Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_log_priv.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_extent_busy.h"
16#include "xfs_quota.h"
17#include "xfs_trans.h"
18#include "xfs_trans_priv.h"
19#include "xfs_log.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27
28kmem_zone_t *xfs_trans_zone;
29
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34{
35 struct xfs_trans_res resv;
36 struct xfs_trans_res *res;
37 struct xfs_trans_res *end_res;
38 int i;
39
40 res = (struct xfs_trans_res *)M_RES(mp);
41 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42 for (i = 0; res < end_res; i++, res++)
43 trace_xfs_trans_resv_calc(mp, i, res);
44 xfs_log_get_max_trans_res(mp, &resv);
45 trace_xfs_trans_resv_calc(mp, -1, &resv);
46}
47#else
48# define xfs_trans_trace_reservations(mp)
49#endif
50
51/*
52 * Initialize the precomputed transaction reservation values
53 * in the mount structure.
54 */
55void
56xfs_trans_init(
57 struct xfs_mount *mp)
58{
59 xfs_trans_resv_calc(mp, M_RES(mp));
60 xfs_trans_trace_reservations(mp);
61}
62
63/*
64 * Free the transaction structure. If there is more clean up
65 * to do when the structure is freed, add it here.
66 */
67STATIC void
68xfs_trans_free(
69 struct xfs_trans *tp)
70{
71 xfs_extent_busy_sort(&tp->t_busy);
72 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
73
74 trace_xfs_trans_free(tp, _RET_IP_);
75 xfs_trans_clear_context(tp);
76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 sb_end_intwrite(tp->t_mountp->m_super);
78 xfs_trans_free_dqinfo(tp);
79 kmem_cache_free(xfs_trans_zone, tp);
80}
81
82/*
83 * This is called to create a new transaction which will share the
84 * permanent log reservation of the given transaction. The remaining
85 * unused block and rt extent reservations are also inherited. This
86 * implies that the original transaction is no longer allowed to allocate
87 * blocks. Locks and log items, however, are no inherited. They must
88 * be added to the new transaction explicitly.
89 */
90STATIC struct xfs_trans *
91xfs_trans_dup(
92 struct xfs_trans *tp)
93{
94 struct xfs_trans *ntp;
95
96 trace_xfs_trans_dup(tp, _RET_IP_);
97
98 ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
99
100 /*
101 * Initialize the new transaction structure.
102 */
103 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
104 ntp->t_mountp = tp->t_mountp;
105 INIT_LIST_HEAD(&ntp->t_items);
106 INIT_LIST_HEAD(&ntp->t_busy);
107 INIT_LIST_HEAD(&ntp->t_dfops);
108 ntp->t_firstblock = NULLFSBLOCK;
109
110 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
111 ASSERT(tp->t_ticket != NULL);
112
113 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
114 (tp->t_flags & XFS_TRANS_RESERVE) |
115 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
116 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
117 /* We gave our writer reference to the new transaction */
118 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
119 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
120
121 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
122 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
123 tp->t_blk_res = tp->t_blk_res_used;
124
125 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
126 tp->t_rtx_res = tp->t_rtx_res_used;
127
128 xfs_trans_switch_context(tp, ntp);
129
130 /* move deferred ops over to the new tp */
131 xfs_defer_move(ntp, tp);
132
133 xfs_trans_dup_dqinfo(tp, ntp);
134 return ntp;
135}
136
137/*
138 * This is called to reserve free disk blocks and log space for the
139 * given transaction. This must be done before allocating any resources
140 * within the transaction.
141 *
142 * This will return ENOSPC if there are not enough blocks available.
143 * It will sleep waiting for available log space.
144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
145 * is used by long running transactions. If any one of the reservations
146 * fails then they will all be backed out.
147 *
148 * This does not do quota reservations. That typically is done by the
149 * caller afterwards.
150 */
151static int
152xfs_trans_reserve(
153 struct xfs_trans *tp,
154 struct xfs_trans_res *resp,
155 uint blocks,
156 uint rtextents)
157{
158 struct xfs_mount *mp = tp->t_mountp;
159 int error = 0;
160 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
161
162 /*
163 * Attempt to reserve the needed disk blocks by decrementing
164 * the number needed from the number available. This will
165 * fail if the count would go below zero.
166 */
167 if (blocks > 0) {
168 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
169 if (error != 0)
170 return -ENOSPC;
171 tp->t_blk_res += blocks;
172 }
173
174 /*
175 * Reserve the log space needed for this transaction.
176 */
177 if (resp->tr_logres > 0) {
178 bool permanent = false;
179
180 ASSERT(tp->t_log_res == 0 ||
181 tp->t_log_res == resp->tr_logres);
182 ASSERT(tp->t_log_count == 0 ||
183 tp->t_log_count == resp->tr_logcount);
184
185 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
186 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
187 permanent = true;
188 } else {
189 ASSERT(tp->t_ticket == NULL);
190 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
191 }
192
193 if (tp->t_ticket != NULL) {
194 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
195 error = xfs_log_regrant(mp, tp->t_ticket);
196 } else {
197 error = xfs_log_reserve(mp,
198 resp->tr_logres,
199 resp->tr_logcount,
200 &tp->t_ticket, XFS_TRANSACTION,
201 permanent);
202 }
203
204 if (error)
205 goto undo_blocks;
206
207 tp->t_log_res = resp->tr_logres;
208 tp->t_log_count = resp->tr_logcount;
209 }
210
211 /*
212 * Attempt to reserve the needed realtime extents by decrementing
213 * the number needed from the number available. This will
214 * fail if the count would go below zero.
215 */
216 if (rtextents > 0) {
217 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
218 if (error) {
219 error = -ENOSPC;
220 goto undo_log;
221 }
222 tp->t_rtx_res += rtextents;
223 }
224
225 return 0;
226
227 /*
228 * Error cases jump to one of these labels to undo any
229 * reservations which have already been performed.
230 */
231undo_log:
232 if (resp->tr_logres > 0) {
233 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
234 tp->t_ticket = NULL;
235 tp->t_log_res = 0;
236 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
237 }
238
239undo_blocks:
240 if (blocks > 0) {
241 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
242 tp->t_blk_res = 0;
243 }
244 return error;
245}
246
247int
248xfs_trans_alloc(
249 struct xfs_mount *mp,
250 struct xfs_trans_res *resp,
251 uint blocks,
252 uint rtextents,
253 uint flags,
254 struct xfs_trans **tpp)
255{
256 struct xfs_trans *tp;
257 bool want_retry = true;
258 int error;
259
260 /*
261 * Allocate the handle before we do our freeze accounting and setting up
262 * GFP_NOFS allocation context so that we avoid lockdep false positives
263 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
264 */
265retry:
266 tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
267 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
268 sb_start_intwrite(mp->m_super);
269 xfs_trans_set_context(tp);
270
271 /*
272 * Zero-reservation ("empty") transactions can't modify anything, so
273 * they're allowed to run while we're frozen.
274 */
275 WARN_ON(resp->tr_logres > 0 &&
276 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
277 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
278 xfs_sb_version_haslazysbcount(&mp->m_sb));
279
280 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
281 tp->t_flags = flags;
282 tp->t_mountp = mp;
283 INIT_LIST_HEAD(&tp->t_items);
284 INIT_LIST_HEAD(&tp->t_busy);
285 INIT_LIST_HEAD(&tp->t_dfops);
286 tp->t_firstblock = NULLFSBLOCK;
287
288 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
289 if (error == -ENOSPC && want_retry) {
290 xfs_trans_cancel(tp);
291
292 /*
293 * We weren't able to reserve enough space for the transaction.
294 * Flush the other speculative space allocations to free space.
295 * Do not perform a synchronous scan because callers can hold
296 * other locks.
297 */
298 error = xfs_blockgc_free_space(mp, NULL);
299 if (error)
300 return error;
301
302 want_retry = false;
303 goto retry;
304 }
305 if (error) {
306 xfs_trans_cancel(tp);
307 return error;
308 }
309
310 trace_xfs_trans_alloc(tp, _RET_IP_);
311
312 *tpp = tp;
313 return 0;
314}
315
316/*
317 * Create an empty transaction with no reservation. This is a defensive
318 * mechanism for routines that query metadata without actually modifying them --
319 * if the metadata being queried is somehow cross-linked (think a btree block
320 * pointer that points higher in the tree), we risk deadlock. However, blocks
321 * grabbed as part of a transaction can be re-grabbed. The verifiers will
322 * notice the corrupt block and the operation will fail back to userspace
323 * without deadlocking.
324 *
325 * Note the zero-length reservation; this transaction MUST be cancelled without
326 * any dirty data.
327 *
328 * Callers should obtain freeze protection to avoid a conflict with fs freezing
329 * where we can be grabbing buffers at the same time that freeze is trying to
330 * drain the buffer LRU list.
331 */
332int
333xfs_trans_alloc_empty(
334 struct xfs_mount *mp,
335 struct xfs_trans **tpp)
336{
337 struct xfs_trans_res resv = {0};
338
339 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
340}
341
342/*
343 * Record the indicated change to the given field for application
344 * to the file system's superblock when the transaction commits.
345 * For now, just store the change in the transaction structure.
346 *
347 * Mark the transaction structure to indicate that the superblock
348 * needs to be updated before committing.
349 *
350 * Because we may not be keeping track of allocated/free inodes and
351 * used filesystem blocks in the superblock, we do not mark the
352 * superblock dirty in this transaction if we modify these fields.
353 * We still need to update the transaction deltas so that they get
354 * applied to the incore superblock, but we don't want them to
355 * cause the superblock to get locked and logged if these are the
356 * only fields in the superblock that the transaction modifies.
357 */
358void
359xfs_trans_mod_sb(
360 xfs_trans_t *tp,
361 uint field,
362 int64_t delta)
363{
364 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
365 xfs_mount_t *mp = tp->t_mountp;
366
367 switch (field) {
368 case XFS_TRANS_SB_ICOUNT:
369 tp->t_icount_delta += delta;
370 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
371 flags &= ~XFS_TRANS_SB_DIRTY;
372 break;
373 case XFS_TRANS_SB_IFREE:
374 tp->t_ifree_delta += delta;
375 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
376 flags &= ~XFS_TRANS_SB_DIRTY;
377 break;
378 case XFS_TRANS_SB_FDBLOCKS:
379 /*
380 * Track the number of blocks allocated in the transaction.
381 * Make sure it does not exceed the number reserved. If so,
382 * shutdown as this can lead to accounting inconsistency.
383 */
384 if (delta < 0) {
385 tp->t_blk_res_used += (uint)-delta;
386 if (tp->t_blk_res_used > tp->t_blk_res)
387 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
388 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
389 int64_t blkres_delta;
390
391 /*
392 * Return freed blocks directly to the reservation
393 * instead of the global pool, being careful not to
394 * overflow the trans counter. This is used to preserve
395 * reservation across chains of transaction rolls that
396 * repeatedly free and allocate blocks.
397 */
398 blkres_delta = min_t(int64_t, delta,
399 UINT_MAX - tp->t_blk_res);
400 tp->t_blk_res += blkres_delta;
401 delta -= blkres_delta;
402 }
403 tp->t_fdblocks_delta += delta;
404 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
405 flags &= ~XFS_TRANS_SB_DIRTY;
406 break;
407 case XFS_TRANS_SB_RES_FDBLOCKS:
408 /*
409 * The allocation has already been applied to the
410 * in-core superblock's counter. This should only
411 * be applied to the on-disk superblock.
412 */
413 tp->t_res_fdblocks_delta += delta;
414 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
415 flags &= ~XFS_TRANS_SB_DIRTY;
416 break;
417 case XFS_TRANS_SB_FREXTENTS:
418 /*
419 * Track the number of blocks allocated in the
420 * transaction. Make sure it does not exceed the
421 * number reserved.
422 */
423 if (delta < 0) {
424 tp->t_rtx_res_used += (uint)-delta;
425 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
426 }
427 tp->t_frextents_delta += delta;
428 break;
429 case XFS_TRANS_SB_RES_FREXTENTS:
430 /*
431 * The allocation has already been applied to the
432 * in-core superblock's counter. This should only
433 * be applied to the on-disk superblock.
434 */
435 ASSERT(delta < 0);
436 tp->t_res_frextents_delta += delta;
437 break;
438 case XFS_TRANS_SB_DBLOCKS:
439 tp->t_dblocks_delta += delta;
440 break;
441 case XFS_TRANS_SB_AGCOUNT:
442 ASSERT(delta > 0);
443 tp->t_agcount_delta += delta;
444 break;
445 case XFS_TRANS_SB_IMAXPCT:
446 tp->t_imaxpct_delta += delta;
447 break;
448 case XFS_TRANS_SB_REXTSIZE:
449 tp->t_rextsize_delta += delta;
450 break;
451 case XFS_TRANS_SB_RBMBLOCKS:
452 tp->t_rbmblocks_delta += delta;
453 break;
454 case XFS_TRANS_SB_RBLOCKS:
455 tp->t_rblocks_delta += delta;
456 break;
457 case XFS_TRANS_SB_REXTENTS:
458 tp->t_rextents_delta += delta;
459 break;
460 case XFS_TRANS_SB_REXTSLOG:
461 tp->t_rextslog_delta += delta;
462 break;
463 default:
464 ASSERT(0);
465 return;
466 }
467
468 tp->t_flags |= flags;
469}
470
471/*
472 * xfs_trans_apply_sb_deltas() is called from the commit code
473 * to bring the superblock buffer into the current transaction
474 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
475 *
476 * For now we just look at each field allowed to change and change
477 * it if necessary.
478 */
479STATIC void
480xfs_trans_apply_sb_deltas(
481 xfs_trans_t *tp)
482{
483 xfs_dsb_t *sbp;
484 struct xfs_buf *bp;
485 int whole = 0;
486
487 bp = xfs_trans_getsb(tp);
488 sbp = bp->b_addr;
489
490 /*
491 * Only update the superblock counters if we are logging them
492 */
493 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
494 if (tp->t_icount_delta)
495 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
496 if (tp->t_ifree_delta)
497 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
498 if (tp->t_fdblocks_delta)
499 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
500 if (tp->t_res_fdblocks_delta)
501 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
502 }
503
504 if (tp->t_frextents_delta)
505 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
506 if (tp->t_res_frextents_delta)
507 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
508
509 if (tp->t_dblocks_delta) {
510 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
511 whole = 1;
512 }
513 if (tp->t_agcount_delta) {
514 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
515 whole = 1;
516 }
517 if (tp->t_imaxpct_delta) {
518 sbp->sb_imax_pct += tp->t_imaxpct_delta;
519 whole = 1;
520 }
521 if (tp->t_rextsize_delta) {
522 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
523 whole = 1;
524 }
525 if (tp->t_rbmblocks_delta) {
526 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
527 whole = 1;
528 }
529 if (tp->t_rblocks_delta) {
530 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
531 whole = 1;
532 }
533 if (tp->t_rextents_delta) {
534 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
535 whole = 1;
536 }
537 if (tp->t_rextslog_delta) {
538 sbp->sb_rextslog += tp->t_rextslog_delta;
539 whole = 1;
540 }
541
542 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
543 if (whole)
544 /*
545 * Log the whole thing, the fields are noncontiguous.
546 */
547 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
548 else
549 /*
550 * Since all the modifiable fields are contiguous, we
551 * can get away with this.
552 */
553 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
554 offsetof(xfs_dsb_t, sb_frextents) +
555 sizeof(sbp->sb_frextents) - 1);
556}
557
558/*
559 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
560 * apply superblock counter changes to the in-core superblock. The
561 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
562 * applied to the in-core superblock. The idea is that that has already been
563 * done.
564 *
565 * If we are not logging superblock counters, then the inode allocated/free and
566 * used block counts are not updated in the on disk superblock. In this case,
567 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
568 * still need to update the incore superblock with the changes.
569 *
570 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
571 * so we don't need to take the counter lock on every update.
572 */
573#define XFS_ICOUNT_BATCH 128
574
575void
576xfs_trans_unreserve_and_mod_sb(
577 struct xfs_trans *tp)
578{
579 struct xfs_mount *mp = tp->t_mountp;
580 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
581 int64_t blkdelta = 0;
582 int64_t rtxdelta = 0;
583 int64_t idelta = 0;
584 int64_t ifreedelta = 0;
585 int error;
586
587 /* calculate deltas */
588 if (tp->t_blk_res > 0)
589 blkdelta = tp->t_blk_res;
590 if ((tp->t_fdblocks_delta != 0) &&
591 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
592 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
593 blkdelta += tp->t_fdblocks_delta;
594
595 if (tp->t_rtx_res > 0)
596 rtxdelta = tp->t_rtx_res;
597 if ((tp->t_frextents_delta != 0) &&
598 (tp->t_flags & XFS_TRANS_SB_DIRTY))
599 rtxdelta += tp->t_frextents_delta;
600
601 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
602 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
603 idelta = tp->t_icount_delta;
604 ifreedelta = tp->t_ifree_delta;
605 }
606
607 /* apply the per-cpu counters */
608 if (blkdelta) {
609 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
610 ASSERT(!error);
611 }
612
613 if (idelta)
614 percpu_counter_add_batch(&mp->m_icount, idelta,
615 XFS_ICOUNT_BATCH);
616
617 if (ifreedelta)
618 percpu_counter_add(&mp->m_ifree, ifreedelta);
619
620 if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
621 return;
622
623 /* apply remaining deltas */
624 spin_lock(&mp->m_sb_lock);
625 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
626 mp->m_sb.sb_icount += idelta;
627 mp->m_sb.sb_ifree += ifreedelta;
628 mp->m_sb.sb_frextents += rtxdelta;
629 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
630 mp->m_sb.sb_agcount += tp->t_agcount_delta;
631 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
632 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
633 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
634 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
635 mp->m_sb.sb_rextents += tp->t_rextents_delta;
636 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
637 spin_unlock(&mp->m_sb_lock);
638
639 /*
640 * Debug checks outside of the spinlock so they don't lock up the
641 * machine if they fail.
642 */
643 ASSERT(mp->m_sb.sb_imax_pct >= 0);
644 ASSERT(mp->m_sb.sb_rextslog >= 0);
645 return;
646}
647
648/* Add the given log item to the transaction's list of log items. */
649void
650xfs_trans_add_item(
651 struct xfs_trans *tp,
652 struct xfs_log_item *lip)
653{
654 ASSERT(lip->li_mountp == tp->t_mountp);
655 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
656 ASSERT(list_empty(&lip->li_trans));
657 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
658
659 list_add_tail(&lip->li_trans, &tp->t_items);
660 trace_xfs_trans_add_item(tp, _RET_IP_);
661}
662
663/*
664 * Unlink the log item from the transaction. the log item is no longer
665 * considered dirty in this transaction, as the linked transaction has
666 * finished, either by abort or commit completion.
667 */
668void
669xfs_trans_del_item(
670 struct xfs_log_item *lip)
671{
672 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
673 list_del_init(&lip->li_trans);
674}
675
676/* Detach and unlock all of the items in a transaction */
677static void
678xfs_trans_free_items(
679 struct xfs_trans *tp,
680 bool abort)
681{
682 struct xfs_log_item *lip, *next;
683
684 trace_xfs_trans_free_items(tp, _RET_IP_);
685
686 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
687 xfs_trans_del_item(lip);
688 if (abort)
689 set_bit(XFS_LI_ABORTED, &lip->li_flags);
690 if (lip->li_ops->iop_release)
691 lip->li_ops->iop_release(lip);
692 }
693}
694
695static inline void
696xfs_log_item_batch_insert(
697 struct xfs_ail *ailp,
698 struct xfs_ail_cursor *cur,
699 struct xfs_log_item **log_items,
700 int nr_items,
701 xfs_lsn_t commit_lsn)
702{
703 int i;
704
705 spin_lock(&ailp->ail_lock);
706 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
707 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
708
709 for (i = 0; i < nr_items; i++) {
710 struct xfs_log_item *lip = log_items[i];
711
712 if (lip->li_ops->iop_unpin)
713 lip->li_ops->iop_unpin(lip, 0);
714 }
715}
716
717/*
718 * Bulk operation version of xfs_trans_committed that takes a log vector of
719 * items to insert into the AIL. This uses bulk AIL insertion techniques to
720 * minimise lock traffic.
721 *
722 * If we are called with the aborted flag set, it is because a log write during
723 * a CIL checkpoint commit has failed. In this case, all the items in the
724 * checkpoint have already gone through iop_committed and iop_committing, which
725 * means that checkpoint commit abort handling is treated exactly the same
726 * as an iclog write error even though we haven't started any IO yet. Hence in
727 * this case all we need to do is iop_committed processing, followed by an
728 * iop_unpin(aborted) call.
729 *
730 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
731 * at the end of the AIL, the insert cursor avoids the need to walk
732 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
733 * call. This saves a lot of needless list walking and is a net win, even
734 * though it slightly increases that amount of AIL lock traffic to set it up
735 * and tear it down.
736 */
737void
738xfs_trans_committed_bulk(
739 struct xfs_ail *ailp,
740 struct xfs_log_vec *log_vector,
741 xfs_lsn_t commit_lsn,
742 bool aborted)
743{
744#define LOG_ITEM_BATCH_SIZE 32
745 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
746 struct xfs_log_vec *lv;
747 struct xfs_ail_cursor cur;
748 int i = 0;
749
750 spin_lock(&ailp->ail_lock);
751 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
752 spin_unlock(&ailp->ail_lock);
753
754 /* unpin all the log items */
755 for (lv = log_vector; lv; lv = lv->lv_next ) {
756 struct xfs_log_item *lip = lv->lv_item;
757 xfs_lsn_t item_lsn;
758
759 if (aborted)
760 set_bit(XFS_LI_ABORTED, &lip->li_flags);
761
762 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
763 lip->li_ops->iop_release(lip);
764 continue;
765 }
766
767 if (lip->li_ops->iop_committed)
768 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
769 else
770 item_lsn = commit_lsn;
771
772 /* item_lsn of -1 means the item needs no further processing */
773 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
774 continue;
775
776 /*
777 * if we are aborting the operation, no point in inserting the
778 * object into the AIL as we are in a shutdown situation.
779 */
780 if (aborted) {
781 ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount));
782 if (lip->li_ops->iop_unpin)
783 lip->li_ops->iop_unpin(lip, 1);
784 continue;
785 }
786
787 if (item_lsn != commit_lsn) {
788
789 /*
790 * Not a bulk update option due to unusual item_lsn.
791 * Push into AIL immediately, rechecking the lsn once
792 * we have the ail lock. Then unpin the item. This does
793 * not affect the AIL cursor the bulk insert path is
794 * using.
795 */
796 spin_lock(&ailp->ail_lock);
797 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
798 xfs_trans_ail_update(ailp, lip, item_lsn);
799 else
800 spin_unlock(&ailp->ail_lock);
801 if (lip->li_ops->iop_unpin)
802 lip->li_ops->iop_unpin(lip, 0);
803 continue;
804 }
805
806 /* Item is a candidate for bulk AIL insert. */
807 log_items[i++] = lv->lv_item;
808 if (i >= LOG_ITEM_BATCH_SIZE) {
809 xfs_log_item_batch_insert(ailp, &cur, log_items,
810 LOG_ITEM_BATCH_SIZE, commit_lsn);
811 i = 0;
812 }
813 }
814
815 /* make sure we insert the remainder! */
816 if (i)
817 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
818
819 spin_lock(&ailp->ail_lock);
820 xfs_trans_ail_cursor_done(&cur);
821 spin_unlock(&ailp->ail_lock);
822}
823
824/*
825 * Commit the given transaction to the log.
826 *
827 * XFS disk error handling mechanism is not based on a typical
828 * transaction abort mechanism. Logically after the filesystem
829 * gets marked 'SHUTDOWN', we can't let any new transactions
830 * be durable - ie. committed to disk - because some metadata might
831 * be inconsistent. In such cases, this returns an error, and the
832 * caller may assume that all locked objects joined to the transaction
833 * have already been unlocked as if the commit had succeeded.
834 * Do not reference the transaction structure after this call.
835 */
836static int
837__xfs_trans_commit(
838 struct xfs_trans *tp,
839 bool regrant)
840{
841 struct xfs_mount *mp = tp->t_mountp;
842 xfs_csn_t commit_seq = 0;
843 int error = 0;
844 int sync = tp->t_flags & XFS_TRANS_SYNC;
845
846 trace_xfs_trans_commit(tp, _RET_IP_);
847
848 /*
849 * Finish deferred items on final commit. Only permanent transactions
850 * should ever have deferred ops.
851 */
852 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
853 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
854 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
855 error = xfs_defer_finish_noroll(&tp);
856 if (error)
857 goto out_unreserve;
858 }
859
860 /*
861 * If there is nothing to be logged by the transaction,
862 * then unlock all of the items associated with the
863 * transaction and free the transaction structure.
864 * Also make sure to return any reserved blocks to
865 * the free pool.
866 */
867 if (!(tp->t_flags & XFS_TRANS_DIRTY))
868 goto out_unreserve;
869
870 if (XFS_FORCED_SHUTDOWN(mp)) {
871 error = -EIO;
872 goto out_unreserve;
873 }
874
875 ASSERT(tp->t_ticket != NULL);
876
877 /*
878 * If we need to update the superblock, then do it now.
879 */
880 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
881 xfs_trans_apply_sb_deltas(tp);
882 xfs_trans_apply_dquot_deltas(tp);
883
884 xlog_cil_commit(mp->m_log, tp, &commit_seq, regrant);
885
886 xfs_trans_free(tp);
887
888 /*
889 * If the transaction needs to be synchronous, then force the
890 * log out now and wait for it.
891 */
892 if (sync) {
893 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
894 XFS_STATS_INC(mp, xs_trans_sync);
895 } else {
896 XFS_STATS_INC(mp, xs_trans_async);
897 }
898
899 return error;
900
901out_unreserve:
902 xfs_trans_unreserve_and_mod_sb(tp);
903
904 /*
905 * It is indeed possible for the transaction to be not dirty but
906 * the dqinfo portion to be. All that means is that we have some
907 * (non-persistent) quota reservations that need to be unreserved.
908 */
909 xfs_trans_unreserve_and_mod_dquots(tp);
910 if (tp->t_ticket) {
911 if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log))
912 xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
913 else
914 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
915 tp->t_ticket = NULL;
916 }
917 xfs_trans_free_items(tp, !!error);
918 xfs_trans_free(tp);
919
920 XFS_STATS_INC(mp, xs_trans_empty);
921 return error;
922}
923
924int
925xfs_trans_commit(
926 struct xfs_trans *tp)
927{
928 return __xfs_trans_commit(tp, false);
929}
930
931/*
932 * Unlock all of the transaction's items and free the transaction.
933 * The transaction must not have modified any of its items, because
934 * there is no way to restore them to their previous state.
935 *
936 * If the transaction has made a log reservation, make sure to release
937 * it as well.
938 */
939void
940xfs_trans_cancel(
941 struct xfs_trans *tp)
942{
943 struct xfs_mount *mp = tp->t_mountp;
944 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
945
946 trace_xfs_trans_cancel(tp, _RET_IP_);
947
948 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
949 xfs_defer_cancel(tp);
950
951 /*
952 * See if the caller is relying on us to shut down the
953 * filesystem. This happens in paths where we detect
954 * corruption and decide to give up.
955 */
956 if (dirty && !XFS_FORCED_SHUTDOWN(mp)) {
957 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 }
960#ifdef DEBUG
961 if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) {
962 struct xfs_log_item *lip;
963
964 list_for_each_entry(lip, &tp->t_items, li_trans)
965 ASSERT(!xlog_item_is_intent_done(lip));
966 }
967#endif
968 xfs_trans_unreserve_and_mod_sb(tp);
969 xfs_trans_unreserve_and_mod_dquots(tp);
970
971 if (tp->t_ticket) {
972 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
973 tp->t_ticket = NULL;
974 }
975
976 xfs_trans_free_items(tp, dirty);
977 xfs_trans_free(tp);
978}
979
980/*
981 * Roll from one trans in the sequence of PERMANENT transactions to
982 * the next: permanent transactions are only flushed out when
983 * committed with xfs_trans_commit(), but we still want as soon
984 * as possible to let chunks of it go to the log. So we commit the
985 * chunk we've been working on and get a new transaction to continue.
986 */
987int
988xfs_trans_roll(
989 struct xfs_trans **tpp)
990{
991 struct xfs_trans *trans = *tpp;
992 struct xfs_trans_res tres;
993 int error;
994
995 trace_xfs_trans_roll(trans, _RET_IP_);
996
997 /*
998 * Copy the critical parameters from one trans to the next.
999 */
1000 tres.tr_logres = trans->t_log_res;
1001 tres.tr_logcount = trans->t_log_count;
1002
1003 *tpp = xfs_trans_dup(trans);
1004
1005 /*
1006 * Commit the current transaction.
1007 * If this commit failed, then it'd just unlock those items that
1008 * are not marked ihold. That also means that a filesystem shutdown
1009 * is in progress. The caller takes the responsibility to cancel
1010 * the duplicate transaction that gets returned.
1011 */
1012 error = __xfs_trans_commit(trans, true);
1013 if (error)
1014 return error;
1015
1016 /*
1017 * Reserve space in the log for the next transaction.
1018 * This also pushes items in the "AIL", the list of logged items,
1019 * out to disk if they are taking up space at the tail of the log
1020 * that we want to use. This requires that either nothing be locked
1021 * across this call, or that anything that is locked be logged in
1022 * the prior and the next transactions.
1023 */
1024 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1025 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1026}
1027
1028/*
1029 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1030 *
1031 * The caller must ensure that the on-disk dquots attached to this inode have
1032 * already been allocated and initialized. The caller is responsible for
1033 * releasing ILOCK_EXCL if a new transaction is returned.
1034 */
1035int
1036xfs_trans_alloc_inode(
1037 struct xfs_inode *ip,
1038 struct xfs_trans_res *resv,
1039 unsigned int dblocks,
1040 unsigned int rblocks,
1041 bool force,
1042 struct xfs_trans **tpp)
1043{
1044 struct xfs_trans *tp;
1045 struct xfs_mount *mp = ip->i_mount;
1046 bool retried = false;
1047 int error;
1048
1049retry:
1050 error = xfs_trans_alloc(mp, resv, dblocks,
1051 rblocks / mp->m_sb.sb_rextsize,
1052 force ? XFS_TRANS_RESERVE : 0, &tp);
1053 if (error)
1054 return error;
1055
1056 xfs_ilock(ip, XFS_ILOCK_EXCL);
1057 xfs_trans_ijoin(tp, ip, 0);
1058
1059 error = xfs_qm_dqattach_locked(ip, false);
1060 if (error) {
1061 /* Caller should have allocated the dquots! */
1062 ASSERT(error != -ENOENT);
1063 goto out_cancel;
1064 }
1065
1066 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1067 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1068 xfs_trans_cancel(tp);
1069 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1070 xfs_blockgc_free_quota(ip, 0);
1071 retried = true;
1072 goto retry;
1073 }
1074 if (error)
1075 goto out_cancel;
1076
1077 *tpp = tp;
1078 return 0;
1079
1080out_cancel:
1081 xfs_trans_cancel(tp);
1082 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1083 return error;
1084}
1085
1086/*
1087 * Allocate an transaction in preparation for inode creation by reserving quota
1088 * against the given dquots. Callers are not required to hold any inode locks.
1089 */
1090int
1091xfs_trans_alloc_icreate(
1092 struct xfs_mount *mp,
1093 struct xfs_trans_res *resv,
1094 struct xfs_dquot *udqp,
1095 struct xfs_dquot *gdqp,
1096 struct xfs_dquot *pdqp,
1097 unsigned int dblocks,
1098 struct xfs_trans **tpp)
1099{
1100 struct xfs_trans *tp;
1101 bool retried = false;
1102 int error;
1103
1104retry:
1105 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1106 if (error)
1107 return error;
1108
1109 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1110 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1111 xfs_trans_cancel(tp);
1112 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1113 retried = true;
1114 goto retry;
1115 }
1116 if (error) {
1117 xfs_trans_cancel(tp);
1118 return error;
1119 }
1120
1121 *tpp = tp;
1122 return 0;
1123}
1124
1125/*
1126 * Allocate an transaction, lock and join the inode to it, and reserve quota
1127 * in preparation for inode attribute changes that include uid, gid, or prid
1128 * changes.
1129 *
1130 * The caller must ensure that the on-disk dquots attached to this inode have
1131 * already been allocated and initialized. The ILOCK will be dropped when the
1132 * transaction is committed or cancelled.
1133 */
1134int
1135xfs_trans_alloc_ichange(
1136 struct xfs_inode *ip,
1137 struct xfs_dquot *new_udqp,
1138 struct xfs_dquot *new_gdqp,
1139 struct xfs_dquot *new_pdqp,
1140 bool force,
1141 struct xfs_trans **tpp)
1142{
1143 struct xfs_trans *tp;
1144 struct xfs_mount *mp = ip->i_mount;
1145 struct xfs_dquot *udqp;
1146 struct xfs_dquot *gdqp;
1147 struct xfs_dquot *pdqp;
1148 bool retried = false;
1149 int error;
1150
1151retry:
1152 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1153 if (error)
1154 return error;
1155
1156 xfs_ilock(ip, XFS_ILOCK_EXCL);
1157 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1158
1159 error = xfs_qm_dqattach_locked(ip, false);
1160 if (error) {
1161 /* Caller should have allocated the dquots! */
1162 ASSERT(error != -ENOENT);
1163 goto out_cancel;
1164 }
1165
1166 /*
1167 * For each quota type, skip quota reservations if the inode's dquots
1168 * now match the ones that came from the caller, or the caller didn't
1169 * pass one in. The inode's dquots can change if we drop the ILOCK to
1170 * perform a blockgc scan, so we must preserve the caller's arguments.
1171 */
1172 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1173 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1174 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1175 if (udqp || gdqp || pdqp) {
1176 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1177
1178 if (force)
1179 qflags |= XFS_QMOPT_FORCE_RES;
1180
1181 /*
1182 * Reserve enough quota to handle blocks on disk and reserved
1183 * for a delayed allocation. We'll actually transfer the
1184 * delalloc reservation between dquots at chown time, even
1185 * though that part is only semi-transactional.
1186 */
1187 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1188 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1189 1, qflags);
1190 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1191 xfs_trans_cancel(tp);
1192 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1193 retried = true;
1194 goto retry;
1195 }
1196 if (error)
1197 goto out_cancel;
1198 }
1199
1200 *tpp = tp;
1201 return 0;
1202
1203out_cancel:
1204 xfs_trans_cancel(tp);
1205 return error;
1206}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_extent_busy.h"
15#include "xfs_quota.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27
28struct kmem_cache *xfs_trans_cache;
29
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34{
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
43}
44#else
45# define xfs_trans_trace_reservations(mp)
46#endif
47
48/*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52void
53xfs_trans_init(
54 struct xfs_mount *mp)
55{
56 xfs_trans_resv_calc(mp, M_RES(mp));
57 xfs_trans_trace_reservations(mp);
58}
59
60/*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64STATIC void
65xfs_trans_free(
66 struct xfs_trans *tp)
67{
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71 trace_xfs_trans_free(tp, _RET_IP_);
72 xfs_trans_clear_context(tp);
73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 sb_end_intwrite(tp->t_mountp->m_super);
75 xfs_trans_free_dqinfo(tp);
76 kmem_cache_free(xfs_trans_cache, tp);
77}
78
79/*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
87STATIC struct xfs_trans *
88xfs_trans_dup(
89 struct xfs_trans *tp)
90{
91 struct xfs_trans *ntp;
92
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97 /*
98 * Initialize the new transaction structure.
99 */
100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 ntp->t_mountp = tp->t_mountp;
102 INIT_LIST_HEAD(&ntp->t_items);
103 INIT_LIST_HEAD(&ntp->t_busy);
104 INIT_LIST_HEAD(&ntp->t_dfops);
105 ntp->t_firstblock = NULLFSBLOCK;
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 ASSERT(tp->t_ticket != NULL);
109
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 /* We gave our writer reference to the new transaction */
115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
121
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
124
125 xfs_trans_switch_context(tp, ntp);
126
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
129
130 xfs_trans_dup_dqinfo(tp, ntp);
131 return ntp;
132}
133
134/*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148static int
149xfs_trans_reserve(
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
154{
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logres > 0) {
175 bool permanent = false;
176
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
181
182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 permanent = true;
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 }
189
190 if (tp->t_ticket != NULL) {
191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 error = xfs_log_regrant(mp, tp->t_ticket);
193 } else {
194 error = xfs_log_reserve(mp, resp->tr_logres,
195 resp->tr_logcount,
196 &tp->t_ticket, permanent);
197 }
198
199 if (error)
200 goto undo_blocks;
201
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 if (error) {
214 error = -ENOSPC;
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226undo_log:
227 if (resp->tr_logres > 0) {
228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234undo_blocks:
235 if (blocks > 0) {
236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 tp->t_blk_res = 0;
238 }
239 return error;
240}
241
242int
243xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250{
251 struct xfs_trans *tp;
252 bool want_retry = true;
253 int error;
254
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
260retry:
261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
264 xfs_trans_set_context(tp);
265
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 xfs_has_lazysbcount(mp));
274
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
280 INIT_LIST_HEAD(&tp->t_dfops);
281 tp->t_firstblock = NULLFSBLOCK;
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
293 xfs_blockgc_flush_all(mp);
294 want_retry = false;
295 goto retry;
296 }
297 if (error) {
298 xfs_trans_cancel(tp);
299 return error;
300 }
301
302 trace_xfs_trans_alloc(tp, _RET_IP_);
303
304 *tpp = tp;
305 return 0;
306}
307
308/*
309 * Create an empty transaction with no reservation. This is a defensive
310 * mechanism for routines that query metadata without actually modifying them --
311 * if the metadata being queried is somehow cross-linked (think a btree block
312 * pointer that points higher in the tree), we risk deadlock. However, blocks
313 * grabbed as part of a transaction can be re-grabbed. The verifiers will
314 * notice the corrupt block and the operation will fail back to userspace
315 * without deadlocking.
316 *
317 * Note the zero-length reservation; this transaction MUST be cancelled without
318 * any dirty data.
319 *
320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
321 * where we can be grabbing buffers at the same time that freeze is trying to
322 * drain the buffer LRU list.
323 */
324int
325xfs_trans_alloc_empty(
326 struct xfs_mount *mp,
327 struct xfs_trans **tpp)
328{
329 struct xfs_trans_res resv = {0};
330
331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
332}
333
334/*
335 * Record the indicated change to the given field for application
336 * to the file system's superblock when the transaction commits.
337 * For now, just store the change in the transaction structure.
338 *
339 * Mark the transaction structure to indicate that the superblock
340 * needs to be updated before committing.
341 *
342 * Because we may not be keeping track of allocated/free inodes and
343 * used filesystem blocks in the superblock, we do not mark the
344 * superblock dirty in this transaction if we modify these fields.
345 * We still need to update the transaction deltas so that they get
346 * applied to the incore superblock, but we don't want them to
347 * cause the superblock to get locked and logged if these are the
348 * only fields in the superblock that the transaction modifies.
349 */
350void
351xfs_trans_mod_sb(
352 xfs_trans_t *tp,
353 uint field,
354 int64_t delta)
355{
356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
357 xfs_mount_t *mp = tp->t_mountp;
358
359 switch (field) {
360 case XFS_TRANS_SB_ICOUNT:
361 tp->t_icount_delta += delta;
362 if (xfs_has_lazysbcount(mp))
363 flags &= ~XFS_TRANS_SB_DIRTY;
364 break;
365 case XFS_TRANS_SB_IFREE:
366 tp->t_ifree_delta += delta;
367 if (xfs_has_lazysbcount(mp))
368 flags &= ~XFS_TRANS_SB_DIRTY;
369 break;
370 case XFS_TRANS_SB_FDBLOCKS:
371 /*
372 * Track the number of blocks allocated in the transaction.
373 * Make sure it does not exceed the number reserved. If so,
374 * shutdown as this can lead to accounting inconsistency.
375 */
376 if (delta < 0) {
377 tp->t_blk_res_used += (uint)-delta;
378 if (tp->t_blk_res_used > tp->t_blk_res)
379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
381 int64_t blkres_delta;
382
383 /*
384 * Return freed blocks directly to the reservation
385 * instead of the global pool, being careful not to
386 * overflow the trans counter. This is used to preserve
387 * reservation across chains of transaction rolls that
388 * repeatedly free and allocate blocks.
389 */
390 blkres_delta = min_t(int64_t, delta,
391 UINT_MAX - tp->t_blk_res);
392 tp->t_blk_res += blkres_delta;
393 delta -= blkres_delta;
394 }
395 tp->t_fdblocks_delta += delta;
396 if (xfs_has_lazysbcount(mp))
397 flags &= ~XFS_TRANS_SB_DIRTY;
398 break;
399 case XFS_TRANS_SB_RES_FDBLOCKS:
400 /*
401 * The allocation has already been applied to the
402 * in-core superblock's counter. This should only
403 * be applied to the on-disk superblock.
404 */
405 tp->t_res_fdblocks_delta += delta;
406 if (xfs_has_lazysbcount(mp))
407 flags &= ~XFS_TRANS_SB_DIRTY;
408 break;
409 case XFS_TRANS_SB_FREXTENTS:
410 /*
411 * Track the number of blocks allocated in the
412 * transaction. Make sure it does not exceed the
413 * number reserved.
414 */
415 if (delta < 0) {
416 tp->t_rtx_res_used += (uint)-delta;
417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
418 }
419 tp->t_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_RES_FREXTENTS:
422 /*
423 * The allocation has already been applied to the
424 * in-core superblock's counter. This should only
425 * be applied to the on-disk superblock.
426 */
427 ASSERT(delta < 0);
428 tp->t_res_frextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_DBLOCKS:
431 tp->t_dblocks_delta += delta;
432 break;
433 case XFS_TRANS_SB_AGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_agcount_delta += delta;
436 break;
437 case XFS_TRANS_SB_IMAXPCT:
438 tp->t_imaxpct_delta += delta;
439 break;
440 case XFS_TRANS_SB_REXTSIZE:
441 tp->t_rextsize_delta += delta;
442 break;
443 case XFS_TRANS_SB_RBMBLOCKS:
444 tp->t_rbmblocks_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBLOCKS:
447 tp->t_rblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_REXTENTS:
450 tp->t_rextents_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTSLOG:
453 tp->t_rextslog_delta += delta;
454 break;
455 default:
456 ASSERT(0);
457 return;
458 }
459
460 tp->t_flags |= flags;
461}
462
463/*
464 * xfs_trans_apply_sb_deltas() is called from the commit code
465 * to bring the superblock buffer into the current transaction
466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
467 *
468 * For now we just look at each field allowed to change and change
469 * it if necessary.
470 */
471STATIC void
472xfs_trans_apply_sb_deltas(
473 xfs_trans_t *tp)
474{
475 struct xfs_dsb *sbp;
476 struct xfs_buf *bp;
477 int whole = 0;
478
479 bp = xfs_trans_getsb(tp);
480 sbp = bp->b_addr;
481
482 /*
483 * Only update the superblock counters if we are logging them
484 */
485 if (!xfs_has_lazysbcount((tp->t_mountp))) {
486 if (tp->t_icount_delta)
487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
488 if (tp->t_ifree_delta)
489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
490 if (tp->t_fdblocks_delta)
491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
492 if (tp->t_res_fdblocks_delta)
493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
494 }
495
496 /*
497 * Updating frextents requires careful handling because it does not
498 * behave like the lazysb counters because we cannot rely on log
499 * recovery in older kenels to recompute the value from the rtbitmap.
500 * This means that the ondisk frextents must be consistent with the
501 * rtbitmap.
502 *
503 * Therefore, log the frextents change to the ondisk superblock and
504 * update the incore superblock so that future calls to xfs_log_sb
505 * write the correct value ondisk.
506 *
507 * Don't touch m_frextents because it includes incore reservations,
508 * and those are handled by the unreserve function.
509 */
510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
511 struct xfs_mount *mp = tp->t_mountp;
512 int64_t rtxdelta;
513
514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
515
516 spin_lock(&mp->m_sb_lock);
517 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
518 mp->m_sb.sb_frextents += rtxdelta;
519 spin_unlock(&mp->m_sb_lock);
520 }
521
522 if (tp->t_dblocks_delta) {
523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
524 whole = 1;
525 }
526 if (tp->t_agcount_delta) {
527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
528 whole = 1;
529 }
530 if (tp->t_imaxpct_delta) {
531 sbp->sb_imax_pct += tp->t_imaxpct_delta;
532 whole = 1;
533 }
534 if (tp->t_rextsize_delta) {
535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
536 whole = 1;
537 }
538 if (tp->t_rbmblocks_delta) {
539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
540 whole = 1;
541 }
542 if (tp->t_rblocks_delta) {
543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
544 whole = 1;
545 }
546 if (tp->t_rextents_delta) {
547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
548 whole = 1;
549 }
550 if (tp->t_rextslog_delta) {
551 sbp->sb_rextslog += tp->t_rextslog_delta;
552 whole = 1;
553 }
554
555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
556 if (whole)
557 /*
558 * Log the whole thing, the fields are noncontiguous.
559 */
560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
568 sizeof(sbp->sb_frextents) - 1);
569}
570
571/*
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
577 *
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
585 */
586#define XFS_ICOUNT_BATCH 128
587
588void
589xfs_trans_unreserve_and_mod_sb(
590 struct xfs_trans *tp)
591{
592 struct xfs_mount *mp = tp->t_mountp;
593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
594 int64_t blkdelta = 0;
595 int64_t rtxdelta = 0;
596 int64_t idelta = 0;
597 int64_t ifreedelta = 0;
598 int error;
599
600 /* calculate deltas */
601 if (tp->t_blk_res > 0)
602 blkdelta = tp->t_blk_res;
603 if ((tp->t_fdblocks_delta != 0) &&
604 (xfs_has_lazysbcount(mp) ||
605 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
606 blkdelta += tp->t_fdblocks_delta;
607
608 if (tp->t_rtx_res > 0)
609 rtxdelta = tp->t_rtx_res;
610 if ((tp->t_frextents_delta != 0) &&
611 (tp->t_flags & XFS_TRANS_SB_DIRTY))
612 rtxdelta += tp->t_frextents_delta;
613
614 if (xfs_has_lazysbcount(mp) ||
615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 idelta = tp->t_icount_delta;
617 ifreedelta = tp->t_ifree_delta;
618 }
619
620 /* apply the per-cpu counters */
621 if (blkdelta) {
622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
623 ASSERT(!error);
624 }
625
626 if (idelta)
627 percpu_counter_add_batch(&mp->m_icount, idelta,
628 XFS_ICOUNT_BATCH);
629
630 if (ifreedelta)
631 percpu_counter_add(&mp->m_ifree, ifreedelta);
632
633 if (rtxdelta) {
634 error = xfs_mod_frextents(mp, rtxdelta);
635 ASSERT(!error);
636 }
637
638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
639 return;
640
641 /* apply remaining deltas */
642 spin_lock(&mp->m_sb_lock);
643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
644 mp->m_sb.sb_icount += idelta;
645 mp->m_sb.sb_ifree += ifreedelta;
646 /*
647 * Do not touch sb_frextents here because we are dealing with incore
648 * reservation. sb_frextents is not part of the lazy sb counters so it
649 * must be consistent with the ondisk rtbitmap and must never include
650 * incore reservations.
651 */
652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
653 mp->m_sb.sb_agcount += tp->t_agcount_delta;
654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
658 mp->m_sb.sb_rextents += tp->t_rextents_delta;
659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
660 spin_unlock(&mp->m_sb_lock);
661
662 /*
663 * Debug checks outside of the spinlock so they don't lock up the
664 * machine if they fail.
665 */
666 ASSERT(mp->m_sb.sb_imax_pct >= 0);
667 ASSERT(mp->m_sb.sb_rextslog >= 0);
668 return;
669}
670
671/* Add the given log item to the transaction's list of log items. */
672void
673xfs_trans_add_item(
674 struct xfs_trans *tp,
675 struct xfs_log_item *lip)
676{
677 ASSERT(lip->li_log == tp->t_mountp->m_log);
678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
679 ASSERT(list_empty(&lip->li_trans));
680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
681
682 list_add_tail(&lip->li_trans, &tp->t_items);
683 trace_xfs_trans_add_item(tp, _RET_IP_);
684}
685
686/*
687 * Unlink the log item from the transaction. the log item is no longer
688 * considered dirty in this transaction, as the linked transaction has
689 * finished, either by abort or commit completion.
690 */
691void
692xfs_trans_del_item(
693 struct xfs_log_item *lip)
694{
695 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
696 list_del_init(&lip->li_trans);
697}
698
699/* Detach and unlock all of the items in a transaction */
700static void
701xfs_trans_free_items(
702 struct xfs_trans *tp,
703 bool abort)
704{
705 struct xfs_log_item *lip, *next;
706
707 trace_xfs_trans_free_items(tp, _RET_IP_);
708
709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
710 xfs_trans_del_item(lip);
711 if (abort)
712 set_bit(XFS_LI_ABORTED, &lip->li_flags);
713 if (lip->li_ops->iop_release)
714 lip->li_ops->iop_release(lip);
715 }
716}
717
718static inline void
719xfs_log_item_batch_insert(
720 struct xfs_ail *ailp,
721 struct xfs_ail_cursor *cur,
722 struct xfs_log_item **log_items,
723 int nr_items,
724 xfs_lsn_t commit_lsn)
725{
726 int i;
727
728 spin_lock(&ailp->ail_lock);
729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
731
732 for (i = 0; i < nr_items; i++) {
733 struct xfs_log_item *lip = log_items[i];
734
735 if (lip->li_ops->iop_unpin)
736 lip->li_ops->iop_unpin(lip, 0);
737 }
738}
739
740/*
741 * Bulk operation version of xfs_trans_committed that takes a log vector of
742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
743 * minimise lock traffic.
744 *
745 * If we are called with the aborted flag set, it is because a log write during
746 * a CIL checkpoint commit has failed. In this case, all the items in the
747 * checkpoint have already gone through iop_committed and iop_committing, which
748 * means that checkpoint commit abort handling is treated exactly the same
749 * as an iclog write error even though we haven't started any IO yet. Hence in
750 * this case all we need to do is iop_committed processing, followed by an
751 * iop_unpin(aborted) call.
752 *
753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
754 * at the end of the AIL, the insert cursor avoids the need to walk
755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
756 * call. This saves a lot of needless list walking and is a net win, even
757 * though it slightly increases that amount of AIL lock traffic to set it up
758 * and tear it down.
759 */
760void
761xfs_trans_committed_bulk(
762 struct xfs_ail *ailp,
763 struct list_head *lv_chain,
764 xfs_lsn_t commit_lsn,
765 bool aborted)
766{
767#define LOG_ITEM_BATCH_SIZE 32
768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
769 struct xfs_log_vec *lv;
770 struct xfs_ail_cursor cur;
771 int i = 0;
772
773 spin_lock(&ailp->ail_lock);
774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
775 spin_unlock(&ailp->ail_lock);
776
777 /* unpin all the log items */
778 list_for_each_entry(lv, lv_chain, lv_list) {
779 struct xfs_log_item *lip = lv->lv_item;
780 xfs_lsn_t item_lsn;
781
782 if (aborted)
783 set_bit(XFS_LI_ABORTED, &lip->li_flags);
784
785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
786 lip->li_ops->iop_release(lip);
787 continue;
788 }
789
790 if (lip->li_ops->iop_committed)
791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
792 else
793 item_lsn = commit_lsn;
794
795 /* item_lsn of -1 means the item needs no further processing */
796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
797 continue;
798
799 /*
800 * if we are aborting the operation, no point in inserting the
801 * object into the AIL as we are in a shutdown situation.
802 */
803 if (aborted) {
804 ASSERT(xlog_is_shutdown(ailp->ail_log));
805 if (lip->li_ops->iop_unpin)
806 lip->li_ops->iop_unpin(lip, 1);
807 continue;
808 }
809
810 if (item_lsn != commit_lsn) {
811
812 /*
813 * Not a bulk update option due to unusual item_lsn.
814 * Push into AIL immediately, rechecking the lsn once
815 * we have the ail lock. Then unpin the item. This does
816 * not affect the AIL cursor the bulk insert path is
817 * using.
818 */
819 spin_lock(&ailp->ail_lock);
820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
821 xfs_trans_ail_update(ailp, lip, item_lsn);
822 else
823 spin_unlock(&ailp->ail_lock);
824 if (lip->li_ops->iop_unpin)
825 lip->li_ops->iop_unpin(lip, 0);
826 continue;
827 }
828
829 /* Item is a candidate for bulk AIL insert. */
830 log_items[i++] = lv->lv_item;
831 if (i >= LOG_ITEM_BATCH_SIZE) {
832 xfs_log_item_batch_insert(ailp, &cur, log_items,
833 LOG_ITEM_BATCH_SIZE, commit_lsn);
834 i = 0;
835 }
836 }
837
838 /* make sure we insert the remainder! */
839 if (i)
840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
841
842 spin_lock(&ailp->ail_lock);
843 xfs_trans_ail_cursor_done(&cur);
844 spin_unlock(&ailp->ail_lock);
845}
846
847/*
848 * Sort transaction items prior to running precommit operations. This will
849 * attempt to order the items such that they will always be locked in the same
850 * order. Items that have no sort function are moved to the end of the list
851 * and so are locked last.
852 *
853 * This may need refinement as different types of objects add sort functions.
854 *
855 * Function is more complex than it needs to be because we are comparing 64 bit
856 * values and the function only returns 32 bit values.
857 */
858static int
859xfs_trans_precommit_sort(
860 void *unused_arg,
861 const struct list_head *a,
862 const struct list_head *b)
863{
864 struct xfs_log_item *lia = container_of(a,
865 struct xfs_log_item, li_trans);
866 struct xfs_log_item *lib = container_of(b,
867 struct xfs_log_item, li_trans);
868 int64_t diff;
869
870 /*
871 * If both items are non-sortable, leave them alone. If only one is
872 * sortable, move the non-sortable item towards the end of the list.
873 */
874 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
875 return 0;
876 if (!lia->li_ops->iop_sort)
877 return 1;
878 if (!lib->li_ops->iop_sort)
879 return -1;
880
881 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
882 if (diff < 0)
883 return -1;
884 if (diff > 0)
885 return 1;
886 return 0;
887}
888
889/*
890 * Run transaction precommit functions.
891 *
892 * If there is an error in any of the callouts, then stop immediately and
893 * trigger a shutdown to abort the transaction. There is no recovery possible
894 * from errors at this point as the transaction is dirty....
895 */
896static int
897xfs_trans_run_precommits(
898 struct xfs_trans *tp)
899{
900 struct xfs_mount *mp = tp->t_mountp;
901 struct xfs_log_item *lip, *n;
902 int error = 0;
903
904 /*
905 * Sort the item list to avoid ABBA deadlocks with other transactions
906 * running precommit operations that lock multiple shared items such as
907 * inode cluster buffers.
908 */
909 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
910
911 /*
912 * Precommit operations can remove the log item from the transaction
913 * if the log item exists purely to delay modifications until they
914 * can be ordered against other operations. Hence we have to use
915 * list_for_each_entry_safe() here.
916 */
917 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
918 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
919 continue;
920 if (lip->li_ops->iop_precommit) {
921 error = lip->li_ops->iop_precommit(tp, lip);
922 if (error)
923 break;
924 }
925 }
926 if (error)
927 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
928 return error;
929}
930
931/*
932 * Commit the given transaction to the log.
933 *
934 * XFS disk error handling mechanism is not based on a typical
935 * transaction abort mechanism. Logically after the filesystem
936 * gets marked 'SHUTDOWN', we can't let any new transactions
937 * be durable - ie. committed to disk - because some metadata might
938 * be inconsistent. In such cases, this returns an error, and the
939 * caller may assume that all locked objects joined to the transaction
940 * have already been unlocked as if the commit had succeeded.
941 * Do not reference the transaction structure after this call.
942 */
943static int
944__xfs_trans_commit(
945 struct xfs_trans *tp,
946 bool regrant)
947{
948 struct xfs_mount *mp = tp->t_mountp;
949 struct xlog *log = mp->m_log;
950 xfs_csn_t commit_seq = 0;
951 int error = 0;
952 int sync = tp->t_flags & XFS_TRANS_SYNC;
953
954 trace_xfs_trans_commit(tp, _RET_IP_);
955
956 error = xfs_trans_run_precommits(tp);
957 if (error) {
958 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
959 xfs_defer_cancel(tp);
960 goto out_unreserve;
961 }
962
963 /*
964 * Finish deferred items on final commit. Only permanent transactions
965 * should ever have deferred ops.
966 */
967 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
968 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
969 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
970 error = xfs_defer_finish_noroll(&tp);
971 if (error)
972 goto out_unreserve;
973 }
974
975 /*
976 * If there is nothing to be logged by the transaction,
977 * then unlock all of the items associated with the
978 * transaction and free the transaction structure.
979 * Also make sure to return any reserved blocks to
980 * the free pool.
981 */
982 if (!(tp->t_flags & XFS_TRANS_DIRTY))
983 goto out_unreserve;
984
985 /*
986 * We must check against log shutdown here because we cannot abort log
987 * items and leave them dirty, inconsistent and unpinned in memory while
988 * the log is active. This leaves them open to being written back to
989 * disk, and that will lead to on-disk corruption.
990 */
991 if (xlog_is_shutdown(log)) {
992 error = -EIO;
993 goto out_unreserve;
994 }
995
996 ASSERT(tp->t_ticket != NULL);
997
998 /*
999 * If we need to update the superblock, then do it now.
1000 */
1001 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1002 xfs_trans_apply_sb_deltas(tp);
1003 xfs_trans_apply_dquot_deltas(tp);
1004
1005 xlog_cil_commit(log, tp, &commit_seq, regrant);
1006
1007 xfs_trans_free(tp);
1008
1009 /*
1010 * If the transaction needs to be synchronous, then force the
1011 * log out now and wait for it.
1012 */
1013 if (sync) {
1014 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1015 XFS_STATS_INC(mp, xs_trans_sync);
1016 } else {
1017 XFS_STATS_INC(mp, xs_trans_async);
1018 }
1019
1020 return error;
1021
1022out_unreserve:
1023 xfs_trans_unreserve_and_mod_sb(tp);
1024
1025 /*
1026 * It is indeed possible for the transaction to be not dirty but
1027 * the dqinfo portion to be. All that means is that we have some
1028 * (non-persistent) quota reservations that need to be unreserved.
1029 */
1030 xfs_trans_unreserve_and_mod_dquots(tp);
1031 if (tp->t_ticket) {
1032 if (regrant && !xlog_is_shutdown(log))
1033 xfs_log_ticket_regrant(log, tp->t_ticket);
1034 else
1035 xfs_log_ticket_ungrant(log, tp->t_ticket);
1036 tp->t_ticket = NULL;
1037 }
1038 xfs_trans_free_items(tp, !!error);
1039 xfs_trans_free(tp);
1040
1041 XFS_STATS_INC(mp, xs_trans_empty);
1042 return error;
1043}
1044
1045int
1046xfs_trans_commit(
1047 struct xfs_trans *tp)
1048{
1049 return __xfs_trans_commit(tp, false);
1050}
1051
1052/*
1053 * Unlock all of the transaction's items and free the transaction. If the
1054 * transaction is dirty, we must shut down the filesystem because there is no
1055 * way to restore them to their previous state.
1056 *
1057 * If the transaction has made a log reservation, make sure to release it as
1058 * well.
1059 *
1060 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1061 * be called after the transaction has effectively been aborted due to the mount
1062 * being shut down. However, if the mount has not been shut down and the
1063 * transaction is dirty we will shut the mount down and, in doing so, that
1064 * guarantees that the log is shut down, too. Hence we don't need to be as
1065 * careful with shutdown state and dirty items here as we need to be in
1066 * xfs_trans_commit().
1067 */
1068void
1069xfs_trans_cancel(
1070 struct xfs_trans *tp)
1071{
1072 struct xfs_mount *mp = tp->t_mountp;
1073 struct xlog *log = mp->m_log;
1074 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1075
1076 trace_xfs_trans_cancel(tp, _RET_IP_);
1077
1078 /*
1079 * It's never valid to cancel a transaction with deferred ops attached,
1080 * because the transaction is effectively dirty. Complain about this
1081 * loudly before freeing the in-memory defer items.
1082 */
1083 if (!list_empty(&tp->t_dfops)) {
1084 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
1085 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1086 dirty = true;
1087 xfs_defer_cancel(tp);
1088 }
1089
1090 /*
1091 * See if the caller is relying on us to shut down the filesystem. We
1092 * only want an error report if there isn't already a shutdown in
1093 * progress, so we only need to check against the mount shutdown state
1094 * here.
1095 */
1096 if (dirty && !xfs_is_shutdown(mp)) {
1097 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1098 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1099 }
1100#ifdef DEBUG
1101 /* Log items need to be consistent until the log is shut down. */
1102 if (!dirty && !xlog_is_shutdown(log)) {
1103 struct xfs_log_item *lip;
1104
1105 list_for_each_entry(lip, &tp->t_items, li_trans)
1106 ASSERT(!xlog_item_is_intent_done(lip));
1107 }
1108#endif
1109 xfs_trans_unreserve_and_mod_sb(tp);
1110 xfs_trans_unreserve_and_mod_dquots(tp);
1111
1112 if (tp->t_ticket) {
1113 xfs_log_ticket_ungrant(log, tp->t_ticket);
1114 tp->t_ticket = NULL;
1115 }
1116
1117 xfs_trans_free_items(tp, dirty);
1118 xfs_trans_free(tp);
1119}
1120
1121/*
1122 * Roll from one trans in the sequence of PERMANENT transactions to
1123 * the next: permanent transactions are only flushed out when
1124 * committed with xfs_trans_commit(), but we still want as soon
1125 * as possible to let chunks of it go to the log. So we commit the
1126 * chunk we've been working on and get a new transaction to continue.
1127 */
1128int
1129xfs_trans_roll(
1130 struct xfs_trans **tpp)
1131{
1132 struct xfs_trans *trans = *tpp;
1133 struct xfs_trans_res tres;
1134 int error;
1135
1136 trace_xfs_trans_roll(trans, _RET_IP_);
1137
1138 /*
1139 * Copy the critical parameters from one trans to the next.
1140 */
1141 tres.tr_logres = trans->t_log_res;
1142 tres.tr_logcount = trans->t_log_count;
1143
1144 *tpp = xfs_trans_dup(trans);
1145
1146 /*
1147 * Commit the current transaction.
1148 * If this commit failed, then it'd just unlock those items that
1149 * are not marked ihold. That also means that a filesystem shutdown
1150 * is in progress. The caller takes the responsibility to cancel
1151 * the duplicate transaction that gets returned.
1152 */
1153 error = __xfs_trans_commit(trans, true);
1154 if (error)
1155 return error;
1156
1157 /*
1158 * Reserve space in the log for the next transaction.
1159 * This also pushes items in the "AIL", the list of logged items,
1160 * out to disk if they are taking up space at the tail of the log
1161 * that we want to use. This requires that either nothing be locked
1162 * across this call, or that anything that is locked be logged in
1163 * the prior and the next transactions.
1164 */
1165 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1166 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1167}
1168
1169/*
1170 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1171 *
1172 * The caller must ensure that the on-disk dquots attached to this inode have
1173 * already been allocated and initialized. The caller is responsible for
1174 * releasing ILOCK_EXCL if a new transaction is returned.
1175 */
1176int
1177xfs_trans_alloc_inode(
1178 struct xfs_inode *ip,
1179 struct xfs_trans_res *resv,
1180 unsigned int dblocks,
1181 unsigned int rblocks,
1182 bool force,
1183 struct xfs_trans **tpp)
1184{
1185 struct xfs_trans *tp;
1186 struct xfs_mount *mp = ip->i_mount;
1187 bool retried = false;
1188 int error;
1189
1190retry:
1191 error = xfs_trans_alloc(mp, resv, dblocks,
1192 rblocks / mp->m_sb.sb_rextsize,
1193 force ? XFS_TRANS_RESERVE : 0, &tp);
1194 if (error)
1195 return error;
1196
1197 xfs_ilock(ip, XFS_ILOCK_EXCL);
1198 xfs_trans_ijoin(tp, ip, 0);
1199
1200 error = xfs_qm_dqattach_locked(ip, false);
1201 if (error) {
1202 /* Caller should have allocated the dquots! */
1203 ASSERT(error != -ENOENT);
1204 goto out_cancel;
1205 }
1206
1207 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1208 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1209 xfs_trans_cancel(tp);
1210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211 xfs_blockgc_free_quota(ip, 0);
1212 retried = true;
1213 goto retry;
1214 }
1215 if (error)
1216 goto out_cancel;
1217
1218 *tpp = tp;
1219 return 0;
1220
1221out_cancel:
1222 xfs_trans_cancel(tp);
1223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224 return error;
1225}
1226
1227/*
1228 * Allocate an transaction in preparation for inode creation by reserving quota
1229 * against the given dquots. Callers are not required to hold any inode locks.
1230 */
1231int
1232xfs_trans_alloc_icreate(
1233 struct xfs_mount *mp,
1234 struct xfs_trans_res *resv,
1235 struct xfs_dquot *udqp,
1236 struct xfs_dquot *gdqp,
1237 struct xfs_dquot *pdqp,
1238 unsigned int dblocks,
1239 struct xfs_trans **tpp)
1240{
1241 struct xfs_trans *tp;
1242 bool retried = false;
1243 int error;
1244
1245retry:
1246 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1247 if (error)
1248 return error;
1249
1250 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1251 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1252 xfs_trans_cancel(tp);
1253 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1254 retried = true;
1255 goto retry;
1256 }
1257 if (error) {
1258 xfs_trans_cancel(tp);
1259 return error;
1260 }
1261
1262 *tpp = tp;
1263 return 0;
1264}
1265
1266/*
1267 * Allocate an transaction, lock and join the inode to it, and reserve quota
1268 * in preparation for inode attribute changes that include uid, gid, or prid
1269 * changes.
1270 *
1271 * The caller must ensure that the on-disk dquots attached to this inode have
1272 * already been allocated and initialized. The ILOCK will be dropped when the
1273 * transaction is committed or cancelled.
1274 */
1275int
1276xfs_trans_alloc_ichange(
1277 struct xfs_inode *ip,
1278 struct xfs_dquot *new_udqp,
1279 struct xfs_dquot *new_gdqp,
1280 struct xfs_dquot *new_pdqp,
1281 bool force,
1282 struct xfs_trans **tpp)
1283{
1284 struct xfs_trans *tp;
1285 struct xfs_mount *mp = ip->i_mount;
1286 struct xfs_dquot *udqp;
1287 struct xfs_dquot *gdqp;
1288 struct xfs_dquot *pdqp;
1289 bool retried = false;
1290 int error;
1291
1292retry:
1293 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1294 if (error)
1295 return error;
1296
1297 xfs_ilock(ip, XFS_ILOCK_EXCL);
1298 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1299
1300 error = xfs_qm_dqattach_locked(ip, false);
1301 if (error) {
1302 /* Caller should have allocated the dquots! */
1303 ASSERT(error != -ENOENT);
1304 goto out_cancel;
1305 }
1306
1307 /*
1308 * For each quota type, skip quota reservations if the inode's dquots
1309 * now match the ones that came from the caller, or the caller didn't
1310 * pass one in. The inode's dquots can change if we drop the ILOCK to
1311 * perform a blockgc scan, so we must preserve the caller's arguments.
1312 */
1313 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1314 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1315 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1316 if (udqp || gdqp || pdqp) {
1317 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1318
1319 if (force)
1320 qflags |= XFS_QMOPT_FORCE_RES;
1321
1322 /*
1323 * Reserve enough quota to handle blocks on disk and reserved
1324 * for a delayed allocation. We'll actually transfer the
1325 * delalloc reservation between dquots at chown time, even
1326 * though that part is only semi-transactional.
1327 */
1328 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1329 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1330 1, qflags);
1331 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1332 xfs_trans_cancel(tp);
1333 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1334 retried = true;
1335 goto retry;
1336 }
1337 if (error)
1338 goto out_cancel;
1339 }
1340
1341 *tpp = tp;
1342 return 0;
1343
1344out_cancel:
1345 xfs_trans_cancel(tp);
1346 return error;
1347}
1348
1349/*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update. If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized. The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 */
1360int
1361xfs_trans_alloc_dir(
1362 struct xfs_inode *dp,
1363 struct xfs_trans_res *resv,
1364 struct xfs_inode *ip,
1365 unsigned int *dblocks,
1366 struct xfs_trans **tpp,
1367 int *nospace_error)
1368{
1369 struct xfs_trans *tp;
1370 struct xfs_mount *mp = ip->i_mount;
1371 unsigned int resblks;
1372 bool retried = false;
1373 int error;
1374
1375retry:
1376 *nospace_error = 0;
1377 resblks = *dblocks;
1378 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 if (error == -ENOSPC) {
1380 *nospace_error = error;
1381 resblks = 0;
1382 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 }
1384 if (error)
1385 return error;
1386
1387 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1390 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1391
1392 error = xfs_qm_dqattach_locked(dp, false);
1393 if (error) {
1394 /* Caller should have allocated the dquots! */
1395 ASSERT(error != -ENOENT);
1396 goto out_cancel;
1397 }
1398
1399 error = xfs_qm_dqattach_locked(ip, false);
1400 if (error) {
1401 /* Caller should have allocated the dquots! */
1402 ASSERT(error != -ENOENT);
1403 goto out_cancel;
1404 }
1405
1406 if (resblks == 0)
1407 goto done;
1408
1409 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 if (error == -EDQUOT || error == -ENOSPC) {
1411 if (!retried) {
1412 xfs_trans_cancel(tp);
1413 xfs_blockgc_free_quota(dp, 0);
1414 retried = true;
1415 goto retry;
1416 }
1417
1418 *nospace_error = error;
1419 resblks = 0;
1420 error = 0;
1421 }
1422 if (error)
1423 goto out_cancel;
1424
1425done:
1426 *tpp = tp;
1427 *dblocks = resblks;
1428 return 0;
1429
1430out_cancel:
1431 xfs_trans_cancel(tp);
1432 return error;
1433}