Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_log_priv.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_mount.h"
  15#include "xfs_extent_busy.h"
  16#include "xfs_quota.h"
  17#include "xfs_trans.h"
  18#include "xfs_trans_priv.h"
  19#include "xfs_log.h"
 
  20#include "xfs_trace.h"
  21#include "xfs_error.h"
  22#include "xfs_defer.h"
  23#include "xfs_inode.h"
  24#include "xfs_dquot_item.h"
  25#include "xfs_dquot.h"
  26#include "xfs_icache.h"
  27
  28kmem_zone_t	*xfs_trans_zone;
  29
  30#if defined(CONFIG_TRACEPOINTS)
  31static void
  32xfs_trans_trace_reservations(
  33	struct xfs_mount	*mp)
  34{
  35	struct xfs_trans_res	resv;
  36	struct xfs_trans_res	*res;
  37	struct xfs_trans_res	*end_res;
  38	int			i;
  39
  40	res = (struct xfs_trans_res *)M_RES(mp);
  41	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
  42	for (i = 0; res < end_res; i++, res++)
  43		trace_xfs_trans_resv_calc(mp, i, res);
  44	xfs_log_get_max_trans_res(mp, &resv);
  45	trace_xfs_trans_resv_calc(mp, -1, &resv);
  46}
  47#else
  48# define xfs_trans_trace_reservations(mp)
  49#endif
  50
  51/*
  52 * Initialize the precomputed transaction reservation values
  53 * in the mount structure.
  54 */
  55void
  56xfs_trans_init(
  57	struct xfs_mount	*mp)
  58{
  59	xfs_trans_resv_calc(mp, M_RES(mp));
  60	xfs_trans_trace_reservations(mp);
  61}
  62
  63/*
  64 * Free the transaction structure.  If there is more clean up
  65 * to do when the structure is freed, add it here.
  66 */
  67STATIC void
  68xfs_trans_free(
  69	struct xfs_trans	*tp)
  70{
  71	xfs_extent_busy_sort(&tp->t_busy);
  72	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
  73
  74	trace_xfs_trans_free(tp, _RET_IP_);
  75	xfs_trans_clear_context(tp);
  76	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
  77		sb_end_intwrite(tp->t_mountp->m_super);
  78	xfs_trans_free_dqinfo(tp);
  79	kmem_cache_free(xfs_trans_zone, tp);
  80}
  81
  82/*
  83 * This is called to create a new transaction which will share the
  84 * permanent log reservation of the given transaction.  The remaining
  85 * unused block and rt extent reservations are also inherited.  This
  86 * implies that the original transaction is no longer allowed to allocate
  87 * blocks.  Locks and log items, however, are no inherited.  They must
  88 * be added to the new transaction explicitly.
  89 */
  90STATIC struct xfs_trans *
  91xfs_trans_dup(
  92	struct xfs_trans	*tp)
  93{
  94	struct xfs_trans	*ntp;
  95
  96	trace_xfs_trans_dup(tp, _RET_IP_);
  97
  98	ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
  99
 100	/*
 101	 * Initialize the new transaction structure.
 102	 */
 103	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
 104	ntp->t_mountp = tp->t_mountp;
 105	INIT_LIST_HEAD(&ntp->t_items);
 106	INIT_LIST_HEAD(&ntp->t_busy);
 107	INIT_LIST_HEAD(&ntp->t_dfops);
 108	ntp->t_firstblock = NULLFSBLOCK;
 109
 110	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 111	ASSERT(tp->t_ticket != NULL);
 112
 113	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 114		       (tp->t_flags & XFS_TRANS_RESERVE) |
 115		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
 116		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
 117	/* We gave our writer reference to the new transaction */
 118	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
 119	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 120
 121	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
 122	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 123	tp->t_blk_res = tp->t_blk_res_used;
 124
 125	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 126	tp->t_rtx_res = tp->t_rtx_res_used;
 127
 128	xfs_trans_switch_context(tp, ntp);
 129
 130	/* move deferred ops over to the new tp */
 131	xfs_defer_move(ntp, tp);
 132
 133	xfs_trans_dup_dqinfo(tp, ntp);
 134	return ntp;
 135}
 136
 137/*
 138 * This is called to reserve free disk blocks and log space for the
 139 * given transaction.  This must be done before allocating any resources
 140 * within the transaction.
 141 *
 142 * This will return ENOSPC if there are not enough blocks available.
 143 * It will sleep waiting for available log space.
 144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 145 * is used by long running transactions.  If any one of the reservations
 146 * fails then they will all be backed out.
 147 *
 148 * This does not do quota reservations. That typically is done by the
 149 * caller afterwards.
 150 */
 151static int
 152xfs_trans_reserve(
 153	struct xfs_trans	*tp,
 154	struct xfs_trans_res	*resp,
 155	uint			blocks,
 156	uint			rtextents)
 157{
 158	struct xfs_mount	*mp = tp->t_mountp;
 159	int			error = 0;
 160	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 161
 162	/*
 163	 * Attempt to reserve the needed disk blocks by decrementing
 164	 * the number needed from the number available.  This will
 165	 * fail if the count would go below zero.
 166	 */
 167	if (blocks > 0) {
 168		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
 169		if (error != 0)
 170			return -ENOSPC;
 171		tp->t_blk_res += blocks;
 172	}
 173
 174	/*
 175	 * Reserve the log space needed for this transaction.
 176	 */
 177	if (resp->tr_logres > 0) {
 178		bool	permanent = false;
 179
 180		ASSERT(tp->t_log_res == 0 ||
 181		       tp->t_log_res == resp->tr_logres);
 182		ASSERT(tp->t_log_count == 0 ||
 183		       tp->t_log_count == resp->tr_logcount);
 184
 185		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
 186			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 187			permanent = true;
 188		} else {
 189			ASSERT(tp->t_ticket == NULL);
 190			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 191		}
 192
 193		if (tp->t_ticket != NULL) {
 194			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
 195			error = xfs_log_regrant(mp, tp->t_ticket);
 196		} else {
 197			error = xfs_log_reserve(mp,
 198						resp->tr_logres,
 199						resp->tr_logcount,
 200						&tp->t_ticket, XFS_TRANSACTION,
 201						permanent);
 202		}
 203
 204		if (error)
 205			goto undo_blocks;
 206
 207		tp->t_log_res = resp->tr_logres;
 208		tp->t_log_count = resp->tr_logcount;
 209	}
 210
 211	/*
 212	 * Attempt to reserve the needed realtime extents by decrementing
 213	 * the number needed from the number available.  This will
 214	 * fail if the count would go below zero.
 215	 */
 216	if (rtextents > 0) {
 217		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
 218		if (error) {
 219			error = -ENOSPC;
 220			goto undo_log;
 221		}
 222		tp->t_rtx_res += rtextents;
 223	}
 224
 225	return 0;
 226
 227	/*
 228	 * Error cases jump to one of these labels to undo any
 229	 * reservations which have already been performed.
 230	 */
 231undo_log:
 232	if (resp->tr_logres > 0) {
 233		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 234		tp->t_ticket = NULL;
 235		tp->t_log_res = 0;
 236		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 237	}
 238
 239undo_blocks:
 240	if (blocks > 0) {
 241		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
 242		tp->t_blk_res = 0;
 243	}
 244	return error;
 245}
 246
 247int
 248xfs_trans_alloc(
 249	struct xfs_mount	*mp,
 250	struct xfs_trans_res	*resp,
 251	uint			blocks,
 252	uint			rtextents,
 253	uint			flags,
 254	struct xfs_trans	**tpp)
 255{
 256	struct xfs_trans	*tp;
 257	bool			want_retry = true;
 258	int			error;
 259
 260	/*
 261	 * Allocate the handle before we do our freeze accounting and setting up
 262	 * GFP_NOFS allocation context so that we avoid lockdep false positives
 263	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
 264	 */
 265retry:
 266	tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
 267	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
 268		sb_start_intwrite(mp->m_super);
 269	xfs_trans_set_context(tp);
 270
 271	/*
 272	 * Zero-reservation ("empty") transactions can't modify anything, so
 273	 * they're allowed to run while we're frozen.
 274	 */
 275	WARN_ON(resp->tr_logres > 0 &&
 276		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 277	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
 278	       xfs_sb_version_haslazysbcount(&mp->m_sb));
 279
 280	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
 281	tp->t_flags = flags;
 282	tp->t_mountp = mp;
 283	INIT_LIST_HEAD(&tp->t_items);
 284	INIT_LIST_HEAD(&tp->t_busy);
 285	INIT_LIST_HEAD(&tp->t_dfops);
 286	tp->t_firstblock = NULLFSBLOCK;
 287
 288	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
 289	if (error == -ENOSPC && want_retry) {
 290		xfs_trans_cancel(tp);
 291
 292		/*
 293		 * We weren't able to reserve enough space for the transaction.
 294		 * Flush the other speculative space allocations to free space.
 295		 * Do not perform a synchronous scan because callers can hold
 296		 * other locks.
 297		 */
 298		error = xfs_blockgc_free_space(mp, NULL);
 299		if (error)
 300			return error;
 301
 302		want_retry = false;
 303		goto retry;
 304	}
 305	if (error) {
 306		xfs_trans_cancel(tp);
 307		return error;
 308	}
 309
 310	trace_xfs_trans_alloc(tp, _RET_IP_);
 311
 312	*tpp = tp;
 313	return 0;
 314}
 315
 316/*
 317 * Create an empty transaction with no reservation.  This is a defensive
 318 * mechanism for routines that query metadata without actually modifying them --
 319 * if the metadata being queried is somehow cross-linked (think a btree block
 320 * pointer that points higher in the tree), we risk deadlock.  However, blocks
 321 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
 322 * notice the corrupt block and the operation will fail back to userspace
 323 * without deadlocking.
 324 *
 325 * Note the zero-length reservation; this transaction MUST be cancelled without
 326 * any dirty data.
 327 *
 328 * Callers should obtain freeze protection to avoid a conflict with fs freezing
 329 * where we can be grabbing buffers at the same time that freeze is trying to
 330 * drain the buffer LRU list.
 331 */
 332int
 333xfs_trans_alloc_empty(
 334	struct xfs_mount		*mp,
 335	struct xfs_trans		**tpp)
 336{
 337	struct xfs_trans_res		resv = {0};
 338
 339	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
 340}
 341
 342/*
 343 * Record the indicated change to the given field for application
 344 * to the file system's superblock when the transaction commits.
 345 * For now, just store the change in the transaction structure.
 346 *
 347 * Mark the transaction structure to indicate that the superblock
 348 * needs to be updated before committing.
 349 *
 350 * Because we may not be keeping track of allocated/free inodes and
 351 * used filesystem blocks in the superblock, we do not mark the
 352 * superblock dirty in this transaction if we modify these fields.
 353 * We still need to update the transaction deltas so that they get
 354 * applied to the incore superblock, but we don't want them to
 355 * cause the superblock to get locked and logged if these are the
 356 * only fields in the superblock that the transaction modifies.
 357 */
 358void
 359xfs_trans_mod_sb(
 360	xfs_trans_t	*tp,
 361	uint		field,
 362	int64_t		delta)
 363{
 364	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 365	xfs_mount_t	*mp = tp->t_mountp;
 366
 367	switch (field) {
 368	case XFS_TRANS_SB_ICOUNT:
 369		tp->t_icount_delta += delta;
 370		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 371			flags &= ~XFS_TRANS_SB_DIRTY;
 372		break;
 373	case XFS_TRANS_SB_IFREE:
 374		tp->t_ifree_delta += delta;
 375		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 376			flags &= ~XFS_TRANS_SB_DIRTY;
 377		break;
 378	case XFS_TRANS_SB_FDBLOCKS:
 379		/*
 380		 * Track the number of blocks allocated in the transaction.
 381		 * Make sure it does not exceed the number reserved. If so,
 382		 * shutdown as this can lead to accounting inconsistency.
 383		 */
 384		if (delta < 0) {
 385			tp->t_blk_res_used += (uint)-delta;
 386			if (tp->t_blk_res_used > tp->t_blk_res)
 387				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 388		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
 389			int64_t	blkres_delta;
 390
 391			/*
 392			 * Return freed blocks directly to the reservation
 393			 * instead of the global pool, being careful not to
 394			 * overflow the trans counter. This is used to preserve
 395			 * reservation across chains of transaction rolls that
 396			 * repeatedly free and allocate blocks.
 397			 */
 398			blkres_delta = min_t(int64_t, delta,
 399					     UINT_MAX - tp->t_blk_res);
 400			tp->t_blk_res += blkres_delta;
 401			delta -= blkres_delta;
 402		}
 403		tp->t_fdblocks_delta += delta;
 404		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 405			flags &= ~XFS_TRANS_SB_DIRTY;
 406		break;
 407	case XFS_TRANS_SB_RES_FDBLOCKS:
 408		/*
 409		 * The allocation has already been applied to the
 410		 * in-core superblock's counter.  This should only
 411		 * be applied to the on-disk superblock.
 412		 */
 413		tp->t_res_fdblocks_delta += delta;
 414		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 415			flags &= ~XFS_TRANS_SB_DIRTY;
 416		break;
 417	case XFS_TRANS_SB_FREXTENTS:
 418		/*
 419		 * Track the number of blocks allocated in the
 420		 * transaction.  Make sure it does not exceed the
 421		 * number reserved.
 422		 */
 423		if (delta < 0) {
 424			tp->t_rtx_res_used += (uint)-delta;
 425			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 426		}
 427		tp->t_frextents_delta += delta;
 428		break;
 429	case XFS_TRANS_SB_RES_FREXTENTS:
 430		/*
 431		 * The allocation has already been applied to the
 432		 * in-core superblock's counter.  This should only
 433		 * be applied to the on-disk superblock.
 434		 */
 435		ASSERT(delta < 0);
 436		tp->t_res_frextents_delta += delta;
 437		break;
 438	case XFS_TRANS_SB_DBLOCKS:
 439		tp->t_dblocks_delta += delta;
 440		break;
 441	case XFS_TRANS_SB_AGCOUNT:
 442		ASSERT(delta > 0);
 443		tp->t_agcount_delta += delta;
 444		break;
 445	case XFS_TRANS_SB_IMAXPCT:
 446		tp->t_imaxpct_delta += delta;
 447		break;
 448	case XFS_TRANS_SB_REXTSIZE:
 449		tp->t_rextsize_delta += delta;
 450		break;
 451	case XFS_TRANS_SB_RBMBLOCKS:
 452		tp->t_rbmblocks_delta += delta;
 453		break;
 454	case XFS_TRANS_SB_RBLOCKS:
 455		tp->t_rblocks_delta += delta;
 456		break;
 457	case XFS_TRANS_SB_REXTENTS:
 458		tp->t_rextents_delta += delta;
 459		break;
 460	case XFS_TRANS_SB_REXTSLOG:
 461		tp->t_rextslog_delta += delta;
 462		break;
 463	default:
 464		ASSERT(0);
 465		return;
 466	}
 467
 468	tp->t_flags |= flags;
 469}
 470
 471/*
 472 * xfs_trans_apply_sb_deltas() is called from the commit code
 473 * to bring the superblock buffer into the current transaction
 474 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 475 *
 476 * For now we just look at each field allowed to change and change
 477 * it if necessary.
 478 */
 479STATIC void
 480xfs_trans_apply_sb_deltas(
 481	xfs_trans_t	*tp)
 482{
 483	xfs_dsb_t	*sbp;
 484	struct xfs_buf	*bp;
 485	int		whole = 0;
 486
 487	bp = xfs_trans_getsb(tp);
 488	sbp = bp->b_addr;
 489
 490	/*
 491	 * Only update the superblock counters if we are logging them
 492	 */
 493	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
 494		if (tp->t_icount_delta)
 495			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 496		if (tp->t_ifree_delta)
 497			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 498		if (tp->t_fdblocks_delta)
 499			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 500		if (tp->t_res_fdblocks_delta)
 501			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 502	}
 503
 504	if (tp->t_frextents_delta)
 505		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
 506	if (tp->t_res_frextents_delta)
 507		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508
 509	if (tp->t_dblocks_delta) {
 510		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 511		whole = 1;
 512	}
 513	if (tp->t_agcount_delta) {
 514		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 515		whole = 1;
 516	}
 517	if (tp->t_imaxpct_delta) {
 518		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 519		whole = 1;
 520	}
 521	if (tp->t_rextsize_delta) {
 522		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 523		whole = 1;
 524	}
 525	if (tp->t_rbmblocks_delta) {
 526		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 527		whole = 1;
 528	}
 529	if (tp->t_rblocks_delta) {
 530		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 531		whole = 1;
 532	}
 533	if (tp->t_rextents_delta) {
 534		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 535		whole = 1;
 536	}
 537	if (tp->t_rextslog_delta) {
 538		sbp->sb_rextslog += tp->t_rextslog_delta;
 539		whole = 1;
 540	}
 541
 542	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
 543	if (whole)
 544		/*
 545		 * Log the whole thing, the fields are noncontiguous.
 546		 */
 547		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
 548	else
 549		/*
 550		 * Since all the modifiable fields are contiguous, we
 551		 * can get away with this.
 552		 */
 553		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
 554				  offsetof(xfs_dsb_t, sb_frextents) +
 555				  sizeof(sbp->sb_frextents) - 1);
 556}
 557
 558/*
 559 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
 560 * apply superblock counter changes to the in-core superblock.  The
 561 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 562 * applied to the in-core superblock.  The idea is that that has already been
 563 * done.
 564 *
 565 * If we are not logging superblock counters, then the inode allocated/free and
 566 * used block counts are not updated in the on disk superblock. In this case,
 567 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
 568 * still need to update the incore superblock with the changes.
 569 *
 570 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
 571 * so we don't need to take the counter lock on every update.
 572 */
 573#define XFS_ICOUNT_BATCH	128
 574
 575void
 576xfs_trans_unreserve_and_mod_sb(
 577	struct xfs_trans	*tp)
 578{
 579	struct xfs_mount	*mp = tp->t_mountp;
 580	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 581	int64_t			blkdelta = 0;
 582	int64_t			rtxdelta = 0;
 583	int64_t			idelta = 0;
 584	int64_t			ifreedelta = 0;
 585	int			error;
 586
 587	/* calculate deltas */
 588	if (tp->t_blk_res > 0)
 589		blkdelta = tp->t_blk_res;
 590	if ((tp->t_fdblocks_delta != 0) &&
 591	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 592	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
 593	        blkdelta += tp->t_fdblocks_delta;
 594
 595	if (tp->t_rtx_res > 0)
 596		rtxdelta = tp->t_rtx_res;
 597	if ((tp->t_frextents_delta != 0) &&
 598	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
 599		rtxdelta += tp->t_frextents_delta;
 600
 601	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
 602	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 603		idelta = tp->t_icount_delta;
 604		ifreedelta = tp->t_ifree_delta;
 605	}
 606
 607	/* apply the per-cpu counters */
 608	if (blkdelta) {
 609		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
 610		ASSERT(!error);
 611	}
 612
 613	if (idelta)
 614		percpu_counter_add_batch(&mp->m_icount, idelta,
 615					 XFS_ICOUNT_BATCH);
 616
 617	if (ifreedelta)
 618		percpu_counter_add(&mp->m_ifree, ifreedelta);
 619
 620	if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
 
 
 
 
 
 621		return;
 622
 623	/* apply remaining deltas */
 624	spin_lock(&mp->m_sb_lock);
 625	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
 626	mp->m_sb.sb_icount += idelta;
 627	mp->m_sb.sb_ifree += ifreedelta;
 628	mp->m_sb.sb_frextents += rtxdelta;
 
 
 
 
 
 629	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
 630	mp->m_sb.sb_agcount += tp->t_agcount_delta;
 631	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
 632	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
 633	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
 634	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
 635	mp->m_sb.sb_rextents += tp->t_rextents_delta;
 636	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
 637	spin_unlock(&mp->m_sb_lock);
 638
 639	/*
 640	 * Debug checks outside of the spinlock so they don't lock up the
 641	 * machine if they fail.
 642	 */
 643	ASSERT(mp->m_sb.sb_imax_pct >= 0);
 644	ASSERT(mp->m_sb.sb_rextslog >= 0);
 645	return;
 646}
 647
 648/* Add the given log item to the transaction's list of log items. */
 649void
 650xfs_trans_add_item(
 651	struct xfs_trans	*tp,
 652	struct xfs_log_item	*lip)
 653{
 654	ASSERT(lip->li_mountp == tp->t_mountp);
 655	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 656	ASSERT(list_empty(&lip->li_trans));
 657	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
 658
 659	list_add_tail(&lip->li_trans, &tp->t_items);
 660	trace_xfs_trans_add_item(tp, _RET_IP_);
 661}
 662
 663/*
 664 * Unlink the log item from the transaction. the log item is no longer
 665 * considered dirty in this transaction, as the linked transaction has
 666 * finished, either by abort or commit completion.
 667 */
 668void
 669xfs_trans_del_item(
 670	struct xfs_log_item	*lip)
 671{
 672	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
 673	list_del_init(&lip->li_trans);
 674}
 675
 676/* Detach and unlock all of the items in a transaction */
 677static void
 678xfs_trans_free_items(
 679	struct xfs_trans	*tp,
 680	bool			abort)
 681{
 682	struct xfs_log_item	*lip, *next;
 683
 684	trace_xfs_trans_free_items(tp, _RET_IP_);
 685
 686	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
 687		xfs_trans_del_item(lip);
 688		if (abort)
 689			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 690		if (lip->li_ops->iop_release)
 691			lip->li_ops->iop_release(lip);
 692	}
 693}
 694
 695static inline void
 696xfs_log_item_batch_insert(
 697	struct xfs_ail		*ailp,
 698	struct xfs_ail_cursor	*cur,
 699	struct xfs_log_item	**log_items,
 700	int			nr_items,
 701	xfs_lsn_t		commit_lsn)
 702{
 703	int	i;
 704
 705	spin_lock(&ailp->ail_lock);
 706	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
 707	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
 708
 709	for (i = 0; i < nr_items; i++) {
 710		struct xfs_log_item *lip = log_items[i];
 711
 712		if (lip->li_ops->iop_unpin)
 713			lip->li_ops->iop_unpin(lip, 0);
 714	}
 715}
 716
 717/*
 718 * Bulk operation version of xfs_trans_committed that takes a log vector of
 719 * items to insert into the AIL. This uses bulk AIL insertion techniques to
 720 * minimise lock traffic.
 721 *
 722 * If we are called with the aborted flag set, it is because a log write during
 723 * a CIL checkpoint commit has failed. In this case, all the items in the
 724 * checkpoint have already gone through iop_committed and iop_committing, which
 725 * means that checkpoint commit abort handling is treated exactly the same
 726 * as an iclog write error even though we haven't started any IO yet. Hence in
 727 * this case all we need to do is iop_committed processing, followed by an
 728 * iop_unpin(aborted) call.
 729 *
 730 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
 731 * at the end of the AIL, the insert cursor avoids the need to walk
 732 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
 733 * call. This saves a lot of needless list walking and is a net win, even
 734 * though it slightly increases that amount of AIL lock traffic to set it up
 735 * and tear it down.
 736 */
 737void
 738xfs_trans_committed_bulk(
 739	struct xfs_ail		*ailp,
 740	struct xfs_log_vec	*log_vector,
 741	xfs_lsn_t		commit_lsn,
 742	bool			aborted)
 743{
 744#define LOG_ITEM_BATCH_SIZE	32
 745	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
 746	struct xfs_log_vec	*lv;
 747	struct xfs_ail_cursor	cur;
 748	int			i = 0;
 749
 750	spin_lock(&ailp->ail_lock);
 751	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
 752	spin_unlock(&ailp->ail_lock);
 753
 754	/* unpin all the log items */
 755	for (lv = log_vector; lv; lv = lv->lv_next ) {
 756		struct xfs_log_item	*lip = lv->lv_item;
 757		xfs_lsn_t		item_lsn;
 758
 759		if (aborted)
 760			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 761
 762		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
 763			lip->li_ops->iop_release(lip);
 764			continue;
 765		}
 766
 767		if (lip->li_ops->iop_committed)
 768			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
 769		else
 770			item_lsn = commit_lsn;
 771
 772		/* item_lsn of -1 means the item needs no further processing */
 773		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
 774			continue;
 775
 776		/*
 777		 * if we are aborting the operation, no point in inserting the
 778		 * object into the AIL as we are in a shutdown situation.
 779		 */
 780		if (aborted) {
 781			ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount));
 782			if (lip->li_ops->iop_unpin)
 783				lip->li_ops->iop_unpin(lip, 1);
 784			continue;
 785		}
 786
 787		if (item_lsn != commit_lsn) {
 788
 789			/*
 790			 * Not a bulk update option due to unusual item_lsn.
 791			 * Push into AIL immediately, rechecking the lsn once
 792			 * we have the ail lock. Then unpin the item. This does
 793			 * not affect the AIL cursor the bulk insert path is
 794			 * using.
 795			 */
 796			spin_lock(&ailp->ail_lock);
 797			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
 798				xfs_trans_ail_update(ailp, lip, item_lsn);
 799			else
 800				spin_unlock(&ailp->ail_lock);
 801			if (lip->li_ops->iop_unpin)
 802				lip->li_ops->iop_unpin(lip, 0);
 803			continue;
 804		}
 805
 806		/* Item is a candidate for bulk AIL insert.  */
 807		log_items[i++] = lv->lv_item;
 808		if (i >= LOG_ITEM_BATCH_SIZE) {
 809			xfs_log_item_batch_insert(ailp, &cur, log_items,
 810					LOG_ITEM_BATCH_SIZE, commit_lsn);
 811			i = 0;
 812		}
 813	}
 814
 815	/* make sure we insert the remainder! */
 816	if (i)
 817		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
 818
 819	spin_lock(&ailp->ail_lock);
 820	xfs_trans_ail_cursor_done(&cur);
 821	spin_unlock(&ailp->ail_lock);
 822}
 823
 824/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825 * Commit the given transaction to the log.
 826 *
 827 * XFS disk error handling mechanism is not based on a typical
 828 * transaction abort mechanism. Logically after the filesystem
 829 * gets marked 'SHUTDOWN', we can't let any new transactions
 830 * be durable - ie. committed to disk - because some metadata might
 831 * be inconsistent. In such cases, this returns an error, and the
 832 * caller may assume that all locked objects joined to the transaction
 833 * have already been unlocked as if the commit had succeeded.
 834 * Do not reference the transaction structure after this call.
 835 */
 836static int
 837__xfs_trans_commit(
 838	struct xfs_trans	*tp,
 839	bool			regrant)
 840{
 841	struct xfs_mount	*mp = tp->t_mountp;
 
 842	xfs_csn_t		commit_seq = 0;
 843	int			error = 0;
 844	int			sync = tp->t_flags & XFS_TRANS_SYNC;
 845
 846	trace_xfs_trans_commit(tp, _RET_IP_);
 847
 
 
 
 
 
 
 
 848	/*
 849	 * Finish deferred items on final commit. Only permanent transactions
 850	 * should ever have deferred ops.
 851	 */
 852	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
 853		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 854	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
 855		error = xfs_defer_finish_noroll(&tp);
 856		if (error)
 857			goto out_unreserve;
 858	}
 859
 860	/*
 861	 * If there is nothing to be logged by the transaction,
 862	 * then unlock all of the items associated with the
 863	 * transaction and free the transaction structure.
 864	 * Also make sure to return any reserved blocks to
 865	 * the free pool.
 866	 */
 867	if (!(tp->t_flags & XFS_TRANS_DIRTY))
 868		goto out_unreserve;
 869
 870	if (XFS_FORCED_SHUTDOWN(mp)) {
 
 
 
 
 
 
 871		error = -EIO;
 872		goto out_unreserve;
 873	}
 874
 875	ASSERT(tp->t_ticket != NULL);
 876
 877	/*
 878	 * If we need to update the superblock, then do it now.
 879	 */
 880	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
 881		xfs_trans_apply_sb_deltas(tp);
 882	xfs_trans_apply_dquot_deltas(tp);
 883
 884	xlog_cil_commit(mp->m_log, tp, &commit_seq, regrant);
 885
 886	xfs_trans_free(tp);
 887
 888	/*
 889	 * If the transaction needs to be synchronous, then force the
 890	 * log out now and wait for it.
 891	 */
 892	if (sync) {
 893		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
 894		XFS_STATS_INC(mp, xs_trans_sync);
 895	} else {
 896		XFS_STATS_INC(mp, xs_trans_async);
 897	}
 898
 899	return error;
 900
 901out_unreserve:
 902	xfs_trans_unreserve_and_mod_sb(tp);
 903
 904	/*
 905	 * It is indeed possible for the transaction to be not dirty but
 906	 * the dqinfo portion to be.  All that means is that we have some
 907	 * (non-persistent) quota reservations that need to be unreserved.
 908	 */
 909	xfs_trans_unreserve_and_mod_dquots(tp);
 910	if (tp->t_ticket) {
 911		if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log))
 912			xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
 913		else
 914			xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 915		tp->t_ticket = NULL;
 916	}
 917	xfs_trans_free_items(tp, !!error);
 918	xfs_trans_free(tp);
 919
 920	XFS_STATS_INC(mp, xs_trans_empty);
 921	return error;
 922}
 923
 924int
 925xfs_trans_commit(
 926	struct xfs_trans	*tp)
 927{
 928	return __xfs_trans_commit(tp, false);
 929}
 930
 931/*
 932 * Unlock all of the transaction's items and free the transaction.
 933 * The transaction must not have modified any of its items, because
 934 * there is no way to restore them to their previous state.
 
 
 
 935 *
 936 * If the transaction has made a log reservation, make sure to release
 937 * it as well.
 
 
 
 
 
 938 */
 939void
 940xfs_trans_cancel(
 941	struct xfs_trans	*tp)
 942{
 943	struct xfs_mount	*mp = tp->t_mountp;
 
 944	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
 945
 946	trace_xfs_trans_cancel(tp, _RET_IP_);
 947
 948	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
 
 
 
 
 
 
 
 
 949		xfs_defer_cancel(tp);
 
 950
 951	/*
 952	 * See if the caller is relying on us to shut down the
 953	 * filesystem.  This happens in paths where we detect
 954	 * corruption and decide to give up.
 
 955	 */
 956	if (dirty && !XFS_FORCED_SHUTDOWN(mp)) {
 957		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
 958		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 959	}
 960#ifdef DEBUG
 961	if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) {
 
 962		struct xfs_log_item *lip;
 963
 964		list_for_each_entry(lip, &tp->t_items, li_trans)
 965			ASSERT(!xlog_item_is_intent_done(lip));
 966	}
 967#endif
 968	xfs_trans_unreserve_and_mod_sb(tp);
 969	xfs_trans_unreserve_and_mod_dquots(tp);
 970
 971	if (tp->t_ticket) {
 972		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 973		tp->t_ticket = NULL;
 974	}
 975
 976	xfs_trans_free_items(tp, dirty);
 977	xfs_trans_free(tp);
 978}
 979
 980/*
 981 * Roll from one trans in the sequence of PERMANENT transactions to
 982 * the next: permanent transactions are only flushed out when
 983 * committed with xfs_trans_commit(), but we still want as soon
 984 * as possible to let chunks of it go to the log. So we commit the
 985 * chunk we've been working on and get a new transaction to continue.
 986 */
 987int
 988xfs_trans_roll(
 989	struct xfs_trans	**tpp)
 990{
 991	struct xfs_trans	*trans = *tpp;
 992	struct xfs_trans_res	tres;
 993	int			error;
 994
 995	trace_xfs_trans_roll(trans, _RET_IP_);
 996
 997	/*
 998	 * Copy the critical parameters from one trans to the next.
 999	 */
1000	tres.tr_logres = trans->t_log_res;
1001	tres.tr_logcount = trans->t_log_count;
1002
1003	*tpp = xfs_trans_dup(trans);
1004
1005	/*
1006	 * Commit the current transaction.
1007	 * If this commit failed, then it'd just unlock those items that
1008	 * are not marked ihold. That also means that a filesystem shutdown
1009	 * is in progress. The caller takes the responsibility to cancel
1010	 * the duplicate transaction that gets returned.
1011	 */
1012	error = __xfs_trans_commit(trans, true);
1013	if (error)
1014		return error;
1015
1016	/*
1017	 * Reserve space in the log for the next transaction.
1018	 * This also pushes items in the "AIL", the list of logged items,
1019	 * out to disk if they are taking up space at the tail of the log
1020	 * that we want to use.  This requires that either nothing be locked
1021	 * across this call, or that anything that is locked be logged in
1022	 * the prior and the next transactions.
1023	 */
1024	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1025	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1026}
1027
1028/*
1029 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1030 *
1031 * The caller must ensure that the on-disk dquots attached to this inode have
1032 * already been allocated and initialized.  The caller is responsible for
1033 * releasing ILOCK_EXCL if a new transaction is returned.
1034 */
1035int
1036xfs_trans_alloc_inode(
1037	struct xfs_inode	*ip,
1038	struct xfs_trans_res	*resv,
1039	unsigned int		dblocks,
1040	unsigned int		rblocks,
1041	bool			force,
1042	struct xfs_trans	**tpp)
1043{
1044	struct xfs_trans	*tp;
1045	struct xfs_mount	*mp = ip->i_mount;
1046	bool			retried = false;
1047	int			error;
1048
1049retry:
1050	error = xfs_trans_alloc(mp, resv, dblocks,
1051			rblocks / mp->m_sb.sb_rextsize,
1052			force ? XFS_TRANS_RESERVE : 0, &tp);
1053	if (error)
1054		return error;
1055
1056	xfs_ilock(ip, XFS_ILOCK_EXCL);
1057	xfs_trans_ijoin(tp, ip, 0);
1058
1059	error = xfs_qm_dqattach_locked(ip, false);
1060	if (error) {
1061		/* Caller should have allocated the dquots! */
1062		ASSERT(error != -ENOENT);
1063		goto out_cancel;
1064	}
1065
1066	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1067	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1068		xfs_trans_cancel(tp);
1069		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1070		xfs_blockgc_free_quota(ip, 0);
1071		retried = true;
1072		goto retry;
1073	}
1074	if (error)
1075		goto out_cancel;
1076
1077	*tpp = tp;
1078	return 0;
1079
1080out_cancel:
1081	xfs_trans_cancel(tp);
1082	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1083	return error;
1084}
1085
1086/*
1087 * Allocate an transaction in preparation for inode creation by reserving quota
1088 * against the given dquots.  Callers are not required to hold any inode locks.
1089 */
1090int
1091xfs_trans_alloc_icreate(
1092	struct xfs_mount	*mp,
1093	struct xfs_trans_res	*resv,
1094	struct xfs_dquot	*udqp,
1095	struct xfs_dquot	*gdqp,
1096	struct xfs_dquot	*pdqp,
1097	unsigned int		dblocks,
1098	struct xfs_trans	**tpp)
1099{
1100	struct xfs_trans	*tp;
1101	bool			retried = false;
1102	int			error;
1103
1104retry:
1105	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1106	if (error)
1107		return error;
1108
1109	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1110	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1111		xfs_trans_cancel(tp);
1112		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1113		retried = true;
1114		goto retry;
1115	}
1116	if (error) {
1117		xfs_trans_cancel(tp);
1118		return error;
1119	}
1120
1121	*tpp = tp;
1122	return 0;
1123}
1124
1125/*
1126 * Allocate an transaction, lock and join the inode to it, and reserve quota
1127 * in preparation for inode attribute changes that include uid, gid, or prid
1128 * changes.
1129 *
1130 * The caller must ensure that the on-disk dquots attached to this inode have
1131 * already been allocated and initialized.  The ILOCK will be dropped when the
1132 * transaction is committed or cancelled.
1133 */
1134int
1135xfs_trans_alloc_ichange(
1136	struct xfs_inode	*ip,
1137	struct xfs_dquot	*new_udqp,
1138	struct xfs_dquot	*new_gdqp,
1139	struct xfs_dquot	*new_pdqp,
1140	bool			force,
1141	struct xfs_trans	**tpp)
1142{
1143	struct xfs_trans	*tp;
1144	struct xfs_mount	*mp = ip->i_mount;
1145	struct xfs_dquot	*udqp;
1146	struct xfs_dquot	*gdqp;
1147	struct xfs_dquot	*pdqp;
1148	bool			retried = false;
1149	int			error;
1150
1151retry:
1152	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1153	if (error)
1154		return error;
1155
1156	xfs_ilock(ip, XFS_ILOCK_EXCL);
1157	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1158
1159	error = xfs_qm_dqattach_locked(ip, false);
1160	if (error) {
1161		/* Caller should have allocated the dquots! */
1162		ASSERT(error != -ENOENT);
1163		goto out_cancel;
1164	}
1165
1166	/*
1167	 * For each quota type, skip quota reservations if the inode's dquots
1168	 * now match the ones that came from the caller, or the caller didn't
1169	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1170	 * perform a blockgc scan, so we must preserve the caller's arguments.
1171	 */
1172	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1173	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1174	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1175	if (udqp || gdqp || pdqp) {
1176		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1177
1178		if (force)
1179			qflags |= XFS_QMOPT_FORCE_RES;
1180
1181		/*
1182		 * Reserve enough quota to handle blocks on disk and reserved
1183		 * for a delayed allocation.  We'll actually transfer the
1184		 * delalloc reservation between dquots at chown time, even
1185		 * though that part is only semi-transactional.
1186		 */
1187		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1188				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1189				1, qflags);
1190		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1191			xfs_trans_cancel(tp);
1192			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1193			retried = true;
1194			goto retry;
1195		}
1196		if (error)
1197			goto out_cancel;
1198	}
1199
1200	*tpp = tp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	return 0;
1202
1203out_cancel:
1204	xfs_trans_cancel(tp);
1205	return error;
1206}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
 
  12#include "xfs_trans_resv.h"
  13#include "xfs_mount.h"
  14#include "xfs_extent_busy.h"
  15#include "xfs_quota.h"
  16#include "xfs_trans.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_trace.h"
  21#include "xfs_error.h"
  22#include "xfs_defer.h"
  23#include "xfs_inode.h"
  24#include "xfs_dquot_item.h"
  25#include "xfs_dquot.h"
  26#include "xfs_icache.h"
  27
  28struct kmem_cache	*xfs_trans_cache;
  29
  30#if defined(CONFIG_TRACEPOINTS)
  31static void
  32xfs_trans_trace_reservations(
  33	struct xfs_mount	*mp)
  34{
 
  35	struct xfs_trans_res	*res;
  36	struct xfs_trans_res	*end_res;
  37	int			i;
  38
  39	res = (struct xfs_trans_res *)M_RES(mp);
  40	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
  41	for (i = 0; res < end_res; i++, res++)
  42		trace_xfs_trans_resv_calc(mp, i, res);
 
 
  43}
  44#else
  45# define xfs_trans_trace_reservations(mp)
  46#endif
  47
  48/*
  49 * Initialize the precomputed transaction reservation values
  50 * in the mount structure.
  51 */
  52void
  53xfs_trans_init(
  54	struct xfs_mount	*mp)
  55{
  56	xfs_trans_resv_calc(mp, M_RES(mp));
  57	xfs_trans_trace_reservations(mp);
  58}
  59
  60/*
  61 * Free the transaction structure.  If there is more clean up
  62 * to do when the structure is freed, add it here.
  63 */
  64STATIC void
  65xfs_trans_free(
  66	struct xfs_trans	*tp)
  67{
  68	xfs_extent_busy_sort(&tp->t_busy);
  69	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
  70
  71	trace_xfs_trans_free(tp, _RET_IP_);
  72	xfs_trans_clear_context(tp);
  73	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
  74		sb_end_intwrite(tp->t_mountp->m_super);
  75	xfs_trans_free_dqinfo(tp);
  76	kmem_cache_free(xfs_trans_cache, tp);
  77}
  78
  79/*
  80 * This is called to create a new transaction which will share the
  81 * permanent log reservation of the given transaction.  The remaining
  82 * unused block and rt extent reservations are also inherited.  This
  83 * implies that the original transaction is no longer allowed to allocate
  84 * blocks.  Locks and log items, however, are no inherited.  They must
  85 * be added to the new transaction explicitly.
  86 */
  87STATIC struct xfs_trans *
  88xfs_trans_dup(
  89	struct xfs_trans	*tp)
  90{
  91	struct xfs_trans	*ntp;
  92
  93	trace_xfs_trans_dup(tp, _RET_IP_);
  94
  95	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
  96
  97	/*
  98	 * Initialize the new transaction structure.
  99	 */
 100	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
 101	ntp->t_mountp = tp->t_mountp;
 102	INIT_LIST_HEAD(&ntp->t_items);
 103	INIT_LIST_HEAD(&ntp->t_busy);
 104	INIT_LIST_HEAD(&ntp->t_dfops);
 105	ntp->t_firstblock = NULLFSBLOCK;
 106
 107	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 108	ASSERT(tp->t_ticket != NULL);
 109
 110	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 111		       (tp->t_flags & XFS_TRANS_RESERVE) |
 112		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
 113		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
 114	/* We gave our writer reference to the new transaction */
 115	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
 116	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 117
 118	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
 119	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 120	tp->t_blk_res = tp->t_blk_res_used;
 121
 122	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 123	tp->t_rtx_res = tp->t_rtx_res_used;
 124
 125	xfs_trans_switch_context(tp, ntp);
 126
 127	/* move deferred ops over to the new tp */
 128	xfs_defer_move(ntp, tp);
 129
 130	xfs_trans_dup_dqinfo(tp, ntp);
 131	return ntp;
 132}
 133
 134/*
 135 * This is called to reserve free disk blocks and log space for the
 136 * given transaction.  This must be done before allocating any resources
 137 * within the transaction.
 138 *
 139 * This will return ENOSPC if there are not enough blocks available.
 140 * It will sleep waiting for available log space.
 141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 142 * is used by long running transactions.  If any one of the reservations
 143 * fails then they will all be backed out.
 144 *
 145 * This does not do quota reservations. That typically is done by the
 146 * caller afterwards.
 147 */
 148static int
 149xfs_trans_reserve(
 150	struct xfs_trans	*tp,
 151	struct xfs_trans_res	*resp,
 152	uint			blocks,
 153	uint			rtextents)
 154{
 155	struct xfs_mount	*mp = tp->t_mountp;
 156	int			error = 0;
 157	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 158
 159	/*
 160	 * Attempt to reserve the needed disk blocks by decrementing
 161	 * the number needed from the number available.  This will
 162	 * fail if the count would go below zero.
 163	 */
 164	if (blocks > 0) {
 165		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
 166		if (error != 0)
 167			return -ENOSPC;
 168		tp->t_blk_res += blocks;
 169	}
 170
 171	/*
 172	 * Reserve the log space needed for this transaction.
 173	 */
 174	if (resp->tr_logres > 0) {
 175		bool	permanent = false;
 176
 177		ASSERT(tp->t_log_res == 0 ||
 178		       tp->t_log_res == resp->tr_logres);
 179		ASSERT(tp->t_log_count == 0 ||
 180		       tp->t_log_count == resp->tr_logcount);
 181
 182		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
 183			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 184			permanent = true;
 185		} else {
 186			ASSERT(tp->t_ticket == NULL);
 187			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 188		}
 189
 190		if (tp->t_ticket != NULL) {
 191			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
 192			error = xfs_log_regrant(mp, tp->t_ticket);
 193		} else {
 194			error = xfs_log_reserve(mp, resp->tr_logres,
 
 195						resp->tr_logcount,
 196						&tp->t_ticket, permanent);
 
 197		}
 198
 199		if (error)
 200			goto undo_blocks;
 201
 202		tp->t_log_res = resp->tr_logres;
 203		tp->t_log_count = resp->tr_logcount;
 204	}
 205
 206	/*
 207	 * Attempt to reserve the needed realtime extents by decrementing
 208	 * the number needed from the number available.  This will
 209	 * fail if the count would go below zero.
 210	 */
 211	if (rtextents > 0) {
 212		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
 213		if (error) {
 214			error = -ENOSPC;
 215			goto undo_log;
 216		}
 217		tp->t_rtx_res += rtextents;
 218	}
 219
 220	return 0;
 221
 222	/*
 223	 * Error cases jump to one of these labels to undo any
 224	 * reservations which have already been performed.
 225	 */
 226undo_log:
 227	if (resp->tr_logres > 0) {
 228		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 229		tp->t_ticket = NULL;
 230		tp->t_log_res = 0;
 231		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 232	}
 233
 234undo_blocks:
 235	if (blocks > 0) {
 236		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
 237		tp->t_blk_res = 0;
 238	}
 239	return error;
 240}
 241
 242int
 243xfs_trans_alloc(
 244	struct xfs_mount	*mp,
 245	struct xfs_trans_res	*resp,
 246	uint			blocks,
 247	uint			rtextents,
 248	uint			flags,
 249	struct xfs_trans	**tpp)
 250{
 251	struct xfs_trans	*tp;
 252	bool			want_retry = true;
 253	int			error;
 254
 255	/*
 256	 * Allocate the handle before we do our freeze accounting and setting up
 257	 * GFP_NOFS allocation context so that we avoid lockdep false positives
 258	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
 259	 */
 260retry:
 261	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
 262	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
 263		sb_start_intwrite(mp->m_super);
 264	xfs_trans_set_context(tp);
 265
 266	/*
 267	 * Zero-reservation ("empty") transactions can't modify anything, so
 268	 * they're allowed to run while we're frozen.
 269	 */
 270	WARN_ON(resp->tr_logres > 0 &&
 271		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 272	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
 273	       xfs_has_lazysbcount(mp));
 274
 275	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
 276	tp->t_flags = flags;
 277	tp->t_mountp = mp;
 278	INIT_LIST_HEAD(&tp->t_items);
 279	INIT_LIST_HEAD(&tp->t_busy);
 280	INIT_LIST_HEAD(&tp->t_dfops);
 281	tp->t_firstblock = NULLFSBLOCK;
 282
 283	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
 284	if (error == -ENOSPC && want_retry) {
 285		xfs_trans_cancel(tp);
 286
 287		/*
 288		 * We weren't able to reserve enough space for the transaction.
 289		 * Flush the other speculative space allocations to free space.
 290		 * Do not perform a synchronous scan because callers can hold
 291		 * other locks.
 292		 */
 293		xfs_blockgc_flush_all(mp);
 
 
 
 294		want_retry = false;
 295		goto retry;
 296	}
 297	if (error) {
 298		xfs_trans_cancel(tp);
 299		return error;
 300	}
 301
 302	trace_xfs_trans_alloc(tp, _RET_IP_);
 303
 304	*tpp = tp;
 305	return 0;
 306}
 307
 308/*
 309 * Create an empty transaction with no reservation.  This is a defensive
 310 * mechanism for routines that query metadata without actually modifying them --
 311 * if the metadata being queried is somehow cross-linked (think a btree block
 312 * pointer that points higher in the tree), we risk deadlock.  However, blocks
 313 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
 314 * notice the corrupt block and the operation will fail back to userspace
 315 * without deadlocking.
 316 *
 317 * Note the zero-length reservation; this transaction MUST be cancelled without
 318 * any dirty data.
 319 *
 320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
 321 * where we can be grabbing buffers at the same time that freeze is trying to
 322 * drain the buffer LRU list.
 323 */
 324int
 325xfs_trans_alloc_empty(
 326	struct xfs_mount		*mp,
 327	struct xfs_trans		**tpp)
 328{
 329	struct xfs_trans_res		resv = {0};
 330
 331	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
 332}
 333
 334/*
 335 * Record the indicated change to the given field for application
 336 * to the file system's superblock when the transaction commits.
 337 * For now, just store the change in the transaction structure.
 338 *
 339 * Mark the transaction structure to indicate that the superblock
 340 * needs to be updated before committing.
 341 *
 342 * Because we may not be keeping track of allocated/free inodes and
 343 * used filesystem blocks in the superblock, we do not mark the
 344 * superblock dirty in this transaction if we modify these fields.
 345 * We still need to update the transaction deltas so that they get
 346 * applied to the incore superblock, but we don't want them to
 347 * cause the superblock to get locked and logged if these are the
 348 * only fields in the superblock that the transaction modifies.
 349 */
 350void
 351xfs_trans_mod_sb(
 352	xfs_trans_t	*tp,
 353	uint		field,
 354	int64_t		delta)
 355{
 356	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 357	xfs_mount_t	*mp = tp->t_mountp;
 358
 359	switch (field) {
 360	case XFS_TRANS_SB_ICOUNT:
 361		tp->t_icount_delta += delta;
 362		if (xfs_has_lazysbcount(mp))
 363			flags &= ~XFS_TRANS_SB_DIRTY;
 364		break;
 365	case XFS_TRANS_SB_IFREE:
 366		tp->t_ifree_delta += delta;
 367		if (xfs_has_lazysbcount(mp))
 368			flags &= ~XFS_TRANS_SB_DIRTY;
 369		break;
 370	case XFS_TRANS_SB_FDBLOCKS:
 371		/*
 372		 * Track the number of blocks allocated in the transaction.
 373		 * Make sure it does not exceed the number reserved. If so,
 374		 * shutdown as this can lead to accounting inconsistency.
 375		 */
 376		if (delta < 0) {
 377			tp->t_blk_res_used += (uint)-delta;
 378			if (tp->t_blk_res_used > tp->t_blk_res)
 379				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 380		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
 381			int64_t	blkres_delta;
 382
 383			/*
 384			 * Return freed blocks directly to the reservation
 385			 * instead of the global pool, being careful not to
 386			 * overflow the trans counter. This is used to preserve
 387			 * reservation across chains of transaction rolls that
 388			 * repeatedly free and allocate blocks.
 389			 */
 390			blkres_delta = min_t(int64_t, delta,
 391					     UINT_MAX - tp->t_blk_res);
 392			tp->t_blk_res += blkres_delta;
 393			delta -= blkres_delta;
 394		}
 395		tp->t_fdblocks_delta += delta;
 396		if (xfs_has_lazysbcount(mp))
 397			flags &= ~XFS_TRANS_SB_DIRTY;
 398		break;
 399	case XFS_TRANS_SB_RES_FDBLOCKS:
 400		/*
 401		 * The allocation has already been applied to the
 402		 * in-core superblock's counter.  This should only
 403		 * be applied to the on-disk superblock.
 404		 */
 405		tp->t_res_fdblocks_delta += delta;
 406		if (xfs_has_lazysbcount(mp))
 407			flags &= ~XFS_TRANS_SB_DIRTY;
 408		break;
 409	case XFS_TRANS_SB_FREXTENTS:
 410		/*
 411		 * Track the number of blocks allocated in the
 412		 * transaction.  Make sure it does not exceed the
 413		 * number reserved.
 414		 */
 415		if (delta < 0) {
 416			tp->t_rtx_res_used += (uint)-delta;
 417			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 418		}
 419		tp->t_frextents_delta += delta;
 420		break;
 421	case XFS_TRANS_SB_RES_FREXTENTS:
 422		/*
 423		 * The allocation has already been applied to the
 424		 * in-core superblock's counter.  This should only
 425		 * be applied to the on-disk superblock.
 426		 */
 427		ASSERT(delta < 0);
 428		tp->t_res_frextents_delta += delta;
 429		break;
 430	case XFS_TRANS_SB_DBLOCKS:
 431		tp->t_dblocks_delta += delta;
 432		break;
 433	case XFS_TRANS_SB_AGCOUNT:
 434		ASSERT(delta > 0);
 435		tp->t_agcount_delta += delta;
 436		break;
 437	case XFS_TRANS_SB_IMAXPCT:
 438		tp->t_imaxpct_delta += delta;
 439		break;
 440	case XFS_TRANS_SB_REXTSIZE:
 441		tp->t_rextsize_delta += delta;
 442		break;
 443	case XFS_TRANS_SB_RBMBLOCKS:
 444		tp->t_rbmblocks_delta += delta;
 445		break;
 446	case XFS_TRANS_SB_RBLOCKS:
 447		tp->t_rblocks_delta += delta;
 448		break;
 449	case XFS_TRANS_SB_REXTENTS:
 450		tp->t_rextents_delta += delta;
 451		break;
 452	case XFS_TRANS_SB_REXTSLOG:
 453		tp->t_rextslog_delta += delta;
 454		break;
 455	default:
 456		ASSERT(0);
 457		return;
 458	}
 459
 460	tp->t_flags |= flags;
 461}
 462
 463/*
 464 * xfs_trans_apply_sb_deltas() is called from the commit code
 465 * to bring the superblock buffer into the current transaction
 466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 467 *
 468 * For now we just look at each field allowed to change and change
 469 * it if necessary.
 470 */
 471STATIC void
 472xfs_trans_apply_sb_deltas(
 473	xfs_trans_t	*tp)
 474{
 475	struct xfs_dsb	*sbp;
 476	struct xfs_buf	*bp;
 477	int		whole = 0;
 478
 479	bp = xfs_trans_getsb(tp);
 480	sbp = bp->b_addr;
 481
 482	/*
 483	 * Only update the superblock counters if we are logging them
 484	 */
 485	if (!xfs_has_lazysbcount((tp->t_mountp))) {
 486		if (tp->t_icount_delta)
 487			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 488		if (tp->t_ifree_delta)
 489			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 490		if (tp->t_fdblocks_delta)
 491			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 492		if (tp->t_res_fdblocks_delta)
 493			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 494	}
 495
 496	/*
 497	 * Updating frextents requires careful handling because it does not
 498	 * behave like the lazysb counters because we cannot rely on log
 499	 * recovery in older kenels to recompute the value from the rtbitmap.
 500	 * This means that the ondisk frextents must be consistent with the
 501	 * rtbitmap.
 502	 *
 503	 * Therefore, log the frextents change to the ondisk superblock and
 504	 * update the incore superblock so that future calls to xfs_log_sb
 505	 * write the correct value ondisk.
 506	 *
 507	 * Don't touch m_frextents because it includes incore reservations,
 508	 * and those are handled by the unreserve function.
 509	 */
 510	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
 511		struct xfs_mount	*mp = tp->t_mountp;
 512		int64_t			rtxdelta;
 513
 514		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
 515
 516		spin_lock(&mp->m_sb_lock);
 517		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
 518		mp->m_sb.sb_frextents += rtxdelta;
 519		spin_unlock(&mp->m_sb_lock);
 520	}
 521
 522	if (tp->t_dblocks_delta) {
 523		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 524		whole = 1;
 525	}
 526	if (tp->t_agcount_delta) {
 527		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 528		whole = 1;
 529	}
 530	if (tp->t_imaxpct_delta) {
 531		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 532		whole = 1;
 533	}
 534	if (tp->t_rextsize_delta) {
 535		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 536		whole = 1;
 537	}
 538	if (tp->t_rbmblocks_delta) {
 539		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 540		whole = 1;
 541	}
 542	if (tp->t_rblocks_delta) {
 543		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 544		whole = 1;
 545	}
 546	if (tp->t_rextents_delta) {
 547		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 548		whole = 1;
 549	}
 550	if (tp->t_rextslog_delta) {
 551		sbp->sb_rextslog += tp->t_rextslog_delta;
 552		whole = 1;
 553	}
 554
 555	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
 556	if (whole)
 557		/*
 558		 * Log the whole thing, the fields are noncontiguous.
 559		 */
 560		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
 561	else
 562		/*
 563		 * Since all the modifiable fields are contiguous, we
 564		 * can get away with this.
 565		 */
 566		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
 567				  offsetof(struct xfs_dsb, sb_frextents) +
 568				  sizeof(sbp->sb_frextents) - 1);
 569}
 570
 571/*
 572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
 573 * apply superblock counter changes to the in-core superblock.  The
 574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 575 * applied to the in-core superblock.  The idea is that that has already been
 576 * done.
 577 *
 578 * If we are not logging superblock counters, then the inode allocated/free and
 579 * used block counts are not updated in the on disk superblock. In this case,
 580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
 581 * still need to update the incore superblock with the changes.
 582 *
 583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
 584 * so we don't need to take the counter lock on every update.
 585 */
 586#define XFS_ICOUNT_BATCH	128
 587
 588void
 589xfs_trans_unreserve_and_mod_sb(
 590	struct xfs_trans	*tp)
 591{
 592	struct xfs_mount	*mp = tp->t_mountp;
 593	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 594	int64_t			blkdelta = 0;
 595	int64_t			rtxdelta = 0;
 596	int64_t			idelta = 0;
 597	int64_t			ifreedelta = 0;
 598	int			error;
 599
 600	/* calculate deltas */
 601	if (tp->t_blk_res > 0)
 602		blkdelta = tp->t_blk_res;
 603	if ((tp->t_fdblocks_delta != 0) &&
 604	    (xfs_has_lazysbcount(mp) ||
 605	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
 606	        blkdelta += tp->t_fdblocks_delta;
 607
 608	if (tp->t_rtx_res > 0)
 609		rtxdelta = tp->t_rtx_res;
 610	if ((tp->t_frextents_delta != 0) &&
 611	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
 612		rtxdelta += tp->t_frextents_delta;
 613
 614	if (xfs_has_lazysbcount(mp) ||
 615	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 616		idelta = tp->t_icount_delta;
 617		ifreedelta = tp->t_ifree_delta;
 618	}
 619
 620	/* apply the per-cpu counters */
 621	if (blkdelta) {
 622		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
 623		ASSERT(!error);
 624	}
 625
 626	if (idelta)
 627		percpu_counter_add_batch(&mp->m_icount, idelta,
 628					 XFS_ICOUNT_BATCH);
 629
 630	if (ifreedelta)
 631		percpu_counter_add(&mp->m_ifree, ifreedelta);
 632
 633	if (rtxdelta) {
 634		error = xfs_mod_frextents(mp, rtxdelta);
 635		ASSERT(!error);
 636	}
 637
 638	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
 639		return;
 640
 641	/* apply remaining deltas */
 642	spin_lock(&mp->m_sb_lock);
 643	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
 644	mp->m_sb.sb_icount += idelta;
 645	mp->m_sb.sb_ifree += ifreedelta;
 646	/*
 647	 * Do not touch sb_frextents here because we are dealing with incore
 648	 * reservation.  sb_frextents is not part of the lazy sb counters so it
 649	 * must be consistent with the ondisk rtbitmap and must never include
 650	 * incore reservations.
 651	 */
 652	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
 653	mp->m_sb.sb_agcount += tp->t_agcount_delta;
 654	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
 655	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
 656	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
 657	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
 658	mp->m_sb.sb_rextents += tp->t_rextents_delta;
 659	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
 660	spin_unlock(&mp->m_sb_lock);
 661
 662	/*
 663	 * Debug checks outside of the spinlock so they don't lock up the
 664	 * machine if they fail.
 665	 */
 666	ASSERT(mp->m_sb.sb_imax_pct >= 0);
 667	ASSERT(mp->m_sb.sb_rextslog >= 0);
 668	return;
 669}
 670
 671/* Add the given log item to the transaction's list of log items. */
 672void
 673xfs_trans_add_item(
 674	struct xfs_trans	*tp,
 675	struct xfs_log_item	*lip)
 676{
 677	ASSERT(lip->li_log == tp->t_mountp->m_log);
 678	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 679	ASSERT(list_empty(&lip->li_trans));
 680	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
 681
 682	list_add_tail(&lip->li_trans, &tp->t_items);
 683	trace_xfs_trans_add_item(tp, _RET_IP_);
 684}
 685
 686/*
 687 * Unlink the log item from the transaction. the log item is no longer
 688 * considered dirty in this transaction, as the linked transaction has
 689 * finished, either by abort or commit completion.
 690 */
 691void
 692xfs_trans_del_item(
 693	struct xfs_log_item	*lip)
 694{
 695	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
 696	list_del_init(&lip->li_trans);
 697}
 698
 699/* Detach and unlock all of the items in a transaction */
 700static void
 701xfs_trans_free_items(
 702	struct xfs_trans	*tp,
 703	bool			abort)
 704{
 705	struct xfs_log_item	*lip, *next;
 706
 707	trace_xfs_trans_free_items(tp, _RET_IP_);
 708
 709	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
 710		xfs_trans_del_item(lip);
 711		if (abort)
 712			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 713		if (lip->li_ops->iop_release)
 714			lip->li_ops->iop_release(lip);
 715	}
 716}
 717
 718static inline void
 719xfs_log_item_batch_insert(
 720	struct xfs_ail		*ailp,
 721	struct xfs_ail_cursor	*cur,
 722	struct xfs_log_item	**log_items,
 723	int			nr_items,
 724	xfs_lsn_t		commit_lsn)
 725{
 726	int	i;
 727
 728	spin_lock(&ailp->ail_lock);
 729	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
 730	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
 731
 732	for (i = 0; i < nr_items; i++) {
 733		struct xfs_log_item *lip = log_items[i];
 734
 735		if (lip->li_ops->iop_unpin)
 736			lip->li_ops->iop_unpin(lip, 0);
 737	}
 738}
 739
 740/*
 741 * Bulk operation version of xfs_trans_committed that takes a log vector of
 742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
 743 * minimise lock traffic.
 744 *
 745 * If we are called with the aborted flag set, it is because a log write during
 746 * a CIL checkpoint commit has failed. In this case, all the items in the
 747 * checkpoint have already gone through iop_committed and iop_committing, which
 748 * means that checkpoint commit abort handling is treated exactly the same
 749 * as an iclog write error even though we haven't started any IO yet. Hence in
 750 * this case all we need to do is iop_committed processing, followed by an
 751 * iop_unpin(aborted) call.
 752 *
 753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
 754 * at the end of the AIL, the insert cursor avoids the need to walk
 755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
 756 * call. This saves a lot of needless list walking and is a net win, even
 757 * though it slightly increases that amount of AIL lock traffic to set it up
 758 * and tear it down.
 759 */
 760void
 761xfs_trans_committed_bulk(
 762	struct xfs_ail		*ailp,
 763	struct list_head	*lv_chain,
 764	xfs_lsn_t		commit_lsn,
 765	bool			aborted)
 766{
 767#define LOG_ITEM_BATCH_SIZE	32
 768	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
 769	struct xfs_log_vec	*lv;
 770	struct xfs_ail_cursor	cur;
 771	int			i = 0;
 772
 773	spin_lock(&ailp->ail_lock);
 774	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
 775	spin_unlock(&ailp->ail_lock);
 776
 777	/* unpin all the log items */
 778	list_for_each_entry(lv, lv_chain, lv_list) {
 779		struct xfs_log_item	*lip = lv->lv_item;
 780		xfs_lsn_t		item_lsn;
 781
 782		if (aborted)
 783			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 784
 785		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
 786			lip->li_ops->iop_release(lip);
 787			continue;
 788		}
 789
 790		if (lip->li_ops->iop_committed)
 791			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
 792		else
 793			item_lsn = commit_lsn;
 794
 795		/* item_lsn of -1 means the item needs no further processing */
 796		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
 797			continue;
 798
 799		/*
 800		 * if we are aborting the operation, no point in inserting the
 801		 * object into the AIL as we are in a shutdown situation.
 802		 */
 803		if (aborted) {
 804			ASSERT(xlog_is_shutdown(ailp->ail_log));
 805			if (lip->li_ops->iop_unpin)
 806				lip->li_ops->iop_unpin(lip, 1);
 807			continue;
 808		}
 809
 810		if (item_lsn != commit_lsn) {
 811
 812			/*
 813			 * Not a bulk update option due to unusual item_lsn.
 814			 * Push into AIL immediately, rechecking the lsn once
 815			 * we have the ail lock. Then unpin the item. This does
 816			 * not affect the AIL cursor the bulk insert path is
 817			 * using.
 818			 */
 819			spin_lock(&ailp->ail_lock);
 820			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
 821				xfs_trans_ail_update(ailp, lip, item_lsn);
 822			else
 823				spin_unlock(&ailp->ail_lock);
 824			if (lip->li_ops->iop_unpin)
 825				lip->li_ops->iop_unpin(lip, 0);
 826			continue;
 827		}
 828
 829		/* Item is a candidate for bulk AIL insert.  */
 830		log_items[i++] = lv->lv_item;
 831		if (i >= LOG_ITEM_BATCH_SIZE) {
 832			xfs_log_item_batch_insert(ailp, &cur, log_items,
 833					LOG_ITEM_BATCH_SIZE, commit_lsn);
 834			i = 0;
 835		}
 836	}
 837
 838	/* make sure we insert the remainder! */
 839	if (i)
 840		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
 841
 842	spin_lock(&ailp->ail_lock);
 843	xfs_trans_ail_cursor_done(&cur);
 844	spin_unlock(&ailp->ail_lock);
 845}
 846
 847/*
 848 * Sort transaction items prior to running precommit operations. This will
 849 * attempt to order the items such that they will always be locked in the same
 850 * order. Items that have no sort function are moved to the end of the list
 851 * and so are locked last.
 852 *
 853 * This may need refinement as different types of objects add sort functions.
 854 *
 855 * Function is more complex than it needs to be because we are comparing 64 bit
 856 * values and the function only returns 32 bit values.
 857 */
 858static int
 859xfs_trans_precommit_sort(
 860	void			*unused_arg,
 861	const struct list_head	*a,
 862	const struct list_head	*b)
 863{
 864	struct xfs_log_item	*lia = container_of(a,
 865					struct xfs_log_item, li_trans);
 866	struct xfs_log_item	*lib = container_of(b,
 867					struct xfs_log_item, li_trans);
 868	int64_t			diff;
 869
 870	/*
 871	 * If both items are non-sortable, leave them alone. If only one is
 872	 * sortable, move the non-sortable item towards the end of the list.
 873	 */
 874	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
 875		return 0;
 876	if (!lia->li_ops->iop_sort)
 877		return 1;
 878	if (!lib->li_ops->iop_sort)
 879		return -1;
 880
 881	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
 882	if (diff < 0)
 883		return -1;
 884	if (diff > 0)
 885		return 1;
 886	return 0;
 887}
 888
 889/*
 890 * Run transaction precommit functions.
 891 *
 892 * If there is an error in any of the callouts, then stop immediately and
 893 * trigger a shutdown to abort the transaction. There is no recovery possible
 894 * from errors at this point as the transaction is dirty....
 895 */
 896static int
 897xfs_trans_run_precommits(
 898	struct xfs_trans	*tp)
 899{
 900	struct xfs_mount	*mp = tp->t_mountp;
 901	struct xfs_log_item	*lip, *n;
 902	int			error = 0;
 903
 904	/*
 905	 * Sort the item list to avoid ABBA deadlocks with other transactions
 906	 * running precommit operations that lock multiple shared items such as
 907	 * inode cluster buffers.
 908	 */
 909	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
 910
 911	/*
 912	 * Precommit operations can remove the log item from the transaction
 913	 * if the log item exists purely to delay modifications until they
 914	 * can be ordered against other operations. Hence we have to use
 915	 * list_for_each_entry_safe() here.
 916	 */
 917	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
 918		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 919			continue;
 920		if (lip->li_ops->iop_precommit) {
 921			error = lip->li_ops->iop_precommit(tp, lip);
 922			if (error)
 923				break;
 924		}
 925	}
 926	if (error)
 927		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 928	return error;
 929}
 930
 931/*
 932 * Commit the given transaction to the log.
 933 *
 934 * XFS disk error handling mechanism is not based on a typical
 935 * transaction abort mechanism. Logically after the filesystem
 936 * gets marked 'SHUTDOWN', we can't let any new transactions
 937 * be durable - ie. committed to disk - because some metadata might
 938 * be inconsistent. In such cases, this returns an error, and the
 939 * caller may assume that all locked objects joined to the transaction
 940 * have already been unlocked as if the commit had succeeded.
 941 * Do not reference the transaction structure after this call.
 942 */
 943static int
 944__xfs_trans_commit(
 945	struct xfs_trans	*tp,
 946	bool			regrant)
 947{
 948	struct xfs_mount	*mp = tp->t_mountp;
 949	struct xlog		*log = mp->m_log;
 950	xfs_csn_t		commit_seq = 0;
 951	int			error = 0;
 952	int			sync = tp->t_flags & XFS_TRANS_SYNC;
 953
 954	trace_xfs_trans_commit(tp, _RET_IP_);
 955
 956	error = xfs_trans_run_precommits(tp);
 957	if (error) {
 958		if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
 959			xfs_defer_cancel(tp);
 960		goto out_unreserve;
 961	}
 962
 963	/*
 964	 * Finish deferred items on final commit. Only permanent transactions
 965	 * should ever have deferred ops.
 966	 */
 967	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
 968		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 969	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
 970		error = xfs_defer_finish_noroll(&tp);
 971		if (error)
 972			goto out_unreserve;
 973	}
 974
 975	/*
 976	 * If there is nothing to be logged by the transaction,
 977	 * then unlock all of the items associated with the
 978	 * transaction and free the transaction structure.
 979	 * Also make sure to return any reserved blocks to
 980	 * the free pool.
 981	 */
 982	if (!(tp->t_flags & XFS_TRANS_DIRTY))
 983		goto out_unreserve;
 984
 985	/*
 986	 * We must check against log shutdown here because we cannot abort log
 987	 * items and leave them dirty, inconsistent and unpinned in memory while
 988	 * the log is active. This leaves them open to being written back to
 989	 * disk, and that will lead to on-disk corruption.
 990	 */
 991	if (xlog_is_shutdown(log)) {
 992		error = -EIO;
 993		goto out_unreserve;
 994	}
 995
 996	ASSERT(tp->t_ticket != NULL);
 997
 998	/*
 999	 * If we need to update the superblock, then do it now.
1000	 */
1001	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1002		xfs_trans_apply_sb_deltas(tp);
1003	xfs_trans_apply_dquot_deltas(tp);
1004
1005	xlog_cil_commit(log, tp, &commit_seq, regrant);
1006
1007	xfs_trans_free(tp);
1008
1009	/*
1010	 * If the transaction needs to be synchronous, then force the
1011	 * log out now and wait for it.
1012	 */
1013	if (sync) {
1014		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1015		XFS_STATS_INC(mp, xs_trans_sync);
1016	} else {
1017		XFS_STATS_INC(mp, xs_trans_async);
1018	}
1019
1020	return error;
1021
1022out_unreserve:
1023	xfs_trans_unreserve_and_mod_sb(tp);
1024
1025	/*
1026	 * It is indeed possible for the transaction to be not dirty but
1027	 * the dqinfo portion to be.  All that means is that we have some
1028	 * (non-persistent) quota reservations that need to be unreserved.
1029	 */
1030	xfs_trans_unreserve_and_mod_dquots(tp);
1031	if (tp->t_ticket) {
1032		if (regrant && !xlog_is_shutdown(log))
1033			xfs_log_ticket_regrant(log, tp->t_ticket);
1034		else
1035			xfs_log_ticket_ungrant(log, tp->t_ticket);
1036		tp->t_ticket = NULL;
1037	}
1038	xfs_trans_free_items(tp, !!error);
1039	xfs_trans_free(tp);
1040
1041	XFS_STATS_INC(mp, xs_trans_empty);
1042	return error;
1043}
1044
1045int
1046xfs_trans_commit(
1047	struct xfs_trans	*tp)
1048{
1049	return __xfs_trans_commit(tp, false);
1050}
1051
1052/*
1053 * Unlock all of the transaction's items and free the transaction.  If the
1054 * transaction is dirty, we must shut down the filesystem because there is no
1055 * way to restore them to their previous state.
1056 *
1057 * If the transaction has made a log reservation, make sure to release it as
1058 * well.
1059 *
1060 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1061 * be called after the transaction has effectively been aborted due to the mount
1062 * being shut down. However, if the mount has not been shut down and the
1063 * transaction is dirty we will shut the mount down and, in doing so, that
1064 * guarantees that the log is shut down, too. Hence we don't need to be as
1065 * careful with shutdown state and dirty items here as we need to be in
1066 * xfs_trans_commit().
1067 */
1068void
1069xfs_trans_cancel(
1070	struct xfs_trans	*tp)
1071{
1072	struct xfs_mount	*mp = tp->t_mountp;
1073	struct xlog		*log = mp->m_log;
1074	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1075
1076	trace_xfs_trans_cancel(tp, _RET_IP_);
1077
1078	/*
1079	 * It's never valid to cancel a transaction with deferred ops attached,
1080	 * because the transaction is effectively dirty.  Complain about this
1081	 * loudly before freeing the in-memory defer items.
1082	 */
1083	if (!list_empty(&tp->t_dfops)) {
1084		ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
1085		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1086		dirty = true;
1087		xfs_defer_cancel(tp);
1088	}
1089
1090	/*
1091	 * See if the caller is relying on us to shut down the filesystem. We
1092	 * only want an error report if there isn't already a shutdown in
1093	 * progress, so we only need to check against the mount shutdown state
1094	 * here.
1095	 */
1096	if (dirty && !xfs_is_shutdown(mp)) {
1097		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1098		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1099	}
1100#ifdef DEBUG
1101	/* Log items need to be consistent until the log is shut down. */
1102	if (!dirty && !xlog_is_shutdown(log)) {
1103		struct xfs_log_item *lip;
1104
1105		list_for_each_entry(lip, &tp->t_items, li_trans)
1106			ASSERT(!xlog_item_is_intent_done(lip));
1107	}
1108#endif
1109	xfs_trans_unreserve_and_mod_sb(tp);
1110	xfs_trans_unreserve_and_mod_dquots(tp);
1111
1112	if (tp->t_ticket) {
1113		xfs_log_ticket_ungrant(log, tp->t_ticket);
1114		tp->t_ticket = NULL;
1115	}
1116
1117	xfs_trans_free_items(tp, dirty);
1118	xfs_trans_free(tp);
1119}
1120
1121/*
1122 * Roll from one trans in the sequence of PERMANENT transactions to
1123 * the next: permanent transactions are only flushed out when
1124 * committed with xfs_trans_commit(), but we still want as soon
1125 * as possible to let chunks of it go to the log. So we commit the
1126 * chunk we've been working on and get a new transaction to continue.
1127 */
1128int
1129xfs_trans_roll(
1130	struct xfs_trans	**tpp)
1131{
1132	struct xfs_trans	*trans = *tpp;
1133	struct xfs_trans_res	tres;
1134	int			error;
1135
1136	trace_xfs_trans_roll(trans, _RET_IP_);
1137
1138	/*
1139	 * Copy the critical parameters from one trans to the next.
1140	 */
1141	tres.tr_logres = trans->t_log_res;
1142	tres.tr_logcount = trans->t_log_count;
1143
1144	*tpp = xfs_trans_dup(trans);
1145
1146	/*
1147	 * Commit the current transaction.
1148	 * If this commit failed, then it'd just unlock those items that
1149	 * are not marked ihold. That also means that a filesystem shutdown
1150	 * is in progress. The caller takes the responsibility to cancel
1151	 * the duplicate transaction that gets returned.
1152	 */
1153	error = __xfs_trans_commit(trans, true);
1154	if (error)
1155		return error;
1156
1157	/*
1158	 * Reserve space in the log for the next transaction.
1159	 * This also pushes items in the "AIL", the list of logged items,
1160	 * out to disk if they are taking up space at the tail of the log
1161	 * that we want to use.  This requires that either nothing be locked
1162	 * across this call, or that anything that is locked be logged in
1163	 * the prior and the next transactions.
1164	 */
1165	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1166	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1167}
1168
1169/*
1170 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1171 *
1172 * The caller must ensure that the on-disk dquots attached to this inode have
1173 * already been allocated and initialized.  The caller is responsible for
1174 * releasing ILOCK_EXCL if a new transaction is returned.
1175 */
1176int
1177xfs_trans_alloc_inode(
1178	struct xfs_inode	*ip,
1179	struct xfs_trans_res	*resv,
1180	unsigned int		dblocks,
1181	unsigned int		rblocks,
1182	bool			force,
1183	struct xfs_trans	**tpp)
1184{
1185	struct xfs_trans	*tp;
1186	struct xfs_mount	*mp = ip->i_mount;
1187	bool			retried = false;
1188	int			error;
1189
1190retry:
1191	error = xfs_trans_alloc(mp, resv, dblocks,
1192			rblocks / mp->m_sb.sb_rextsize,
1193			force ? XFS_TRANS_RESERVE : 0, &tp);
1194	if (error)
1195		return error;
1196
1197	xfs_ilock(ip, XFS_ILOCK_EXCL);
1198	xfs_trans_ijoin(tp, ip, 0);
1199
1200	error = xfs_qm_dqattach_locked(ip, false);
1201	if (error) {
1202		/* Caller should have allocated the dquots! */
1203		ASSERT(error != -ENOENT);
1204		goto out_cancel;
1205	}
1206
1207	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1208	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1209		xfs_trans_cancel(tp);
1210		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211		xfs_blockgc_free_quota(ip, 0);
1212		retried = true;
1213		goto retry;
1214	}
1215	if (error)
1216		goto out_cancel;
1217
1218	*tpp = tp;
1219	return 0;
1220
1221out_cancel:
1222	xfs_trans_cancel(tp);
1223	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224	return error;
1225}
1226
1227/*
1228 * Allocate an transaction in preparation for inode creation by reserving quota
1229 * against the given dquots.  Callers are not required to hold any inode locks.
1230 */
1231int
1232xfs_trans_alloc_icreate(
1233	struct xfs_mount	*mp,
1234	struct xfs_trans_res	*resv,
1235	struct xfs_dquot	*udqp,
1236	struct xfs_dquot	*gdqp,
1237	struct xfs_dquot	*pdqp,
1238	unsigned int		dblocks,
1239	struct xfs_trans	**tpp)
1240{
1241	struct xfs_trans	*tp;
1242	bool			retried = false;
1243	int			error;
1244
1245retry:
1246	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1247	if (error)
1248		return error;
1249
1250	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1251	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1252		xfs_trans_cancel(tp);
1253		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1254		retried = true;
1255		goto retry;
1256	}
1257	if (error) {
1258		xfs_trans_cancel(tp);
1259		return error;
1260	}
1261
1262	*tpp = tp;
1263	return 0;
1264}
1265
1266/*
1267 * Allocate an transaction, lock and join the inode to it, and reserve quota
1268 * in preparation for inode attribute changes that include uid, gid, or prid
1269 * changes.
1270 *
1271 * The caller must ensure that the on-disk dquots attached to this inode have
1272 * already been allocated and initialized.  The ILOCK will be dropped when the
1273 * transaction is committed or cancelled.
1274 */
1275int
1276xfs_trans_alloc_ichange(
1277	struct xfs_inode	*ip,
1278	struct xfs_dquot	*new_udqp,
1279	struct xfs_dquot	*new_gdqp,
1280	struct xfs_dquot	*new_pdqp,
1281	bool			force,
1282	struct xfs_trans	**tpp)
1283{
1284	struct xfs_trans	*tp;
1285	struct xfs_mount	*mp = ip->i_mount;
1286	struct xfs_dquot	*udqp;
1287	struct xfs_dquot	*gdqp;
1288	struct xfs_dquot	*pdqp;
1289	bool			retried = false;
1290	int			error;
1291
1292retry:
1293	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1294	if (error)
1295		return error;
1296
1297	xfs_ilock(ip, XFS_ILOCK_EXCL);
1298	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1299
1300	error = xfs_qm_dqattach_locked(ip, false);
1301	if (error) {
1302		/* Caller should have allocated the dquots! */
1303		ASSERT(error != -ENOENT);
1304		goto out_cancel;
1305	}
1306
1307	/*
1308	 * For each quota type, skip quota reservations if the inode's dquots
1309	 * now match the ones that came from the caller, or the caller didn't
1310	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1311	 * perform a blockgc scan, so we must preserve the caller's arguments.
1312	 */
1313	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1314	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1315	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1316	if (udqp || gdqp || pdqp) {
1317		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1318
1319		if (force)
1320			qflags |= XFS_QMOPT_FORCE_RES;
1321
1322		/*
1323		 * Reserve enough quota to handle blocks on disk and reserved
1324		 * for a delayed allocation.  We'll actually transfer the
1325		 * delalloc reservation between dquots at chown time, even
1326		 * though that part is only semi-transactional.
1327		 */
1328		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1329				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1330				1, qflags);
1331		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1332			xfs_trans_cancel(tp);
1333			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1334			retried = true;
1335			goto retry;
1336		}
1337		if (error)
1338			goto out_cancel;
1339	}
1340
1341	*tpp = tp;
1342	return 0;
1343
1344out_cancel:
1345	xfs_trans_cancel(tp);
1346	return error;
1347}
1348
1349/*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update.  If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized.  The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 */
1360int
1361xfs_trans_alloc_dir(
1362	struct xfs_inode	*dp,
1363	struct xfs_trans_res	*resv,
1364	struct xfs_inode	*ip,
1365	unsigned int		*dblocks,
1366	struct xfs_trans	**tpp,
1367	int			*nospace_error)
1368{
1369	struct xfs_trans	*tp;
1370	struct xfs_mount	*mp = ip->i_mount;
1371	unsigned int		resblks;
1372	bool			retried = false;
1373	int			error;
1374
1375retry:
1376	*nospace_error = 0;
1377	resblks = *dblocks;
1378	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379	if (error == -ENOSPC) {
1380		*nospace_error = error;
1381		resblks = 0;
1382		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383	}
1384	if (error)
1385		return error;
1386
1387	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1390	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1391
1392	error = xfs_qm_dqattach_locked(dp, false);
1393	if (error) {
1394		/* Caller should have allocated the dquots! */
1395		ASSERT(error != -ENOENT);
1396		goto out_cancel;
1397	}
1398
1399	error = xfs_qm_dqattach_locked(ip, false);
1400	if (error) {
1401		/* Caller should have allocated the dquots! */
1402		ASSERT(error != -ENOENT);
1403		goto out_cancel;
1404	}
1405
1406	if (resblks == 0)
1407		goto done;
1408
1409	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410	if (error == -EDQUOT || error == -ENOSPC) {
1411		if (!retried) {
1412			xfs_trans_cancel(tp);
1413			xfs_blockgc_free_quota(dp, 0);
1414			retried = true;
1415			goto retry;
1416		}
1417
1418		*nospace_error = error;
1419		resblks = 0;
1420		error = 0;
1421	}
1422	if (error)
1423		goto out_cancel;
1424
1425done:
1426	*tpp = tp;
1427	*dblocks = resblks;
1428	return 0;
1429
1430out_cancel:
1431	xfs_trans_cancel(tp);
1432	return error;
1433}