Loading...
Note: File does not exist in v5.14.15.
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
149/* Functions */
150static inline struct maple_node *mt_alloc_one(gfp_t gfp)
151{
152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
153}
154
155static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
156{
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
158 nodes);
159}
160
161static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162{
163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
164}
165
166static void mt_free_rcu(struct rcu_head *head)
167{
168 struct maple_node *node = container_of(head, struct maple_node, rcu);
169
170 kmem_cache_free(maple_node_cache, node);
171}
172
173/*
174 * ma_free_rcu() - Use rcu callback to free a maple node
175 * @node: The node to free
176 *
177 * The maple tree uses the parent pointer to indicate this node is no longer in
178 * use and will be freed.
179 */
180static void ma_free_rcu(struct maple_node *node)
181{
182 node->parent = ma_parent_ptr(node);
183 call_rcu(&node->rcu, mt_free_rcu);
184}
185
186
187static void mas_set_height(struct ma_state *mas)
188{
189 unsigned int new_flags = mas->tree->ma_flags;
190
191 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
194 mas->tree->ma_flags = new_flags;
195}
196
197static unsigned int mas_mt_height(struct ma_state *mas)
198{
199 return mt_height(mas->tree);
200}
201
202static inline enum maple_type mte_node_type(const struct maple_enode *entry)
203{
204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
205 MAPLE_NODE_TYPE_MASK;
206}
207
208static inline bool ma_is_dense(const enum maple_type type)
209{
210 return type < maple_leaf_64;
211}
212
213static inline bool ma_is_leaf(const enum maple_type type)
214{
215 return type < maple_range_64;
216}
217
218static inline bool mte_is_leaf(const struct maple_enode *entry)
219{
220 return ma_is_leaf(mte_node_type(entry));
221}
222
223/*
224 * We also reserve values with the bottom two bits set to '10' which are
225 * below 4096
226 */
227static inline bool mt_is_reserved(const void *entry)
228{
229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
230 xa_is_internal(entry);
231}
232
233static inline void mas_set_err(struct ma_state *mas, long err)
234{
235 mas->node = MA_ERROR(err);
236}
237
238static inline bool mas_is_ptr(struct ma_state *mas)
239{
240 return mas->node == MAS_ROOT;
241}
242
243static inline bool mas_is_start(struct ma_state *mas)
244{
245 return mas->node == MAS_START;
246}
247
248bool mas_is_err(struct ma_state *mas)
249{
250 return xa_is_err(mas->node);
251}
252
253static inline bool mas_searchable(struct ma_state *mas)
254{
255 if (mas_is_none(mas))
256 return false;
257
258 if (mas_is_ptr(mas))
259 return false;
260
261 return true;
262}
263
264static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
265{
266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
267}
268
269/*
270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
271 * @entry: The maple encoded node
272 *
273 * Return: a maple topiary pointer
274 */
275static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
276{
277 return (struct maple_topiary *)
278 ((unsigned long)entry & ~MAPLE_NODE_MASK);
279}
280
281/*
282 * mas_mn() - Get the maple state node.
283 * @mas: The maple state
284 *
285 * Return: the maple node (not encoded - bare pointer).
286 */
287static inline struct maple_node *mas_mn(const struct ma_state *mas)
288{
289 return mte_to_node(mas->node);
290}
291
292/*
293 * mte_set_node_dead() - Set a maple encoded node as dead.
294 * @mn: The maple encoded node.
295 */
296static inline void mte_set_node_dead(struct maple_enode *mn)
297{
298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
299 smp_wmb(); /* Needed for RCU */
300}
301
302/* Bit 1 indicates the root is a node */
303#define MAPLE_ROOT_NODE 0x02
304/* maple_type stored bit 3-6 */
305#define MAPLE_ENODE_TYPE_SHIFT 0x03
306/* Bit 2 means a NULL somewhere below */
307#define MAPLE_ENODE_NULL 0x04
308
309static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
310 enum maple_type type)
311{
312 return (void *)((unsigned long)node |
313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
314}
315
316static inline void *mte_mk_root(const struct maple_enode *node)
317{
318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
319}
320
321static inline void *mte_safe_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_set_full(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
329}
330
331static inline void *mte_clear_full(const struct maple_enode *node)
332{
333 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
334}
335
336static inline bool mte_has_null(const struct maple_enode *node)
337{
338 return (unsigned long)node & MAPLE_ENODE_NULL;
339}
340
341static inline bool ma_is_root(struct maple_node *node)
342{
343 return ((unsigned long)node->parent & MA_ROOT_PARENT);
344}
345
346static inline bool mte_is_root(const struct maple_enode *node)
347{
348 return ma_is_root(mte_to_node(node));
349}
350
351static inline bool mas_is_root_limits(const struct ma_state *mas)
352{
353 return !mas->min && mas->max == ULONG_MAX;
354}
355
356static inline bool mt_is_alloc(struct maple_tree *mt)
357{
358 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
359}
360
361/*
362 * The Parent Pointer
363 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
364 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
365 * bit values need an extra bit to store the offset. This extra bit comes from
366 * a reuse of the last bit in the node type. This is possible by using bit 1 to
367 * indicate if bit 2 is part of the type or the slot.
368 *
369 * Note types:
370 * 0x??1 = Root
371 * 0x?00 = 16 bit nodes
372 * 0x010 = 32 bit nodes
373 * 0x110 = 64 bit nodes
374 *
375 * Slot size and alignment
376 * 0b??1 : Root
377 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
378 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
379 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
380 */
381
382#define MAPLE_PARENT_ROOT 0x01
383
384#define MAPLE_PARENT_SLOT_SHIFT 0x03
385#define MAPLE_PARENT_SLOT_MASK 0xF8
386
387#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
388#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
389
390#define MAPLE_PARENT_RANGE64 0x06
391#define MAPLE_PARENT_RANGE32 0x04
392#define MAPLE_PARENT_NOT_RANGE16 0x02
393
394/*
395 * mte_parent_shift() - Get the parent shift for the slot storage.
396 * @parent: The parent pointer cast as an unsigned long
397 * Return: The shift into that pointer to the star to of the slot
398 */
399static inline unsigned long mte_parent_shift(unsigned long parent)
400{
401 /* Note bit 1 == 0 means 16B */
402 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
403 return MAPLE_PARENT_SLOT_SHIFT;
404
405 return MAPLE_PARENT_16B_SLOT_SHIFT;
406}
407
408/*
409 * mte_parent_slot_mask() - Get the slot mask for the parent.
410 * @parent: The parent pointer cast as an unsigned long.
411 * Return: The slot mask for that parent.
412 */
413static inline unsigned long mte_parent_slot_mask(unsigned long parent)
414{
415 /* Note bit 1 == 0 means 16B */
416 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
417 return MAPLE_PARENT_SLOT_MASK;
418
419 return MAPLE_PARENT_16B_SLOT_MASK;
420}
421
422/*
423 * mas_parent_enum() - Return the maple_type of the parent from the stored
424 * parent type.
425 * @mas: The maple state
426 * @node: The maple_enode to extract the parent's enum
427 * Return: The node->parent maple_type
428 */
429static inline
430enum maple_type mte_parent_enum(struct maple_enode *p_enode,
431 struct maple_tree *mt)
432{
433 unsigned long p_type;
434
435 p_type = (unsigned long)p_enode;
436 if (p_type & MAPLE_PARENT_ROOT)
437 return 0; /* Validated in the caller. */
438
439 p_type &= MAPLE_NODE_MASK;
440 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
441
442 switch (p_type) {
443 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
444 if (mt_is_alloc(mt))
445 return maple_arange_64;
446 return maple_range_64;
447 }
448
449 return 0;
450}
451
452static inline
453enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
454{
455 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
456}
457
458/*
459 * mte_set_parent() - Set the parent node and encode the slot
460 * @enode: The encoded maple node.
461 * @parent: The encoded maple node that is the parent of @enode.
462 * @slot: The slot that @enode resides in @parent.
463 *
464 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
465 * parent type.
466 */
467static inline
468void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
469 unsigned char slot)
470{
471 unsigned long val = (unsigned long) parent;
472 unsigned long shift;
473 unsigned long type;
474 enum maple_type p_type = mte_node_type(parent);
475
476 BUG_ON(p_type == maple_dense);
477 BUG_ON(p_type == maple_leaf_64);
478
479 switch (p_type) {
480 case maple_range_64:
481 case maple_arange_64:
482 shift = MAPLE_PARENT_SLOT_SHIFT;
483 type = MAPLE_PARENT_RANGE64;
484 break;
485 default:
486 case maple_dense:
487 case maple_leaf_64:
488 shift = type = 0;
489 break;
490 }
491
492 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
493 val |= (slot << shift) | type;
494 mte_to_node(enode)->parent = ma_parent_ptr(val);
495}
496
497/*
498 * mte_parent_slot() - get the parent slot of @enode.
499 * @enode: The encoded maple node.
500 *
501 * Return: The slot in the parent node where @enode resides.
502 */
503static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
504{
505 unsigned long val = (unsigned long) mte_to_node(enode)->parent;
506
507 /* Root. */
508 if (val & 1)
509 return 0;
510
511 /*
512 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
513 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
514 */
515 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
516}
517
518/*
519 * mte_parent() - Get the parent of @node.
520 * @node: The encoded maple node.
521 *
522 * Return: The parent maple node.
523 */
524static inline struct maple_node *mte_parent(const struct maple_enode *enode)
525{
526 return (void *)((unsigned long)
527 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
528}
529
530/*
531 * ma_dead_node() - check if the @enode is dead.
532 * @enode: The encoded maple node
533 *
534 * Return: true if dead, false otherwise.
535 */
536static inline bool ma_dead_node(const struct maple_node *node)
537{
538 struct maple_node *parent = (void *)((unsigned long)
539 node->parent & ~MAPLE_NODE_MASK);
540
541 return (parent == node);
542}
543/*
544 * mte_dead_node() - check if the @enode is dead.
545 * @enode: The encoded maple node
546 *
547 * Return: true if dead, false otherwise.
548 */
549static inline bool mte_dead_node(const struct maple_enode *enode)
550{
551 struct maple_node *parent, *node;
552
553 node = mte_to_node(enode);
554 parent = mte_parent(enode);
555 return (parent == node);
556}
557
558/*
559 * mas_allocated() - Get the number of nodes allocated in a maple state.
560 * @mas: The maple state
561 *
562 * The ma_state alloc member is overloaded to hold a pointer to the first
563 * allocated node or to the number of requested nodes to allocate. If bit 0 is
564 * set, then the alloc contains the number of requested nodes. If there is an
565 * allocated node, then the total allocated nodes is in that node.
566 *
567 * Return: The total number of nodes allocated
568 */
569static inline unsigned long mas_allocated(const struct ma_state *mas)
570{
571 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
572 return 0;
573
574 return mas->alloc->total;
575}
576
577/*
578 * mas_set_alloc_req() - Set the requested number of allocations.
579 * @mas: the maple state
580 * @count: the number of allocations.
581 *
582 * The requested number of allocations is either in the first allocated node,
583 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
584 * no allocated node. Set the request either in the node or do the necessary
585 * encoding to store in @mas->alloc directly.
586 */
587static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
588{
589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
590 if (!count)
591 mas->alloc = NULL;
592 else
593 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
594 return;
595 }
596
597 mas->alloc->request_count = count;
598}
599
600/*
601 * mas_alloc_req() - get the requested number of allocations.
602 * @mas: The maple state
603 *
604 * The alloc count is either stored directly in @mas, or in
605 * @mas->alloc->request_count if there is at least one node allocated. Decode
606 * the request count if it's stored directly in @mas->alloc.
607 *
608 * Return: The allocation request count.
609 */
610static inline unsigned int mas_alloc_req(const struct ma_state *mas)
611{
612 if ((unsigned long)mas->alloc & 0x1)
613 return (unsigned long)(mas->alloc) >> 1;
614 else if (mas->alloc)
615 return mas->alloc->request_count;
616 return 0;
617}
618
619/*
620 * ma_pivots() - Get a pointer to the maple node pivots.
621 * @node - the maple node
622 * @type - the node type
623 *
624 * Return: A pointer to the maple node pivots
625 */
626static inline unsigned long *ma_pivots(struct maple_node *node,
627 enum maple_type type)
628{
629 switch (type) {
630 case maple_arange_64:
631 return node->ma64.pivot;
632 case maple_range_64:
633 case maple_leaf_64:
634 return node->mr64.pivot;
635 case maple_dense:
636 return NULL;
637 }
638 return NULL;
639}
640
641/*
642 * ma_gaps() - Get a pointer to the maple node gaps.
643 * @node - the maple node
644 * @type - the node type
645 *
646 * Return: A pointer to the maple node gaps
647 */
648static inline unsigned long *ma_gaps(struct maple_node *node,
649 enum maple_type type)
650{
651 switch (type) {
652 case maple_arange_64:
653 return node->ma64.gap;
654 case maple_range_64:
655 case maple_leaf_64:
656 case maple_dense:
657 return NULL;
658 }
659 return NULL;
660}
661
662/*
663 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
664 * @mn: The maple encoded node.
665 * @piv: The pivot.
666 *
667 * Return: the pivot at @piv of @mn.
668 */
669static inline unsigned long mte_pivot(const struct maple_enode *mn,
670 unsigned char piv)
671{
672 struct maple_node *node = mte_to_node(mn);
673 enum maple_type type = mte_node_type(mn);
674
675 if (piv >= mt_pivots[type]) {
676 WARN_ON(1);
677 return 0;
678 }
679 switch (type) {
680 case maple_arange_64:
681 return node->ma64.pivot[piv];
682 case maple_range_64:
683 case maple_leaf_64:
684 return node->mr64.pivot[piv];
685 case maple_dense:
686 return 0;
687 }
688 return 0;
689}
690
691/*
692 * mas_safe_pivot() - get the pivot at @piv or mas->max.
693 * @mas: The maple state
694 * @pivots: The pointer to the maple node pivots
695 * @piv: The pivot to fetch
696 * @type: The maple node type
697 *
698 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
699 * otherwise.
700 */
701static inline unsigned long
702mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
703 unsigned char piv, enum maple_type type)
704{
705 if (piv >= mt_pivots[type])
706 return mas->max;
707
708 return pivots[piv];
709}
710
711/*
712 * mas_safe_min() - Return the minimum for a given offset.
713 * @mas: The maple state
714 * @pivots: The pointer to the maple node pivots
715 * @offset: The offset into the pivot array
716 *
717 * Return: The minimum range value that is contained in @offset.
718 */
719static inline unsigned long
720mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
721{
722 if (likely(offset))
723 return pivots[offset - 1] + 1;
724
725 return mas->min;
726}
727
728/*
729 * mas_logical_pivot() - Get the logical pivot of a given offset.
730 * @mas: The maple state
731 * @pivots: The pointer to the maple node pivots
732 * @offset: The offset into the pivot array
733 * @type: The maple node type
734 *
735 * When there is no value at a pivot (beyond the end of the data), then the
736 * pivot is actually @mas->max.
737 *
738 * Return: the logical pivot of a given @offset.
739 */
740static inline unsigned long
741mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
742 unsigned char offset, enum maple_type type)
743{
744 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
745
746 if (likely(lpiv))
747 return lpiv;
748
749 if (likely(offset))
750 return mas->max;
751
752 return lpiv;
753}
754
755/*
756 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
757 * @mn: The encoded maple node
758 * @piv: The pivot offset
759 * @val: The value of the pivot
760 */
761static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
762 unsigned long val)
763{
764 struct maple_node *node = mte_to_node(mn);
765 enum maple_type type = mte_node_type(mn);
766
767 BUG_ON(piv >= mt_pivots[type]);
768 switch (type) {
769 default:
770 case maple_range_64:
771 case maple_leaf_64:
772 node->mr64.pivot[piv] = val;
773 break;
774 case maple_arange_64:
775 node->ma64.pivot[piv] = val;
776 break;
777 case maple_dense:
778 break;
779 }
780
781}
782
783/*
784 * ma_slots() - Get a pointer to the maple node slots.
785 * @mn: The maple node
786 * @mt: The maple node type
787 *
788 * Return: A pointer to the maple node slots
789 */
790static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
791{
792 switch (mt) {
793 default:
794 case maple_arange_64:
795 return mn->ma64.slot;
796 case maple_range_64:
797 case maple_leaf_64:
798 return mn->mr64.slot;
799 case maple_dense:
800 return mn->slot;
801 }
802}
803
804static inline bool mt_locked(const struct maple_tree *mt)
805{
806 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
807 lockdep_is_held(&mt->ma_lock);
808}
809
810static inline void *mt_slot(const struct maple_tree *mt,
811 void __rcu **slots, unsigned char offset)
812{
813 return rcu_dereference_check(slots[offset], mt_locked(mt));
814}
815
816/*
817 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
818 * @mas: The maple state
819 * @slots: The pointer to the slots
820 * @offset: The offset into the slots array to fetch
821 *
822 * Return: The entry stored in @slots at the @offset.
823 */
824static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
825 unsigned char offset)
826{
827 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
828}
829
830/*
831 * mas_slot() - Get the slot value when not holding the maple tree lock.
832 * @mas: The maple state
833 * @slots: The pointer to the slots
834 * @offset: The offset into the slots array to fetch
835 *
836 * Return: The entry stored in @slots at the @offset
837 */
838static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
839 unsigned char offset)
840{
841 return mt_slot(mas->tree, slots, offset);
842}
843
844/*
845 * mas_root() - Get the maple tree root.
846 * @mas: The maple state.
847 *
848 * Return: The pointer to the root of the tree
849 */
850static inline void *mas_root(struct ma_state *mas)
851{
852 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
853}
854
855static inline void *mt_root_locked(struct maple_tree *mt)
856{
857 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
858}
859
860/*
861 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
862 * @mas: The maple state.
863 *
864 * Return: The pointer to the root of the tree
865 */
866static inline void *mas_root_locked(struct ma_state *mas)
867{
868 return mt_root_locked(mas->tree);
869}
870
871static inline struct maple_metadata *ma_meta(struct maple_node *mn,
872 enum maple_type mt)
873{
874 switch (mt) {
875 case maple_arange_64:
876 return &mn->ma64.meta;
877 default:
878 return &mn->mr64.meta;
879 }
880}
881
882/*
883 * ma_set_meta() - Set the metadata information of a node.
884 * @mn: The maple node
885 * @mt: The maple node type
886 * @offset: The offset of the highest sub-gap in this node.
887 * @end: The end of the data in this node.
888 */
889static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
890 unsigned char offset, unsigned char end)
891{
892 struct maple_metadata *meta = ma_meta(mn, mt);
893
894 meta->gap = offset;
895 meta->end = end;
896}
897
898/*
899 * ma_meta_end() - Get the data end of a node from the metadata
900 * @mn: The maple node
901 * @mt: The maple node type
902 */
903static inline unsigned char ma_meta_end(struct maple_node *mn,
904 enum maple_type mt)
905{
906 struct maple_metadata *meta = ma_meta(mn, mt);
907
908 return meta->end;
909}
910
911/*
912 * ma_meta_gap() - Get the largest gap location of a node from the metadata
913 * @mn: The maple node
914 * @mt: The maple node type
915 */
916static inline unsigned char ma_meta_gap(struct maple_node *mn,
917 enum maple_type mt)
918{
919 BUG_ON(mt != maple_arange_64);
920
921 return mn->ma64.meta.gap;
922}
923
924/*
925 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
926 * @mn: The maple node
927 * @mn: The maple node type
928 * @offset: The location of the largest gap.
929 */
930static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
931 unsigned char offset)
932{
933
934 struct maple_metadata *meta = ma_meta(mn, mt);
935
936 meta->gap = offset;
937}
938
939/*
940 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
941 * @mat - the ma_topiary, a linked list of dead nodes.
942 * @dead_enode - the node to be marked as dead and added to the tail of the list
943 *
944 * Add the @dead_enode to the linked list in @mat.
945 */
946static inline void mat_add(struct ma_topiary *mat,
947 struct maple_enode *dead_enode)
948{
949 mte_set_node_dead(dead_enode);
950 mte_to_mat(dead_enode)->next = NULL;
951 if (!mat->tail) {
952 mat->tail = mat->head = dead_enode;
953 return;
954 }
955
956 mte_to_mat(mat->tail)->next = dead_enode;
957 mat->tail = dead_enode;
958}
959
960static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
961static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
962
963/*
964 * mas_mat_free() - Free all nodes in a dead list.
965 * @mas - the maple state
966 * @mat - the ma_topiary linked list of dead nodes to free.
967 *
968 * Free walk a dead list.
969 */
970static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
971{
972 struct maple_enode *next;
973
974 while (mat->head) {
975 next = mte_to_mat(mat->head)->next;
976 mas_free(mas, mat->head);
977 mat->head = next;
978 }
979}
980
981/*
982 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
983 * @mas - the maple state
984 * @mat - the ma_topiary linked list of dead nodes to free.
985 *
986 * Destroy walk a dead list.
987 */
988static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
989{
990 struct maple_enode *next;
991
992 while (mat->head) {
993 next = mte_to_mat(mat->head)->next;
994 mte_destroy_walk(mat->head, mat->mtree);
995 mat->head = next;
996 }
997}
998/*
999 * mas_descend() - Descend into the slot stored in the ma_state.
1000 * @mas - the maple state.
1001 *
1002 * Note: Not RCU safe, only use in write side or debug code.
1003 */
1004static inline void mas_descend(struct ma_state *mas)
1005{
1006 enum maple_type type;
1007 unsigned long *pivots;
1008 struct maple_node *node;
1009 void __rcu **slots;
1010
1011 node = mas_mn(mas);
1012 type = mte_node_type(mas->node);
1013 pivots = ma_pivots(node, type);
1014 slots = ma_slots(node, type);
1015
1016 if (mas->offset)
1017 mas->min = pivots[mas->offset - 1] + 1;
1018 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1019 mas->node = mas_slot(mas, slots, mas->offset);
1020}
1021
1022/*
1023 * mte_set_gap() - Set a maple node gap.
1024 * @mn: The encoded maple node
1025 * @gap: The offset of the gap to set
1026 * @val: The gap value
1027 */
1028static inline void mte_set_gap(const struct maple_enode *mn,
1029 unsigned char gap, unsigned long val)
1030{
1031 switch (mte_node_type(mn)) {
1032 default:
1033 break;
1034 case maple_arange_64:
1035 mte_to_node(mn)->ma64.gap[gap] = val;
1036 break;
1037 }
1038}
1039
1040/*
1041 * mas_ascend() - Walk up a level of the tree.
1042 * @mas: The maple state
1043 *
1044 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1045 * may cause several levels of walking up to find the correct min and max.
1046 * May find a dead node which will cause a premature return.
1047 * Return: 1 on dead node, 0 otherwise
1048 */
1049static int mas_ascend(struct ma_state *mas)
1050{
1051 struct maple_enode *p_enode; /* parent enode. */
1052 struct maple_enode *a_enode; /* ancestor enode. */
1053 struct maple_node *a_node; /* ancestor node. */
1054 struct maple_node *p_node; /* parent node. */
1055 unsigned char a_slot;
1056 enum maple_type a_type;
1057 unsigned long min, max;
1058 unsigned long *pivots;
1059 unsigned char offset;
1060 bool set_max = false, set_min = false;
1061
1062 a_node = mas_mn(mas);
1063 if (ma_is_root(a_node)) {
1064 mas->offset = 0;
1065 return 0;
1066 }
1067
1068 p_node = mte_parent(mas->node);
1069 if (unlikely(a_node == p_node))
1070 return 1;
1071 a_type = mas_parent_enum(mas, mas->node);
1072 offset = mte_parent_slot(mas->node);
1073 a_enode = mt_mk_node(p_node, a_type);
1074
1075 /* Check to make sure all parent information is still accurate */
1076 if (p_node != mte_parent(mas->node))
1077 return 1;
1078
1079 mas->node = a_enode;
1080 mas->offset = offset;
1081
1082 if (mte_is_root(a_enode)) {
1083 mas->max = ULONG_MAX;
1084 mas->min = 0;
1085 return 0;
1086 }
1087
1088 min = 0;
1089 max = ULONG_MAX;
1090 do {
1091 p_enode = a_enode;
1092 a_type = mas_parent_enum(mas, p_enode);
1093 a_node = mte_parent(p_enode);
1094 a_slot = mte_parent_slot(p_enode);
1095 pivots = ma_pivots(a_node, a_type);
1096 a_enode = mt_mk_node(a_node, a_type);
1097
1098 if (!set_min && a_slot) {
1099 set_min = true;
1100 min = pivots[a_slot - 1] + 1;
1101 }
1102
1103 if (!set_max && a_slot < mt_pivots[a_type]) {
1104 set_max = true;
1105 max = pivots[a_slot];
1106 }
1107
1108 if (unlikely(ma_dead_node(a_node)))
1109 return 1;
1110
1111 if (unlikely(ma_is_root(a_node)))
1112 break;
1113
1114 } while (!set_min || !set_max);
1115
1116 mas->max = max;
1117 mas->min = min;
1118 return 0;
1119}
1120
1121/*
1122 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1123 * @mas: The maple state
1124 *
1125 * Return: A pointer to a maple node.
1126 */
1127static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1128{
1129 struct maple_alloc *ret, *node = mas->alloc;
1130 unsigned long total = mas_allocated(mas);
1131
1132 /* nothing or a request pending. */
1133 if (unlikely(!total))
1134 return NULL;
1135
1136 if (total == 1) {
1137 /* single allocation in this ma_state */
1138 mas->alloc = NULL;
1139 ret = node;
1140 goto single_node;
1141 }
1142
1143 if (!node->node_count) {
1144 /* Single allocation in this node. */
1145 mas->alloc = node->slot[0];
1146 node->slot[0] = NULL;
1147 mas->alloc->total = node->total - 1;
1148 ret = node;
1149 goto new_head;
1150 }
1151
1152 node->total--;
1153 ret = node->slot[node->node_count];
1154 node->slot[node->node_count--] = NULL;
1155
1156single_node:
1157new_head:
1158 ret->total = 0;
1159 ret->node_count = 0;
1160 if (ret->request_count) {
1161 mas_set_alloc_req(mas, ret->request_count + 1);
1162 ret->request_count = 0;
1163 }
1164 return (struct maple_node *)ret;
1165}
1166
1167/*
1168 * mas_push_node() - Push a node back on the maple state allocation.
1169 * @mas: The maple state
1170 * @used: The used maple node
1171 *
1172 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1173 * requested node count as necessary.
1174 */
1175static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1176{
1177 struct maple_alloc *reuse = (struct maple_alloc *)used;
1178 struct maple_alloc *head = mas->alloc;
1179 unsigned long count;
1180 unsigned int requested = mas_alloc_req(mas);
1181
1182 memset(reuse, 0, sizeof(*reuse));
1183 count = mas_allocated(mas);
1184
1185 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1186 if (head->slot[0])
1187 head->node_count++;
1188 head->slot[head->node_count] = reuse;
1189 head->total++;
1190 goto done;
1191 }
1192
1193 reuse->total = 1;
1194 if ((head) && !((unsigned long)head & 0x1)) {
1195 head->request_count = 0;
1196 reuse->slot[0] = head;
1197 reuse->total += head->total;
1198 }
1199
1200 mas->alloc = reuse;
1201done:
1202 if (requested > 1)
1203 mas_set_alloc_req(mas, requested - 1);
1204}
1205
1206/*
1207 * mas_alloc_nodes() - Allocate nodes into a maple state
1208 * @mas: The maple state
1209 * @gfp: The GFP Flags
1210 */
1211static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1212{
1213 struct maple_alloc *node;
1214 unsigned long allocated = mas_allocated(mas);
1215 unsigned long success = allocated;
1216 unsigned int requested = mas_alloc_req(mas);
1217 unsigned int count;
1218 void **slots = NULL;
1219 unsigned int max_req = 0;
1220
1221 if (!requested)
1222 return;
1223
1224 mas_set_alloc_req(mas, 0);
1225 if (mas->mas_flags & MA_STATE_PREALLOC) {
1226 if (allocated)
1227 return;
1228 WARN_ON(!allocated);
1229 }
1230
1231 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1232 node = (struct maple_alloc *)mt_alloc_one(gfp);
1233 if (!node)
1234 goto nomem_one;
1235
1236 if (allocated)
1237 node->slot[0] = mas->alloc;
1238
1239 success++;
1240 mas->alloc = node;
1241 requested--;
1242 }
1243
1244 node = mas->alloc;
1245 while (requested) {
1246 max_req = MAPLE_ALLOC_SLOTS;
1247 if (node->slot[0]) {
1248 unsigned int offset = node->node_count + 1;
1249
1250 slots = (void **)&node->slot[offset];
1251 max_req -= offset;
1252 } else {
1253 slots = (void **)&node->slot;
1254 }
1255
1256 max_req = min(requested, max_req);
1257 count = mt_alloc_bulk(gfp, max_req, slots);
1258 if (!count)
1259 goto nomem_bulk;
1260
1261 node->node_count += count;
1262 /* zero indexed. */
1263 if (slots == (void **)&node->slot)
1264 node->node_count--;
1265
1266 success += count;
1267 node = node->slot[0];
1268 requested -= count;
1269 }
1270 mas->alloc->total = success;
1271 return;
1272
1273nomem_bulk:
1274 /* Clean up potential freed allocations on bulk failure */
1275 memset(slots, 0, max_req * sizeof(unsigned long));
1276nomem_one:
1277 mas_set_alloc_req(mas, requested);
1278 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1279 mas->alloc->total = success;
1280 mas_set_err(mas, -ENOMEM);
1281 return;
1282
1283}
1284
1285/*
1286 * mas_free() - Free an encoded maple node
1287 * @mas: The maple state
1288 * @used: The encoded maple node to free.
1289 *
1290 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1291 * otherwise.
1292 */
1293static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1294{
1295 struct maple_node *tmp = mte_to_node(used);
1296
1297 if (mt_in_rcu(mas->tree))
1298 ma_free_rcu(tmp);
1299 else
1300 mas_push_node(mas, tmp);
1301}
1302
1303/*
1304 * mas_node_count() - Check if enough nodes are allocated and request more if
1305 * there is not enough nodes.
1306 * @mas: The maple state
1307 * @count: The number of nodes needed
1308 * @gfp: the gfp flags
1309 */
1310static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1311{
1312 unsigned long allocated = mas_allocated(mas);
1313
1314 if (allocated < count) {
1315 mas_set_alloc_req(mas, count - allocated);
1316 mas_alloc_nodes(mas, gfp);
1317 }
1318}
1319
1320/*
1321 * mas_node_count() - Check if enough nodes are allocated and request more if
1322 * there is not enough nodes.
1323 * @mas: The maple state
1324 * @count: The number of nodes needed
1325 *
1326 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1327 */
1328static void mas_node_count(struct ma_state *mas, int count)
1329{
1330 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1331}
1332
1333/*
1334 * mas_start() - Sets up maple state for operations.
1335 * @mas: The maple state.
1336 *
1337 * If mas->node == MAS_START, then set the min, max, depth, and offset to
1338 * defaults.
1339 *
1340 * Return:
1341 * - If mas->node is an error or not MAS_START, return NULL.
1342 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1343 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1344 * - If it's a tree: NULL & mas->node == safe root node.
1345 */
1346static inline struct maple_enode *mas_start(struct ma_state *mas)
1347{
1348 if (likely(mas_is_start(mas))) {
1349 struct maple_enode *root;
1350
1351 mas->node = MAS_NONE;
1352 mas->min = 0;
1353 mas->max = ULONG_MAX;
1354 mas->depth = 0;
1355 mas->offset = 0;
1356
1357 root = mas_root(mas);
1358 /* Tree with nodes */
1359 if (likely(xa_is_node(root))) {
1360 mas->depth = 1;
1361 mas->node = mte_safe_root(root);
1362 return NULL;
1363 }
1364
1365 /* empty tree */
1366 if (unlikely(!root)) {
1367 mas->offset = MAPLE_NODE_SLOTS;
1368 return NULL;
1369 }
1370
1371 /* Single entry tree */
1372 mas->node = MAS_ROOT;
1373 mas->offset = MAPLE_NODE_SLOTS;
1374
1375 /* Single entry tree. */
1376 if (mas->index > 0)
1377 return NULL;
1378
1379 return root;
1380 }
1381
1382 return NULL;
1383}
1384
1385/*
1386 * ma_data_end() - Find the end of the data in a node.
1387 * @node: The maple node
1388 * @type: The maple node type
1389 * @pivots: The array of pivots in the node
1390 * @max: The maximum value in the node
1391 *
1392 * Uses metadata to find the end of the data when possible.
1393 * Return: The zero indexed last slot with data (may be null).
1394 */
1395static inline unsigned char ma_data_end(struct maple_node *node,
1396 enum maple_type type,
1397 unsigned long *pivots,
1398 unsigned long max)
1399{
1400 unsigned char offset;
1401
1402 if (type == maple_arange_64)
1403 return ma_meta_end(node, type);
1404
1405 offset = mt_pivots[type] - 1;
1406 if (likely(!pivots[offset]))
1407 return ma_meta_end(node, type);
1408
1409 if (likely(pivots[offset] == max))
1410 return offset;
1411
1412 return mt_pivots[type];
1413}
1414
1415/*
1416 * mas_data_end() - Find the end of the data (slot).
1417 * @mas: the maple state
1418 *
1419 * This method is optimized to check the metadata of a node if the node type
1420 * supports data end metadata.
1421 *
1422 * Return: The zero indexed last slot with data (may be null).
1423 */
1424static inline unsigned char mas_data_end(struct ma_state *mas)
1425{
1426 enum maple_type type;
1427 struct maple_node *node;
1428 unsigned char offset;
1429 unsigned long *pivots;
1430
1431 type = mte_node_type(mas->node);
1432 node = mas_mn(mas);
1433 if (type == maple_arange_64)
1434 return ma_meta_end(node, type);
1435
1436 pivots = ma_pivots(node, type);
1437 offset = mt_pivots[type] - 1;
1438 if (likely(!pivots[offset]))
1439 return ma_meta_end(node, type);
1440
1441 if (likely(pivots[offset] == mas->max))
1442 return offset;
1443
1444 return mt_pivots[type];
1445}
1446
1447/*
1448 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1449 * @mas - the maple state
1450 *
1451 * Return: The maximum gap in the leaf.
1452 */
1453static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1454{
1455 enum maple_type mt;
1456 unsigned long pstart, gap, max_gap;
1457 struct maple_node *mn;
1458 unsigned long *pivots;
1459 void __rcu **slots;
1460 unsigned char i;
1461 unsigned char max_piv;
1462
1463 mt = mte_node_type(mas->node);
1464 mn = mas_mn(mas);
1465 slots = ma_slots(mn, mt);
1466 max_gap = 0;
1467 if (unlikely(ma_is_dense(mt))) {
1468 gap = 0;
1469 for (i = 0; i < mt_slots[mt]; i++) {
1470 if (slots[i]) {
1471 if (gap > max_gap)
1472 max_gap = gap;
1473 gap = 0;
1474 } else {
1475 gap++;
1476 }
1477 }
1478 if (gap > max_gap)
1479 max_gap = gap;
1480 return max_gap;
1481 }
1482
1483 /*
1484 * Check the first implied pivot optimizes the loop below and slot 1 may
1485 * be skipped if there is a gap in slot 0.
1486 */
1487 pivots = ma_pivots(mn, mt);
1488 if (likely(!slots[0])) {
1489 max_gap = pivots[0] - mas->min + 1;
1490 i = 2;
1491 } else {
1492 i = 1;
1493 }
1494
1495 /* reduce max_piv as the special case is checked before the loop */
1496 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1497 /*
1498 * Check end implied pivot which can only be a gap on the right most
1499 * node.
1500 */
1501 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1502 gap = ULONG_MAX - pivots[max_piv];
1503 if (gap > max_gap)
1504 max_gap = gap;
1505 }
1506
1507 for (; i <= max_piv; i++) {
1508 /* data == no gap. */
1509 if (likely(slots[i]))
1510 continue;
1511
1512 pstart = pivots[i - 1];
1513 gap = pivots[i] - pstart;
1514 if (gap > max_gap)
1515 max_gap = gap;
1516
1517 /* There cannot be two gaps in a row. */
1518 i++;
1519 }
1520 return max_gap;
1521}
1522
1523/*
1524 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1525 * @node: The maple node
1526 * @gaps: The pointer to the gaps
1527 * @mt: The maple node type
1528 * @*off: Pointer to store the offset location of the gap.
1529 *
1530 * Uses the metadata data end to scan backwards across set gaps.
1531 *
1532 * Return: The maximum gap value
1533 */
1534static inline unsigned long
1535ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1536 unsigned char *off)
1537{
1538 unsigned char offset, i;
1539 unsigned long max_gap = 0;
1540
1541 i = offset = ma_meta_end(node, mt);
1542 do {
1543 if (gaps[i] > max_gap) {
1544 max_gap = gaps[i];
1545 offset = i;
1546 }
1547 } while (i--);
1548
1549 *off = offset;
1550 return max_gap;
1551}
1552
1553/*
1554 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1555 * @mas: The maple state.
1556 *
1557 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1558 *
1559 * Return: The gap value.
1560 */
1561static inline unsigned long mas_max_gap(struct ma_state *mas)
1562{
1563 unsigned long *gaps;
1564 unsigned char offset;
1565 enum maple_type mt;
1566 struct maple_node *node;
1567
1568 mt = mte_node_type(mas->node);
1569 if (ma_is_leaf(mt))
1570 return mas_leaf_max_gap(mas);
1571
1572 node = mas_mn(mas);
1573 offset = ma_meta_gap(node, mt);
1574 if (offset == MAPLE_ARANGE64_META_MAX)
1575 return 0;
1576
1577 gaps = ma_gaps(node, mt);
1578 return gaps[offset];
1579}
1580
1581/*
1582 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1583 * @mas: The maple state
1584 * @offset: The gap offset in the parent to set
1585 * @new: The new gap value.
1586 *
1587 * Set the parent gap then continue to set the gap upwards, using the metadata
1588 * of the parent to see if it is necessary to check the node above.
1589 */
1590static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1591 unsigned long new)
1592{
1593 unsigned long meta_gap = 0;
1594 struct maple_node *pnode;
1595 struct maple_enode *penode;
1596 unsigned long *pgaps;
1597 unsigned char meta_offset;
1598 enum maple_type pmt;
1599
1600 pnode = mte_parent(mas->node);
1601 pmt = mas_parent_enum(mas, mas->node);
1602 penode = mt_mk_node(pnode, pmt);
1603 pgaps = ma_gaps(pnode, pmt);
1604
1605ascend:
1606 meta_offset = ma_meta_gap(pnode, pmt);
1607 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1608 meta_gap = 0;
1609 else
1610 meta_gap = pgaps[meta_offset];
1611
1612 pgaps[offset] = new;
1613
1614 if (meta_gap == new)
1615 return;
1616
1617 if (offset != meta_offset) {
1618 if (meta_gap > new)
1619 return;
1620
1621 ma_set_meta_gap(pnode, pmt, offset);
1622 } else if (new < meta_gap) {
1623 meta_offset = 15;
1624 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1625 ma_set_meta_gap(pnode, pmt, meta_offset);
1626 }
1627
1628 if (ma_is_root(pnode))
1629 return;
1630
1631 /* Go to the parent node. */
1632 pnode = mte_parent(penode);
1633 pmt = mas_parent_enum(mas, penode);
1634 pgaps = ma_gaps(pnode, pmt);
1635 offset = mte_parent_slot(penode);
1636 penode = mt_mk_node(pnode, pmt);
1637 goto ascend;
1638}
1639
1640/*
1641 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1642 * @mas - the maple state.
1643 */
1644static inline void mas_update_gap(struct ma_state *mas)
1645{
1646 unsigned char pslot;
1647 unsigned long p_gap;
1648 unsigned long max_gap;
1649
1650 if (!mt_is_alloc(mas->tree))
1651 return;
1652
1653 if (mte_is_root(mas->node))
1654 return;
1655
1656 max_gap = mas_max_gap(mas);
1657
1658 pslot = mte_parent_slot(mas->node);
1659 p_gap = ma_gaps(mte_parent(mas->node),
1660 mas_parent_enum(mas, mas->node))[pslot];
1661
1662 if (p_gap != max_gap)
1663 mas_parent_gap(mas, pslot, max_gap);
1664}
1665
1666/*
1667 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1668 * @parent with the slot encoded.
1669 * @mas - the maple state (for the tree)
1670 * @parent - the maple encoded node containing the children.
1671 */
1672static inline void mas_adopt_children(struct ma_state *mas,
1673 struct maple_enode *parent)
1674{
1675 enum maple_type type = mte_node_type(parent);
1676 struct maple_node *node = mas_mn(mas);
1677 void __rcu **slots = ma_slots(node, type);
1678 unsigned long *pivots = ma_pivots(node, type);
1679 struct maple_enode *child;
1680 unsigned char offset;
1681
1682 offset = ma_data_end(node, type, pivots, mas->max);
1683 do {
1684 child = mas_slot_locked(mas, slots, offset);
1685 mte_set_parent(child, parent, offset);
1686 } while (offset--);
1687}
1688
1689/*
1690 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1691 * parent encoding to locate the maple node in the tree.
1692 * @mas - the ma_state to use for operations.
1693 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1694 * leave the node (true) and handle the adoption and free elsewhere.
1695 */
1696static inline void mas_replace(struct ma_state *mas, bool advanced)
1697 __must_hold(mas->tree->lock)
1698{
1699 struct maple_node *mn = mas_mn(mas);
1700 struct maple_enode *old_enode;
1701 unsigned char offset = 0;
1702 void __rcu **slots = NULL;
1703
1704 if (ma_is_root(mn)) {
1705 old_enode = mas_root_locked(mas);
1706 } else {
1707 offset = mte_parent_slot(mas->node);
1708 slots = ma_slots(mte_parent(mas->node),
1709 mas_parent_enum(mas, mas->node));
1710 old_enode = mas_slot_locked(mas, slots, offset);
1711 }
1712
1713 if (!advanced && !mte_is_leaf(mas->node))
1714 mas_adopt_children(mas, mas->node);
1715
1716 if (mte_is_root(mas->node)) {
1717 mn->parent = ma_parent_ptr(
1718 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1719 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1720 mas_set_height(mas);
1721 } else {
1722 rcu_assign_pointer(slots[offset], mas->node);
1723 }
1724
1725 if (!advanced)
1726 mas_free(mas, old_enode);
1727}
1728
1729/*
1730 * mas_new_child() - Find the new child of a node.
1731 * @mas: the maple state
1732 * @child: the maple state to store the child.
1733 */
1734static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1735 __must_hold(mas->tree->lock)
1736{
1737 enum maple_type mt;
1738 unsigned char offset;
1739 unsigned char end;
1740 unsigned long *pivots;
1741 struct maple_enode *entry;
1742 struct maple_node *node;
1743 void __rcu **slots;
1744
1745 mt = mte_node_type(mas->node);
1746 node = mas_mn(mas);
1747 slots = ma_slots(node, mt);
1748 pivots = ma_pivots(node, mt);
1749 end = ma_data_end(node, mt, pivots, mas->max);
1750 for (offset = mas->offset; offset <= end; offset++) {
1751 entry = mas_slot_locked(mas, slots, offset);
1752 if (mte_parent(entry) == node) {
1753 *child = *mas;
1754 mas->offset = offset + 1;
1755 child->offset = offset;
1756 mas_descend(child);
1757 child->offset = 0;
1758 return true;
1759 }
1760 }
1761 return false;
1762}
1763
1764/*
1765 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1766 * old data or set b_node->b_end.
1767 * @b_node: the maple_big_node
1768 * @shift: the shift count
1769 */
1770static inline void mab_shift_right(struct maple_big_node *b_node,
1771 unsigned char shift)
1772{
1773 unsigned long size = b_node->b_end * sizeof(unsigned long);
1774
1775 memmove(b_node->pivot + shift, b_node->pivot, size);
1776 memmove(b_node->slot + shift, b_node->slot, size);
1777 if (b_node->type == maple_arange_64)
1778 memmove(b_node->gap + shift, b_node->gap, size);
1779}
1780
1781/*
1782 * mab_middle_node() - Check if a middle node is needed (unlikely)
1783 * @b_node: the maple_big_node that contains the data.
1784 * @size: the amount of data in the b_node
1785 * @split: the potential split location
1786 * @slot_count: the size that can be stored in a single node being considered.
1787 *
1788 * Return: true if a middle node is required.
1789 */
1790static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1791 unsigned char slot_count)
1792{
1793 unsigned char size = b_node->b_end;
1794
1795 if (size >= 2 * slot_count)
1796 return true;
1797
1798 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1799 return true;
1800
1801 return false;
1802}
1803
1804/*
1805 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1806 * @b_node: the maple_big_node with the data
1807 * @split: the suggested split location
1808 * @slot_count: the number of slots in the node being considered.
1809 *
1810 * Return: the split location.
1811 */
1812static inline int mab_no_null_split(struct maple_big_node *b_node,
1813 unsigned char split, unsigned char slot_count)
1814{
1815 if (!b_node->slot[split]) {
1816 /*
1817 * If the split is less than the max slot && the right side will
1818 * still be sufficient, then increment the split on NULL.
1819 */
1820 if ((split < slot_count - 1) &&
1821 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1822 split++;
1823 else
1824 split--;
1825 }
1826 return split;
1827}
1828
1829/*
1830 * mab_calc_split() - Calculate the split location and if there needs to be two
1831 * splits.
1832 * @bn: The maple_big_node with the data
1833 * @mid_split: The second split, if required. 0 otherwise.
1834 *
1835 * Return: The first split location. The middle split is set in @mid_split.
1836 */
1837static inline int mab_calc_split(struct ma_state *mas,
1838 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1839{
1840 unsigned char b_end = bn->b_end;
1841 int split = b_end / 2; /* Assume equal split. */
1842 unsigned char slot_min, slot_count = mt_slots[bn->type];
1843
1844 /*
1845 * To support gap tracking, all NULL entries are kept together and a node cannot
1846 * end on a NULL entry, with the exception of the left-most leaf. The
1847 * limitation means that the split of a node must be checked for this condition
1848 * and be able to put more data in one direction or the other.
1849 */
1850 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1851 *mid_split = 0;
1852 split = b_end - mt_min_slots[bn->type];
1853
1854 if (!ma_is_leaf(bn->type))
1855 return split;
1856
1857 mas->mas_flags |= MA_STATE_REBALANCE;
1858 if (!bn->slot[split])
1859 split--;
1860 return split;
1861 }
1862
1863 /*
1864 * Although extremely rare, it is possible to enter what is known as the 3-way
1865 * split scenario. The 3-way split comes about by means of a store of a range
1866 * that overwrites the end and beginning of two full nodes. The result is a set
1867 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1868 * also be located in different parent nodes which are also full. This can
1869 * carry upwards all the way to the root in the worst case.
1870 */
1871 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1872 split = b_end / 3;
1873 *mid_split = split * 2;
1874 } else {
1875 slot_min = mt_min_slots[bn->type];
1876
1877 *mid_split = 0;
1878 /*
1879 * Avoid having a range less than the slot count unless it
1880 * causes one node to be deficient.
1881 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1882 */
1883 while (((bn->pivot[split] - min) < slot_count - 1) &&
1884 (split < slot_count - 1) && (b_end - split > slot_min))
1885 split++;
1886 }
1887
1888 /* Avoid ending a node on a NULL entry */
1889 split = mab_no_null_split(bn, split, slot_count);
1890 if (!(*mid_split))
1891 return split;
1892
1893 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1894
1895 return split;
1896}
1897
1898/*
1899 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1900 * and set @b_node->b_end to the next free slot.
1901 * @mas: The maple state
1902 * @mas_start: The starting slot to copy
1903 * @mas_end: The end slot to copy (inclusively)
1904 * @b_node: The maple_big_node to place the data
1905 * @mab_start: The starting location in maple_big_node to store the data.
1906 */
1907static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1908 unsigned char mas_end, struct maple_big_node *b_node,
1909 unsigned char mab_start)
1910{
1911 enum maple_type mt;
1912 struct maple_node *node;
1913 void __rcu **slots;
1914 unsigned long *pivots, *gaps;
1915 int i = mas_start, j = mab_start;
1916 unsigned char piv_end;
1917
1918 node = mas_mn(mas);
1919 mt = mte_node_type(mas->node);
1920 pivots = ma_pivots(node, mt);
1921 if (!i) {
1922 b_node->pivot[j] = pivots[i++];
1923 if (unlikely(i > mas_end))
1924 goto complete;
1925 j++;
1926 }
1927
1928 piv_end = min(mas_end, mt_pivots[mt]);
1929 for (; i < piv_end; i++, j++) {
1930 b_node->pivot[j] = pivots[i];
1931 if (unlikely(!b_node->pivot[j]))
1932 break;
1933
1934 if (unlikely(mas->max == b_node->pivot[j]))
1935 goto complete;
1936 }
1937
1938 if (likely(i <= mas_end))
1939 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1940
1941complete:
1942 b_node->b_end = ++j;
1943 j -= mab_start;
1944 slots = ma_slots(node, mt);
1945 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1946 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1947 gaps = ma_gaps(node, mt);
1948 memcpy(b_node->gap + mab_start, gaps + mas_start,
1949 sizeof(unsigned long) * j);
1950 }
1951}
1952
1953/*
1954 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1955 * @mas: The maple state
1956 * @node: The maple node
1957 * @pivots: pointer to the maple node pivots
1958 * @mt: The maple type
1959 * @end: The assumed end
1960 *
1961 * Note, end may be incremented within this function but not modified at the
1962 * source. This is fine since the metadata is the last thing to be stored in a
1963 * node during a write.
1964 */
1965static inline void mas_leaf_set_meta(struct ma_state *mas,
1966 struct maple_node *node, unsigned long *pivots,
1967 enum maple_type mt, unsigned char end)
1968{
1969 /* There is no room for metadata already */
1970 if (mt_pivots[mt] <= end)
1971 return;
1972
1973 if (pivots[end] && pivots[end] < mas->max)
1974 end++;
1975
1976 if (end < mt_slots[mt] - 1)
1977 ma_set_meta(node, mt, 0, end);
1978}
1979
1980/*
1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982 * @b_node: the maple_big_node that has the data
1983 * @mab_start: the start location in @b_node.
1984 * @mab_end: The end location in @b_node (inclusively)
1985 * @mas: The maple state with the maple encoded node.
1986 */
1987static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 unsigned char mab_start, unsigned char mab_end,
1989 struct ma_state *mas, bool new_max)
1990{
1991 int i, j = 0;
1992 enum maple_type mt = mte_node_type(mas->node);
1993 struct maple_node *node = mte_to_node(mas->node);
1994 void __rcu **slots = ma_slots(node, mt);
1995 unsigned long *pivots = ma_pivots(node, mt);
1996 unsigned long *gaps = NULL;
1997 unsigned char end;
1998
1999 if (mab_end - mab_start > mt_pivots[mt])
2000 mab_end--;
2001
2002 if (!pivots[mt_pivots[mt] - 1])
2003 slots[mt_pivots[mt]] = NULL;
2004
2005 i = mab_start;
2006 do {
2007 pivots[j++] = b_node->pivot[i++];
2008 } while (i <= mab_end && likely(b_node->pivot[i]));
2009
2010 memcpy(slots, b_node->slot + mab_start,
2011 sizeof(void *) * (i - mab_start));
2012
2013 if (new_max)
2014 mas->max = b_node->pivot[i - 1];
2015
2016 end = j - 1;
2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 unsigned long max_gap = 0;
2019 unsigned char offset = 15;
2020
2021 gaps = ma_gaps(node, mt);
2022 do {
2023 gaps[--j] = b_node->gap[--i];
2024 if (gaps[j] > max_gap) {
2025 offset = j;
2026 max_gap = gaps[j];
2027 }
2028 } while (j);
2029
2030 ma_set_meta(node, mt, offset, end);
2031 } else {
2032 mas_leaf_set_meta(mas, node, pivots, mt, end);
2033 }
2034}
2035
2036/*
2037 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2038 * @mas: the maple state with the maple encoded node of the sub-tree.
2039 *
2040 * Descend through a sub-tree and adopt children who do not have the correct
2041 * parents set. Follow the parents which have the correct parents as they are
2042 * the new entries which need to be followed to find other incorrectly set
2043 * parents.
2044 */
2045static inline void mas_descend_adopt(struct ma_state *mas)
2046{
2047 struct ma_state list[3], next[3];
2048 int i, n;
2049
2050 /*
2051 * At each level there may be up to 3 correct parent pointers which indicates
2052 * the new nodes which need to be walked to find any new nodes at a lower level.
2053 */
2054
2055 for (i = 0; i < 3; i++) {
2056 list[i] = *mas;
2057 list[i].offset = 0;
2058 next[i].offset = 0;
2059 }
2060 next[0] = *mas;
2061
2062 while (!mte_is_leaf(list[0].node)) {
2063 n = 0;
2064 for (i = 0; i < 3; i++) {
2065 if (mas_is_none(&list[i]))
2066 continue;
2067
2068 if (i && list[i-1].node == list[i].node)
2069 continue;
2070
2071 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2072 n++;
2073
2074 mas_adopt_children(&list[i], list[i].node);
2075 }
2076
2077 while (n < 3)
2078 next[n++].node = MAS_NONE;
2079
2080 /* descend by setting the list to the children */
2081 for (i = 0; i < 3; i++)
2082 list[i] = next[i];
2083 }
2084}
2085
2086/*
2087 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2088 * @mas: The maple state
2089 * @end: The maple node end
2090 * @mt: The maple node type
2091 */
2092static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2093 enum maple_type mt)
2094{
2095 if (!(mas->mas_flags & MA_STATE_BULK))
2096 return;
2097
2098 if (mte_is_root(mas->node))
2099 return;
2100
2101 if (end > mt_min_slots[mt]) {
2102 mas->mas_flags &= ~MA_STATE_REBALANCE;
2103 return;
2104 }
2105}
2106
2107/*
2108 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2109 * data from a maple encoded node.
2110 * @wr_mas: the maple write state
2111 * @b_node: the maple_big_node to fill with data
2112 * @offset_end: the offset to end copying
2113 *
2114 * Return: The actual end of the data stored in @b_node
2115 */
2116static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2117 struct maple_big_node *b_node, unsigned char offset_end)
2118{
2119 unsigned char slot;
2120 unsigned char b_end;
2121 /* Possible underflow of piv will wrap back to 0 before use. */
2122 unsigned long piv;
2123 struct ma_state *mas = wr_mas->mas;
2124
2125 b_node->type = wr_mas->type;
2126 b_end = 0;
2127 slot = mas->offset;
2128 if (slot) {
2129 /* Copy start data up to insert. */
2130 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2131 b_end = b_node->b_end;
2132 piv = b_node->pivot[b_end - 1];
2133 } else
2134 piv = mas->min - 1;
2135
2136 if (piv + 1 < mas->index) {
2137 /* Handle range starting after old range */
2138 b_node->slot[b_end] = wr_mas->content;
2139 if (!wr_mas->content)
2140 b_node->gap[b_end] = mas->index - 1 - piv;
2141 b_node->pivot[b_end++] = mas->index - 1;
2142 }
2143
2144 /* Store the new entry. */
2145 mas->offset = b_end;
2146 b_node->slot[b_end] = wr_mas->entry;
2147 b_node->pivot[b_end] = mas->last;
2148
2149 /* Appended. */
2150 if (mas->last >= mas->max)
2151 goto b_end;
2152
2153 /* Handle new range ending before old range ends */
2154 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2155 if (piv > mas->last) {
2156 if (piv == ULONG_MAX)
2157 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2158
2159 if (offset_end != slot)
2160 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2161 offset_end);
2162
2163 b_node->slot[++b_end] = wr_mas->content;
2164 if (!wr_mas->content)
2165 b_node->gap[b_end] = piv - mas->last + 1;
2166 b_node->pivot[b_end] = piv;
2167 }
2168
2169 slot = offset_end + 1;
2170 if (slot > wr_mas->node_end)
2171 goto b_end;
2172
2173 /* Copy end data to the end of the node. */
2174 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2175 b_node->b_end--;
2176 return;
2177
2178b_end:
2179 b_node->b_end = b_end;
2180}
2181
2182/*
2183 * mas_prev_sibling() - Find the previous node with the same parent.
2184 * @mas: the maple state
2185 *
2186 * Return: True if there is a previous sibling, false otherwise.
2187 */
2188static inline bool mas_prev_sibling(struct ma_state *mas)
2189{
2190 unsigned int p_slot = mte_parent_slot(mas->node);
2191
2192 if (mte_is_root(mas->node))
2193 return false;
2194
2195 if (!p_slot)
2196 return false;
2197
2198 mas_ascend(mas);
2199 mas->offset = p_slot - 1;
2200 mas_descend(mas);
2201 return true;
2202}
2203
2204/*
2205 * mas_next_sibling() - Find the next node with the same parent.
2206 * @mas: the maple state
2207 *
2208 * Return: true if there is a next sibling, false otherwise.
2209 */
2210static inline bool mas_next_sibling(struct ma_state *mas)
2211{
2212 MA_STATE(parent, mas->tree, mas->index, mas->last);
2213
2214 if (mte_is_root(mas->node))
2215 return false;
2216
2217 parent = *mas;
2218 mas_ascend(&parent);
2219 parent.offset = mte_parent_slot(mas->node) + 1;
2220 if (parent.offset > mas_data_end(&parent))
2221 return false;
2222
2223 *mas = parent;
2224 mas_descend(mas);
2225 return true;
2226}
2227
2228/*
2229 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2230 * @enode: The encoded maple node.
2231 *
2232 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2233 *
2234 * Return: @enode or MAS_NONE
2235 */
2236static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2237{
2238 if (enode)
2239 return enode;
2240
2241 return ma_enode_ptr(MAS_NONE);
2242}
2243
2244/*
2245 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2246 * @wr_mas: The maple write state
2247 *
2248 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2249 */
2250static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2251{
2252 struct ma_state *mas = wr_mas->mas;
2253 unsigned char count;
2254 unsigned char offset;
2255 unsigned long index, min, max;
2256
2257 if (unlikely(ma_is_dense(wr_mas->type))) {
2258 wr_mas->r_max = wr_mas->r_min = mas->index;
2259 mas->offset = mas->index = mas->min;
2260 return;
2261 }
2262
2263 wr_mas->node = mas_mn(wr_mas->mas);
2264 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2265 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2266 wr_mas->pivots, mas->max);
2267 offset = mas->offset;
2268 min = mas_safe_min(mas, wr_mas->pivots, offset);
2269 if (unlikely(offset == count))
2270 goto max;
2271
2272 max = wr_mas->pivots[offset];
2273 index = mas->index;
2274 if (unlikely(index <= max))
2275 goto done;
2276
2277 if (unlikely(!max && offset))
2278 goto max;
2279
2280 min = max + 1;
2281 while (++offset < count) {
2282 max = wr_mas->pivots[offset];
2283 if (index <= max)
2284 goto done;
2285 else if (unlikely(!max))
2286 break;
2287
2288 min = max + 1;
2289 }
2290
2291max:
2292 max = mas->max;
2293done:
2294 wr_mas->r_max = max;
2295 wr_mas->r_min = min;
2296 wr_mas->offset_end = mas->offset = offset;
2297}
2298
2299/*
2300 * mas_topiary_range() - Add a range of slots to the topiary.
2301 * @mas: The maple state
2302 * @destroy: The topiary to add the slots (usually destroy)
2303 * @start: The starting slot inclusively
2304 * @end: The end slot inclusively
2305 */
2306static inline void mas_topiary_range(struct ma_state *mas,
2307 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2308{
2309 void __rcu **slots;
2310 unsigned char offset;
2311
2312 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2313 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2314 for (offset = start; offset <= end; offset++) {
2315 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2316
2317 if (mte_dead_node(enode))
2318 continue;
2319
2320 mat_add(destroy, enode);
2321 }
2322}
2323
2324/*
2325 * mast_topiary() - Add the portions of the tree to the removal list; either to
2326 * be freed or discarded (destroy walk).
2327 * @mast: The maple_subtree_state.
2328 */
2329static inline void mast_topiary(struct maple_subtree_state *mast)
2330{
2331 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2332 unsigned char r_start, r_end;
2333 unsigned char l_start, l_end;
2334 void __rcu **l_slots, **r_slots;
2335
2336 wr_mas.type = mte_node_type(mast->orig_l->node);
2337 mast->orig_l->index = mast->orig_l->last;
2338 mas_wr_node_walk(&wr_mas);
2339 l_start = mast->orig_l->offset + 1;
2340 l_end = mas_data_end(mast->orig_l);
2341 r_start = 0;
2342 r_end = mast->orig_r->offset;
2343
2344 if (r_end)
2345 r_end--;
2346
2347 l_slots = ma_slots(mas_mn(mast->orig_l),
2348 mte_node_type(mast->orig_l->node));
2349
2350 r_slots = ma_slots(mas_mn(mast->orig_r),
2351 mte_node_type(mast->orig_r->node));
2352
2353 if ((l_start < l_end) &&
2354 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2355 l_start++;
2356 }
2357
2358 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2359 if (r_end)
2360 r_end--;
2361 }
2362
2363 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2364 return;
2365
2366 /* At the node where left and right sides meet, add the parts between */
2367 if (mast->orig_l->node == mast->orig_r->node) {
2368 return mas_topiary_range(mast->orig_l, mast->destroy,
2369 l_start, r_end);
2370 }
2371
2372 /* mast->orig_r is different and consumed. */
2373 if (mte_is_leaf(mast->orig_r->node))
2374 return;
2375
2376 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2377 l_end--;
2378
2379
2380 if (l_start <= l_end)
2381 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2382
2383 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2384 r_start++;
2385
2386 if (r_start <= r_end)
2387 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2388}
2389
2390/*
2391 * mast_rebalance_next() - Rebalance against the next node
2392 * @mast: The maple subtree state
2393 * @old_r: The encoded maple node to the right (next node).
2394 */
2395static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2396{
2397 unsigned char b_end = mast->bn->b_end;
2398
2399 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2400 mast->bn, b_end);
2401 mast->orig_r->last = mast->orig_r->max;
2402}
2403
2404/*
2405 * mast_rebalance_prev() - Rebalance against the previous node
2406 * @mast: The maple subtree state
2407 * @old_l: The encoded maple node to the left (previous node)
2408 */
2409static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2410{
2411 unsigned char end = mas_data_end(mast->orig_l) + 1;
2412 unsigned char b_end = mast->bn->b_end;
2413
2414 mab_shift_right(mast->bn, end);
2415 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2416 mast->l->min = mast->orig_l->min;
2417 mast->orig_l->index = mast->orig_l->min;
2418 mast->bn->b_end = end + b_end;
2419 mast->l->offset += end;
2420}
2421
2422/*
2423 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2424 * the node to the right. Checking the nodes to the right then the left at each
2425 * level upwards until root is reached. Free and destroy as needed.
2426 * Data is copied into the @mast->bn.
2427 * @mast: The maple_subtree_state.
2428 */
2429static inline
2430bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2431{
2432 struct ma_state r_tmp = *mast->orig_r;
2433 struct ma_state l_tmp = *mast->orig_l;
2434 struct maple_enode *ancestor = NULL;
2435 unsigned char start, end;
2436 unsigned char depth = 0;
2437
2438 r_tmp = *mast->orig_r;
2439 l_tmp = *mast->orig_l;
2440 do {
2441 mas_ascend(mast->orig_r);
2442 mas_ascend(mast->orig_l);
2443 depth++;
2444 if (!ancestor &&
2445 (mast->orig_r->node == mast->orig_l->node)) {
2446 ancestor = mast->orig_r->node;
2447 end = mast->orig_r->offset - 1;
2448 start = mast->orig_l->offset + 1;
2449 }
2450
2451 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2452 if (!ancestor) {
2453 ancestor = mast->orig_r->node;
2454 start = 0;
2455 }
2456
2457 mast->orig_r->offset++;
2458 do {
2459 mas_descend(mast->orig_r);
2460 mast->orig_r->offset = 0;
2461 depth--;
2462 } while (depth);
2463
2464 mast_rebalance_next(mast);
2465 do {
2466 unsigned char l_off = 0;
2467 struct maple_enode *child = r_tmp.node;
2468
2469 mas_ascend(&r_tmp);
2470 if (ancestor == r_tmp.node)
2471 l_off = start;
2472
2473 if (r_tmp.offset)
2474 r_tmp.offset--;
2475
2476 if (l_off < r_tmp.offset)
2477 mas_topiary_range(&r_tmp, mast->destroy,
2478 l_off, r_tmp.offset);
2479
2480 if (l_tmp.node != child)
2481 mat_add(mast->free, child);
2482
2483 } while (r_tmp.node != ancestor);
2484
2485 *mast->orig_l = l_tmp;
2486 return true;
2487
2488 } else if (mast->orig_l->offset != 0) {
2489 if (!ancestor) {
2490 ancestor = mast->orig_l->node;
2491 end = mas_data_end(mast->orig_l);
2492 }
2493
2494 mast->orig_l->offset--;
2495 do {
2496 mas_descend(mast->orig_l);
2497 mast->orig_l->offset =
2498 mas_data_end(mast->orig_l);
2499 depth--;
2500 } while (depth);
2501
2502 mast_rebalance_prev(mast);
2503 do {
2504 unsigned char r_off;
2505 struct maple_enode *child = l_tmp.node;
2506
2507 mas_ascend(&l_tmp);
2508 if (ancestor == l_tmp.node)
2509 r_off = end;
2510 else
2511 r_off = mas_data_end(&l_tmp);
2512
2513 if (l_tmp.offset < r_off)
2514 l_tmp.offset++;
2515
2516 if (l_tmp.offset < r_off)
2517 mas_topiary_range(&l_tmp, mast->destroy,
2518 l_tmp.offset, r_off);
2519
2520 if (r_tmp.node != child)
2521 mat_add(mast->free, child);
2522
2523 } while (l_tmp.node != ancestor);
2524
2525 *mast->orig_r = r_tmp;
2526 return true;
2527 }
2528 } while (!mte_is_root(mast->orig_r->node));
2529
2530 *mast->orig_r = r_tmp;
2531 *mast->orig_l = l_tmp;
2532 return false;
2533}
2534
2535/*
2536 * mast_ascend_free() - Add current original maple state nodes to the free list
2537 * and ascend.
2538 * @mast: the maple subtree state.
2539 *
2540 * Ascend the original left and right sides and add the previous nodes to the
2541 * free list. Set the slots to point to the correct location in the new nodes.
2542 */
2543static inline void
2544mast_ascend_free(struct maple_subtree_state *mast)
2545{
2546 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2547 struct maple_enode *left = mast->orig_l->node;
2548 struct maple_enode *right = mast->orig_r->node;
2549
2550 mas_ascend(mast->orig_l);
2551 mas_ascend(mast->orig_r);
2552 mat_add(mast->free, left);
2553
2554 if (left != right)
2555 mat_add(mast->free, right);
2556
2557 mast->orig_r->offset = 0;
2558 mast->orig_r->index = mast->r->max;
2559 /* last should be larger than or equal to index */
2560 if (mast->orig_r->last < mast->orig_r->index)
2561 mast->orig_r->last = mast->orig_r->index;
2562 /*
2563 * The node may not contain the value so set slot to ensure all
2564 * of the nodes contents are freed or destroyed.
2565 */
2566 wr_mas.type = mte_node_type(mast->orig_r->node);
2567 mas_wr_node_walk(&wr_mas);
2568 /* Set up the left side of things */
2569 mast->orig_l->offset = 0;
2570 mast->orig_l->index = mast->l->min;
2571 wr_mas.mas = mast->orig_l;
2572 wr_mas.type = mte_node_type(mast->orig_l->node);
2573 mas_wr_node_walk(&wr_mas);
2574
2575 mast->bn->type = wr_mas.type;
2576}
2577
2578/*
2579 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2580 * @mas: the maple state with the allocations.
2581 * @b_node: the maple_big_node with the type encoding.
2582 *
2583 * Use the node type from the maple_big_node to allocate a new node from the
2584 * ma_state. This function exists mainly for code readability.
2585 *
2586 * Return: A new maple encoded node
2587 */
2588static inline struct maple_enode
2589*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2590{
2591 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2592}
2593
2594/*
2595 * mas_mab_to_node() - Set up right and middle nodes
2596 *
2597 * @mas: the maple state that contains the allocations.
2598 * @b_node: the node which contains the data.
2599 * @left: The pointer which will have the left node
2600 * @right: The pointer which may have the right node
2601 * @middle: the pointer which may have the middle node (rare)
2602 * @mid_split: the split location for the middle node
2603 *
2604 * Return: the split of left.
2605 */
2606static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2607 struct maple_big_node *b_node, struct maple_enode **left,
2608 struct maple_enode **right, struct maple_enode **middle,
2609 unsigned char *mid_split, unsigned long min)
2610{
2611 unsigned char split = 0;
2612 unsigned char slot_count = mt_slots[b_node->type];
2613
2614 *left = mas_new_ma_node(mas, b_node);
2615 *right = NULL;
2616 *middle = NULL;
2617 *mid_split = 0;
2618
2619 if (b_node->b_end < slot_count) {
2620 split = b_node->b_end;
2621 } else {
2622 split = mab_calc_split(mas, b_node, mid_split, min);
2623 *right = mas_new_ma_node(mas, b_node);
2624 }
2625
2626 if (*mid_split)
2627 *middle = mas_new_ma_node(mas, b_node);
2628
2629 return split;
2630
2631}
2632
2633/*
2634 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2635 * pointer.
2636 * @b_node - the big node to add the entry
2637 * @mas - the maple state to get the pivot (mas->max)
2638 * @entry - the entry to add, if NULL nothing happens.
2639 */
2640static inline void mab_set_b_end(struct maple_big_node *b_node,
2641 struct ma_state *mas,
2642 void *entry)
2643{
2644 if (!entry)
2645 return;
2646
2647 b_node->slot[b_node->b_end] = entry;
2648 if (mt_is_alloc(mas->tree))
2649 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2650 b_node->pivot[b_node->b_end++] = mas->max;
2651}
2652
2653/*
2654 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2655 * of @mas->node to either @left or @right, depending on @slot and @split
2656 *
2657 * @mas - the maple state with the node that needs a parent
2658 * @left - possible parent 1
2659 * @right - possible parent 2
2660 * @slot - the slot the mas->node was placed
2661 * @split - the split location between @left and @right
2662 */
2663static inline void mas_set_split_parent(struct ma_state *mas,
2664 struct maple_enode *left,
2665 struct maple_enode *right,
2666 unsigned char *slot, unsigned char split)
2667{
2668 if (mas_is_none(mas))
2669 return;
2670
2671 if ((*slot) <= split)
2672 mte_set_parent(mas->node, left, *slot);
2673 else if (right)
2674 mte_set_parent(mas->node, right, (*slot) - split - 1);
2675
2676 (*slot)++;
2677}
2678
2679/*
2680 * mte_mid_split_check() - Check if the next node passes the mid-split
2681 * @**l: Pointer to left encoded maple node.
2682 * @**m: Pointer to middle encoded maple node.
2683 * @**r: Pointer to right encoded maple node.
2684 * @slot: The offset
2685 * @*split: The split location.
2686 * @mid_split: The middle split.
2687 */
2688static inline void mte_mid_split_check(struct maple_enode **l,
2689 struct maple_enode **r,
2690 struct maple_enode *right,
2691 unsigned char slot,
2692 unsigned char *split,
2693 unsigned char mid_split)
2694{
2695 if (*r == right)
2696 return;
2697
2698 if (slot < mid_split)
2699 return;
2700
2701 *l = *r;
2702 *r = right;
2703 *split = mid_split;
2704}
2705
2706/*
2707 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2708 * is taken from @mast->l.
2709 * @mast - the maple subtree state
2710 * @left - the left node
2711 * @right - the right node
2712 * @split - the split location.
2713 */
2714static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2715 struct maple_enode *left,
2716 struct maple_enode *middle,
2717 struct maple_enode *right,
2718 unsigned char split,
2719 unsigned char mid_split)
2720{
2721 unsigned char slot;
2722 struct maple_enode *l = left;
2723 struct maple_enode *r = right;
2724
2725 if (mas_is_none(mast->l))
2726 return;
2727
2728 if (middle)
2729 r = middle;
2730
2731 slot = mast->l->offset;
2732
2733 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2734 mas_set_split_parent(mast->l, l, r, &slot, split);
2735
2736 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2737 mas_set_split_parent(mast->m, l, r, &slot, split);
2738
2739 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2740 mas_set_split_parent(mast->r, l, r, &slot, split);
2741}
2742
2743/*
2744 * mas_wmb_replace() - Write memory barrier and replace
2745 * @mas: The maple state
2746 * @free: the maple topiary list of nodes to free
2747 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2748 *
2749 * Updates gap as necessary.
2750 */
2751static inline void mas_wmb_replace(struct ma_state *mas,
2752 struct ma_topiary *free,
2753 struct ma_topiary *destroy)
2754{
2755 /* All nodes must see old data as dead prior to replacing that data */
2756 smp_wmb(); /* Needed for RCU */
2757
2758 /* Insert the new data in the tree */
2759 mas_replace(mas, true);
2760
2761 if (!mte_is_leaf(mas->node))
2762 mas_descend_adopt(mas);
2763
2764 mas_mat_free(mas, free);
2765
2766 if (destroy)
2767 mas_mat_destroy(mas, destroy);
2768
2769 if (mte_is_leaf(mas->node))
2770 return;
2771
2772 mas_update_gap(mas);
2773}
2774
2775/*
2776 * mast_new_root() - Set a new tree root during subtree creation
2777 * @mast: The maple subtree state
2778 * @mas: The maple state
2779 */
2780static inline void mast_new_root(struct maple_subtree_state *mast,
2781 struct ma_state *mas)
2782{
2783 mas_mn(mast->l)->parent =
2784 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2785 if (!mte_dead_node(mast->orig_l->node) &&
2786 !mte_is_root(mast->orig_l->node)) {
2787 do {
2788 mast_ascend_free(mast);
2789 mast_topiary(mast);
2790 } while (!mte_is_root(mast->orig_l->node));
2791 }
2792 if ((mast->orig_l->node != mas->node) &&
2793 (mast->l->depth > mas_mt_height(mas))) {
2794 mat_add(mast->free, mas->node);
2795 }
2796}
2797
2798/*
2799 * mast_cp_to_nodes() - Copy data out to nodes.
2800 * @mast: The maple subtree state
2801 * @left: The left encoded maple node
2802 * @middle: The middle encoded maple node
2803 * @right: The right encoded maple node
2804 * @split: The location to split between left and (middle ? middle : right)
2805 * @mid_split: The location to split between middle and right.
2806 */
2807static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2808 struct maple_enode *left, struct maple_enode *middle,
2809 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2810{
2811 bool new_lmax = true;
2812
2813 mast->l->node = mte_node_or_none(left);
2814 mast->m->node = mte_node_or_none(middle);
2815 mast->r->node = mte_node_or_none(right);
2816
2817 mast->l->min = mast->orig_l->min;
2818 if (split == mast->bn->b_end) {
2819 mast->l->max = mast->orig_r->max;
2820 new_lmax = false;
2821 }
2822
2823 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2824
2825 if (middle) {
2826 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2827 mast->m->min = mast->bn->pivot[split] + 1;
2828 split = mid_split;
2829 }
2830
2831 mast->r->max = mast->orig_r->max;
2832 if (right) {
2833 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2834 mast->r->min = mast->bn->pivot[split] + 1;
2835 }
2836}
2837
2838/*
2839 * mast_combine_cp_left - Copy in the original left side of the tree into the
2840 * combined data set in the maple subtree state big node.
2841 * @mast: The maple subtree state
2842 */
2843static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2844{
2845 unsigned char l_slot = mast->orig_l->offset;
2846
2847 if (!l_slot)
2848 return;
2849
2850 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2851}
2852
2853/*
2854 * mast_combine_cp_right: Copy in the original right side of the tree into the
2855 * combined data set in the maple subtree state big node.
2856 * @mast: The maple subtree state
2857 */
2858static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2859{
2860 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2861 return;
2862
2863 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2864 mt_slot_count(mast->orig_r->node), mast->bn,
2865 mast->bn->b_end);
2866 mast->orig_r->last = mast->orig_r->max;
2867}
2868
2869/*
2870 * mast_sufficient: Check if the maple subtree state has enough data in the big
2871 * node to create at least one sufficient node
2872 * @mast: the maple subtree state
2873 */
2874static inline bool mast_sufficient(struct maple_subtree_state *mast)
2875{
2876 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2877 return true;
2878
2879 return false;
2880}
2881
2882/*
2883 * mast_overflow: Check if there is too much data in the subtree state for a
2884 * single node.
2885 * @mast: The maple subtree state
2886 */
2887static inline bool mast_overflow(struct maple_subtree_state *mast)
2888{
2889 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2890 return true;
2891
2892 return false;
2893}
2894
2895static inline void *mtree_range_walk(struct ma_state *mas)
2896{
2897 unsigned long *pivots;
2898 unsigned char offset;
2899 struct maple_node *node;
2900 struct maple_enode *next, *last;
2901 enum maple_type type;
2902 void __rcu **slots;
2903 unsigned char end;
2904 unsigned long max, min;
2905 unsigned long prev_max, prev_min;
2906
2907 next = mas->node;
2908 min = mas->min;
2909 max = mas->max;
2910 do {
2911 offset = 0;
2912 last = next;
2913 node = mte_to_node(next);
2914 type = mte_node_type(next);
2915 pivots = ma_pivots(node, type);
2916 end = ma_data_end(node, type, pivots, max);
2917 if (unlikely(ma_dead_node(node)))
2918 goto dead_node;
2919
2920 if (pivots[offset] >= mas->index) {
2921 prev_max = max;
2922 prev_min = min;
2923 max = pivots[offset];
2924 goto next;
2925 }
2926
2927 do {
2928 offset++;
2929 } while ((offset < end) && (pivots[offset] < mas->index));
2930
2931 prev_min = min;
2932 min = pivots[offset - 1] + 1;
2933 prev_max = max;
2934 if (likely(offset < end && pivots[offset]))
2935 max = pivots[offset];
2936
2937next:
2938 slots = ma_slots(node, type);
2939 next = mt_slot(mas->tree, slots, offset);
2940 if (unlikely(ma_dead_node(node)))
2941 goto dead_node;
2942 } while (!ma_is_leaf(type));
2943
2944 mas->offset = offset;
2945 mas->index = min;
2946 mas->last = max;
2947 mas->min = prev_min;
2948 mas->max = prev_max;
2949 mas->node = last;
2950 return (void *) next;
2951
2952dead_node:
2953 mas_reset(mas);
2954 return NULL;
2955}
2956
2957/*
2958 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2959 * @mas: The starting maple state
2960 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2961 * @count: The estimated count of iterations needed.
2962 *
2963 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2964 * is hit. First @b_node is split into two entries which are inserted into the
2965 * next iteration of the loop. @b_node is returned populated with the final
2966 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2967 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2968 * to account of what has been copied into the new sub-tree. The update of
2969 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2970 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2971 * the new sub-tree in case the sub-tree becomes the full tree.
2972 *
2973 * Return: the number of elements in b_node during the last loop.
2974 */
2975static int mas_spanning_rebalance(struct ma_state *mas,
2976 struct maple_subtree_state *mast, unsigned char count)
2977{
2978 unsigned char split, mid_split;
2979 unsigned char slot = 0;
2980 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2981
2982 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2983 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2984 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2985 MA_TOPIARY(free, mas->tree);
2986 MA_TOPIARY(destroy, mas->tree);
2987
2988 /*
2989 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2990 * Rebalancing is done by use of the ``struct maple_topiary``.
2991 */
2992 mast->l = &l_mas;
2993 mast->m = &m_mas;
2994 mast->r = &r_mas;
2995 mast->free = &free;
2996 mast->destroy = &destroy;
2997 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2998
2999 /* Check if this is not root and has sufficient data. */
3000 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3001 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3002 mast_spanning_rebalance(mast);
3003
3004 mast->orig_l->depth = 0;
3005
3006 /*
3007 * Each level of the tree is examined and balanced, pushing data to the left or
3008 * right, or rebalancing against left or right nodes is employed to avoid
3009 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3010 * the tree is created, there may be a mix of new and old nodes. The old nodes
3011 * will have the incorrect parent pointers and currently be in two trees: the
3012 * original tree and the partially new tree. To remedy the parent pointers in
3013 * the old tree, the new data is swapped into the active tree and a walk down
3014 * the tree is performed and the parent pointers are updated.
3015 * See mas_descend_adopt() for more information..
3016 */
3017 while (count--) {
3018 mast->bn->b_end--;
3019 mast->bn->type = mte_node_type(mast->orig_l->node);
3020 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3021 &mid_split, mast->orig_l->min);
3022 mast_set_split_parents(mast, left, middle, right, split,
3023 mid_split);
3024 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3025
3026 /*
3027 * Copy data from next level in the tree to mast->bn from next
3028 * iteration
3029 */
3030 memset(mast->bn, 0, sizeof(struct maple_big_node));
3031 mast->bn->type = mte_node_type(left);
3032 mast->orig_l->depth++;
3033
3034 /* Root already stored in l->node. */
3035 if (mas_is_root_limits(mast->l))
3036 goto new_root;
3037
3038 mast_ascend_free(mast);
3039 mast_combine_cp_left(mast);
3040 l_mas.offset = mast->bn->b_end;
3041 mab_set_b_end(mast->bn, &l_mas, left);
3042 mab_set_b_end(mast->bn, &m_mas, middle);
3043 mab_set_b_end(mast->bn, &r_mas, right);
3044
3045 /* Copy anything necessary out of the right node. */
3046 mast_combine_cp_right(mast);
3047 mast_topiary(mast);
3048 mast->orig_l->last = mast->orig_l->max;
3049
3050 if (mast_sufficient(mast))
3051 continue;
3052
3053 if (mast_overflow(mast))
3054 continue;
3055
3056 /* May be a new root stored in mast->bn */
3057 if (mas_is_root_limits(mast->orig_l))
3058 break;
3059
3060 mast_spanning_rebalance(mast);
3061
3062 /* rebalancing from other nodes may require another loop. */
3063 if (!count)
3064 count++;
3065 }
3066
3067 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3068 mte_node_type(mast->orig_l->node));
3069 mast->orig_l->depth++;
3070 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3071 mte_set_parent(left, l_mas.node, slot);
3072 if (middle)
3073 mte_set_parent(middle, l_mas.node, ++slot);
3074
3075 if (right)
3076 mte_set_parent(right, l_mas.node, ++slot);
3077
3078 if (mas_is_root_limits(mast->l)) {
3079new_root:
3080 mast_new_root(mast, mas);
3081 } else {
3082 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3083 }
3084
3085 if (!mte_dead_node(mast->orig_l->node))
3086 mat_add(&free, mast->orig_l->node);
3087
3088 mas->depth = mast->orig_l->depth;
3089 *mast->orig_l = l_mas;
3090 mte_set_node_dead(mas->node);
3091
3092 /* Set up mas for insertion. */
3093 mast->orig_l->depth = mas->depth;
3094 mast->orig_l->alloc = mas->alloc;
3095 *mas = *mast->orig_l;
3096 mas_wmb_replace(mas, &free, &destroy);
3097 mtree_range_walk(mas);
3098 return mast->bn->b_end;
3099}
3100
3101/*
3102 * mas_rebalance() - Rebalance a given node.
3103 * @mas: The maple state
3104 * @b_node: The big maple node.
3105 *
3106 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3107 * Continue upwards until tree is sufficient.
3108 *
3109 * Return: the number of elements in b_node during the last loop.
3110 */
3111static inline int mas_rebalance(struct ma_state *mas,
3112 struct maple_big_node *b_node)
3113{
3114 char empty_count = mas_mt_height(mas);
3115 struct maple_subtree_state mast;
3116 unsigned char shift, b_end = ++b_node->b_end;
3117
3118 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3119 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3120
3121 trace_ma_op(__func__, mas);
3122
3123 /*
3124 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3125 * against the node to the right if it exists, otherwise the node to the
3126 * left of this node is rebalanced against this node. If rebalancing
3127 * causes just one node to be produced instead of two, then the parent
3128 * is also examined and rebalanced if it is insufficient. Every level
3129 * tries to combine the data in the same way. If one node contains the
3130 * entire range of the tree, then that node is used as a new root node.
3131 */
3132 mas_node_count(mas, 1 + empty_count * 3);
3133 if (mas_is_err(mas))
3134 return 0;
3135
3136 mast.orig_l = &l_mas;
3137 mast.orig_r = &r_mas;
3138 mast.bn = b_node;
3139 mast.bn->type = mte_node_type(mas->node);
3140
3141 l_mas = r_mas = *mas;
3142
3143 if (mas_next_sibling(&r_mas)) {
3144 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3145 r_mas.last = r_mas.index = r_mas.max;
3146 } else {
3147 mas_prev_sibling(&l_mas);
3148 shift = mas_data_end(&l_mas) + 1;
3149 mab_shift_right(b_node, shift);
3150 mas->offset += shift;
3151 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3152 b_node->b_end = shift + b_end;
3153 l_mas.index = l_mas.last = l_mas.min;
3154 }
3155
3156 return mas_spanning_rebalance(mas, &mast, empty_count);
3157}
3158
3159/*
3160 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3161 * state.
3162 * @mas: The maple state
3163 * @end: The end of the left-most node.
3164 *
3165 * During a mass-insert event (such as forking), it may be necessary to
3166 * rebalance the left-most node when it is not sufficient.
3167 */
3168static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3169{
3170 enum maple_type mt = mte_node_type(mas->node);
3171 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3172 struct maple_enode *eparent;
3173 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3174 void __rcu **l_slots, **slots;
3175 unsigned long *l_pivs, *pivs, gap;
3176 bool in_rcu = mt_in_rcu(mas->tree);
3177
3178 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3179
3180 l_mas = *mas;
3181 mas_prev_sibling(&l_mas);
3182
3183 /* set up node. */
3184 if (in_rcu) {
3185 /* Allocate for both left and right as well as parent. */
3186 mas_node_count(mas, 3);
3187 if (mas_is_err(mas))
3188 return;
3189
3190 newnode = mas_pop_node(mas);
3191 } else {
3192 newnode = &reuse;
3193 }
3194
3195 node = mas_mn(mas);
3196 newnode->parent = node->parent;
3197 slots = ma_slots(newnode, mt);
3198 pivs = ma_pivots(newnode, mt);
3199 left = mas_mn(&l_mas);
3200 l_slots = ma_slots(left, mt);
3201 l_pivs = ma_pivots(left, mt);
3202 if (!l_slots[split])
3203 split++;
3204 tmp = mas_data_end(&l_mas) - split;
3205
3206 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3207 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3208 pivs[tmp] = l_mas.max;
3209 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3210 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3211
3212 l_mas.max = l_pivs[split];
3213 mas->min = l_mas.max + 1;
3214 eparent = mt_mk_node(mte_parent(l_mas.node),
3215 mas_parent_enum(&l_mas, l_mas.node));
3216 tmp += end;
3217 if (!in_rcu) {
3218 unsigned char max_p = mt_pivots[mt];
3219 unsigned char max_s = mt_slots[mt];
3220
3221 if (tmp < max_p)
3222 memset(pivs + tmp, 0,
3223 sizeof(unsigned long *) * (max_p - tmp));
3224
3225 if (tmp < mt_slots[mt])
3226 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3227
3228 memcpy(node, newnode, sizeof(struct maple_node));
3229 ma_set_meta(node, mt, 0, tmp - 1);
3230 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3231 l_pivs[split]);
3232
3233 /* Remove data from l_pivs. */
3234 tmp = split + 1;
3235 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3236 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3237 ma_set_meta(left, mt, 0, split);
3238
3239 goto done;
3240 }
3241
3242 /* RCU requires replacing both l_mas, mas, and parent. */
3243 mas->node = mt_mk_node(newnode, mt);
3244 ma_set_meta(newnode, mt, 0, tmp);
3245
3246 new_left = mas_pop_node(mas);
3247 new_left->parent = left->parent;
3248 mt = mte_node_type(l_mas.node);
3249 slots = ma_slots(new_left, mt);
3250 pivs = ma_pivots(new_left, mt);
3251 memcpy(slots, l_slots, sizeof(void *) * split);
3252 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3253 ma_set_meta(new_left, mt, 0, split);
3254 l_mas.node = mt_mk_node(new_left, mt);
3255
3256 /* replace parent. */
3257 offset = mte_parent_slot(mas->node);
3258 mt = mas_parent_enum(&l_mas, l_mas.node);
3259 parent = mas_pop_node(mas);
3260 slots = ma_slots(parent, mt);
3261 pivs = ma_pivots(parent, mt);
3262 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3263 rcu_assign_pointer(slots[offset], mas->node);
3264 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3265 pivs[offset - 1] = l_mas.max;
3266 eparent = mt_mk_node(parent, mt);
3267done:
3268 gap = mas_leaf_max_gap(mas);
3269 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3270 gap = mas_leaf_max_gap(&l_mas);
3271 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3272 mas_ascend(mas);
3273
3274 if (in_rcu)
3275 mas_replace(mas, false);
3276
3277 mas_update_gap(mas);
3278}
3279
3280/*
3281 * mas_split_final_node() - Split the final node in a subtree operation.
3282 * @mast: the maple subtree state
3283 * @mas: The maple state
3284 * @height: The height of the tree in case it's a new root.
3285 */
3286static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3287 struct ma_state *mas, int height)
3288{
3289 struct maple_enode *ancestor;
3290
3291 if (mte_is_root(mas->node)) {
3292 if (mt_is_alloc(mas->tree))
3293 mast->bn->type = maple_arange_64;
3294 else
3295 mast->bn->type = maple_range_64;
3296 mas->depth = height;
3297 }
3298 /*
3299 * Only a single node is used here, could be root.
3300 * The Big_node data should just fit in a single node.
3301 */
3302 ancestor = mas_new_ma_node(mas, mast->bn);
3303 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3304 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3305 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3306
3307 mast->l->node = ancestor;
3308 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3309 mas->offset = mast->bn->b_end - 1;
3310 return true;
3311}
3312
3313/*
3314 * mast_fill_bnode() - Copy data into the big node in the subtree state
3315 * @mast: The maple subtree state
3316 * @mas: the maple state
3317 * @skip: The number of entries to skip for new nodes insertion.
3318 */
3319static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3320 struct ma_state *mas,
3321 unsigned char skip)
3322{
3323 bool cp = true;
3324 struct maple_enode *old = mas->node;
3325 unsigned char split;
3326
3327 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3328 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3329 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3330 mast->bn->b_end = 0;
3331
3332 if (mte_is_root(mas->node)) {
3333 cp = false;
3334 } else {
3335 mas_ascend(mas);
3336 mat_add(mast->free, old);
3337 mas->offset = mte_parent_slot(mas->node);
3338 }
3339
3340 if (cp && mast->l->offset)
3341 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3342
3343 split = mast->bn->b_end;
3344 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3345 mast->r->offset = mast->bn->b_end;
3346 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3347 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3348 cp = false;
3349
3350 if (cp)
3351 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3352 mast->bn, mast->bn->b_end);
3353
3354 mast->bn->b_end--;
3355 mast->bn->type = mte_node_type(mas->node);
3356}
3357
3358/*
3359 * mast_split_data() - Split the data in the subtree state big node into regular
3360 * nodes.
3361 * @mast: The maple subtree state
3362 * @mas: The maple state
3363 * @split: The location to split the big node
3364 */
3365static inline void mast_split_data(struct maple_subtree_state *mast,
3366 struct ma_state *mas, unsigned char split)
3367{
3368 unsigned char p_slot;
3369
3370 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3371 mte_set_pivot(mast->r->node, 0, mast->r->max);
3372 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3373 mast->l->offset = mte_parent_slot(mas->node);
3374 mast->l->max = mast->bn->pivot[split];
3375 mast->r->min = mast->l->max + 1;
3376 if (mte_is_leaf(mas->node))
3377 return;
3378
3379 p_slot = mast->orig_l->offset;
3380 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3381 &p_slot, split);
3382 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3383 &p_slot, split);
3384}
3385
3386/*
3387 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3388 * data to the right or left node if there is room.
3389 * @mas: The maple state
3390 * @height: The current height of the maple state
3391 * @mast: The maple subtree state
3392 * @left: Push left or not.
3393 *
3394 * Keeping the height of the tree low means faster lookups.
3395 *
3396 * Return: True if pushed, false otherwise.
3397 */
3398static inline bool mas_push_data(struct ma_state *mas, int height,
3399 struct maple_subtree_state *mast, bool left)
3400{
3401 unsigned char slot_total = mast->bn->b_end;
3402 unsigned char end, space, split;
3403
3404 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3405 tmp_mas = *mas;
3406 tmp_mas.depth = mast->l->depth;
3407
3408 if (left && !mas_prev_sibling(&tmp_mas))
3409 return false;
3410 else if (!left && !mas_next_sibling(&tmp_mas))
3411 return false;
3412
3413 end = mas_data_end(&tmp_mas);
3414 slot_total += end;
3415 space = 2 * mt_slot_count(mas->node) - 2;
3416 /* -2 instead of -1 to ensure there isn't a triple split */
3417 if (ma_is_leaf(mast->bn->type))
3418 space--;
3419
3420 if (mas->max == ULONG_MAX)
3421 space--;
3422
3423 if (slot_total >= space)
3424 return false;
3425
3426 /* Get the data; Fill mast->bn */
3427 mast->bn->b_end++;
3428 if (left) {
3429 mab_shift_right(mast->bn, end + 1);
3430 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3431 mast->bn->b_end = slot_total + 1;
3432 } else {
3433 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3434 }
3435
3436 /* Configure mast for splitting of mast->bn */
3437 split = mt_slots[mast->bn->type] - 2;
3438 if (left) {
3439 /* Switch mas to prev node */
3440 mat_add(mast->free, mas->node);
3441 *mas = tmp_mas;
3442 /* Start using mast->l for the left side. */
3443 tmp_mas.node = mast->l->node;
3444 *mast->l = tmp_mas;
3445 } else {
3446 mat_add(mast->free, tmp_mas.node);
3447 tmp_mas.node = mast->r->node;
3448 *mast->r = tmp_mas;
3449 split = slot_total - split;
3450 }
3451 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3452 /* Update parent slot for split calculation. */
3453 if (left)
3454 mast->orig_l->offset += end + 1;
3455
3456 mast_split_data(mast, mas, split);
3457 mast_fill_bnode(mast, mas, 2);
3458 mas_split_final_node(mast, mas, height + 1);
3459 return true;
3460}
3461
3462/*
3463 * mas_split() - Split data that is too big for one node into two.
3464 * @mas: The maple state
3465 * @b_node: The maple big node
3466 * Return: 1 on success, 0 on failure.
3467 */
3468static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3469{
3470
3471 struct maple_subtree_state mast;
3472 int height = 0;
3473 unsigned char mid_split, split = 0;
3474
3475 /*
3476 * Splitting is handled differently from any other B-tree; the Maple
3477 * Tree splits upwards. Splitting up means that the split operation
3478 * occurs when the walk of the tree hits the leaves and not on the way
3479 * down. The reason for splitting up is that it is impossible to know
3480 * how much space will be needed until the leaf is (or leaves are)
3481 * reached. Since overwriting data is allowed and a range could
3482 * overwrite more than one range or result in changing one entry into 3
3483 * entries, it is impossible to know if a split is required until the
3484 * data is examined.
3485 *
3486 * Splitting is a balancing act between keeping allocations to a minimum
3487 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 * for an entry followed by a contraction when the entry is removed. To
3489 * accomplish the balance, there are empty slots remaining in both left
3490 * and right nodes after a split.
3491 */
3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 MA_TOPIARY(mat, mas->tree);
3497
3498 trace_ma_op(__func__, mas);
3499 mas->depth = mas_mt_height(mas);
3500 /* Allocation failures will happen early. */
3501 mas_node_count(mas, 1 + mas->depth * 2);
3502 if (mas_is_err(mas))
3503 return 0;
3504
3505 mast.l = &l_mas;
3506 mast.r = &r_mas;
3507 mast.orig_l = &prev_l_mas;
3508 mast.orig_r = &prev_r_mas;
3509 mast.free = &mat;
3510 mast.bn = b_node;
3511
3512 while (height++ <= mas->depth) {
3513 if (mt_slots[b_node->type] > b_node->b_end) {
3514 mas_split_final_node(&mast, mas, height);
3515 break;
3516 }
3517
3518 l_mas = r_mas = *mas;
3519 l_mas.node = mas_new_ma_node(mas, b_node);
3520 r_mas.node = mas_new_ma_node(mas, b_node);
3521 /*
3522 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 * left or right node has space to spare. This is referred to as "pushing left"
3524 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 * is a significant savings.
3527 */
3528 /* Try to push left. */
3529 if (mas_push_data(mas, height, &mast, true))
3530 break;
3531
3532 /* Try to push right. */
3533 if (mas_push_data(mas, height, &mast, false))
3534 break;
3535
3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 mast_split_data(&mast, mas, split);
3538 /*
3539 * Usually correct, mab_mas_cp in the above call overwrites
3540 * r->max.
3541 */
3542 mast.r->max = mas->max;
3543 mast_fill_bnode(&mast, mas, 1);
3544 prev_l_mas = *mast.l;
3545 prev_r_mas = *mast.r;
3546 }
3547
3548 /* Set the original node as dead */
3549 mat_add(mast.free, mas->node);
3550 mas->node = l_mas.node;
3551 mas_wmb_replace(mas, mast.free, NULL);
3552 mtree_range_walk(mas);
3553 return 1;
3554}
3555
3556/*
3557 * mas_reuse_node() - Reuse the node to store the data.
3558 * @wr_mas: The maple write state
3559 * @bn: The maple big node
3560 * @end: The end of the data.
3561 *
3562 * Will always return false in RCU mode.
3563 *
3564 * Return: True if node was reused, false otherwise.
3565 */
3566static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 struct maple_big_node *bn, unsigned char end)
3568{
3569 /* Need to be rcu safe. */
3570 if (mt_in_rcu(wr_mas->mas->tree))
3571 return false;
3572
3573 if (end > bn->b_end) {
3574 int clear = mt_slots[wr_mas->type] - bn->b_end;
3575
3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3578 }
3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3580 return true;
3581}
3582
3583/*
3584 * mas_commit_b_node() - Commit the big node into the tree.
3585 * @wr_mas: The maple write state
3586 * @b_node: The maple big node
3587 * @end: The end of the data.
3588 */
3589static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3590 struct maple_big_node *b_node, unsigned char end)
3591{
3592 struct maple_node *node;
3593 unsigned char b_end = b_node->b_end;
3594 enum maple_type b_type = b_node->type;
3595
3596 if ((b_end < mt_min_slots[b_type]) &&
3597 (!mte_is_root(wr_mas->mas->node)) &&
3598 (mas_mt_height(wr_mas->mas) > 1))
3599 return mas_rebalance(wr_mas->mas, b_node);
3600
3601 if (b_end >= mt_slots[b_type])
3602 return mas_split(wr_mas->mas, b_node);
3603
3604 if (mas_reuse_node(wr_mas, b_node, end))
3605 goto reuse_node;
3606
3607 mas_node_count(wr_mas->mas, 1);
3608 if (mas_is_err(wr_mas->mas))
3609 return 0;
3610
3611 node = mas_pop_node(wr_mas->mas);
3612 node->parent = mas_mn(wr_mas->mas)->parent;
3613 wr_mas->mas->node = mt_mk_node(node, b_type);
3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3615 mas_replace(wr_mas->mas, false);
3616reuse_node:
3617 mas_update_gap(wr_mas->mas);
3618 return 1;
3619}
3620
3621/*
3622 * mas_root_expand() - Expand a root to a node
3623 * @mas: The maple state
3624 * @entry: The entry to store into the tree
3625 */
3626static inline int mas_root_expand(struct ma_state *mas, void *entry)
3627{
3628 void *contents = mas_root_locked(mas);
3629 enum maple_type type = maple_leaf_64;
3630 struct maple_node *node;
3631 void __rcu **slots;
3632 unsigned long *pivots;
3633 int slot = 0;
3634
3635 mas_node_count(mas, 1);
3636 if (unlikely(mas_is_err(mas)))
3637 return 0;
3638
3639 node = mas_pop_node(mas);
3640 pivots = ma_pivots(node, type);
3641 slots = ma_slots(node, type);
3642 node->parent = ma_parent_ptr(
3643 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 mas->node = mt_mk_node(node, type);
3645
3646 if (mas->index) {
3647 if (contents) {
3648 rcu_assign_pointer(slots[slot], contents);
3649 if (likely(mas->index > 1))
3650 slot++;
3651 }
3652 pivots[slot++] = mas->index - 1;
3653 }
3654
3655 rcu_assign_pointer(slots[slot], entry);
3656 mas->offset = slot;
3657 pivots[slot] = mas->last;
3658 if (mas->last != ULONG_MAX)
3659 slot++;
3660 mas->depth = 1;
3661 mas_set_height(mas);
3662
3663 /* swap the new root into the tree */
3664 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3665 ma_set_meta(node, maple_leaf_64, 0, slot);
3666 return slot;
3667}
3668
3669static inline void mas_store_root(struct ma_state *mas, void *entry)
3670{
3671 if (likely((mas->last != 0) || (mas->index != 0)))
3672 mas_root_expand(mas, entry);
3673 else if (((unsigned long) (entry) & 3) == 2)
3674 mas_root_expand(mas, entry);
3675 else {
3676 rcu_assign_pointer(mas->tree->ma_root, entry);
3677 mas->node = MAS_START;
3678 }
3679}
3680
3681/*
3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3683 * spans the node.
3684 * @mas: The maple state
3685 * @piv: The pivot value being written
3686 * @type: The maple node type
3687 * @entry: The data to write
3688 *
3689 * Spanning writes are writes that start in one node and end in another OR if
3690 * the write of a %NULL will cause the node to end with a %NULL.
3691 *
3692 * Return: True if this is a spanning write, false otherwise.
3693 */
3694static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3695{
3696 unsigned long max;
3697 unsigned long last = wr_mas->mas->last;
3698 unsigned long piv = wr_mas->r_max;
3699 enum maple_type type = wr_mas->type;
3700 void *entry = wr_mas->entry;
3701
3702 /* Contained in this pivot */
3703 if (piv > last)
3704 return false;
3705
3706 max = wr_mas->mas->max;
3707 if (unlikely(ma_is_leaf(type))) {
3708 /* Fits in the node, but may span slots. */
3709 if (last < max)
3710 return false;
3711
3712 /* Writes to the end of the node but not null. */
3713 if ((last == max) && entry)
3714 return false;
3715
3716 /*
3717 * Writing ULONG_MAX is not a spanning write regardless of the
3718 * value being written as long as the range fits in the node.
3719 */
3720 if ((last == ULONG_MAX) && (last == max))
3721 return false;
3722 } else if (piv == last) {
3723 if (entry)
3724 return false;
3725
3726 /* Detect spanning store wr walk */
3727 if (last == ULONG_MAX)
3728 return false;
3729 }
3730
3731 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3732
3733 return true;
3734}
3735
3736static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3737{
3738 wr_mas->type = mte_node_type(wr_mas->mas->node);
3739 mas_wr_node_walk(wr_mas);
3740 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3741}
3742
3743static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3744{
3745 wr_mas->mas->max = wr_mas->r_max;
3746 wr_mas->mas->min = wr_mas->r_min;
3747 wr_mas->mas->node = wr_mas->content;
3748 wr_mas->mas->offset = 0;
3749 wr_mas->mas->depth++;
3750}
3751/*
3752 * mas_wr_walk() - Walk the tree for a write.
3753 * @wr_mas: The maple write state
3754 *
3755 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3756 *
3757 * Return: True if it's contained in a node, false on spanning write.
3758 */
3759static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3760{
3761 struct ma_state *mas = wr_mas->mas;
3762
3763 while (true) {
3764 mas_wr_walk_descend(wr_mas);
3765 if (unlikely(mas_is_span_wr(wr_mas)))
3766 return false;
3767
3768 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3769 mas->offset);
3770 if (ma_is_leaf(wr_mas->type))
3771 return true;
3772
3773 mas_wr_walk_traverse(wr_mas);
3774 }
3775
3776 return true;
3777}
3778
3779static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3780{
3781 struct ma_state *mas = wr_mas->mas;
3782
3783 while (true) {
3784 mas_wr_walk_descend(wr_mas);
3785 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3786 mas->offset);
3787 if (ma_is_leaf(wr_mas->type))
3788 return true;
3789 mas_wr_walk_traverse(wr_mas);
3790
3791 }
3792 return true;
3793}
3794/*
3795 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3796 * @l_wr_mas: The left maple write state
3797 * @r_wr_mas: The right maple write state
3798 */
3799static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3800 struct ma_wr_state *r_wr_mas)
3801{
3802 struct ma_state *r_mas = r_wr_mas->mas;
3803 struct ma_state *l_mas = l_wr_mas->mas;
3804 unsigned char l_slot;
3805
3806 l_slot = l_mas->offset;
3807 if (!l_wr_mas->content)
3808 l_mas->index = l_wr_mas->r_min;
3809
3810 if ((l_mas->index == l_wr_mas->r_min) &&
3811 (l_slot &&
3812 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3813 if (l_slot > 1)
3814 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3815 else
3816 l_mas->index = l_mas->min;
3817
3818 l_mas->offset = l_slot - 1;
3819 }
3820
3821 if (!r_wr_mas->content) {
3822 if (r_mas->last < r_wr_mas->r_max)
3823 r_mas->last = r_wr_mas->r_max;
3824 r_mas->offset++;
3825 } else if ((r_mas->last == r_wr_mas->r_max) &&
3826 (r_mas->last < r_mas->max) &&
3827 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3828 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3829 r_wr_mas->type, r_mas->offset + 1);
3830 r_mas->offset++;
3831 }
3832}
3833
3834static inline void *mas_state_walk(struct ma_state *mas)
3835{
3836 void *entry;
3837
3838 entry = mas_start(mas);
3839 if (mas_is_none(mas))
3840 return NULL;
3841
3842 if (mas_is_ptr(mas))
3843 return entry;
3844
3845 return mtree_range_walk(mas);
3846}
3847
3848/*
3849 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3850 * to date.
3851 *
3852 * @mas: The maple state.
3853 *
3854 * Note: Leaves mas in undesirable state.
3855 * Return: The entry for @mas->index or %NULL on dead node.
3856 */
3857static inline void *mtree_lookup_walk(struct ma_state *mas)
3858{
3859 unsigned long *pivots;
3860 unsigned char offset;
3861 struct maple_node *node;
3862 struct maple_enode *next;
3863 enum maple_type type;
3864 void __rcu **slots;
3865 unsigned char end;
3866 unsigned long max;
3867
3868 next = mas->node;
3869 max = ULONG_MAX;
3870 do {
3871 offset = 0;
3872 node = mte_to_node(next);
3873 type = mte_node_type(next);
3874 pivots = ma_pivots(node, type);
3875 end = ma_data_end(node, type, pivots, max);
3876 if (unlikely(ma_dead_node(node)))
3877 goto dead_node;
3878
3879 if (pivots[offset] >= mas->index)
3880 goto next;
3881
3882 do {
3883 offset++;
3884 } while ((offset < end) && (pivots[offset] < mas->index));
3885
3886 if (likely(offset > end))
3887 max = pivots[offset];
3888
3889next:
3890 slots = ma_slots(node, type);
3891 next = mt_slot(mas->tree, slots, offset);
3892 if (unlikely(ma_dead_node(node)))
3893 goto dead_node;
3894 } while (!ma_is_leaf(type));
3895
3896 return (void *) next;
3897
3898dead_node:
3899 mas_reset(mas);
3900 return NULL;
3901}
3902
3903/*
3904 * mas_new_root() - Create a new root node that only contains the entry passed
3905 * in.
3906 * @mas: The maple state
3907 * @entry: The entry to store.
3908 *
3909 * Only valid when the index == 0 and the last == ULONG_MAX
3910 *
3911 * Return 0 on error, 1 on success.
3912 */
3913static inline int mas_new_root(struct ma_state *mas, void *entry)
3914{
3915 struct maple_enode *root = mas_root_locked(mas);
3916 enum maple_type type = maple_leaf_64;
3917 struct maple_node *node;
3918 void __rcu **slots;
3919 unsigned long *pivots;
3920
3921 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3922 mas->depth = 0;
3923 mas_set_height(mas);
3924 rcu_assign_pointer(mas->tree->ma_root, entry);
3925 mas->node = MAS_START;
3926 goto done;
3927 }
3928
3929 mas_node_count(mas, 1);
3930 if (mas_is_err(mas))
3931 return 0;
3932
3933 node = mas_pop_node(mas);
3934 pivots = ma_pivots(node, type);
3935 slots = ma_slots(node, type);
3936 node->parent = ma_parent_ptr(
3937 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3938 mas->node = mt_mk_node(node, type);
3939 rcu_assign_pointer(slots[0], entry);
3940 pivots[0] = mas->last;
3941 mas->depth = 1;
3942 mas_set_height(mas);
3943 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3944
3945done:
3946 if (xa_is_node(root))
3947 mte_destroy_walk(root, mas->tree);
3948
3949 return 1;
3950}
3951/*
3952 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3953 * and new nodes where necessary, then place the sub-tree in the actual tree.
3954 * Note that mas is expected to point to the node which caused the store to
3955 * span.
3956 * @wr_mas: The maple write state
3957 *
3958 * Return: 0 on error, positive on success.
3959 */
3960static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3961{
3962 struct maple_subtree_state mast;
3963 struct maple_big_node b_node;
3964 struct ma_state *mas;
3965 unsigned char height;
3966
3967 /* Left and Right side of spanning store */
3968 MA_STATE(l_mas, NULL, 0, 0);
3969 MA_STATE(r_mas, NULL, 0, 0);
3970
3971 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3972 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3973
3974 /*
3975 * A store operation that spans multiple nodes is called a spanning
3976 * store and is handled early in the store call stack by the function
3977 * mas_is_span_wr(). When a spanning store is identified, the maple
3978 * state is duplicated. The first maple state walks the left tree path
3979 * to ``index``, the duplicate walks the right tree path to ``last``.
3980 * The data in the two nodes are combined into a single node, two nodes,
3981 * or possibly three nodes (see the 3-way split above). A ``NULL``
3982 * written to the last entry of a node is considered a spanning store as
3983 * a rebalance is required for the operation to complete and an overflow
3984 * of data may happen.
3985 */
3986 mas = wr_mas->mas;
3987 trace_ma_op(__func__, mas);
3988
3989 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3990 return mas_new_root(mas, wr_mas->entry);
3991 /*
3992 * Node rebalancing may occur due to this store, so there may be three new
3993 * entries per level plus a new root.
3994 */
3995 height = mas_mt_height(mas);
3996 mas_node_count(mas, 1 + height * 3);
3997 if (mas_is_err(mas))
3998 return 0;
3999
4000 /*
4001 * Set up right side. Need to get to the next offset after the spanning
4002 * store to ensure it's not NULL and to combine both the next node and
4003 * the node with the start together.
4004 */
4005 r_mas = *mas;
4006 /* Avoid overflow, walk to next slot in the tree. */
4007 if (r_mas.last + 1)
4008 r_mas.last++;
4009
4010 r_mas.index = r_mas.last;
4011 mas_wr_walk_index(&r_wr_mas);
4012 r_mas.last = r_mas.index = mas->last;
4013
4014 /* Set up left side. */
4015 l_mas = *mas;
4016 mas_wr_walk_index(&l_wr_mas);
4017
4018 if (!wr_mas->entry) {
4019 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4020 mas->offset = l_mas.offset;
4021 mas->index = l_mas.index;
4022 mas->last = l_mas.last = r_mas.last;
4023 }
4024
4025 /* expanding NULLs may make this cover the entire range */
4026 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4027 mas_set_range(mas, 0, ULONG_MAX);
4028 return mas_new_root(mas, wr_mas->entry);
4029 }
4030
4031 memset(&b_node, 0, sizeof(struct maple_big_node));
4032 /* Copy l_mas and store the value in b_node. */
4033 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4034 /* Copy r_mas into b_node. */
4035 if (r_mas.offset <= r_wr_mas.node_end)
4036 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4037 &b_node, b_node.b_end + 1);
4038 else
4039 b_node.b_end++;
4040
4041 /* Stop spanning searches by searching for just index. */
4042 l_mas.index = l_mas.last = mas->index;
4043
4044 mast.bn = &b_node;
4045 mast.orig_l = &l_mas;
4046 mast.orig_r = &r_mas;
4047 /* Combine l_mas and r_mas and split them up evenly again. */
4048 return mas_spanning_rebalance(mas, &mast, height + 1);
4049}
4050
4051/*
4052 * mas_wr_node_store() - Attempt to store the value in a node
4053 * @wr_mas: The maple write state
4054 *
4055 * Attempts to reuse the node, but may allocate.
4056 *
4057 * Return: True if stored, false otherwise
4058 */
4059static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4060{
4061 struct ma_state *mas = wr_mas->mas;
4062 void __rcu **dst_slots;
4063 unsigned long *dst_pivots;
4064 unsigned char dst_offset;
4065 unsigned char new_end = wr_mas->node_end;
4066 unsigned char offset;
4067 unsigned char node_slots = mt_slots[wr_mas->type];
4068 struct maple_node reuse, *newnode;
4069 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4070 bool in_rcu = mt_in_rcu(mas->tree);
4071
4072 offset = mas->offset;
4073 if (mas->last == wr_mas->r_max) {
4074 /* runs right to the end of the node */
4075 if (mas->last == mas->max)
4076 new_end = offset;
4077 /* don't copy this offset */
4078 wr_mas->offset_end++;
4079 } else if (mas->last < wr_mas->r_max) {
4080 /* new range ends in this range */
4081 if (unlikely(wr_mas->r_max == ULONG_MAX))
4082 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4083
4084 new_end++;
4085 } else {
4086 if (wr_mas->end_piv == mas->last)
4087 wr_mas->offset_end++;
4088
4089 new_end -= wr_mas->offset_end - offset - 1;
4090 }
4091
4092 /* new range starts within a range */
4093 if (wr_mas->r_min < mas->index)
4094 new_end++;
4095
4096 /* Not enough room */
4097 if (new_end >= node_slots)
4098 return false;
4099
4100 /* Not enough data. */
4101 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4102 !(mas->mas_flags & MA_STATE_BULK))
4103 return false;
4104
4105 /* set up node. */
4106 if (in_rcu) {
4107 mas_node_count(mas, 1);
4108 if (mas_is_err(mas))
4109 return false;
4110
4111 newnode = mas_pop_node(mas);
4112 } else {
4113 memset(&reuse, 0, sizeof(struct maple_node));
4114 newnode = &reuse;
4115 }
4116
4117 newnode->parent = mas_mn(mas)->parent;
4118 dst_pivots = ma_pivots(newnode, wr_mas->type);
4119 dst_slots = ma_slots(newnode, wr_mas->type);
4120 /* Copy from start to insert point */
4121 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4122 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4123 dst_offset = offset;
4124
4125 /* Handle insert of new range starting after old range */
4126 if (wr_mas->r_min < mas->index) {
4127 mas->offset++;
4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4129 dst_pivots[dst_offset++] = mas->index - 1;
4130 }
4131
4132 /* Store the new entry and range end. */
4133 if (dst_offset < max_piv)
4134 dst_pivots[dst_offset] = mas->last;
4135 mas->offset = dst_offset;
4136 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4137
4138 /*
4139 * this range wrote to the end of the node or it overwrote the rest of
4140 * the data
4141 */
4142 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4143 new_end = dst_offset;
4144 goto done;
4145 }
4146
4147 dst_offset++;
4148 /* Copy to the end of node if necessary. */
4149 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4150 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4151 sizeof(void *) * copy_size);
4152 if (dst_offset < max_piv) {
4153 if (copy_size > max_piv - dst_offset)
4154 copy_size = max_piv - dst_offset;
4155
4156 memcpy(dst_pivots + dst_offset,
4157 wr_mas->pivots + wr_mas->offset_end,
4158 sizeof(unsigned long) * copy_size);
4159 }
4160
4161 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4162 dst_pivots[new_end] = mas->max;
4163
4164done:
4165 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4166 if (in_rcu) {
4167 mas->node = mt_mk_node(newnode, wr_mas->type);
4168 mas_replace(mas, false);
4169 } else {
4170 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4171 }
4172 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4173 mas_update_gap(mas);
4174 return true;
4175}
4176
4177/*
4178 * mas_wr_slot_store: Attempt to store a value in a slot.
4179 * @wr_mas: the maple write state
4180 *
4181 * Return: True if stored, false otherwise
4182 */
4183static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4184{
4185 struct ma_state *mas = wr_mas->mas;
4186 unsigned long lmax; /* Logical max. */
4187 unsigned char offset = mas->offset;
4188
4189 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4190 (offset != wr_mas->node_end)))
4191 return false;
4192
4193 if (offset == wr_mas->node_end - 1)
4194 lmax = mas->max;
4195 else
4196 lmax = wr_mas->pivots[offset + 1];
4197
4198 /* going to overwrite too many slots. */
4199 if (lmax < mas->last)
4200 return false;
4201
4202 if (wr_mas->r_min == mas->index) {
4203 /* overwriting two or more ranges with one. */
4204 if (lmax == mas->last)
4205 return false;
4206
4207 /* Overwriting all of offset and a portion of offset + 1. */
4208 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4209 wr_mas->pivots[offset] = mas->last;
4210 goto done;
4211 }
4212
4213 /* Doesn't end on the next range end. */
4214 if (lmax != mas->last)
4215 return false;
4216
4217 /* Overwriting a portion of offset and all of offset + 1 */
4218 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4219 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4220 wr_mas->pivots[offset + 1] = mas->last;
4221
4222 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4223 wr_mas->pivots[offset] = mas->index - 1;
4224 mas->offset++; /* Keep mas accurate. */
4225
4226done:
4227 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4228 mas_update_gap(mas);
4229 return true;
4230}
4231
4232static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4233{
4234 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4235 (wr_mas->offset_end < wr_mas->node_end))
4236 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4237
4238 if (wr_mas->mas->last > wr_mas->end_piv)
4239 wr_mas->end_piv = wr_mas->mas->max;
4240}
4241
4242static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4243{
4244 struct ma_state *mas = wr_mas->mas;
4245
4246 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4247 mas->last = wr_mas->end_piv;
4248
4249 /* Check next slot(s) if we are overwriting the end */
4250 if ((mas->last == wr_mas->end_piv) &&
4251 (wr_mas->node_end != wr_mas->offset_end) &&
4252 !wr_mas->slots[wr_mas->offset_end + 1]) {
4253 wr_mas->offset_end++;
4254 if (wr_mas->offset_end == wr_mas->node_end)
4255 mas->last = mas->max;
4256 else
4257 mas->last = wr_mas->pivots[wr_mas->offset_end];
4258 wr_mas->end_piv = mas->last;
4259 }
4260
4261 if (!wr_mas->content) {
4262 /* If this one is null, the next and prev are not */
4263 mas->index = wr_mas->r_min;
4264 } else {
4265 /* Check prev slot if we are overwriting the start */
4266 if (mas->index == wr_mas->r_min && mas->offset &&
4267 !wr_mas->slots[mas->offset - 1]) {
4268 mas->offset--;
4269 wr_mas->r_min = mas->index =
4270 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4271 wr_mas->r_max = wr_mas->pivots[mas->offset];
4272 }
4273 }
4274}
4275
4276static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4277{
4278 unsigned char end = wr_mas->node_end;
4279 unsigned char new_end = end + 1;
4280 struct ma_state *mas = wr_mas->mas;
4281 unsigned char node_pivots = mt_pivots[wr_mas->type];
4282
4283 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4284 if (new_end < node_pivots)
4285 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4286
4287 if (new_end < node_pivots)
4288 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4289
4290 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4291 mas->offset = new_end;
4292 wr_mas->pivots[end] = mas->index - 1;
4293
4294 return true;
4295 }
4296
4297 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4298 if (new_end < node_pivots)
4299 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4300
4301 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4302 if (new_end < node_pivots)
4303 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4304
4305 wr_mas->pivots[end] = mas->last;
4306 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4307 return true;
4308 }
4309
4310 return false;
4311}
4312
4313/*
4314 * mas_wr_bnode() - Slow path for a modification.
4315 * @wr_mas: The write maple state
4316 *
4317 * This is where split, rebalance end up.
4318 */
4319static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4320{
4321 struct maple_big_node b_node;
4322
4323 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4324 memset(&b_node, 0, sizeof(struct maple_big_node));
4325 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4326 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4327}
4328
4329static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4330{
4331 unsigned char node_slots;
4332 unsigned char node_size;
4333 struct ma_state *mas = wr_mas->mas;
4334
4335 /* Direct replacement */
4336 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4337 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4338 if (!!wr_mas->entry ^ !!wr_mas->content)
4339 mas_update_gap(mas);
4340 return;
4341 }
4342
4343 /* Attempt to append */
4344 node_slots = mt_slots[wr_mas->type];
4345 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4346 if (mas->max == ULONG_MAX)
4347 node_size++;
4348
4349 /* slot and node store will not fit, go to the slow path */
4350 if (unlikely(node_size >= node_slots))
4351 goto slow_path;
4352
4353 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4354 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4355 if (!wr_mas->content || !wr_mas->entry)
4356 mas_update_gap(mas);
4357 return;
4358 }
4359
4360 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4361 return;
4362 else if (mas_wr_node_store(wr_mas))
4363 return;
4364
4365 if (mas_is_err(mas))
4366 return;
4367
4368slow_path:
4369 mas_wr_bnode(wr_mas);
4370}
4371
4372/*
4373 * mas_wr_store_entry() - Internal call to store a value
4374 * @mas: The maple state
4375 * @entry: The entry to store.
4376 *
4377 * Return: The contents that was stored at the index.
4378 */
4379static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4380{
4381 struct ma_state *mas = wr_mas->mas;
4382
4383 wr_mas->content = mas_start(mas);
4384 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4385 mas_store_root(mas, wr_mas->entry);
4386 return wr_mas->content;
4387 }
4388
4389 if (unlikely(!mas_wr_walk(wr_mas))) {
4390 mas_wr_spanning_store(wr_mas);
4391 return wr_mas->content;
4392 }
4393
4394 /* At this point, we are at the leaf node that needs to be altered. */
4395 wr_mas->end_piv = wr_mas->r_max;
4396 mas_wr_end_piv(wr_mas);
4397
4398 if (!wr_mas->entry)
4399 mas_wr_extend_null(wr_mas);
4400
4401 /* New root for a single pointer */
4402 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4403 mas_new_root(mas, wr_mas->entry);
4404 return wr_mas->content;
4405 }
4406
4407 mas_wr_modify(wr_mas);
4408 return wr_mas->content;
4409}
4410
4411/**
4412 * mas_insert() - Internal call to insert a value
4413 * @mas: The maple state
4414 * @entry: The entry to store
4415 *
4416 * Return: %NULL or the contents that already exists at the requested index
4417 * otherwise. The maple state needs to be checked for error conditions.
4418 */
4419static inline void *mas_insert(struct ma_state *mas, void *entry)
4420{
4421 MA_WR_STATE(wr_mas, mas, entry);
4422
4423 /*
4424 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4425 * tree. If the insert fits exactly into an existing gap with a value
4426 * of NULL, then the slot only needs to be written with the new value.
4427 * If the range being inserted is adjacent to another range, then only a
4428 * single pivot needs to be inserted (as well as writing the entry). If
4429 * the new range is within a gap but does not touch any other ranges,
4430 * then two pivots need to be inserted: the start - 1, and the end. As
4431 * usual, the entry must be written. Most operations require a new node
4432 * to be allocated and replace an existing node to ensure RCU safety,
4433 * when in RCU mode. The exception to requiring a newly allocated node
4434 * is when inserting at the end of a node (appending). When done
4435 * carefully, appending can reuse the node in place.
4436 */
4437 wr_mas.content = mas_start(mas);
4438 if (wr_mas.content)
4439 goto exists;
4440
4441 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4442 mas_store_root(mas, entry);
4443 return NULL;
4444 }
4445
4446 /* spanning writes always overwrite something */
4447 if (!mas_wr_walk(&wr_mas))
4448 goto exists;
4449
4450 /* At this point, we are at the leaf node that needs to be altered. */
4451 wr_mas.offset_end = mas->offset;
4452 wr_mas.end_piv = wr_mas.r_max;
4453
4454 if (wr_mas.content || (mas->last > wr_mas.r_max))
4455 goto exists;
4456
4457 if (!entry)
4458 return NULL;
4459
4460 mas_wr_modify(&wr_mas);
4461 return wr_mas.content;
4462
4463exists:
4464 mas_set_err(mas, -EEXIST);
4465 return wr_mas.content;
4466
4467}
4468
4469/*
4470 * mas_prev_node() - Find the prev non-null entry at the same level in the
4471 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4472 * @mas: The maple state
4473 * @min: The lower limit to search
4474 *
4475 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4476 * Return: 1 if the node is dead, 0 otherwise.
4477 */
4478static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4479{
4480 enum maple_type mt;
4481 int offset, level;
4482 void __rcu **slots;
4483 struct maple_node *node;
4484 struct maple_enode *enode;
4485 unsigned long *pivots;
4486
4487 if (mas_is_none(mas))
4488 return 0;
4489
4490 level = 0;
4491 do {
4492 node = mas_mn(mas);
4493 if (ma_is_root(node))
4494 goto no_entry;
4495
4496 /* Walk up. */
4497 if (unlikely(mas_ascend(mas)))
4498 return 1;
4499 offset = mas->offset;
4500 level++;
4501 } while (!offset);
4502
4503 offset--;
4504 mt = mte_node_type(mas->node);
4505 node = mas_mn(mas);
4506 slots = ma_slots(node, mt);
4507 pivots = ma_pivots(node, mt);
4508 mas->max = pivots[offset];
4509 if (offset)
4510 mas->min = pivots[offset - 1] + 1;
4511 if (unlikely(ma_dead_node(node)))
4512 return 1;
4513
4514 if (mas->max < min)
4515 goto no_entry_min;
4516
4517 while (level > 1) {
4518 level--;
4519 enode = mas_slot(mas, slots, offset);
4520 if (unlikely(ma_dead_node(node)))
4521 return 1;
4522
4523 mas->node = enode;
4524 mt = mte_node_type(mas->node);
4525 node = mas_mn(mas);
4526 slots = ma_slots(node, mt);
4527 pivots = ma_pivots(node, mt);
4528 offset = ma_data_end(node, mt, pivots, mas->max);
4529 if (offset)
4530 mas->min = pivots[offset - 1] + 1;
4531
4532 if (offset < mt_pivots[mt])
4533 mas->max = pivots[offset];
4534
4535 if (mas->max < min)
4536 goto no_entry;
4537 }
4538
4539 mas->node = mas_slot(mas, slots, offset);
4540 if (unlikely(ma_dead_node(node)))
4541 return 1;
4542
4543 mas->offset = mas_data_end(mas);
4544 if (unlikely(mte_dead_node(mas->node)))
4545 return 1;
4546
4547 return 0;
4548
4549no_entry_min:
4550 mas->offset = offset;
4551 if (offset)
4552 mas->min = pivots[offset - 1] + 1;
4553no_entry:
4554 if (unlikely(ma_dead_node(node)))
4555 return 1;
4556
4557 mas->node = MAS_NONE;
4558 return 0;
4559}
4560
4561/*
4562 * mas_next_node() - Get the next node at the same level in the tree.
4563 * @mas: The maple state
4564 * @max: The maximum pivot value to check.
4565 *
4566 * The next value will be mas->node[mas->offset] or MAS_NONE.
4567 * Return: 1 on dead node, 0 otherwise.
4568 */
4569static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4570 unsigned long max)
4571{
4572 unsigned long min, pivot;
4573 unsigned long *pivots;
4574 struct maple_enode *enode;
4575 int level = 0;
4576 unsigned char offset;
4577 enum maple_type mt;
4578 void __rcu **slots;
4579
4580 if (mas->max >= max)
4581 goto no_entry;
4582
4583 level = 0;
4584 do {
4585 if (ma_is_root(node))
4586 goto no_entry;
4587
4588 min = mas->max + 1;
4589 if (min > max)
4590 goto no_entry;
4591
4592 if (unlikely(mas_ascend(mas)))
4593 return 1;
4594
4595 offset = mas->offset;
4596 level++;
4597 node = mas_mn(mas);
4598 mt = mte_node_type(mas->node);
4599 pivots = ma_pivots(node, mt);
4600 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4601
4602 slots = ma_slots(node, mt);
4603 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4604 while (unlikely(level > 1)) {
4605 /* Descend, if necessary */
4606 enode = mas_slot(mas, slots, offset);
4607 if (unlikely(ma_dead_node(node)))
4608 return 1;
4609
4610 mas->node = enode;
4611 level--;
4612 node = mas_mn(mas);
4613 mt = mte_node_type(mas->node);
4614 slots = ma_slots(node, mt);
4615 pivots = ma_pivots(node, mt);
4616 offset = 0;
4617 pivot = pivots[0];
4618 }
4619
4620 enode = mas_slot(mas, slots, offset);
4621 if (unlikely(ma_dead_node(node)))
4622 return 1;
4623
4624 mas->node = enode;
4625 mas->min = min;
4626 mas->max = pivot;
4627 return 0;
4628
4629no_entry:
4630 if (unlikely(ma_dead_node(node)))
4631 return 1;
4632
4633 mas->node = MAS_NONE;
4634 return 0;
4635}
4636
4637/*
4638 * mas_next_nentry() - Get the next node entry
4639 * @mas: The maple state
4640 * @max: The maximum value to check
4641 * @*range_start: Pointer to store the start of the range.
4642 *
4643 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4644 * pivot of the entry.
4645 *
4646 * Return: The next entry, %NULL otherwise
4647 */
4648static inline void *mas_next_nentry(struct ma_state *mas,
4649 struct maple_node *node, unsigned long max, enum maple_type type)
4650{
4651 unsigned char count;
4652 unsigned long pivot;
4653 unsigned long *pivots;
4654 void __rcu **slots;
4655 void *entry;
4656
4657 if (mas->last == mas->max) {
4658 mas->index = mas->max;
4659 return NULL;
4660 }
4661
4662 pivots = ma_pivots(node, type);
4663 slots = ma_slots(node, type);
4664 mas->index = mas_safe_min(mas, pivots, mas->offset);
4665 if (ma_dead_node(node))
4666 return NULL;
4667
4668 if (mas->index > max)
4669 return NULL;
4670
4671 count = ma_data_end(node, type, pivots, mas->max);
4672 if (mas->offset > count)
4673 return NULL;
4674
4675 while (mas->offset < count) {
4676 pivot = pivots[mas->offset];
4677 entry = mas_slot(mas, slots, mas->offset);
4678 if (ma_dead_node(node))
4679 return NULL;
4680
4681 if (entry)
4682 goto found;
4683
4684 if (pivot >= max)
4685 return NULL;
4686
4687 mas->index = pivot + 1;
4688 mas->offset++;
4689 }
4690
4691 if (mas->index > mas->max) {
4692 mas->index = mas->last;
4693 return NULL;
4694 }
4695
4696 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4697 entry = mas_slot(mas, slots, mas->offset);
4698 if (ma_dead_node(node))
4699 return NULL;
4700
4701 if (!pivot)
4702 return NULL;
4703
4704 if (!entry)
4705 return NULL;
4706
4707found:
4708 mas->last = pivot;
4709 return entry;
4710}
4711
4712static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4713{
4714
4715retry:
4716 mas_set(mas, index);
4717 mas_state_walk(mas);
4718 if (mas_is_start(mas))
4719 goto retry;
4720
4721 return;
4722
4723}
4724
4725/*
4726 * mas_next_entry() - Internal function to get the next entry.
4727 * @mas: The maple state
4728 * @limit: The maximum range start.
4729 *
4730 * Set the @mas->node to the next entry and the range_start to
4731 * the beginning value for the entry. Does not check beyond @limit.
4732 * Sets @mas->index and @mas->last to the limit if it is hit.
4733 * Restarts on dead nodes.
4734 *
4735 * Return: the next entry or %NULL.
4736 */
4737static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4738{
4739 void *entry = NULL;
4740 struct maple_enode *prev_node;
4741 struct maple_node *node;
4742 unsigned char offset;
4743 unsigned long last;
4744 enum maple_type mt;
4745
4746 last = mas->last;
4747retry:
4748 offset = mas->offset;
4749 prev_node = mas->node;
4750 node = mas_mn(mas);
4751 mt = mte_node_type(mas->node);
4752 mas->offset++;
4753 if (unlikely(mas->offset >= mt_slots[mt])) {
4754 mas->offset = mt_slots[mt] - 1;
4755 goto next_node;
4756 }
4757
4758 while (!mas_is_none(mas)) {
4759 entry = mas_next_nentry(mas, node, limit, mt);
4760 if (unlikely(ma_dead_node(node))) {
4761 mas_rewalk(mas, last);
4762 goto retry;
4763 }
4764
4765 if (likely(entry))
4766 return entry;
4767
4768 if (unlikely((mas->index > limit)))
4769 break;
4770
4771next_node:
4772 prev_node = mas->node;
4773 offset = mas->offset;
4774 if (unlikely(mas_next_node(mas, node, limit))) {
4775 mas_rewalk(mas, last);
4776 goto retry;
4777 }
4778 mas->offset = 0;
4779 node = mas_mn(mas);
4780 mt = mte_node_type(mas->node);
4781 }
4782
4783 mas->index = mas->last = limit;
4784 mas->offset = offset;
4785 mas->node = prev_node;
4786 return NULL;
4787}
4788
4789/*
4790 * mas_prev_nentry() - Get the previous node entry.
4791 * @mas: The maple state.
4792 * @limit: The lower limit to check for a value.
4793 *
4794 * Return: the entry, %NULL otherwise.
4795 */
4796static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4797 unsigned long index)
4798{
4799 unsigned long pivot, min;
4800 unsigned char offset;
4801 struct maple_node *mn;
4802 enum maple_type mt;
4803 unsigned long *pivots;
4804 void __rcu **slots;
4805 void *entry;
4806
4807retry:
4808 if (!mas->offset)
4809 return NULL;
4810
4811 mn = mas_mn(mas);
4812 mt = mte_node_type(mas->node);
4813 offset = mas->offset - 1;
4814 if (offset >= mt_slots[mt])
4815 offset = mt_slots[mt] - 1;
4816
4817 slots = ma_slots(mn, mt);
4818 pivots = ma_pivots(mn, mt);
4819 if (offset == mt_pivots[mt])
4820 pivot = mas->max;
4821 else
4822 pivot = pivots[offset];
4823
4824 if (unlikely(ma_dead_node(mn))) {
4825 mas_rewalk(mas, index);
4826 goto retry;
4827 }
4828
4829 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4830 !pivot))
4831 pivot = pivots[--offset];
4832
4833 min = mas_safe_min(mas, pivots, offset);
4834 entry = mas_slot(mas, slots, offset);
4835 if (unlikely(ma_dead_node(mn))) {
4836 mas_rewalk(mas, index);
4837 goto retry;
4838 }
4839
4840 if (likely(entry)) {
4841 mas->offset = offset;
4842 mas->last = pivot;
4843 mas->index = min;
4844 }
4845 return entry;
4846}
4847
4848static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4849{
4850 void *entry;
4851
4852retry:
4853 while (likely(!mas_is_none(mas))) {
4854 entry = mas_prev_nentry(mas, min, mas->index);
4855 if (unlikely(mas->last < min))
4856 goto not_found;
4857
4858 if (likely(entry))
4859 return entry;
4860
4861 if (unlikely(mas_prev_node(mas, min))) {
4862 mas_rewalk(mas, mas->index);
4863 goto retry;
4864 }
4865
4866 mas->offset++;
4867 }
4868
4869 mas->offset--;
4870not_found:
4871 mas->index = mas->last = min;
4872 return NULL;
4873}
4874
4875/*
4876 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4877 * highest gap address of a given size in a given node and descend.
4878 * @mas: The maple state
4879 * @size: The needed size.
4880 *
4881 * Return: True if found in a leaf, false otherwise.
4882 *
4883 */
4884static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4885{
4886 enum maple_type type = mte_node_type(mas->node);
4887 struct maple_node *node = mas_mn(mas);
4888 unsigned long *pivots, *gaps;
4889 void __rcu **slots;
4890 unsigned long gap = 0;
4891 unsigned long max, min;
4892 unsigned char offset;
4893
4894 if (unlikely(mas_is_err(mas)))
4895 return true;
4896
4897 if (ma_is_dense(type)) {
4898 /* dense nodes. */
4899 mas->offset = (unsigned char)(mas->index - mas->min);
4900 return true;
4901 }
4902
4903 pivots = ma_pivots(node, type);
4904 slots = ma_slots(node, type);
4905 gaps = ma_gaps(node, type);
4906 offset = mas->offset;
4907 min = mas_safe_min(mas, pivots, offset);
4908 /* Skip out of bounds. */
4909 while (mas->last < min)
4910 min = mas_safe_min(mas, pivots, --offset);
4911
4912 max = mas_safe_pivot(mas, pivots, offset, type);
4913 while (mas->index <= max) {
4914 gap = 0;
4915 if (gaps)
4916 gap = gaps[offset];
4917 else if (!mas_slot(mas, slots, offset))
4918 gap = max - min + 1;
4919
4920 if (gap) {
4921 if ((size <= gap) && (size <= mas->last - min + 1))
4922 break;
4923
4924 if (!gaps) {
4925 /* Skip the next slot, it cannot be a gap. */
4926 if (offset < 2)
4927 goto ascend;
4928
4929 offset -= 2;
4930 max = pivots[offset];
4931 min = mas_safe_min(mas, pivots, offset);
4932 continue;
4933 }
4934 }
4935
4936 if (!offset)
4937 goto ascend;
4938
4939 offset--;
4940 max = min - 1;
4941 min = mas_safe_min(mas, pivots, offset);
4942 }
4943
4944 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4945 goto no_space;
4946
4947 if (unlikely(ma_is_leaf(type))) {
4948 mas->offset = offset;
4949 mas->min = min;
4950 mas->max = min + gap - 1;
4951 return true;
4952 }
4953
4954 /* descend, only happens under lock. */
4955 mas->node = mas_slot(mas, slots, offset);
4956 mas->min = min;
4957 mas->max = max;
4958 mas->offset = mas_data_end(mas);
4959 return false;
4960
4961ascend:
4962 if (!mte_is_root(mas->node))
4963 return false;
4964
4965no_space:
4966 mas_set_err(mas, -EBUSY);
4967 return false;
4968}
4969
4970static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4971{
4972 enum maple_type type = mte_node_type(mas->node);
4973 unsigned long pivot, min, gap = 0;
4974 unsigned char offset;
4975 unsigned long *gaps;
4976 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4977 void __rcu **slots = ma_slots(mas_mn(mas), type);
4978 bool found = false;
4979
4980 if (ma_is_dense(type)) {
4981 mas->offset = (unsigned char)(mas->index - mas->min);
4982 return true;
4983 }
4984
4985 gaps = ma_gaps(mte_to_node(mas->node), type);
4986 offset = mas->offset;
4987 min = mas_safe_min(mas, pivots, offset);
4988 for (; offset < mt_slots[type]; offset++) {
4989 pivot = mas_safe_pivot(mas, pivots, offset, type);
4990 if (offset && !pivot)
4991 break;
4992
4993 /* Not within lower bounds */
4994 if (mas->index > pivot)
4995 goto next_slot;
4996
4997 if (gaps)
4998 gap = gaps[offset];
4999 else if (!mas_slot(mas, slots, offset))
5000 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5001 else
5002 goto next_slot;
5003
5004 if (gap >= size) {
5005 if (ma_is_leaf(type)) {
5006 found = true;
5007 goto done;
5008 }
5009 if (mas->index <= pivot) {
5010 mas->node = mas_slot(mas, slots, offset);
5011 mas->min = min;
5012 mas->max = pivot;
5013 offset = 0;
5014 break;
5015 }
5016 }
5017next_slot:
5018 min = pivot + 1;
5019 if (mas->last <= pivot) {
5020 mas_set_err(mas, -EBUSY);
5021 return true;
5022 }
5023 }
5024
5025 if (mte_is_root(mas->node))
5026 found = true;
5027done:
5028 mas->offset = offset;
5029 return found;
5030}
5031
5032/**
5033 * mas_walk() - Search for @mas->index in the tree.
5034 * @mas: The maple state.
5035 *
5036 * mas->index and mas->last will be set to the range if there is a value. If
5037 * mas->node is MAS_NONE, reset to MAS_START.
5038 *
5039 * Return: the entry at the location or %NULL.
5040 */
5041void *mas_walk(struct ma_state *mas)
5042{
5043 void *entry;
5044
5045retry:
5046 entry = mas_state_walk(mas);
5047 if (mas_is_start(mas))
5048 goto retry;
5049
5050 if (mas_is_ptr(mas)) {
5051 if (!mas->index) {
5052 mas->last = 0;
5053 } else {
5054 mas->index = 1;
5055 mas->last = ULONG_MAX;
5056 }
5057 return entry;
5058 }
5059
5060 if (mas_is_none(mas)) {
5061 mas->index = 0;
5062 mas->last = ULONG_MAX;
5063 }
5064
5065 return entry;
5066}
5067EXPORT_SYMBOL_GPL(mas_walk);
5068
5069static inline bool mas_rewind_node(struct ma_state *mas)
5070{
5071 unsigned char slot;
5072
5073 do {
5074 if (mte_is_root(mas->node)) {
5075 slot = mas->offset;
5076 if (!slot)
5077 return false;
5078 } else {
5079 mas_ascend(mas);
5080 slot = mas->offset;
5081 }
5082 } while (!slot);
5083
5084 mas->offset = --slot;
5085 return true;
5086}
5087
5088/*
5089 * mas_skip_node() - Internal function. Skip over a node.
5090 * @mas: The maple state.
5091 *
5092 * Return: true if there is another node, false otherwise.
5093 */
5094static inline bool mas_skip_node(struct ma_state *mas)
5095{
5096 unsigned char slot, slot_count;
5097 unsigned long *pivots;
5098 enum maple_type mt;
5099
5100 mt = mte_node_type(mas->node);
5101 slot_count = mt_slots[mt] - 1;
5102 do {
5103 if (mte_is_root(mas->node)) {
5104 slot = mas->offset;
5105 if (slot > slot_count) {
5106 mas_set_err(mas, -EBUSY);
5107 return false;
5108 }
5109 } else {
5110 mas_ascend(mas);
5111 slot = mas->offset;
5112 mt = mte_node_type(mas->node);
5113 slot_count = mt_slots[mt] - 1;
5114 }
5115 } while (slot > slot_count);
5116
5117 mas->offset = ++slot;
5118 pivots = ma_pivots(mas_mn(mas), mt);
5119 if (slot > 0)
5120 mas->min = pivots[slot - 1] + 1;
5121
5122 if (slot <= slot_count)
5123 mas->max = pivots[slot];
5124
5125 return true;
5126}
5127
5128/*
5129 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5130 * @size
5131 * @mas: The maple state
5132 * @size: The size of the gap required
5133 *
5134 * Search between @mas->index and @mas->last for a gap of @size.
5135 */
5136static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5137{
5138 struct maple_enode *last = NULL;
5139
5140 /*
5141 * There are 4 options:
5142 * go to child (descend)
5143 * go back to parent (ascend)
5144 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5145 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5146 */
5147 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5148 if (last == mas->node)
5149 mas_skip_node(mas);
5150 else
5151 last = mas->node;
5152 }
5153}
5154
5155/*
5156 * mas_fill_gap() - Fill a located gap with @entry.
5157 * @mas: The maple state
5158 * @entry: The value to store
5159 * @slot: The offset into the node to store the @entry
5160 * @size: The size of the entry
5161 * @index: The start location
5162 */
5163static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5164 unsigned char slot, unsigned long size, unsigned long *index)
5165{
5166 MA_WR_STATE(wr_mas, mas, entry);
5167 unsigned char pslot = mte_parent_slot(mas->node);
5168 struct maple_enode *mn = mas->node;
5169 unsigned long *pivots;
5170 enum maple_type ptype;
5171 /*
5172 * mas->index is the start address for the search
5173 * which may no longer be needed.
5174 * mas->last is the end address for the search
5175 */
5176
5177 *index = mas->index;
5178 mas->last = mas->index + size - 1;
5179
5180 /*
5181 * It is possible that using mas->max and mas->min to correctly
5182 * calculate the index and last will cause an issue in the gap
5183 * calculation, so fix the ma_state here
5184 */
5185 mas_ascend(mas);
5186 ptype = mte_node_type(mas->node);
5187 pivots = ma_pivots(mas_mn(mas), ptype);
5188 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5189 mas->min = mas_safe_min(mas, pivots, pslot);
5190 mas->node = mn;
5191 mas->offset = slot;
5192 mas_wr_store_entry(&wr_mas);
5193}
5194
5195/*
5196 * mas_sparse_area() - Internal function. Return upper or lower limit when
5197 * searching for a gap in an empty tree.
5198 * @mas: The maple state
5199 * @min: the minimum range
5200 * @max: The maximum range
5201 * @size: The size of the gap
5202 * @fwd: Searching forward or back
5203 */
5204static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5205 unsigned long max, unsigned long size, bool fwd)
5206{
5207 unsigned long start = 0;
5208
5209 if (!unlikely(mas_is_none(mas)))
5210 start++;
5211 /* mas_is_ptr */
5212
5213 if (start < min)
5214 start = min;
5215
5216 if (fwd) {
5217 mas->index = start;
5218 mas->last = start + size - 1;
5219 return;
5220 }
5221
5222 mas->index = max;
5223}
5224
5225/*
5226 * mas_empty_area() - Get the lowest address within the range that is
5227 * sufficient for the size requested.
5228 * @mas: The maple state
5229 * @min: The lowest value of the range
5230 * @max: The highest value of the range
5231 * @size: The size needed
5232 */
5233int mas_empty_area(struct ma_state *mas, unsigned long min,
5234 unsigned long max, unsigned long size)
5235{
5236 unsigned char offset;
5237 unsigned long *pivots;
5238 enum maple_type mt;
5239
5240 if (mas_is_start(mas))
5241 mas_start(mas);
5242 else if (mas->offset >= 2)
5243 mas->offset -= 2;
5244 else if (!mas_skip_node(mas))
5245 return -EBUSY;
5246
5247 /* Empty set */
5248 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5249 mas_sparse_area(mas, min, max, size, true);
5250 return 0;
5251 }
5252
5253 /* The start of the window can only be within these values */
5254 mas->index = min;
5255 mas->last = max;
5256 mas_awalk(mas, size);
5257
5258 if (unlikely(mas_is_err(mas)))
5259 return xa_err(mas->node);
5260
5261 offset = mas->offset;
5262 if (unlikely(offset == MAPLE_NODE_SLOTS))
5263 return -EBUSY;
5264
5265 mt = mte_node_type(mas->node);
5266 pivots = ma_pivots(mas_mn(mas), mt);
5267 if (offset)
5268 mas->min = pivots[offset - 1] + 1;
5269
5270 if (offset < mt_pivots[mt])
5271 mas->max = pivots[offset];
5272
5273 if (mas->index < mas->min)
5274 mas->index = mas->min;
5275
5276 mas->last = mas->index + size - 1;
5277 return 0;
5278}
5279EXPORT_SYMBOL_GPL(mas_empty_area);
5280
5281/*
5282 * mas_empty_area_rev() - Get the highest address within the range that is
5283 * sufficient for the size requested.
5284 * @mas: The maple state
5285 * @min: The lowest value of the range
5286 * @max: The highest value of the range
5287 * @size: The size needed
5288 */
5289int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5290 unsigned long max, unsigned long size)
5291{
5292 struct maple_enode *last = mas->node;
5293
5294 if (mas_is_start(mas)) {
5295 mas_start(mas);
5296 mas->offset = mas_data_end(mas);
5297 } else if (mas->offset >= 2) {
5298 mas->offset -= 2;
5299 } else if (!mas_rewind_node(mas)) {
5300 return -EBUSY;
5301 }
5302
5303 /* Empty set. */
5304 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5305 mas_sparse_area(mas, min, max, size, false);
5306 return 0;
5307 }
5308
5309 /* The start of the window can only be within these values. */
5310 mas->index = min;
5311 mas->last = max;
5312
5313 while (!mas_rev_awalk(mas, size)) {
5314 if (last == mas->node) {
5315 if (!mas_rewind_node(mas))
5316 return -EBUSY;
5317 } else {
5318 last = mas->node;
5319 }
5320 }
5321
5322 if (mas_is_err(mas))
5323 return xa_err(mas->node);
5324
5325 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5326 return -EBUSY;
5327
5328 /*
5329 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5330 * the maximum is outside the window we are searching, then use the last
5331 * location in the search.
5332 * mas->max and mas->min is the range of the gap.
5333 * mas->index and mas->last are currently set to the search range.
5334 */
5335
5336 /* Trim the upper limit to the max. */
5337 if (mas->max <= mas->last)
5338 mas->last = mas->max;
5339
5340 mas->index = mas->last - size + 1;
5341 return 0;
5342}
5343EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5344
5345static inline int mas_alloc(struct ma_state *mas, void *entry,
5346 unsigned long size, unsigned long *index)
5347{
5348 unsigned long min;
5349
5350 mas_start(mas);
5351 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5352 mas_root_expand(mas, entry);
5353 if (mas_is_err(mas))
5354 return xa_err(mas->node);
5355
5356 if (!mas->index)
5357 return mte_pivot(mas->node, 0);
5358 return mte_pivot(mas->node, 1);
5359 }
5360
5361 /* Must be walking a tree. */
5362 mas_awalk(mas, size);
5363 if (mas_is_err(mas))
5364 return xa_err(mas->node);
5365
5366 if (mas->offset == MAPLE_NODE_SLOTS)
5367 goto no_gap;
5368
5369 /*
5370 * At this point, mas->node points to the right node and we have an
5371 * offset that has a sufficient gap.
5372 */
5373 min = mas->min;
5374 if (mas->offset)
5375 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5376
5377 if (mas->index < min)
5378 mas->index = min;
5379
5380 mas_fill_gap(mas, entry, mas->offset, size, index);
5381 return 0;
5382
5383no_gap:
5384 return -EBUSY;
5385}
5386
5387static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5388 unsigned long max, void *entry,
5389 unsigned long size, unsigned long *index)
5390{
5391 int ret = 0;
5392
5393 ret = mas_empty_area_rev(mas, min, max, size);
5394 if (ret)
5395 return ret;
5396
5397 if (mas_is_err(mas))
5398 return xa_err(mas->node);
5399
5400 if (mas->offset == MAPLE_NODE_SLOTS)
5401 goto no_gap;
5402
5403 mas_fill_gap(mas, entry, mas->offset, size, index);
5404 return 0;
5405
5406no_gap:
5407 return -EBUSY;
5408}
5409
5410/*
5411 * mas_dead_leaves() - Mark all leaves of a node as dead.
5412 * @mas: The maple state
5413 * @slots: Pointer to the slot array
5414 *
5415 * Must hold the write lock.
5416 *
5417 * Return: The number of leaves marked as dead.
5418 */
5419static inline
5420unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5421{
5422 struct maple_node *node;
5423 enum maple_type type;
5424 void *entry;
5425 int offset;
5426
5427 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5428 entry = mas_slot_locked(mas, slots, offset);
5429 type = mte_node_type(entry);
5430 node = mte_to_node(entry);
5431 /* Use both node and type to catch LE & BE metadata */
5432 if (!node || !type)
5433 break;
5434
5435 mte_set_node_dead(entry);
5436 smp_wmb(); /* Needed for RCU */
5437 node->type = type;
5438 rcu_assign_pointer(slots[offset], node);
5439 }
5440
5441 return offset;
5442}
5443
5444static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5445{
5446 struct maple_node *node, *next;
5447 void __rcu **slots = NULL;
5448
5449 next = mas_mn(mas);
5450 do {
5451 mas->node = ma_enode_ptr(next);
5452 node = mas_mn(mas);
5453 slots = ma_slots(node, node->type);
5454 next = mas_slot_locked(mas, slots, offset);
5455 offset = 0;
5456 } while (!ma_is_leaf(next->type));
5457
5458 return slots;
5459}
5460
5461static void mt_free_walk(struct rcu_head *head)
5462{
5463 void __rcu **slots;
5464 struct maple_node *node, *start;
5465 struct maple_tree mt;
5466 unsigned char offset;
5467 enum maple_type type;
5468 MA_STATE(mas, &mt, 0, 0);
5469
5470 node = container_of(head, struct maple_node, rcu);
5471
5472 if (ma_is_leaf(node->type))
5473 goto free_leaf;
5474
5475 mt_init_flags(&mt, node->ma_flags);
5476 mas_lock(&mas);
5477 start = node;
5478 mas.node = mt_mk_node(node, node->type);
5479 slots = mas_dead_walk(&mas, 0);
5480 node = mas_mn(&mas);
5481 do {
5482 mt_free_bulk(node->slot_len, slots);
5483 offset = node->parent_slot + 1;
5484 mas.node = node->piv_parent;
5485 if (mas_mn(&mas) == node)
5486 goto start_slots_free;
5487
5488 type = mte_node_type(mas.node);
5489 slots = ma_slots(mte_to_node(mas.node), type);
5490 if ((offset < mt_slots[type]) && (slots[offset]))
5491 slots = mas_dead_walk(&mas, offset);
5492
5493 node = mas_mn(&mas);
5494 } while ((node != start) || (node->slot_len < offset));
5495
5496 slots = ma_slots(node, node->type);
5497 mt_free_bulk(node->slot_len, slots);
5498
5499start_slots_free:
5500 mas_unlock(&mas);
5501free_leaf:
5502 mt_free_rcu(&node->rcu);
5503}
5504
5505static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5506 struct maple_enode *prev, unsigned char offset)
5507{
5508 struct maple_node *node;
5509 struct maple_enode *next = mas->node;
5510 void __rcu **slots = NULL;
5511
5512 do {
5513 mas->node = next;
5514 node = mas_mn(mas);
5515 slots = ma_slots(node, mte_node_type(mas->node));
5516 next = mas_slot_locked(mas, slots, 0);
5517 if ((mte_dead_node(next)))
5518 next = mas_slot_locked(mas, slots, 1);
5519
5520 mte_set_node_dead(mas->node);
5521 node->type = mte_node_type(mas->node);
5522 node->piv_parent = prev;
5523 node->parent_slot = offset;
5524 offset = 0;
5525 prev = mas->node;
5526 } while (!mte_is_leaf(next));
5527
5528 return slots;
5529}
5530
5531static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5532 bool free)
5533{
5534 void __rcu **slots;
5535 struct maple_node *node = mte_to_node(enode);
5536 struct maple_enode *start;
5537 struct maple_tree mt;
5538
5539 MA_STATE(mas, &mt, 0, 0);
5540
5541 if (mte_is_leaf(enode))
5542 goto free_leaf;
5543
5544 mt_init_flags(&mt, ma_flags);
5545 mas_lock(&mas);
5546
5547 mas.node = start = enode;
5548 slots = mas_destroy_descend(&mas, start, 0);
5549 node = mas_mn(&mas);
5550 do {
5551 enum maple_type type;
5552 unsigned char offset;
5553 struct maple_enode *parent, *tmp;
5554
5555 node->slot_len = mas_dead_leaves(&mas, slots);
5556 if (free)
5557 mt_free_bulk(node->slot_len, slots);
5558 offset = node->parent_slot + 1;
5559 mas.node = node->piv_parent;
5560 if (mas_mn(&mas) == node)
5561 goto start_slots_free;
5562
5563 type = mte_node_type(mas.node);
5564 slots = ma_slots(mte_to_node(mas.node), type);
5565 if (offset >= mt_slots[type])
5566 goto next;
5567
5568 tmp = mas_slot_locked(&mas, slots, offset);
5569 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5570 parent = mas.node;
5571 mas.node = tmp;
5572 slots = mas_destroy_descend(&mas, parent, offset);
5573 }
5574next:
5575 node = mas_mn(&mas);
5576 } while (start != mas.node);
5577
5578 node = mas_mn(&mas);
5579 node->slot_len = mas_dead_leaves(&mas, slots);
5580 if (free)
5581 mt_free_bulk(node->slot_len, slots);
5582
5583start_slots_free:
5584 mas_unlock(&mas);
5585
5586free_leaf:
5587 if (free)
5588 mt_free_rcu(&node->rcu);
5589}
5590
5591/*
5592 * mte_destroy_walk() - Free a tree or sub-tree.
5593 * @enode - the encoded maple node (maple_enode) to start
5594 * @mn - the tree to free - needed for node types.
5595 *
5596 * Must hold the write lock.
5597 */
5598static inline void mte_destroy_walk(struct maple_enode *enode,
5599 struct maple_tree *mt)
5600{
5601 struct maple_node *node = mte_to_node(enode);
5602
5603 if (mt_in_rcu(mt)) {
5604 mt_destroy_walk(enode, mt->ma_flags, false);
5605 call_rcu(&node->rcu, mt_free_walk);
5606 } else {
5607 mt_destroy_walk(enode, mt->ma_flags, true);
5608 }
5609}
5610
5611static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5612{
5613 if (!mas_is_start(wr_mas->mas)) {
5614 if (mas_is_none(wr_mas->mas)) {
5615 mas_reset(wr_mas->mas);
5616 } else {
5617 wr_mas->r_max = wr_mas->mas->max;
5618 wr_mas->type = mte_node_type(wr_mas->mas->node);
5619 if (mas_is_span_wr(wr_mas))
5620 mas_reset(wr_mas->mas);
5621 }
5622 }
5623
5624}
5625
5626/* Interface */
5627
5628/**
5629 * mas_store() - Store an @entry.
5630 * @mas: The maple state.
5631 * @entry: The entry to store.
5632 *
5633 * The @mas->index and @mas->last is used to set the range for the @entry.
5634 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5635 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5636 *
5637 * Return: the first entry between mas->index and mas->last or %NULL.
5638 */
5639void *mas_store(struct ma_state *mas, void *entry)
5640{
5641 MA_WR_STATE(wr_mas, mas, entry);
5642
5643 trace_ma_write(__func__, mas, 0, entry);
5644#ifdef CONFIG_DEBUG_MAPLE_TREE
5645 if (mas->index > mas->last)
5646 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5647 MT_BUG_ON(mas->tree, mas->index > mas->last);
5648 if (mas->index > mas->last) {
5649 mas_set_err(mas, -EINVAL);
5650 return NULL;
5651 }
5652
5653#endif
5654
5655 /*
5656 * Storing is the same operation as insert with the added caveat that it
5657 * can overwrite entries. Although this seems simple enough, one may
5658 * want to examine what happens if a single store operation was to
5659 * overwrite multiple entries within a self-balancing B-Tree.
5660 */
5661 mas_wr_store_setup(&wr_mas);
5662 mas_wr_store_entry(&wr_mas);
5663 return wr_mas.content;
5664}
5665EXPORT_SYMBOL_GPL(mas_store);
5666
5667/**
5668 * mas_store_gfp() - Store a value into the tree.
5669 * @mas: The maple state
5670 * @entry: The entry to store
5671 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5672 *
5673 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5674 * be allocated.
5675 */
5676int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5677{
5678 MA_WR_STATE(wr_mas, mas, entry);
5679
5680 mas_wr_store_setup(&wr_mas);
5681 trace_ma_write(__func__, mas, 0, entry);
5682retry:
5683 mas_wr_store_entry(&wr_mas);
5684 if (unlikely(mas_nomem(mas, gfp)))
5685 goto retry;
5686
5687 if (unlikely(mas_is_err(mas)))
5688 return xa_err(mas->node);
5689
5690 return 0;
5691}
5692EXPORT_SYMBOL_GPL(mas_store_gfp);
5693
5694/**
5695 * mas_store_prealloc() - Store a value into the tree using memory
5696 * preallocated in the maple state.
5697 * @mas: The maple state
5698 * @entry: The entry to store.
5699 */
5700void mas_store_prealloc(struct ma_state *mas, void *entry)
5701{
5702 MA_WR_STATE(wr_mas, mas, entry);
5703
5704 mas_wr_store_setup(&wr_mas);
5705 trace_ma_write(__func__, mas, 0, entry);
5706 mas_wr_store_entry(&wr_mas);
5707 BUG_ON(mas_is_err(mas));
5708 mas_destroy(mas);
5709}
5710EXPORT_SYMBOL_GPL(mas_store_prealloc);
5711
5712/**
5713 * mas_preallocate() - Preallocate enough nodes for a store operation
5714 * @mas: The maple state
5715 * @entry: The entry that will be stored
5716 * @gfp: The GFP_FLAGS to use for allocations.
5717 *
5718 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5719 */
5720int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5721{
5722 int ret;
5723
5724 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5725 mas->mas_flags |= MA_STATE_PREALLOC;
5726 if (likely(!mas_is_err(mas)))
5727 return 0;
5728
5729 mas_set_alloc_req(mas, 0);
5730 ret = xa_err(mas->node);
5731 mas_reset(mas);
5732 mas_destroy(mas);
5733 mas_reset(mas);
5734 return ret;
5735}
5736
5737/*
5738 * mas_destroy() - destroy a maple state.
5739 * @mas: The maple state
5740 *
5741 * Upon completion, check the left-most node and rebalance against the node to
5742 * the right if necessary. Frees any allocated nodes associated with this maple
5743 * state.
5744 */
5745void mas_destroy(struct ma_state *mas)
5746{
5747 struct maple_alloc *node;
5748
5749 /*
5750 * When using mas_for_each() to insert an expected number of elements,
5751 * it is possible that the number inserted is less than the expected
5752 * number. To fix an invalid final node, a check is performed here to
5753 * rebalance the previous node with the final node.
5754 */
5755 if (mas->mas_flags & MA_STATE_REBALANCE) {
5756 unsigned char end;
5757
5758 if (mas_is_start(mas))
5759 mas_start(mas);
5760
5761 mtree_range_walk(mas);
5762 end = mas_data_end(mas) + 1;
5763 if (end < mt_min_slot_count(mas->node) - 1)
5764 mas_destroy_rebalance(mas, end);
5765
5766 mas->mas_flags &= ~MA_STATE_REBALANCE;
5767 }
5768 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5769
5770 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5771 node = mas->alloc;
5772 mas->alloc = node->slot[0];
5773 if (node->node_count > 0)
5774 mt_free_bulk(node->node_count,
5775 (void __rcu **)&node->slot[1]);
5776 kmem_cache_free(maple_node_cache, node);
5777 }
5778 mas->alloc = NULL;
5779}
5780EXPORT_SYMBOL_GPL(mas_destroy);
5781
5782/*
5783 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5784 * @mas: The maple state
5785 * @nr_entries: The number of expected entries.
5786 *
5787 * This will attempt to pre-allocate enough nodes to store the expected number
5788 * of entries. The allocations will occur using the bulk allocator interface
5789 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5790 * to ensure any unused nodes are freed.
5791 *
5792 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5793 */
5794int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5795{
5796 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5797 struct maple_enode *enode = mas->node;
5798 int nr_nodes;
5799 int ret;
5800
5801 /*
5802 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5803 * forking a process and duplicating the VMAs from one tree to a new
5804 * tree. When such a situation arises, it is known that the new tree is
5805 * not going to be used until the entire tree is populated. For
5806 * performance reasons, it is best to use a bulk load with RCU disabled.
5807 * This allows for optimistic splitting that favours the left and reuse
5808 * of nodes during the operation.
5809 */
5810
5811 /* Optimize splitting for bulk insert in-order */
5812 mas->mas_flags |= MA_STATE_BULK;
5813
5814 /*
5815 * Avoid overflow, assume a gap between each entry and a trailing null.
5816 * If this is wrong, it just means allocation can happen during
5817 * insertion of entries.
5818 */
5819 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5820 if (!mt_is_alloc(mas->tree))
5821 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5822
5823 /* Leaves; reduce slots to keep space for expansion */
5824 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5825 /* Internal nodes */
5826 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5827 /* Add working room for split (2 nodes) + new parents */
5828 mas_node_count(mas, nr_nodes + 3);
5829
5830 /* Detect if allocations run out */
5831 mas->mas_flags |= MA_STATE_PREALLOC;
5832
5833 if (!mas_is_err(mas))
5834 return 0;
5835
5836 ret = xa_err(mas->node);
5837 mas->node = enode;
5838 mas_destroy(mas);
5839 return ret;
5840
5841}
5842EXPORT_SYMBOL_GPL(mas_expected_entries);
5843
5844/**
5845 * mas_next() - Get the next entry.
5846 * @mas: The maple state
5847 * @max: The maximum index to check.
5848 *
5849 * Returns the next entry after @mas->index.
5850 * Must hold rcu_read_lock or the write lock.
5851 * Can return the zero entry.
5852 *
5853 * Return: The next entry or %NULL
5854 */
5855void *mas_next(struct ma_state *mas, unsigned long max)
5856{
5857 if (mas_is_none(mas) || mas_is_paused(mas))
5858 mas->node = MAS_START;
5859
5860 if (mas_is_start(mas))
5861 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5862
5863 if (mas_is_ptr(mas)) {
5864 if (!mas->index) {
5865 mas->index = 1;
5866 mas->last = ULONG_MAX;
5867 }
5868 return NULL;
5869 }
5870
5871 if (mas->last == ULONG_MAX)
5872 return NULL;
5873
5874 /* Retries on dead nodes handled by mas_next_entry */
5875 return mas_next_entry(mas, max);
5876}
5877EXPORT_SYMBOL_GPL(mas_next);
5878
5879/**
5880 * mt_next() - get the next value in the maple tree
5881 * @mt: The maple tree
5882 * @index: The start index
5883 * @max: The maximum index to check
5884 *
5885 * Return: The entry at @index or higher, or %NULL if nothing is found.
5886 */
5887void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5888{
5889 void *entry = NULL;
5890 MA_STATE(mas, mt, index, index);
5891
5892 rcu_read_lock();
5893 entry = mas_next(&mas, max);
5894 rcu_read_unlock();
5895 return entry;
5896}
5897EXPORT_SYMBOL_GPL(mt_next);
5898
5899/**
5900 * mas_prev() - Get the previous entry
5901 * @mas: The maple state
5902 * @min: The minimum value to check.
5903 *
5904 * Must hold rcu_read_lock or the write lock.
5905 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5906 * searchable nodes.
5907 *
5908 * Return: the previous value or %NULL.
5909 */
5910void *mas_prev(struct ma_state *mas, unsigned long min)
5911{
5912 if (!mas->index) {
5913 /* Nothing comes before 0 */
5914 mas->last = 0;
5915 return NULL;
5916 }
5917
5918 if (unlikely(mas_is_ptr(mas)))
5919 return NULL;
5920
5921 if (mas_is_none(mas) || mas_is_paused(mas))
5922 mas->node = MAS_START;
5923
5924 if (mas_is_start(mas)) {
5925 mas_walk(mas);
5926 if (!mas->index)
5927 return NULL;
5928 }
5929
5930 if (mas_is_ptr(mas)) {
5931 if (!mas->index) {
5932 mas->last = 0;
5933 return NULL;
5934 }
5935
5936 mas->index = mas->last = 0;
5937 return mas_root_locked(mas);
5938 }
5939 return mas_prev_entry(mas, min);
5940}
5941EXPORT_SYMBOL_GPL(mas_prev);
5942
5943/**
5944 * mt_prev() - get the previous value in the maple tree
5945 * @mt: The maple tree
5946 * @index: The start index
5947 * @min: The minimum index to check
5948 *
5949 * Return: The entry at @index or lower, or %NULL if nothing is found.
5950 */
5951void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5952{
5953 void *entry = NULL;
5954 MA_STATE(mas, mt, index, index);
5955
5956 rcu_read_lock();
5957 entry = mas_prev(&mas, min);
5958 rcu_read_unlock();
5959 return entry;
5960}
5961EXPORT_SYMBOL_GPL(mt_prev);
5962
5963/**
5964 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5965 * @mas: The maple state to pause
5966 *
5967 * Some users need to pause a walk and drop the lock they're holding in
5968 * order to yield to a higher priority thread or carry out an operation
5969 * on an entry. Those users should call this function before they drop
5970 * the lock. It resets the @mas to be suitable for the next iteration
5971 * of the loop after the user has reacquired the lock. If most entries
5972 * found during a walk require you to call mas_pause(), the mt_for_each()
5973 * iterator may be more appropriate.
5974 *
5975 */
5976void mas_pause(struct ma_state *mas)
5977{
5978 mas->node = MAS_PAUSE;
5979}
5980EXPORT_SYMBOL_GPL(mas_pause);
5981
5982/**
5983 * mas_find() - On the first call, find the entry at or after mas->index up to
5984 * %max. Otherwise, find the entry after mas->index.
5985 * @mas: The maple state
5986 * @max: The maximum value to check.
5987 *
5988 * Must hold rcu_read_lock or the write lock.
5989 * If an entry exists, last and index are updated accordingly.
5990 * May set @mas->node to MAS_NONE.
5991 *
5992 * Return: The entry or %NULL.
5993 */
5994void *mas_find(struct ma_state *mas, unsigned long max)
5995{
5996 if (unlikely(mas_is_paused(mas))) {
5997 if (unlikely(mas->last == ULONG_MAX)) {
5998 mas->node = MAS_NONE;
5999 return NULL;
6000 }
6001 mas->node = MAS_START;
6002 mas->index = ++mas->last;
6003 }
6004
6005 if (unlikely(mas_is_start(mas))) {
6006 /* First run or continue */
6007 void *entry;
6008
6009 if (mas->index > max)
6010 return NULL;
6011
6012 entry = mas_walk(mas);
6013 if (entry)
6014 return entry;
6015 }
6016
6017 if (unlikely(!mas_searchable(mas)))
6018 return NULL;
6019
6020 /* Retries on dead nodes handled by mas_next_entry */
6021 return mas_next_entry(mas, max);
6022}
6023EXPORT_SYMBOL_GPL(mas_find);
6024
6025/**
6026 * mas_find_rev: On the first call, find the first non-null entry at or below
6027 * mas->index down to %min. Otherwise find the first non-null entry below
6028 * mas->index down to %min.
6029 * @mas: The maple state
6030 * @min: The minimum value to check.
6031 *
6032 * Must hold rcu_read_lock or the write lock.
6033 * If an entry exists, last and index are updated accordingly.
6034 * May set @mas->node to MAS_NONE.
6035 *
6036 * Return: The entry or %NULL.
6037 */
6038void *mas_find_rev(struct ma_state *mas, unsigned long min)
6039{
6040 if (unlikely(mas_is_paused(mas))) {
6041 if (unlikely(mas->last == ULONG_MAX)) {
6042 mas->node = MAS_NONE;
6043 return NULL;
6044 }
6045 mas->node = MAS_START;
6046 mas->last = --mas->index;
6047 }
6048
6049 if (unlikely(mas_is_start(mas))) {
6050 /* First run or continue */
6051 void *entry;
6052
6053 if (mas->index < min)
6054 return NULL;
6055
6056 entry = mas_walk(mas);
6057 if (entry)
6058 return entry;
6059 }
6060
6061 if (unlikely(!mas_searchable(mas)))
6062 return NULL;
6063
6064 if (mas->index < min)
6065 return NULL;
6066
6067 /* Retries on dead nodes handled by mas_prev_entry */
6068 return mas_prev_entry(mas, min);
6069}
6070EXPORT_SYMBOL_GPL(mas_find_rev);
6071
6072/**
6073 * mas_erase() - Find the range in which index resides and erase the entire
6074 * range.
6075 * @mas: The maple state
6076 *
6077 * Must hold the write lock.
6078 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6079 * erases that range.
6080 *
6081 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6082 */
6083void *mas_erase(struct ma_state *mas)
6084{
6085 void *entry;
6086 MA_WR_STATE(wr_mas, mas, NULL);
6087
6088 if (mas_is_none(mas) || mas_is_paused(mas))
6089 mas->node = MAS_START;
6090
6091 /* Retry unnecessary when holding the write lock. */
6092 entry = mas_state_walk(mas);
6093 if (!entry)
6094 return NULL;
6095
6096write_retry:
6097 /* Must reset to ensure spanning writes of last slot are detected */
6098 mas_reset(mas);
6099 mas_wr_store_setup(&wr_mas);
6100 mas_wr_store_entry(&wr_mas);
6101 if (mas_nomem(mas, GFP_KERNEL))
6102 goto write_retry;
6103
6104 return entry;
6105}
6106EXPORT_SYMBOL_GPL(mas_erase);
6107
6108/**
6109 * mas_nomem() - Check if there was an error allocating and do the allocation
6110 * if necessary If there are allocations, then free them.
6111 * @mas: The maple state
6112 * @gfp: The GFP_FLAGS to use for allocations
6113 * Return: true on allocation, false otherwise.
6114 */
6115bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6116 __must_hold(mas->tree->lock)
6117{
6118 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6119 mas_destroy(mas);
6120 return false;
6121 }
6122
6123 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6124 mtree_unlock(mas->tree);
6125 mas_alloc_nodes(mas, gfp);
6126 mtree_lock(mas->tree);
6127 } else {
6128 mas_alloc_nodes(mas, gfp);
6129 }
6130
6131 if (!mas_allocated(mas))
6132 return false;
6133
6134 mas->node = MAS_START;
6135 return true;
6136}
6137
6138void __init maple_tree_init(void)
6139{
6140 maple_node_cache = kmem_cache_create("maple_node",
6141 sizeof(struct maple_node), sizeof(struct maple_node),
6142 SLAB_PANIC, NULL);
6143}
6144
6145/**
6146 * mtree_load() - Load a value stored in a maple tree
6147 * @mt: The maple tree
6148 * @index: The index to load
6149 *
6150 * Return: the entry or %NULL
6151 */
6152void *mtree_load(struct maple_tree *mt, unsigned long index)
6153{
6154 MA_STATE(mas, mt, index, index);
6155 void *entry;
6156
6157 trace_ma_read(__func__, &mas);
6158 rcu_read_lock();
6159retry:
6160 entry = mas_start(&mas);
6161 if (unlikely(mas_is_none(&mas)))
6162 goto unlock;
6163
6164 if (unlikely(mas_is_ptr(&mas))) {
6165 if (index)
6166 entry = NULL;
6167
6168 goto unlock;
6169 }
6170
6171 entry = mtree_lookup_walk(&mas);
6172 if (!entry && unlikely(mas_is_start(&mas)))
6173 goto retry;
6174unlock:
6175 rcu_read_unlock();
6176 if (xa_is_zero(entry))
6177 return NULL;
6178
6179 return entry;
6180}
6181EXPORT_SYMBOL(mtree_load);
6182
6183/**
6184 * mtree_store_range() - Store an entry at a given range.
6185 * @mt: The maple tree
6186 * @index: The start of the range
6187 * @last: The end of the range
6188 * @entry: The entry to store
6189 * @gfp: The GFP_FLAGS to use for allocations
6190 *
6191 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6192 * be allocated.
6193 */
6194int mtree_store_range(struct maple_tree *mt, unsigned long index,
6195 unsigned long last, void *entry, gfp_t gfp)
6196{
6197 MA_STATE(mas, mt, index, last);
6198 MA_WR_STATE(wr_mas, &mas, entry);
6199
6200 trace_ma_write(__func__, &mas, 0, entry);
6201 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6202 return -EINVAL;
6203
6204 if (index > last)
6205 return -EINVAL;
6206
6207 mtree_lock(mt);
6208retry:
6209 mas_wr_store_entry(&wr_mas);
6210 if (mas_nomem(&mas, gfp))
6211 goto retry;
6212
6213 mtree_unlock(mt);
6214 if (mas_is_err(&mas))
6215 return xa_err(mas.node);
6216
6217 return 0;
6218}
6219EXPORT_SYMBOL(mtree_store_range);
6220
6221/**
6222 * mtree_store() - Store an entry at a given index.
6223 * @mt: The maple tree
6224 * @index: The index to store the value
6225 * @entry: The entry to store
6226 * @gfp: The GFP_FLAGS to use for allocations
6227 *
6228 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6229 * be allocated.
6230 */
6231int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6232 gfp_t gfp)
6233{
6234 return mtree_store_range(mt, index, index, entry, gfp);
6235}
6236EXPORT_SYMBOL(mtree_store);
6237
6238/**
6239 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6240 * @mt: The maple tree
6241 * @first: The start of the range
6242 * @last: The end of the range
6243 * @entry: The entry to store
6244 * @gfp: The GFP_FLAGS to use for allocations.
6245 *
6246 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6247 * request, -ENOMEM if memory could not be allocated.
6248 */
6249int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6250 unsigned long last, void *entry, gfp_t gfp)
6251{
6252 MA_STATE(ms, mt, first, last);
6253
6254 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6255 return -EINVAL;
6256
6257 if (first > last)
6258 return -EINVAL;
6259
6260 mtree_lock(mt);
6261retry:
6262 mas_insert(&ms, entry);
6263 if (mas_nomem(&ms, gfp))
6264 goto retry;
6265
6266 mtree_unlock(mt);
6267 if (mas_is_err(&ms))
6268 return xa_err(ms.node);
6269
6270 return 0;
6271}
6272EXPORT_SYMBOL(mtree_insert_range);
6273
6274/**
6275 * mtree_insert() - Insert an entry at a give index if there is no value.
6276 * @mt: The maple tree
6277 * @index : The index to store the value
6278 * @entry: The entry to store
6279 * @gfp: The FGP_FLAGS to use for allocations.
6280 *
6281 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6282 * request, -ENOMEM if memory could not be allocated.
6283 */
6284int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6285 gfp_t gfp)
6286{
6287 return mtree_insert_range(mt, index, index, entry, gfp);
6288}
6289EXPORT_SYMBOL(mtree_insert);
6290
6291int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6292 void *entry, unsigned long size, unsigned long min,
6293 unsigned long max, gfp_t gfp)
6294{
6295 int ret = 0;
6296
6297 MA_STATE(mas, mt, min, max - size);
6298 if (!mt_is_alloc(mt))
6299 return -EINVAL;
6300
6301 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6302 return -EINVAL;
6303
6304 if (min > max)
6305 return -EINVAL;
6306
6307 if (max < size)
6308 return -EINVAL;
6309
6310 if (!size)
6311 return -EINVAL;
6312
6313 mtree_lock(mt);
6314retry:
6315 mas.offset = 0;
6316 mas.index = min;
6317 mas.last = max - size;
6318 ret = mas_alloc(&mas, entry, size, startp);
6319 if (mas_nomem(&mas, gfp))
6320 goto retry;
6321
6322 mtree_unlock(mt);
6323 return ret;
6324}
6325EXPORT_SYMBOL(mtree_alloc_range);
6326
6327int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6328 void *entry, unsigned long size, unsigned long min,
6329 unsigned long max, gfp_t gfp)
6330{
6331 int ret = 0;
6332
6333 MA_STATE(mas, mt, min, max - size);
6334 if (!mt_is_alloc(mt))
6335 return -EINVAL;
6336
6337 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6338 return -EINVAL;
6339
6340 if (min >= max)
6341 return -EINVAL;
6342
6343 if (max < size - 1)
6344 return -EINVAL;
6345
6346 if (!size)
6347 return -EINVAL;
6348
6349 mtree_lock(mt);
6350retry:
6351 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6352 if (mas_nomem(&mas, gfp))
6353 goto retry;
6354
6355 mtree_unlock(mt);
6356 return ret;
6357}
6358EXPORT_SYMBOL(mtree_alloc_rrange);
6359
6360/**
6361 * mtree_erase() - Find an index and erase the entire range.
6362 * @mt: The maple tree
6363 * @index: The index to erase
6364 *
6365 * Erasing is the same as a walk to an entry then a store of a NULL to that
6366 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6367 *
6368 * Return: The entry stored at the @index or %NULL
6369 */
6370void *mtree_erase(struct maple_tree *mt, unsigned long index)
6371{
6372 void *entry = NULL;
6373
6374 MA_STATE(mas, mt, index, index);
6375 trace_ma_op(__func__, &mas);
6376
6377 mtree_lock(mt);
6378 entry = mas_erase(&mas);
6379 mtree_unlock(mt);
6380
6381 return entry;
6382}
6383EXPORT_SYMBOL(mtree_erase);
6384
6385/**
6386 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6387 * @mt: The maple tree
6388 *
6389 * Note: Does not handle locking.
6390 */
6391void __mt_destroy(struct maple_tree *mt)
6392{
6393 void *root = mt_root_locked(mt);
6394
6395 rcu_assign_pointer(mt->ma_root, NULL);
6396 if (xa_is_node(root))
6397 mte_destroy_walk(root, mt);
6398
6399 mt->ma_flags = 0;
6400}
6401EXPORT_SYMBOL_GPL(__mt_destroy);
6402
6403/**
6404 * mtree_destroy() - Destroy a maple tree
6405 * @mt: The maple tree
6406 *
6407 * Frees all resources used by the tree. Handles locking.
6408 */
6409void mtree_destroy(struct maple_tree *mt)
6410{
6411 mtree_lock(mt);
6412 __mt_destroy(mt);
6413 mtree_unlock(mt);
6414}
6415EXPORT_SYMBOL(mtree_destroy);
6416
6417/**
6418 * mt_find() - Search from the start up until an entry is found.
6419 * @mt: The maple tree
6420 * @index: Pointer which contains the start location of the search
6421 * @max: The maximum value to check
6422 *
6423 * Handles locking. @index will be incremented to one beyond the range.
6424 *
6425 * Return: The entry at or after the @index or %NULL
6426 */
6427void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6428{
6429 MA_STATE(mas, mt, *index, *index);
6430 void *entry;
6431#ifdef CONFIG_DEBUG_MAPLE_TREE
6432 unsigned long copy = *index;
6433#endif
6434
6435 trace_ma_read(__func__, &mas);
6436
6437 if ((*index) > max)
6438 return NULL;
6439
6440 rcu_read_lock();
6441retry:
6442 entry = mas_state_walk(&mas);
6443 if (mas_is_start(&mas))
6444 goto retry;
6445
6446 if (unlikely(xa_is_zero(entry)))
6447 entry = NULL;
6448
6449 if (entry)
6450 goto unlock;
6451
6452 while (mas_searchable(&mas) && (mas.index < max)) {
6453 entry = mas_next_entry(&mas, max);
6454 if (likely(entry && !xa_is_zero(entry)))
6455 break;
6456 }
6457
6458 if (unlikely(xa_is_zero(entry)))
6459 entry = NULL;
6460unlock:
6461 rcu_read_unlock();
6462 if (likely(entry)) {
6463 *index = mas.last + 1;
6464#ifdef CONFIG_DEBUG_MAPLE_TREE
6465 if ((*index) && (*index) <= copy)
6466 pr_err("index not increased! %lx <= %lx\n",
6467 *index, copy);
6468 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6469#endif
6470 }
6471
6472 return entry;
6473}
6474EXPORT_SYMBOL(mt_find);
6475
6476/**
6477 * mt_find_after() - Search from the start up until an entry is found.
6478 * @mt: The maple tree
6479 * @index: Pointer which contains the start location of the search
6480 * @max: The maximum value to check
6481 *
6482 * Handles locking, detects wrapping on index == 0
6483 *
6484 * Return: The entry at or after the @index or %NULL
6485 */
6486void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6487 unsigned long max)
6488{
6489 if (!(*index))
6490 return NULL;
6491
6492 return mt_find(mt, index, max);
6493}
6494EXPORT_SYMBOL(mt_find_after);
6495
6496#ifdef CONFIG_DEBUG_MAPLE_TREE
6497atomic_t maple_tree_tests_run;
6498EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6499atomic_t maple_tree_tests_passed;
6500EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6501
6502#ifndef __KERNEL__
6503extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6504void mt_set_non_kernel(unsigned int val)
6505{
6506 kmem_cache_set_non_kernel(maple_node_cache, val);
6507}
6508
6509extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6510unsigned long mt_get_alloc_size(void)
6511{
6512 return kmem_cache_get_alloc(maple_node_cache);
6513}
6514
6515extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6516void mt_zero_nr_tallocated(void)
6517{
6518 kmem_cache_zero_nr_tallocated(maple_node_cache);
6519}
6520
6521extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6522unsigned int mt_nr_tallocated(void)
6523{
6524 return kmem_cache_nr_tallocated(maple_node_cache);
6525}
6526
6527extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6528unsigned int mt_nr_allocated(void)
6529{
6530 return kmem_cache_nr_allocated(maple_node_cache);
6531}
6532
6533/*
6534 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6535 * @mas: The maple state
6536 * @index: The index to restore in @mas.
6537 *
6538 * Used in test code.
6539 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6540 */
6541static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6542{
6543 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6544 return 0;
6545
6546 if (likely(!mte_dead_node(mas->node)))
6547 return 0;
6548
6549 mas_rewalk(mas, index);
6550 return 1;
6551}
6552
6553void mt_cache_shrink(void)
6554{
6555}
6556#else
6557/*
6558 * mt_cache_shrink() - For testing, don't use this.
6559 *
6560 * Certain testcases can trigger an OOM when combined with other memory
6561 * debugging configuration options. This function is used to reduce the
6562 * possibility of an out of memory even due to kmem_cache objects remaining
6563 * around for longer than usual.
6564 */
6565void mt_cache_shrink(void)
6566{
6567 kmem_cache_shrink(maple_node_cache);
6568
6569}
6570EXPORT_SYMBOL_GPL(mt_cache_shrink);
6571
6572#endif /* not defined __KERNEL__ */
6573/*
6574 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6575 * @mas: The maple state
6576 * @offset: The offset into the slot array to fetch.
6577 *
6578 * Return: The entry stored at @offset.
6579 */
6580static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6581 unsigned char offset)
6582{
6583 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6584 offset);
6585}
6586
6587
6588/*
6589 * mas_first_entry() - Go the first leaf and find the first entry.
6590 * @mas: the maple state.
6591 * @limit: the maximum index to check.
6592 * @*r_start: Pointer to set to the range start.
6593 *
6594 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6595 *
6596 * Return: The first entry or MAS_NONE.
6597 */
6598static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6599 unsigned long limit, enum maple_type mt)
6600
6601{
6602 unsigned long max;
6603 unsigned long *pivots;
6604 void __rcu **slots;
6605 void *entry = NULL;
6606
6607 mas->index = mas->min;
6608 if (mas->index > limit)
6609 goto none;
6610
6611 max = mas->max;
6612 mas->offset = 0;
6613 while (likely(!ma_is_leaf(mt))) {
6614 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6615 slots = ma_slots(mn, mt);
6616 pivots = ma_pivots(mn, mt);
6617 max = pivots[0];
6618 entry = mas_slot(mas, slots, 0);
6619 if (unlikely(ma_dead_node(mn)))
6620 return NULL;
6621 mas->node = entry;
6622 mn = mas_mn(mas);
6623 mt = mte_node_type(mas->node);
6624 }
6625 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6626
6627 mas->max = max;
6628 slots = ma_slots(mn, mt);
6629 entry = mas_slot(mas, slots, 0);
6630 if (unlikely(ma_dead_node(mn)))
6631 return NULL;
6632
6633 /* Slot 0 or 1 must be set */
6634 if (mas->index > limit)
6635 goto none;
6636
6637 if (likely(entry))
6638 return entry;
6639
6640 pivots = ma_pivots(mn, mt);
6641 mas->index = pivots[0] + 1;
6642 mas->offset = 1;
6643 entry = mas_slot(mas, slots, 1);
6644 if (unlikely(ma_dead_node(mn)))
6645 return NULL;
6646
6647 if (mas->index > limit)
6648 goto none;
6649
6650 if (likely(entry))
6651 return entry;
6652
6653none:
6654 if (likely(!ma_dead_node(mn)))
6655 mas->node = MAS_NONE;
6656 return NULL;
6657}
6658
6659/* Depth first search, post-order */
6660static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6661{
6662
6663 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6664 unsigned long p_min, p_max;
6665
6666 mas_next_node(mas, mas_mn(mas), max);
6667 if (!mas_is_none(mas))
6668 return;
6669
6670 if (mte_is_root(mn))
6671 return;
6672
6673 mas->node = mn;
6674 mas_ascend(mas);
6675 while (mas->node != MAS_NONE) {
6676 p = mas->node;
6677 p_min = mas->min;
6678 p_max = mas->max;
6679 mas_prev_node(mas, 0);
6680 }
6681
6682 if (p == MAS_NONE)
6683 return;
6684
6685 mas->node = p;
6686 mas->max = p_max;
6687 mas->min = p_min;
6688}
6689
6690/* Tree validations */
6691static void mt_dump_node(const struct maple_tree *mt, void *entry,
6692 unsigned long min, unsigned long max, unsigned int depth);
6693static void mt_dump_range(unsigned long min, unsigned long max,
6694 unsigned int depth)
6695{
6696 static const char spaces[] = " ";
6697
6698 if (min == max)
6699 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6700 else
6701 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6702}
6703
6704static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6705 unsigned int depth)
6706{
6707 mt_dump_range(min, max, depth);
6708
6709 if (xa_is_value(entry))
6710 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6711 xa_to_value(entry), entry);
6712 else if (xa_is_zero(entry))
6713 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6714 else if (mt_is_reserved(entry))
6715 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6716 else
6717 pr_cont("%p\n", entry);
6718}
6719
6720static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6721 unsigned long min, unsigned long max, unsigned int depth)
6722{
6723 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6724 bool leaf = mte_is_leaf(entry);
6725 unsigned long first = min;
6726 int i;
6727
6728 pr_cont(" contents: ");
6729 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6730 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6731 pr_cont("%p\n", node->slot[i]);
6732 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6733 unsigned long last = max;
6734
6735 if (i < (MAPLE_RANGE64_SLOTS - 1))
6736 last = node->pivot[i];
6737 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6738 break;
6739 if (last == 0 && i > 0)
6740 break;
6741 if (leaf)
6742 mt_dump_entry(mt_slot(mt, node->slot, i),
6743 first, last, depth + 1);
6744 else if (node->slot[i])
6745 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6746 first, last, depth + 1);
6747
6748 if (last == max)
6749 break;
6750 if (last > max) {
6751 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6752 node, last, max, i);
6753 break;
6754 }
6755 first = last + 1;
6756 }
6757}
6758
6759static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6760 unsigned long min, unsigned long max, unsigned int depth)
6761{
6762 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6763 bool leaf = mte_is_leaf(entry);
6764 unsigned long first = min;
6765 int i;
6766
6767 pr_cont(" contents: ");
6768 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6769 pr_cont("%lu ", node->gap[i]);
6770 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6771 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6772 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6773 pr_cont("%p\n", node->slot[i]);
6774 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6775 unsigned long last = max;
6776
6777 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6778 last = node->pivot[i];
6779 else if (!node->slot[i])
6780 break;
6781 if (last == 0 && i > 0)
6782 break;
6783 if (leaf)
6784 mt_dump_entry(mt_slot(mt, node->slot, i),
6785 first, last, depth + 1);
6786 else if (node->slot[i])
6787 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6788 first, last, depth + 1);
6789
6790 if (last == max)
6791 break;
6792 if (last > max) {
6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6794 node, last, max, i);
6795 break;
6796 }
6797 first = last + 1;
6798 }
6799}
6800
6801static void mt_dump_node(const struct maple_tree *mt, void *entry,
6802 unsigned long min, unsigned long max, unsigned int depth)
6803{
6804 struct maple_node *node = mte_to_node(entry);
6805 unsigned int type = mte_node_type(entry);
6806 unsigned int i;
6807
6808 mt_dump_range(min, max, depth);
6809
6810 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6811 node ? node->parent : NULL);
6812 switch (type) {
6813 case maple_dense:
6814 pr_cont("\n");
6815 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6816 if (min + i > max)
6817 pr_cont("OUT OF RANGE: ");
6818 mt_dump_entry(mt_slot(mt, node->slot, i),
6819 min + i, min + i, depth);
6820 }
6821 break;
6822 case maple_leaf_64:
6823 case maple_range_64:
6824 mt_dump_range64(mt, entry, min, max, depth);
6825 break;
6826 case maple_arange_64:
6827 mt_dump_arange64(mt, entry, min, max, depth);
6828 break;
6829
6830 default:
6831 pr_cont(" UNKNOWN TYPE\n");
6832 }
6833}
6834
6835void mt_dump(const struct maple_tree *mt)
6836{
6837 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6838
6839 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6840 mt, mt->ma_flags, mt_height(mt), entry);
6841 if (!xa_is_node(entry))
6842 mt_dump_entry(entry, 0, 0, 0);
6843 else if (entry)
6844 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6845}
6846EXPORT_SYMBOL_GPL(mt_dump);
6847
6848/*
6849 * Calculate the maximum gap in a node and check if that's what is reported in
6850 * the parent (unless root).
6851 */
6852static void mas_validate_gaps(struct ma_state *mas)
6853{
6854 struct maple_enode *mte = mas->node;
6855 struct maple_node *p_mn;
6856 unsigned long gap = 0, max_gap = 0;
6857 unsigned long p_end, p_start = mas->min;
6858 unsigned char p_slot;
6859 unsigned long *gaps = NULL;
6860 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6861 int i;
6862
6863 if (ma_is_dense(mte_node_type(mte))) {
6864 for (i = 0; i < mt_slot_count(mte); i++) {
6865 if (mas_get_slot(mas, i)) {
6866 if (gap > max_gap)
6867 max_gap = gap;
6868 gap = 0;
6869 continue;
6870 }
6871 gap++;
6872 }
6873 goto counted;
6874 }
6875
6876 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6877 for (i = 0; i < mt_slot_count(mte); i++) {
6878 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6879
6880 if (!gaps) {
6881 if (mas_get_slot(mas, i)) {
6882 gap = 0;
6883 goto not_empty;
6884 }
6885
6886 gap += p_end - p_start + 1;
6887 } else {
6888 void *entry = mas_get_slot(mas, i);
6889
6890 gap = gaps[i];
6891 if (!entry) {
6892 if (gap != p_end - p_start + 1) {
6893 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6894 mas_mn(mas), i,
6895 mas_get_slot(mas, i), gap,
6896 p_end, p_start);
6897 mt_dump(mas->tree);
6898
6899 MT_BUG_ON(mas->tree,
6900 gap != p_end - p_start + 1);
6901 }
6902 } else {
6903 if (gap > p_end - p_start + 1) {
6904 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6905 mas_mn(mas), i, gap, p_end, p_start,
6906 p_end - p_start + 1);
6907 MT_BUG_ON(mas->tree,
6908 gap > p_end - p_start + 1);
6909 }
6910 }
6911 }
6912
6913 if (gap > max_gap)
6914 max_gap = gap;
6915not_empty:
6916 p_start = p_end + 1;
6917 if (p_end >= mas->max)
6918 break;
6919 }
6920
6921counted:
6922 if (mte_is_root(mte))
6923 return;
6924
6925 p_slot = mte_parent_slot(mas->node);
6926 p_mn = mte_parent(mte);
6927 MT_BUG_ON(mas->tree, max_gap > mas->max);
6928 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6929 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6930 mt_dump(mas->tree);
6931 }
6932
6933 MT_BUG_ON(mas->tree,
6934 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6935}
6936
6937static void mas_validate_parent_slot(struct ma_state *mas)
6938{
6939 struct maple_node *parent;
6940 struct maple_enode *node;
6941 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6942 unsigned char p_slot = mte_parent_slot(mas->node);
6943 void __rcu **slots;
6944 int i;
6945
6946 if (mte_is_root(mas->node))
6947 return;
6948
6949 parent = mte_parent(mas->node);
6950 slots = ma_slots(parent, p_type);
6951 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6952
6953 /* Check prev/next parent slot for duplicate node entry */
6954
6955 for (i = 0; i < mt_slots[p_type]; i++) {
6956 node = mas_slot(mas, slots, i);
6957 if (i == p_slot) {
6958 if (node != mas->node)
6959 pr_err("parent %p[%u] does not have %p\n",
6960 parent, i, mas_mn(mas));
6961 MT_BUG_ON(mas->tree, node != mas->node);
6962 } else if (node == mas->node) {
6963 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6964 mas_mn(mas), parent, i, p_slot);
6965 MT_BUG_ON(mas->tree, node == mas->node);
6966 }
6967 }
6968}
6969
6970static void mas_validate_child_slot(struct ma_state *mas)
6971{
6972 enum maple_type type = mte_node_type(mas->node);
6973 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6974 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6975 struct maple_enode *child;
6976 unsigned char i;
6977
6978 if (mte_is_leaf(mas->node))
6979 return;
6980
6981 for (i = 0; i < mt_slots[type]; i++) {
6982 child = mas_slot(mas, slots, i);
6983 if (!pivots[i] || pivots[i] == mas->max)
6984 break;
6985
6986 if (!child)
6987 break;
6988
6989 if (mte_parent_slot(child) != i) {
6990 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6991 mas_mn(mas), i, mte_to_node(child),
6992 mte_parent_slot(child));
6993 MT_BUG_ON(mas->tree, 1);
6994 }
6995
6996 if (mte_parent(child) != mte_to_node(mas->node)) {
6997 pr_err("child %p has parent %p not %p\n",
6998 mte_to_node(child), mte_parent(child),
6999 mte_to_node(mas->node));
7000 MT_BUG_ON(mas->tree, 1);
7001 }
7002 }
7003}
7004
7005/*
7006 * Validate all pivots are within mas->min and mas->max.
7007 */
7008static void mas_validate_limits(struct ma_state *mas)
7009{
7010 int i;
7011 unsigned long prev_piv = 0;
7012 enum maple_type type = mte_node_type(mas->node);
7013 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7014 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7015
7016 /* all limits are fine here. */
7017 if (mte_is_root(mas->node))
7018 return;
7019
7020 for (i = 0; i < mt_slots[type]; i++) {
7021 unsigned long piv;
7022
7023 piv = mas_safe_pivot(mas, pivots, i, type);
7024
7025 if (!piv && (i != 0))
7026 break;
7027
7028 if (!mte_is_leaf(mas->node)) {
7029 void *entry = mas_slot(mas, slots, i);
7030
7031 if (!entry)
7032 pr_err("%p[%u] cannot be null\n",
7033 mas_mn(mas), i);
7034
7035 MT_BUG_ON(mas->tree, !entry);
7036 }
7037
7038 if (prev_piv > piv) {
7039 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7040 mas_mn(mas), i, piv, prev_piv);
7041 MT_BUG_ON(mas->tree, piv < prev_piv);
7042 }
7043
7044 if (piv < mas->min) {
7045 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7046 piv, mas->min);
7047 MT_BUG_ON(mas->tree, piv < mas->min);
7048 }
7049 if (piv > mas->max) {
7050 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7051 piv, mas->max);
7052 MT_BUG_ON(mas->tree, piv > mas->max);
7053 }
7054 prev_piv = piv;
7055 if (piv == mas->max)
7056 break;
7057 }
7058 for (i += 1; i < mt_slots[type]; i++) {
7059 void *entry = mas_slot(mas, slots, i);
7060
7061 if (entry && (i != mt_slots[type] - 1)) {
7062 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7063 i, entry);
7064 MT_BUG_ON(mas->tree, entry != NULL);
7065 }
7066
7067 if (i < mt_pivots[type]) {
7068 unsigned long piv = pivots[i];
7069
7070 if (!piv)
7071 continue;
7072
7073 pr_err("%p[%u] should not have piv %lu\n",
7074 mas_mn(mas), i, piv);
7075 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7076 }
7077 }
7078}
7079
7080static void mt_validate_nulls(struct maple_tree *mt)
7081{
7082 void *entry, *last = (void *)1;
7083 unsigned char offset = 0;
7084 void __rcu **slots;
7085 MA_STATE(mas, mt, 0, 0);
7086
7087 mas_start(&mas);
7088 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7089 return;
7090
7091 while (!mte_is_leaf(mas.node))
7092 mas_descend(&mas);
7093
7094 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7095 do {
7096 entry = mas_slot(&mas, slots, offset);
7097 if (!last && !entry) {
7098 pr_err("Sequential nulls end at %p[%u]\n",
7099 mas_mn(&mas), offset);
7100 }
7101 MT_BUG_ON(mt, !last && !entry);
7102 last = entry;
7103 if (offset == mas_data_end(&mas)) {
7104 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7105 if (mas_is_none(&mas))
7106 return;
7107 offset = 0;
7108 slots = ma_slots(mte_to_node(mas.node),
7109 mte_node_type(mas.node));
7110 } else {
7111 offset++;
7112 }
7113
7114 } while (!mas_is_none(&mas));
7115}
7116
7117/*
7118 * validate a maple tree by checking:
7119 * 1. The limits (pivots are within mas->min to mas->max)
7120 * 2. The gap is correctly set in the parents
7121 */
7122void mt_validate(struct maple_tree *mt)
7123{
7124 unsigned char end;
7125
7126 MA_STATE(mas, mt, 0, 0);
7127 rcu_read_lock();
7128 mas_start(&mas);
7129 if (!mas_searchable(&mas))
7130 goto done;
7131
7132 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7133 while (!mas_is_none(&mas)) {
7134 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7135 if (!mte_is_root(mas.node)) {
7136 end = mas_data_end(&mas);
7137 if ((end < mt_min_slot_count(mas.node)) &&
7138 (mas.max != ULONG_MAX)) {
7139 pr_err("Invalid size %u of %p\n", end,
7140 mas_mn(&mas));
7141 MT_BUG_ON(mas.tree, 1);
7142 }
7143
7144 }
7145 mas_validate_parent_slot(&mas);
7146 mas_validate_child_slot(&mas);
7147 mas_validate_limits(&mas);
7148 if (mt_is_alloc(mt))
7149 mas_validate_gaps(&mas);
7150 mas_dfs_postorder(&mas, ULONG_MAX);
7151 }
7152 mt_validate_nulls(mt);
7153done:
7154 rcu_read_unlock();
7155
7156}
7157EXPORT_SYMBOL_GPL(mt_validate);
7158
7159#endif /* CONFIG_DEBUG_MAPLE_TREE */