENOMEM;
215 goto out_err;
216 }
217 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
218 &pm_req->req,
219 DEV_PM_QOS_RESUME_LATENCY,
220 30);
221 if (ret < 0) {
222 rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
223 cpu);
224 kfree(pm_req);
225 ret = -1;
226 goto out_err;
227 }
228 list_add(&pm_req->list, &plr->pm_reqs);
229 }
230
231 return 0;
232
233out_err:
234 pseudo_lock_cstates_relax(plr);
235 return ret;
236}
237
238/**
239 * pseudo_lock_region_clear - Reset pseudo-lock region data
240 * @plr: pseudo-lock region
241 *
242 * All content of the pseudo-locked region is reset - any memory allocated
243 * freed.
244 *
245 * Return: void
246 */
247static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
248{
249 plr->size = 0;
250 plr->line_size = 0;
251 kfree(plr->kmem);
252 plr->kmem = NULL;
253 plr->s = NULL;
254 if (plr->d)
255 plr->d->plr = NULL;
256 plr->d = NULL;
257 plr->cbm = 0;
258 plr->debugfs_dir = NULL;
259}
260
261/**
262 * pseudo_lock_region_init - Initialize pseudo-lock region information
263 * @plr: pseudo-lock region
264 *
265 * Called after user provided a schemata to be pseudo-locked. From the
266 * schemata the &struct pseudo_lock_region is on entry already initialized
267 * with the resource, domain, and capacity bitmask. Here the information
268 * required for pseudo-locking is deduced from this data and &struct
269 * pseudo_lock_region initialized further. This information includes:
270 * - size in bytes of the region to be pseudo-locked
271 * - cache line size to know the stride with which data needs to be accessed
272 * to be pseudo-locked
273 * - a cpu associated with the cache instance on which the pseudo-locking
274 * flow can be executed
275 *
276 * Return: 0 on success, <0 on failure. Descriptive error will be written
277 * to last_cmd_status buffer.
278 */
279static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
280{
281 struct cpu_cacheinfo *ci;
282 int ret;
283 int i;
284
285 /* Pick the first cpu we find that is associated with the cache. */
286 plr->cpu = cpumask_first(&plr->d->cpu_mask);
287
288 if (!cpu_online(plr->cpu)) {
289 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
290 plr->cpu);
291 ret = -ENODEV;
292 goto out_region;
293 }
294
295 ci = get_cpu_cacheinfo(plr->cpu);
296
297 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
298
299 for (i = 0; i < ci->num_leaves; i++) {
300 if (ci->info_list[i].level == plr->s->res->cache_level) {
301 plr->line_size = ci->info_list[i].coherency_line_size;
302 return 0;
303 }
304 }
305
306 ret = -1;
307 rdt_last_cmd_puts("Unable to determine cache line size\n");
308out_region:
309 pseudo_lock_region_clear(plr);
310 return ret;
311}
312
313/**
314 * pseudo_lock_init - Initialize a pseudo-lock region
315 * @rdtgrp: resource group to which new pseudo-locked region will belong
316 *
317 * A pseudo-locked region is associated with a resource group. When this
318 * association is created the pseudo-locked region is initialized. The
319 * details of the pseudo-locked region are not known at this time so only
320 * allocation is done and association established.
321 *
322 * Return: 0 on success, <0 on failure
323 */
324static int pseudo_lock_init(struct rdtgroup *rdtgrp)
325{
326 struct pseudo_lock_region *plr;
327
328 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
329 if (!plr)
330 return -ENOMEM;
331
332 init_waitqueue_head(&plr->lock_thread_wq);
333 INIT_LIST_HEAD(&plr->pm_reqs);
334 rdtgrp->plr = plr;
335 return 0;
336}
337
338/**
339 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
340 * @plr: pseudo-lock region
341 *
342 * Initialize the details required to set up the pseudo-locked region and
343 * allocate the contiguous memory that will be pseudo-locked to the cache.
344 *
345 * Return: 0 on success, <0 on failure. Descriptive error will be written
346 * to last_cmd_status buffer.
347 */
348static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
349{
350 int ret;
351
352 ret = pseudo_lock_region_init(plr);
353 if (ret < 0)
354 return ret;
355
356 /*
357 * We do not yet support contiguous regions larger than
358 * KMALLOC_MAX_SIZE.
359 */
360 if (plr->size > KMALLOC_MAX_SIZE) {
361 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
362 ret = -E2BIG;
363 goto out_region;
364 }
365
366 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
367 if (!plr->kmem) {
368 rdt_last_cmd_puts("Unable to allocate memory\n");
369 ret = -ENOMEM;
370 goto out_region;
371 }
372
373 ret = 0;
374 goto out;
375out_region:
376 pseudo_lock_region_clear(plr);
377out:
378 return ret;
379}
380
381/**
382 * pseudo_lock_free - Free a pseudo-locked region
383 * @rdtgrp: resource group to which pseudo-locked region belonged
384 *
385 * The pseudo-locked region's resources have already been released, or not
386 * yet created at this point. Now it can be freed and disassociated from the
387 * resource group.
388 *
389 * Return: void
390 */
391static void pseudo_lock_free(struct rdtgroup *rdtgrp)
392{
393 pseudo_lock_region_clear(rdtgrp->plr);
394 kfree(rdtgrp->plr);
395 rdtgrp->plr = NULL;
396}
397
398/**
399 * pseudo_lock_fn - Load kernel memory into cache
400 * @_rdtgrp: resource group to which pseudo-lock region belongs
401 *
402 * This is the core pseudo-locking flow.
403 *
404 * First we ensure that the kernel memory cannot be found in the cache.
405 * Then, while taking care that there will be as little interference as
406 * possible, the memory to be loaded is accessed while core is running
407 * with class of service set to the bitmask of the pseudo-locked region.
408 * After this is complete no future CAT allocations will be allowed to
409 * overlap with this bitmask.
410 *
411 * Local register variables are utilized to ensure that the memory region
412 * to be locked is the only memory access made during the critical locking
413 * loop.
414 *
415 * Return: 0. Waiter on waitqueue will be woken on completion.
416 */
417static int pseudo_lock_fn(void *_rdtgrp)
418{
419 struct rdtgroup *rdtgrp = _rdtgrp;
420 struct pseudo_lock_region *plr = rdtgrp->plr;
421 u32 rmid_p, closid_p;
422 unsigned long i;
423 u64 saved_msr;
424#ifdef CONFIG_KASAN
425 /*
426 * The registers used for local register variables are also used
427 * when KASAN is active. When KASAN is active we use a regular
428 * variable to ensure we always use a valid pointer, but the cost
429 * is that this variable will enter the cache through evicting the
430 * memory we are trying to lock into the cache. Thus expect lower
431 * pseudo-locking success rate when KASAN is active.
432 */
433 unsigned int line_size;
434 unsigned int size;
435 void *mem_r;
436#else
437 register unsigned int line_size asm("esi");
438 register unsigned int size asm("edi");
439 register void *mem_r asm(_ASM_BX);
440#endif /* CONFIG_KASAN */
441
442 /*
443 * Make sure none of the allocated memory is cached. If it is we
444 * will get a cache hit in below loop from outside of pseudo-locked
445 * region.
446 * wbinvd (as opposed to clflush/clflushopt) is required to
447 * increase likelihood that allocated cache portion will be filled
448 * with associated memory.
449 */
450 native_wbinvd();
451
452 /*
453 * Always called with interrupts enabled. By disabling interrupts
454 * ensure that we will not be preempted during this critical section.
455 */
456 local_irq_disable();
457
458 /*
459 * Call wrmsr and rdmsr as directly as possible to avoid tracing
460 * clobbering local register variables or affecting cache accesses.
461 *
462 * Disable the hardware prefetcher so that when the end of the memory
463 * being pseudo-locked is reached the hardware will not read beyond
464 * the buffer and evict pseudo-locked memory read earlier from the
465 * cache.
466 */
467 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
468 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
469 closid_p = this_cpu_read(pqr_state.cur_closid);
470 rmid_p = this_cpu_read(pqr_state.cur_rmid);
471 mem_r = plr->kmem;
472 size = plr->size;
473 line_size = plr->line_size;
474 /*
475 * Critical section begin: start by writing the closid associated
476 * with the capacity bitmask of the cache region being
477 * pseudo-locked followed by reading of kernel memory to load it
478 * into the cache.
479 */
480 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, rdtgrp->closid);
481 /*
482 * Cache was flushed earlier. Now access kernel memory to read it
483 * into cache region associated with just activated plr->closid.
484 * Loop over data twice:
485 * - In first loop the cache region is shared with the page walker
486 * as it populates the paging structure caches (including TLB).
487 * - In the second loop the paging structure caches are used and
488 * cache region is populated with the memory being referenced.
489 */
490 for (i = 0; i < size; i += PAGE_SIZE) {
491 /*
492 * Add a barrier to prevent speculative execution of this
493 * loop reading beyond the end of the buffer.
494 */
495 rmb();
496 asm volatile("mov (%0,%1,1), %%eax\n\t"
497 :
498 : "r" (mem_r), "r" (i)
499 : "%eax", "memory");
500 }
501 for (i = 0; i < size; i += line_size) {
502 /*
503 * Add a barrier to prevent speculative execution of this
504 * loop reading beyond the end of the buffer.
505 */
506 rmb();
507 asm volatile("mov (%0,%1,1), %%eax\n\t"
508 :
509 : "r" (mem_r), "r" (i)
510 : "%eax", "memory");
511 }
512 /*
513 * Critical section end: restore closid with capacity bitmask that
514 * does not overlap with pseudo-locked region.
515 */
516 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
517
518 /* Re-enable the hardware prefetcher(s) */
519 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
520 local_irq_enable();
521
522 plr->thread_done = 1;
523 wake_up_interruptible(&plr->lock_thread_wq);
524 return 0;
525}
526
527/**
528 * rdtgroup_monitor_in_progress - Test if monitoring in progress
529 * @rdtgrp: resource group being queried
530 *
531 * Return: 1 if monitor groups have been created for this resource
532 * group, 0 otherwise.
533 */
534static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
535{
536 return !list_empty(&rdtgrp->mon.crdtgrp_list);
537}
538
539/**
540 * rdtgroup_locksetup_user_restrict - Restrict user access to group
541 * @rdtgrp: resource group needing access restricted
542 *
543 * A resource group used for cache pseudo-locking cannot have cpus or tasks
544 * assigned to it. This is communicated to the user by restricting access
545 * to all the files that can be used to make such changes.
546 *
547 * Permissions restored with rdtgroup_locksetup_user_restore()
548 *
549 * Return: 0 on success, <0 on failure. If a failure occurs during the
550 * restriction of access an attempt will be made to restore permissions but
551 * the state of the mode of these files will be uncertain when a failure
552 * occurs.
553 */
554static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
555{
556 int ret;
557
558 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
559 if (ret)
560 return ret;
561
562 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
563 if (ret)
564 goto err_tasks;
565
566 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
567 if (ret)
568 goto err_cpus;
569
570 if (rdt_mon_capable) {
571 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
572 if (ret)
573 goto err_cpus_list;
574 }
575
576 ret = 0;
577 goto out;
578
579err_cpus_list:
580 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
581err_cpus:
582 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
583err_tasks:
584 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
585out:
586 return ret;
587}
588
589/**
590 * rdtgroup_locksetup_user_restore - Restore user access to group
591 * @rdtgrp: resource group needing access restored
592 *
593 * Restore all file access previously removed using
594 * rdtgroup_locksetup_user_restrict()
595 *
596 * Return: 0 on success, <0 on failure. If a failure occurs during the
597 * restoration of access an attempt will be made to restrict permissions
598 * again but the state of the mode of these files will be uncertain when
599 * a failure occurs.
600 */
601static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
602{
603 int ret;
604
605 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
606 if (ret)
607 return ret;
608
609 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
610 if (ret)
611 goto err_tasks;
612
613 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
614 if (ret)
615 goto err_cpus;
616
617 if (rdt_mon_capable) {
618 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
619 if (ret)
620 goto err_cpus_list;
621 }
622
623 ret = 0;
624 goto out;
625
626err_cpus_list:
627 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
628err_cpus:
629 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
630err_tasks:
631 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
632out:
633 return ret;
634}
635
636/**
637 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
638 * @rdtgrp: resource group requested to enter locksetup mode
639 *
640 * A resource group enters locksetup mode to reflect that it would be used
641 * to represent a pseudo-locked region and is in the process of being set
642 * up to do so. A resource group used for a pseudo-locked region would
643 * lose the closid associated with it so we cannot allow it to have any
644 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
645 * future. Monitoring of a pseudo-locked region is not allowed either.
646 *
647 * The above and more restrictions on a pseudo-locked region are checked
648 * for and enforced before the resource group enters the locksetup mode.
649 *
650 * Returns: 0 if the resource group successfully entered locksetup mode, <0
651 * on failure. On failure the last_cmd_status buffer is updated with text to
652 * communicate details of failure to the user.
653 */
654int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
655{
656 int ret;
657
658 /*
659 * The default resource group can neither be removed nor lose the
660 * default closid associated with it.
661 */
662 if (rdtgrp == &rdtgroup_default) {
663 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
664 return -EINVAL;
665 }
666
667 /*
668 * Cache Pseudo-locking not supported when CDP is enabled.
669 *
670 * Some things to consider if you would like to enable this
671 * support (using L3 CDP as example):
672 * - When CDP is enabled two separate resources are exposed,
673 * L3DATA and L3CODE, but they are actually on the same cache.
674 * The implication for pseudo-locking is that if a
675 * pseudo-locked region is created on a domain of one
676 * resource (eg. L3CODE), then a pseudo-locked region cannot
677 * be created on that same domain of the other resource
678 * (eg. L3DATA). This is because the creation of a
679 * pseudo-locked region involves a call to wbinvd that will
680 * affect all cache allocations on particular domain.
681 * - Considering the previous, it may be possible to only
682 * expose one of the CDP resources to pseudo-locking and
683 * hide the other. For example, we could consider to only
684 * expose L3DATA and since the L3 cache is unified it is
685 * still possible to place instructions there are execute it.
686 * - If only one region is exposed to pseudo-locking we should
687 * still keep in mind that availability of a portion of cache
688 * for pseudo-locking should take into account both resources.
689 * Similarly, if a pseudo-locked region is created in one
690 * resource, the portion of cache used by it should be made
691 * unavailable to all future allocations from both resources.
692 */
693 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
694 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
695 rdt_last_cmd_puts("CDP enabled\n");
696 return -EINVAL;
697 }
698
699 /*
700 * Not knowing the bits to disable prefetching implies that this
701 * platform does not support Cache Pseudo-Locking.
702 */
703 prefetch_disable_bits = get_prefetch_disable_bits();
704 if (prefetch_disable_bits == 0) {
705 rdt_last_cmd_puts("Pseudo-locking not supported\n");
706 return -EINVAL;
707 }
708
709 if (rdtgroup_monitor_in_progress(rdtgrp)) {
710 rdt_last_cmd_puts("Monitoring in progress\n");
711 return -EINVAL;
712 }
713
714 if (rdtgroup_tasks_assigned(rdtgrp)) {
715 rdt_last_cmd_puts("Tasks assigned to resource group\n");
716 return -EINVAL;
717 }
718
719 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
720 rdt_last_cmd_puts("CPUs assigned to resource group\n");
721 return -EINVAL;
722 }
723
724 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
725 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
726 return -EIO;
727 }
728
729 ret = pseudo_lock_init(rdtgrp);
730 if (ret) {
731 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
732 goto out_release;
733 }
734
735 /*
736 * If this system is capable of monitoring a rmid would have been
737 * allocated when the control group was created. This is not needed
738 * anymore when this group would be used for pseudo-locking. This
739 * is safe to call on platforms not capable of monitoring.
740 */
741 free_rmid(rdtgrp->mon.rmid);
742
743 ret = 0;
744 goto out;
745
746out_release:
747 rdtgroup_locksetup_user_restore(rdtgrp);
748out:
749 return ret;
750}
751
752/**
753 * rdtgroup_locksetup_exit - resource group exist locksetup mode
754 * @rdtgrp: resource group
755 *
756 * When a resource group exits locksetup mode the earlier restrictions are
757 * lifted.
758 *
759 * Return: 0 on success, <0 on failure
760 */
761int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
762{
763 int ret;
764
765 if (rdt_mon_capable) {
766 ret = alloc_rmid();
767 if (ret < 0) {
768 rdt_last_cmd_puts("Out of RMIDs\n");
769 return ret;
770 }
771 rdtgrp->mon.rmid = ret;
772 }
773
774 ret = rdtgroup_locksetup_user_restore(rdtgrp);
775 if (ret) {
776 free_rmid(rdtgrp->mon.rmid);
777 return ret;
778 }
779
780 pseudo_lock_free(rdtgrp);
781 return 0;
782}
783
784/**
785 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
786 * @d: RDT domain
787 * @cbm: CBM to test
788 *
789 * @d represents a cache instance and @cbm a capacity bitmask that is
790 * considered for it. Determine if @cbm overlaps with any existing
791 * pseudo-locked region on @d.
792 *
793 * @cbm is unsigned long, even if only 32 bits are used, to make the
794 * bitmap functions work correctly.
795 *
796 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
797 * otherwise.
798 */
799bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm)
800{
801 unsigned int cbm_len;
802 unsigned long cbm_b;
803
804 if (d->plr) {
805 cbm_len = d->plr->s->res->cache.cbm_len;
806 cbm_b = d->plr->cbm;
807 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
808 return true;
809 }
810 return false;
811}
812
813/**
814 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
815 * @d: RDT domain under test
816 *
817 * The setup of a pseudo-locked region affects all cache instances within
818 * the hierarchy of the region. It is thus essential to know if any
819 * pseudo-locked regions exist within a cache hierarchy to prevent any
820 * attempts to create new pseudo-locked regions in the same hierarchy.
821 *
822 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
823 * if it is not possible to test due to memory allocation issue,
824 * false otherwise.
825 */
826bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d)
827{
828 cpumask_var_t cpu_with_psl;
829 struct rdt_resource *r;
830 struct rdt_domain *d_i;
831 bool ret = false;
832
833 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
834 return true;
835
836 /*
837 * First determine which cpus have pseudo-locked regions
838 * associated with them.
839 */
840 for_each_alloc_capable_rdt_resource(r) {
841 list_for_each_entry(d_i, &r->domains, list) {
842 if (d_i->plr)
843 cpumask_or(cpu_with_psl, cpu_with_psl,
844 &d_i->cpu_mask);
845 }
846 }
847
848 /*
849 * Next test if new pseudo-locked region would intersect with
850 * existing region.
851 */
852 if (cpumask_intersects(&d->cpu_mask, cpu_with_psl))
853 ret = true;
854
855 free_cpumask_var(cpu_with_psl);
856 return ret;
857}
858
859/**
860 * measure_cycles_lat_fn - Measure cycle latency to read pseudo-locked memory
861 * @_plr: pseudo-lock region to measure
862 *
863 * There is no deterministic way to test if a memory region is cached. One
864 * way is to measure how long it takes to read the memory, the speed of
865 * access is a good way to learn how close to the cpu the data was. Even
866 * more, if the prefetcher is disabled and the memory is read at a stride
867 * of half the cache line, then a cache miss will be easy to spot since the
868 * read of the first half would be significantly slower than the read of
869 * the second half.
870 *
871 * Return: 0. Waiter on waitqueue will be woken on completion.
872 */
873static int measure_cycles_lat_fn(void *_plr)
874{
875 struct pseudo_lock_region *plr = _plr;
876 u32 saved_low, saved_high;
877 unsigned long i;
878 u64 start, end;
879 void *mem_r;
880
881 local_irq_disable();
882 /*
883 * Disable hardware prefetchers.
884 */
885 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
886 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
887 mem_r = READ_ONCE(plr->kmem);
888 /*
889 * Dummy execute of the time measurement to load the needed
890 * instructions into the L1 instruction cache.
891 */
892 start = rdtsc_ordered();
893 for (i = 0; i < plr->size; i += 32) {
894 start = rdtsc_ordered();
895 asm volatile("mov (%0,%1,1), %%eax\n\t"
896 :
897 : "r" (mem_r), "r" (i)
898 : "%eax", "memory");
899 end = rdtsc_ordered();
900 trace_pseudo_lock_mem_latency((u32)(end - start));
901 }
902 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
903 local_irq_enable();
904 plr->thread_done = 1;
905 wake_up_interruptible(&plr->lock_thread_wq);
906 return 0;
907}
908
909/*
910 * Create a perf_event_attr for the hit and miss perf events that will
911 * be used during the performance measurement. A perf_event maintains
912 * a pointer to its perf_event_attr so a unique attribute structure is
913 * created for each perf_event.
914 *
915 * The actual configuration of the event is set right before use in order
916 * to use the X86_CONFIG macro.
917 */
918static struct perf_event_attr perf_miss_attr = {
919 .type = PERF_TYPE_RAW,
920 .size = sizeof(struct perf_event_attr),
921 .pinned = 1,
922 .disabled = 0,
923 .exclude_user = 1,
924};
925
926static struct perf_event_attr perf_hit_attr = {
927 .type = PERF_TYPE_RAW,
928 .size = sizeof(struct perf_event_attr),
929 .pinned = 1,
930 .disabled = 0,
931 .exclude_user = 1,
932};
933
934struct residency_counts {
935 u64 miss_before, hits_before;
936 u64 miss_after, hits_after;
937};
938
939static int measure_residency_fn(struct perf_event_attr *miss_attr,
940 struct perf_event_attr *hit_attr,
941 struct pseudo_lock_region *plr,
942 struct residency_counts *counts)
943{
944 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
945 struct perf_event *miss_event, *hit_event;
946 int hit_pmcnum, miss_pmcnum;
947 u32 saved_low, saved_high;
948 unsigned int line_size;
949 unsigned int size;
950 unsigned long i;
951 void *mem_r;
952 u64 tmp;
953
954 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
955 NULL, NULL, NULL);
956 if (IS_ERR(miss_event))
957 goto out;
958
959 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
960 NULL, NULL, NULL);
961 if (IS_ERR(hit_event))
962 goto out_miss;
963
964 local_irq_disable();
965 /*
966 * Check any possible error state of events used by performing
967 * one local read.
968 */
969 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
970 local_irq_enable();
971 goto out_hit;
972 }
973 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
974 local_irq_enable();
975 goto out_hit;
976 }
977
978 /*
979 * Disable hardware prefetchers.
980 */
981 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
982 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
983
984 /* Initialize rest of local variables */
985 /*
986 * Performance event has been validated right before this with
987 * interrupts disabled - it is thus safe to read the counter index.
988 */
989 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
990 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
991 line_size = READ_ONCE(plr->line_size);
992 mem_r = READ_ONCE(plr->kmem);
993 size = READ_ONCE(plr->size);
994
995 /*
996 * Read counter variables twice - first to load the instructions
997 * used in L1 cache, second to capture accurate value that does not
998 * include cache misses incurred because of instruction loads.
999 */
1000 rdpmcl(hit_pmcnum, hits_before);
1001 rdpmcl(miss_pmcnum, miss_before);
1002 /*
1003 * From SDM: Performing back-to-back fast reads are not guaranteed
1004 * to be monotonic.
1005 * Use LFENCE to ensure all previous instructions are retired
1006 * before proceeding.
1007 */
1008 rmb();
1009 rdpmcl(hit_pmcnum, hits_before);
1010 rdpmcl(miss_pmcnum, miss_before);
1011 /*
1012 * Use LFENCE to ensure all previous instructions are retired
1013 * before proceeding.
1014 */
1015 rmb();
1016 for (i = 0; i < size; i += line_size) {
1017 /*
1018 * Add a barrier to prevent speculative execution of this
1019 * loop reading beyond the end of the buffer.
1020 */
1021 rmb();
1022 asm volatile("mov (%0,%1,1), %%eax\n\t"
1023 :
1024 : "r" (mem_r), "r" (i)
1025 : "%eax", "memory");
1026 }
1027 /*
1028 * Use LFENCE to ensure all previous instructions are retired
1029 * before proceeding.
1030 */
1031 rmb();
1032 rdpmcl(hit_pmcnum, hits_after);
1033 rdpmcl(miss_pmcnum, miss_after);
1034 /*
1035 * Use LFENCE to ensure all previous instructions are retired
1036 * before proceeding.
1037 */
1038 rmb();
1039 /* Re-enable hardware prefetchers */
1040 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1041 local_irq_enable();
1042out_hit:
1043 perf_event_release_kernel(hit_event);
1044out_miss:
1045 perf_event_release_kernel(miss_event);
1046out:
1047 /*
1048 * All counts will be zero on failure.
1049 */
1050 counts->miss_before = miss_before;
1051 counts->hits_before = hits_before;
1052 counts->miss_after = miss_after;
1053 counts->hits_after = hits_after;
1054 return 0;
1055}
1056
1057static int measure_l2_residency(void *_plr)
1058{
1059 struct pseudo_lock_region *plr = _plr;
1060 struct residency_counts counts = {0};
1061
1062 /*
1063 * Non-architectural event for the Goldmont Microarchitecture
1064 * from Intel x86 Architecture Software Developer Manual (SDM):
1065 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1066 * Umask values:
1067 * L2_HIT 02H
1068 * L2_MISS 10H
1069 */
1070 switch (boot_cpu_data.x86_model) {
1071 case INTEL_FAM6_ATOM_GOLDMONT:
1072 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1073 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1074 .umask = 0x10);
1075 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1076 .umask = 0x2);
1077 break;
1078 default:
1079 goto out;
1080 }
1081
1082 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1083 /*
1084 * If a failure prevented the measurements from succeeding
1085 * tracepoints will still be written and all counts will be zero.
1086 */
1087 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1088 counts.miss_after - counts.miss_before);
1089out:
1090 plr->thread_done = 1;
1091 wake_up_interruptible(&plr->lock_thread_wq);
1092 return 0;
1093}
1094
1095static int measure_l3_residency(void *_plr)
1096{
1097 struct pseudo_lock_region *plr = _plr;
1098 struct residency_counts counts = {0};
1099
1100 /*
1101 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1102 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1103 * this platform the following events are used instead:
1104 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1105 * REFERENCE 4FH
1106 * MISS 41H
1107 */
1108
1109 switch (boot_cpu_data.x86_model) {
1110 case INTEL_FAM6_BROADWELL_X:
1111 /* On BDW the hit event counts references, not hits */
1112 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1113 .umask = 0x4f);
1114 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1115 .umask = 0x41);
1116 break;
1117 default:
1118 goto out;
1119 }
1120
1121 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1122 /*
1123 * If a failure prevented the measurements from succeeding
1124 * tracepoints will still be written and all counts will be zero.
1125 */
1126
1127 counts.miss_after -= counts.miss_before;
1128 if (boot_cpu_data.x86_model == INTEL_FAM6_BROADWELL_X) {
1129 /*
1130 * On BDW references and misses are counted, need to adjust.
1131 * Sometimes the "hits" counter is a bit more than the
1132 * references, for example, x references but x + 1 hits.
1133 * To not report invalid hit values in this case we treat
1134 * that as misses equal to references.
1135 */
1136 /* First compute the number of cache references measured */
1137 counts.hits_after -= counts.hits_before;
1138 /* Next convert references to cache hits */
1139 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1140 } else {
1141 counts.hits_after -= counts.hits_before;
1142 }
1143
1144 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1145out:
1146 plr->thread_done = 1;
1147 wake_up_interruptible(&plr->lock_thread_wq);
1148 return 0;
1149}
1150
1151/**
1152 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1153 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1154 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1155 *
1156 * The measurement of latency to access a pseudo-locked region should be
1157 * done from a cpu that is associated with that pseudo-locked region.
1158 * Determine which cpu is associated with this region and start a thread on
1159 * that cpu to perform the measurement, wait for that thread to complete.
1160 *
1161 * Return: 0 on success, <0 on failure
1162 */
1163static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1164{
1165 struct pseudo_lock_region *plr = rdtgrp->plr;
1166 struct task_struct *thread;
1167 unsigned int cpu;
1168 int ret = -1;
1169
1170 cpus_read_lock();
1171 mutex_lock(&rdtgroup_mutex);
1172
1173 if (rdtgrp->flags & RDT_DELETED) {
1174 ret = -ENODEV;
1175 goto out;
1176 }
1177
1178 if (!plr->d) {
1179 ret = -ENODEV;
1180 goto out;
1181 }
1182
1183 plr->thread_done = 0;
1184 cpu = cpumask_first(&plr->d->cpu_mask);
1185 if (!cpu_online(cpu)) {
1186 ret = -ENODEV;
1187 goto out;
1188 }
1189
1190 plr->cpu = cpu;
1191
1192 if (sel == 1)
1193 thread = kthread_create_on_node(measure_cycles_lat_fn, plr,
1194 cpu_to_node(cpu),
1195 "pseudo_lock_measure/%u",
1196 cpu);
1197 else if (sel == 2)
1198 thread = kthread_create_on_node(measure_l2_residency, plr,
1199 cpu_to_node(cpu),
1200 "pseudo_lock_measure/%u",
1201 cpu);
1202 else if (sel == 3)
1203 thread = kthread_create_on_node(measure_l3_residency, plr,
1204 cpu_to_node(cpu),
1205 "pseudo_lock_measure/%u",
1206 cpu);
1207 else
1208 goto out;
1209
1210 if (IS_ERR(thread)) {
1211 ret = PTR_ERR(thread);
1212 goto out;
1213 }
1214 kthread_bind(thread, cpu);
1215 wake_up_process(thread);
1216
1217 ret = wait_event_interruptible(plr->lock_thread_wq,
1218 plr->thread_done == 1);
1219 if (ret < 0)
1220 goto out;
1221
1222 ret = 0;
1223
1224out:
1225 mutex_unlock(&rdtgroup_mutex);
1226 cpus_read_unlock();
1227 return ret;
1228}
1229
1230static ssize_t pseudo_lock_measure_trigger(struct file *file,
1231 const char __user *user_buf,
1232 size_t count, loff_t *ppos)
1233{
1234 struct rdtgroup *rdtgrp = file->private_data;
1235 size_t buf_size;
1236 char buf[32];
1237 int ret;
1238 int sel;
1239
1240 buf_size = min(count, (sizeof(buf) - 1));
1241 if (copy_from_user(buf, user_buf, buf_size))
1242 return -EFAULT;
1243
1244 buf[buf_size] = '\0';
1245 ret = kstrtoint(buf, 10, &sel);
1246 if (ret == 0) {
1247 if (sel != 1 && sel != 2 && sel != 3)
1248 return -EINVAL;
1249 ret = debugfs_file_get(file->f_path.dentry);
1250 if (ret)
1251 return ret;
1252 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1253 if (ret == 0)
1254 ret = count;
1255 debugfs_file_put(file->f_path.dentry);
1256 }
1257
1258 return ret;
1259}
1260
1261static const struct file_operations pseudo_measure_fops = {
1262 .write = pseudo_lock_measure_trigger,
1263 .open = simple_open,
1264 .llseek = default_llseek,
1265};
1266
1267/**
1268 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1269 * @rdtgrp: resource group to which pseudo-lock region belongs
1270 *
1271 * Called when a resource group in the pseudo-locksetup mode receives a
1272 * valid schemata that should be pseudo-locked. Since the resource group is
1273 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1274 * allocated and initialized with the essential information. If a failure
1275 * occurs the resource group remains in the pseudo-locksetup mode with the
1276 * &struct pseudo_lock_region associated with it, but cleared from all
1277 * information and ready for the user to re-attempt pseudo-locking by
1278 * writing the schemata again.
1279 *
1280 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1281 * on failure. Descriptive error will be written to last_cmd_status buffer.
1282 */
1283int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1284{
1285 struct pseudo_lock_region *plr = rdtgrp->plr;
1286 struct task_struct *thread;
1287 unsigned int new_minor;
1288 struct device *dev;
1289 int ret;
1290
1291 ret = pseudo_lock_region_alloc(plr);
1292 if (ret < 0)
1293 return ret;
1294
1295 ret = pseudo_lock_cstates_constrain(plr);
1296 if (ret < 0) {
1297 ret = -EINVAL;
1298 goto out_region;
1299 }
1300
1301 plr->thread_done = 0;
1302
1303 thread = kthread_create_on_node(pseudo_lock_fn, rdtgrp,
1304 cpu_to_node(plr->cpu),
1305 "pseudo_lock/%u", plr->cpu);
1306 if (IS_ERR(thread)) {
1307 ret = PTR_ERR(thread);
1308 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1309 goto out_cstates;
1310 }
1311
1312 kthread_bind(thread, plr->cpu);
1313 wake_up_process(thread);
1314
1315 ret = wait_event_interruptible(plr->lock_thread_wq,
1316 plr->thread_done == 1);
1317 if (ret < 0) {
1318 /*
1319 * If the thread does not get on the CPU for whatever
1320 * reason and the process which sets up the region is
1321 * interrupted then this will leave the thread in runnable
1322 * state and once it gets on the CPU it will dereference
1323 * the cleared, but not freed, plr struct resulting in an
1324 * empty pseudo-locking loop.
1325 */
1326 rdt_last_cmd_puts("Locking thread interrupted\n");
1327 goto out_cstates;
1328 }
1329
1330 ret = pseudo_lock_minor_get(&new_minor);
1331 if (ret < 0) {
1332 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1333 goto out_cstates;
1334 }
1335
1336 /*
1337 * Unlock access but do not release the reference. The
1338 * pseudo-locked region will still be here on return.
1339 *
1340 * The mutex has to be released temporarily to avoid a potential
1341 * deadlock with the mm->mmap_lock which is obtained in the
1342 * device_create() and debugfs_create_dir() callpath below as well as
1343 * before the mmap() callback is called.
1344 */
1345 mutex_unlock(&rdtgroup_mutex);
1346
1347 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1348 plr->debugfs_dir = debugfs_create_dir(rdtgrp->kn->name,
1349 debugfs_resctrl);
1350 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1351 debugfs_create_file("pseudo_lock_measure", 0200,
1352 plr->debugfs_dir, rdtgrp,
1353 &pseudo_measure_fops);
1354 }
1355
1356 dev = device_create(pseudo_lock_class, NULL,
1357 MKDEV(pseudo_lock_major, new_minor),
1358 rdtgrp, "%s", rdtgrp->kn->name);
1359
1360 mutex_lock(&rdtgroup_mutex);
1361
1362 if (IS_ERR(dev)) {
1363 ret = PTR_ERR(dev);
1364 rdt_last_cmd_printf("Failed to create character device: %d\n",
1365 ret);
1366 goto out_debugfs;
1367 }
1368
1369 /* We released the mutex - check if group was removed while we did so */
1370 if (rdtgrp->flags & RDT_DELETED) {
1371 ret = -ENODEV;
1372 goto out_device;
1373 }
1374
1375 plr->minor = new_minor;
1376
1377 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1378 closid_free(rdtgrp->closid);
1379 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1380 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1381
1382 ret = 0;
1383 goto out;
1384
1385out_device:
1386 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1387out_debugfs:
1388 debugfs_remove_recursive(plr->debugfs_dir);
1389 pseudo_lock_minor_release(new_minor);
1390out_cstates:
1391 pseudo_lock_cstates_relax(plr);
1392out_region:
1393 pseudo_lock_region_clear(plr);
1394out:
1395 return ret;
1396}
1397
1398/**
1399 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1400 * @rdtgrp: resource group to which the pseudo-locked region belongs
1401 *
1402 * The removal of a pseudo-locked region can be initiated when the resource
1403 * group is removed from user space via a "rmdir" from userspace or the
1404 * unmount of the resctrl filesystem. On removal the resource group does
1405 * not go back to pseudo-locksetup mode before it is removed, instead it is
1406 * removed directly. There is thus asymmetry with the creation where the
1407 * &struct pseudo_lock_region is removed here while it was not created in
1408 * rdtgroup_pseudo_lock_create().
1409 *
1410 * Return: void
1411 */
1412void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1413{
1414 struct pseudo_lock_region *plr = rdtgrp->plr;
1415
1416 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1417 /*
1418 * Default group cannot be a pseudo-locked region so we can
1419 * free closid here.
1420 */
1421 closid_free(rdtgrp->closid);
1422 goto free;
1423 }
1424
1425 pseudo_lock_cstates_relax(plr);
1426 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1427 device_destroy(pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1428 pseudo_lock_minor_release(plr->minor);
1429
1430free:
1431 pseudo_lock_free(rdtgrp);
1432}
1433
1434static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1435{
1436 struct rdtgroup *rdtgrp;
1437
1438 mutex_lock(&rdtgroup_mutex);
1439
1440 rdtgrp = region_find_by_minor(iminor(inode));
1441 if (!rdtgrp) {
1442 mutex_unlock(&rdtgroup_mutex);
1443 return -ENODEV;
1444 }
1445
1446 filp->private_data = rdtgrp;
1447 atomic_inc(&rdtgrp->waitcount);
1448 /* Perform a non-seekable open - llseek is not supported */
1449 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1450
1451 mutex_unlock(&rdtgroup_mutex);
1452
1453 return 0;
1454}
1455
1456static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1457{
1458 struct rdtgroup *rdtgrp;
1459
1460 mutex_lock(&rdtgroup_mutex);
1461 rdtgrp = filp->private_data;
1462 WARN_ON(!rdtgrp);
1463 if (!rdtgrp) {
1464 mutex_unlock(&rdtgroup_mutex);
1465 return -ENODEV;
1466 }
1467 filp->private_data = NULL;
1468 atomic_dec(&rdtgrp->waitcount);
1469 mutex_unlock(&rdtgroup_mutex);
1470 return 0;
1471}
1472
1473static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1474{
1475 /* Not supported */
1476 return -EINVAL;
1477}
1478
1479static const struct vm_operations_struct pseudo_mmap_ops = {
1480 .mremap = pseudo_lock_dev_mremap,
1481};
1482
1483static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1484{
1485 unsigned long vsize = vma->vm_end - vma->vm_start;
1486 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1487 struct pseudo_lock_region *plr;
1488 struct rdtgroup *rdtgrp;
1489 unsigned long physical;
1490 unsigned long psize;
1491
1492 mutex_lock(&rdtgroup_mutex);
1493
1494 rdtgrp = filp->private_data;
1495 WARN_ON(!rdtgrp);
1496 if (!rdtgrp) {
1497 mutex_unlock(&rdtgroup_mutex);
1498 return -ENODEV;
1499 }
1500
1501 plr = rdtgrp->plr;
1502
1503 if (!plr->d) {
1504 mutex_unlock(&rdtgroup_mutex);
1505 return -ENODEV;
1506 }
1507
1508 /*
1509 * Task is required to run with affinity to the cpus associated
1510 * with the pseudo-locked region. If this is not the case the task
1511 * may be scheduled elsewhere and invalidate entries in the
1512 * pseudo-locked region.
1513 */
1514 if (!cpumask_subset(current->cpus_ptr, &plr->d->cpu_mask)) {
1515 mutex_unlock(&rdtgroup_mutex);
1516 return -EINVAL;
1517 }
1518
1519 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1520 psize = plr->size - off;
1521
1522 if (off > plr->size) {
1523 mutex_unlock(&rdtgroup_mutex);
1524 return -ENOSPC;
1525 }
1526
1527 /*
1528 * Ensure changes are carried directly to the memory being mapped,
1529 * do not allow copy-on-write mapping.
1530 */
1531 if (!(vma->vm_flags & VM_SHARED)) {
1532 mutex_unlock(&rdtgroup_mutex);
1533 return -EINVAL;
1534 }
1535
1536 if (vsize > psize) {
1537 mutex_unlock(&rdtgroup_mutex);
1538 return -ENOSPC;
1539 }
1540
1541 memset(plr->kmem + off, 0, vsize);
1542
1543 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1544 vsize, vma->vm_page_prot)) {
1545 mutex_unlock(&rdtgroup_mutex);
1546 return -EAGAIN;
1547 }
1548 vma->vm_ops = &pseudo_mmap_ops;
1549 mutex_unlock(&rdtgroup_mutex);
1550 return 0;
1551}
1552
1553static const struct file_operations pseudo_lock_dev_fops = {
1554 .owner = THIS_MODULE,
1555 .llseek = no_llseek,
1556 .read = NULL,
1557 .write = NULL,
1558 .open = pseudo_lock_dev_open,
1559 .release = pseudo_lock_dev_release,
1560 .mmap = pseudo_lock_dev_mmap,
1561};
1562
1563static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
1564{
1565 const struct rdtgroup *rdtgrp;
1566
1567 rdtgrp = dev_get_drvdata(dev);
1568 if (mode)
1569 *mode = 0600;
1570 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdtgrp->kn->name);
1571}
1572
1573int rdt_pseudo_lock_init(void)
1574{
1575 int ret;
1576
1577 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1578 if (ret < 0)
1579 return ret;
1580
1581 pseudo_lock_major = ret;
1582
1583 pseudo_lock_class = class_create(THIS_MODULE, "pseudo_lock");
1584 if (IS_ERR(pseudo_lock_class)) {
1585 ret = PTR_ERR(pseudo_lock_class);
1586 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1587 return ret;
1588 }
1589
1590 pseudo_lock_class->devnode = pseudo_lock_devnode;
1591 return 0;
1592}
1593
1594void rdt_pseudo_lock_release(void)
1595{
1596 class_destroy(pseudo_lock_class);
1597 pseudo_lock_class = NULL;
1598 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1599 pseudo_lock_major = 0;
1600}