Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * arch/arm/include/asm/pgtable-3level.h
  4 *
  5 * Copyright (C) 2011 ARM Ltd.
  6 * Author: Catalin Marinas <catalin.marinas@arm.com>
  7 */
  8#ifndef _ASM_PGTABLE_3LEVEL_H
  9#define _ASM_PGTABLE_3LEVEL_H
 10
 11/*
 12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
 13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
 14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
 15 * address range, only 4 entries in the PGD are used.
 16 *
 17 * There are enough spare bits in a page table entry for the kernel specific
 18 * state.
 19 */
 20#define PTRS_PER_PTE		512
 21#define PTRS_PER_PMD		512
 22#define PTRS_PER_PGD		4
 23
 24#define PTE_HWTABLE_PTRS	(0)
 25#define PTE_HWTABLE_OFF		(0)
 26#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
 27
 28#define MAX_POSSIBLE_PHYSMEM_BITS 40
 29
 30/*
 31 * PGDIR_SHIFT determines the size a top-level page table entry can map.
 32 */
 33#define PGDIR_SHIFT		30
 34
 35/*
 36 * PMD_SHIFT determines the size a middle-level page table entry can map.
 37 */
 38#define PMD_SHIFT		21
 39
 40#define PMD_SIZE		(1UL << PMD_SHIFT)
 41#define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
 42#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
 43#define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
 44
 45/*
 46 * section address mask and size definitions.
 47 */
 48#define SECTION_SHIFT		21
 49#define SECTION_SIZE		(1UL << SECTION_SHIFT)
 50#define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
 51
 52#define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
 53
 54/*
 55 * Hugetlb definitions.
 56 */
 57#define HPAGE_SHIFT		PMD_SHIFT
 58#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
 59#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
 60#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
 61
 62/*
 63 * "Linux" PTE definitions for LPAE.
 64 *
 65 * These bits overlap with the hardware bits but the naming is preserved for
 66 * consistency with the classic page table format.
 67 */
 68#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
 69#define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
 70#define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
 71#define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
 72#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
 73#define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
 74#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
 75#define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
 76#define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
 77#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
 78
 79#define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
 80#define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
 81#define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
 82#define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
 83
 84/*
 85 * To be used in assembly code with the upper page attributes.
 86 */
 87#define L_PTE_XN_HIGH		(1 << (54 - 32))
 88#define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
 89
 90/*
 91 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
 92 */
 93#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
 94#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
 95#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
 96#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
 97#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
 98#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
 99#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
100#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
101#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
102#define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
103
104/*
105 * Software PGD flags.
106 */
107#define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
108
109#ifndef __ASSEMBLY__
110
111#define pud_none(pud)		(!pud_val(pud))
112#define pud_bad(pud)		(!(pud_val(pud) & 2))
113#define pud_present(pud)	(pud_val(pud))
114#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
115						 PMD_TYPE_TABLE)
116#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
117						 PMD_TYPE_SECT)
118#define pmd_large(pmd)		pmd_sect(pmd)
119#define pmd_leaf(pmd)		pmd_sect(pmd)
120
121#define pud_clear(pudp)			\
122	do {				\
123		*pudp = __pud(0);	\
124		clean_pmd_entry(pudp);	\
125	} while (0)
126
127#define set_pud(pudp, pud)		\
128	do {				\
129		*pudp = pud;		\
130		flush_pmd_entry(pudp);	\
131	} while (0)
132
133static inline pmd_t *pud_pgtable(pud_t pud)
134{
135	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
136}
137
138#define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
139
140#define copy_pmd(pmdpd,pmdps)		\
141	do {				\
142		*pmdpd = *pmdps;	\
143		flush_pmd_entry(pmdpd);	\
144	} while (0)
145
146#define pmd_clear(pmdp)			\
147	do {				\
148		*pmdp = __pmd(0);	\
149		clean_pmd_entry(pmdp);	\
150	} while (0)
151
152/*
153 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
154 * that are written to a page table but not for ptes created with mk_pte.
155 *
156 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
157 * hugetlb_cow, where it is compared with an entry in a page table.
158 * This comparison test fails erroneously leading ultimately to a memory leak.
159 *
160 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
161 * present before running the comparison.
162 */
163#define __HAVE_ARCH_PTE_SAME
164#define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
165					: pte_val(pte_a))				\
166				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
167					: pte_val(pte_b)))
168
169#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
170
171#define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
172#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
173
174#define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
175						: !!(pmd_val(pmd) & (val)))
176#define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
177
178#define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
179#define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
180#define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
181static inline pte_t pte_mkspecial(pte_t pte)
182{
183	pte_val(pte) |= L_PTE_SPECIAL;
184	return pte;
185}
186
187#define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
188#define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
189
190#define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
191#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
192
193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
194#define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
195#endif
196
197#define PMD_BIT_FUNC(fn,op) \
198static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
199
200PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
201PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
202PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
203PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
204PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
205PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
206
207#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
208
209#define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
210#define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
211#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
212
213/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
214#define pmdp_establish generic_pmdp_establish
215
216/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
217static inline pmd_t pmd_mkinvalid(pmd_t pmd)
218{
219	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
220}
221
222static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
223{
224	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
225				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
226	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
227	return pmd;
228}
229
230static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
231			      pmd_t *pmdp, pmd_t pmd)
232{
233	BUG_ON(addr >= TASK_SIZE);
234
235	/* create a faulting entry if PROT_NONE protected */
236	if (pmd_val(pmd) & L_PMD_SECT_NONE)
237		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
238
239	if (pmd_write(pmd) && pmd_dirty(pmd))
240		pmd_val(pmd) &= ~PMD_SECT_AP2;
241	else
242		pmd_val(pmd) |= PMD_SECT_AP2;
243
244	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
245	flush_pmd_entry(pmdp);
246}
247
248#endif /* __ASSEMBLY__ */
249
250#endif /* _ASM_PGTABLE_3LEVEL_H */
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * arch/arm/include/asm/pgtable-3level.h
  4 *
  5 * Copyright (C) 2011 ARM Ltd.
  6 * Author: Catalin Marinas <catalin.marinas@arm.com>
  7 */
  8#ifndef _ASM_PGTABLE_3LEVEL_H
  9#define _ASM_PGTABLE_3LEVEL_H
 10
 11/*
 12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
 13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
 14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
 15 * address range, only 4 entries in the PGD are used.
 16 *
 17 * There are enough spare bits in a page table entry for the kernel specific
 18 * state.
 19 */
 20#define PTRS_PER_PTE		512
 21#define PTRS_PER_PMD		512
 22#define PTRS_PER_PGD		4
 23
 24#define PTE_HWTABLE_PTRS	(0)
 25#define PTE_HWTABLE_OFF		(0)
 26#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
 27
 28#define MAX_POSSIBLE_PHYSMEM_BITS 40
 29
 30/*
 31 * PGDIR_SHIFT determines the size a top-level page table entry can map.
 32 */
 33#define PGDIR_SHIFT		30
 34
 35/*
 36 * PMD_SHIFT determines the size a middle-level page table entry can map.
 37 */
 38#define PMD_SHIFT		21
 39
 40#define PMD_SIZE		(1UL << PMD_SHIFT)
 41#define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
 42#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
 43#define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
 44
 45/*
 46 * section address mask and size definitions.
 47 */
 48#define SECTION_SHIFT		21
 49#define SECTION_SIZE		(1UL << SECTION_SHIFT)
 50#define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
 51
 52#define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
 53
 54/*
 55 * Hugetlb definitions.
 56 */
 57#define HPAGE_SHIFT		PMD_SHIFT
 58#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
 59#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
 60#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
 61
 62/*
 63 * "Linux" PTE definitions for LPAE.
 64 *
 65 * These bits overlap with the hardware bits but the naming is preserved for
 66 * consistency with the classic page table format.
 67 */
 68#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
 69#define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
 70#define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
 71#define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
 72#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
 73#define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
 74#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
 75#define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
 76#define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
 77#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
 78
 79#define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
 80#define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
 81#define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
 82#define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
 83
 84/*
 85 * To be used in assembly code with the upper page attributes.
 86 */
 87#define L_PTE_XN_HIGH		(1 << (54 - 32))
 88#define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
 89
 90/*
 91 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
 92 */
 93#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
 94#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
 95#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
 96#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
 97#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
 98#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
 99#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
100#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
101#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
102#define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
103
104/*
105 * Software PGD flags.
106 */
107#define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
108
109#ifndef __ASSEMBLY__
110
111#define pud_none(pud)		(!pud_val(pud))
112#define pud_bad(pud)		(!(pud_val(pud) & 2))
113#define pud_present(pud)	(pud_val(pud))
114#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
115						 PMD_TYPE_TABLE)
116#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
117						 PMD_TYPE_SECT)
118#define pmd_large(pmd)		pmd_sect(pmd)
119#define pmd_leaf(pmd)		pmd_sect(pmd)
120
121#define pud_clear(pudp)			\
122	do {				\
123		*pudp = __pud(0);	\
124		clean_pmd_entry(pudp);	\
125	} while (0)
126
127#define set_pud(pudp, pud)		\
128	do {				\
129		*pudp = pud;		\
130		flush_pmd_entry(pudp);	\
131	} while (0)
132
133static inline pmd_t *pud_pgtable(pud_t pud)
134{
135	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
136}
137
138#define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
139
140#define copy_pmd(pmdpd,pmdps)		\
141	do {				\
142		*pmdpd = *pmdps;	\
143		flush_pmd_entry(pmdpd);	\
144	} while (0)
145
146#define pmd_clear(pmdp)			\
147	do {				\
148		*pmdp = __pmd(0);	\
149		clean_pmd_entry(pmdp);	\
150	} while (0)
151
152/*
153 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
154 * that are written to a page table but not for ptes created with mk_pte.
155 *
156 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
157 * hugetlb_cow, where it is compared with an entry in a page table.
158 * This comparison test fails erroneously leading ultimately to a memory leak.
159 *
160 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
161 * present before running the comparison.
162 */
163#define __HAVE_ARCH_PTE_SAME
164#define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
165					: pte_val(pte_a))				\
166				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
167					: pte_val(pte_b)))
168
169#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
170
171#define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
172#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
173
174#define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
175						: !!(pmd_val(pmd) & (val)))
176#define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
177
178#define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
179#define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
180#define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
181static inline pte_t pte_mkspecial(pte_t pte)
182{
183	pte_val(pte) |= L_PTE_SPECIAL;
184	return pte;
185}
186
187#define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
188#define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
189
190#define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
191#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
192
193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
194#define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
195#endif
196
197#define PMD_BIT_FUNC(fn,op) \
198static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
199
200PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
201PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
202PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
203PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
204PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
205PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
206
207#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
208
209#define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
210#define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
211#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
212
213/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
214#define pmdp_establish generic_pmdp_establish
215
216/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
217static inline pmd_t pmd_mkinvalid(pmd_t pmd)
218{
219	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
220}
221
222static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
223{
224	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
225				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
226	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
227	return pmd;
228}
229
230static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
231			      pmd_t *pmdp, pmd_t pmd)
232{
233	BUG_ON(addr >= TASK_SIZE);
234
235	/* create a faulting entry if PROT_NONE protected */
236	if (pmd_val(pmd) & L_PMD_SECT_NONE)
237		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
238
239	if (pmd_write(pmd) && pmd_dirty(pmd))
240		pmd_val(pmd) &= ~PMD_SECT_AP2;
241	else
242		pmd_val(pmd) |= PMD_SECT_AP2;
243
244	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
245	flush_pmd_entry(pmdp);
246}
247
248#endif /* __ASSEMBLY__ */
249
250#endif /* _ASM_PGTABLE_3LEVEL_H */