Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
 
  40#include <linux/binfmts.h>
  41#include <linux/mman.h>
  42#include <linux/mmu_notifier.h>
  43#include <linux/fs.h>
  44#include <linux/mm.h>
  45#include <linux/vmacache.h>
  46#include <linux/nsproxy.h>
  47#include <linux/capability.h>
  48#include <linux/cpu.h>
  49#include <linux/cgroup.h>
  50#include <linux/security.h>
  51#include <linux/hugetlb.h>
  52#include <linux/seccomp.h>
  53#include <linux/swap.h>
  54#include <linux/syscalls.h>
  55#include <linux/jiffies.h>
  56#include <linux/futex.h>
  57#include <linux/compat.h>
  58#include <linux/kthread.h>
  59#include <linux/task_io_accounting_ops.h>
  60#include <linux/rcupdate.h>
  61#include <linux/ptrace.h>
  62#include <linux/mount.h>
  63#include <linux/audit.h>
  64#include <linux/memcontrol.h>
  65#include <linux/ftrace.h>
  66#include <linux/proc_fs.h>
  67#include <linux/profile.h>
  68#include <linux/rmap.h>
  69#include <linux/ksm.h>
  70#include <linux/acct.h>
  71#include <linux/userfaultfd_k.h>
  72#include <linux/tsacct_kern.h>
  73#include <linux/cn_proc.h>
  74#include <linux/freezer.h>
  75#include <linux/delayacct.h>
  76#include <linux/taskstats_kern.h>
  77#include <linux/random.h>
  78#include <linux/tty.h>
  79#include <linux/blkdev.h>
  80#include <linux/fs_struct.h>
  81#include <linux/magic.h>
  82#include <linux/perf_event.h>
  83#include <linux/posix-timers.h>
  84#include <linux/user-return-notifier.h>
  85#include <linux/oom.h>
  86#include <linux/khugepaged.h>
  87#include <linux/signalfd.h>
  88#include <linux/uprobes.h>
  89#include <linux/aio.h>
  90#include <linux/compiler.h>
  91#include <linux/sysctl.h>
  92#include <linux/kcov.h>
  93#include <linux/livepatch.h>
  94#include <linux/thread_info.h>
  95#include <linux/stackleak.h>
  96#include <linux/kasan.h>
  97#include <linux/scs.h>
  98#include <linux/io_uring.h>
  99#include <linux/bpf.h>
 
 100
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196static int free_vm_stack_cache(unsigned int cpu)
 197{
 198	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 199	int i;
 200
 201	for (i = 0; i < NR_CACHED_STACKS; i++) {
 202		struct vm_struct *vm_stack = cached_vm_stacks[i];
 203
 204		if (!vm_stack)
 205			continue;
 206
 207		vfree(vm_stack->addr);
 208		cached_vm_stacks[i] = NULL;
 209	}
 210
 211	return 0;
 212}
 213#endif
 214
 215static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 216{
 217#ifdef CONFIG_VMAP_STACK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218	void *stack;
 219	int i;
 220
 221	for (i = 0; i < NR_CACHED_STACKS; i++) {
 222		struct vm_struct *s;
 223
 224		s = this_cpu_xchg(cached_stacks[i], NULL);
 225
 226		if (!s)
 227			continue;
 228
 229		/* Mark stack accessible for KASAN. */
 230		kasan_unpoison_range(s->addr, THREAD_SIZE);
 231
 
 
 232		/* Clear stale pointers from reused stack. */
 233		memset(s->addr, 0, THREAD_SIZE);
 
 
 
 
 
 234
 235		tsk->stack_vm_area = s;
 236		tsk->stack = s->addr;
 237		return s->addr;
 238	}
 239
 240	/*
 241	 * Allocated stacks are cached and later reused by new threads,
 242	 * so memcg accounting is performed manually on assigning/releasing
 243	 * stacks to tasks. Drop __GFP_ACCOUNT.
 244	 */
 245	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 246				     VMALLOC_START, VMALLOC_END,
 247				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 248				     PAGE_KERNEL,
 249				     0, node, __builtin_return_address(0));
 
 
 250
 
 
 
 
 
 251	/*
 252	 * We can't call find_vm_area() in interrupt context, and
 253	 * free_thread_stack() can be called in interrupt context,
 254	 * so cache the vm_struct.
 255	 */
 256	if (stack) {
 257		tsk->stack_vm_area = find_vm_area(stack);
 258		tsk->stack = stack;
 259	}
 260	return stack;
 261#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 263					     THREAD_SIZE_ORDER);
 264
 265	if (likely(page)) {
 266		tsk->stack = kasan_reset_tag(page_address(page));
 267		return tsk->stack;
 268	}
 269	return NULL;
 270#endif
 271}
 272
 273static inline void free_thread_stack(struct task_struct *tsk)
 274{
 275#ifdef CONFIG_VMAP_STACK
 276	struct vm_struct *vm = task_stack_vm_area(tsk);
 277
 278	if (vm) {
 279		int i;
 280
 281		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 282			memcg_kmem_uncharge_page(vm->pages[i], 0);
 283
 284		for (i = 0; i < NR_CACHED_STACKS; i++) {
 285			if (this_cpu_cmpxchg(cached_stacks[i],
 286					NULL, tsk->stack_vm_area) != NULL)
 287				continue;
 288
 289			return;
 290		}
 
 
 291
 292		vfree_atomic(tsk->stack);
 293		return;
 294	}
 295#endif
 296
 297	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 298}
 299# else
 300static struct kmem_cache *thread_stack_cache;
 301
 302static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 303						  int node)
 304{
 305	unsigned long *stack;
 306	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 307	stack = kasan_reset_tag(stack);
 308	tsk->stack = stack;
 309	return stack;
 310}
 311
 312static void free_thread_stack(struct task_struct *tsk)
 313{
 314	kmem_cache_free(thread_stack_cache, tsk->stack);
 
 315}
 316
 317void thread_stack_cache_init(void)
 318{
 319	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 320					THREAD_SIZE, THREAD_SIZE, 0, 0,
 321					THREAD_SIZE, NULL);
 322	BUG_ON(thread_stack_cache == NULL);
 323}
 324# endif
 325#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326
 327/* SLAB cache for signal_struct structures (tsk->signal) */
 328static struct kmem_cache *signal_cachep;
 329
 330/* SLAB cache for sighand_struct structures (tsk->sighand) */
 331struct kmem_cache *sighand_cachep;
 332
 333/* SLAB cache for files_struct structures (tsk->files) */
 334struct kmem_cache *files_cachep;
 335
 336/* SLAB cache for fs_struct structures (tsk->fs) */
 337struct kmem_cache *fs_cachep;
 338
 339/* SLAB cache for vm_area_struct structures */
 340static struct kmem_cache *vm_area_cachep;
 341
 342/* SLAB cache for mm_struct structures (tsk->mm) */
 343static struct kmem_cache *mm_cachep;
 344
 345struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 346{
 347	struct vm_area_struct *vma;
 348
 349	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 350	if (vma)
 351		vma_init(vma, mm);
 352	return vma;
 353}
 354
 355struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 356{
 357	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 358
 359	if (new) {
 360		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 361		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 362		/*
 363		 * orig->shared.rb may be modified concurrently, but the clone
 364		 * will be reinitialized.
 365		 */
 366		*new = data_race(*orig);
 367		INIT_LIST_HEAD(&new->anon_vma_chain);
 368		new->vm_next = new->vm_prev = NULL;
 369	}
 370	return new;
 371}
 372
 373void vm_area_free(struct vm_area_struct *vma)
 374{
 
 375	kmem_cache_free(vm_area_cachep, vma);
 376}
 377
 378static void account_kernel_stack(struct task_struct *tsk, int account)
 379{
 380	void *stack = task_stack_page(tsk);
 381	struct vm_struct *vm = task_stack_vm_area(tsk);
 382
 383	if (vm) {
 384		int i;
 385
 386		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 387			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 388					      account * (PAGE_SIZE / 1024));
 389	} else {
 
 
 390		/* All stack pages are in the same node. */
 391		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 392				      account * (THREAD_SIZE / 1024));
 393	}
 394}
 395
 396static int memcg_charge_kernel_stack(struct task_struct *tsk)
 397{
 398#ifdef CONFIG_VMAP_STACK
 399	struct vm_struct *vm = task_stack_vm_area(tsk);
 400	int ret;
 401
 402	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 403
 404	if (vm) {
 
 405		int i;
 406
 407		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 408
 409		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 410			/*
 411			 * If memcg_kmem_charge_page() fails, page's
 412			 * memory cgroup pointer is NULL, and
 413			 * memcg_kmem_uncharge_page() in free_thread_stack()
 414			 * will ignore this page.
 415			 */
 416			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
 417						     0);
 418			if (ret)
 419				return ret;
 420		}
 421	}
 422#endif
 423	return 0;
 424}
 425
 426static void release_task_stack(struct task_struct *tsk)
 427{
 428	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 429		return;  /* Better to leak the stack than to free prematurely */
 430
 431	account_kernel_stack(tsk, -1);
 432	free_thread_stack(tsk);
 433	tsk->stack = NULL;
 434#ifdef CONFIG_VMAP_STACK
 435	tsk->stack_vm_area = NULL;
 436#endif
 437}
 438
 439#ifdef CONFIG_THREAD_INFO_IN_TASK
 440void put_task_stack(struct task_struct *tsk)
 441{
 442	if (refcount_dec_and_test(&tsk->stack_refcount))
 443		release_task_stack(tsk);
 444}
 445#endif
 446
 447void free_task(struct task_struct *tsk)
 448{
 
 
 
 
 449	scs_release(tsk);
 450
 451#ifndef CONFIG_THREAD_INFO_IN_TASK
 452	/*
 453	 * The task is finally done with both the stack and thread_info,
 454	 * so free both.
 455	 */
 456	release_task_stack(tsk);
 457#else
 458	/*
 459	 * If the task had a separate stack allocation, it should be gone
 460	 * by now.
 461	 */
 462	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 463#endif
 464	rt_mutex_debug_task_free(tsk);
 465	ftrace_graph_exit_task(tsk);
 466	arch_release_task_struct(tsk);
 467	if (tsk->flags & PF_KTHREAD)
 468		free_kthread_struct(tsk);
 469	free_task_struct(tsk);
 470}
 471EXPORT_SYMBOL(free_task);
 472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473#ifdef CONFIG_MMU
 474static __latent_entropy int dup_mmap(struct mm_struct *mm,
 475					struct mm_struct *oldmm)
 476{
 477	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 478	struct rb_node **rb_link, *rb_parent;
 479	int retval;
 480	unsigned long charge;
 481	LIST_HEAD(uf);
 
 
 482
 483	uprobe_start_dup_mmap();
 484	if (mmap_write_lock_killable(oldmm)) {
 485		retval = -EINTR;
 486		goto fail_uprobe_end;
 487	}
 488	flush_cache_dup_mm(oldmm);
 489	uprobe_dup_mmap(oldmm, mm);
 490	/*
 491	 * Not linked in yet - no deadlock potential:
 492	 */
 493	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 494
 495	/* No ordering required: file already has been exposed. */
 496	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 497
 498	mm->total_vm = oldmm->total_vm;
 499	mm->data_vm = oldmm->data_vm;
 500	mm->exec_vm = oldmm->exec_vm;
 501	mm->stack_vm = oldmm->stack_vm;
 502
 503	rb_link = &mm->mm_rb.rb_node;
 504	rb_parent = NULL;
 505	pprev = &mm->mmap;
 506	retval = ksm_fork(mm, oldmm);
 507	if (retval)
 508		goto out;
 509	retval = khugepaged_fork(mm, oldmm);
 
 
 510	if (retval)
 511		goto out;
 512
 513	prev = NULL;
 514	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 515		struct file *file;
 516
 517		if (mpnt->vm_flags & VM_DONTCOPY) {
 518			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 519			continue;
 520		}
 521		charge = 0;
 522		/*
 523		 * Don't duplicate many vmas if we've been oom-killed (for
 524		 * example)
 525		 */
 526		if (fatal_signal_pending(current)) {
 527			retval = -EINTR;
 528			goto out;
 529		}
 530		if (mpnt->vm_flags & VM_ACCOUNT) {
 531			unsigned long len = vma_pages(mpnt);
 532
 533			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 534				goto fail_nomem;
 535			charge = len;
 536		}
 537		tmp = vm_area_dup(mpnt);
 538		if (!tmp)
 539			goto fail_nomem;
 540		retval = vma_dup_policy(mpnt, tmp);
 541		if (retval)
 542			goto fail_nomem_policy;
 543		tmp->vm_mm = mm;
 544		retval = dup_userfaultfd(tmp, &uf);
 545		if (retval)
 546			goto fail_nomem_anon_vma_fork;
 547		if (tmp->vm_flags & VM_WIPEONFORK) {
 548			/*
 549			 * VM_WIPEONFORK gets a clean slate in the child.
 550			 * Don't prepare anon_vma until fault since we don't
 551			 * copy page for current vma.
 552			 */
 553			tmp->anon_vma = NULL;
 554		} else if (anon_vma_fork(tmp, mpnt))
 555			goto fail_nomem_anon_vma_fork;
 556		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 557		file = tmp->vm_file;
 558		if (file) {
 559			struct inode *inode = file_inode(file);
 560			struct address_space *mapping = file->f_mapping;
 561
 562			get_file(file);
 563			if (tmp->vm_flags & VM_DENYWRITE)
 564				put_write_access(inode);
 565			i_mmap_lock_write(mapping);
 566			if (tmp->vm_flags & VM_SHARED)
 567				mapping_allow_writable(mapping);
 568			flush_dcache_mmap_lock(mapping);
 569			/* insert tmp into the share list, just after mpnt */
 570			vma_interval_tree_insert_after(tmp, mpnt,
 571					&mapping->i_mmap);
 572			flush_dcache_mmap_unlock(mapping);
 573			i_mmap_unlock_write(mapping);
 574		}
 575
 576		/*
 577		 * Clear hugetlb-related page reserves for children. This only
 578		 * affects MAP_PRIVATE mappings. Faults generated by the child
 579		 * are not guaranteed to succeed, even if read-only
 580		 */
 581		if (is_vm_hugetlb_page(tmp))
 582			reset_vma_resv_huge_pages(tmp);
 583
 584		/*
 585		 * Link in the new vma and copy the page table entries.
 586		 */
 587		*pprev = tmp;
 588		pprev = &tmp->vm_next;
 589		tmp->vm_prev = prev;
 590		prev = tmp;
 591
 592		__vma_link_rb(mm, tmp, rb_link, rb_parent);
 593		rb_link = &tmp->vm_rb.rb_right;
 594		rb_parent = &tmp->vm_rb;
 595
 596		mm->map_count++;
 597		if (!(tmp->vm_flags & VM_WIPEONFORK))
 598			retval = copy_page_range(tmp, mpnt);
 599
 600		if (tmp->vm_ops && tmp->vm_ops->open)
 601			tmp->vm_ops->open(tmp);
 602
 603		if (retval)
 604			goto out;
 605	}
 606	/* a new mm has just been created */
 607	retval = arch_dup_mmap(oldmm, mm);
 
 
 608out:
 609	mmap_write_unlock(mm);
 610	flush_tlb_mm(oldmm);
 611	mmap_write_unlock(oldmm);
 612	dup_userfaultfd_complete(&uf);
 613fail_uprobe_end:
 614	uprobe_end_dup_mmap();
 615	return retval;
 
 
 
 616fail_nomem_anon_vma_fork:
 617	mpol_put(vma_policy(tmp));
 618fail_nomem_policy:
 619	vm_area_free(tmp);
 620fail_nomem:
 621	retval = -ENOMEM;
 622	vm_unacct_memory(charge);
 623	goto out;
 624}
 625
 626static inline int mm_alloc_pgd(struct mm_struct *mm)
 627{
 628	mm->pgd = pgd_alloc(mm);
 629	if (unlikely(!mm->pgd))
 630		return -ENOMEM;
 631	return 0;
 632}
 633
 634static inline void mm_free_pgd(struct mm_struct *mm)
 635{
 636	pgd_free(mm, mm->pgd);
 637}
 638#else
 639static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 640{
 641	mmap_write_lock(oldmm);
 642	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 643	mmap_write_unlock(oldmm);
 644	return 0;
 645}
 646#define mm_alloc_pgd(mm)	(0)
 647#define mm_free_pgd(mm)
 648#endif /* CONFIG_MMU */
 649
 650static void check_mm(struct mm_struct *mm)
 651{
 652	int i;
 653
 654	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 655			 "Please make sure 'struct resident_page_types[]' is updated as well");
 656
 657	for (i = 0; i < NR_MM_COUNTERS; i++) {
 658		long x = atomic_long_read(&mm->rss_stat.count[i]);
 659
 
 
 
 
 
 660		if (unlikely(x))
 661			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 662				 mm, resident_page_types[i], x);
 663	}
 664
 665	if (mm_pgtables_bytes(mm))
 666		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 667				mm_pgtables_bytes(mm));
 668
 669#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 670	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 671#endif
 672}
 673
 674#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 675#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 676
 677/*
 678 * Called when the last reference to the mm
 679 * is dropped: either by a lazy thread or by
 680 * mmput. Free the page directory and the mm.
 681 */
 682void __mmdrop(struct mm_struct *mm)
 683{
 
 
 684	BUG_ON(mm == &init_mm);
 685	WARN_ON_ONCE(mm == current->mm);
 686	WARN_ON_ONCE(mm == current->active_mm);
 687	mm_free_pgd(mm);
 688	destroy_context(mm);
 689	mmu_notifier_subscriptions_destroy(mm);
 690	check_mm(mm);
 691	put_user_ns(mm->user_ns);
 
 
 
 
 692	free_mm(mm);
 693}
 694EXPORT_SYMBOL_GPL(__mmdrop);
 695
 696static void mmdrop_async_fn(struct work_struct *work)
 697{
 698	struct mm_struct *mm;
 699
 700	mm = container_of(work, struct mm_struct, async_put_work);
 701	__mmdrop(mm);
 702}
 703
 704static void mmdrop_async(struct mm_struct *mm)
 705{
 706	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 707		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 708		schedule_work(&mm->async_put_work);
 709	}
 710}
 711
 712static inline void free_signal_struct(struct signal_struct *sig)
 713{
 714	taskstats_tgid_free(sig);
 715	sched_autogroup_exit(sig);
 716	/*
 717	 * __mmdrop is not safe to call from softirq context on x86 due to
 718	 * pgd_dtor so postpone it to the async context
 719	 */
 720	if (sig->oom_mm)
 721		mmdrop_async(sig->oom_mm);
 722	kmem_cache_free(signal_cachep, sig);
 723}
 724
 725static inline void put_signal_struct(struct signal_struct *sig)
 726{
 727	if (refcount_dec_and_test(&sig->sigcnt))
 728		free_signal_struct(sig);
 729}
 730
 731void __put_task_struct(struct task_struct *tsk)
 732{
 733	WARN_ON(!tsk->exit_state);
 734	WARN_ON(refcount_read(&tsk->usage));
 735	WARN_ON(tsk == current);
 736
 737	io_uring_free(tsk);
 738	cgroup_free(tsk);
 739	task_numa_free(tsk, true);
 740	security_task_free(tsk);
 741	bpf_task_storage_free(tsk);
 742	exit_creds(tsk);
 743	delayacct_tsk_free(tsk);
 744	put_signal_struct(tsk->signal);
 745	sched_core_free(tsk);
 746
 747	if (!profile_handoff_task(tsk))
 748		free_task(tsk);
 749}
 750EXPORT_SYMBOL_GPL(__put_task_struct);
 751
 752void __init __weak arch_task_cache_init(void) { }
 753
 754/*
 755 * set_max_threads
 756 */
 757static void set_max_threads(unsigned int max_threads_suggested)
 758{
 759	u64 threads;
 760	unsigned long nr_pages = totalram_pages();
 761
 762	/*
 763	 * The number of threads shall be limited such that the thread
 764	 * structures may only consume a small part of the available memory.
 765	 */
 766	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 767		threads = MAX_THREADS;
 768	else
 769		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 770				    (u64) THREAD_SIZE * 8UL);
 771
 772	if (threads > max_threads_suggested)
 773		threads = max_threads_suggested;
 774
 775	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 776}
 777
 778#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 779/* Initialized by the architecture: */
 780int arch_task_struct_size __read_mostly;
 781#endif
 782
 783#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 784static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 785{
 786	/* Fetch thread_struct whitelist for the architecture. */
 787	arch_thread_struct_whitelist(offset, size);
 788
 789	/*
 790	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 791	 * adjust offset to position of thread_struct in task_struct.
 792	 */
 793	if (unlikely(*size == 0))
 794		*offset = 0;
 795	else
 796		*offset += offsetof(struct task_struct, thread);
 797}
 798#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 799
 800void __init fork_init(void)
 801{
 802	int i;
 803#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 804#ifndef ARCH_MIN_TASKALIGN
 805#define ARCH_MIN_TASKALIGN	0
 806#endif
 807	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 808	unsigned long useroffset, usersize;
 809
 810	/* create a slab on which task_structs can be allocated */
 811	task_struct_whitelist(&useroffset, &usersize);
 812	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 813			arch_task_struct_size, align,
 814			SLAB_PANIC|SLAB_ACCOUNT,
 815			useroffset, usersize, NULL);
 816#endif
 817
 818	/* do the arch specific task caches init */
 819	arch_task_cache_init();
 820
 821	set_max_threads(MAX_THREADS);
 822
 823	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 824	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 825	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 826		init_task.signal->rlim[RLIMIT_NPROC];
 827
 828	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
 829		init_user_ns.ucount_max[i] = max_threads/2;
 830
 831	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 832	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 833	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 834	set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 835
 836#ifdef CONFIG_VMAP_STACK
 837	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 838			  NULL, free_vm_stack_cache);
 839#endif
 840
 841	scs_init();
 842
 843	lockdep_init_task(&init_task);
 844	uprobes_init();
 845}
 846
 847int __weak arch_dup_task_struct(struct task_struct *dst,
 848					       struct task_struct *src)
 849{
 850	*dst = *src;
 851	return 0;
 852}
 853
 854void set_task_stack_end_magic(struct task_struct *tsk)
 855{
 856	unsigned long *stackend;
 857
 858	stackend = end_of_stack(tsk);
 859	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 860}
 861
 862static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 863{
 864	struct task_struct *tsk;
 865	unsigned long *stack;
 866	struct vm_struct *stack_vm_area __maybe_unused;
 867	int err;
 868
 869	if (node == NUMA_NO_NODE)
 870		node = tsk_fork_get_node(orig);
 871	tsk = alloc_task_struct_node(node);
 872	if (!tsk)
 873		return NULL;
 874
 875	stack = alloc_thread_stack_node(tsk, node);
 876	if (!stack)
 877		goto free_tsk;
 878
 879	if (memcg_charge_kernel_stack(tsk))
 880		goto free_stack;
 881
 882	stack_vm_area = task_stack_vm_area(tsk);
 883
 884	err = arch_dup_task_struct(tsk, orig);
 885
 886	/*
 887	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
 888	 * sure they're properly initialized before using any stack-related
 889	 * functions again.
 890	 */
 891	tsk->stack = stack;
 892#ifdef CONFIG_VMAP_STACK
 893	tsk->stack_vm_area = stack_vm_area;
 894#endif
 895#ifdef CONFIG_THREAD_INFO_IN_TASK
 896	refcount_set(&tsk->stack_refcount, 1);
 897#endif
 898
 899	if (err)
 900		goto free_stack;
 901
 902	err = scs_prepare(tsk, node);
 903	if (err)
 904		goto free_stack;
 905
 906#ifdef CONFIG_SECCOMP
 907	/*
 908	 * We must handle setting up seccomp filters once we're under
 909	 * the sighand lock in case orig has changed between now and
 910	 * then. Until then, filter must be NULL to avoid messing up
 911	 * the usage counts on the error path calling free_task.
 912	 */
 913	tsk->seccomp.filter = NULL;
 914#endif
 915
 916	setup_thread_stack(tsk, orig);
 917	clear_user_return_notifier(tsk);
 918	clear_tsk_need_resched(tsk);
 919	set_task_stack_end_magic(tsk);
 920	clear_syscall_work_syscall_user_dispatch(tsk);
 921
 922#ifdef CONFIG_STACKPROTECTOR
 923	tsk->stack_canary = get_random_canary();
 924#endif
 925	if (orig->cpus_ptr == &orig->cpus_mask)
 926		tsk->cpus_ptr = &tsk->cpus_mask;
 
 927
 928	/*
 929	 * One for the user space visible state that goes away when reaped.
 930	 * One for the scheduler.
 931	 */
 932	refcount_set(&tsk->rcu_users, 2);
 933	/* One for the rcu users */
 934	refcount_set(&tsk->usage, 1);
 935#ifdef CONFIG_BLK_DEV_IO_TRACE
 936	tsk->btrace_seq = 0;
 937#endif
 938	tsk->splice_pipe = NULL;
 939	tsk->task_frag.page = NULL;
 940	tsk->wake_q.next = NULL;
 941	tsk->pf_io_worker = NULL;
 942
 943	account_kernel_stack(tsk, 1);
 944
 945	kcov_task_init(tsk);
 
 946	kmap_local_fork(tsk);
 947
 948#ifdef CONFIG_FAULT_INJECTION
 949	tsk->fail_nth = 0;
 950#endif
 951
 952#ifdef CONFIG_BLK_CGROUP
 953	tsk->throttle_queue = NULL;
 954	tsk->use_memdelay = 0;
 955#endif
 956
 
 
 
 
 957#ifdef CONFIG_MEMCG
 958	tsk->active_memcg = NULL;
 959#endif
 
 
 
 
 
 960	return tsk;
 961
 962free_stack:
 
 963	free_thread_stack(tsk);
 964free_tsk:
 965	free_task_struct(tsk);
 966	return NULL;
 967}
 968
 969__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 970
 971static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 972
 973static int __init coredump_filter_setup(char *s)
 974{
 975	default_dump_filter =
 976		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 977		MMF_DUMP_FILTER_MASK;
 978	return 1;
 979}
 980
 981__setup("coredump_filter=", coredump_filter_setup);
 982
 983#include <linux/init_task.h>
 984
 985static void mm_init_aio(struct mm_struct *mm)
 986{
 987#ifdef CONFIG_AIO
 988	spin_lock_init(&mm->ioctx_lock);
 989	mm->ioctx_table = NULL;
 990#endif
 991}
 992
 993static __always_inline void mm_clear_owner(struct mm_struct *mm,
 994					   struct task_struct *p)
 995{
 996#ifdef CONFIG_MEMCG
 997	if (mm->owner == p)
 998		WRITE_ONCE(mm->owner, NULL);
 999#endif
1000}
1001
1002static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003{
1004#ifdef CONFIG_MEMCG
1005	mm->owner = p;
1006#endif
1007}
1008
1009static void mm_init_pasid(struct mm_struct *mm)
1010{
1011#ifdef CONFIG_IOMMU_SUPPORT
1012	mm->pasid = INIT_PASID;
1013#endif
1014}
1015
1016static void mm_init_uprobes_state(struct mm_struct *mm)
1017{
1018#ifdef CONFIG_UPROBES
1019	mm->uprobes_state.xol_area = NULL;
1020#endif
1021}
1022
1023static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024	struct user_namespace *user_ns)
1025{
1026	mm->mmap = NULL;
1027	mm->mm_rb = RB_ROOT;
1028	mm->vmacache_seqnum = 0;
 
1029	atomic_set(&mm->mm_users, 1);
1030	atomic_set(&mm->mm_count, 1);
1031	seqcount_init(&mm->write_protect_seq);
1032	mmap_init_lock(mm);
1033	INIT_LIST_HEAD(&mm->mmlist);
1034	mm->core_state = NULL;
1035	mm_pgtables_bytes_init(mm);
1036	mm->map_count = 0;
1037	mm->locked_vm = 0;
1038	atomic64_set(&mm->pinned_vm, 0);
1039	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1040	spin_lock_init(&mm->page_table_lock);
1041	spin_lock_init(&mm->arg_lock);
1042	mm_init_cpumask(mm);
1043	mm_init_aio(mm);
1044	mm_init_owner(mm, p);
1045	mm_init_pasid(mm);
1046	RCU_INIT_POINTER(mm->exe_file, NULL);
1047	mmu_notifier_subscriptions_init(mm);
1048	init_tlb_flush_pending(mm);
1049#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1050	mm->pmd_huge_pte = NULL;
1051#endif
1052	mm_init_uprobes_state(mm);
1053	hugetlb_count_init(mm);
1054
1055	if (current->mm) {
1056		mm->flags = current->mm->flags & MMF_INIT_MASK;
1057		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1058	} else {
1059		mm->flags = default_dump_filter;
1060		mm->def_flags = 0;
1061	}
1062
1063	if (mm_alloc_pgd(mm))
1064		goto fail_nopgd;
1065
1066	if (init_new_context(p, mm))
1067		goto fail_nocontext;
1068
 
 
 
 
1069	mm->user_ns = get_user_ns(user_ns);
 
1070	return mm;
1071
 
 
 
1072fail_nocontext:
1073	mm_free_pgd(mm);
1074fail_nopgd:
1075	free_mm(mm);
1076	return NULL;
1077}
1078
1079/*
1080 * Allocate and initialize an mm_struct.
1081 */
1082struct mm_struct *mm_alloc(void)
1083{
1084	struct mm_struct *mm;
1085
1086	mm = allocate_mm();
1087	if (!mm)
1088		return NULL;
1089
1090	memset(mm, 0, sizeof(*mm));
1091	return mm_init(mm, current, current_user_ns());
1092}
1093
1094static inline void __mmput(struct mm_struct *mm)
1095{
1096	VM_BUG_ON(atomic_read(&mm->mm_users));
1097
1098	uprobe_clear_state(mm);
1099	exit_aio(mm);
1100	ksm_exit(mm);
1101	khugepaged_exit(mm); /* must run before exit_mmap */
1102	exit_mmap(mm);
1103	mm_put_huge_zero_page(mm);
1104	set_mm_exe_file(mm, NULL);
1105	if (!list_empty(&mm->mmlist)) {
1106		spin_lock(&mmlist_lock);
1107		list_del(&mm->mmlist);
1108		spin_unlock(&mmlist_lock);
1109	}
1110	if (mm->binfmt)
1111		module_put(mm->binfmt->module);
 
1112	mmdrop(mm);
1113}
1114
1115/*
1116 * Decrement the use count and release all resources for an mm.
1117 */
1118void mmput(struct mm_struct *mm)
1119{
1120	might_sleep();
1121
1122	if (atomic_dec_and_test(&mm->mm_users))
1123		__mmput(mm);
1124}
1125EXPORT_SYMBOL_GPL(mmput);
1126
1127#ifdef CONFIG_MMU
1128static void mmput_async_fn(struct work_struct *work)
1129{
1130	struct mm_struct *mm = container_of(work, struct mm_struct,
1131					    async_put_work);
1132
1133	__mmput(mm);
1134}
1135
1136void mmput_async(struct mm_struct *mm)
1137{
1138	if (atomic_dec_and_test(&mm->mm_users)) {
1139		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1140		schedule_work(&mm->async_put_work);
1141	}
1142}
 
1143#endif
1144
1145/**
1146 * set_mm_exe_file - change a reference to the mm's executable file
1147 *
1148 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1149 *
1150 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1151 * invocations: in mmput() nobody alive left, in execve task is single
1152 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1153 * mm->exe_file, but does so without using set_mm_exe_file() in order
1154 * to avoid the need for any locks.
1155 */
1156void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1157{
1158	struct file *old_exe_file;
1159
1160	/*
1161	 * It is safe to dereference the exe_file without RCU as
1162	 * this function is only called if nobody else can access
1163	 * this mm -- see comment above for justification.
1164	 */
1165	old_exe_file = rcu_dereference_raw(mm->exe_file);
1166
1167	if (new_exe_file)
 
 
 
 
 
 
1168		get_file(new_exe_file);
 
1169	rcu_assign_pointer(mm->exe_file, new_exe_file);
1170	if (old_exe_file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171		fput(old_exe_file);
 
 
 
1172}
1173
1174/**
1175 * get_mm_exe_file - acquire a reference to the mm's executable file
1176 *
1177 * Returns %NULL if mm has no associated executable file.
1178 * User must release file via fput().
1179 */
1180struct file *get_mm_exe_file(struct mm_struct *mm)
1181{
1182	struct file *exe_file;
1183
1184	rcu_read_lock();
1185	exe_file = rcu_dereference(mm->exe_file);
1186	if (exe_file && !get_file_rcu(exe_file))
1187		exe_file = NULL;
1188	rcu_read_unlock();
1189	return exe_file;
1190}
1191EXPORT_SYMBOL(get_mm_exe_file);
1192
1193/**
1194 * get_task_exe_file - acquire a reference to the task's executable file
1195 *
1196 * Returns %NULL if task's mm (if any) has no associated executable file or
1197 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1198 * User must release file via fput().
1199 */
1200struct file *get_task_exe_file(struct task_struct *task)
1201{
1202	struct file *exe_file = NULL;
1203	struct mm_struct *mm;
1204
1205	task_lock(task);
1206	mm = task->mm;
1207	if (mm) {
1208		if (!(task->flags & PF_KTHREAD))
1209			exe_file = get_mm_exe_file(mm);
1210	}
1211	task_unlock(task);
1212	return exe_file;
1213}
1214EXPORT_SYMBOL(get_task_exe_file);
1215
1216/**
1217 * get_task_mm - acquire a reference to the task's mm
1218 *
1219 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1220 * this kernel workthread has transiently adopted a user mm with use_mm,
1221 * to do its AIO) is not set and if so returns a reference to it, after
1222 * bumping up the use count.  User must release the mm via mmput()
1223 * after use.  Typically used by /proc and ptrace.
1224 */
1225struct mm_struct *get_task_mm(struct task_struct *task)
1226{
1227	struct mm_struct *mm;
1228
1229	task_lock(task);
1230	mm = task->mm;
1231	if (mm) {
1232		if (task->flags & PF_KTHREAD)
1233			mm = NULL;
1234		else
1235			mmget(mm);
1236	}
1237	task_unlock(task);
1238	return mm;
1239}
1240EXPORT_SYMBOL_GPL(get_task_mm);
1241
1242struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1243{
1244	struct mm_struct *mm;
1245	int err;
1246
1247	err =  down_read_killable(&task->signal->exec_update_lock);
1248	if (err)
1249		return ERR_PTR(err);
1250
1251	mm = get_task_mm(task);
1252	if (mm && mm != current->mm &&
1253			!ptrace_may_access(task, mode)) {
1254		mmput(mm);
1255		mm = ERR_PTR(-EACCES);
1256	}
1257	up_read(&task->signal->exec_update_lock);
1258
1259	return mm;
1260}
1261
1262static void complete_vfork_done(struct task_struct *tsk)
1263{
1264	struct completion *vfork;
1265
1266	task_lock(tsk);
1267	vfork = tsk->vfork_done;
1268	if (likely(vfork)) {
1269		tsk->vfork_done = NULL;
1270		complete(vfork);
1271	}
1272	task_unlock(tsk);
1273}
1274
1275static int wait_for_vfork_done(struct task_struct *child,
1276				struct completion *vfork)
1277{
 
1278	int killed;
1279
1280	freezer_do_not_count();
1281	cgroup_enter_frozen();
1282	killed = wait_for_completion_killable(vfork);
1283	cgroup_leave_frozen(false);
1284	freezer_count();
1285
1286	if (killed) {
1287		task_lock(child);
1288		child->vfork_done = NULL;
1289		task_unlock(child);
1290	}
1291
1292	put_task_struct(child);
1293	return killed;
1294}
1295
1296/* Please note the differences between mmput and mm_release.
1297 * mmput is called whenever we stop holding onto a mm_struct,
1298 * error success whatever.
1299 *
1300 * mm_release is called after a mm_struct has been removed
1301 * from the current process.
1302 *
1303 * This difference is important for error handling, when we
1304 * only half set up a mm_struct for a new process and need to restore
1305 * the old one.  Because we mmput the new mm_struct before
1306 * restoring the old one. . .
1307 * Eric Biederman 10 January 1998
1308 */
1309static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1310{
1311	uprobe_free_utask(tsk);
1312
1313	/* Get rid of any cached register state */
1314	deactivate_mm(tsk, mm);
1315
1316	/*
1317	 * Signal userspace if we're not exiting with a core dump
1318	 * because we want to leave the value intact for debugging
1319	 * purposes.
1320	 */
1321	if (tsk->clear_child_tid) {
1322		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1323		    atomic_read(&mm->mm_users) > 1) {
1324			/*
1325			 * We don't check the error code - if userspace has
1326			 * not set up a proper pointer then tough luck.
1327			 */
1328			put_user(0, tsk->clear_child_tid);
1329			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1330					1, NULL, NULL, 0, 0);
1331		}
1332		tsk->clear_child_tid = NULL;
1333	}
1334
1335	/*
1336	 * All done, finally we can wake up parent and return this mm to him.
1337	 * Also kthread_stop() uses this completion for synchronization.
1338	 */
1339	if (tsk->vfork_done)
1340		complete_vfork_done(tsk);
1341}
1342
1343void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1344{
1345	futex_exit_release(tsk);
1346	mm_release(tsk, mm);
1347}
1348
1349void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1350{
1351	futex_exec_release(tsk);
1352	mm_release(tsk, mm);
1353}
1354
1355/**
1356 * dup_mm() - duplicates an existing mm structure
1357 * @tsk: the task_struct with which the new mm will be associated.
1358 * @oldmm: the mm to duplicate.
1359 *
1360 * Allocates a new mm structure and duplicates the provided @oldmm structure
1361 * content into it.
1362 *
1363 * Return: the duplicated mm or NULL on failure.
1364 */
1365static struct mm_struct *dup_mm(struct task_struct *tsk,
1366				struct mm_struct *oldmm)
1367{
1368	struct mm_struct *mm;
1369	int err;
1370
1371	mm = allocate_mm();
1372	if (!mm)
1373		goto fail_nomem;
1374
1375	memcpy(mm, oldmm, sizeof(*mm));
1376
1377	if (!mm_init(mm, tsk, mm->user_ns))
1378		goto fail_nomem;
1379
1380	err = dup_mmap(mm, oldmm);
1381	if (err)
1382		goto free_pt;
1383
1384	mm->hiwater_rss = get_mm_rss(mm);
1385	mm->hiwater_vm = mm->total_vm;
1386
1387	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1388		goto free_pt;
1389
1390	return mm;
1391
1392free_pt:
1393	/* don't put binfmt in mmput, we haven't got module yet */
1394	mm->binfmt = NULL;
1395	mm_init_owner(mm, NULL);
1396	mmput(mm);
1397
1398fail_nomem:
1399	return NULL;
1400}
1401
1402static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1403{
1404	struct mm_struct *mm, *oldmm;
1405
1406	tsk->min_flt = tsk->maj_flt = 0;
1407	tsk->nvcsw = tsk->nivcsw = 0;
1408#ifdef CONFIG_DETECT_HUNG_TASK
1409	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1410	tsk->last_switch_time = 0;
1411#endif
1412
1413	tsk->mm = NULL;
1414	tsk->active_mm = NULL;
1415
1416	/*
1417	 * Are we cloning a kernel thread?
1418	 *
1419	 * We need to steal a active VM for that..
1420	 */
1421	oldmm = current->mm;
1422	if (!oldmm)
1423		return 0;
1424
1425	/* initialize the new vmacache entries */
1426	vmacache_flush(tsk);
1427
1428	if (clone_flags & CLONE_VM) {
1429		mmget(oldmm);
1430		mm = oldmm;
1431	} else {
1432		mm = dup_mm(tsk, current->mm);
1433		if (!mm)
1434			return -ENOMEM;
1435	}
1436
1437	tsk->mm = mm;
1438	tsk->active_mm = mm;
1439	return 0;
1440}
1441
1442static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1443{
1444	struct fs_struct *fs = current->fs;
1445	if (clone_flags & CLONE_FS) {
1446		/* tsk->fs is already what we want */
1447		spin_lock(&fs->lock);
1448		if (fs->in_exec) {
1449			spin_unlock(&fs->lock);
1450			return -EAGAIN;
1451		}
1452		fs->users++;
1453		spin_unlock(&fs->lock);
1454		return 0;
1455	}
1456	tsk->fs = copy_fs_struct(fs);
1457	if (!tsk->fs)
1458		return -ENOMEM;
1459	return 0;
1460}
1461
1462static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1463{
1464	struct files_struct *oldf, *newf;
1465	int error = 0;
1466
1467	/*
1468	 * A background process may not have any files ...
1469	 */
1470	oldf = current->files;
1471	if (!oldf)
1472		goto out;
1473
1474	if (clone_flags & CLONE_FILES) {
1475		atomic_inc(&oldf->count);
1476		goto out;
1477	}
1478
1479	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1480	if (!newf)
1481		goto out;
1482
1483	tsk->files = newf;
1484	error = 0;
1485out:
1486	return error;
1487}
1488
1489static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1490{
1491#ifdef CONFIG_BLOCK
1492	struct io_context *ioc = current->io_context;
1493	struct io_context *new_ioc;
1494
1495	if (!ioc)
1496		return 0;
1497	/*
1498	 * Share io context with parent, if CLONE_IO is set
1499	 */
1500	if (clone_flags & CLONE_IO) {
1501		ioc_task_link(ioc);
1502		tsk->io_context = ioc;
1503	} else if (ioprio_valid(ioc->ioprio)) {
1504		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1505		if (unlikely(!new_ioc))
1506			return -ENOMEM;
1507
1508		new_ioc->ioprio = ioc->ioprio;
1509		put_io_context(new_ioc);
1510	}
1511#endif
1512	return 0;
1513}
1514
1515static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1516{
1517	struct sighand_struct *sig;
1518
1519	if (clone_flags & CLONE_SIGHAND) {
1520		refcount_inc(&current->sighand->count);
1521		return 0;
1522	}
1523	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1524	RCU_INIT_POINTER(tsk->sighand, sig);
1525	if (!sig)
1526		return -ENOMEM;
1527
1528	refcount_set(&sig->count, 1);
1529	spin_lock_irq(&current->sighand->siglock);
1530	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1531	spin_unlock_irq(&current->sighand->siglock);
1532
1533	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1534	if (clone_flags & CLONE_CLEAR_SIGHAND)
1535		flush_signal_handlers(tsk, 0);
1536
1537	return 0;
1538}
1539
1540void __cleanup_sighand(struct sighand_struct *sighand)
1541{
1542	if (refcount_dec_and_test(&sighand->count)) {
1543		signalfd_cleanup(sighand);
1544		/*
1545		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1546		 * without an RCU grace period, see __lock_task_sighand().
1547		 */
1548		kmem_cache_free(sighand_cachep, sighand);
1549	}
1550}
1551
1552/*
1553 * Initialize POSIX timer handling for a thread group.
1554 */
1555static void posix_cpu_timers_init_group(struct signal_struct *sig)
1556{
1557	struct posix_cputimers *pct = &sig->posix_cputimers;
1558	unsigned long cpu_limit;
1559
1560	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1561	posix_cputimers_group_init(pct, cpu_limit);
1562}
1563
1564static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1565{
1566	struct signal_struct *sig;
1567
1568	if (clone_flags & CLONE_THREAD)
1569		return 0;
1570
1571	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1572	tsk->signal = sig;
1573	if (!sig)
1574		return -ENOMEM;
1575
1576	sig->nr_threads = 1;
 
1577	atomic_set(&sig->live, 1);
1578	refcount_set(&sig->sigcnt, 1);
1579
1580	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1581	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1582	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1583
1584	init_waitqueue_head(&sig->wait_chldexit);
1585	sig->curr_target = tsk;
1586	init_sigpending(&sig->shared_pending);
1587	INIT_HLIST_HEAD(&sig->multiprocess);
1588	seqlock_init(&sig->stats_lock);
1589	prev_cputime_init(&sig->prev_cputime);
1590
1591#ifdef CONFIG_POSIX_TIMERS
1592	INIT_LIST_HEAD(&sig->posix_timers);
1593	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1594	sig->real_timer.function = it_real_fn;
1595#endif
1596
1597	task_lock(current->group_leader);
1598	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1599	task_unlock(current->group_leader);
1600
1601	posix_cpu_timers_init_group(sig);
1602
1603	tty_audit_fork(sig);
1604	sched_autogroup_fork(sig);
1605
1606	sig->oom_score_adj = current->signal->oom_score_adj;
1607	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1608
1609	mutex_init(&sig->cred_guard_mutex);
1610	init_rwsem(&sig->exec_update_lock);
1611
1612	return 0;
1613}
1614
1615static void copy_seccomp(struct task_struct *p)
1616{
1617#ifdef CONFIG_SECCOMP
1618	/*
1619	 * Must be called with sighand->lock held, which is common to
1620	 * all threads in the group. Holding cred_guard_mutex is not
1621	 * needed because this new task is not yet running and cannot
1622	 * be racing exec.
1623	 */
1624	assert_spin_locked(&current->sighand->siglock);
1625
1626	/* Ref-count the new filter user, and assign it. */
1627	get_seccomp_filter(current);
1628	p->seccomp = current->seccomp;
1629
1630	/*
1631	 * Explicitly enable no_new_privs here in case it got set
1632	 * between the task_struct being duplicated and holding the
1633	 * sighand lock. The seccomp state and nnp must be in sync.
1634	 */
1635	if (task_no_new_privs(current))
1636		task_set_no_new_privs(p);
1637
1638	/*
1639	 * If the parent gained a seccomp mode after copying thread
1640	 * flags and between before we held the sighand lock, we have
1641	 * to manually enable the seccomp thread flag here.
1642	 */
1643	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1644		set_task_syscall_work(p, SECCOMP);
1645#endif
1646}
1647
1648SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1649{
1650	current->clear_child_tid = tidptr;
1651
1652	return task_pid_vnr(current);
1653}
1654
1655static void rt_mutex_init_task(struct task_struct *p)
1656{
1657	raw_spin_lock_init(&p->pi_lock);
1658#ifdef CONFIG_RT_MUTEXES
1659	p->pi_waiters = RB_ROOT_CACHED;
1660	p->pi_top_task = NULL;
1661	p->pi_blocked_on = NULL;
1662#endif
1663}
1664
1665static inline void init_task_pid_links(struct task_struct *task)
1666{
1667	enum pid_type type;
1668
1669	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1670		INIT_HLIST_NODE(&task->pid_links[type]);
1671}
1672
1673static inline void
1674init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675{
1676	if (type == PIDTYPE_PID)
1677		task->thread_pid = pid;
1678	else
1679		task->signal->pids[type] = pid;
1680}
1681
1682static inline void rcu_copy_process(struct task_struct *p)
1683{
1684#ifdef CONFIG_PREEMPT_RCU
1685	p->rcu_read_lock_nesting = 0;
1686	p->rcu_read_unlock_special.s = 0;
1687	p->rcu_blocked_node = NULL;
1688	INIT_LIST_HEAD(&p->rcu_node_entry);
1689#endif /* #ifdef CONFIG_PREEMPT_RCU */
1690#ifdef CONFIG_TASKS_RCU
1691	p->rcu_tasks_holdout = false;
1692	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693	p->rcu_tasks_idle_cpu = -1;
1694#endif /* #ifdef CONFIG_TASKS_RCU */
1695#ifdef CONFIG_TASKS_TRACE_RCU
1696	p->trc_reader_nesting = 0;
1697	p->trc_reader_special.s = 0;
1698	INIT_LIST_HEAD(&p->trc_holdout_list);
 
1699#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700}
1701
1702struct pid *pidfd_pid(const struct file *file)
1703{
1704	if (file->f_op == &pidfd_fops)
1705		return file->private_data;
1706
1707	return ERR_PTR(-EBADF);
1708}
1709
1710static int pidfd_release(struct inode *inode, struct file *file)
1711{
1712	struct pid *pid = file->private_data;
1713
1714	file->private_data = NULL;
1715	put_pid(pid);
1716	return 0;
1717}
1718
1719#ifdef CONFIG_PROC_FS
1720/**
1721 * pidfd_show_fdinfo - print information about a pidfd
1722 * @m: proc fdinfo file
1723 * @f: file referencing a pidfd
1724 *
1725 * Pid:
1726 * This function will print the pid that a given pidfd refers to in the
1727 * pid namespace of the procfs instance.
1728 * If the pid namespace of the process is not a descendant of the pid
1729 * namespace of the procfs instance 0 will be shown as its pid. This is
1730 * similar to calling getppid() on a process whose parent is outside of
1731 * its pid namespace.
1732 *
1733 * NSpid:
1734 * If pid namespaces are supported then this function will also print
1735 * the pid of a given pidfd refers to for all descendant pid namespaces
1736 * starting from the current pid namespace of the instance, i.e. the
1737 * Pid field and the first entry in the NSpid field will be identical.
1738 * If the pid namespace of the process is not a descendant of the pid
1739 * namespace of the procfs instance 0 will be shown as its first NSpid
1740 * entry and no others will be shown.
1741 * Note that this differs from the Pid and NSpid fields in
1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743 * the  pid namespace of the procfs instance. The difference becomes
1744 * obvious when sending around a pidfd between pid namespaces from a
1745 * different branch of the tree, i.e. where no ancestral relation is
1746 * present between the pid namespaces:
1747 * - create two new pid namespaces ns1 and ns2 in the initial pid
1748 *   namespace (also take care to create new mount namespaces in the
1749 *   new pid namespace and mount procfs)
1750 * - create a process with a pidfd in ns1
1751 * - send pidfd from ns1 to ns2
1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753 *   have exactly one entry, which is 0
1754 */
1755static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756{
1757	struct pid *pid = f->private_data;
1758	struct pid_namespace *ns;
1759	pid_t nr = -1;
1760
1761	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1763		nr = pid_nr_ns(pid, ns);
1764	}
1765
1766	seq_put_decimal_ll(m, "Pid:\t", nr);
1767
1768#ifdef CONFIG_PID_NS
1769	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770	if (nr > 0) {
1771		int i;
1772
1773		/* If nr is non-zero it means that 'pid' is valid and that
1774		 * ns, i.e. the pid namespace associated with the procfs
1775		 * instance, is in the pid namespace hierarchy of pid.
1776		 * Start at one below the already printed level.
1777		 */
1778		for (i = ns->level + 1; i <= pid->level; i++)
1779			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780	}
1781#endif
1782	seq_putc(m, '\n');
1783}
1784#endif
1785
1786/*
1787 * Poll support for process exit notification.
1788 */
1789static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790{
1791	struct pid *pid = file->private_data;
1792	__poll_t poll_flags = 0;
1793
1794	poll_wait(file, &pid->wait_pidfd, pts);
1795
1796	/*
1797	 * Inform pollers only when the whole thread group exits.
1798	 * If the thread group leader exits before all other threads in the
1799	 * group, then poll(2) should block, similar to the wait(2) family.
1800	 */
1801	if (thread_group_exited(pid))
1802		poll_flags = EPOLLIN | EPOLLRDNORM;
1803
1804	return poll_flags;
1805}
1806
1807const struct file_operations pidfd_fops = {
1808	.release = pidfd_release,
1809	.poll = pidfd_poll,
1810#ifdef CONFIG_PROC_FS
1811	.show_fdinfo = pidfd_show_fdinfo,
1812#endif
1813};
1814
1815static void __delayed_free_task(struct rcu_head *rhp)
1816{
1817	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1818
1819	free_task(tsk);
1820}
1821
1822static __always_inline void delayed_free_task(struct task_struct *tsk)
1823{
1824	if (IS_ENABLED(CONFIG_MEMCG))
1825		call_rcu(&tsk->rcu, __delayed_free_task);
1826	else
1827		free_task(tsk);
1828}
1829
1830static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1831{
1832	/* Skip if kernel thread */
1833	if (!tsk->mm)
1834		return;
1835
1836	/* Skip if spawning a thread or using vfork */
1837	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1838		return;
1839
1840	/* We need to synchronize with __set_oom_adj */
1841	mutex_lock(&oom_adj_mutex);
1842	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1843	/* Update the values in case they were changed after copy_signal */
1844	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1845	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1846	mutex_unlock(&oom_adj_mutex);
1847}
1848
 
 
 
 
 
 
 
 
 
 
 
 
1849/*
1850 * This creates a new process as a copy of the old one,
1851 * but does not actually start it yet.
1852 *
1853 * It copies the registers, and all the appropriate
1854 * parts of the process environment (as per the clone
1855 * flags). The actual kick-off is left to the caller.
1856 */
1857static __latent_entropy struct task_struct *copy_process(
1858					struct pid *pid,
1859					int trace,
1860					int node,
1861					struct kernel_clone_args *args)
1862{
1863	int pidfd = -1, retval;
1864	struct task_struct *p;
1865	struct multiprocess_signals delayed;
1866	struct file *pidfile = NULL;
1867	u64 clone_flags = args->flags;
1868	struct nsproxy *nsp = current->nsproxy;
1869
1870	/*
1871	 * Don't allow sharing the root directory with processes in a different
1872	 * namespace
1873	 */
1874	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1875		return ERR_PTR(-EINVAL);
1876
1877	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1878		return ERR_PTR(-EINVAL);
1879
1880	/*
1881	 * Thread groups must share signals as well, and detached threads
1882	 * can only be started up within the thread group.
1883	 */
1884	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1885		return ERR_PTR(-EINVAL);
1886
1887	/*
1888	 * Shared signal handlers imply shared VM. By way of the above,
1889	 * thread groups also imply shared VM. Blocking this case allows
1890	 * for various simplifications in other code.
1891	 */
1892	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1893		return ERR_PTR(-EINVAL);
1894
1895	/*
1896	 * Siblings of global init remain as zombies on exit since they are
1897	 * not reaped by their parent (swapper). To solve this and to avoid
1898	 * multi-rooted process trees, prevent global and container-inits
1899	 * from creating siblings.
1900	 */
1901	if ((clone_flags & CLONE_PARENT) &&
1902				current->signal->flags & SIGNAL_UNKILLABLE)
1903		return ERR_PTR(-EINVAL);
1904
1905	/*
1906	 * If the new process will be in a different pid or user namespace
1907	 * do not allow it to share a thread group with the forking task.
1908	 */
1909	if (clone_flags & CLONE_THREAD) {
1910		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1911		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1912			return ERR_PTR(-EINVAL);
1913	}
1914
1915	/*
1916	 * If the new process will be in a different time namespace
1917	 * do not allow it to share VM or a thread group with the forking task.
1918	 */
1919	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1920		if (nsp->time_ns != nsp->time_ns_for_children)
1921			return ERR_PTR(-EINVAL);
1922	}
1923
1924	if (clone_flags & CLONE_PIDFD) {
1925		/*
1926		 * - CLONE_DETACHED is blocked so that we can potentially
1927		 *   reuse it later for CLONE_PIDFD.
1928		 * - CLONE_THREAD is blocked until someone really needs it.
1929		 */
1930		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1931			return ERR_PTR(-EINVAL);
1932	}
1933
1934	/*
1935	 * Force any signals received before this point to be delivered
1936	 * before the fork happens.  Collect up signals sent to multiple
1937	 * processes that happen during the fork and delay them so that
1938	 * they appear to happen after the fork.
1939	 */
1940	sigemptyset(&delayed.signal);
1941	INIT_HLIST_NODE(&delayed.node);
1942
1943	spin_lock_irq(&current->sighand->siglock);
1944	if (!(clone_flags & CLONE_THREAD))
1945		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1946	recalc_sigpending();
1947	spin_unlock_irq(&current->sighand->siglock);
1948	retval = -ERESTARTNOINTR;
1949	if (task_sigpending(current))
1950		goto fork_out;
1951
1952	retval = -ENOMEM;
1953	p = dup_task_struct(current, node);
1954	if (!p)
1955		goto fork_out;
 
 
 
1956	if (args->io_thread) {
1957		/*
1958		 * Mark us an IO worker, and block any signal that isn't
1959		 * fatal or STOP
1960		 */
1961		p->flags |= PF_IO_WORKER;
1962		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1963	}
1964
1965	/*
1966	 * This _must_ happen before we call free_task(), i.e. before we jump
1967	 * to any of the bad_fork_* labels. This is to avoid freeing
1968	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1969	 * kernel threads (PF_KTHREAD).
1970	 */
1971	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1972	/*
1973	 * Clear TID on mm_release()?
1974	 */
1975	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1976
1977	ftrace_graph_init_task(p);
1978
1979	rt_mutex_init_task(p);
1980
1981	lockdep_assert_irqs_enabled();
1982#ifdef CONFIG_PROVE_LOCKING
1983	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1984#endif
 
 
 
 
1985	retval = -EAGAIN;
1986	if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1987		if (p->real_cred->user != INIT_USER &&
1988		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1989			goto bad_fork_free;
1990	}
1991	current->flags &= ~PF_NPROC_EXCEEDED;
1992
1993	retval = copy_creds(p, clone_flags);
1994	if (retval < 0)
1995		goto bad_fork_free;
1996
1997	/*
1998	 * If multiple threads are within copy_process(), then this check
1999	 * triggers too late. This doesn't hurt, the check is only there
2000	 * to stop root fork bombs.
2001	 */
2002	retval = -EAGAIN;
2003	if (data_race(nr_threads >= max_threads))
2004		goto bad_fork_cleanup_count;
2005
2006	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2007	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2008	p->flags |= PF_FORKNOEXEC;
2009	INIT_LIST_HEAD(&p->children);
2010	INIT_LIST_HEAD(&p->sibling);
2011	rcu_copy_process(p);
2012	p->vfork_done = NULL;
2013	spin_lock_init(&p->alloc_lock);
2014
2015	init_sigpending(&p->pending);
2016
2017	p->utime = p->stime = p->gtime = 0;
2018#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2019	p->utimescaled = p->stimescaled = 0;
2020#endif
2021	prev_cputime_init(&p->prev_cputime);
2022
2023#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2024	seqcount_init(&p->vtime.seqcount);
2025	p->vtime.starttime = 0;
2026	p->vtime.state = VTIME_INACTIVE;
2027#endif
2028
2029#ifdef CONFIG_IO_URING
2030	p->io_uring = NULL;
2031#endif
2032
2033#if defined(SPLIT_RSS_COUNTING)
2034	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2035#endif
2036
2037	p->default_timer_slack_ns = current->timer_slack_ns;
2038
2039#ifdef CONFIG_PSI
2040	p->psi_flags = 0;
2041#endif
2042
2043	task_io_accounting_init(&p->ioac);
2044	acct_clear_integrals(p);
2045
2046	posix_cputimers_init(&p->posix_cputimers);
2047
2048	p->io_context = NULL;
2049	audit_set_context(p, NULL);
2050	cgroup_fork(p);
 
 
 
 
2051#ifdef CONFIG_NUMA
2052	p->mempolicy = mpol_dup(p->mempolicy);
2053	if (IS_ERR(p->mempolicy)) {
2054		retval = PTR_ERR(p->mempolicy);
2055		p->mempolicy = NULL;
2056		goto bad_fork_cleanup_threadgroup_lock;
2057	}
2058#endif
2059#ifdef CONFIG_CPUSETS
2060	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2061	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2062	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2063#endif
2064#ifdef CONFIG_TRACE_IRQFLAGS
2065	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2066	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2067	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2068	p->softirqs_enabled		= 1;
2069	p->softirq_context		= 0;
2070#endif
2071
2072	p->pagefault_disabled = 0;
2073
2074#ifdef CONFIG_LOCKDEP
2075	lockdep_init_task(p);
2076#endif
2077
2078#ifdef CONFIG_DEBUG_MUTEXES
2079	p->blocked_on = NULL; /* not blocked yet */
2080#endif
2081#ifdef CONFIG_BCACHE
2082	p->sequential_io	= 0;
2083	p->sequential_io_avg	= 0;
2084#endif
2085#ifdef CONFIG_BPF_SYSCALL
2086	RCU_INIT_POINTER(p->bpf_storage, NULL);
 
2087#endif
2088
2089	/* Perform scheduler related setup. Assign this task to a CPU. */
2090	retval = sched_fork(clone_flags, p);
2091	if (retval)
2092		goto bad_fork_cleanup_policy;
2093
2094	retval = perf_event_init_task(p, clone_flags);
2095	if (retval)
2096		goto bad_fork_cleanup_policy;
2097	retval = audit_alloc(p);
2098	if (retval)
2099		goto bad_fork_cleanup_perf;
2100	/* copy all the process information */
2101	shm_init_task(p);
2102	retval = security_task_alloc(p, clone_flags);
2103	if (retval)
2104		goto bad_fork_cleanup_audit;
2105	retval = copy_semundo(clone_flags, p);
2106	if (retval)
2107		goto bad_fork_cleanup_security;
2108	retval = copy_files(clone_flags, p);
2109	if (retval)
2110		goto bad_fork_cleanup_semundo;
2111	retval = copy_fs(clone_flags, p);
2112	if (retval)
2113		goto bad_fork_cleanup_files;
2114	retval = copy_sighand(clone_flags, p);
2115	if (retval)
2116		goto bad_fork_cleanup_fs;
2117	retval = copy_signal(clone_flags, p);
2118	if (retval)
2119		goto bad_fork_cleanup_sighand;
2120	retval = copy_mm(clone_flags, p);
2121	if (retval)
2122		goto bad_fork_cleanup_signal;
2123	retval = copy_namespaces(clone_flags, p);
2124	if (retval)
2125		goto bad_fork_cleanup_mm;
2126	retval = copy_io(clone_flags, p);
2127	if (retval)
2128		goto bad_fork_cleanup_namespaces;
2129	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2130	if (retval)
2131		goto bad_fork_cleanup_io;
2132
2133	stackleak_task_init(p);
2134
2135	if (pid != &init_struct_pid) {
2136		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2137				args->set_tid_size);
2138		if (IS_ERR(pid)) {
2139			retval = PTR_ERR(pid);
2140			goto bad_fork_cleanup_thread;
2141		}
2142	}
2143
2144	/*
2145	 * This has to happen after we've potentially unshared the file
2146	 * descriptor table (so that the pidfd doesn't leak into the child
2147	 * if the fd table isn't shared).
2148	 */
2149	if (clone_flags & CLONE_PIDFD) {
2150		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2151		if (retval < 0)
2152			goto bad_fork_free_pid;
2153
2154		pidfd = retval;
2155
2156		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2157					      O_RDWR | O_CLOEXEC);
2158		if (IS_ERR(pidfile)) {
2159			put_unused_fd(pidfd);
2160			retval = PTR_ERR(pidfile);
2161			goto bad_fork_free_pid;
2162		}
2163		get_pid(pid);	/* held by pidfile now */
2164
2165		retval = put_user(pidfd, args->pidfd);
2166		if (retval)
2167			goto bad_fork_put_pidfd;
2168	}
2169
2170#ifdef CONFIG_BLOCK
2171	p->plug = NULL;
2172#endif
2173	futex_init_task(p);
2174
2175	/*
2176	 * sigaltstack should be cleared when sharing the same VM
2177	 */
2178	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2179		sas_ss_reset(p);
2180
2181	/*
2182	 * Syscall tracing and stepping should be turned off in the
2183	 * child regardless of CLONE_PTRACE.
2184	 */
2185	user_disable_single_step(p);
2186	clear_task_syscall_work(p, SYSCALL_TRACE);
2187#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2188	clear_task_syscall_work(p, SYSCALL_EMU);
2189#endif
2190	clear_tsk_latency_tracing(p);
2191
2192	/* ok, now we should be set up.. */
2193	p->pid = pid_nr(pid);
2194	if (clone_flags & CLONE_THREAD) {
2195		p->group_leader = current->group_leader;
2196		p->tgid = current->tgid;
2197	} else {
2198		p->group_leader = p;
2199		p->tgid = p->pid;
2200	}
2201
2202	p->nr_dirtied = 0;
2203	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2204	p->dirty_paused_when = 0;
2205
2206	p->pdeath_signal = 0;
2207	INIT_LIST_HEAD(&p->thread_group);
2208	p->task_works = NULL;
 
2209
2210#ifdef CONFIG_KRETPROBES
2211	p->kretprobe_instances.first = NULL;
2212#endif
 
 
 
2213
2214	/*
2215	 * Ensure that the cgroup subsystem policies allow the new process to be
2216	 * forked. It should be noted that the new process's css_set can be changed
2217	 * between here and cgroup_post_fork() if an organisation operation is in
2218	 * progress.
2219	 */
2220	retval = cgroup_can_fork(p, args);
2221	if (retval)
2222		goto bad_fork_put_pidfd;
2223
2224	/*
 
 
 
 
 
 
 
 
 
 
 
2225	 * From this point on we must avoid any synchronous user-space
2226	 * communication until we take the tasklist-lock. In particular, we do
2227	 * not want user-space to be able to predict the process start-time by
2228	 * stalling fork(2) after we recorded the start_time but before it is
2229	 * visible to the system.
2230	 */
2231
2232	p->start_time = ktime_get_ns();
2233	p->start_boottime = ktime_get_boottime_ns();
2234
2235	/*
2236	 * Make it visible to the rest of the system, but dont wake it up yet.
2237	 * Need tasklist lock for parent etc handling!
2238	 */
2239	write_lock_irq(&tasklist_lock);
2240
2241	/* CLONE_PARENT re-uses the old parent */
2242	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2243		p->real_parent = current->real_parent;
2244		p->parent_exec_id = current->parent_exec_id;
2245		if (clone_flags & CLONE_THREAD)
2246			p->exit_signal = -1;
2247		else
2248			p->exit_signal = current->group_leader->exit_signal;
2249	} else {
2250		p->real_parent = current;
2251		p->parent_exec_id = current->self_exec_id;
2252		p->exit_signal = args->exit_signal;
2253	}
2254
2255	klp_copy_process(p);
2256
2257	sched_core_fork(p);
2258
2259	spin_lock(&current->sighand->siglock);
2260
2261	/*
2262	 * Copy seccomp details explicitly here, in case they were changed
2263	 * before holding sighand lock.
2264	 */
2265	copy_seccomp(p);
2266
2267	rseq_fork(p, clone_flags);
2268
2269	/* Don't start children in a dying pid namespace */
2270	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2271		retval = -ENOMEM;
2272		goto bad_fork_cancel_cgroup;
2273	}
2274
2275	/* Let kill terminate clone/fork in the middle */
2276	if (fatal_signal_pending(current)) {
2277		retval = -EINTR;
2278		goto bad_fork_cancel_cgroup;
2279	}
2280
2281	/* past the last point of failure */
2282	if (pidfile)
2283		fd_install(pidfd, pidfile);
 
 
 
 
2284
2285	init_task_pid_links(p);
2286	if (likely(p->pid)) {
2287		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2288
2289		init_task_pid(p, PIDTYPE_PID, pid);
2290		if (thread_group_leader(p)) {
2291			init_task_pid(p, PIDTYPE_TGID, pid);
2292			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2293			init_task_pid(p, PIDTYPE_SID, task_session(current));
2294
2295			if (is_child_reaper(pid)) {
2296				ns_of_pid(pid)->child_reaper = p;
2297				p->signal->flags |= SIGNAL_UNKILLABLE;
2298			}
2299			p->signal->shared_pending.signal = delayed.signal;
2300			p->signal->tty = tty_kref_get(current->signal->tty);
2301			/*
2302			 * Inherit has_child_subreaper flag under the same
2303			 * tasklist_lock with adding child to the process tree
2304			 * for propagate_has_child_subreaper optimization.
2305			 */
2306			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2307							 p->real_parent->signal->is_child_subreaper;
2308			list_add_tail(&p->sibling, &p->real_parent->children);
2309			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2310			attach_pid(p, PIDTYPE_TGID);
2311			attach_pid(p, PIDTYPE_PGID);
2312			attach_pid(p, PIDTYPE_SID);
2313			__this_cpu_inc(process_counts);
2314		} else {
2315			current->signal->nr_threads++;
 
2316			atomic_inc(&current->signal->live);
2317			refcount_inc(&current->signal->sigcnt);
2318			task_join_group_stop(p);
2319			list_add_tail_rcu(&p->thread_group,
2320					  &p->group_leader->thread_group);
2321			list_add_tail_rcu(&p->thread_node,
2322					  &p->signal->thread_head);
2323		}
2324		attach_pid(p, PIDTYPE_PID);
2325		nr_threads++;
2326	}
2327	total_forks++;
2328	hlist_del_init(&delayed.node);
2329	spin_unlock(&current->sighand->siglock);
2330	syscall_tracepoint_update(p);
2331	write_unlock_irq(&tasklist_lock);
2332
 
 
 
2333	proc_fork_connector(p);
2334	sched_post_fork(p);
2335	cgroup_post_fork(p, args);
2336	perf_event_fork(p);
2337
2338	trace_task_newtask(p, clone_flags);
2339	uprobe_copy_process(p, clone_flags);
2340
2341	copy_oom_score_adj(clone_flags, p);
2342
2343	return p;
2344
2345bad_fork_cancel_cgroup:
2346	sched_core_free(p);
2347	spin_unlock(&current->sighand->siglock);
2348	write_unlock_irq(&tasklist_lock);
2349	cgroup_cancel_fork(p, args);
2350bad_fork_put_pidfd:
2351	if (clone_flags & CLONE_PIDFD) {
2352		fput(pidfile);
2353		put_unused_fd(pidfd);
2354	}
2355bad_fork_free_pid:
2356	if (pid != &init_struct_pid)
2357		free_pid(pid);
2358bad_fork_cleanup_thread:
2359	exit_thread(p);
2360bad_fork_cleanup_io:
2361	if (p->io_context)
2362		exit_io_context(p);
2363bad_fork_cleanup_namespaces:
2364	exit_task_namespaces(p);
2365bad_fork_cleanup_mm:
2366	if (p->mm) {
2367		mm_clear_owner(p->mm, p);
2368		mmput(p->mm);
2369	}
2370bad_fork_cleanup_signal:
2371	if (!(clone_flags & CLONE_THREAD))
2372		free_signal_struct(p->signal);
2373bad_fork_cleanup_sighand:
2374	__cleanup_sighand(p->sighand);
2375bad_fork_cleanup_fs:
2376	exit_fs(p); /* blocking */
2377bad_fork_cleanup_files:
2378	exit_files(p); /* blocking */
2379bad_fork_cleanup_semundo:
2380	exit_sem(p);
2381bad_fork_cleanup_security:
2382	security_task_free(p);
2383bad_fork_cleanup_audit:
2384	audit_free(p);
2385bad_fork_cleanup_perf:
2386	perf_event_free_task(p);
2387bad_fork_cleanup_policy:
2388	lockdep_free_task(p);
2389#ifdef CONFIG_NUMA
2390	mpol_put(p->mempolicy);
2391bad_fork_cleanup_threadgroup_lock:
2392#endif
 
2393	delayacct_tsk_free(p);
2394bad_fork_cleanup_count:
2395	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2396	exit_creds(p);
2397bad_fork_free:
2398	WRITE_ONCE(p->__state, TASK_DEAD);
 
2399	put_task_stack(p);
2400	delayed_free_task(p);
2401fork_out:
2402	spin_lock_irq(&current->sighand->siglock);
2403	hlist_del_init(&delayed.node);
2404	spin_unlock_irq(&current->sighand->siglock);
2405	return ERR_PTR(retval);
2406}
2407
2408static inline void init_idle_pids(struct task_struct *idle)
2409{
2410	enum pid_type type;
2411
2412	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2413		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2414		init_task_pid(idle, type, &init_struct_pid);
2415	}
2416}
2417
 
 
 
 
 
 
2418struct task_struct * __init fork_idle(int cpu)
2419{
2420	struct task_struct *task;
2421	struct kernel_clone_args args = {
2422		.flags = CLONE_VM,
 
 
 
 
2423	};
2424
2425	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2426	if (!IS_ERR(task)) {
2427		init_idle_pids(task);
2428		init_idle(task, cpu);
2429	}
2430
2431	return task;
2432}
2433
2434struct mm_struct *copy_init_mm(void)
2435{
2436	return dup_mm(NULL, &init_mm);
2437}
2438
2439/*
2440 * This is like kernel_clone(), but shaved down and tailored to just
2441 * creating io_uring workers. It returns a created task, or an error pointer.
2442 * The returned task is inactive, and the caller must fire it up through
2443 * wake_up_new_task(p). All signals are blocked in the created task.
2444 */
2445struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2446{
2447	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2448				CLONE_IO;
2449	struct kernel_clone_args args = {
2450		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2451				    CLONE_UNTRACED) & ~CSIGNAL),
2452		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2453		.stack		= (unsigned long)fn,
2454		.stack_size	= (unsigned long)arg,
2455		.io_thread	= 1,
2456	};
2457
2458	return copy_process(NULL, 0, node, &args);
2459}
2460
2461/*
2462 *  Ok, this is the main fork-routine.
2463 *
2464 * It copies the process, and if successful kick-starts
2465 * it and waits for it to finish using the VM if required.
2466 *
2467 * args->exit_signal is expected to be checked for sanity by the caller.
2468 */
2469pid_t kernel_clone(struct kernel_clone_args *args)
2470{
2471	u64 clone_flags = args->flags;
2472	struct completion vfork;
2473	struct pid *pid;
2474	struct task_struct *p;
2475	int trace = 0;
2476	pid_t nr;
2477
2478	/*
2479	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2480	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2481	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2482	 * field in struct clone_args and it still doesn't make sense to have
2483	 * them both point at the same memory location. Performing this check
2484	 * here has the advantage that we don't need to have a separate helper
2485	 * to check for legacy clone().
2486	 */
2487	if ((args->flags & CLONE_PIDFD) &&
2488	    (args->flags & CLONE_PARENT_SETTID) &&
2489	    (args->pidfd == args->parent_tid))
2490		return -EINVAL;
2491
2492	/*
2493	 * Determine whether and which event to report to ptracer.  When
2494	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2495	 * requested, no event is reported; otherwise, report if the event
2496	 * for the type of forking is enabled.
2497	 */
2498	if (!(clone_flags & CLONE_UNTRACED)) {
2499		if (clone_flags & CLONE_VFORK)
2500			trace = PTRACE_EVENT_VFORK;
2501		else if (args->exit_signal != SIGCHLD)
2502			trace = PTRACE_EVENT_CLONE;
2503		else
2504			trace = PTRACE_EVENT_FORK;
2505
2506		if (likely(!ptrace_event_enabled(current, trace)))
2507			trace = 0;
2508	}
2509
2510	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2511	add_latent_entropy();
2512
2513	if (IS_ERR(p))
2514		return PTR_ERR(p);
2515
2516	/*
2517	 * Do this prior waking up the new thread - the thread pointer
2518	 * might get invalid after that point, if the thread exits quickly.
2519	 */
2520	trace_sched_process_fork(current, p);
2521
2522	pid = get_task_pid(p, PIDTYPE_PID);
2523	nr = pid_vnr(pid);
2524
2525	if (clone_flags & CLONE_PARENT_SETTID)
2526		put_user(nr, args->parent_tid);
2527
2528	if (clone_flags & CLONE_VFORK) {
2529		p->vfork_done = &vfork;
2530		init_completion(&vfork);
2531		get_task_struct(p);
2532	}
2533
 
 
 
 
 
 
 
2534	wake_up_new_task(p);
2535
2536	/* forking complete and child started to run, tell ptracer */
2537	if (unlikely(trace))
2538		ptrace_event_pid(trace, pid);
2539
2540	if (clone_flags & CLONE_VFORK) {
2541		if (!wait_for_vfork_done(p, &vfork))
2542			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2543	}
2544
2545	put_pid(pid);
2546	return nr;
2547}
2548
2549/*
2550 * Create a kernel thread.
2551 */
2552pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2553{
2554	struct kernel_clone_args args = {
2555		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2556				    CLONE_UNTRACED) & ~CSIGNAL),
2557		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2558		.stack		= (unsigned long)fn,
2559		.stack_size	= (unsigned long)arg,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560	};
2561
2562	return kernel_clone(&args);
2563}
2564
2565#ifdef __ARCH_WANT_SYS_FORK
2566SYSCALL_DEFINE0(fork)
2567{
2568#ifdef CONFIG_MMU
2569	struct kernel_clone_args args = {
2570		.exit_signal = SIGCHLD,
2571	};
2572
2573	return kernel_clone(&args);
2574#else
2575	/* can not support in nommu mode */
2576	return -EINVAL;
2577#endif
2578}
2579#endif
2580
2581#ifdef __ARCH_WANT_SYS_VFORK
2582SYSCALL_DEFINE0(vfork)
2583{
2584	struct kernel_clone_args args = {
2585		.flags		= CLONE_VFORK | CLONE_VM,
2586		.exit_signal	= SIGCHLD,
2587	};
2588
2589	return kernel_clone(&args);
2590}
2591#endif
2592
2593#ifdef __ARCH_WANT_SYS_CLONE
2594#ifdef CONFIG_CLONE_BACKWARDS
2595SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2596		 int __user *, parent_tidptr,
2597		 unsigned long, tls,
2598		 int __user *, child_tidptr)
2599#elif defined(CONFIG_CLONE_BACKWARDS2)
2600SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2601		 int __user *, parent_tidptr,
2602		 int __user *, child_tidptr,
2603		 unsigned long, tls)
2604#elif defined(CONFIG_CLONE_BACKWARDS3)
2605SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2606		int, stack_size,
2607		int __user *, parent_tidptr,
2608		int __user *, child_tidptr,
2609		unsigned long, tls)
2610#else
2611SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2612		 int __user *, parent_tidptr,
2613		 int __user *, child_tidptr,
2614		 unsigned long, tls)
2615#endif
2616{
2617	struct kernel_clone_args args = {
2618		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2619		.pidfd		= parent_tidptr,
2620		.child_tid	= child_tidptr,
2621		.parent_tid	= parent_tidptr,
2622		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2623		.stack		= newsp,
2624		.tls		= tls,
2625	};
2626
2627	return kernel_clone(&args);
2628}
2629#endif
2630
2631#ifdef __ARCH_WANT_SYS_CLONE3
2632
2633noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2634					      struct clone_args __user *uargs,
2635					      size_t usize)
2636{
2637	int err;
2638	struct clone_args args;
2639	pid_t *kset_tid = kargs->set_tid;
2640
2641	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2642		     CLONE_ARGS_SIZE_VER0);
2643	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2644		     CLONE_ARGS_SIZE_VER1);
2645	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2646		     CLONE_ARGS_SIZE_VER2);
2647	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2648
2649	if (unlikely(usize > PAGE_SIZE))
2650		return -E2BIG;
2651	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2652		return -EINVAL;
2653
2654	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2655	if (err)
2656		return err;
2657
2658	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2659		return -EINVAL;
2660
2661	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2662		return -EINVAL;
2663
2664	if (unlikely(args.set_tid && args.set_tid_size == 0))
2665		return -EINVAL;
2666
2667	/*
2668	 * Verify that higher 32bits of exit_signal are unset and that
2669	 * it is a valid signal
2670	 */
2671	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2672		     !valid_signal(args.exit_signal)))
2673		return -EINVAL;
2674
2675	if ((args.flags & CLONE_INTO_CGROUP) &&
2676	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2677		return -EINVAL;
2678
2679	*kargs = (struct kernel_clone_args){
2680		.flags		= args.flags,
2681		.pidfd		= u64_to_user_ptr(args.pidfd),
2682		.child_tid	= u64_to_user_ptr(args.child_tid),
2683		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2684		.exit_signal	= args.exit_signal,
2685		.stack		= args.stack,
2686		.stack_size	= args.stack_size,
2687		.tls		= args.tls,
2688		.set_tid_size	= args.set_tid_size,
2689		.cgroup		= args.cgroup,
2690	};
2691
2692	if (args.set_tid &&
2693		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2694			(kargs->set_tid_size * sizeof(pid_t))))
2695		return -EFAULT;
2696
2697	kargs->set_tid = kset_tid;
2698
2699	return 0;
2700}
2701
2702/**
2703 * clone3_stack_valid - check and prepare stack
2704 * @kargs: kernel clone args
2705 *
2706 * Verify that the stack arguments userspace gave us are sane.
2707 * In addition, set the stack direction for userspace since it's easy for us to
2708 * determine.
2709 */
2710static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2711{
2712	if (kargs->stack == 0) {
2713		if (kargs->stack_size > 0)
2714			return false;
2715	} else {
2716		if (kargs->stack_size == 0)
2717			return false;
2718
2719		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2720			return false;
2721
2722#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2723		kargs->stack += kargs->stack_size;
2724#endif
2725	}
2726
2727	return true;
2728}
2729
2730static bool clone3_args_valid(struct kernel_clone_args *kargs)
2731{
2732	/* Verify that no unknown flags are passed along. */
2733	if (kargs->flags &
2734	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2735		return false;
2736
2737	/*
2738	 * - make the CLONE_DETACHED bit reusable for clone3
2739	 * - make the CSIGNAL bits reusable for clone3
2740	 */
2741	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2742		return false;
2743
2744	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2745	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2746		return false;
2747
2748	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2749	    kargs->exit_signal)
2750		return false;
2751
2752	if (!clone3_stack_valid(kargs))
2753		return false;
2754
2755	return true;
2756}
2757
2758/**
2759 * clone3 - create a new process with specific properties
2760 * @uargs: argument structure
2761 * @size:  size of @uargs
2762 *
2763 * clone3() is the extensible successor to clone()/clone2().
2764 * It takes a struct as argument that is versioned by its size.
2765 *
2766 * Return: On success, a positive PID for the child process.
2767 *         On error, a negative errno number.
2768 */
2769SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2770{
2771	int err;
2772
2773	struct kernel_clone_args kargs;
2774	pid_t set_tid[MAX_PID_NS_LEVEL];
2775
2776	kargs.set_tid = set_tid;
2777
2778	err = copy_clone_args_from_user(&kargs, uargs, size);
2779	if (err)
2780		return err;
2781
2782	if (!clone3_args_valid(&kargs))
2783		return -EINVAL;
2784
2785	return kernel_clone(&kargs);
2786}
2787#endif
2788
2789void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2790{
2791	struct task_struct *leader, *parent, *child;
2792	int res;
2793
2794	read_lock(&tasklist_lock);
2795	leader = top = top->group_leader;
2796down:
2797	for_each_thread(leader, parent) {
2798		list_for_each_entry(child, &parent->children, sibling) {
2799			res = visitor(child, data);
2800			if (res) {
2801				if (res < 0)
2802					goto out;
2803				leader = child;
2804				goto down;
2805			}
2806up:
2807			;
2808		}
2809	}
2810
2811	if (leader != top) {
2812		child = leader;
2813		parent = child->real_parent;
2814		leader = parent->group_leader;
2815		goto up;
2816	}
2817out:
2818	read_unlock(&tasklist_lock);
2819}
2820
2821#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2822#define ARCH_MIN_MMSTRUCT_ALIGN 0
2823#endif
2824
2825static void sighand_ctor(void *data)
2826{
2827	struct sighand_struct *sighand = data;
2828
2829	spin_lock_init(&sighand->siglock);
2830	init_waitqueue_head(&sighand->signalfd_wqh);
2831}
2832
2833void __init proc_caches_init(void)
2834{
2835	unsigned int mm_size;
2836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837	sighand_cachep = kmem_cache_create("sighand_cache",
2838			sizeof(struct sighand_struct), 0,
2839			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2840			SLAB_ACCOUNT, sighand_ctor);
2841	signal_cachep = kmem_cache_create("signal_cache",
2842			sizeof(struct signal_struct), 0,
2843			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2844			NULL);
2845	files_cachep = kmem_cache_create("files_cache",
2846			sizeof(struct files_struct), 0,
2847			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2848			NULL);
2849	fs_cachep = kmem_cache_create("fs_cache",
2850			sizeof(struct fs_struct), 0,
2851			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2852			NULL);
2853
2854	/*
2855	 * The mm_cpumask is located at the end of mm_struct, and is
2856	 * dynamically sized based on the maximum CPU number this system
2857	 * can have, taking hotplug into account (nr_cpu_ids).
2858	 */
2859	mm_size = sizeof(struct mm_struct) + cpumask_size();
2860
2861	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2862			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2863			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2864			offsetof(struct mm_struct, saved_auxv),
2865			sizeof_field(struct mm_struct, saved_auxv),
2866			NULL);
2867	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2868	mmap_init();
2869	nsproxy_cache_init();
2870}
2871
2872/*
2873 * Check constraints on flags passed to the unshare system call.
2874 */
2875static int check_unshare_flags(unsigned long unshare_flags)
2876{
2877	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2878				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2879				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2880				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2881				CLONE_NEWTIME))
2882		return -EINVAL;
2883	/*
2884	 * Not implemented, but pretend it works if there is nothing
2885	 * to unshare.  Note that unsharing the address space or the
2886	 * signal handlers also need to unshare the signal queues (aka
2887	 * CLONE_THREAD).
2888	 */
2889	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2890		if (!thread_group_empty(current))
2891			return -EINVAL;
2892	}
2893	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2894		if (refcount_read(&current->sighand->count) > 1)
2895			return -EINVAL;
2896	}
2897	if (unshare_flags & CLONE_VM) {
2898		if (!current_is_single_threaded())
2899			return -EINVAL;
2900	}
2901
2902	return 0;
2903}
2904
2905/*
2906 * Unshare the filesystem structure if it is being shared
2907 */
2908static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2909{
2910	struct fs_struct *fs = current->fs;
2911
2912	if (!(unshare_flags & CLONE_FS) || !fs)
2913		return 0;
2914
2915	/* don't need lock here; in the worst case we'll do useless copy */
2916	if (fs->users == 1)
2917		return 0;
2918
2919	*new_fsp = copy_fs_struct(fs);
2920	if (!*new_fsp)
2921		return -ENOMEM;
2922
2923	return 0;
2924}
2925
2926/*
2927 * Unshare file descriptor table if it is being shared
2928 */
2929int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2930	       struct files_struct **new_fdp)
2931{
2932	struct files_struct *fd = current->files;
2933	int error = 0;
2934
2935	if ((unshare_flags & CLONE_FILES) &&
2936	    (fd && atomic_read(&fd->count) > 1)) {
2937		*new_fdp = dup_fd(fd, max_fds, &error);
2938		if (!*new_fdp)
2939			return error;
2940	}
2941
2942	return 0;
2943}
2944
2945/*
2946 * unshare allows a process to 'unshare' part of the process
2947 * context which was originally shared using clone.  copy_*
2948 * functions used by kernel_clone() cannot be used here directly
2949 * because they modify an inactive task_struct that is being
2950 * constructed. Here we are modifying the current, active,
2951 * task_struct.
2952 */
2953int ksys_unshare(unsigned long unshare_flags)
2954{
2955	struct fs_struct *fs, *new_fs = NULL;
2956	struct files_struct *fd, *new_fd = NULL;
2957	struct cred *new_cred = NULL;
2958	struct nsproxy *new_nsproxy = NULL;
2959	int do_sysvsem = 0;
2960	int err;
2961
2962	/*
2963	 * If unsharing a user namespace must also unshare the thread group
2964	 * and unshare the filesystem root and working directories.
2965	 */
2966	if (unshare_flags & CLONE_NEWUSER)
2967		unshare_flags |= CLONE_THREAD | CLONE_FS;
2968	/*
2969	 * If unsharing vm, must also unshare signal handlers.
2970	 */
2971	if (unshare_flags & CLONE_VM)
2972		unshare_flags |= CLONE_SIGHAND;
2973	/*
2974	 * If unsharing a signal handlers, must also unshare the signal queues.
2975	 */
2976	if (unshare_flags & CLONE_SIGHAND)
2977		unshare_flags |= CLONE_THREAD;
2978	/*
2979	 * If unsharing namespace, must also unshare filesystem information.
2980	 */
2981	if (unshare_flags & CLONE_NEWNS)
2982		unshare_flags |= CLONE_FS;
2983
2984	err = check_unshare_flags(unshare_flags);
2985	if (err)
2986		goto bad_unshare_out;
2987	/*
2988	 * CLONE_NEWIPC must also detach from the undolist: after switching
2989	 * to a new ipc namespace, the semaphore arrays from the old
2990	 * namespace are unreachable.
2991	 */
2992	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2993		do_sysvsem = 1;
2994	err = unshare_fs(unshare_flags, &new_fs);
2995	if (err)
2996		goto bad_unshare_out;
2997	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2998	if (err)
2999		goto bad_unshare_cleanup_fs;
3000	err = unshare_userns(unshare_flags, &new_cred);
3001	if (err)
3002		goto bad_unshare_cleanup_fd;
3003	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3004					 new_cred, new_fs);
3005	if (err)
3006		goto bad_unshare_cleanup_cred;
3007
3008	if (new_cred) {
3009		err = set_cred_ucounts(new_cred);
3010		if (err)
3011			goto bad_unshare_cleanup_cred;
3012	}
3013
3014	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3015		if (do_sysvsem) {
3016			/*
3017			 * CLONE_SYSVSEM is equivalent to sys_exit().
3018			 */
3019			exit_sem(current);
3020		}
3021		if (unshare_flags & CLONE_NEWIPC) {
3022			/* Orphan segments in old ns (see sem above). */
3023			exit_shm(current);
3024			shm_init_task(current);
3025		}
3026
3027		if (new_nsproxy)
3028			switch_task_namespaces(current, new_nsproxy);
3029
3030		task_lock(current);
3031
3032		if (new_fs) {
3033			fs = current->fs;
3034			spin_lock(&fs->lock);
3035			current->fs = new_fs;
3036			if (--fs->users)
3037				new_fs = NULL;
3038			else
3039				new_fs = fs;
3040			spin_unlock(&fs->lock);
3041		}
3042
3043		if (new_fd) {
3044			fd = current->files;
3045			current->files = new_fd;
3046			new_fd = fd;
3047		}
3048
3049		task_unlock(current);
3050
3051		if (new_cred) {
3052			/* Install the new user namespace */
3053			commit_creds(new_cred);
3054			new_cred = NULL;
3055		}
3056	}
3057
3058	perf_event_namespaces(current);
3059
3060bad_unshare_cleanup_cred:
3061	if (new_cred)
3062		put_cred(new_cred);
3063bad_unshare_cleanup_fd:
3064	if (new_fd)
3065		put_files_struct(new_fd);
3066
3067bad_unshare_cleanup_fs:
3068	if (new_fs)
3069		free_fs_struct(new_fs);
3070
3071bad_unshare_out:
3072	return err;
3073}
3074
3075SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3076{
3077	return ksys_unshare(unshare_flags);
3078}
3079
3080/*
3081 *	Helper to unshare the files of the current task.
3082 *	We don't want to expose copy_files internals to
3083 *	the exec layer of the kernel.
3084 */
3085
3086int unshare_files(void)
3087{
3088	struct task_struct *task = current;
3089	struct files_struct *old, *copy = NULL;
3090	int error;
3091
3092	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3093	if (error || !copy)
3094		return error;
3095
3096	old = task->files;
3097	task_lock(task);
3098	task->files = copy;
3099	task_unlock(task);
3100	put_files_struct(old);
3101	return 0;
3102}
3103
3104int sysctl_max_threads(struct ctl_table *table, int write,
3105		       void *buffer, size_t *lenp, loff_t *ppos)
3106{
3107	struct ctl_table t;
3108	int ret;
3109	int threads = max_threads;
3110	int min = 1;
3111	int max = MAX_THREADS;
3112
3113	t = *table;
3114	t.data = &threads;
3115	t.extra1 = &min;
3116	t.extra2 = &max;
3117
3118	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3119	if (ret || !write)
3120		return ret;
3121
3122	max_threads = threads;
3123
3124	return 0;
3125}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/fork.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 *  'fork.c' contains the help-routines for the 'fork' system call
  10 * (see also entry.S and others).
  11 * Fork is rather simple, once you get the hang of it, but the memory
  12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  13 */
  14
  15#include <linux/anon_inodes.h>
  16#include <linux/slab.h>
  17#include <linux/sched/autogroup.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/coredump.h>
  20#include <linux/sched/user.h>
  21#include <linux/sched/numa_balancing.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/task.h>
  24#include <linux/sched/task_stack.h>
  25#include <linux/sched/cputime.h>
  26#include <linux/seq_file.h>
  27#include <linux/rtmutex.h>
  28#include <linux/init.h>
  29#include <linux/unistd.h>
  30#include <linux/module.h>
  31#include <linux/vmalloc.h>
  32#include <linux/completion.h>
  33#include <linux/personality.h>
  34#include <linux/mempolicy.h>
  35#include <linux/sem.h>
  36#include <linux/file.h>
  37#include <linux/fdtable.h>
  38#include <linux/iocontext.h>
  39#include <linux/key.h>
  40#include <linux/kmsan.h>
  41#include <linux/binfmts.h>
  42#include <linux/mman.h>
  43#include <linux/mmu_notifier.h>
  44#include <linux/fs.h>
  45#include <linux/mm.h>
  46#include <linux/mm_inline.h>
  47#include <linux/nsproxy.h>
  48#include <linux/capability.h>
  49#include <linux/cpu.h>
  50#include <linux/cgroup.h>
  51#include <linux/security.h>
  52#include <linux/hugetlb.h>
  53#include <linux/seccomp.h>
  54#include <linux/swap.h>
  55#include <linux/syscalls.h>
  56#include <linux/jiffies.h>
  57#include <linux/futex.h>
  58#include <linux/compat.h>
  59#include <linux/kthread.h>
  60#include <linux/task_io_accounting_ops.h>
  61#include <linux/rcupdate.h>
  62#include <linux/ptrace.h>
  63#include <linux/mount.h>
  64#include <linux/audit.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/proc_fs.h>
  68#include <linux/profile.h>
  69#include <linux/rmap.h>
  70#include <linux/ksm.h>
  71#include <linux/acct.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/tsacct_kern.h>
  74#include <linux/cn_proc.h>
  75#include <linux/freezer.h>
  76#include <linux/delayacct.h>
  77#include <linux/taskstats_kern.h>
 
  78#include <linux/tty.h>
 
  79#include <linux/fs_struct.h>
  80#include <linux/magic.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
  94#include <linux/stackleak.h>
  95#include <linux/kasan.h>
  96#include <linux/scs.h>
  97#include <linux/io_uring.h>
  98#include <linux/bpf.h>
  99#include <linux/stackprotector.h>
 100
 101#include <asm/pgalloc.h>
 102#include <linux/uaccess.h>
 103#include <asm/mmu_context.h>
 104#include <asm/cacheflush.h>
 105#include <asm/tlbflush.h>
 106
 107#include <trace/events/sched.h>
 108
 109#define CREATE_TRACE_POINTS
 110#include <trace/events/task.h>
 111
 112/*
 113 * Minimum number of threads to boot the kernel
 114 */
 115#define MIN_THREADS 20
 116
 117/*
 118 * Maximum number of threads
 119 */
 120#define MAX_THREADS FUTEX_TID_MASK
 121
 122/*
 123 * Protected counters by write_lock_irq(&tasklist_lock)
 124 */
 125unsigned long total_forks;	/* Handle normal Linux uptimes. */
 126int nr_threads;			/* The idle threads do not count.. */
 127
 128static int max_threads;		/* tunable limit on nr_threads */
 129
 130#define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
 131
 132static const char * const resident_page_types[] = {
 133	NAMED_ARRAY_INDEX(MM_FILEPAGES),
 134	NAMED_ARRAY_INDEX(MM_ANONPAGES),
 135	NAMED_ARRAY_INDEX(MM_SWAPENTS),
 136	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
 137};
 138
 139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 140
 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 142
 143#ifdef CONFIG_PROVE_RCU
 144int lockdep_tasklist_lock_is_held(void)
 145{
 146	return lockdep_is_held(&tasklist_lock);
 147}
 148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 149#endif /* #ifdef CONFIG_PROVE_RCU */
 150
 151int nr_processes(void)
 152{
 153	int cpu;
 154	int total = 0;
 155
 156	for_each_possible_cpu(cpu)
 157		total += per_cpu(process_counts, cpu);
 158
 159	return total;
 160}
 161
 162void __weak arch_release_task_struct(struct task_struct *tsk)
 163{
 164}
 165
 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 167static struct kmem_cache *task_struct_cachep;
 168
 169static inline struct task_struct *alloc_task_struct_node(int node)
 170{
 171	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 172}
 173
 174static inline void free_task_struct(struct task_struct *tsk)
 175{
 176	kmem_cache_free(task_struct_cachep, tsk);
 177}
 178#endif
 179
 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 181
 182/*
 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 184 * kmemcache based allocator.
 185 */
 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 187
 188#  ifdef CONFIG_VMAP_STACK
 189/*
 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 191 * flush.  Try to minimize the number of calls by caching stacks.
 192 */
 193#define NR_CACHED_STACKS 2
 194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 195
 196struct vm_stack {
 197	struct rcu_head rcu;
 198	struct vm_struct *stack_vm_area;
 199};
 200
 201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < NR_CACHED_STACKS; i++) {
 206		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
 207			continue;
 208		return true;
 209	}
 210	return false;
 211}
 212
 213static void thread_stack_free_rcu(struct rcu_head *rh)
 214{
 215	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
 216
 217	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
 218		return;
 219
 220	vfree(vm_stack);
 221}
 222
 223static void thread_stack_delayed_free(struct task_struct *tsk)
 224{
 225	struct vm_stack *vm_stack = tsk->stack;
 226
 227	vm_stack->stack_vm_area = tsk->stack_vm_area;
 228	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
 229}
 230
 231static int free_vm_stack_cache(unsigned int cpu)
 232{
 233	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 234	int i;
 235
 236	for (i = 0; i < NR_CACHED_STACKS; i++) {
 237		struct vm_struct *vm_stack = cached_vm_stacks[i];
 238
 239		if (!vm_stack)
 240			continue;
 241
 242		vfree(vm_stack->addr);
 243		cached_vm_stacks[i] = NULL;
 244	}
 245
 246	return 0;
 247}
 
 248
 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
 250{
 251	int i;
 252	int ret;
 253
 254	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 255	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 256
 257	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 258		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
 259		if (ret)
 260			goto err;
 261	}
 262	return 0;
 263err:
 264	/*
 265	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
 266	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
 267	 * ignore this page.
 268	 */
 269	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 270		memcg_kmem_uncharge_page(vm->pages[i], 0);
 271	return ret;
 272}
 273
 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 275{
 276	struct vm_struct *vm;
 277	void *stack;
 278	int i;
 279
 280	for (i = 0; i < NR_CACHED_STACKS; i++) {
 281		struct vm_struct *s;
 282
 283		s = this_cpu_xchg(cached_stacks[i], NULL);
 284
 285		if (!s)
 286			continue;
 287
 288		/* Reset stack metadata. */
 289		kasan_unpoison_range(s->addr, THREAD_SIZE);
 290
 291		stack = kasan_reset_tag(s->addr);
 292
 293		/* Clear stale pointers from reused stack. */
 294		memset(stack, 0, THREAD_SIZE);
 295
 296		if (memcg_charge_kernel_stack(s)) {
 297			vfree(s->addr);
 298			return -ENOMEM;
 299		}
 300
 301		tsk->stack_vm_area = s;
 302		tsk->stack = stack;
 303		return 0;
 304	}
 305
 306	/*
 307	 * Allocated stacks are cached and later reused by new threads,
 308	 * so memcg accounting is performed manually on assigning/releasing
 309	 * stacks to tasks. Drop __GFP_ACCOUNT.
 310	 */
 311	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 312				     VMALLOC_START, VMALLOC_END,
 313				     THREADINFO_GFP & ~__GFP_ACCOUNT,
 314				     PAGE_KERNEL,
 315				     0, node, __builtin_return_address(0));
 316	if (!stack)
 317		return -ENOMEM;
 318
 319	vm = find_vm_area(stack);
 320	if (memcg_charge_kernel_stack(vm)) {
 321		vfree(stack);
 322		return -ENOMEM;
 323	}
 324	/*
 325	 * We can't call find_vm_area() in interrupt context, and
 326	 * free_thread_stack() can be called in interrupt context,
 327	 * so cache the vm_struct.
 328	 */
 329	tsk->stack_vm_area = vm;
 330	stack = kasan_reset_tag(stack);
 331	tsk->stack = stack;
 332	return 0;
 333}
 334
 335static void free_thread_stack(struct task_struct *tsk)
 336{
 337	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
 338		thread_stack_delayed_free(tsk);
 339
 340	tsk->stack = NULL;
 341	tsk->stack_vm_area = NULL;
 342}
 343
 344#  else /* !CONFIG_VMAP_STACK */
 345
 346static void thread_stack_free_rcu(struct rcu_head *rh)
 347{
 348	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
 349}
 350
 351static void thread_stack_delayed_free(struct task_struct *tsk)
 352{
 353	struct rcu_head *rh = tsk->stack;
 354
 355	call_rcu(rh, thread_stack_free_rcu);
 356}
 357
 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 359{
 360	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 361					     THREAD_SIZE_ORDER);
 362
 363	if (likely(page)) {
 364		tsk->stack = kasan_reset_tag(page_address(page));
 365		return 0;
 366	}
 367	return -ENOMEM;
 
 368}
 369
 370static void free_thread_stack(struct task_struct *tsk)
 371{
 372	thread_stack_delayed_free(tsk);
 373	tsk->stack = NULL;
 374}
 
 
 375
 376#  endif /* CONFIG_VMAP_STACK */
 377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
 378
 379static struct kmem_cache *thread_stack_cache;
 
 
 
 380
 381static void thread_stack_free_rcu(struct rcu_head *rh)
 382{
 383	kmem_cache_free(thread_stack_cache, rh);
 384}
 385
 386static void thread_stack_delayed_free(struct task_struct *tsk)
 387{
 388	struct rcu_head *rh = tsk->stack;
 
 389
 390	call_rcu(rh, thread_stack_free_rcu);
 391}
 
 
 392
 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 
 394{
 395	unsigned long *stack;
 396	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 397	stack = kasan_reset_tag(stack);
 398	tsk->stack = stack;
 399	return stack ? 0 : -ENOMEM;
 400}
 401
 402static void free_thread_stack(struct task_struct *tsk)
 403{
 404	thread_stack_delayed_free(tsk);
 405	tsk->stack = NULL;
 406}
 407
 408void thread_stack_cache_init(void)
 409{
 410	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 411					THREAD_SIZE, THREAD_SIZE, 0, 0,
 412					THREAD_SIZE, NULL);
 413	BUG_ON(thread_stack_cache == NULL);
 414}
 415
 416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
 417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 418
 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
 420{
 421	unsigned long *stack;
 422
 423	stack = arch_alloc_thread_stack_node(tsk, node);
 424	tsk->stack = stack;
 425	return stack ? 0 : -ENOMEM;
 426}
 427
 428static void free_thread_stack(struct task_struct *tsk)
 429{
 430	arch_free_thread_stack(tsk);
 431	tsk->stack = NULL;
 432}
 433
 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
 435
 436/* SLAB cache for signal_struct structures (tsk->signal) */
 437static struct kmem_cache *signal_cachep;
 438
 439/* SLAB cache for sighand_struct structures (tsk->sighand) */
 440struct kmem_cache *sighand_cachep;
 441
 442/* SLAB cache for files_struct structures (tsk->files) */
 443struct kmem_cache *files_cachep;
 444
 445/* SLAB cache for fs_struct structures (tsk->fs) */
 446struct kmem_cache *fs_cachep;
 447
 448/* SLAB cache for vm_area_struct structures */
 449static struct kmem_cache *vm_area_cachep;
 450
 451/* SLAB cache for mm_struct structures (tsk->mm) */
 452static struct kmem_cache *mm_cachep;
 453
 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 455{
 456	struct vm_area_struct *vma;
 457
 458	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 459	if (vma)
 460		vma_init(vma, mm);
 461	return vma;
 462}
 463
 464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 465{
 466	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 467
 468	if (new) {
 469		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
 470		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
 471		/*
 472		 * orig->shared.rb may be modified concurrently, but the clone
 473		 * will be reinitialized.
 474		 */
 475		*new = data_race(*orig);
 476		INIT_LIST_HEAD(&new->anon_vma_chain);
 477		dup_anon_vma_name(orig, new);
 478	}
 479	return new;
 480}
 481
 482void vm_area_free(struct vm_area_struct *vma)
 483{
 484	free_anon_vma_name(vma);
 485	kmem_cache_free(vm_area_cachep, vma);
 486}
 487
 488static void account_kernel_stack(struct task_struct *tsk, int account)
 489{
 490	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 491		struct vm_struct *vm = task_stack_vm_area(tsk);
 
 
 492		int i;
 493
 494		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 495			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
 496					      account * (PAGE_SIZE / 1024));
 497	} else {
 498		void *stack = task_stack_page(tsk);
 499
 500		/* All stack pages are in the same node. */
 501		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
 502				      account * (THREAD_SIZE / 1024));
 503	}
 504}
 505
 506void exit_task_stack_account(struct task_struct *tsk)
 507{
 508	account_kernel_stack(tsk, -1);
 
 
 
 
 509
 510	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 511		struct vm_struct *vm;
 512		int i;
 513
 514		vm = task_stack_vm_area(tsk);
 515		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
 516			memcg_kmem_uncharge_page(vm->pages[i], 0);
 
 
 
 
 
 
 
 
 
 
 
 517	}
 
 
 518}
 519
 520static void release_task_stack(struct task_struct *tsk)
 521{
 522	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
 523		return;  /* Better to leak the stack than to free prematurely */
 524
 
 525	free_thread_stack(tsk);
 
 
 
 
 526}
 527
 528#ifdef CONFIG_THREAD_INFO_IN_TASK
 529void put_task_stack(struct task_struct *tsk)
 530{
 531	if (refcount_dec_and_test(&tsk->stack_refcount))
 532		release_task_stack(tsk);
 533}
 534#endif
 535
 536void free_task(struct task_struct *tsk)
 537{
 538#ifdef CONFIG_SECCOMP
 539	WARN_ON_ONCE(tsk->seccomp.filter);
 540#endif
 541	release_user_cpus_ptr(tsk);
 542	scs_release(tsk);
 543
 544#ifndef CONFIG_THREAD_INFO_IN_TASK
 545	/*
 546	 * The task is finally done with both the stack and thread_info,
 547	 * so free both.
 548	 */
 549	release_task_stack(tsk);
 550#else
 551	/*
 552	 * If the task had a separate stack allocation, it should be gone
 553	 * by now.
 554	 */
 555	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
 556#endif
 557	rt_mutex_debug_task_free(tsk);
 558	ftrace_graph_exit_task(tsk);
 559	arch_release_task_struct(tsk);
 560	if (tsk->flags & PF_KTHREAD)
 561		free_kthread_struct(tsk);
 562	free_task_struct(tsk);
 563}
 564EXPORT_SYMBOL(free_task);
 565
 566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
 567{
 568	struct file *exe_file;
 569
 570	exe_file = get_mm_exe_file(oldmm);
 571	RCU_INIT_POINTER(mm->exe_file, exe_file);
 572	/*
 573	 * We depend on the oldmm having properly denied write access to the
 574	 * exe_file already.
 575	 */
 576	if (exe_file && deny_write_access(exe_file))
 577		pr_warn_once("deny_write_access() failed in %s\n", __func__);
 578}
 579
 580#ifdef CONFIG_MMU
 581static __latent_entropy int dup_mmap(struct mm_struct *mm,
 582					struct mm_struct *oldmm)
 583{
 584	struct vm_area_struct *mpnt, *tmp;
 
 585	int retval;
 586	unsigned long charge = 0;
 587	LIST_HEAD(uf);
 588	MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
 589	MA_STATE(mas, &mm->mm_mt, 0, 0);
 590
 591	uprobe_start_dup_mmap();
 592	if (mmap_write_lock_killable(oldmm)) {
 593		retval = -EINTR;
 594		goto fail_uprobe_end;
 595	}
 596	flush_cache_dup_mm(oldmm);
 597	uprobe_dup_mmap(oldmm, mm);
 598	/*
 599	 * Not linked in yet - no deadlock potential:
 600	 */
 601	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
 602
 603	/* No ordering required: file already has been exposed. */
 604	dup_mm_exe_file(mm, oldmm);
 605
 606	mm->total_vm = oldmm->total_vm;
 607	mm->data_vm = oldmm->data_vm;
 608	mm->exec_vm = oldmm->exec_vm;
 609	mm->stack_vm = oldmm->stack_vm;
 610
 
 
 
 611	retval = ksm_fork(mm, oldmm);
 612	if (retval)
 613		goto out;
 614	khugepaged_fork(mm, oldmm);
 615
 616	retval = mas_expected_entries(&mas, oldmm->map_count);
 617	if (retval)
 618		goto out;
 619
 620	mas_for_each(&old_mas, mpnt, ULONG_MAX) {
 
 621		struct file *file;
 622
 623		if (mpnt->vm_flags & VM_DONTCOPY) {
 624			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 625			continue;
 626		}
 627		charge = 0;
 628		/*
 629		 * Don't duplicate many vmas if we've been oom-killed (for
 630		 * example)
 631		 */
 632		if (fatal_signal_pending(current)) {
 633			retval = -EINTR;
 634			goto loop_out;
 635		}
 636		if (mpnt->vm_flags & VM_ACCOUNT) {
 637			unsigned long len = vma_pages(mpnt);
 638
 639			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 640				goto fail_nomem;
 641			charge = len;
 642		}
 643		tmp = vm_area_dup(mpnt);
 644		if (!tmp)
 645			goto fail_nomem;
 646		retval = vma_dup_policy(mpnt, tmp);
 647		if (retval)
 648			goto fail_nomem_policy;
 649		tmp->vm_mm = mm;
 650		retval = dup_userfaultfd(tmp, &uf);
 651		if (retval)
 652			goto fail_nomem_anon_vma_fork;
 653		if (tmp->vm_flags & VM_WIPEONFORK) {
 654			/*
 655			 * VM_WIPEONFORK gets a clean slate in the child.
 656			 * Don't prepare anon_vma until fault since we don't
 657			 * copy page for current vma.
 658			 */
 659			tmp->anon_vma = NULL;
 660		} else if (anon_vma_fork(tmp, mpnt))
 661			goto fail_nomem_anon_vma_fork;
 662		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 663		file = tmp->vm_file;
 664		if (file) {
 
 665			struct address_space *mapping = file->f_mapping;
 666
 667			get_file(file);
 
 
 668			i_mmap_lock_write(mapping);
 669			if (tmp->vm_flags & VM_SHARED)
 670				mapping_allow_writable(mapping);
 671			flush_dcache_mmap_lock(mapping);
 672			/* insert tmp into the share list, just after mpnt */
 673			vma_interval_tree_insert_after(tmp, mpnt,
 674					&mapping->i_mmap);
 675			flush_dcache_mmap_unlock(mapping);
 676			i_mmap_unlock_write(mapping);
 677		}
 678
 679		/*
 680		 * Copy/update hugetlb private vma information.
 
 
 681		 */
 682		if (is_vm_hugetlb_page(tmp))
 683			hugetlb_dup_vma_private(tmp);
 684
 685		/* Link the vma into the MT */
 686		mas.index = tmp->vm_start;
 687		mas.last = tmp->vm_end - 1;
 688		mas_store(&mas, tmp);
 689		if (mas_is_err(&mas))
 690			goto fail_nomem_mas_store;
 
 
 
 
 
 691
 692		mm->map_count++;
 693		if (!(tmp->vm_flags & VM_WIPEONFORK))
 694			retval = copy_page_range(tmp, mpnt);
 695
 696		if (tmp->vm_ops && tmp->vm_ops->open)
 697			tmp->vm_ops->open(tmp);
 698
 699		if (retval)
 700			goto loop_out;
 701	}
 702	/* a new mm has just been created */
 703	retval = arch_dup_mmap(oldmm, mm);
 704loop_out:
 705	mas_destroy(&mas);
 706out:
 707	mmap_write_unlock(mm);
 708	flush_tlb_mm(oldmm);
 709	mmap_write_unlock(oldmm);
 710	dup_userfaultfd_complete(&uf);
 711fail_uprobe_end:
 712	uprobe_end_dup_mmap();
 713	return retval;
 714
 715fail_nomem_mas_store:
 716	unlink_anon_vmas(tmp);
 717fail_nomem_anon_vma_fork:
 718	mpol_put(vma_policy(tmp));
 719fail_nomem_policy:
 720	vm_area_free(tmp);
 721fail_nomem:
 722	retval = -ENOMEM;
 723	vm_unacct_memory(charge);
 724	goto loop_out;
 725}
 726
 727static inline int mm_alloc_pgd(struct mm_struct *mm)
 728{
 729	mm->pgd = pgd_alloc(mm);
 730	if (unlikely(!mm->pgd))
 731		return -ENOMEM;
 732	return 0;
 733}
 734
 735static inline void mm_free_pgd(struct mm_struct *mm)
 736{
 737	pgd_free(mm, mm->pgd);
 738}
 739#else
 740static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 741{
 742	mmap_write_lock(oldmm);
 743	dup_mm_exe_file(mm, oldmm);
 744	mmap_write_unlock(oldmm);
 745	return 0;
 746}
 747#define mm_alloc_pgd(mm)	(0)
 748#define mm_free_pgd(mm)
 749#endif /* CONFIG_MMU */
 750
 751static void check_mm(struct mm_struct *mm)
 752{
 753	int i;
 754
 755	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
 756			 "Please make sure 'struct resident_page_types[]' is updated as well");
 757
 758	for (i = 0; i < NR_MM_COUNTERS; i++) {
 759		long x = percpu_counter_sum(&mm->rss_stat[i]);
 760
 761		if (likely(!x))
 762			continue;
 763
 764		/* Making sure this is not due to race with CPU offlining. */
 765		x = percpu_counter_sum_all(&mm->rss_stat[i]);
 766		if (unlikely(x))
 767			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
 768				 mm, resident_page_types[i], x);
 769	}
 770
 771	if (mm_pgtables_bytes(mm))
 772		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 773				mm_pgtables_bytes(mm));
 774
 775#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 776	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 777#endif
 778}
 779
 780#define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 781#define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
 782
 783/*
 784 * Called when the last reference to the mm
 785 * is dropped: either by a lazy thread or by
 786 * mmput. Free the page directory and the mm.
 787 */
 788void __mmdrop(struct mm_struct *mm)
 789{
 790	int i;
 791
 792	BUG_ON(mm == &init_mm);
 793	WARN_ON_ONCE(mm == current->mm);
 794	WARN_ON_ONCE(mm == current->active_mm);
 795	mm_free_pgd(mm);
 796	destroy_context(mm);
 797	mmu_notifier_subscriptions_destroy(mm);
 798	check_mm(mm);
 799	put_user_ns(mm->user_ns);
 800	mm_pasid_drop(mm);
 801
 802	for (i = 0; i < NR_MM_COUNTERS; i++)
 803		percpu_counter_destroy(&mm->rss_stat[i]);
 804	free_mm(mm);
 805}
 806EXPORT_SYMBOL_GPL(__mmdrop);
 807
 808static void mmdrop_async_fn(struct work_struct *work)
 809{
 810	struct mm_struct *mm;
 811
 812	mm = container_of(work, struct mm_struct, async_put_work);
 813	__mmdrop(mm);
 814}
 815
 816static void mmdrop_async(struct mm_struct *mm)
 817{
 818	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 819		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 820		schedule_work(&mm->async_put_work);
 821	}
 822}
 823
 824static inline void free_signal_struct(struct signal_struct *sig)
 825{
 826	taskstats_tgid_free(sig);
 827	sched_autogroup_exit(sig);
 828	/*
 829	 * __mmdrop is not safe to call from softirq context on x86 due to
 830	 * pgd_dtor so postpone it to the async context
 831	 */
 832	if (sig->oom_mm)
 833		mmdrop_async(sig->oom_mm);
 834	kmem_cache_free(signal_cachep, sig);
 835}
 836
 837static inline void put_signal_struct(struct signal_struct *sig)
 838{
 839	if (refcount_dec_and_test(&sig->sigcnt))
 840		free_signal_struct(sig);
 841}
 842
 843void __put_task_struct(struct task_struct *tsk)
 844{
 845	WARN_ON(!tsk->exit_state);
 846	WARN_ON(refcount_read(&tsk->usage));
 847	WARN_ON(tsk == current);
 848
 849	io_uring_free(tsk);
 850	cgroup_free(tsk);
 851	task_numa_free(tsk, true);
 852	security_task_free(tsk);
 853	bpf_task_storage_free(tsk);
 854	exit_creds(tsk);
 855	delayacct_tsk_free(tsk);
 856	put_signal_struct(tsk->signal);
 857	sched_core_free(tsk);
 858	free_task(tsk);
 
 
 859}
 860EXPORT_SYMBOL_GPL(__put_task_struct);
 861
 862void __init __weak arch_task_cache_init(void) { }
 863
 864/*
 865 * set_max_threads
 866 */
 867static void set_max_threads(unsigned int max_threads_suggested)
 868{
 869	u64 threads;
 870	unsigned long nr_pages = totalram_pages();
 871
 872	/*
 873	 * The number of threads shall be limited such that the thread
 874	 * structures may only consume a small part of the available memory.
 875	 */
 876	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
 877		threads = MAX_THREADS;
 878	else
 879		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
 880				    (u64) THREAD_SIZE * 8UL);
 881
 882	if (threads > max_threads_suggested)
 883		threads = max_threads_suggested;
 884
 885	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 886}
 887
 888#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 889/* Initialized by the architecture: */
 890int arch_task_struct_size __read_mostly;
 891#endif
 892
 893#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 894static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 895{
 896	/* Fetch thread_struct whitelist for the architecture. */
 897	arch_thread_struct_whitelist(offset, size);
 898
 899	/*
 900	 * Handle zero-sized whitelist or empty thread_struct, otherwise
 901	 * adjust offset to position of thread_struct in task_struct.
 902	 */
 903	if (unlikely(*size == 0))
 904		*offset = 0;
 905	else
 906		*offset += offsetof(struct task_struct, thread);
 907}
 908#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
 909
 910void __init fork_init(void)
 911{
 912	int i;
 913#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 914#ifndef ARCH_MIN_TASKALIGN
 915#define ARCH_MIN_TASKALIGN	0
 916#endif
 917	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 918	unsigned long useroffset, usersize;
 919
 920	/* create a slab on which task_structs can be allocated */
 921	task_struct_whitelist(&useroffset, &usersize);
 922	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 923			arch_task_struct_size, align,
 924			SLAB_PANIC|SLAB_ACCOUNT,
 925			useroffset, usersize, NULL);
 926#endif
 927
 928	/* do the arch specific task caches init */
 929	arch_task_cache_init();
 930
 931	set_max_threads(MAX_THREADS);
 932
 933	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 934	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 935	init_task.signal->rlim[RLIMIT_SIGPENDING] =
 936		init_task.signal->rlim[RLIMIT_NPROC];
 937
 938	for (i = 0; i < UCOUNT_COUNTS; i++)
 939		init_user_ns.ucount_max[i] = max_threads/2;
 940
 941	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
 942	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
 943	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
 944	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
 945
 946#ifdef CONFIG_VMAP_STACK
 947	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 948			  NULL, free_vm_stack_cache);
 949#endif
 950
 951	scs_init();
 952
 953	lockdep_init_task(&init_task);
 954	uprobes_init();
 955}
 956
 957int __weak arch_dup_task_struct(struct task_struct *dst,
 958					       struct task_struct *src)
 959{
 960	*dst = *src;
 961	return 0;
 962}
 963
 964void set_task_stack_end_magic(struct task_struct *tsk)
 965{
 966	unsigned long *stackend;
 967
 968	stackend = end_of_stack(tsk);
 969	*stackend = STACK_END_MAGIC;	/* for overflow detection */
 970}
 971
 972static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 973{
 974	struct task_struct *tsk;
 
 
 975	int err;
 976
 977	if (node == NUMA_NO_NODE)
 978		node = tsk_fork_get_node(orig);
 979	tsk = alloc_task_struct_node(node);
 980	if (!tsk)
 981		return NULL;
 982
 983	err = arch_dup_task_struct(tsk, orig);
 984	if (err)
 985		goto free_tsk;
 986
 987	err = alloc_thread_stack_node(tsk, node);
 988	if (err)
 989		goto free_tsk;
 
 
 
 990
 
 
 
 
 
 
 
 
 
 991#ifdef CONFIG_THREAD_INFO_IN_TASK
 992	refcount_set(&tsk->stack_refcount, 1);
 993#endif
 994	account_kernel_stack(tsk, 1);
 
 
 995
 996	err = scs_prepare(tsk, node);
 997	if (err)
 998		goto free_stack;
 999
1000#ifdef CONFIG_SECCOMP
1001	/*
1002	 * We must handle setting up seccomp filters once we're under
1003	 * the sighand lock in case orig has changed between now and
1004	 * then. Until then, filter must be NULL to avoid messing up
1005	 * the usage counts on the error path calling free_task.
1006	 */
1007	tsk->seccomp.filter = NULL;
1008#endif
1009
1010	setup_thread_stack(tsk, orig);
1011	clear_user_return_notifier(tsk);
1012	clear_tsk_need_resched(tsk);
1013	set_task_stack_end_magic(tsk);
1014	clear_syscall_work_syscall_user_dispatch(tsk);
1015
1016#ifdef CONFIG_STACKPROTECTOR
1017	tsk->stack_canary = get_random_canary();
1018#endif
1019	if (orig->cpus_ptr == &orig->cpus_mask)
1020		tsk->cpus_ptr = &tsk->cpus_mask;
1021	dup_user_cpus_ptr(tsk, orig, node);
1022
1023	/*
1024	 * One for the user space visible state that goes away when reaped.
1025	 * One for the scheduler.
1026	 */
1027	refcount_set(&tsk->rcu_users, 2);
1028	/* One for the rcu users */
1029	refcount_set(&tsk->usage, 1);
1030#ifdef CONFIG_BLK_DEV_IO_TRACE
1031	tsk->btrace_seq = 0;
1032#endif
1033	tsk->splice_pipe = NULL;
1034	tsk->task_frag.page = NULL;
1035	tsk->wake_q.next = NULL;
1036	tsk->worker_private = NULL;
 
 
1037
1038	kcov_task_init(tsk);
1039	kmsan_task_create(tsk);
1040	kmap_local_fork(tsk);
1041
1042#ifdef CONFIG_FAULT_INJECTION
1043	tsk->fail_nth = 0;
1044#endif
1045
1046#ifdef CONFIG_BLK_CGROUP
1047	tsk->throttle_queue = NULL;
1048	tsk->use_memdelay = 0;
1049#endif
1050
1051#ifdef CONFIG_IOMMU_SVA
1052	tsk->pasid_activated = 0;
1053#endif
1054
1055#ifdef CONFIG_MEMCG
1056	tsk->active_memcg = NULL;
1057#endif
1058
1059#ifdef CONFIG_CPU_SUP_INTEL
1060	tsk->reported_split_lock = 0;
1061#endif
1062
1063	return tsk;
1064
1065free_stack:
1066	exit_task_stack_account(tsk);
1067	free_thread_stack(tsk);
1068free_tsk:
1069	free_task_struct(tsk);
1070	return NULL;
1071}
1072
1073__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1074
1075static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1076
1077static int __init coredump_filter_setup(char *s)
1078{
1079	default_dump_filter =
1080		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1081		MMF_DUMP_FILTER_MASK;
1082	return 1;
1083}
1084
1085__setup("coredump_filter=", coredump_filter_setup);
1086
1087#include <linux/init_task.h>
1088
1089static void mm_init_aio(struct mm_struct *mm)
1090{
1091#ifdef CONFIG_AIO
1092	spin_lock_init(&mm->ioctx_lock);
1093	mm->ioctx_table = NULL;
1094#endif
1095}
1096
1097static __always_inline void mm_clear_owner(struct mm_struct *mm,
1098					   struct task_struct *p)
1099{
1100#ifdef CONFIG_MEMCG
1101	if (mm->owner == p)
1102		WRITE_ONCE(mm->owner, NULL);
1103#endif
1104}
1105
1106static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1107{
1108#ifdef CONFIG_MEMCG
1109	mm->owner = p;
1110#endif
1111}
1112
 
 
 
 
 
 
 
1113static void mm_init_uprobes_state(struct mm_struct *mm)
1114{
1115#ifdef CONFIG_UPROBES
1116	mm->uprobes_state.xol_area = NULL;
1117#endif
1118}
1119
1120static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1121	struct user_namespace *user_ns)
1122{
1123	int i;
1124
1125	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1126	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1127	atomic_set(&mm->mm_users, 1);
1128	atomic_set(&mm->mm_count, 1);
1129	seqcount_init(&mm->write_protect_seq);
1130	mmap_init_lock(mm);
1131	INIT_LIST_HEAD(&mm->mmlist);
 
1132	mm_pgtables_bytes_init(mm);
1133	mm->map_count = 0;
1134	mm->locked_vm = 0;
1135	atomic64_set(&mm->pinned_vm, 0);
1136	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1137	spin_lock_init(&mm->page_table_lock);
1138	spin_lock_init(&mm->arg_lock);
1139	mm_init_cpumask(mm);
1140	mm_init_aio(mm);
1141	mm_init_owner(mm, p);
1142	mm_pasid_init(mm);
1143	RCU_INIT_POINTER(mm->exe_file, NULL);
1144	mmu_notifier_subscriptions_init(mm);
1145	init_tlb_flush_pending(mm);
1146#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1147	mm->pmd_huge_pte = NULL;
1148#endif
1149	mm_init_uprobes_state(mm);
1150	hugetlb_count_init(mm);
1151
1152	if (current->mm) {
1153		mm->flags = current->mm->flags & MMF_INIT_MASK;
1154		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1155	} else {
1156		mm->flags = default_dump_filter;
1157		mm->def_flags = 0;
1158	}
1159
1160	if (mm_alloc_pgd(mm))
1161		goto fail_nopgd;
1162
1163	if (init_new_context(p, mm))
1164		goto fail_nocontext;
1165
1166	for (i = 0; i < NR_MM_COUNTERS; i++)
1167		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1168			goto fail_pcpu;
1169
1170	mm->user_ns = get_user_ns(user_ns);
1171	lru_gen_init_mm(mm);
1172	return mm;
1173
1174fail_pcpu:
1175	while (i > 0)
1176		percpu_counter_destroy(&mm->rss_stat[--i]);
1177fail_nocontext:
1178	mm_free_pgd(mm);
1179fail_nopgd:
1180	free_mm(mm);
1181	return NULL;
1182}
1183
1184/*
1185 * Allocate and initialize an mm_struct.
1186 */
1187struct mm_struct *mm_alloc(void)
1188{
1189	struct mm_struct *mm;
1190
1191	mm = allocate_mm();
1192	if (!mm)
1193		return NULL;
1194
1195	memset(mm, 0, sizeof(*mm));
1196	return mm_init(mm, current, current_user_ns());
1197}
1198
1199static inline void __mmput(struct mm_struct *mm)
1200{
1201	VM_BUG_ON(atomic_read(&mm->mm_users));
1202
1203	uprobe_clear_state(mm);
1204	exit_aio(mm);
1205	ksm_exit(mm);
1206	khugepaged_exit(mm); /* must run before exit_mmap */
1207	exit_mmap(mm);
1208	mm_put_huge_zero_page(mm);
1209	set_mm_exe_file(mm, NULL);
1210	if (!list_empty(&mm->mmlist)) {
1211		spin_lock(&mmlist_lock);
1212		list_del(&mm->mmlist);
1213		spin_unlock(&mmlist_lock);
1214	}
1215	if (mm->binfmt)
1216		module_put(mm->binfmt->module);
1217	lru_gen_del_mm(mm);
1218	mmdrop(mm);
1219}
1220
1221/*
1222 * Decrement the use count and release all resources for an mm.
1223 */
1224void mmput(struct mm_struct *mm)
1225{
1226	might_sleep();
1227
1228	if (atomic_dec_and_test(&mm->mm_users))
1229		__mmput(mm);
1230}
1231EXPORT_SYMBOL_GPL(mmput);
1232
1233#ifdef CONFIG_MMU
1234static void mmput_async_fn(struct work_struct *work)
1235{
1236	struct mm_struct *mm = container_of(work, struct mm_struct,
1237					    async_put_work);
1238
1239	__mmput(mm);
1240}
1241
1242void mmput_async(struct mm_struct *mm)
1243{
1244	if (atomic_dec_and_test(&mm->mm_users)) {
1245		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1246		schedule_work(&mm->async_put_work);
1247	}
1248}
1249EXPORT_SYMBOL_GPL(mmput_async);
1250#endif
1251
1252/**
1253 * set_mm_exe_file - change a reference to the mm's executable file
1254 *
1255 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1256 *
1257 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1258 * invocations: in mmput() nobody alive left, in execve task is single
1259 * threaded.
1260 *
1261 * Can only fail if new_exe_file != NULL.
1262 */
1263int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1264{
1265	struct file *old_exe_file;
1266
1267	/*
1268	 * It is safe to dereference the exe_file without RCU as
1269	 * this function is only called if nobody else can access
1270	 * this mm -- see comment above for justification.
1271	 */
1272	old_exe_file = rcu_dereference_raw(mm->exe_file);
1273
1274	if (new_exe_file) {
1275		/*
1276		 * We expect the caller (i.e., sys_execve) to already denied
1277		 * write access, so this is unlikely to fail.
1278		 */
1279		if (unlikely(deny_write_access(new_exe_file)))
1280			return -EACCES;
1281		get_file(new_exe_file);
1282	}
1283	rcu_assign_pointer(mm->exe_file, new_exe_file);
1284	if (old_exe_file) {
1285		allow_write_access(old_exe_file);
1286		fput(old_exe_file);
1287	}
1288	return 0;
1289}
1290
1291/**
1292 * replace_mm_exe_file - replace a reference to the mm's executable file
1293 *
1294 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1295 * dealing with concurrent invocation and without grabbing the mmap lock in
1296 * write mode.
1297 *
1298 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1299 */
1300int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1301{
1302	struct vm_area_struct *vma;
1303	struct file *old_exe_file;
1304	int ret = 0;
1305
1306	/* Forbid mm->exe_file change if old file still mapped. */
1307	old_exe_file = get_mm_exe_file(mm);
1308	if (old_exe_file) {
1309		VMA_ITERATOR(vmi, mm, 0);
1310		mmap_read_lock(mm);
1311		for_each_vma(vmi, vma) {
1312			if (!vma->vm_file)
1313				continue;
1314			if (path_equal(&vma->vm_file->f_path,
1315				       &old_exe_file->f_path)) {
1316				ret = -EBUSY;
1317				break;
1318			}
1319		}
1320		mmap_read_unlock(mm);
1321		fput(old_exe_file);
1322		if (ret)
1323			return ret;
1324	}
1325
1326	/* set the new file, lockless */
1327	ret = deny_write_access(new_exe_file);
1328	if (ret)
1329		return -EACCES;
1330	get_file(new_exe_file);
1331
1332	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1333	if (old_exe_file) {
1334		/*
1335		 * Don't race with dup_mmap() getting the file and disallowing
1336		 * write access while someone might open the file writable.
1337		 */
1338		mmap_read_lock(mm);
1339		allow_write_access(old_exe_file);
1340		fput(old_exe_file);
1341		mmap_read_unlock(mm);
1342	}
1343	return 0;
1344}
1345
1346/**
1347 * get_mm_exe_file - acquire a reference to the mm's executable file
1348 *
1349 * Returns %NULL if mm has no associated executable file.
1350 * User must release file via fput().
1351 */
1352struct file *get_mm_exe_file(struct mm_struct *mm)
1353{
1354	struct file *exe_file;
1355
1356	rcu_read_lock();
1357	exe_file = rcu_dereference(mm->exe_file);
1358	if (exe_file && !get_file_rcu(exe_file))
1359		exe_file = NULL;
1360	rcu_read_unlock();
1361	return exe_file;
1362}
 
1363
1364/**
1365 * get_task_exe_file - acquire a reference to the task's executable file
1366 *
1367 * Returns %NULL if task's mm (if any) has no associated executable file or
1368 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1369 * User must release file via fput().
1370 */
1371struct file *get_task_exe_file(struct task_struct *task)
1372{
1373	struct file *exe_file = NULL;
1374	struct mm_struct *mm;
1375
1376	task_lock(task);
1377	mm = task->mm;
1378	if (mm) {
1379		if (!(task->flags & PF_KTHREAD))
1380			exe_file = get_mm_exe_file(mm);
1381	}
1382	task_unlock(task);
1383	return exe_file;
1384}
 
1385
1386/**
1387 * get_task_mm - acquire a reference to the task's mm
1388 *
1389 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1390 * this kernel workthread has transiently adopted a user mm with use_mm,
1391 * to do its AIO) is not set and if so returns a reference to it, after
1392 * bumping up the use count.  User must release the mm via mmput()
1393 * after use.  Typically used by /proc and ptrace.
1394 */
1395struct mm_struct *get_task_mm(struct task_struct *task)
1396{
1397	struct mm_struct *mm;
1398
1399	task_lock(task);
1400	mm = task->mm;
1401	if (mm) {
1402		if (task->flags & PF_KTHREAD)
1403			mm = NULL;
1404		else
1405			mmget(mm);
1406	}
1407	task_unlock(task);
1408	return mm;
1409}
1410EXPORT_SYMBOL_GPL(get_task_mm);
1411
1412struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1413{
1414	struct mm_struct *mm;
1415	int err;
1416
1417	err =  down_read_killable(&task->signal->exec_update_lock);
1418	if (err)
1419		return ERR_PTR(err);
1420
1421	mm = get_task_mm(task);
1422	if (mm && mm != current->mm &&
1423			!ptrace_may_access(task, mode)) {
1424		mmput(mm);
1425		mm = ERR_PTR(-EACCES);
1426	}
1427	up_read(&task->signal->exec_update_lock);
1428
1429	return mm;
1430}
1431
1432static void complete_vfork_done(struct task_struct *tsk)
1433{
1434	struct completion *vfork;
1435
1436	task_lock(tsk);
1437	vfork = tsk->vfork_done;
1438	if (likely(vfork)) {
1439		tsk->vfork_done = NULL;
1440		complete(vfork);
1441	}
1442	task_unlock(tsk);
1443}
1444
1445static int wait_for_vfork_done(struct task_struct *child,
1446				struct completion *vfork)
1447{
1448	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1449	int killed;
1450
 
1451	cgroup_enter_frozen();
1452	killed = wait_for_completion_state(vfork, state);
1453	cgroup_leave_frozen(false);
 
1454
1455	if (killed) {
1456		task_lock(child);
1457		child->vfork_done = NULL;
1458		task_unlock(child);
1459	}
1460
1461	put_task_struct(child);
1462	return killed;
1463}
1464
1465/* Please note the differences between mmput and mm_release.
1466 * mmput is called whenever we stop holding onto a mm_struct,
1467 * error success whatever.
1468 *
1469 * mm_release is called after a mm_struct has been removed
1470 * from the current process.
1471 *
1472 * This difference is important for error handling, when we
1473 * only half set up a mm_struct for a new process and need to restore
1474 * the old one.  Because we mmput the new mm_struct before
1475 * restoring the old one. . .
1476 * Eric Biederman 10 January 1998
1477 */
1478static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1479{
1480	uprobe_free_utask(tsk);
1481
1482	/* Get rid of any cached register state */
1483	deactivate_mm(tsk, mm);
1484
1485	/*
1486	 * Signal userspace if we're not exiting with a core dump
1487	 * because we want to leave the value intact for debugging
1488	 * purposes.
1489	 */
1490	if (tsk->clear_child_tid) {
1491		if (atomic_read(&mm->mm_users) > 1) {
 
1492			/*
1493			 * We don't check the error code - if userspace has
1494			 * not set up a proper pointer then tough luck.
1495			 */
1496			put_user(0, tsk->clear_child_tid);
1497			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1498					1, NULL, NULL, 0, 0);
1499		}
1500		tsk->clear_child_tid = NULL;
1501	}
1502
1503	/*
1504	 * All done, finally we can wake up parent and return this mm to him.
1505	 * Also kthread_stop() uses this completion for synchronization.
1506	 */
1507	if (tsk->vfork_done)
1508		complete_vfork_done(tsk);
1509}
1510
1511void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1512{
1513	futex_exit_release(tsk);
1514	mm_release(tsk, mm);
1515}
1516
1517void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1518{
1519	futex_exec_release(tsk);
1520	mm_release(tsk, mm);
1521}
1522
1523/**
1524 * dup_mm() - duplicates an existing mm structure
1525 * @tsk: the task_struct with which the new mm will be associated.
1526 * @oldmm: the mm to duplicate.
1527 *
1528 * Allocates a new mm structure and duplicates the provided @oldmm structure
1529 * content into it.
1530 *
1531 * Return: the duplicated mm or NULL on failure.
1532 */
1533static struct mm_struct *dup_mm(struct task_struct *tsk,
1534				struct mm_struct *oldmm)
1535{
1536	struct mm_struct *mm;
1537	int err;
1538
1539	mm = allocate_mm();
1540	if (!mm)
1541		goto fail_nomem;
1542
1543	memcpy(mm, oldmm, sizeof(*mm));
1544
1545	if (!mm_init(mm, tsk, mm->user_ns))
1546		goto fail_nomem;
1547
1548	err = dup_mmap(mm, oldmm);
1549	if (err)
1550		goto free_pt;
1551
1552	mm->hiwater_rss = get_mm_rss(mm);
1553	mm->hiwater_vm = mm->total_vm;
1554
1555	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1556		goto free_pt;
1557
1558	return mm;
1559
1560free_pt:
1561	/* don't put binfmt in mmput, we haven't got module yet */
1562	mm->binfmt = NULL;
1563	mm_init_owner(mm, NULL);
1564	mmput(mm);
1565
1566fail_nomem:
1567	return NULL;
1568}
1569
1570static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1571{
1572	struct mm_struct *mm, *oldmm;
1573
1574	tsk->min_flt = tsk->maj_flt = 0;
1575	tsk->nvcsw = tsk->nivcsw = 0;
1576#ifdef CONFIG_DETECT_HUNG_TASK
1577	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1578	tsk->last_switch_time = 0;
1579#endif
1580
1581	tsk->mm = NULL;
1582	tsk->active_mm = NULL;
1583
1584	/*
1585	 * Are we cloning a kernel thread?
1586	 *
1587	 * We need to steal a active VM for that..
1588	 */
1589	oldmm = current->mm;
1590	if (!oldmm)
1591		return 0;
1592
 
 
 
1593	if (clone_flags & CLONE_VM) {
1594		mmget(oldmm);
1595		mm = oldmm;
1596	} else {
1597		mm = dup_mm(tsk, current->mm);
1598		if (!mm)
1599			return -ENOMEM;
1600	}
1601
1602	tsk->mm = mm;
1603	tsk->active_mm = mm;
1604	return 0;
1605}
1606
1607static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1608{
1609	struct fs_struct *fs = current->fs;
1610	if (clone_flags & CLONE_FS) {
1611		/* tsk->fs is already what we want */
1612		spin_lock(&fs->lock);
1613		if (fs->in_exec) {
1614			spin_unlock(&fs->lock);
1615			return -EAGAIN;
1616		}
1617		fs->users++;
1618		spin_unlock(&fs->lock);
1619		return 0;
1620	}
1621	tsk->fs = copy_fs_struct(fs);
1622	if (!tsk->fs)
1623		return -ENOMEM;
1624	return 0;
1625}
1626
1627static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1628{
1629	struct files_struct *oldf, *newf;
1630	int error = 0;
1631
1632	/*
1633	 * A background process may not have any files ...
1634	 */
1635	oldf = current->files;
1636	if (!oldf)
1637		goto out;
1638
1639	if (clone_flags & CLONE_FILES) {
1640		atomic_inc(&oldf->count);
1641		goto out;
1642	}
1643
1644	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1645	if (!newf)
1646		goto out;
1647
1648	tsk->files = newf;
1649	error = 0;
1650out:
1651	return error;
1652}
1653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1655{
1656	struct sighand_struct *sig;
1657
1658	if (clone_flags & CLONE_SIGHAND) {
1659		refcount_inc(&current->sighand->count);
1660		return 0;
1661	}
1662	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1663	RCU_INIT_POINTER(tsk->sighand, sig);
1664	if (!sig)
1665		return -ENOMEM;
1666
1667	refcount_set(&sig->count, 1);
1668	spin_lock_irq(&current->sighand->siglock);
1669	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1670	spin_unlock_irq(&current->sighand->siglock);
1671
1672	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1673	if (clone_flags & CLONE_CLEAR_SIGHAND)
1674		flush_signal_handlers(tsk, 0);
1675
1676	return 0;
1677}
1678
1679void __cleanup_sighand(struct sighand_struct *sighand)
1680{
1681	if (refcount_dec_and_test(&sighand->count)) {
1682		signalfd_cleanup(sighand);
1683		/*
1684		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1685		 * without an RCU grace period, see __lock_task_sighand().
1686		 */
1687		kmem_cache_free(sighand_cachep, sighand);
1688	}
1689}
1690
1691/*
1692 * Initialize POSIX timer handling for a thread group.
1693 */
1694static void posix_cpu_timers_init_group(struct signal_struct *sig)
1695{
1696	struct posix_cputimers *pct = &sig->posix_cputimers;
1697	unsigned long cpu_limit;
1698
1699	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1700	posix_cputimers_group_init(pct, cpu_limit);
1701}
1702
1703static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1704{
1705	struct signal_struct *sig;
1706
1707	if (clone_flags & CLONE_THREAD)
1708		return 0;
1709
1710	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1711	tsk->signal = sig;
1712	if (!sig)
1713		return -ENOMEM;
1714
1715	sig->nr_threads = 1;
1716	sig->quick_threads = 1;
1717	atomic_set(&sig->live, 1);
1718	refcount_set(&sig->sigcnt, 1);
1719
1720	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1721	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1722	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1723
1724	init_waitqueue_head(&sig->wait_chldexit);
1725	sig->curr_target = tsk;
1726	init_sigpending(&sig->shared_pending);
1727	INIT_HLIST_HEAD(&sig->multiprocess);
1728	seqlock_init(&sig->stats_lock);
1729	prev_cputime_init(&sig->prev_cputime);
1730
1731#ifdef CONFIG_POSIX_TIMERS
1732	INIT_LIST_HEAD(&sig->posix_timers);
1733	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1734	sig->real_timer.function = it_real_fn;
1735#endif
1736
1737	task_lock(current->group_leader);
1738	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1739	task_unlock(current->group_leader);
1740
1741	posix_cpu_timers_init_group(sig);
1742
1743	tty_audit_fork(sig);
1744	sched_autogroup_fork(sig);
1745
1746	sig->oom_score_adj = current->signal->oom_score_adj;
1747	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1748
1749	mutex_init(&sig->cred_guard_mutex);
1750	init_rwsem(&sig->exec_update_lock);
1751
1752	return 0;
1753}
1754
1755static void copy_seccomp(struct task_struct *p)
1756{
1757#ifdef CONFIG_SECCOMP
1758	/*
1759	 * Must be called with sighand->lock held, which is common to
1760	 * all threads in the group. Holding cred_guard_mutex is not
1761	 * needed because this new task is not yet running and cannot
1762	 * be racing exec.
1763	 */
1764	assert_spin_locked(&current->sighand->siglock);
1765
1766	/* Ref-count the new filter user, and assign it. */
1767	get_seccomp_filter(current);
1768	p->seccomp = current->seccomp;
1769
1770	/*
1771	 * Explicitly enable no_new_privs here in case it got set
1772	 * between the task_struct being duplicated and holding the
1773	 * sighand lock. The seccomp state and nnp must be in sync.
1774	 */
1775	if (task_no_new_privs(current))
1776		task_set_no_new_privs(p);
1777
1778	/*
1779	 * If the parent gained a seccomp mode after copying thread
1780	 * flags and between before we held the sighand lock, we have
1781	 * to manually enable the seccomp thread flag here.
1782	 */
1783	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1784		set_task_syscall_work(p, SECCOMP);
1785#endif
1786}
1787
1788SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1789{
1790	current->clear_child_tid = tidptr;
1791
1792	return task_pid_vnr(current);
1793}
1794
1795static void rt_mutex_init_task(struct task_struct *p)
1796{
1797	raw_spin_lock_init(&p->pi_lock);
1798#ifdef CONFIG_RT_MUTEXES
1799	p->pi_waiters = RB_ROOT_CACHED;
1800	p->pi_top_task = NULL;
1801	p->pi_blocked_on = NULL;
1802#endif
1803}
1804
1805static inline void init_task_pid_links(struct task_struct *task)
1806{
1807	enum pid_type type;
1808
1809	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1810		INIT_HLIST_NODE(&task->pid_links[type]);
1811}
1812
1813static inline void
1814init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1815{
1816	if (type == PIDTYPE_PID)
1817		task->thread_pid = pid;
1818	else
1819		task->signal->pids[type] = pid;
1820}
1821
1822static inline void rcu_copy_process(struct task_struct *p)
1823{
1824#ifdef CONFIG_PREEMPT_RCU
1825	p->rcu_read_lock_nesting = 0;
1826	p->rcu_read_unlock_special.s = 0;
1827	p->rcu_blocked_node = NULL;
1828	INIT_LIST_HEAD(&p->rcu_node_entry);
1829#endif /* #ifdef CONFIG_PREEMPT_RCU */
1830#ifdef CONFIG_TASKS_RCU
1831	p->rcu_tasks_holdout = false;
1832	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1833	p->rcu_tasks_idle_cpu = -1;
1834#endif /* #ifdef CONFIG_TASKS_RCU */
1835#ifdef CONFIG_TASKS_TRACE_RCU
1836	p->trc_reader_nesting = 0;
1837	p->trc_reader_special.s = 0;
1838	INIT_LIST_HEAD(&p->trc_holdout_list);
1839	INIT_LIST_HEAD(&p->trc_blkd_node);
1840#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1841}
1842
1843struct pid *pidfd_pid(const struct file *file)
1844{
1845	if (file->f_op == &pidfd_fops)
1846		return file->private_data;
1847
1848	return ERR_PTR(-EBADF);
1849}
1850
1851static int pidfd_release(struct inode *inode, struct file *file)
1852{
1853	struct pid *pid = file->private_data;
1854
1855	file->private_data = NULL;
1856	put_pid(pid);
1857	return 0;
1858}
1859
1860#ifdef CONFIG_PROC_FS
1861/**
1862 * pidfd_show_fdinfo - print information about a pidfd
1863 * @m: proc fdinfo file
1864 * @f: file referencing a pidfd
1865 *
1866 * Pid:
1867 * This function will print the pid that a given pidfd refers to in the
1868 * pid namespace of the procfs instance.
1869 * If the pid namespace of the process is not a descendant of the pid
1870 * namespace of the procfs instance 0 will be shown as its pid. This is
1871 * similar to calling getppid() on a process whose parent is outside of
1872 * its pid namespace.
1873 *
1874 * NSpid:
1875 * If pid namespaces are supported then this function will also print
1876 * the pid of a given pidfd refers to for all descendant pid namespaces
1877 * starting from the current pid namespace of the instance, i.e. the
1878 * Pid field and the first entry in the NSpid field will be identical.
1879 * If the pid namespace of the process is not a descendant of the pid
1880 * namespace of the procfs instance 0 will be shown as its first NSpid
1881 * entry and no others will be shown.
1882 * Note that this differs from the Pid and NSpid fields in
1883 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1884 * the  pid namespace of the procfs instance. The difference becomes
1885 * obvious when sending around a pidfd between pid namespaces from a
1886 * different branch of the tree, i.e. where no ancestral relation is
1887 * present between the pid namespaces:
1888 * - create two new pid namespaces ns1 and ns2 in the initial pid
1889 *   namespace (also take care to create new mount namespaces in the
1890 *   new pid namespace and mount procfs)
1891 * - create a process with a pidfd in ns1
1892 * - send pidfd from ns1 to ns2
1893 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1894 *   have exactly one entry, which is 0
1895 */
1896static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1897{
1898	struct pid *pid = f->private_data;
1899	struct pid_namespace *ns;
1900	pid_t nr = -1;
1901
1902	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1903		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1904		nr = pid_nr_ns(pid, ns);
1905	}
1906
1907	seq_put_decimal_ll(m, "Pid:\t", nr);
1908
1909#ifdef CONFIG_PID_NS
1910	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1911	if (nr > 0) {
1912		int i;
1913
1914		/* If nr is non-zero it means that 'pid' is valid and that
1915		 * ns, i.e. the pid namespace associated with the procfs
1916		 * instance, is in the pid namespace hierarchy of pid.
1917		 * Start at one below the already printed level.
1918		 */
1919		for (i = ns->level + 1; i <= pid->level; i++)
1920			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1921	}
1922#endif
1923	seq_putc(m, '\n');
1924}
1925#endif
1926
1927/*
1928 * Poll support for process exit notification.
1929 */
1930static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1931{
1932	struct pid *pid = file->private_data;
1933	__poll_t poll_flags = 0;
1934
1935	poll_wait(file, &pid->wait_pidfd, pts);
1936
1937	/*
1938	 * Inform pollers only when the whole thread group exits.
1939	 * If the thread group leader exits before all other threads in the
1940	 * group, then poll(2) should block, similar to the wait(2) family.
1941	 */
1942	if (thread_group_exited(pid))
1943		poll_flags = EPOLLIN | EPOLLRDNORM;
1944
1945	return poll_flags;
1946}
1947
1948const struct file_operations pidfd_fops = {
1949	.release = pidfd_release,
1950	.poll = pidfd_poll,
1951#ifdef CONFIG_PROC_FS
1952	.show_fdinfo = pidfd_show_fdinfo,
1953#endif
1954};
1955
1956static void __delayed_free_task(struct rcu_head *rhp)
1957{
1958	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1959
1960	free_task(tsk);
1961}
1962
1963static __always_inline void delayed_free_task(struct task_struct *tsk)
1964{
1965	if (IS_ENABLED(CONFIG_MEMCG))
1966		call_rcu(&tsk->rcu, __delayed_free_task);
1967	else
1968		free_task(tsk);
1969}
1970
1971static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1972{
1973	/* Skip if kernel thread */
1974	if (!tsk->mm)
1975		return;
1976
1977	/* Skip if spawning a thread or using vfork */
1978	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1979		return;
1980
1981	/* We need to synchronize with __set_oom_adj */
1982	mutex_lock(&oom_adj_mutex);
1983	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1984	/* Update the values in case they were changed after copy_signal */
1985	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1986	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1987	mutex_unlock(&oom_adj_mutex);
1988}
1989
1990#ifdef CONFIG_RV
1991static void rv_task_fork(struct task_struct *p)
1992{
1993	int i;
1994
1995	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1996		p->rv[i].da_mon.monitoring = false;
1997}
1998#else
1999#define rv_task_fork(p) do {} while (0)
2000#endif
2001
2002/*
2003 * This creates a new process as a copy of the old one,
2004 * but does not actually start it yet.
2005 *
2006 * It copies the registers, and all the appropriate
2007 * parts of the process environment (as per the clone
2008 * flags). The actual kick-off is left to the caller.
2009 */
2010static __latent_entropy struct task_struct *copy_process(
2011					struct pid *pid,
2012					int trace,
2013					int node,
2014					struct kernel_clone_args *args)
2015{
2016	int pidfd = -1, retval;
2017	struct task_struct *p;
2018	struct multiprocess_signals delayed;
2019	struct file *pidfile = NULL;
2020	const u64 clone_flags = args->flags;
2021	struct nsproxy *nsp = current->nsproxy;
2022
2023	/*
2024	 * Don't allow sharing the root directory with processes in a different
2025	 * namespace
2026	 */
2027	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2028		return ERR_PTR(-EINVAL);
2029
2030	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2031		return ERR_PTR(-EINVAL);
2032
2033	/*
2034	 * Thread groups must share signals as well, and detached threads
2035	 * can only be started up within the thread group.
2036	 */
2037	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2038		return ERR_PTR(-EINVAL);
2039
2040	/*
2041	 * Shared signal handlers imply shared VM. By way of the above,
2042	 * thread groups also imply shared VM. Blocking this case allows
2043	 * for various simplifications in other code.
2044	 */
2045	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2046		return ERR_PTR(-EINVAL);
2047
2048	/*
2049	 * Siblings of global init remain as zombies on exit since they are
2050	 * not reaped by their parent (swapper). To solve this and to avoid
2051	 * multi-rooted process trees, prevent global and container-inits
2052	 * from creating siblings.
2053	 */
2054	if ((clone_flags & CLONE_PARENT) &&
2055				current->signal->flags & SIGNAL_UNKILLABLE)
2056		return ERR_PTR(-EINVAL);
2057
2058	/*
2059	 * If the new process will be in a different pid or user namespace
2060	 * do not allow it to share a thread group with the forking task.
2061	 */
2062	if (clone_flags & CLONE_THREAD) {
2063		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2064		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2065			return ERR_PTR(-EINVAL);
2066	}
2067
 
 
 
 
 
 
 
 
 
2068	if (clone_flags & CLONE_PIDFD) {
2069		/*
2070		 * - CLONE_DETACHED is blocked so that we can potentially
2071		 *   reuse it later for CLONE_PIDFD.
2072		 * - CLONE_THREAD is blocked until someone really needs it.
2073		 */
2074		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2075			return ERR_PTR(-EINVAL);
2076	}
2077
2078	/*
2079	 * Force any signals received before this point to be delivered
2080	 * before the fork happens.  Collect up signals sent to multiple
2081	 * processes that happen during the fork and delay them so that
2082	 * they appear to happen after the fork.
2083	 */
2084	sigemptyset(&delayed.signal);
2085	INIT_HLIST_NODE(&delayed.node);
2086
2087	spin_lock_irq(&current->sighand->siglock);
2088	if (!(clone_flags & CLONE_THREAD))
2089		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2090	recalc_sigpending();
2091	spin_unlock_irq(&current->sighand->siglock);
2092	retval = -ERESTARTNOINTR;
2093	if (task_sigpending(current))
2094		goto fork_out;
2095
2096	retval = -ENOMEM;
2097	p = dup_task_struct(current, node);
2098	if (!p)
2099		goto fork_out;
2100	p->flags &= ~PF_KTHREAD;
2101	if (args->kthread)
2102		p->flags |= PF_KTHREAD;
2103	if (args->io_thread) {
2104		/*
2105		 * Mark us an IO worker, and block any signal that isn't
2106		 * fatal or STOP
2107		 */
2108		p->flags |= PF_IO_WORKER;
2109		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2110	}
2111
 
 
 
 
 
 
2112	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2113	/*
2114	 * Clear TID on mm_release()?
2115	 */
2116	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2117
2118	ftrace_graph_init_task(p);
2119
2120	rt_mutex_init_task(p);
2121
2122	lockdep_assert_irqs_enabled();
2123#ifdef CONFIG_PROVE_LOCKING
2124	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2125#endif
2126	retval = copy_creds(p, clone_flags);
2127	if (retval < 0)
2128		goto bad_fork_free;
2129
2130	retval = -EAGAIN;
2131	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2132		if (p->real_cred->user != INIT_USER &&
2133		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2134			goto bad_fork_cleanup_count;
2135	}
2136	current->flags &= ~PF_NPROC_EXCEEDED;
2137
 
 
 
 
2138	/*
2139	 * If multiple threads are within copy_process(), then this check
2140	 * triggers too late. This doesn't hurt, the check is only there
2141	 * to stop root fork bombs.
2142	 */
2143	retval = -EAGAIN;
2144	if (data_race(nr_threads >= max_threads))
2145		goto bad_fork_cleanup_count;
2146
2147	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2148	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2149	p->flags |= PF_FORKNOEXEC;
2150	INIT_LIST_HEAD(&p->children);
2151	INIT_LIST_HEAD(&p->sibling);
2152	rcu_copy_process(p);
2153	p->vfork_done = NULL;
2154	spin_lock_init(&p->alloc_lock);
2155
2156	init_sigpending(&p->pending);
2157
2158	p->utime = p->stime = p->gtime = 0;
2159#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2160	p->utimescaled = p->stimescaled = 0;
2161#endif
2162	prev_cputime_init(&p->prev_cputime);
2163
2164#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2165	seqcount_init(&p->vtime.seqcount);
2166	p->vtime.starttime = 0;
2167	p->vtime.state = VTIME_INACTIVE;
2168#endif
2169
2170#ifdef CONFIG_IO_URING
2171	p->io_uring = NULL;
2172#endif
2173
2174#if defined(SPLIT_RSS_COUNTING)
2175	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2176#endif
2177
2178	p->default_timer_slack_ns = current->timer_slack_ns;
2179
2180#ifdef CONFIG_PSI
2181	p->psi_flags = 0;
2182#endif
2183
2184	task_io_accounting_init(&p->ioac);
2185	acct_clear_integrals(p);
2186
2187	posix_cputimers_init(&p->posix_cputimers);
2188
2189	p->io_context = NULL;
2190	audit_set_context(p, NULL);
2191	cgroup_fork(p);
2192	if (args->kthread) {
2193		if (!set_kthread_struct(p))
2194			goto bad_fork_cleanup_delayacct;
2195	}
2196#ifdef CONFIG_NUMA
2197	p->mempolicy = mpol_dup(p->mempolicy);
2198	if (IS_ERR(p->mempolicy)) {
2199		retval = PTR_ERR(p->mempolicy);
2200		p->mempolicy = NULL;
2201		goto bad_fork_cleanup_delayacct;
2202	}
2203#endif
2204#ifdef CONFIG_CPUSETS
2205	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2206	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2207	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2208#endif
2209#ifdef CONFIG_TRACE_IRQFLAGS
2210	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2211	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2212	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2213	p->softirqs_enabled		= 1;
2214	p->softirq_context		= 0;
2215#endif
2216
2217	p->pagefault_disabled = 0;
2218
2219#ifdef CONFIG_LOCKDEP
2220	lockdep_init_task(p);
2221#endif
2222
2223#ifdef CONFIG_DEBUG_MUTEXES
2224	p->blocked_on = NULL; /* not blocked yet */
2225#endif
2226#ifdef CONFIG_BCACHE
2227	p->sequential_io	= 0;
2228	p->sequential_io_avg	= 0;
2229#endif
2230#ifdef CONFIG_BPF_SYSCALL
2231	RCU_INIT_POINTER(p->bpf_storage, NULL);
2232	p->bpf_ctx = NULL;
2233#endif
2234
2235	/* Perform scheduler related setup. Assign this task to a CPU. */
2236	retval = sched_fork(clone_flags, p);
2237	if (retval)
2238		goto bad_fork_cleanup_policy;
2239
2240	retval = perf_event_init_task(p, clone_flags);
2241	if (retval)
2242		goto bad_fork_cleanup_policy;
2243	retval = audit_alloc(p);
2244	if (retval)
2245		goto bad_fork_cleanup_perf;
2246	/* copy all the process information */
2247	shm_init_task(p);
2248	retval = security_task_alloc(p, clone_flags);
2249	if (retval)
2250		goto bad_fork_cleanup_audit;
2251	retval = copy_semundo(clone_flags, p);
2252	if (retval)
2253		goto bad_fork_cleanup_security;
2254	retval = copy_files(clone_flags, p);
2255	if (retval)
2256		goto bad_fork_cleanup_semundo;
2257	retval = copy_fs(clone_flags, p);
2258	if (retval)
2259		goto bad_fork_cleanup_files;
2260	retval = copy_sighand(clone_flags, p);
2261	if (retval)
2262		goto bad_fork_cleanup_fs;
2263	retval = copy_signal(clone_flags, p);
2264	if (retval)
2265		goto bad_fork_cleanup_sighand;
2266	retval = copy_mm(clone_flags, p);
2267	if (retval)
2268		goto bad_fork_cleanup_signal;
2269	retval = copy_namespaces(clone_flags, p);
2270	if (retval)
2271		goto bad_fork_cleanup_mm;
2272	retval = copy_io(clone_flags, p);
2273	if (retval)
2274		goto bad_fork_cleanup_namespaces;
2275	retval = copy_thread(p, args);
2276	if (retval)
2277		goto bad_fork_cleanup_io;
2278
2279	stackleak_task_init(p);
2280
2281	if (pid != &init_struct_pid) {
2282		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2283				args->set_tid_size);
2284		if (IS_ERR(pid)) {
2285			retval = PTR_ERR(pid);
2286			goto bad_fork_cleanup_thread;
2287		}
2288	}
2289
2290	/*
2291	 * This has to happen after we've potentially unshared the file
2292	 * descriptor table (so that the pidfd doesn't leak into the child
2293	 * if the fd table isn't shared).
2294	 */
2295	if (clone_flags & CLONE_PIDFD) {
2296		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2297		if (retval < 0)
2298			goto bad_fork_free_pid;
2299
2300		pidfd = retval;
2301
2302		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2303					      O_RDWR | O_CLOEXEC);
2304		if (IS_ERR(pidfile)) {
2305			put_unused_fd(pidfd);
2306			retval = PTR_ERR(pidfile);
2307			goto bad_fork_free_pid;
2308		}
2309		get_pid(pid);	/* held by pidfile now */
2310
2311		retval = put_user(pidfd, args->pidfd);
2312		if (retval)
2313			goto bad_fork_put_pidfd;
2314	}
2315
2316#ifdef CONFIG_BLOCK
2317	p->plug = NULL;
2318#endif
2319	futex_init_task(p);
2320
2321	/*
2322	 * sigaltstack should be cleared when sharing the same VM
2323	 */
2324	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2325		sas_ss_reset(p);
2326
2327	/*
2328	 * Syscall tracing and stepping should be turned off in the
2329	 * child regardless of CLONE_PTRACE.
2330	 */
2331	user_disable_single_step(p);
2332	clear_task_syscall_work(p, SYSCALL_TRACE);
2333#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2334	clear_task_syscall_work(p, SYSCALL_EMU);
2335#endif
2336	clear_tsk_latency_tracing(p);
2337
2338	/* ok, now we should be set up.. */
2339	p->pid = pid_nr(pid);
2340	if (clone_flags & CLONE_THREAD) {
2341		p->group_leader = current->group_leader;
2342		p->tgid = current->tgid;
2343	} else {
2344		p->group_leader = p;
2345		p->tgid = p->pid;
2346	}
2347
2348	p->nr_dirtied = 0;
2349	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2350	p->dirty_paused_when = 0;
2351
2352	p->pdeath_signal = 0;
2353	INIT_LIST_HEAD(&p->thread_group);
2354	p->task_works = NULL;
2355	clear_posix_cputimers_work(p);
2356
2357#ifdef CONFIG_KRETPROBES
2358	p->kretprobe_instances.first = NULL;
2359#endif
2360#ifdef CONFIG_RETHOOK
2361	p->rethooks.first = NULL;
2362#endif
2363
2364	/*
2365	 * Ensure that the cgroup subsystem policies allow the new process to be
2366	 * forked. It should be noted that the new process's css_set can be changed
2367	 * between here and cgroup_post_fork() if an organisation operation is in
2368	 * progress.
2369	 */
2370	retval = cgroup_can_fork(p, args);
2371	if (retval)
2372		goto bad_fork_put_pidfd;
2373
2374	/*
2375	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2376	 * the new task on the correct runqueue. All this *before* the task
2377	 * becomes visible.
2378	 *
2379	 * This isn't part of ->can_fork() because while the re-cloning is
2380	 * cgroup specific, it unconditionally needs to place the task on a
2381	 * runqueue.
2382	 */
2383	sched_cgroup_fork(p, args);
2384
2385	/*
2386	 * From this point on we must avoid any synchronous user-space
2387	 * communication until we take the tasklist-lock. In particular, we do
2388	 * not want user-space to be able to predict the process start-time by
2389	 * stalling fork(2) after we recorded the start_time but before it is
2390	 * visible to the system.
2391	 */
2392
2393	p->start_time = ktime_get_ns();
2394	p->start_boottime = ktime_get_boottime_ns();
2395
2396	/*
2397	 * Make it visible to the rest of the system, but dont wake it up yet.
2398	 * Need tasklist lock for parent etc handling!
2399	 */
2400	write_lock_irq(&tasklist_lock);
2401
2402	/* CLONE_PARENT re-uses the old parent */
2403	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2404		p->real_parent = current->real_parent;
2405		p->parent_exec_id = current->parent_exec_id;
2406		if (clone_flags & CLONE_THREAD)
2407			p->exit_signal = -1;
2408		else
2409			p->exit_signal = current->group_leader->exit_signal;
2410	} else {
2411		p->real_parent = current;
2412		p->parent_exec_id = current->self_exec_id;
2413		p->exit_signal = args->exit_signal;
2414	}
2415
2416	klp_copy_process(p);
2417
2418	sched_core_fork(p);
2419
2420	spin_lock(&current->sighand->siglock);
2421
2422	rv_task_fork(p);
 
 
 
 
2423
2424	rseq_fork(p, clone_flags);
2425
2426	/* Don't start children in a dying pid namespace */
2427	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2428		retval = -ENOMEM;
2429		goto bad_fork_cancel_cgroup;
2430	}
2431
2432	/* Let kill terminate clone/fork in the middle */
2433	if (fatal_signal_pending(current)) {
2434		retval = -EINTR;
2435		goto bad_fork_cancel_cgroup;
2436	}
2437
2438	/* No more failure paths after this point. */
2439
2440	/*
2441	 * Copy seccomp details explicitly here, in case they were changed
2442	 * before holding sighand lock.
2443	 */
2444	copy_seccomp(p);
2445
2446	init_task_pid_links(p);
2447	if (likely(p->pid)) {
2448		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2449
2450		init_task_pid(p, PIDTYPE_PID, pid);
2451		if (thread_group_leader(p)) {
2452			init_task_pid(p, PIDTYPE_TGID, pid);
2453			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2454			init_task_pid(p, PIDTYPE_SID, task_session(current));
2455
2456			if (is_child_reaper(pid)) {
2457				ns_of_pid(pid)->child_reaper = p;
2458				p->signal->flags |= SIGNAL_UNKILLABLE;
2459			}
2460			p->signal->shared_pending.signal = delayed.signal;
2461			p->signal->tty = tty_kref_get(current->signal->tty);
2462			/*
2463			 * Inherit has_child_subreaper flag under the same
2464			 * tasklist_lock with adding child to the process tree
2465			 * for propagate_has_child_subreaper optimization.
2466			 */
2467			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2468							 p->real_parent->signal->is_child_subreaper;
2469			list_add_tail(&p->sibling, &p->real_parent->children);
2470			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2471			attach_pid(p, PIDTYPE_TGID);
2472			attach_pid(p, PIDTYPE_PGID);
2473			attach_pid(p, PIDTYPE_SID);
2474			__this_cpu_inc(process_counts);
2475		} else {
2476			current->signal->nr_threads++;
2477			current->signal->quick_threads++;
2478			atomic_inc(&current->signal->live);
2479			refcount_inc(&current->signal->sigcnt);
2480			task_join_group_stop(p);
2481			list_add_tail_rcu(&p->thread_group,
2482					  &p->group_leader->thread_group);
2483			list_add_tail_rcu(&p->thread_node,
2484					  &p->signal->thread_head);
2485		}
2486		attach_pid(p, PIDTYPE_PID);
2487		nr_threads++;
2488	}
2489	total_forks++;
2490	hlist_del_init(&delayed.node);
2491	spin_unlock(&current->sighand->siglock);
2492	syscall_tracepoint_update(p);
2493	write_unlock_irq(&tasklist_lock);
2494
2495	if (pidfile)
2496		fd_install(pidfd, pidfile);
2497
2498	proc_fork_connector(p);
2499	sched_post_fork(p);
2500	cgroup_post_fork(p, args);
2501	perf_event_fork(p);
2502
2503	trace_task_newtask(p, clone_flags);
2504	uprobe_copy_process(p, clone_flags);
2505
2506	copy_oom_score_adj(clone_flags, p);
2507
2508	return p;
2509
2510bad_fork_cancel_cgroup:
2511	sched_core_free(p);
2512	spin_unlock(&current->sighand->siglock);
2513	write_unlock_irq(&tasklist_lock);
2514	cgroup_cancel_fork(p, args);
2515bad_fork_put_pidfd:
2516	if (clone_flags & CLONE_PIDFD) {
2517		fput(pidfile);
2518		put_unused_fd(pidfd);
2519	}
2520bad_fork_free_pid:
2521	if (pid != &init_struct_pid)
2522		free_pid(pid);
2523bad_fork_cleanup_thread:
2524	exit_thread(p);
2525bad_fork_cleanup_io:
2526	if (p->io_context)
2527		exit_io_context(p);
2528bad_fork_cleanup_namespaces:
2529	exit_task_namespaces(p);
2530bad_fork_cleanup_mm:
2531	if (p->mm) {
2532		mm_clear_owner(p->mm, p);
2533		mmput(p->mm);
2534	}
2535bad_fork_cleanup_signal:
2536	if (!(clone_flags & CLONE_THREAD))
2537		free_signal_struct(p->signal);
2538bad_fork_cleanup_sighand:
2539	__cleanup_sighand(p->sighand);
2540bad_fork_cleanup_fs:
2541	exit_fs(p); /* blocking */
2542bad_fork_cleanup_files:
2543	exit_files(p); /* blocking */
2544bad_fork_cleanup_semundo:
2545	exit_sem(p);
2546bad_fork_cleanup_security:
2547	security_task_free(p);
2548bad_fork_cleanup_audit:
2549	audit_free(p);
2550bad_fork_cleanup_perf:
2551	perf_event_free_task(p);
2552bad_fork_cleanup_policy:
2553	lockdep_free_task(p);
2554#ifdef CONFIG_NUMA
2555	mpol_put(p->mempolicy);
 
2556#endif
2557bad_fork_cleanup_delayacct:
2558	delayacct_tsk_free(p);
2559bad_fork_cleanup_count:
2560	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2561	exit_creds(p);
2562bad_fork_free:
2563	WRITE_ONCE(p->__state, TASK_DEAD);
2564	exit_task_stack_account(p);
2565	put_task_stack(p);
2566	delayed_free_task(p);
2567fork_out:
2568	spin_lock_irq(&current->sighand->siglock);
2569	hlist_del_init(&delayed.node);
2570	spin_unlock_irq(&current->sighand->siglock);
2571	return ERR_PTR(retval);
2572}
2573
2574static inline void init_idle_pids(struct task_struct *idle)
2575{
2576	enum pid_type type;
2577
2578	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2579		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2580		init_task_pid(idle, type, &init_struct_pid);
2581	}
2582}
2583
2584static int idle_dummy(void *dummy)
2585{
2586	/* This function is never called */
2587	return 0;
2588}
2589
2590struct task_struct * __init fork_idle(int cpu)
2591{
2592	struct task_struct *task;
2593	struct kernel_clone_args args = {
2594		.flags		= CLONE_VM,
2595		.fn		= &idle_dummy,
2596		.fn_arg		= NULL,
2597		.kthread	= 1,
2598		.idle		= 1,
2599	};
2600
2601	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2602	if (!IS_ERR(task)) {
2603		init_idle_pids(task);
2604		init_idle(task, cpu);
2605	}
2606
2607	return task;
2608}
2609
 
 
 
 
 
2610/*
2611 * This is like kernel_clone(), but shaved down and tailored to just
2612 * creating io_uring workers. It returns a created task, or an error pointer.
2613 * The returned task is inactive, and the caller must fire it up through
2614 * wake_up_new_task(p). All signals are blocked in the created task.
2615 */
2616struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2617{
2618	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2619				CLONE_IO;
2620	struct kernel_clone_args args = {
2621		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2622				    CLONE_UNTRACED) & ~CSIGNAL),
2623		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2624		.fn		= fn,
2625		.fn_arg		= arg,
2626		.io_thread	= 1,
2627	};
2628
2629	return copy_process(NULL, 0, node, &args);
2630}
2631
2632/*
2633 *  Ok, this is the main fork-routine.
2634 *
2635 * It copies the process, and if successful kick-starts
2636 * it and waits for it to finish using the VM if required.
2637 *
2638 * args->exit_signal is expected to be checked for sanity by the caller.
2639 */
2640pid_t kernel_clone(struct kernel_clone_args *args)
2641{
2642	u64 clone_flags = args->flags;
2643	struct completion vfork;
2644	struct pid *pid;
2645	struct task_struct *p;
2646	int trace = 0;
2647	pid_t nr;
2648
2649	/*
2650	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2651	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2652	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2653	 * field in struct clone_args and it still doesn't make sense to have
2654	 * them both point at the same memory location. Performing this check
2655	 * here has the advantage that we don't need to have a separate helper
2656	 * to check for legacy clone().
2657	 */
2658	if ((args->flags & CLONE_PIDFD) &&
2659	    (args->flags & CLONE_PARENT_SETTID) &&
2660	    (args->pidfd == args->parent_tid))
2661		return -EINVAL;
2662
2663	/*
2664	 * Determine whether and which event to report to ptracer.  When
2665	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2666	 * requested, no event is reported; otherwise, report if the event
2667	 * for the type of forking is enabled.
2668	 */
2669	if (!(clone_flags & CLONE_UNTRACED)) {
2670		if (clone_flags & CLONE_VFORK)
2671			trace = PTRACE_EVENT_VFORK;
2672		else if (args->exit_signal != SIGCHLD)
2673			trace = PTRACE_EVENT_CLONE;
2674		else
2675			trace = PTRACE_EVENT_FORK;
2676
2677		if (likely(!ptrace_event_enabled(current, trace)))
2678			trace = 0;
2679	}
2680
2681	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2682	add_latent_entropy();
2683
2684	if (IS_ERR(p))
2685		return PTR_ERR(p);
2686
2687	/*
2688	 * Do this prior waking up the new thread - the thread pointer
2689	 * might get invalid after that point, if the thread exits quickly.
2690	 */
2691	trace_sched_process_fork(current, p);
2692
2693	pid = get_task_pid(p, PIDTYPE_PID);
2694	nr = pid_vnr(pid);
2695
2696	if (clone_flags & CLONE_PARENT_SETTID)
2697		put_user(nr, args->parent_tid);
2698
2699	if (clone_flags & CLONE_VFORK) {
2700		p->vfork_done = &vfork;
2701		init_completion(&vfork);
2702		get_task_struct(p);
2703	}
2704
2705	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2706		/* lock the task to synchronize with memcg migration */
2707		task_lock(p);
2708		lru_gen_add_mm(p->mm);
2709		task_unlock(p);
2710	}
2711
2712	wake_up_new_task(p);
2713
2714	/* forking complete and child started to run, tell ptracer */
2715	if (unlikely(trace))
2716		ptrace_event_pid(trace, pid);
2717
2718	if (clone_flags & CLONE_VFORK) {
2719		if (!wait_for_vfork_done(p, &vfork))
2720			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2721	}
2722
2723	put_pid(pid);
2724	return nr;
2725}
2726
2727/*
2728 * Create a kernel thread.
2729 */
2730pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2731{
2732	struct kernel_clone_args args = {
2733		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2734				    CLONE_UNTRACED) & ~CSIGNAL),
2735		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2736		.fn		= fn,
2737		.fn_arg		= arg,
2738		.kthread	= 1,
2739	};
2740
2741	return kernel_clone(&args);
2742}
2743
2744/*
2745 * Create a user mode thread.
2746 */
2747pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2748{
2749	struct kernel_clone_args args = {
2750		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2751				    CLONE_UNTRACED) & ~CSIGNAL),
2752		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2753		.fn		= fn,
2754		.fn_arg		= arg,
2755	};
2756
2757	return kernel_clone(&args);
2758}
2759
2760#ifdef __ARCH_WANT_SYS_FORK
2761SYSCALL_DEFINE0(fork)
2762{
2763#ifdef CONFIG_MMU
2764	struct kernel_clone_args args = {
2765		.exit_signal = SIGCHLD,
2766	};
2767
2768	return kernel_clone(&args);
2769#else
2770	/* can not support in nommu mode */
2771	return -EINVAL;
2772#endif
2773}
2774#endif
2775
2776#ifdef __ARCH_WANT_SYS_VFORK
2777SYSCALL_DEFINE0(vfork)
2778{
2779	struct kernel_clone_args args = {
2780		.flags		= CLONE_VFORK | CLONE_VM,
2781		.exit_signal	= SIGCHLD,
2782	};
2783
2784	return kernel_clone(&args);
2785}
2786#endif
2787
2788#ifdef __ARCH_WANT_SYS_CLONE
2789#ifdef CONFIG_CLONE_BACKWARDS
2790SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2791		 int __user *, parent_tidptr,
2792		 unsigned long, tls,
2793		 int __user *, child_tidptr)
2794#elif defined(CONFIG_CLONE_BACKWARDS2)
2795SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2796		 int __user *, parent_tidptr,
2797		 int __user *, child_tidptr,
2798		 unsigned long, tls)
2799#elif defined(CONFIG_CLONE_BACKWARDS3)
2800SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2801		int, stack_size,
2802		int __user *, parent_tidptr,
2803		int __user *, child_tidptr,
2804		unsigned long, tls)
2805#else
2806SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2807		 int __user *, parent_tidptr,
2808		 int __user *, child_tidptr,
2809		 unsigned long, tls)
2810#endif
2811{
2812	struct kernel_clone_args args = {
2813		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2814		.pidfd		= parent_tidptr,
2815		.child_tid	= child_tidptr,
2816		.parent_tid	= parent_tidptr,
2817		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2818		.stack		= newsp,
2819		.tls		= tls,
2820	};
2821
2822	return kernel_clone(&args);
2823}
2824#endif
2825
2826#ifdef __ARCH_WANT_SYS_CLONE3
2827
2828noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2829					      struct clone_args __user *uargs,
2830					      size_t usize)
2831{
2832	int err;
2833	struct clone_args args;
2834	pid_t *kset_tid = kargs->set_tid;
2835
2836	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2837		     CLONE_ARGS_SIZE_VER0);
2838	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2839		     CLONE_ARGS_SIZE_VER1);
2840	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2841		     CLONE_ARGS_SIZE_VER2);
2842	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2843
2844	if (unlikely(usize > PAGE_SIZE))
2845		return -E2BIG;
2846	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2847		return -EINVAL;
2848
2849	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2850	if (err)
2851		return err;
2852
2853	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2854		return -EINVAL;
2855
2856	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2857		return -EINVAL;
2858
2859	if (unlikely(args.set_tid && args.set_tid_size == 0))
2860		return -EINVAL;
2861
2862	/*
2863	 * Verify that higher 32bits of exit_signal are unset and that
2864	 * it is a valid signal
2865	 */
2866	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2867		     !valid_signal(args.exit_signal)))
2868		return -EINVAL;
2869
2870	if ((args.flags & CLONE_INTO_CGROUP) &&
2871	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2872		return -EINVAL;
2873
2874	*kargs = (struct kernel_clone_args){
2875		.flags		= args.flags,
2876		.pidfd		= u64_to_user_ptr(args.pidfd),
2877		.child_tid	= u64_to_user_ptr(args.child_tid),
2878		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2879		.exit_signal	= args.exit_signal,
2880		.stack		= args.stack,
2881		.stack_size	= args.stack_size,
2882		.tls		= args.tls,
2883		.set_tid_size	= args.set_tid_size,
2884		.cgroup		= args.cgroup,
2885	};
2886
2887	if (args.set_tid &&
2888		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2889			(kargs->set_tid_size * sizeof(pid_t))))
2890		return -EFAULT;
2891
2892	kargs->set_tid = kset_tid;
2893
2894	return 0;
2895}
2896
2897/**
2898 * clone3_stack_valid - check and prepare stack
2899 * @kargs: kernel clone args
2900 *
2901 * Verify that the stack arguments userspace gave us are sane.
2902 * In addition, set the stack direction for userspace since it's easy for us to
2903 * determine.
2904 */
2905static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2906{
2907	if (kargs->stack == 0) {
2908		if (kargs->stack_size > 0)
2909			return false;
2910	} else {
2911		if (kargs->stack_size == 0)
2912			return false;
2913
2914		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2915			return false;
2916
2917#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2918		kargs->stack += kargs->stack_size;
2919#endif
2920	}
2921
2922	return true;
2923}
2924
2925static bool clone3_args_valid(struct kernel_clone_args *kargs)
2926{
2927	/* Verify that no unknown flags are passed along. */
2928	if (kargs->flags &
2929	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2930		return false;
2931
2932	/*
2933	 * - make the CLONE_DETACHED bit reusable for clone3
2934	 * - make the CSIGNAL bits reusable for clone3
2935	 */
2936	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2937		return false;
2938
2939	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2940	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2941		return false;
2942
2943	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2944	    kargs->exit_signal)
2945		return false;
2946
2947	if (!clone3_stack_valid(kargs))
2948		return false;
2949
2950	return true;
2951}
2952
2953/**
2954 * clone3 - create a new process with specific properties
2955 * @uargs: argument structure
2956 * @size:  size of @uargs
2957 *
2958 * clone3() is the extensible successor to clone()/clone2().
2959 * It takes a struct as argument that is versioned by its size.
2960 *
2961 * Return: On success, a positive PID for the child process.
2962 *         On error, a negative errno number.
2963 */
2964SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2965{
2966	int err;
2967
2968	struct kernel_clone_args kargs;
2969	pid_t set_tid[MAX_PID_NS_LEVEL];
2970
2971	kargs.set_tid = set_tid;
2972
2973	err = copy_clone_args_from_user(&kargs, uargs, size);
2974	if (err)
2975		return err;
2976
2977	if (!clone3_args_valid(&kargs))
2978		return -EINVAL;
2979
2980	return kernel_clone(&kargs);
2981}
2982#endif
2983
2984void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2985{
2986	struct task_struct *leader, *parent, *child;
2987	int res;
2988
2989	read_lock(&tasklist_lock);
2990	leader = top = top->group_leader;
2991down:
2992	for_each_thread(leader, parent) {
2993		list_for_each_entry(child, &parent->children, sibling) {
2994			res = visitor(child, data);
2995			if (res) {
2996				if (res < 0)
2997					goto out;
2998				leader = child;
2999				goto down;
3000			}
3001up:
3002			;
3003		}
3004	}
3005
3006	if (leader != top) {
3007		child = leader;
3008		parent = child->real_parent;
3009		leader = parent->group_leader;
3010		goto up;
3011	}
3012out:
3013	read_unlock(&tasklist_lock);
3014}
3015
3016#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3017#define ARCH_MIN_MMSTRUCT_ALIGN 0
3018#endif
3019
3020static void sighand_ctor(void *data)
3021{
3022	struct sighand_struct *sighand = data;
3023
3024	spin_lock_init(&sighand->siglock);
3025	init_waitqueue_head(&sighand->signalfd_wqh);
3026}
3027
3028void __init mm_cache_init(void)
3029{
3030	unsigned int mm_size;
3031
3032	/*
3033	 * The mm_cpumask is located at the end of mm_struct, and is
3034	 * dynamically sized based on the maximum CPU number this system
3035	 * can have, taking hotplug into account (nr_cpu_ids).
3036	 */
3037	mm_size = sizeof(struct mm_struct) + cpumask_size();
3038
3039	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3040			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3041			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3042			offsetof(struct mm_struct, saved_auxv),
3043			sizeof_field(struct mm_struct, saved_auxv),
3044			NULL);
3045}
3046
3047void __init proc_caches_init(void)
3048{
3049	sighand_cachep = kmem_cache_create("sighand_cache",
3050			sizeof(struct sighand_struct), 0,
3051			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3052			SLAB_ACCOUNT, sighand_ctor);
3053	signal_cachep = kmem_cache_create("signal_cache",
3054			sizeof(struct signal_struct), 0,
3055			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3056			NULL);
3057	files_cachep = kmem_cache_create("files_cache",
3058			sizeof(struct files_struct), 0,
3059			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3060			NULL);
3061	fs_cachep = kmem_cache_create("fs_cache",
3062			sizeof(struct fs_struct), 0,
3063			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3064			NULL);
3065
 
 
 
 
 
 
 
 
 
 
 
 
 
3066	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3067	mmap_init();
3068	nsproxy_cache_init();
3069}
3070
3071/*
3072 * Check constraints on flags passed to the unshare system call.
3073 */
3074static int check_unshare_flags(unsigned long unshare_flags)
3075{
3076	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3077				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3078				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3079				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3080				CLONE_NEWTIME))
3081		return -EINVAL;
3082	/*
3083	 * Not implemented, but pretend it works if there is nothing
3084	 * to unshare.  Note that unsharing the address space or the
3085	 * signal handlers also need to unshare the signal queues (aka
3086	 * CLONE_THREAD).
3087	 */
3088	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3089		if (!thread_group_empty(current))
3090			return -EINVAL;
3091	}
3092	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3093		if (refcount_read(&current->sighand->count) > 1)
3094			return -EINVAL;
3095	}
3096	if (unshare_flags & CLONE_VM) {
3097		if (!current_is_single_threaded())
3098			return -EINVAL;
3099	}
3100
3101	return 0;
3102}
3103
3104/*
3105 * Unshare the filesystem structure if it is being shared
3106 */
3107static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3108{
3109	struct fs_struct *fs = current->fs;
3110
3111	if (!(unshare_flags & CLONE_FS) || !fs)
3112		return 0;
3113
3114	/* don't need lock here; in the worst case we'll do useless copy */
3115	if (fs->users == 1)
3116		return 0;
3117
3118	*new_fsp = copy_fs_struct(fs);
3119	if (!*new_fsp)
3120		return -ENOMEM;
3121
3122	return 0;
3123}
3124
3125/*
3126 * Unshare file descriptor table if it is being shared
3127 */
3128int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3129	       struct files_struct **new_fdp)
3130{
3131	struct files_struct *fd = current->files;
3132	int error = 0;
3133
3134	if ((unshare_flags & CLONE_FILES) &&
3135	    (fd && atomic_read(&fd->count) > 1)) {
3136		*new_fdp = dup_fd(fd, max_fds, &error);
3137		if (!*new_fdp)
3138			return error;
3139	}
3140
3141	return 0;
3142}
3143
3144/*
3145 * unshare allows a process to 'unshare' part of the process
3146 * context which was originally shared using clone.  copy_*
3147 * functions used by kernel_clone() cannot be used here directly
3148 * because they modify an inactive task_struct that is being
3149 * constructed. Here we are modifying the current, active,
3150 * task_struct.
3151 */
3152int ksys_unshare(unsigned long unshare_flags)
3153{
3154	struct fs_struct *fs, *new_fs = NULL;
3155	struct files_struct *new_fd = NULL;
3156	struct cred *new_cred = NULL;
3157	struct nsproxy *new_nsproxy = NULL;
3158	int do_sysvsem = 0;
3159	int err;
3160
3161	/*
3162	 * If unsharing a user namespace must also unshare the thread group
3163	 * and unshare the filesystem root and working directories.
3164	 */
3165	if (unshare_flags & CLONE_NEWUSER)
3166		unshare_flags |= CLONE_THREAD | CLONE_FS;
3167	/*
3168	 * If unsharing vm, must also unshare signal handlers.
3169	 */
3170	if (unshare_flags & CLONE_VM)
3171		unshare_flags |= CLONE_SIGHAND;
3172	/*
3173	 * If unsharing a signal handlers, must also unshare the signal queues.
3174	 */
3175	if (unshare_flags & CLONE_SIGHAND)
3176		unshare_flags |= CLONE_THREAD;
3177	/*
3178	 * If unsharing namespace, must also unshare filesystem information.
3179	 */
3180	if (unshare_flags & CLONE_NEWNS)
3181		unshare_flags |= CLONE_FS;
3182
3183	err = check_unshare_flags(unshare_flags);
3184	if (err)
3185		goto bad_unshare_out;
3186	/*
3187	 * CLONE_NEWIPC must also detach from the undolist: after switching
3188	 * to a new ipc namespace, the semaphore arrays from the old
3189	 * namespace are unreachable.
3190	 */
3191	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3192		do_sysvsem = 1;
3193	err = unshare_fs(unshare_flags, &new_fs);
3194	if (err)
3195		goto bad_unshare_out;
3196	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3197	if (err)
3198		goto bad_unshare_cleanup_fs;
3199	err = unshare_userns(unshare_flags, &new_cred);
3200	if (err)
3201		goto bad_unshare_cleanup_fd;
3202	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3203					 new_cred, new_fs);
3204	if (err)
3205		goto bad_unshare_cleanup_cred;
3206
3207	if (new_cred) {
3208		err = set_cred_ucounts(new_cred);
3209		if (err)
3210			goto bad_unshare_cleanup_cred;
3211	}
3212
3213	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3214		if (do_sysvsem) {
3215			/*
3216			 * CLONE_SYSVSEM is equivalent to sys_exit().
3217			 */
3218			exit_sem(current);
3219		}
3220		if (unshare_flags & CLONE_NEWIPC) {
3221			/* Orphan segments in old ns (see sem above). */
3222			exit_shm(current);
3223			shm_init_task(current);
3224		}
3225
3226		if (new_nsproxy)
3227			switch_task_namespaces(current, new_nsproxy);
3228
3229		task_lock(current);
3230
3231		if (new_fs) {
3232			fs = current->fs;
3233			spin_lock(&fs->lock);
3234			current->fs = new_fs;
3235			if (--fs->users)
3236				new_fs = NULL;
3237			else
3238				new_fs = fs;
3239			spin_unlock(&fs->lock);
3240		}
3241
3242		if (new_fd)
3243			swap(current->files, new_fd);
 
 
 
3244
3245		task_unlock(current);
3246
3247		if (new_cred) {
3248			/* Install the new user namespace */
3249			commit_creds(new_cred);
3250			new_cred = NULL;
3251		}
3252	}
3253
3254	perf_event_namespaces(current);
3255
3256bad_unshare_cleanup_cred:
3257	if (new_cred)
3258		put_cred(new_cred);
3259bad_unshare_cleanup_fd:
3260	if (new_fd)
3261		put_files_struct(new_fd);
3262
3263bad_unshare_cleanup_fs:
3264	if (new_fs)
3265		free_fs_struct(new_fs);
3266
3267bad_unshare_out:
3268	return err;
3269}
3270
3271SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3272{
3273	return ksys_unshare(unshare_flags);
3274}
3275
3276/*
3277 *	Helper to unshare the files of the current task.
3278 *	We don't want to expose copy_files internals to
3279 *	the exec layer of the kernel.
3280 */
3281
3282int unshare_files(void)
3283{
3284	struct task_struct *task = current;
3285	struct files_struct *old, *copy = NULL;
3286	int error;
3287
3288	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3289	if (error || !copy)
3290		return error;
3291
3292	old = task->files;
3293	task_lock(task);
3294	task->files = copy;
3295	task_unlock(task);
3296	put_files_struct(old);
3297	return 0;
3298}
3299
3300int sysctl_max_threads(struct ctl_table *table, int write,
3301		       void *buffer, size_t *lenp, loff_t *ppos)
3302{
3303	struct ctl_table t;
3304	int ret;
3305	int threads = max_threads;
3306	int min = 1;
3307	int max = MAX_THREADS;
3308
3309	t = *table;
3310	t.data = &threads;
3311	t.extra1 = &min;
3312	t.extra2 = &max;
3313
3314	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3315	if (ret || !write)
3316		return ret;
3317
3318	max_threads = threads;
3319
3320	return 0;
3321}