Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
 
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
 
 
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  66	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
 
  67};
  68
  69#define CPU_AFFINITY_ALL	-1ULL
  70
  71/*
  72 * Supported protocol versions in the order of probing - highest go
  73 * first.
  74 */
  75static enum pci_protocol_version_t pci_protocol_versions[] = {
 
  76	PCI_PROTOCOL_VERSION_1_3,
  77	PCI_PROTOCOL_VERSION_1_2,
  78	PCI_PROTOCOL_VERSION_1_1,
  79};
  80
  81#define PCI_CONFIG_MMIO_LENGTH	0x2000
  82#define CFG_PAGE_OFFSET 0x1000
  83#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  84
  85#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  86
  87#define STATUS_REVISION_MISMATCH 0xC0000059
  88
  89/* space for 32bit serial number as string */
  90#define SLOT_NAME_SIZE 11
  91
  92/*
 
 
 
 
 
 
 
  93 * Message Types
  94 */
  95
  96enum pci_message_type {
  97	/*
  98	 * Version 1.1
  99	 */
 100	PCI_MESSAGE_BASE                = 0x42490000,
 101	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 102	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 103	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 104	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 105	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 106	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 107	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 108	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 109	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 110	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 111	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 112	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 113	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 114	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 115	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 116	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 117	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 118	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 119	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 120	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 121	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 122	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 123	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 124	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 
 
 125	PCI_MESSAGE_MAXIMUM
 126};
 127
 128/*
 129 * Structures defining the virtual PCI Express protocol.
 130 */
 131
 132union pci_version {
 133	struct {
 134		u16 minor_version;
 135		u16 major_version;
 136	} parts;
 137	u32 version;
 138} __packed;
 139
 140/*
 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 142 * which is all this driver does.  This representation is the one used in
 143 * Windows, which is what is expected when sending this back and forth with
 144 * the Hyper-V parent partition.
 145 */
 146union win_slot_encoding {
 147	struct {
 148		u32	dev:5;
 149		u32	func:3;
 150		u32	reserved:24;
 151	} bits;
 152	u32 slot;
 153} __packed;
 154
 155/*
 156 * Pretty much as defined in the PCI Specifications.
 157 */
 158struct pci_function_description {
 159	u16	v_id;	/* vendor ID */
 160	u16	d_id;	/* device ID */
 161	u8	rev;
 162	u8	prog_intf;
 163	u8	subclass;
 164	u8	base_class;
 165	u32	subsystem_id;
 166	union win_slot_encoding win_slot;
 167	u32	ser;	/* serial number */
 168} __packed;
 169
 170enum pci_device_description_flags {
 171	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 172	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 173};
 174
 175struct pci_function_description2 {
 176	u16	v_id;	/* vendor ID */
 177	u16	d_id;	/* device ID */
 178	u8	rev;
 179	u8	prog_intf;
 180	u8	subclass;
 181	u8	base_class;
 182	u32	subsystem_id;
 183	union	win_slot_encoding win_slot;
 184	u32	ser;	/* serial number */
 185	u32	flags;
 186	u16	virtual_numa_node;
 187	u16	reserved;
 188} __packed;
 189
 190/**
 191 * struct hv_msi_desc
 192 * @vector:		IDT entry
 193 * @delivery_mode:	As defined in Intel's Programmer's
 194 *			Reference Manual, Volume 3, Chapter 8.
 195 * @vector_count:	Number of contiguous entries in the
 196 *			Interrupt Descriptor Table that are
 197 *			occupied by this Message-Signaled
 198 *			Interrupt. For "MSI", as first defined
 199 *			in PCI 2.2, this can be between 1 and
 200 *			32. For "MSI-X," as first defined in PCI
 201 *			3.0, this must be 1, as each MSI-X table
 202 *			entry would have its own descriptor.
 203 * @reserved:		Empty space
 204 * @cpu_mask:		All the target virtual processors.
 205 */
 206struct hv_msi_desc {
 207	u8	vector;
 208	u8	delivery_mode;
 209	u16	vector_count;
 210	u32	reserved;
 211	u64	cpu_mask;
 212} __packed;
 213
 214/**
 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 216 * @vector:		IDT entry
 217 * @delivery_mode:	As defined in Intel's Programmer's
 218 *			Reference Manual, Volume 3, Chapter 8.
 219 * @vector_count:	Number of contiguous entries in the
 220 *			Interrupt Descriptor Table that are
 221 *			occupied by this Message-Signaled
 222 *			Interrupt. For "MSI", as first defined
 223 *			in PCI 2.2, this can be between 1 and
 224 *			32. For "MSI-X," as first defined in PCI
 225 *			3.0, this must be 1, as each MSI-X table
 226 *			entry would have its own descriptor.
 227 * @processor_count:	number of bits enabled in array.
 228 * @processor_array:	All the target virtual processors.
 229 */
 230struct hv_msi_desc2 {
 231	u8	vector;
 232	u8	delivery_mode;
 233	u16	vector_count;
 234	u16	processor_count;
 235	u16	processor_array[32];
 236} __packed;
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238/**
 239 * struct tran_int_desc
 240 * @reserved:		unused, padding
 241 * @vector_count:	same as in hv_msi_desc
 242 * @data:		This is the "data payload" value that is
 243 *			written by the device when it generates
 244 *			a message-signaled interrupt, either MSI
 245 *			or MSI-X.
 246 * @address:		This is the address to which the data
 247 *			payload is written on interrupt
 248 *			generation.
 249 */
 250struct tran_int_desc {
 251	u16	reserved;
 252	u16	vector_count;
 253	u32	data;
 254	u64	address;
 255} __packed;
 256
 257/*
 258 * A generic message format for virtual PCI.
 259 * Specific message formats are defined later in the file.
 260 */
 261
 262struct pci_message {
 263	u32 type;
 264} __packed;
 265
 266struct pci_child_message {
 267	struct pci_message message_type;
 268	union win_slot_encoding wslot;
 269} __packed;
 270
 271struct pci_incoming_message {
 272	struct vmpacket_descriptor hdr;
 273	struct pci_message message_type;
 274} __packed;
 275
 276struct pci_response {
 277	struct vmpacket_descriptor hdr;
 278	s32 status;			/* negative values are failures */
 279} __packed;
 280
 281struct pci_packet {
 282	void (*completion_func)(void *context, struct pci_response *resp,
 283				int resp_packet_size);
 284	void *compl_ctxt;
 285
 286	struct pci_message message[];
 287};
 288
 289/*
 290 * Specific message types supporting the PCI protocol.
 291 */
 292
 293/*
 294 * Version negotiation message. Sent from the guest to the host.
 295 * The guest is free to try different versions until the host
 296 * accepts the version.
 297 *
 298 * pci_version: The protocol version requested.
 299 * is_last_attempt: If TRUE, this is the last version guest will request.
 300 * reservedz: Reserved field, set to zero.
 301 */
 302
 303struct pci_version_request {
 304	struct pci_message message_type;
 305	u32 protocol_version;
 306} __packed;
 307
 308/*
 309 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 310 * bus (PCI Express port) is ready for action.
 311 */
 312
 313struct pci_bus_d0_entry {
 314	struct pci_message message_type;
 315	u32 reserved;
 316	u64 mmio_base;
 317} __packed;
 318
 319struct pci_bus_relations {
 320	struct pci_incoming_message incoming;
 321	u32 device_count;
 322	struct pci_function_description func[];
 323} __packed;
 324
 325struct pci_bus_relations2 {
 326	struct pci_incoming_message incoming;
 327	u32 device_count;
 328	struct pci_function_description2 func[];
 329} __packed;
 330
 331struct pci_q_res_req_response {
 332	struct vmpacket_descriptor hdr;
 333	s32 status;			/* negative values are failures */
 334	u32 probed_bar[PCI_STD_NUM_BARS];
 335} __packed;
 336
 337struct pci_set_power {
 338	struct pci_message message_type;
 339	union win_slot_encoding wslot;
 340	u32 power_state;		/* In Windows terms */
 341	u32 reserved;
 342} __packed;
 343
 344struct pci_set_power_response {
 345	struct vmpacket_descriptor hdr;
 346	s32 status;			/* negative values are failures */
 347	union win_slot_encoding wslot;
 348	u32 resultant_state;		/* In Windows terms */
 349	u32 reserved;
 350} __packed;
 351
 352struct pci_resources_assigned {
 353	struct pci_message message_type;
 354	union win_slot_encoding wslot;
 355	u8 memory_range[0x14][6];	/* not used here */
 356	u32 msi_descriptors;
 357	u32 reserved[4];
 358} __packed;
 359
 360struct pci_resources_assigned2 {
 361	struct pci_message message_type;
 362	union win_slot_encoding wslot;
 363	u8 memory_range[0x14][6];	/* not used here */
 364	u32 msi_descriptor_count;
 365	u8 reserved[70];
 366} __packed;
 367
 368struct pci_create_interrupt {
 369	struct pci_message message_type;
 370	union win_slot_encoding wslot;
 371	struct hv_msi_desc int_desc;
 372} __packed;
 373
 374struct pci_create_int_response {
 375	struct pci_response response;
 376	u32 reserved;
 377	struct tran_int_desc int_desc;
 378} __packed;
 379
 380struct pci_create_interrupt2 {
 381	struct pci_message message_type;
 382	union win_slot_encoding wslot;
 383	struct hv_msi_desc2 int_desc;
 384} __packed;
 385
 
 
 
 
 
 
 386struct pci_delete_interrupt {
 387	struct pci_message message_type;
 388	union win_slot_encoding wslot;
 389	struct tran_int_desc int_desc;
 390} __packed;
 391
 392/*
 393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 394 */
 395struct pci_read_block {
 396	struct pci_message message_type;
 397	u32 block_id;
 398	union win_slot_encoding wslot;
 399	u32 bytes_requested;
 400} __packed;
 401
 402struct pci_read_block_response {
 403	struct vmpacket_descriptor hdr;
 404	u32 status;
 405	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 406} __packed;
 407
 408/*
 409 * Note: the VM must pass a valid block id, wslot and byte_count.
 410 */
 411struct pci_write_block {
 412	struct pci_message message_type;
 413	u32 block_id;
 414	union win_slot_encoding wslot;
 415	u32 byte_count;
 416	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 417} __packed;
 418
 419struct pci_dev_inval_block {
 420	struct pci_incoming_message incoming;
 421	union win_slot_encoding wslot;
 422	u64 block_mask;
 423} __packed;
 424
 425struct pci_dev_incoming {
 426	struct pci_incoming_message incoming;
 427	union win_slot_encoding wslot;
 428} __packed;
 429
 430struct pci_eject_response {
 431	struct pci_message message_type;
 432	union win_slot_encoding wslot;
 433	u32 status;
 434} __packed;
 435
 436static int pci_ring_size = (4 * PAGE_SIZE);
 437
 438/*
 439 * Driver specific state.
 440 */
 441
 442enum hv_pcibus_state {
 443	hv_pcibus_init = 0,
 444	hv_pcibus_probed,
 445	hv_pcibus_installed,
 446	hv_pcibus_removing,
 447	hv_pcibus_maximum
 448};
 449
 450struct hv_pcibus_device {
 
 451	struct pci_sysdata sysdata;
 
 
 
 
 
 452	/* Protocol version negotiated with the host */
 453	enum pci_protocol_version_t protocol_version;
 454	enum hv_pcibus_state state;
 455	struct hv_device *hdev;
 456	resource_size_t low_mmio_space;
 457	resource_size_t high_mmio_space;
 458	struct resource *mem_config;
 459	struct resource *low_mmio_res;
 460	struct resource *high_mmio_res;
 461	struct completion *survey_event;
 462	struct pci_bus *pci_bus;
 463	spinlock_t config_lock;	/* Avoid two threads writing index page */
 464	spinlock_t device_list_lock;	/* Protect lists below */
 465	void __iomem *cfg_addr;
 466
 467	struct list_head resources_for_children;
 468
 469	struct list_head children;
 470	struct list_head dr_list;
 471
 472	struct msi_domain_info msi_info;
 473	struct irq_domain *irq_domain;
 474
 475	spinlock_t retarget_msi_interrupt_lock;
 476
 477	struct workqueue_struct *wq;
 478
 479	/* Highest slot of child device with resources allocated */
 480	int wslot_res_allocated;
 481
 482	/* hypercall arg, must not cross page boundary */
 483	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 484
 485	/*
 486	 * Don't put anything here: retarget_msi_interrupt_params must be last
 487	 */
 488};
 489
 490/*
 491 * Tracks "Device Relations" messages from the host, which must be both
 492 * processed in order and deferred so that they don't run in the context
 493 * of the incoming packet callback.
 494 */
 495struct hv_dr_work {
 496	struct work_struct wrk;
 497	struct hv_pcibus_device *bus;
 498};
 499
 500struct hv_pcidev_description {
 501	u16	v_id;	/* vendor ID */
 502	u16	d_id;	/* device ID */
 503	u8	rev;
 504	u8	prog_intf;
 505	u8	subclass;
 506	u8	base_class;
 507	u32	subsystem_id;
 508	union	win_slot_encoding win_slot;
 509	u32	ser;	/* serial number */
 510	u32	flags;
 511	u16	virtual_numa_node;
 512};
 513
 514struct hv_dr_state {
 515	struct list_head list_entry;
 516	u32 device_count;
 517	struct hv_pcidev_description func[];
 518};
 519
 520enum hv_pcichild_state {
 521	hv_pcichild_init = 0,
 522	hv_pcichild_requirements,
 523	hv_pcichild_resourced,
 524	hv_pcichild_ejecting,
 525	hv_pcichild_maximum
 526};
 527
 528struct hv_pci_dev {
 529	/* List protected by pci_rescan_remove_lock */
 530	struct list_head list_entry;
 531	refcount_t refs;
 532	enum hv_pcichild_state state;
 533	struct pci_slot *pci_slot;
 534	struct hv_pcidev_description desc;
 535	bool reported_missing;
 536	struct hv_pcibus_device *hbus;
 537	struct work_struct wrk;
 538
 539	void (*block_invalidate)(void *context, u64 block_mask);
 540	void *invalidate_context;
 541
 542	/*
 543	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 544	 * read it back, for each of the BAR offsets within config space.
 545	 */
 546	u32 probed_bar[PCI_STD_NUM_BARS];
 547};
 548
 549struct hv_pci_compl {
 550	struct completion host_event;
 551	s32 completion_status;
 552};
 553
 554static void hv_pci_onchannelcallback(void *context);
 555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556/**
 557 * hv_pci_generic_compl() - Invoked for a completion packet
 558 * @context:		Set up by the sender of the packet.
 559 * @resp:		The response packet
 560 * @resp_packet_size:	Size in bytes of the packet
 561 *
 562 * This function is used to trigger an event and report status
 563 * for any message for which the completion packet contains a
 564 * status and nothing else.
 565 */
 566static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 567				 int resp_packet_size)
 568{
 569	struct hv_pci_compl *comp_pkt = context;
 570
 571	if (resp_packet_size >= offsetofend(struct pci_response, status))
 572		comp_pkt->completion_status = resp->status;
 573	else
 574		comp_pkt->completion_status = -1;
 575
 576	complete(&comp_pkt->host_event);
 577}
 578
 579static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 580						u32 wslot);
 581
 582static void get_pcichild(struct hv_pci_dev *hpdev)
 583{
 584	refcount_inc(&hpdev->refs);
 585}
 586
 587static void put_pcichild(struct hv_pci_dev *hpdev)
 588{
 589	if (refcount_dec_and_test(&hpdev->refs))
 590		kfree(hpdev);
 591}
 592
 593/*
 594 * There is no good way to get notified from vmbus_onoffer_rescind(),
 595 * so let's use polling here, since this is not a hot path.
 596 */
 597static int wait_for_response(struct hv_device *hdev,
 598			     struct completion *comp)
 599{
 600	while (true) {
 601		if (hdev->channel->rescind) {
 602			dev_warn_once(&hdev->device, "The device is gone.\n");
 603			return -ENODEV;
 604		}
 605
 606		if (wait_for_completion_timeout(comp, HZ / 10))
 607			break;
 608	}
 609
 610	return 0;
 611}
 612
 613/**
 614 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 615 * @devfn:	The Linux representation of PCI slot
 616 *
 617 * Windows uses a slightly different representation of PCI slot.
 618 *
 619 * Return: The Windows representation
 620 */
 621static u32 devfn_to_wslot(int devfn)
 622{
 623	union win_slot_encoding wslot;
 624
 625	wslot.slot = 0;
 626	wslot.bits.dev = PCI_SLOT(devfn);
 627	wslot.bits.func = PCI_FUNC(devfn);
 628
 629	return wslot.slot;
 630}
 631
 632/**
 633 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 634 * @wslot:	The Windows representation of PCI slot
 635 *
 636 * Windows uses a slightly different representation of PCI slot.
 637 *
 638 * Return: The Linux representation
 639 */
 640static int wslot_to_devfn(u32 wslot)
 641{
 642	union win_slot_encoding slot_no;
 643
 644	slot_no.slot = wslot;
 645	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 646}
 647
 648/*
 649 * PCI Configuration Space for these root PCI buses is implemented as a pair
 650 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 651 * the PCI function being written or read.  Once the first page has been
 652 * written to, the following page maps in the entire configuration space of
 653 * the function.
 654 */
 655
 656/**
 657 * _hv_pcifront_read_config() - Internal PCI config read
 658 * @hpdev:	The PCI driver's representation of the device
 659 * @where:	Offset within config space
 660 * @size:	Size of the transfer
 661 * @val:	Pointer to the buffer receiving the data
 662 */
 663static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 664				     int size, u32 *val)
 665{
 666	unsigned long flags;
 667	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 668
 669	/*
 670	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
 671	 */
 672	if (where + size <= PCI_COMMAND) {
 673		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 674	} else if (where >= PCI_CLASS_REVISION && where + size <=
 675		   PCI_CACHE_LINE_SIZE) {
 676		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 677		       PCI_CLASS_REVISION, size);
 678	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 679		   PCI_ROM_ADDRESS) {
 680		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 681		       PCI_SUBSYSTEM_VENDOR_ID, size);
 682	} else if (where >= PCI_ROM_ADDRESS && where + size <=
 683		   PCI_CAPABILITY_LIST) {
 684		/* ROM BARs are unimplemented */
 685		*val = 0;
 686	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
 687		   PCI_INTERRUPT_PIN) {
 688		/*
 689		 * Interrupt Line and Interrupt PIN are hard-wired to zero
 690		 * because this front-end only supports message-signaled
 691		 * interrupts.
 692		 */
 693		*val = 0;
 694	} else if (where + size <= CFG_PAGE_SIZE) {
 695		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 696		/* Choose the function to be read. (See comment above) */
 697		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 698		/* Make sure the function was chosen before we start reading. */
 699		mb();
 700		/* Read from that function's config space. */
 701		switch (size) {
 702		case 1:
 703			*val = readb(addr);
 704			break;
 705		case 2:
 706			*val = readw(addr);
 707			break;
 708		default:
 709			*val = readl(addr);
 710			break;
 711		}
 712		/*
 713		 * Make sure the read was done before we release the spinlock
 714		 * allowing consecutive reads/writes.
 715		 */
 716		mb();
 717		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 718	} else {
 719		dev_err(&hpdev->hbus->hdev->device,
 720			"Attempt to read beyond a function's config space.\n");
 721	}
 722}
 723
 724static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 725{
 726	u16 ret;
 727	unsigned long flags;
 728	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 729			     PCI_VENDOR_ID;
 730
 731	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 732
 733	/* Choose the function to be read. (See comment above) */
 734	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 735	/* Make sure the function was chosen before we start reading. */
 736	mb();
 737	/* Read from that function's config space. */
 738	ret = readw(addr);
 739	/*
 740	 * mb() is not required here, because the spin_unlock_irqrestore()
 741	 * is a barrier.
 742	 */
 743
 744	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 745
 746	return ret;
 747}
 748
 749/**
 750 * _hv_pcifront_write_config() - Internal PCI config write
 751 * @hpdev:	The PCI driver's representation of the device
 752 * @where:	Offset within config space
 753 * @size:	Size of the transfer
 754 * @val:	The data being transferred
 755 */
 756static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 757				      int size, u32 val)
 758{
 759	unsigned long flags;
 760	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 761
 762	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 763	    where + size <= PCI_CAPABILITY_LIST) {
 764		/* SSIDs and ROM BARs are read-only */
 765	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 766		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 767		/* Choose the function to be written. (See comment above) */
 768		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 769		/* Make sure the function was chosen before we start writing. */
 770		wmb();
 771		/* Write to that function's config space. */
 772		switch (size) {
 773		case 1:
 774			writeb(val, addr);
 775			break;
 776		case 2:
 777			writew(val, addr);
 778			break;
 779		default:
 780			writel(val, addr);
 781			break;
 782		}
 783		/*
 784		 * Make sure the write was done before we release the spinlock
 785		 * allowing consecutive reads/writes.
 786		 */
 787		mb();
 788		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 789	} else {
 790		dev_err(&hpdev->hbus->hdev->device,
 791			"Attempt to write beyond a function's config space.\n");
 792	}
 793}
 794
 795/**
 796 * hv_pcifront_read_config() - Read configuration space
 797 * @bus: PCI Bus structure
 798 * @devfn: Device/function
 799 * @where: Offset from base
 800 * @size: Byte/word/dword
 801 * @val: Value to be read
 802 *
 803 * Return: PCIBIOS_SUCCESSFUL on success
 804 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 805 */
 806static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 807				   int where, int size, u32 *val)
 808{
 809	struct hv_pcibus_device *hbus =
 810		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 811	struct hv_pci_dev *hpdev;
 812
 813	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 814	if (!hpdev)
 815		return PCIBIOS_DEVICE_NOT_FOUND;
 816
 817	_hv_pcifront_read_config(hpdev, where, size, val);
 818
 819	put_pcichild(hpdev);
 820	return PCIBIOS_SUCCESSFUL;
 821}
 822
 823/**
 824 * hv_pcifront_write_config() - Write configuration space
 825 * @bus: PCI Bus structure
 826 * @devfn: Device/function
 827 * @where: Offset from base
 828 * @size: Byte/word/dword
 829 * @val: Value to be written to device
 830 *
 831 * Return: PCIBIOS_SUCCESSFUL on success
 832 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
 833 */
 834static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 835				    int where, int size, u32 val)
 836{
 837	struct hv_pcibus_device *hbus =
 838	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 839	struct hv_pci_dev *hpdev;
 840
 841	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 842	if (!hpdev)
 843		return PCIBIOS_DEVICE_NOT_FOUND;
 844
 845	_hv_pcifront_write_config(hpdev, where, size, val);
 846
 847	put_pcichild(hpdev);
 848	return PCIBIOS_SUCCESSFUL;
 849}
 850
 851/* PCIe operations */
 852static struct pci_ops hv_pcifront_ops = {
 853	.read  = hv_pcifront_read_config,
 854	.write = hv_pcifront_write_config,
 855};
 856
 857/*
 858 * Paravirtual backchannel
 859 *
 860 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 861 * communication between a VF driver and a PF driver.  These
 862 * "configuration blocks" are similar in concept to PCI configuration space,
 863 * but instead of doing reads and writes in 32-bit chunks through a very slow
 864 * path, packets of up to 128 bytes can be sent or received asynchronously.
 865 *
 866 * Nearly every SR-IOV device contains just such a communications channel in
 867 * hardware, so using this one in software is usually optional.  Using the
 868 * software channel, however, allows driver implementers to leverage software
 869 * tools that fuzz the communications channel looking for vulnerabilities.
 870 *
 871 * The usage model for these packets puts the responsibility for reading or
 872 * writing on the VF driver.  The VF driver sends a read or a write packet,
 873 * indicating which "block" is being referred to by number.
 874 *
 875 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 876 * more of the first 64 blocks.  This invalidation is delivered via a callback
 877 * supplied by the VF driver by this driver.
 878 *
 879 * No protocol is implied, except that supplied by the PF and VF drivers.
 880 */
 881
 882struct hv_read_config_compl {
 883	struct hv_pci_compl comp_pkt;
 884	void *buf;
 885	unsigned int len;
 886	unsigned int bytes_returned;
 887};
 888
 889/**
 890 * hv_pci_read_config_compl() - Invoked when a response packet
 891 * for a read config block operation arrives.
 892 * @context:		Identifies the read config operation
 893 * @resp:		The response packet itself
 894 * @resp_packet_size:	Size in bytes of the response packet
 895 */
 896static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 897				     int resp_packet_size)
 898{
 899	struct hv_read_config_compl *comp = context;
 900	struct pci_read_block_response *read_resp =
 901		(struct pci_read_block_response *)resp;
 902	unsigned int data_len, hdr_len;
 903
 904	hdr_len = offsetof(struct pci_read_block_response, bytes);
 905	if (resp_packet_size < hdr_len) {
 906		comp->comp_pkt.completion_status = -1;
 907		goto out;
 908	}
 909
 910	data_len = resp_packet_size - hdr_len;
 911	if (data_len > 0 && read_resp->status == 0) {
 912		comp->bytes_returned = min(comp->len, data_len);
 913		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 914	} else {
 915		comp->bytes_returned = 0;
 916	}
 917
 918	comp->comp_pkt.completion_status = read_resp->status;
 919out:
 920	complete(&comp->comp_pkt.host_event);
 921}
 922
 923/**
 924 * hv_read_config_block() - Sends a read config block request to
 925 * the back-end driver running in the Hyper-V parent partition.
 926 * @pdev:		The PCI driver's representation for this device.
 927 * @buf:		Buffer into which the config block will be copied.
 928 * @len:		Size in bytes of buf.
 929 * @block_id:		Identifies the config block which has been requested.
 930 * @bytes_returned:	Size which came back from the back-end driver.
 931 *
 932 * Return: 0 on success, -errno on failure
 933 */
 934static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 935				unsigned int len, unsigned int block_id,
 936				unsigned int *bytes_returned)
 937{
 938	struct hv_pcibus_device *hbus =
 939		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 940			     sysdata);
 941	struct {
 942		struct pci_packet pkt;
 943		char buf[sizeof(struct pci_read_block)];
 944	} pkt;
 945	struct hv_read_config_compl comp_pkt;
 946	struct pci_read_block *read_blk;
 947	int ret;
 948
 949	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 950		return -EINVAL;
 951
 952	init_completion(&comp_pkt.comp_pkt.host_event);
 953	comp_pkt.buf = buf;
 954	comp_pkt.len = len;
 955
 956	memset(&pkt, 0, sizeof(pkt));
 957	pkt.pkt.completion_func = hv_pci_read_config_compl;
 958	pkt.pkt.compl_ctxt = &comp_pkt;
 959	read_blk = (struct pci_read_block *)&pkt.pkt.message;
 960	read_blk->message_type.type = PCI_READ_BLOCK;
 961	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 962	read_blk->block_id = block_id;
 963	read_blk->bytes_requested = len;
 964
 965	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 966			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
 967			       VM_PKT_DATA_INBAND,
 968			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 969	if (ret)
 970		return ret;
 971
 972	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 973	if (ret)
 974		return ret;
 975
 976	if (comp_pkt.comp_pkt.completion_status != 0 ||
 977	    comp_pkt.bytes_returned == 0) {
 978		dev_err(&hbus->hdev->device,
 979			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
 980			comp_pkt.comp_pkt.completion_status,
 981			comp_pkt.bytes_returned);
 982		return -EIO;
 983	}
 984
 985	*bytes_returned = comp_pkt.bytes_returned;
 986	return 0;
 987}
 988
 989/**
 990 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 991 * config block operation arrives.
 992 * @context:		Identifies the write config operation
 993 * @resp:		The response packet itself
 994 * @resp_packet_size:	Size in bytes of the response packet
 995 */
 996static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 997				      int resp_packet_size)
 998{
 999	struct hv_pci_compl *comp_pkt = context;
1000
1001	comp_pkt->completion_status = resp->status;
1002	complete(&comp_pkt->host_event);
1003}
1004
1005/**
1006 * hv_write_config_block() - Sends a write config block request to the
1007 * back-end driver running in the Hyper-V parent partition.
1008 * @pdev:		The PCI driver's representation for this device.
1009 * @buf:		Buffer from which the config block will	be copied.
1010 * @len:		Size in bytes of buf.
1011 * @block_id:		Identifies the config block which is being written.
1012 *
1013 * Return: 0 on success, -errno on failure
1014 */
1015static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1016				unsigned int len, unsigned int block_id)
1017{
1018	struct hv_pcibus_device *hbus =
1019		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1020			     sysdata);
1021	struct {
1022		struct pci_packet pkt;
1023		char buf[sizeof(struct pci_write_block)];
1024		u32 reserved;
1025	} pkt;
1026	struct hv_pci_compl comp_pkt;
1027	struct pci_write_block *write_blk;
1028	u32 pkt_size;
1029	int ret;
1030
1031	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1032		return -EINVAL;
1033
1034	init_completion(&comp_pkt.host_event);
1035
1036	memset(&pkt, 0, sizeof(pkt));
1037	pkt.pkt.completion_func = hv_pci_write_config_compl;
1038	pkt.pkt.compl_ctxt = &comp_pkt;
1039	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1040	write_blk->message_type.type = PCI_WRITE_BLOCK;
1041	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1042	write_blk->block_id = block_id;
1043	write_blk->byte_count = len;
1044	memcpy(write_blk->bytes, buf, len);
1045	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1046	/*
1047	 * This quirk is required on some hosts shipped around 2018, because
1048	 * these hosts don't check the pkt_size correctly (new hosts have been
1049	 * fixed since early 2019). The quirk is also safe on very old hosts
1050	 * and new hosts, because, on them, what really matters is the length
1051	 * specified in write_blk->byte_count.
1052	 */
1053	pkt_size += sizeof(pkt.reserved);
1054
1055	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1056			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1057			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1058	if (ret)
1059		return ret;
1060
1061	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1062	if (ret)
1063		return ret;
1064
1065	if (comp_pkt.completion_status != 0) {
1066		dev_err(&hbus->hdev->device,
1067			"Write Config Block failed: 0x%x\n",
1068			comp_pkt.completion_status);
1069		return -EIO;
1070	}
1071
1072	return 0;
1073}
1074
1075/**
1076 * hv_register_block_invalidate() - Invoked when a config block invalidation
1077 * arrives from the back-end driver.
1078 * @pdev:		The PCI driver's representation for this device.
1079 * @context:		Identifies the device.
1080 * @block_invalidate:	Identifies all of the blocks being invalidated.
1081 *
1082 * Return: 0 on success, -errno on failure
1083 */
1084static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1085					void (*block_invalidate)(void *context,
1086								 u64 block_mask))
1087{
1088	struct hv_pcibus_device *hbus =
1089		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1090			     sysdata);
1091	struct hv_pci_dev *hpdev;
1092
1093	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1094	if (!hpdev)
1095		return -ENODEV;
1096
1097	hpdev->block_invalidate = block_invalidate;
1098	hpdev->invalidate_context = context;
1099
1100	put_pcichild(hpdev);
1101	return 0;
1102
1103}
1104
1105/* Interrupt management hooks */
1106static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1107			     struct tran_int_desc *int_desc)
1108{
1109	struct pci_delete_interrupt *int_pkt;
1110	struct {
1111		struct pci_packet pkt;
1112		u8 buffer[sizeof(struct pci_delete_interrupt)];
1113	} ctxt;
1114
 
 
 
 
1115	memset(&ctxt, 0, sizeof(ctxt));
1116	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1117	int_pkt->message_type.type =
1118		PCI_DELETE_INTERRUPT_MESSAGE;
1119	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1120	int_pkt->int_desc = *int_desc;
1121	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1122			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1123	kfree(int_desc);
1124}
1125
1126/**
1127 * hv_msi_free() - Free the MSI.
1128 * @domain:	The interrupt domain pointer
1129 * @info:	Extra MSI-related context
1130 * @irq:	Identifies the IRQ.
1131 *
1132 * The Hyper-V parent partition and hypervisor are tracking the
1133 * messages that are in use, keeping the interrupt redirection
1134 * table up to date.  This callback sends a message that frees
1135 * the IRT entry and related tracking nonsense.
1136 */
1137static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1138			unsigned int irq)
1139{
1140	struct hv_pcibus_device *hbus;
1141	struct hv_pci_dev *hpdev;
1142	struct pci_dev *pdev;
1143	struct tran_int_desc *int_desc;
1144	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1145	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1146
1147	pdev = msi_desc_to_pci_dev(msi);
1148	hbus = info->data;
1149	int_desc = irq_data_get_irq_chip_data(irq_data);
1150	if (!int_desc)
1151		return;
1152
1153	irq_data->chip_data = NULL;
1154	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1155	if (!hpdev) {
1156		kfree(int_desc);
1157		return;
1158	}
1159
1160	hv_int_desc_free(hpdev, int_desc);
1161	put_pcichild(hpdev);
1162}
1163
1164static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1165			   bool force)
1166{
1167	struct irq_data *parent = data->parent_data;
1168
1169	return parent->chip->irq_set_affinity(parent, dest, force);
1170}
1171
1172static void hv_irq_mask(struct irq_data *data)
1173{
1174	pci_msi_mask_irq(data);
 
 
1175}
1176
1177/**
1178 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1179 * affinity.
1180 * @data:	Describes the IRQ
1181 *
1182 * Build new a destination for the MSI and make a hypercall to
1183 * update the Interrupt Redirection Table. "Device Logical ID"
1184 * is built out of this PCI bus's instance GUID and the function
1185 * number of the device.
1186 */
1187static void hv_irq_unmask(struct irq_data *data)
1188{
1189	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1190	struct irq_cfg *cfg = irqd_cfg(data);
1191	struct hv_retarget_device_interrupt *params;
1192	struct hv_pcibus_device *hbus;
1193	struct cpumask *dest;
1194	cpumask_var_t tmp;
1195	struct pci_bus *pbus;
1196	struct pci_dev *pdev;
1197	unsigned long flags;
1198	u32 var_size = 0;
1199	int cpu, nr_bank;
1200	u64 res;
1201
1202	dest = irq_data_get_effective_affinity_mask(data);
1203	pdev = msi_desc_to_pci_dev(msi_desc);
1204	pbus = pdev->bus;
1205	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1206
1207	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1208
1209	params = &hbus->retarget_msi_interrupt_params;
1210	memset(params, 0, sizeof(*params));
1211	params->partition_id = HV_PARTITION_ID_SELF;
1212	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
1213	hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1214	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1215			   (hbus->hdev->dev_instance.b[4] << 16) |
1216			   (hbus->hdev->dev_instance.b[7] << 8) |
1217			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
1218			   PCI_FUNC(pdev->devfn);
1219	params->int_target.vector = cfg->vector;
1220
1221	/*
1222	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1223	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1224	 * spurious interrupt storm. Not doing so does not seem to have a
1225	 * negative effect (yet?).
1226	 */
1227
1228	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1229		/*
1230		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1231		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1232		 * with >64 VP support.
1233		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1234		 * is not sufficient for this hypercall.
1235		 */
1236		params->int_target.flags |=
1237			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1238
1239		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1240			res = 1;
1241			goto exit_unlock;
1242		}
1243
1244		cpumask_and(tmp, dest, cpu_online_mask);
1245		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1246		free_cpumask_var(tmp);
1247
1248		if (nr_bank <= 0) {
1249			res = 1;
1250			goto exit_unlock;
1251		}
1252
1253		/*
1254		 * var-sized hypercall, var-size starts after vp_mask (thus
1255		 * vp_set.format does not count, but vp_set.valid_bank_mask
1256		 * does).
1257		 */
1258		var_size = 1 + nr_bank;
1259	} else {
1260		for_each_cpu_and(cpu, dest, cpu_online_mask) {
1261			params->int_target.vp_mask |=
1262				(1ULL << hv_cpu_number_to_vp_number(cpu));
1263		}
1264	}
1265
1266	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1267			      params, NULL);
1268
1269exit_unlock:
1270	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1271
1272	/*
1273	 * During hibernation, when a CPU is offlined, the kernel tries
1274	 * to move the interrupt to the remaining CPUs that haven't
1275	 * been offlined yet. In this case, the below hv_do_hypercall()
1276	 * always fails since the vmbus channel has been closed:
1277	 * refer to cpu_disable_common() -> fixup_irqs() ->
1278	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1279	 *
1280	 * Suppress the error message for hibernation because the failure
1281	 * during hibernation does not matter (at this time all the devices
1282	 * have been frozen). Note: the correct affinity info is still updated
1283	 * into the irqdata data structure in migrate_one_irq() ->
1284	 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1285	 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1286	 * the interrupt with the correct affinity.
1287	 */
1288	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
1289		dev_err(&hbus->hdev->device,
1290			"%s() failed: %#llx", __func__, res);
1291
 
 
1292	pci_msi_unmask_irq(data);
1293}
1294
1295struct compose_comp_ctxt {
1296	struct hv_pci_compl comp_pkt;
1297	struct tran_int_desc int_desc;
1298};
1299
1300static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1301				 int resp_packet_size)
1302{
1303	struct compose_comp_ctxt *comp_pkt = context;
1304	struct pci_create_int_response *int_resp =
1305		(struct pci_create_int_response *)resp;
1306
 
 
 
 
1307	comp_pkt->comp_pkt.completion_status = resp->status;
1308	comp_pkt->int_desc = int_resp->int_desc;
 
1309	complete(&comp_pkt->comp_pkt.host_event);
1310}
1311
1312static u32 hv_compose_msi_req_v1(
1313	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1314	u32 slot, u8 vector)
1315{
1316	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1317	int_pkt->wslot.slot = slot;
1318	int_pkt->int_desc.vector = vector;
1319	int_pkt->int_desc.vector_count = 1;
1320	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1321
1322	/*
1323	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1324	 * hv_irq_unmask().
1325	 */
1326	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1327
1328	return sizeof(*int_pkt);
1329}
1330
1331static u32 hv_compose_msi_req_v2(
1332	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1333	u32 slot, u8 vector)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	int cpu;
1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1338	int_pkt->wslot.slot = slot;
1339	int_pkt->int_desc.vector = vector;
1340	int_pkt->int_desc.vector_count = 1;
1341	int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
 
 
 
1342
1343	/*
1344	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1345	 * by subsequent retarget in hv_irq_unmask().
1346	 */
1347	cpu = cpumask_first_and(affinity, cpu_online_mask);
 
 
 
 
 
 
 
 
1348	int_pkt->int_desc.processor_array[0] =
1349		hv_cpu_number_to_vp_number(cpu);
1350	int_pkt->int_desc.processor_count = 1;
1351
1352	return sizeof(*int_pkt);
1353}
1354
1355/**
1356 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1357 * @data:	Everything about this MSI
1358 * @msg:	Buffer that is filled in by this function
1359 *
1360 * This function unpacks the IRQ looking for target CPU set, IDT
1361 * vector and mode and sends a message to the parent partition
1362 * asking for a mapping for that tuple in this partition.  The
1363 * response supplies a data value and address to which that data
1364 * should be written to trigger that interrupt.
1365 */
1366static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1367{
1368	struct irq_cfg *cfg = irqd_cfg(data);
1369	struct hv_pcibus_device *hbus;
1370	struct vmbus_channel *channel;
1371	struct hv_pci_dev *hpdev;
1372	struct pci_bus *pbus;
1373	struct pci_dev *pdev;
1374	struct cpumask *dest;
1375	struct compose_comp_ctxt comp;
1376	struct tran_int_desc *int_desc;
 
 
 
 
 
 
 
1377	struct {
1378		struct pci_packet pci_pkt;
1379		union {
1380			struct pci_create_interrupt v1;
1381			struct pci_create_interrupt2 v2;
 
1382		} int_pkts;
1383	} __packed ctxt;
1384
 
1385	u32 size;
1386	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387
1388	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1389	dest = irq_data_get_effective_affinity_mask(data);
1390	pbus = pdev->bus;
1391	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1392	channel = hbus->hdev->channel;
1393	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1394	if (!hpdev)
1395		goto return_null_message;
1396
1397	/* Free any previous message that might have already been composed. */
1398	if (data->chip_data) {
1399		int_desc = data->chip_data;
1400		data->chip_data = NULL;
1401		hv_int_desc_free(hpdev, int_desc);
1402	}
1403
1404	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1405	if (!int_desc)
1406		goto drop_reference;
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408	memset(&ctxt, 0, sizeof(ctxt));
1409	init_completion(&comp.comp_pkt.host_event);
1410	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1411	ctxt.pci_pkt.compl_ctxt = &comp;
1412
1413	switch (hbus->protocol_version) {
1414	case PCI_PROTOCOL_VERSION_1_1:
1415		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1416					dest,
1417					hpdev->desc.win_slot.slot,
1418					cfg->vector);
 
1419		break;
1420
1421	case PCI_PROTOCOL_VERSION_1_2:
1422	case PCI_PROTOCOL_VERSION_1_3:
1423		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1424					dest,
 
 
 
 
 
 
 
 
1425					hpdev->desc.win_slot.slot,
1426					cfg->vector);
 
1427		break;
1428
1429	default:
1430		/* As we only negotiate protocol versions known to this driver,
1431		 * this path should never hit. However, this is it not a hot
1432		 * path so we print a message to aid future updates.
1433		 */
1434		dev_err(&hbus->hdev->device,
1435			"Unexpected vPCI protocol, update driver.");
1436		goto free_int_desc;
1437	}
1438
1439	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1440			       size, (unsigned long)&ctxt.pci_pkt,
1441			       VM_PKT_DATA_INBAND,
1442			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1443	if (ret) {
1444		dev_err(&hbus->hdev->device,
1445			"Sending request for interrupt failed: 0x%x",
1446			comp.comp_pkt.completion_status);
1447		goto free_int_desc;
1448	}
1449
1450	/*
1451	 * Prevents hv_pci_onchannelcallback() from running concurrently
1452	 * in the tasklet.
1453	 */
1454	tasklet_disable_in_atomic(&channel->callback_event);
1455
1456	/*
1457	 * Since this function is called with IRQ locks held, can't
1458	 * do normal wait for completion; instead poll.
1459	 */
1460	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1461		unsigned long flags;
1462
1463		/* 0xFFFF means an invalid PCI VENDOR ID. */
1464		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1465			dev_err_once(&hbus->hdev->device,
1466				     "the device has gone\n");
1467			goto enable_tasklet;
1468		}
1469
1470		/*
1471		 * Make sure that the ring buffer data structure doesn't get
1472		 * freed while we dereference the ring buffer pointer.  Test
1473		 * for the channel's onchannel_callback being NULL within a
1474		 * sched_lock critical section.  See also the inline comments
1475		 * in vmbus_reset_channel_cb().
1476		 */
1477		spin_lock_irqsave(&channel->sched_lock, flags);
1478		if (unlikely(channel->onchannel_callback == NULL)) {
1479			spin_unlock_irqrestore(&channel->sched_lock, flags);
1480			goto enable_tasklet;
1481		}
1482		hv_pci_onchannelcallback(hbus);
1483		spin_unlock_irqrestore(&channel->sched_lock, flags);
1484
1485		if (hpdev->state == hv_pcichild_ejecting) {
1486			dev_err_once(&hbus->hdev->device,
1487				     "the device is being ejected\n");
1488			goto enable_tasklet;
1489		}
1490
1491		udelay(100);
1492	}
1493
1494	tasklet_enable(&channel->callback_event);
1495
1496	if (comp.comp_pkt.completion_status < 0) {
1497		dev_err(&hbus->hdev->device,
1498			"Request for interrupt failed: 0x%x",
1499			comp.comp_pkt.completion_status);
1500		goto free_int_desc;
1501	}
1502
1503	/*
1504	 * Record the assignment so that this can be unwound later. Using
1505	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1506	 * is already held.
1507	 */
1508	*int_desc = comp.int_desc;
1509	data->chip_data = int_desc;
1510
1511	/* Pass up the result. */
1512	msg->address_hi = comp.int_desc.address >> 32;
1513	msg->address_lo = comp.int_desc.address & 0xffffffff;
1514	msg->data = comp.int_desc.data;
1515
1516	put_pcichild(hpdev);
1517	return;
1518
1519enable_tasklet:
1520	tasklet_enable(&channel->callback_event);
 
 
 
 
 
 
 
 
 
1521free_int_desc:
1522	kfree(int_desc);
1523drop_reference:
1524	put_pcichild(hpdev);
1525return_null_message:
1526	msg->address_hi = 0;
1527	msg->address_lo = 0;
1528	msg->data = 0;
1529}
1530
1531/* HW Interrupt Chip Descriptor */
1532static struct irq_chip hv_msi_irq_chip = {
1533	.name			= "Hyper-V PCIe MSI",
1534	.irq_compose_msi_msg	= hv_compose_msi_msg,
1535	.irq_set_affinity	= hv_set_affinity,
 
1536	.irq_ack		= irq_chip_ack_parent,
 
 
 
1537	.irq_mask		= hv_irq_mask,
1538	.irq_unmask		= hv_irq_unmask,
1539};
1540
1541static struct msi_domain_ops hv_msi_ops = {
1542	.msi_prepare	= pci_msi_prepare,
1543	.msi_free	= hv_msi_free,
1544};
1545
1546/**
1547 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1548 * @hbus:	The root PCI bus
1549 *
1550 * This function creates an IRQ domain which will be used for
1551 * interrupts from devices that have been passed through.  These
1552 * devices only support MSI and MSI-X, not line-based interrupts
1553 * or simulations of line-based interrupts through PCIe's
1554 * fabric-layer messages.  Because interrupts are remapped, we
1555 * can support multi-message MSI here.
1556 *
1557 * Return: '0' on success and error value on failure
1558 */
1559static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1560{
1561	hbus->msi_info.chip = &hv_msi_irq_chip;
1562	hbus->msi_info.ops = &hv_msi_ops;
1563	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1564		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1565		MSI_FLAG_PCI_MSIX);
1566	hbus->msi_info.handler = handle_edge_irq;
1567	hbus->msi_info.handler_name = "edge";
1568	hbus->msi_info.data = hbus;
1569	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1570						     &hbus->msi_info,
1571						     x86_vector_domain);
1572	if (!hbus->irq_domain) {
1573		dev_err(&hbus->hdev->device,
1574			"Failed to build an MSI IRQ domain\n");
1575		return -ENODEV;
1576	}
1577
 
 
1578	return 0;
1579}
1580
1581/**
1582 * get_bar_size() - Get the address space consumed by a BAR
1583 * @bar_val:	Value that a BAR returned after -1 was written
1584 *              to it.
1585 *
1586 * This function returns the size of the BAR, rounded up to 1
1587 * page.  It has to be rounded up because the hypervisor's page
1588 * table entry that maps the BAR into the VM can't specify an
1589 * offset within a page.  The invariant is that the hypervisor
1590 * must place any BARs of smaller than page length at the
1591 * beginning of a page.
1592 *
1593 * Return:	Size in bytes of the consumed MMIO space.
1594 */
1595static u64 get_bar_size(u64 bar_val)
1596{
1597	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1598			PAGE_SIZE);
1599}
1600
1601/**
1602 * survey_child_resources() - Total all MMIO requirements
1603 * @hbus:	Root PCI bus, as understood by this driver
1604 */
1605static void survey_child_resources(struct hv_pcibus_device *hbus)
1606{
1607	struct hv_pci_dev *hpdev;
1608	resource_size_t bar_size = 0;
1609	unsigned long flags;
1610	struct completion *event;
1611	u64 bar_val;
1612	int i;
1613
1614	/* If nobody is waiting on the answer, don't compute it. */
1615	event = xchg(&hbus->survey_event, NULL);
1616	if (!event)
1617		return;
1618
1619	/* If the answer has already been computed, go with it. */
1620	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1621		complete(event);
1622		return;
1623	}
1624
1625	spin_lock_irqsave(&hbus->device_list_lock, flags);
1626
1627	/*
1628	 * Due to an interesting quirk of the PCI spec, all memory regions
1629	 * for a child device are a power of 2 in size and aligned in memory,
1630	 * so it's sufficient to just add them up without tracking alignment.
1631	 */
1632	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1633		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1634			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1635				dev_err(&hbus->hdev->device,
1636					"There's an I/O BAR in this list!\n");
1637
1638			if (hpdev->probed_bar[i] != 0) {
1639				/*
1640				 * A probed BAR has all the upper bits set that
1641				 * can be changed.
1642				 */
1643
1644				bar_val = hpdev->probed_bar[i];
1645				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1646					bar_val |=
1647					((u64)hpdev->probed_bar[++i] << 32);
1648				else
1649					bar_val |= 0xffffffff00000000ULL;
1650
1651				bar_size = get_bar_size(bar_val);
1652
1653				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1654					hbus->high_mmio_space += bar_size;
1655				else
1656					hbus->low_mmio_space += bar_size;
1657			}
1658		}
1659	}
1660
1661	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1662	complete(event);
1663}
1664
1665/**
1666 * prepopulate_bars() - Fill in BARs with defaults
1667 * @hbus:	Root PCI bus, as understood by this driver
1668 *
1669 * The core PCI driver code seems much, much happier if the BARs
1670 * for a device have values upon first scan. So fill them in.
1671 * The algorithm below works down from large sizes to small,
1672 * attempting to pack the assignments optimally. The assumption,
1673 * enforced in other parts of the code, is that the beginning of
1674 * the memory-mapped I/O space will be aligned on the largest
1675 * BAR size.
1676 */
1677static void prepopulate_bars(struct hv_pcibus_device *hbus)
1678{
1679	resource_size_t high_size = 0;
1680	resource_size_t low_size = 0;
1681	resource_size_t high_base = 0;
1682	resource_size_t low_base = 0;
1683	resource_size_t bar_size;
1684	struct hv_pci_dev *hpdev;
1685	unsigned long flags;
1686	u64 bar_val;
1687	u32 command;
1688	bool high;
1689	int i;
1690
1691	if (hbus->low_mmio_space) {
1692		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1693		low_base = hbus->low_mmio_res->start;
1694	}
1695
1696	if (hbus->high_mmio_space) {
1697		high_size = 1ULL <<
1698			(63 - __builtin_clzll(hbus->high_mmio_space));
1699		high_base = hbus->high_mmio_res->start;
1700	}
1701
1702	spin_lock_irqsave(&hbus->device_list_lock, flags);
1703
1704	/*
1705	 * Clear the memory enable bit, in case it's already set. This occurs
1706	 * in the suspend path of hibernation, where the device is suspended,
1707	 * resumed and suspended again: see hibernation_snapshot() and
1708	 * hibernation_platform_enter().
1709	 *
1710	 * If the memory enable bit is already set, Hyper-V silently ignores
1711	 * the below BAR updates, and the related PCI device driver can not
1712	 * work, because reading from the device register(s) always returns
1713	 * 0xFFFFFFFF.
1714	 */
1715	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1716		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1717		command &= ~PCI_COMMAND_MEMORY;
1718		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1719	}
1720
1721	/* Pick addresses for the BARs. */
1722	do {
1723		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1724			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1725				bar_val = hpdev->probed_bar[i];
1726				if (bar_val == 0)
1727					continue;
1728				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1729				if (high) {
1730					bar_val |=
1731						((u64)hpdev->probed_bar[i + 1]
1732						 << 32);
1733				} else {
1734					bar_val |= 0xffffffffULL << 32;
1735				}
1736				bar_size = get_bar_size(bar_val);
1737				if (high) {
1738					if (high_size != bar_size) {
1739						i++;
1740						continue;
1741					}
1742					_hv_pcifront_write_config(hpdev,
1743						PCI_BASE_ADDRESS_0 + (4 * i),
1744						4,
1745						(u32)(high_base & 0xffffff00));
1746					i++;
1747					_hv_pcifront_write_config(hpdev,
1748						PCI_BASE_ADDRESS_0 + (4 * i),
1749						4, (u32)(high_base >> 32));
1750					high_base += bar_size;
1751				} else {
1752					if (low_size != bar_size)
1753						continue;
1754					_hv_pcifront_write_config(hpdev,
1755						PCI_BASE_ADDRESS_0 + (4 * i),
1756						4,
1757						(u32)(low_base & 0xffffff00));
1758					low_base += bar_size;
1759				}
1760			}
1761			if (high_size <= 1 && low_size <= 1) {
1762				/* Set the memory enable bit. */
1763				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1764							 &command);
1765				command |= PCI_COMMAND_MEMORY;
1766				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1767							  command);
 
 
 
 
 
1768				break;
1769			}
1770		}
1771
1772		high_size >>= 1;
1773		low_size >>= 1;
1774	}  while (high_size || low_size);
1775
1776	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1777}
1778
1779/*
1780 * Assign entries in sysfs pci slot directory.
1781 *
1782 * Note that this function does not need to lock the children list
1783 * because it is called from pci_devices_present_work which
1784 * is serialized with hv_eject_device_work because they are on the
1785 * same ordered workqueue. Therefore hbus->children list will not change
1786 * even when pci_create_slot sleeps.
1787 */
1788static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1789{
1790	struct hv_pci_dev *hpdev;
1791	char name[SLOT_NAME_SIZE];
1792	int slot_nr;
1793
1794	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1795		if (hpdev->pci_slot)
1796			continue;
1797
1798		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1799		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1800		hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1801					  name, NULL);
1802		if (IS_ERR(hpdev->pci_slot)) {
1803			pr_warn("pci_create slot %s failed\n", name);
1804			hpdev->pci_slot = NULL;
1805		}
1806	}
1807}
1808
1809/*
1810 * Remove entries in sysfs pci slot directory.
1811 */
1812static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1813{
1814	struct hv_pci_dev *hpdev;
1815
1816	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1817		if (!hpdev->pci_slot)
1818			continue;
1819		pci_destroy_slot(hpdev->pci_slot);
1820		hpdev->pci_slot = NULL;
1821	}
1822}
1823
1824/*
1825 * Set NUMA node for the devices on the bus
1826 */
1827static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1828{
1829	struct pci_dev *dev;
1830	struct pci_bus *bus = hbus->pci_bus;
1831	struct hv_pci_dev *hv_dev;
1832
1833	list_for_each_entry(dev, &bus->devices, bus_list) {
1834		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1835		if (!hv_dev)
1836			continue;
1837
1838		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1839			set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
 
 
 
 
 
 
 
 
 
1840
1841		put_pcichild(hv_dev);
1842	}
1843}
1844
1845/**
1846 * create_root_hv_pci_bus() - Expose a new root PCI bus
1847 * @hbus:	Root PCI bus, as understood by this driver
1848 *
1849 * Return: 0 on success, -errno on failure
1850 */
1851static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1852{
1853	/* Register the device */
1854	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1855					    0, /* bus number is always zero */
1856					    &hv_pcifront_ops,
1857					    &hbus->sysdata,
1858					    &hbus->resources_for_children);
1859	if (!hbus->pci_bus)
1860		return -ENODEV;
 
 
1861
1862	pci_lock_rescan_remove();
1863	pci_scan_child_bus(hbus->pci_bus);
1864	hv_pci_assign_numa_node(hbus);
1865	pci_bus_assign_resources(hbus->pci_bus);
1866	hv_pci_assign_slots(hbus);
1867	pci_bus_add_devices(hbus->pci_bus);
1868	pci_unlock_rescan_remove();
1869	hbus->state = hv_pcibus_installed;
1870	return 0;
1871}
1872
1873struct q_res_req_compl {
1874	struct completion host_event;
1875	struct hv_pci_dev *hpdev;
1876};
1877
1878/**
1879 * q_resource_requirements() - Query Resource Requirements
1880 * @context:		The completion context.
1881 * @resp:		The response that came from the host.
1882 * @resp_packet_size:	The size in bytes of resp.
1883 *
1884 * This function is invoked on completion of a Query Resource
1885 * Requirements packet.
1886 */
1887static void q_resource_requirements(void *context, struct pci_response *resp,
1888				    int resp_packet_size)
1889{
1890	struct q_res_req_compl *completion = context;
1891	struct pci_q_res_req_response *q_res_req =
1892		(struct pci_q_res_req_response *)resp;
 
1893	int i;
1894
1895	if (resp->status < 0) {
 
1896		dev_err(&completion->hpdev->hbus->hdev->device,
1897			"query resource requirements failed: %x\n",
1898			resp->status);
1899	} else {
1900		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1901			completion->hpdev->probed_bar[i] =
1902				q_res_req->probed_bar[i];
1903		}
1904	}
1905
1906	complete(&completion->host_event);
1907}
1908
1909/**
1910 * new_pcichild_device() - Create a new child device
1911 * @hbus:	The internal struct tracking this root PCI bus.
1912 * @desc:	The information supplied so far from the host
1913 *              about the device.
1914 *
1915 * This function creates the tracking structure for a new child
1916 * device and kicks off the process of figuring out what it is.
1917 *
1918 * Return: Pointer to the new tracking struct
1919 */
1920static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1921		struct hv_pcidev_description *desc)
1922{
1923	struct hv_pci_dev *hpdev;
1924	struct pci_child_message *res_req;
1925	struct q_res_req_compl comp_pkt;
1926	struct {
1927		struct pci_packet init_packet;
1928		u8 buffer[sizeof(struct pci_child_message)];
1929	} pkt;
1930	unsigned long flags;
1931	int ret;
1932
1933	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1934	if (!hpdev)
1935		return NULL;
1936
1937	hpdev->hbus = hbus;
1938
1939	memset(&pkt, 0, sizeof(pkt));
1940	init_completion(&comp_pkt.host_event);
1941	comp_pkt.hpdev = hpdev;
1942	pkt.init_packet.compl_ctxt = &comp_pkt;
1943	pkt.init_packet.completion_func = q_resource_requirements;
1944	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1945	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1946	res_req->wslot.slot = desc->win_slot.slot;
1947
1948	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1949			       sizeof(struct pci_child_message),
1950			       (unsigned long)&pkt.init_packet,
1951			       VM_PKT_DATA_INBAND,
1952			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1953	if (ret)
1954		goto error;
1955
1956	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1957		goto error;
1958
1959	hpdev->desc = *desc;
1960	refcount_set(&hpdev->refs, 1);
1961	get_pcichild(hpdev);
1962	spin_lock_irqsave(&hbus->device_list_lock, flags);
1963
1964	list_add_tail(&hpdev->list_entry, &hbus->children);
1965	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1966	return hpdev;
1967
1968error:
1969	kfree(hpdev);
1970	return NULL;
1971}
1972
1973/**
1974 * get_pcichild_wslot() - Find device from slot
1975 * @hbus:	Root PCI bus, as understood by this driver
1976 * @wslot:	Location on the bus
1977 *
1978 * This function looks up a PCI device and returns the internal
1979 * representation of it.  It acquires a reference on it, so that
1980 * the device won't be deleted while somebody is using it.  The
1981 * caller is responsible for calling put_pcichild() to release
1982 * this reference.
1983 *
1984 * Return:	Internal representation of a PCI device
1985 */
1986static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1987					     u32 wslot)
1988{
1989	unsigned long flags;
1990	struct hv_pci_dev *iter, *hpdev = NULL;
1991
1992	spin_lock_irqsave(&hbus->device_list_lock, flags);
1993	list_for_each_entry(iter, &hbus->children, list_entry) {
1994		if (iter->desc.win_slot.slot == wslot) {
1995			hpdev = iter;
1996			get_pcichild(hpdev);
1997			break;
1998		}
1999	}
2000	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2001
2002	return hpdev;
2003}
2004
2005/**
2006 * pci_devices_present_work() - Handle new list of child devices
2007 * @work:	Work struct embedded in struct hv_dr_work
2008 *
2009 * "Bus Relations" is the Windows term for "children of this
2010 * bus."  The terminology is preserved here for people trying to
2011 * debug the interaction between Hyper-V and Linux.  This
2012 * function is called when the parent partition reports a list
2013 * of functions that should be observed under this PCI Express
2014 * port (bus).
2015 *
2016 * This function updates the list, and must tolerate being
2017 * called multiple times with the same information.  The typical
2018 * number of child devices is one, with very atypical cases
2019 * involving three or four, so the algorithms used here can be
2020 * simple and inefficient.
2021 *
2022 * It must also treat the omission of a previously observed device as
2023 * notification that the device no longer exists.
2024 *
2025 * Note that this function is serialized with hv_eject_device_work(),
2026 * because both are pushed to the ordered workqueue hbus->wq.
2027 */
2028static void pci_devices_present_work(struct work_struct *work)
2029{
2030	u32 child_no;
2031	bool found;
2032	struct hv_pcidev_description *new_desc;
2033	struct hv_pci_dev *hpdev;
2034	struct hv_pcibus_device *hbus;
2035	struct list_head removed;
2036	struct hv_dr_work *dr_wrk;
2037	struct hv_dr_state *dr = NULL;
2038	unsigned long flags;
2039
2040	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2041	hbus = dr_wrk->bus;
2042	kfree(dr_wrk);
2043
2044	INIT_LIST_HEAD(&removed);
2045
2046	/* Pull this off the queue and process it if it was the last one. */
2047	spin_lock_irqsave(&hbus->device_list_lock, flags);
2048	while (!list_empty(&hbus->dr_list)) {
2049		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2050				      list_entry);
2051		list_del(&dr->list_entry);
2052
2053		/* Throw this away if the list still has stuff in it. */
2054		if (!list_empty(&hbus->dr_list)) {
2055			kfree(dr);
2056			continue;
2057		}
2058	}
2059	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2060
2061	if (!dr)
2062		return;
2063
2064	/* First, mark all existing children as reported missing. */
2065	spin_lock_irqsave(&hbus->device_list_lock, flags);
2066	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2067		hpdev->reported_missing = true;
2068	}
2069	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2070
2071	/* Next, add back any reported devices. */
2072	for (child_no = 0; child_no < dr->device_count; child_no++) {
2073		found = false;
2074		new_desc = &dr->func[child_no];
2075
2076		spin_lock_irqsave(&hbus->device_list_lock, flags);
2077		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2078			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2079			    (hpdev->desc.v_id == new_desc->v_id) &&
2080			    (hpdev->desc.d_id == new_desc->d_id) &&
2081			    (hpdev->desc.ser == new_desc->ser)) {
2082				hpdev->reported_missing = false;
2083				found = true;
2084			}
2085		}
2086		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2087
2088		if (!found) {
2089			hpdev = new_pcichild_device(hbus, new_desc);
2090			if (!hpdev)
2091				dev_err(&hbus->hdev->device,
2092					"couldn't record a child device.\n");
2093		}
2094	}
2095
2096	/* Move missing children to a list on the stack. */
2097	spin_lock_irqsave(&hbus->device_list_lock, flags);
2098	do {
2099		found = false;
2100		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2101			if (hpdev->reported_missing) {
2102				found = true;
2103				put_pcichild(hpdev);
2104				list_move_tail(&hpdev->list_entry, &removed);
2105				break;
2106			}
2107		}
2108	} while (found);
2109	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2110
2111	/* Delete everything that should no longer exist. */
2112	while (!list_empty(&removed)) {
2113		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2114					 list_entry);
2115		list_del(&hpdev->list_entry);
2116
2117		if (hpdev->pci_slot)
2118			pci_destroy_slot(hpdev->pci_slot);
2119
2120		put_pcichild(hpdev);
2121	}
2122
2123	switch (hbus->state) {
2124	case hv_pcibus_installed:
2125		/*
2126		 * Tell the core to rescan bus
2127		 * because there may have been changes.
2128		 */
2129		pci_lock_rescan_remove();
2130		pci_scan_child_bus(hbus->pci_bus);
2131		hv_pci_assign_numa_node(hbus);
2132		hv_pci_assign_slots(hbus);
2133		pci_unlock_rescan_remove();
2134		break;
2135
2136	case hv_pcibus_init:
2137	case hv_pcibus_probed:
2138		survey_child_resources(hbus);
2139		break;
2140
2141	default:
2142		break;
2143	}
2144
2145	kfree(dr);
2146}
2147
2148/**
2149 * hv_pci_start_relations_work() - Queue work to start device discovery
2150 * @hbus:	Root PCI bus, as understood by this driver
2151 * @dr:		The list of children returned from host
2152 *
2153 * Return:  0 on success, -errno on failure
2154 */
2155static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2156				       struct hv_dr_state *dr)
2157{
2158	struct hv_dr_work *dr_wrk;
2159	unsigned long flags;
2160	bool pending_dr;
2161
2162	if (hbus->state == hv_pcibus_removing) {
2163		dev_info(&hbus->hdev->device,
2164			 "PCI VMBus BUS_RELATIONS: ignored\n");
2165		return -ENOENT;
2166	}
2167
2168	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2169	if (!dr_wrk)
2170		return -ENOMEM;
2171
2172	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2173	dr_wrk->bus = hbus;
2174
2175	spin_lock_irqsave(&hbus->device_list_lock, flags);
2176	/*
2177	 * If pending_dr is true, we have already queued a work,
2178	 * which will see the new dr. Otherwise, we need to
2179	 * queue a new work.
2180	 */
2181	pending_dr = !list_empty(&hbus->dr_list);
2182	list_add_tail(&dr->list_entry, &hbus->dr_list);
2183	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2184
2185	if (pending_dr)
2186		kfree(dr_wrk);
2187	else
2188		queue_work(hbus->wq, &dr_wrk->wrk);
2189
2190	return 0;
2191}
2192
2193/**
2194 * hv_pci_devices_present() - Handle list of new children
2195 * @hbus:      Root PCI bus, as understood by this driver
2196 * @relations: Packet from host listing children
2197 *
2198 * Process a new list of devices on the bus. The list of devices is
2199 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2200 * whenever a new list of devices for this bus appears.
2201 */
2202static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2203				   struct pci_bus_relations *relations)
2204{
2205	struct hv_dr_state *dr;
2206	int i;
2207
2208	dr = kzalloc(struct_size(dr, func, relations->device_count),
2209		     GFP_NOWAIT);
2210	if (!dr)
2211		return;
2212
2213	dr->device_count = relations->device_count;
2214	for (i = 0; i < dr->device_count; i++) {
2215		dr->func[i].v_id = relations->func[i].v_id;
2216		dr->func[i].d_id = relations->func[i].d_id;
2217		dr->func[i].rev = relations->func[i].rev;
2218		dr->func[i].prog_intf = relations->func[i].prog_intf;
2219		dr->func[i].subclass = relations->func[i].subclass;
2220		dr->func[i].base_class = relations->func[i].base_class;
2221		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2222		dr->func[i].win_slot = relations->func[i].win_slot;
2223		dr->func[i].ser = relations->func[i].ser;
2224	}
2225
2226	if (hv_pci_start_relations_work(hbus, dr))
2227		kfree(dr);
2228}
2229
2230/**
2231 * hv_pci_devices_present2() - Handle list of new children
2232 * @hbus:	Root PCI bus, as understood by this driver
2233 * @relations:	Packet from host listing children
2234 *
2235 * This function is the v2 version of hv_pci_devices_present()
2236 */
2237static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2238				    struct pci_bus_relations2 *relations)
2239{
2240	struct hv_dr_state *dr;
2241	int i;
2242
2243	dr = kzalloc(struct_size(dr, func, relations->device_count),
2244		     GFP_NOWAIT);
2245	if (!dr)
2246		return;
2247
2248	dr->device_count = relations->device_count;
2249	for (i = 0; i < dr->device_count; i++) {
2250		dr->func[i].v_id = relations->func[i].v_id;
2251		dr->func[i].d_id = relations->func[i].d_id;
2252		dr->func[i].rev = relations->func[i].rev;
2253		dr->func[i].prog_intf = relations->func[i].prog_intf;
2254		dr->func[i].subclass = relations->func[i].subclass;
2255		dr->func[i].base_class = relations->func[i].base_class;
2256		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2257		dr->func[i].win_slot = relations->func[i].win_slot;
2258		dr->func[i].ser = relations->func[i].ser;
2259		dr->func[i].flags = relations->func[i].flags;
2260		dr->func[i].virtual_numa_node =
2261			relations->func[i].virtual_numa_node;
2262	}
2263
2264	if (hv_pci_start_relations_work(hbus, dr))
2265		kfree(dr);
2266}
2267
2268/**
2269 * hv_eject_device_work() - Asynchronously handles ejection
2270 * @work:	Work struct embedded in internal device struct
2271 *
2272 * This function handles ejecting a device.  Windows will
2273 * attempt to gracefully eject a device, waiting 60 seconds to
2274 * hear back from the guest OS that this completed successfully.
2275 * If this timer expires, the device will be forcibly removed.
2276 */
2277static void hv_eject_device_work(struct work_struct *work)
2278{
2279	struct pci_eject_response *ejct_pkt;
2280	struct hv_pcibus_device *hbus;
2281	struct hv_pci_dev *hpdev;
2282	struct pci_dev *pdev;
2283	unsigned long flags;
2284	int wslot;
2285	struct {
2286		struct pci_packet pkt;
2287		u8 buffer[sizeof(struct pci_eject_response)];
2288	} ctxt;
2289
2290	hpdev = container_of(work, struct hv_pci_dev, wrk);
2291	hbus = hpdev->hbus;
2292
2293	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2294
2295	/*
2296	 * Ejection can come before or after the PCI bus has been set up, so
2297	 * attempt to find it and tear down the bus state, if it exists.  This
2298	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2299	 * because hbus->pci_bus may not exist yet.
2300	 */
2301	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2302	pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2303	if (pdev) {
2304		pci_lock_rescan_remove();
2305		pci_stop_and_remove_bus_device(pdev);
2306		pci_dev_put(pdev);
2307		pci_unlock_rescan_remove();
2308	}
2309
2310	spin_lock_irqsave(&hbus->device_list_lock, flags);
2311	list_del(&hpdev->list_entry);
2312	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2313
2314	if (hpdev->pci_slot)
2315		pci_destroy_slot(hpdev->pci_slot);
2316
2317	memset(&ctxt, 0, sizeof(ctxt));
2318	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2319	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2320	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2321	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2322			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2323			 VM_PKT_DATA_INBAND, 0);
2324
2325	/* For the get_pcichild() in hv_pci_eject_device() */
2326	put_pcichild(hpdev);
2327	/* For the two refs got in new_pcichild_device() */
2328	put_pcichild(hpdev);
2329	put_pcichild(hpdev);
2330	/* hpdev has been freed. Do not use it any more. */
2331}
2332
2333/**
2334 * hv_pci_eject_device() - Handles device ejection
2335 * @hpdev:	Internal device tracking struct
2336 *
2337 * This function is invoked when an ejection packet arrives.  It
2338 * just schedules work so that we don't re-enter the packet
2339 * delivery code handling the ejection.
2340 */
2341static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2342{
2343	struct hv_pcibus_device *hbus = hpdev->hbus;
2344	struct hv_device *hdev = hbus->hdev;
2345
2346	if (hbus->state == hv_pcibus_removing) {
2347		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2348		return;
2349	}
2350
2351	hpdev->state = hv_pcichild_ejecting;
2352	get_pcichild(hpdev);
2353	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2354	queue_work(hbus->wq, &hpdev->wrk);
2355}
2356
2357/**
2358 * hv_pci_onchannelcallback() - Handles incoming packets
2359 * @context:	Internal bus tracking struct
2360 *
2361 * This function is invoked whenever the host sends a packet to
2362 * this channel (which is private to this root PCI bus).
2363 */
2364static void hv_pci_onchannelcallback(void *context)
2365{
2366	const int packet_size = 0x100;
2367	int ret;
2368	struct hv_pcibus_device *hbus = context;
 
2369	u32 bytes_recvd;
2370	u64 req_id;
2371	struct vmpacket_descriptor *desc;
2372	unsigned char *buffer;
2373	int bufferlen = packet_size;
2374	struct pci_packet *comp_packet;
2375	struct pci_response *response;
2376	struct pci_incoming_message *new_message;
2377	struct pci_bus_relations *bus_rel;
2378	struct pci_bus_relations2 *bus_rel2;
2379	struct pci_dev_inval_block *inval;
2380	struct pci_dev_incoming *dev_message;
2381	struct hv_pci_dev *hpdev;
 
2382
2383	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2384	if (!buffer)
2385		return;
2386
2387	while (1) {
2388		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2389					   bufferlen, &bytes_recvd, &req_id);
2390
2391		if (ret == -ENOBUFS) {
2392			kfree(buffer);
2393			/* Handle large packet */
2394			bufferlen = bytes_recvd;
2395			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2396			if (!buffer)
2397				return;
2398			continue;
2399		}
2400
2401		/* Zero length indicates there are no more packets. */
2402		if (ret || !bytes_recvd)
2403			break;
2404
2405		/*
2406		 * All incoming packets must be at least as large as a
2407		 * response.
2408		 */
2409		if (bytes_recvd <= sizeof(struct pci_response))
2410			continue;
2411		desc = (struct vmpacket_descriptor *)buffer;
2412
2413		switch (desc->type) {
2414		case VM_PKT_COMP:
2415
 
 
 
 
 
 
 
 
 
 
 
 
2416			/*
2417			 * The host is trusted, and thus it's safe to interpret
2418			 * this transaction ID as a pointer.
 
 
 
2419			 */
2420			comp_packet = (struct pci_packet *)req_id;
2421			response = (struct pci_response *)buffer;
2422			comp_packet->completion_func(comp_packet->compl_ctxt,
2423						     response,
2424						     bytes_recvd);
 
2425			break;
2426
2427		case VM_PKT_DATA_INBAND:
2428
2429			new_message = (struct pci_incoming_message *)buffer;
2430			switch (new_message->message_type.type) {
2431			case PCI_BUS_RELATIONS:
2432
2433				bus_rel = (struct pci_bus_relations *)buffer;
2434				if (bytes_recvd <
 
2435					struct_size(bus_rel, func,
2436						    bus_rel->device_count)) {
2437					dev_err(&hbus->hdev->device,
2438						"bus relations too small\n");
2439					break;
2440				}
2441
2442				hv_pci_devices_present(hbus, bus_rel);
2443				break;
2444
2445			case PCI_BUS_RELATIONS2:
2446
2447				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2448				if (bytes_recvd <
 
2449					struct_size(bus_rel2, func,
2450						    bus_rel2->device_count)) {
2451					dev_err(&hbus->hdev->device,
2452						"bus relations v2 too small\n");
2453					break;
2454				}
2455
2456				hv_pci_devices_present2(hbus, bus_rel2);
2457				break;
2458
2459			case PCI_EJECT:
2460
2461				dev_message = (struct pci_dev_incoming *)buffer;
 
 
 
 
 
2462				hpdev = get_pcichild_wslot(hbus,
2463						      dev_message->wslot.slot);
2464				if (hpdev) {
2465					hv_pci_eject_device(hpdev);
2466					put_pcichild(hpdev);
2467				}
2468				break;
2469
2470			case PCI_INVALIDATE_BLOCK:
2471
2472				inval = (struct pci_dev_inval_block *)buffer;
 
 
 
 
 
2473				hpdev = get_pcichild_wslot(hbus,
2474							   inval->wslot.slot);
2475				if (hpdev) {
2476					if (hpdev->block_invalidate) {
2477						hpdev->block_invalidate(
2478						    hpdev->invalidate_context,
2479						    inval->block_mask);
2480					}
2481					put_pcichild(hpdev);
2482				}
2483				break;
2484
2485			default:
2486				dev_warn(&hbus->hdev->device,
2487					"Unimplemented protocol message %x\n",
2488					new_message->message_type.type);
2489				break;
2490			}
2491			break;
2492
2493		default:
2494			dev_err(&hbus->hdev->device,
2495				"unhandled packet type %d, tid %llx len %d\n",
2496				desc->type, req_id, bytes_recvd);
2497			break;
2498		}
2499	}
2500
2501	kfree(buffer);
2502}
2503
2504/**
2505 * hv_pci_protocol_negotiation() - Set up protocol
2506 * @hdev:		VMBus's tracking struct for this root PCI bus.
2507 * @version:		Array of supported channel protocol versions in
2508 *			the order of probing - highest go first.
2509 * @num_version:	Number of elements in the version array.
2510 *
2511 * This driver is intended to support running on Windows 10
2512 * (server) and later versions. It will not run on earlier
2513 * versions, as they assume that many of the operations which
2514 * Linux needs accomplished with a spinlock held were done via
2515 * asynchronous messaging via VMBus.  Windows 10 increases the
2516 * surface area of PCI emulation so that these actions can take
2517 * place by suspending a virtual processor for their duration.
2518 *
2519 * This function negotiates the channel protocol version,
2520 * failing if the host doesn't support the necessary protocol
2521 * level.
2522 */
2523static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2524				       enum pci_protocol_version_t version[],
2525				       int num_version)
2526{
2527	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2528	struct pci_version_request *version_req;
2529	struct hv_pci_compl comp_pkt;
2530	struct pci_packet *pkt;
2531	int ret;
2532	int i;
2533
2534	/*
2535	 * Initiate the handshake with the host and negotiate
2536	 * a version that the host can support. We start with the
2537	 * highest version number and go down if the host cannot
2538	 * support it.
2539	 */
2540	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2541	if (!pkt)
2542		return -ENOMEM;
2543
2544	init_completion(&comp_pkt.host_event);
2545	pkt->completion_func = hv_pci_generic_compl;
2546	pkt->compl_ctxt = &comp_pkt;
2547	version_req = (struct pci_version_request *)&pkt->message;
2548	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2549
2550	for (i = 0; i < num_version; i++) {
2551		version_req->protocol_version = version[i];
2552		ret = vmbus_sendpacket(hdev->channel, version_req,
2553				sizeof(struct pci_version_request),
2554				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2555				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2556		if (!ret)
2557			ret = wait_for_response(hdev, &comp_pkt.host_event);
2558
2559		if (ret) {
2560			dev_err(&hdev->device,
2561				"PCI Pass-through VSP failed to request version: %d",
2562				ret);
2563			goto exit;
2564		}
2565
2566		if (comp_pkt.completion_status >= 0) {
2567			hbus->protocol_version = version[i];
2568			dev_info(&hdev->device,
2569				"PCI VMBus probing: Using version %#x\n",
2570				hbus->protocol_version);
2571			goto exit;
2572		}
2573
2574		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2575			dev_err(&hdev->device,
2576				"PCI Pass-through VSP failed version request: %#x",
2577				comp_pkt.completion_status);
2578			ret = -EPROTO;
2579			goto exit;
2580		}
2581
2582		reinit_completion(&comp_pkt.host_event);
2583	}
2584
2585	dev_err(&hdev->device,
2586		"PCI pass-through VSP failed to find supported version");
2587	ret = -EPROTO;
2588
2589exit:
2590	kfree(pkt);
2591	return ret;
2592}
2593
2594/**
2595 * hv_pci_free_bridge_windows() - Release memory regions for the
2596 * bus
2597 * @hbus:	Root PCI bus, as understood by this driver
2598 */
2599static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2600{
2601	/*
2602	 * Set the resources back to the way they looked when they
2603	 * were allocated by setting IORESOURCE_BUSY again.
2604	 */
2605
2606	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2607		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2608		vmbus_free_mmio(hbus->low_mmio_res->start,
2609				resource_size(hbus->low_mmio_res));
2610	}
2611
2612	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2613		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2614		vmbus_free_mmio(hbus->high_mmio_res->start,
2615				resource_size(hbus->high_mmio_res));
2616	}
2617}
2618
2619/**
2620 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2621 * for the bus
2622 * @hbus:	Root PCI bus, as understood by this driver
2623 *
2624 * This function calls vmbus_allocate_mmio(), which is itself a
2625 * bit of a compromise.  Ideally, we might change the pnp layer
2626 * in the kernel such that it comprehends either PCI devices
2627 * which are "grandchildren of ACPI," with some intermediate bus
2628 * node (in this case, VMBus) or change it such that it
2629 * understands VMBus.  The pnp layer, however, has been declared
2630 * deprecated, and not subject to change.
2631 *
2632 * The workaround, implemented here, is to ask VMBus to allocate
2633 * MMIO space for this bus.  VMBus itself knows which ranges are
2634 * appropriate by looking at its own ACPI objects.  Then, after
2635 * these ranges are claimed, they're modified to look like they
2636 * would have looked if the ACPI and pnp code had allocated
2637 * bridge windows.  These descriptors have to exist in this form
2638 * in order to satisfy the code which will get invoked when the
2639 * endpoint PCI function driver calls request_mem_region() or
2640 * request_mem_region_exclusive().
2641 *
2642 * Return: 0 on success, -errno on failure
2643 */
2644static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2645{
2646	resource_size_t align;
2647	int ret;
2648
2649	if (hbus->low_mmio_space) {
2650		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2651		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2652					  (u64)(u32)0xffffffff,
2653					  hbus->low_mmio_space,
2654					  align, false);
2655		if (ret) {
2656			dev_err(&hbus->hdev->device,
2657				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2658				hbus->low_mmio_space);
2659			return ret;
2660		}
2661
2662		/* Modify this resource to become a bridge window. */
2663		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2664		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2665		pci_add_resource(&hbus->resources_for_children,
2666				 hbus->low_mmio_res);
2667	}
2668
2669	if (hbus->high_mmio_space) {
2670		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2671		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2672					  0x100000000, -1,
2673					  hbus->high_mmio_space, align,
2674					  false);
2675		if (ret) {
2676			dev_err(&hbus->hdev->device,
2677				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2678				hbus->high_mmio_space);
2679			goto release_low_mmio;
2680		}
2681
2682		/* Modify this resource to become a bridge window. */
2683		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2684		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2685		pci_add_resource(&hbus->resources_for_children,
2686				 hbus->high_mmio_res);
2687	}
2688
2689	return 0;
2690
2691release_low_mmio:
2692	if (hbus->low_mmio_res) {
2693		vmbus_free_mmio(hbus->low_mmio_res->start,
2694				resource_size(hbus->low_mmio_res));
2695	}
2696
2697	return ret;
2698}
2699
2700/**
2701 * hv_allocate_config_window() - Find MMIO space for PCI Config
2702 * @hbus:	Root PCI bus, as understood by this driver
2703 *
2704 * This function claims memory-mapped I/O space for accessing
2705 * configuration space for the functions on this bus.
2706 *
2707 * Return: 0 on success, -errno on failure
2708 */
2709static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2710{
2711	int ret;
2712
2713	/*
2714	 * Set up a region of MMIO space to use for accessing configuration
2715	 * space.
2716	 */
2717	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2718				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2719	if (ret)
2720		return ret;
2721
2722	/*
2723	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2724	 * resource claims (those which cannot be overlapped) and the ranges
2725	 * which are valid for the children of this bus, which are intended
2726	 * to be overlapped by those children.  Set the flag on this claim
2727	 * meaning that this region can't be overlapped.
2728	 */
2729
2730	hbus->mem_config->flags |= IORESOURCE_BUSY;
2731
2732	return 0;
2733}
2734
2735static void hv_free_config_window(struct hv_pcibus_device *hbus)
2736{
2737	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2738}
2739
2740static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2741
2742/**
2743 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2744 * @hdev:	VMBus's tracking struct for this root PCI bus
2745 *
2746 * Return: 0 on success, -errno on failure
2747 */
2748static int hv_pci_enter_d0(struct hv_device *hdev)
2749{
2750	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2751	struct pci_bus_d0_entry *d0_entry;
2752	struct hv_pci_compl comp_pkt;
2753	struct pci_packet *pkt;
2754	int ret;
2755
2756	/*
2757	 * Tell the host that the bus is ready to use, and moved into the
2758	 * powered-on state.  This includes telling the host which region
2759	 * of memory-mapped I/O space has been chosen for configuration space
2760	 * access.
2761	 */
2762	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2763	if (!pkt)
2764		return -ENOMEM;
2765
2766	init_completion(&comp_pkt.host_event);
2767	pkt->completion_func = hv_pci_generic_compl;
2768	pkt->compl_ctxt = &comp_pkt;
2769	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2770	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2771	d0_entry->mmio_base = hbus->mem_config->start;
2772
2773	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2774			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2775			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2776	if (!ret)
2777		ret = wait_for_response(hdev, &comp_pkt.host_event);
2778
2779	if (ret)
2780		goto exit;
2781
2782	if (comp_pkt.completion_status < 0) {
2783		dev_err(&hdev->device,
2784			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2785			comp_pkt.completion_status);
2786		ret = -EPROTO;
2787		goto exit;
2788	}
2789
2790	ret = 0;
2791
2792exit:
2793	kfree(pkt);
2794	return ret;
2795}
2796
2797/**
2798 * hv_pci_query_relations() - Ask host to send list of child
2799 * devices
2800 * @hdev:	VMBus's tracking struct for this root PCI bus
2801 *
2802 * Return: 0 on success, -errno on failure
2803 */
2804static int hv_pci_query_relations(struct hv_device *hdev)
2805{
2806	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2807	struct pci_message message;
2808	struct completion comp;
2809	int ret;
2810
2811	/* Ask the host to send along the list of child devices */
2812	init_completion(&comp);
2813	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2814		return -ENOTEMPTY;
2815
2816	memset(&message, 0, sizeof(message));
2817	message.type = PCI_QUERY_BUS_RELATIONS;
2818
2819	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2820			       0, VM_PKT_DATA_INBAND, 0);
2821	if (!ret)
2822		ret = wait_for_response(hdev, &comp);
2823
2824	return ret;
2825}
2826
2827/**
2828 * hv_send_resources_allocated() - Report local resource choices
2829 * @hdev:	VMBus's tracking struct for this root PCI bus
2830 *
2831 * The host OS is expecting to be sent a request as a message
2832 * which contains all the resources that the device will use.
2833 * The response contains those same resources, "translated"
2834 * which is to say, the values which should be used by the
2835 * hardware, when it delivers an interrupt.  (MMIO resources are
2836 * used in local terms.)  This is nice for Windows, and lines up
2837 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2838 * is deeply expecting to scan an emulated PCI configuration
2839 * space.  So this message is sent here only to drive the state
2840 * machine on the host forward.
2841 *
2842 * Return: 0 on success, -errno on failure
2843 */
2844static int hv_send_resources_allocated(struct hv_device *hdev)
2845{
2846	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2847	struct pci_resources_assigned *res_assigned;
2848	struct pci_resources_assigned2 *res_assigned2;
2849	struct hv_pci_compl comp_pkt;
2850	struct hv_pci_dev *hpdev;
2851	struct pci_packet *pkt;
2852	size_t size_res;
2853	int wslot;
2854	int ret;
2855
2856	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2857			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2858
2859	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2860	if (!pkt)
2861		return -ENOMEM;
2862
2863	ret = 0;
2864
2865	for (wslot = 0; wslot < 256; wslot++) {
2866		hpdev = get_pcichild_wslot(hbus, wslot);
2867		if (!hpdev)
2868			continue;
2869
2870		memset(pkt, 0, sizeof(*pkt) + size_res);
2871		init_completion(&comp_pkt.host_event);
2872		pkt->completion_func = hv_pci_generic_compl;
2873		pkt->compl_ctxt = &comp_pkt;
2874
2875		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2876			res_assigned =
2877				(struct pci_resources_assigned *)&pkt->message;
2878			res_assigned->message_type.type =
2879				PCI_RESOURCES_ASSIGNED;
2880			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2881		} else {
2882			res_assigned2 =
2883				(struct pci_resources_assigned2 *)&pkt->message;
2884			res_assigned2->message_type.type =
2885				PCI_RESOURCES_ASSIGNED2;
2886			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2887		}
2888		put_pcichild(hpdev);
2889
2890		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2891				size_res, (unsigned long)pkt,
2892				VM_PKT_DATA_INBAND,
2893				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2894		if (!ret)
2895			ret = wait_for_response(hdev, &comp_pkt.host_event);
2896		if (ret)
2897			break;
2898
2899		if (comp_pkt.completion_status < 0) {
2900			ret = -EPROTO;
2901			dev_err(&hdev->device,
2902				"resource allocated returned 0x%x",
2903				comp_pkt.completion_status);
2904			break;
2905		}
2906
2907		hbus->wslot_res_allocated = wslot;
2908	}
2909
2910	kfree(pkt);
2911	return ret;
2912}
2913
2914/**
2915 * hv_send_resources_released() - Report local resources
2916 * released
2917 * @hdev:	VMBus's tracking struct for this root PCI bus
2918 *
2919 * Return: 0 on success, -errno on failure
2920 */
2921static int hv_send_resources_released(struct hv_device *hdev)
2922{
2923	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2924	struct pci_child_message pkt;
2925	struct hv_pci_dev *hpdev;
2926	int wslot;
2927	int ret;
2928
2929	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2930		hpdev = get_pcichild_wslot(hbus, wslot);
2931		if (!hpdev)
2932			continue;
2933
2934		memset(&pkt, 0, sizeof(pkt));
2935		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2936		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2937
2938		put_pcichild(hpdev);
2939
2940		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2941				       VM_PKT_DATA_INBAND, 0);
2942		if (ret)
2943			return ret;
2944
2945		hbus->wslot_res_allocated = wslot - 1;
2946	}
2947
2948	hbus->wslot_res_allocated = -1;
2949
2950	return 0;
2951}
2952
2953#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2954static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2955
2956/*
2957 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2958 * as invalid for passthrough PCI devices of this driver.
2959 */
2960#define HVPCI_DOM_INVALID 0
2961
2962/**
2963 * hv_get_dom_num() - Get a valid PCI domain number
2964 * Check if the PCI domain number is in use, and return another number if
2965 * it is in use.
2966 *
2967 * @dom: Requested domain number
2968 *
2969 * return: domain number on success, HVPCI_DOM_INVALID on failure
2970 */
2971static u16 hv_get_dom_num(u16 dom)
2972{
2973	unsigned int i;
2974
2975	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2976		return dom;
2977
2978	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2979		if (test_and_set_bit(i, hvpci_dom_map) == 0)
2980			return i;
2981	}
2982
2983	return HVPCI_DOM_INVALID;
2984}
2985
2986/**
2987 * hv_put_dom_num() - Mark the PCI domain number as free
2988 * @dom: Domain number to be freed
2989 */
2990static void hv_put_dom_num(u16 dom)
2991{
2992	clear_bit(dom, hvpci_dom_map);
2993}
2994
2995/**
2996 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2997 * @hdev:	VMBus's tracking struct for this root PCI bus
2998 * @dev_id:	Identifies the device itself
2999 *
3000 * Return: 0 on success, -errno on failure
3001 */
3002static int hv_pci_probe(struct hv_device *hdev,
3003			const struct hv_vmbus_device_id *dev_id)
3004{
 
3005	struct hv_pcibus_device *hbus;
3006	u16 dom_req, dom;
3007	char *name;
3008	bool enter_d0_retry = true;
3009	int ret;
3010
3011	/*
3012	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3013	 * hv_irq_unmask(). Those must not cross a page boundary.
3014	 */
3015	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3016
 
 
 
 
3017	/*
3018	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3019	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3020	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3021	 * alignment of hbus is important because hbus's field
3022	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3023	 *
3024	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3025	 * allocated by the latter is not tracked and scanned by kmemleak, and
3026	 * hence kmemleak reports the pointer contained in the hbus buffer
3027	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3028	 * is tracked by hbus->children) as memory leak (false positive).
3029	 *
3030	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3031	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3032	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3033	 * kmemleak to track and scan the hbus buffer.
3034	 */
3035	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3036	if (!hbus)
3037		return -ENOMEM;
 
 
3038	hbus->state = hv_pcibus_init;
3039	hbus->wslot_res_allocated = -1;
3040
3041	/*
3042	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3043	 * specs. Pull it from the instance ID, to get something usually
3044	 * unique. In rare cases of collision, we will find out another number
3045	 * not in use.
3046	 *
3047	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3048	 * together with this guest driver can guarantee that (1) The only
3049	 * domain used by Gen1 VMs for something that looks like a physical
3050	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3051	 * (2) There will be no overlap between domains (after fixing possible
3052	 * collisions) in the same VM.
3053	 */
3054	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3055	dom = hv_get_dom_num(dom_req);
3056
3057	if (dom == HVPCI_DOM_INVALID) {
3058		dev_err(&hdev->device,
3059			"Unable to use dom# 0x%hx or other numbers", dom_req);
3060		ret = -EINVAL;
3061		goto free_bus;
3062	}
3063
3064	if (dom != dom_req)
3065		dev_info(&hdev->device,
3066			 "PCI dom# 0x%hx has collision, using 0x%hx",
3067			 dom_req, dom);
3068
 
 
3069	hbus->sysdata.domain = dom;
 
 
 
 
 
 
 
 
 
 
3070
3071	hbus->hdev = hdev;
3072	INIT_LIST_HEAD(&hbus->children);
3073	INIT_LIST_HEAD(&hbus->dr_list);
3074	INIT_LIST_HEAD(&hbus->resources_for_children);
3075	spin_lock_init(&hbus->config_lock);
3076	spin_lock_init(&hbus->device_list_lock);
3077	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3078	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3079					   hbus->sysdata.domain);
3080	if (!hbus->wq) {
3081		ret = -ENOMEM;
3082		goto free_dom;
3083	}
3084
 
 
 
 
3085	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3086			 hv_pci_onchannelcallback, hbus);
3087	if (ret)
3088		goto destroy_wq;
3089
3090	hv_set_drvdata(hdev, hbus);
3091
3092	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3093					  ARRAY_SIZE(pci_protocol_versions));
3094	if (ret)
3095		goto close;
3096
3097	ret = hv_allocate_config_window(hbus);
3098	if (ret)
3099		goto close;
3100
3101	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3102				 PCI_CONFIG_MMIO_LENGTH);
3103	if (!hbus->cfg_addr) {
3104		dev_err(&hdev->device,
3105			"Unable to map a virtual address for config space\n");
3106		ret = -ENOMEM;
3107		goto free_config;
3108	}
3109
3110	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3111	if (!name) {
3112		ret = -ENOMEM;
3113		goto unmap;
3114	}
3115
3116	hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3117	kfree(name);
3118	if (!hbus->sysdata.fwnode) {
3119		ret = -ENOMEM;
3120		goto unmap;
3121	}
3122
3123	ret = hv_pcie_init_irq_domain(hbus);
3124	if (ret)
3125		goto free_fwnode;
3126
3127retry:
3128	ret = hv_pci_query_relations(hdev);
3129	if (ret)
3130		goto free_irq_domain;
3131
3132	ret = hv_pci_enter_d0(hdev);
3133	/*
3134	 * In certain case (Kdump) the pci device of interest was
3135	 * not cleanly shut down and resource is still held on host
3136	 * side, the host could return invalid device status.
3137	 * We need to explicitly request host to release the resource
3138	 * and try to enter D0 again.
3139	 * Since the hv_pci_bus_exit() call releases structures
3140	 * of all its child devices, we need to start the retry from
3141	 * hv_pci_query_relations() call, requesting host to send
3142	 * the synchronous child device relations message before this
3143	 * information is needed in hv_send_resources_allocated()
3144	 * call later.
3145	 */
3146	if (ret == -EPROTO && enter_d0_retry) {
3147		enter_d0_retry = false;
3148
3149		dev_err(&hdev->device, "Retrying D0 Entry\n");
3150
3151		/*
3152		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3153		 * to free up resources of its child devices.
3154		 * In the kdump kernel we need to set the
3155		 * wslot_res_allocated to 255 so it scans all child
3156		 * devices to release resources allocated in the
3157		 * normal kernel before panic happened.
3158		 */
3159		hbus->wslot_res_allocated = 255;
3160		ret = hv_pci_bus_exit(hdev, true);
3161
3162		if (ret == 0)
3163			goto retry;
3164
3165		dev_err(&hdev->device,
3166			"Retrying D0 failed with ret %d\n", ret);
3167	}
3168	if (ret)
3169		goto free_irq_domain;
3170
3171	ret = hv_pci_allocate_bridge_windows(hbus);
3172	if (ret)
3173		goto exit_d0;
3174
3175	ret = hv_send_resources_allocated(hdev);
3176	if (ret)
3177		goto free_windows;
3178
3179	prepopulate_bars(hbus);
3180
3181	hbus->state = hv_pcibus_probed;
3182
3183	ret = create_root_hv_pci_bus(hbus);
3184	if (ret)
3185		goto free_windows;
3186
3187	return 0;
3188
3189free_windows:
3190	hv_pci_free_bridge_windows(hbus);
3191exit_d0:
3192	(void) hv_pci_bus_exit(hdev, true);
3193free_irq_domain:
3194	irq_domain_remove(hbus->irq_domain);
3195free_fwnode:
3196	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3197unmap:
3198	iounmap(hbus->cfg_addr);
3199free_config:
3200	hv_free_config_window(hbus);
3201close:
3202	vmbus_close(hdev->channel);
3203destroy_wq:
3204	destroy_workqueue(hbus->wq);
3205free_dom:
3206	hv_put_dom_num(hbus->sysdata.domain);
3207free_bus:
3208	kfree(hbus);
3209	return ret;
3210}
3211
3212static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3213{
3214	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
 
3215	struct {
3216		struct pci_packet teardown_packet;
3217		u8 buffer[sizeof(struct pci_message)];
3218	} pkt;
3219	struct hv_pci_compl comp_pkt;
3220	struct hv_pci_dev *hpdev, *tmp;
3221	unsigned long flags;
 
3222	int ret;
3223
3224	/*
3225	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3226	 * access the per-channel ringbuffer any longer.
3227	 */
3228	if (hdev->channel->rescind)
3229		return 0;
3230
3231	if (!keep_devs) {
3232		struct list_head removed;
3233
3234		/* Move all present children to the list on stack */
3235		INIT_LIST_HEAD(&removed);
3236		spin_lock_irqsave(&hbus->device_list_lock, flags);
3237		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3238			list_move_tail(&hpdev->list_entry, &removed);
3239		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3240
3241		/* Remove all children in the list */
3242		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3243			list_del(&hpdev->list_entry);
3244			if (hpdev->pci_slot)
3245				pci_destroy_slot(hpdev->pci_slot);
3246			/* For the two refs got in new_pcichild_device() */
3247			put_pcichild(hpdev);
3248			put_pcichild(hpdev);
3249		}
3250	}
3251
3252	ret = hv_send_resources_released(hdev);
3253	if (ret) {
3254		dev_err(&hdev->device,
3255			"Couldn't send resources released packet(s)\n");
3256		return ret;
3257	}
3258
3259	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3260	init_completion(&comp_pkt.host_event);
3261	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3262	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3263	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3264
3265	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3266			       sizeof(struct pci_message),
3267			       (unsigned long)&pkt.teardown_packet,
3268			       VM_PKT_DATA_INBAND,
3269			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3270	if (ret)
3271		return ret;
3272
3273	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
 
 
 
 
 
 
 
 
 
3274		return -ETIMEDOUT;
 
3275
3276	return 0;
3277}
3278
3279/**
3280 * hv_pci_remove() - Remove routine for this VMBus channel
3281 * @hdev:	VMBus's tracking struct for this root PCI bus
3282 *
3283 * Return: 0 on success, -errno on failure
3284 */
3285static int hv_pci_remove(struct hv_device *hdev)
3286{
3287	struct hv_pcibus_device *hbus;
3288	int ret;
3289
3290	hbus = hv_get_drvdata(hdev);
3291	if (hbus->state == hv_pcibus_installed) {
3292		tasklet_disable(&hdev->channel->callback_event);
3293		hbus->state = hv_pcibus_removing;
3294		tasklet_enable(&hdev->channel->callback_event);
3295		destroy_workqueue(hbus->wq);
3296		hbus->wq = NULL;
3297		/*
3298		 * At this point, no work is running or can be scheduled
3299		 * on hbus-wq. We can't race with hv_pci_devices_present()
3300		 * or hv_pci_eject_device(), it's safe to proceed.
3301		 */
3302
3303		/* Remove the bus from PCI's point of view. */
3304		pci_lock_rescan_remove();
3305		pci_stop_root_bus(hbus->pci_bus);
3306		hv_pci_remove_slots(hbus);
3307		pci_remove_root_bus(hbus->pci_bus);
3308		pci_unlock_rescan_remove();
3309	}
3310
3311	ret = hv_pci_bus_exit(hdev, false);
3312
3313	vmbus_close(hdev->channel);
3314
3315	iounmap(hbus->cfg_addr);
3316	hv_free_config_window(hbus);
3317	pci_free_resource_list(&hbus->resources_for_children);
3318	hv_pci_free_bridge_windows(hbus);
3319	irq_domain_remove(hbus->irq_domain);
3320	irq_domain_free_fwnode(hbus->sysdata.fwnode);
3321
3322	hv_put_dom_num(hbus->sysdata.domain);
3323
3324	kfree(hbus);
3325	return ret;
3326}
3327
3328static int hv_pci_suspend(struct hv_device *hdev)
3329{
3330	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3331	enum hv_pcibus_state old_state;
3332	int ret;
3333
3334	/*
3335	 * hv_pci_suspend() must make sure there are no pending work items
3336	 * before calling vmbus_close(), since it runs in a process context
3337	 * as a callback in dpm_suspend().  When it starts to run, the channel
3338	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3339	 * context, can be still running concurrently and scheduling new work
3340	 * items onto hbus->wq in hv_pci_devices_present() and
3341	 * hv_pci_eject_device(), and the work item handlers can access the
3342	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3343	 * the work item handler pci_devices_present_work() ->
3344	 * new_pcichild_device() writes to the vmbus channel.
3345	 *
3346	 * To eliminate the race, hv_pci_suspend() disables the channel
3347	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3348	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3349	 * it knows that no new work item can be scheduled, and then it flushes
3350	 * hbus->wq and safely closes the vmbus channel.
3351	 */
3352	tasklet_disable(&hdev->channel->callback_event);
3353
3354	/* Change the hbus state to prevent new work items. */
3355	old_state = hbus->state;
3356	if (hbus->state == hv_pcibus_installed)
3357		hbus->state = hv_pcibus_removing;
3358
3359	tasklet_enable(&hdev->channel->callback_event);
3360
3361	if (old_state != hv_pcibus_installed)
3362		return -EINVAL;
3363
3364	flush_workqueue(hbus->wq);
3365
3366	ret = hv_pci_bus_exit(hdev, true);
3367	if (ret)
3368		return ret;
3369
3370	vmbus_close(hdev->channel);
3371
3372	return 0;
3373}
3374
3375static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3376{
3377	struct msi_desc *entry;
3378	struct irq_data *irq_data;
 
 
3379
3380	for_each_pci_msi_entry(entry, pdev) {
 
3381		irq_data = irq_get_irq_data(entry->irq);
3382		if (WARN_ON_ONCE(!irq_data))
3383			return -EINVAL;
 
 
3384
3385		hv_compose_msi_msg(irq_data, &entry->msg);
3386	}
 
3387
3388	return 0;
3389}
3390
3391/*
3392 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3393 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3394 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3395 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3396 * Table entries.
3397 */
3398static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3399{
3400	pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3401}
3402
3403static int hv_pci_resume(struct hv_device *hdev)
3404{
3405	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3406	enum pci_protocol_version_t version[1];
3407	int ret;
3408
3409	hbus->state = hv_pcibus_init;
3410
 
 
 
 
3411	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3412			 hv_pci_onchannelcallback, hbus);
3413	if (ret)
3414		return ret;
3415
3416	/* Only use the version that was in use before hibernation. */
3417	version[0] = hbus->protocol_version;
3418	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3419	if (ret)
3420		goto out;
3421
3422	ret = hv_pci_query_relations(hdev);
3423	if (ret)
3424		goto out;
3425
3426	ret = hv_pci_enter_d0(hdev);
3427	if (ret)
3428		goto out;
3429
3430	ret = hv_send_resources_allocated(hdev);
3431	if (ret)
3432		goto out;
3433
3434	prepopulate_bars(hbus);
3435
3436	hv_pci_restore_msi_state(hbus);
3437
3438	hbus->state = hv_pcibus_installed;
3439	return 0;
3440out:
3441	vmbus_close(hdev->channel);
3442	return ret;
3443}
3444
3445static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3446	/* PCI Pass-through Class ID */
3447	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3448	{ HV_PCIE_GUID, },
3449	{ },
3450};
3451
3452MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3453
3454static struct hv_driver hv_pci_drv = {
3455	.name		= "hv_pci",
3456	.id_table	= hv_pci_id_table,
3457	.probe		= hv_pci_probe,
3458	.remove		= hv_pci_remove,
3459	.suspend	= hv_pci_suspend,
3460	.resume		= hv_pci_resume,
3461};
3462
3463static void __exit exit_hv_pci_drv(void)
3464{
3465	vmbus_driver_unregister(&hv_pci_drv);
3466
3467	hvpci_block_ops.read_block = NULL;
3468	hvpci_block_ops.write_block = NULL;
3469	hvpci_block_ops.reg_blk_invalidate = NULL;
3470}
3471
3472static int __init init_hv_pci_drv(void)
3473{
 
 
3474	if (!hv_is_hyperv_initialized())
3475		return -ENODEV;
 
 
 
 
3476
3477	/* Set the invalid domain number's bit, so it will not be used */
3478	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3479
3480	/* Initialize PCI block r/w interface */
3481	hvpci_block_ops.read_block = hv_read_config_block;
3482	hvpci_block_ops.write_block = hv_write_config_block;
3483	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3484
3485	return vmbus_driver_register(&hv_pci_drv);
3486}
3487
3488module_init(init_hv_pci_drv);
3489module_exit(exit_hv_pci_drv);
3490
3491MODULE_DESCRIPTION("Hyper-V PCI");
3492MODULE_LICENSE("GPL v2");
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/pci-ecam.h>
  44#include <linux/delay.h>
  45#include <linux/semaphore.h>
 
 
 
  46#include <linux/irq.h>
  47#include <linux/msi.h>
  48#include <linux/hyperv.h>
  49#include <linux/refcount.h>
  50#include <linux/irqdomain.h>
  51#include <linux/acpi.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
  65	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
  66	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
  67	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
  68};
  69
  70#define CPU_AFFINITY_ALL	-1ULL
  71
  72/*
  73 * Supported protocol versions in the order of probing - highest go
  74 * first.
  75 */
  76static enum pci_protocol_version_t pci_protocol_versions[] = {
  77	PCI_PROTOCOL_VERSION_1_4,
  78	PCI_PROTOCOL_VERSION_1_3,
  79	PCI_PROTOCOL_VERSION_1_2,
  80	PCI_PROTOCOL_VERSION_1_1,
  81};
  82
  83#define PCI_CONFIG_MMIO_LENGTH	0x2000
  84#define CFG_PAGE_OFFSET 0x1000
  85#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  86
  87#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  88
  89#define STATUS_REVISION_MISMATCH 0xC0000059
  90
  91/* space for 32bit serial number as string */
  92#define SLOT_NAME_SIZE 11
  93
  94/*
  95 * Size of requestor for VMbus; the value is based on the observation
  96 * that having more than one request outstanding is 'rare', and so 64
  97 * should be generous in ensuring that we don't ever run out.
  98 */
  99#define HV_PCI_RQSTOR_SIZE 64
 100
 101/*
 102 * Message Types
 103 */
 104
 105enum pci_message_type {
 106	/*
 107	 * Version 1.1
 108	 */
 109	PCI_MESSAGE_BASE                = 0x42490000,
 110	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 111	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 112	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 113	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 114	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 115	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 116	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 117	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 118	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 119	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 120	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 121	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 122	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 123	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 124	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 125	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 126	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 127	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 128	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 129	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 130	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
 131	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
 132	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
 133	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
 134	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
 135	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
 136	PCI_MESSAGE_MAXIMUM
 137};
 138
 139/*
 140 * Structures defining the virtual PCI Express protocol.
 141 */
 142
 143union pci_version {
 144	struct {
 145		u16 minor_version;
 146		u16 major_version;
 147	} parts;
 148	u32 version;
 149} __packed;
 150
 151/*
 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 153 * which is all this driver does.  This representation is the one used in
 154 * Windows, which is what is expected when sending this back and forth with
 155 * the Hyper-V parent partition.
 156 */
 157union win_slot_encoding {
 158	struct {
 159		u32	dev:5;
 160		u32	func:3;
 161		u32	reserved:24;
 162	} bits;
 163	u32 slot;
 164} __packed;
 165
 166/*
 167 * Pretty much as defined in the PCI Specifications.
 168 */
 169struct pci_function_description {
 170	u16	v_id;	/* vendor ID */
 171	u16	d_id;	/* device ID */
 172	u8	rev;
 173	u8	prog_intf;
 174	u8	subclass;
 175	u8	base_class;
 176	u32	subsystem_id;
 177	union win_slot_encoding win_slot;
 178	u32	ser;	/* serial number */
 179} __packed;
 180
 181enum pci_device_description_flags {
 182	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
 183	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
 184};
 185
 186struct pci_function_description2 {
 187	u16	v_id;	/* vendor ID */
 188	u16	d_id;	/* device ID */
 189	u8	rev;
 190	u8	prog_intf;
 191	u8	subclass;
 192	u8	base_class;
 193	u32	subsystem_id;
 194	union	win_slot_encoding win_slot;
 195	u32	ser;	/* serial number */
 196	u32	flags;
 197	u16	virtual_numa_node;
 198	u16	reserved;
 199} __packed;
 200
 201/**
 202 * struct hv_msi_desc
 203 * @vector:		IDT entry
 204 * @delivery_mode:	As defined in Intel's Programmer's
 205 *			Reference Manual, Volume 3, Chapter 8.
 206 * @vector_count:	Number of contiguous entries in the
 207 *			Interrupt Descriptor Table that are
 208 *			occupied by this Message-Signaled
 209 *			Interrupt. For "MSI", as first defined
 210 *			in PCI 2.2, this can be between 1 and
 211 *			32. For "MSI-X," as first defined in PCI
 212 *			3.0, this must be 1, as each MSI-X table
 213 *			entry would have its own descriptor.
 214 * @reserved:		Empty space
 215 * @cpu_mask:		All the target virtual processors.
 216 */
 217struct hv_msi_desc {
 218	u8	vector;
 219	u8	delivery_mode;
 220	u16	vector_count;
 221	u32	reserved;
 222	u64	cpu_mask;
 223} __packed;
 224
 225/**
 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 227 * @vector:		IDT entry
 228 * @delivery_mode:	As defined in Intel's Programmer's
 229 *			Reference Manual, Volume 3, Chapter 8.
 230 * @vector_count:	Number of contiguous entries in the
 231 *			Interrupt Descriptor Table that are
 232 *			occupied by this Message-Signaled
 233 *			Interrupt. For "MSI", as first defined
 234 *			in PCI 2.2, this can be between 1 and
 235 *			32. For "MSI-X," as first defined in PCI
 236 *			3.0, this must be 1, as each MSI-X table
 237 *			entry would have its own descriptor.
 238 * @processor_count:	number of bits enabled in array.
 239 * @processor_array:	All the target virtual processors.
 240 */
 241struct hv_msi_desc2 {
 242	u8	vector;
 243	u8	delivery_mode;
 244	u16	vector_count;
 245	u16	processor_count;
 246	u16	processor_array[32];
 247} __packed;
 248
 249/*
 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
 251 *	Everything is the same as in 'hv_msi_desc2' except that the size of the
 252 *	'vector' field is larger to support bigger vector values. For ex: LPI
 253 *	vectors on ARM.
 254 */
 255struct hv_msi_desc3 {
 256	u32	vector;
 257	u8	delivery_mode;
 258	u8	reserved;
 259	u16	vector_count;
 260	u16	processor_count;
 261	u16	processor_array[32];
 262} __packed;
 263
 264/**
 265 * struct tran_int_desc
 266 * @reserved:		unused, padding
 267 * @vector_count:	same as in hv_msi_desc
 268 * @data:		This is the "data payload" value that is
 269 *			written by the device when it generates
 270 *			a message-signaled interrupt, either MSI
 271 *			or MSI-X.
 272 * @address:		This is the address to which the data
 273 *			payload is written on interrupt
 274 *			generation.
 275 */
 276struct tran_int_desc {
 277	u16	reserved;
 278	u16	vector_count;
 279	u32	data;
 280	u64	address;
 281} __packed;
 282
 283/*
 284 * A generic message format for virtual PCI.
 285 * Specific message formats are defined later in the file.
 286 */
 287
 288struct pci_message {
 289	u32 type;
 290} __packed;
 291
 292struct pci_child_message {
 293	struct pci_message message_type;
 294	union win_slot_encoding wslot;
 295} __packed;
 296
 297struct pci_incoming_message {
 298	struct vmpacket_descriptor hdr;
 299	struct pci_message message_type;
 300} __packed;
 301
 302struct pci_response {
 303	struct vmpacket_descriptor hdr;
 304	s32 status;			/* negative values are failures */
 305} __packed;
 306
 307struct pci_packet {
 308	void (*completion_func)(void *context, struct pci_response *resp,
 309				int resp_packet_size);
 310	void *compl_ctxt;
 311
 312	struct pci_message message[];
 313};
 314
 315/*
 316 * Specific message types supporting the PCI protocol.
 317 */
 318
 319/*
 320 * Version negotiation message. Sent from the guest to the host.
 321 * The guest is free to try different versions until the host
 322 * accepts the version.
 323 *
 324 * pci_version: The protocol version requested.
 325 * is_last_attempt: If TRUE, this is the last version guest will request.
 326 * reservedz: Reserved field, set to zero.
 327 */
 328
 329struct pci_version_request {
 330	struct pci_message message_type;
 331	u32 protocol_version;
 332} __packed;
 333
 334/*
 335 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 336 * bus (PCI Express port) is ready for action.
 337 */
 338
 339struct pci_bus_d0_entry {
 340	struct pci_message message_type;
 341	u32 reserved;
 342	u64 mmio_base;
 343} __packed;
 344
 345struct pci_bus_relations {
 346	struct pci_incoming_message incoming;
 347	u32 device_count;
 348	struct pci_function_description func[];
 349} __packed;
 350
 351struct pci_bus_relations2 {
 352	struct pci_incoming_message incoming;
 353	u32 device_count;
 354	struct pci_function_description2 func[];
 355} __packed;
 356
 357struct pci_q_res_req_response {
 358	struct vmpacket_descriptor hdr;
 359	s32 status;			/* negative values are failures */
 360	u32 probed_bar[PCI_STD_NUM_BARS];
 361} __packed;
 362
 363struct pci_set_power {
 364	struct pci_message message_type;
 365	union win_slot_encoding wslot;
 366	u32 power_state;		/* In Windows terms */
 367	u32 reserved;
 368} __packed;
 369
 370struct pci_set_power_response {
 371	struct vmpacket_descriptor hdr;
 372	s32 status;			/* negative values are failures */
 373	union win_slot_encoding wslot;
 374	u32 resultant_state;		/* In Windows terms */
 375	u32 reserved;
 376} __packed;
 377
 378struct pci_resources_assigned {
 379	struct pci_message message_type;
 380	union win_slot_encoding wslot;
 381	u8 memory_range[0x14][6];	/* not used here */
 382	u32 msi_descriptors;
 383	u32 reserved[4];
 384} __packed;
 385
 386struct pci_resources_assigned2 {
 387	struct pci_message message_type;
 388	union win_slot_encoding wslot;
 389	u8 memory_range[0x14][6];	/* not used here */
 390	u32 msi_descriptor_count;
 391	u8 reserved[70];
 392} __packed;
 393
 394struct pci_create_interrupt {
 395	struct pci_message message_type;
 396	union win_slot_encoding wslot;
 397	struct hv_msi_desc int_desc;
 398} __packed;
 399
 400struct pci_create_int_response {
 401	struct pci_response response;
 402	u32 reserved;
 403	struct tran_int_desc int_desc;
 404} __packed;
 405
 406struct pci_create_interrupt2 {
 407	struct pci_message message_type;
 408	union win_slot_encoding wslot;
 409	struct hv_msi_desc2 int_desc;
 410} __packed;
 411
 412struct pci_create_interrupt3 {
 413	struct pci_message message_type;
 414	union win_slot_encoding wslot;
 415	struct hv_msi_desc3 int_desc;
 416} __packed;
 417
 418struct pci_delete_interrupt {
 419	struct pci_message message_type;
 420	union win_slot_encoding wslot;
 421	struct tran_int_desc int_desc;
 422} __packed;
 423
 424/*
 425 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 426 */
 427struct pci_read_block {
 428	struct pci_message message_type;
 429	u32 block_id;
 430	union win_slot_encoding wslot;
 431	u32 bytes_requested;
 432} __packed;
 433
 434struct pci_read_block_response {
 435	struct vmpacket_descriptor hdr;
 436	u32 status;
 437	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 438} __packed;
 439
 440/*
 441 * Note: the VM must pass a valid block id, wslot and byte_count.
 442 */
 443struct pci_write_block {
 444	struct pci_message message_type;
 445	u32 block_id;
 446	union win_slot_encoding wslot;
 447	u32 byte_count;
 448	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 449} __packed;
 450
 451struct pci_dev_inval_block {
 452	struct pci_incoming_message incoming;
 453	union win_slot_encoding wslot;
 454	u64 block_mask;
 455} __packed;
 456
 457struct pci_dev_incoming {
 458	struct pci_incoming_message incoming;
 459	union win_slot_encoding wslot;
 460} __packed;
 461
 462struct pci_eject_response {
 463	struct pci_message message_type;
 464	union win_slot_encoding wslot;
 465	u32 status;
 466} __packed;
 467
 468static int pci_ring_size = (4 * PAGE_SIZE);
 469
 470/*
 471 * Driver specific state.
 472 */
 473
 474enum hv_pcibus_state {
 475	hv_pcibus_init = 0,
 476	hv_pcibus_probed,
 477	hv_pcibus_installed,
 478	hv_pcibus_removing,
 479	hv_pcibus_maximum
 480};
 481
 482struct hv_pcibus_device {
 483#ifdef CONFIG_X86
 484	struct pci_sysdata sysdata;
 485#elif defined(CONFIG_ARM64)
 486	struct pci_config_window sysdata;
 487#endif
 488	struct pci_host_bridge *bridge;
 489	struct fwnode_handle *fwnode;
 490	/* Protocol version negotiated with the host */
 491	enum pci_protocol_version_t protocol_version;
 492	enum hv_pcibus_state state;
 493	struct hv_device *hdev;
 494	resource_size_t low_mmio_space;
 495	resource_size_t high_mmio_space;
 496	struct resource *mem_config;
 497	struct resource *low_mmio_res;
 498	struct resource *high_mmio_res;
 499	struct completion *survey_event;
 500	struct pci_bus *pci_bus;
 501	spinlock_t config_lock;	/* Avoid two threads writing index page */
 502	spinlock_t device_list_lock;	/* Protect lists below */
 503	void __iomem *cfg_addr;
 504
 
 
 505	struct list_head children;
 506	struct list_head dr_list;
 507
 508	struct msi_domain_info msi_info;
 509	struct irq_domain *irq_domain;
 510
 511	spinlock_t retarget_msi_interrupt_lock;
 512
 513	struct workqueue_struct *wq;
 514
 515	/* Highest slot of child device with resources allocated */
 516	int wslot_res_allocated;
 517
 518	/* hypercall arg, must not cross page boundary */
 519	struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 520
 521	/*
 522	 * Don't put anything here: retarget_msi_interrupt_params must be last
 523	 */
 524};
 525
 526/*
 527 * Tracks "Device Relations" messages from the host, which must be both
 528 * processed in order and deferred so that they don't run in the context
 529 * of the incoming packet callback.
 530 */
 531struct hv_dr_work {
 532	struct work_struct wrk;
 533	struct hv_pcibus_device *bus;
 534};
 535
 536struct hv_pcidev_description {
 537	u16	v_id;	/* vendor ID */
 538	u16	d_id;	/* device ID */
 539	u8	rev;
 540	u8	prog_intf;
 541	u8	subclass;
 542	u8	base_class;
 543	u32	subsystem_id;
 544	union	win_slot_encoding win_slot;
 545	u32	ser;	/* serial number */
 546	u32	flags;
 547	u16	virtual_numa_node;
 548};
 549
 550struct hv_dr_state {
 551	struct list_head list_entry;
 552	u32 device_count;
 553	struct hv_pcidev_description func[];
 554};
 555
 556enum hv_pcichild_state {
 557	hv_pcichild_init = 0,
 558	hv_pcichild_requirements,
 559	hv_pcichild_resourced,
 560	hv_pcichild_ejecting,
 561	hv_pcichild_maximum
 562};
 563
 564struct hv_pci_dev {
 565	/* List protected by pci_rescan_remove_lock */
 566	struct list_head list_entry;
 567	refcount_t refs;
 568	enum hv_pcichild_state state;
 569	struct pci_slot *pci_slot;
 570	struct hv_pcidev_description desc;
 571	bool reported_missing;
 572	struct hv_pcibus_device *hbus;
 573	struct work_struct wrk;
 574
 575	void (*block_invalidate)(void *context, u64 block_mask);
 576	void *invalidate_context;
 577
 578	/*
 579	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 580	 * read it back, for each of the BAR offsets within config space.
 581	 */
 582	u32 probed_bar[PCI_STD_NUM_BARS];
 583};
 584
 585struct hv_pci_compl {
 586	struct completion host_event;
 587	s32 completion_status;
 588};
 589
 590static void hv_pci_onchannelcallback(void *context);
 591
 592#ifdef CONFIG_X86
 593#define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
 594#define FLOW_HANDLER	handle_edge_irq
 595#define FLOW_NAME	"edge"
 596
 597static int hv_pci_irqchip_init(void)
 598{
 599	return 0;
 600}
 601
 602static struct irq_domain *hv_pci_get_root_domain(void)
 603{
 604	return x86_vector_domain;
 605}
 606
 607static unsigned int hv_msi_get_int_vector(struct irq_data *data)
 608{
 609	struct irq_cfg *cfg = irqd_cfg(data);
 610
 611	return cfg->vector;
 612}
 613
 614#define hv_msi_prepare		pci_msi_prepare
 615
 616/**
 617 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
 618 * affinity.
 619 * @data:	Describes the IRQ
 620 *
 621 * Build new a destination for the MSI and make a hypercall to
 622 * update the Interrupt Redirection Table. "Device Logical ID"
 623 * is built out of this PCI bus's instance GUID and the function
 624 * number of the device.
 625 */
 626static void hv_arch_irq_unmask(struct irq_data *data)
 627{
 628	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
 629	struct hv_retarget_device_interrupt *params;
 630	struct tran_int_desc *int_desc;
 631	struct hv_pcibus_device *hbus;
 632	const struct cpumask *dest;
 633	cpumask_var_t tmp;
 634	struct pci_bus *pbus;
 635	struct pci_dev *pdev;
 636	unsigned long flags;
 637	u32 var_size = 0;
 638	int cpu, nr_bank;
 639	u64 res;
 640
 641	dest = irq_data_get_effective_affinity_mask(data);
 642	pdev = msi_desc_to_pci_dev(msi_desc);
 643	pbus = pdev->bus;
 644	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
 645	int_desc = data->chip_data;
 646
 647	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
 648
 649	params = &hbus->retarget_msi_interrupt_params;
 650	memset(params, 0, sizeof(*params));
 651	params->partition_id = HV_PARTITION_ID_SELF;
 652	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
 653	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
 654	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
 655	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
 656			   (hbus->hdev->dev_instance.b[4] << 16) |
 657			   (hbus->hdev->dev_instance.b[7] << 8) |
 658			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
 659			   PCI_FUNC(pdev->devfn);
 660	params->int_target.vector = hv_msi_get_int_vector(data);
 661
 662	/*
 663	 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
 664	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
 665	 * spurious interrupt storm. Not doing so does not seem to have a
 666	 * negative effect (yet?).
 667	 */
 668
 669	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
 670		/*
 671		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
 672		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
 673		 * with >64 VP support.
 674		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
 675		 * is not sufficient for this hypercall.
 676		 */
 677		params->int_target.flags |=
 678			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
 679
 680		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
 681			res = 1;
 682			goto exit_unlock;
 683		}
 684
 685		cpumask_and(tmp, dest, cpu_online_mask);
 686		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
 687		free_cpumask_var(tmp);
 688
 689		if (nr_bank <= 0) {
 690			res = 1;
 691			goto exit_unlock;
 692		}
 693
 694		/*
 695		 * var-sized hypercall, var-size starts after vp_mask (thus
 696		 * vp_set.format does not count, but vp_set.valid_bank_mask
 697		 * does).
 698		 */
 699		var_size = 1 + nr_bank;
 700	} else {
 701		for_each_cpu_and(cpu, dest, cpu_online_mask) {
 702			params->int_target.vp_mask |=
 703				(1ULL << hv_cpu_number_to_vp_number(cpu));
 704		}
 705	}
 706
 707	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
 708			      params, NULL);
 709
 710exit_unlock:
 711	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
 712
 713	/*
 714	 * During hibernation, when a CPU is offlined, the kernel tries
 715	 * to move the interrupt to the remaining CPUs that haven't
 716	 * been offlined yet. In this case, the below hv_do_hypercall()
 717	 * always fails since the vmbus channel has been closed:
 718	 * refer to cpu_disable_common() -> fixup_irqs() ->
 719	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
 720	 *
 721	 * Suppress the error message for hibernation because the failure
 722	 * during hibernation does not matter (at this time all the devices
 723	 * have been frozen). Note: the correct affinity info is still updated
 724	 * into the irqdata data structure in migrate_one_irq() ->
 725	 * irq_do_set_affinity(), so later when the VM resumes,
 726	 * hv_pci_restore_msi_state() is able to correctly restore the
 727	 * interrupt with the correct affinity.
 728	 */
 729	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
 730		dev_err(&hbus->hdev->device,
 731			"%s() failed: %#llx", __func__, res);
 732}
 733#elif defined(CONFIG_ARM64)
 734/*
 735 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
 736 * of room at the start to allow for SPIs to be specified through ACPI and
 737 * starting with a power of two to satisfy power of 2 multi-MSI requirement.
 738 */
 739#define HV_PCI_MSI_SPI_START	64
 740#define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
 741#define DELIVERY_MODE		0
 742#define FLOW_HANDLER		NULL
 743#define FLOW_NAME		NULL
 744#define hv_msi_prepare		NULL
 745
 746struct hv_pci_chip_data {
 747	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
 748	struct mutex	map_lock;
 749};
 750
 751/* Hyper-V vPCI MSI GIC IRQ domain */
 752static struct irq_domain *hv_msi_gic_irq_domain;
 753
 754/* Hyper-V PCI MSI IRQ chip */
 755static struct irq_chip hv_arm64_msi_irq_chip = {
 756	.name = "MSI",
 757	.irq_set_affinity = irq_chip_set_affinity_parent,
 758	.irq_eoi = irq_chip_eoi_parent,
 759	.irq_mask = irq_chip_mask_parent,
 760	.irq_unmask = irq_chip_unmask_parent
 761};
 762
 763static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
 764{
 765	return irqd->parent_data->hwirq;
 766}
 767
 768/*
 769 * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
 770 *			the bitmap.
 771 * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
 772 *			the parent domain.
 773 */
 774static void hv_pci_vec_irq_free(struct irq_domain *domain,
 775				unsigned int virq,
 776				unsigned int nr_bm_irqs,
 777				unsigned int nr_dom_irqs)
 778{
 779	struct hv_pci_chip_data *chip_data = domain->host_data;
 780	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
 781	int first = d->hwirq - HV_PCI_MSI_SPI_START;
 782	int i;
 783
 784	mutex_lock(&chip_data->map_lock);
 785	bitmap_release_region(chip_data->spi_map,
 786			      first,
 787			      get_count_order(nr_bm_irqs));
 788	mutex_unlock(&chip_data->map_lock);
 789	for (i = 0; i < nr_dom_irqs; i++) {
 790		if (i)
 791			d = irq_domain_get_irq_data(domain, virq + i);
 792		irq_domain_reset_irq_data(d);
 793	}
 794
 795	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
 796}
 797
 798static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
 799				       unsigned int virq,
 800				       unsigned int nr_irqs)
 801{
 802	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
 803}
 804
 805static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
 806				       unsigned int nr_irqs,
 807				       irq_hw_number_t *hwirq)
 808{
 809	struct hv_pci_chip_data *chip_data = domain->host_data;
 810	int index;
 811
 812	/* Find and allocate region from the SPI bitmap */
 813	mutex_lock(&chip_data->map_lock);
 814	index = bitmap_find_free_region(chip_data->spi_map,
 815					HV_PCI_MSI_SPI_NR,
 816					get_count_order(nr_irqs));
 817	mutex_unlock(&chip_data->map_lock);
 818	if (index < 0)
 819		return -ENOSPC;
 820
 821	*hwirq = index + HV_PCI_MSI_SPI_START;
 822
 823	return 0;
 824}
 825
 826static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
 827					   unsigned int virq,
 828					   irq_hw_number_t hwirq)
 829{
 830	struct irq_fwspec fwspec;
 831	struct irq_data *d;
 832	int ret;
 833
 834	fwspec.fwnode = domain->parent->fwnode;
 835	fwspec.param_count = 2;
 836	fwspec.param[0] = hwirq;
 837	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
 838
 839	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
 840	if (ret)
 841		return ret;
 842
 843	/*
 844	 * Since the interrupt specifier is not coming from ACPI or DT, the
 845	 * trigger type will need to be set explicitly. Otherwise, it will be
 846	 * set to whatever is in the GIC configuration.
 847	 */
 848	d = irq_domain_get_irq_data(domain->parent, virq);
 849
 850	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
 851}
 852
 853static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
 854				       unsigned int virq, unsigned int nr_irqs,
 855				       void *args)
 856{
 857	irq_hw_number_t hwirq;
 858	unsigned int i;
 859	int ret;
 860
 861	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
 862	if (ret)
 863		return ret;
 864
 865	for (i = 0; i < nr_irqs; i++) {
 866		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
 867						      hwirq + i);
 868		if (ret) {
 869			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
 870			return ret;
 871		}
 872
 873		irq_domain_set_hwirq_and_chip(domain, virq + i,
 874					      hwirq + i,
 875					      &hv_arm64_msi_irq_chip,
 876					      domain->host_data);
 877		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
 878	}
 879
 880	return 0;
 881}
 882
 883/*
 884 * Pick the first cpu as the irq affinity that can be temporarily used for
 885 * composing MSI from the hypervisor. GIC will eventually set the right
 886 * affinity for the irq and the 'unmask' will retarget the interrupt to that
 887 * cpu.
 888 */
 889static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
 890					  struct irq_data *irqd, bool reserve)
 891{
 892	int cpu = cpumask_first(cpu_present_mask);
 893
 894	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
 895
 896	return 0;
 897}
 898
 899static const struct irq_domain_ops hv_pci_domain_ops = {
 900	.alloc	= hv_pci_vec_irq_domain_alloc,
 901	.free	= hv_pci_vec_irq_domain_free,
 902	.activate = hv_pci_vec_irq_domain_activate,
 903};
 904
 905static int hv_pci_irqchip_init(void)
 906{
 907	static struct hv_pci_chip_data *chip_data;
 908	struct fwnode_handle *fn = NULL;
 909	int ret = -ENOMEM;
 910
 911	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
 912	if (!chip_data)
 913		return ret;
 914
 915	mutex_init(&chip_data->map_lock);
 916	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
 917	if (!fn)
 918		goto free_chip;
 919
 920	/*
 921	 * IRQ domain once enabled, should not be removed since there is no
 922	 * way to ensure that all the corresponding devices are also gone and
 923	 * no interrupts will be generated.
 924	 */
 925	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
 926							  fn, &hv_pci_domain_ops,
 927							  chip_data);
 928
 929	if (!hv_msi_gic_irq_domain) {
 930		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
 931		goto free_chip;
 932	}
 933
 934	return 0;
 935
 936free_chip:
 937	kfree(chip_data);
 938	if (fn)
 939		irq_domain_free_fwnode(fn);
 940
 941	return ret;
 942}
 943
 944static struct irq_domain *hv_pci_get_root_domain(void)
 945{
 946	return hv_msi_gic_irq_domain;
 947}
 948
 949/*
 950 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
 951 * registers which Hyper-V already supports, so no hypercall needed.
 952 */
 953static void hv_arch_irq_unmask(struct irq_data *data) { }
 954#endif /* CONFIG_ARM64 */
 955
 956/**
 957 * hv_pci_generic_compl() - Invoked for a completion packet
 958 * @context:		Set up by the sender of the packet.
 959 * @resp:		The response packet
 960 * @resp_packet_size:	Size in bytes of the packet
 961 *
 962 * This function is used to trigger an event and report status
 963 * for any message for which the completion packet contains a
 964 * status and nothing else.
 965 */
 966static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 967				 int resp_packet_size)
 968{
 969	struct hv_pci_compl *comp_pkt = context;
 970
 971	comp_pkt->completion_status = resp->status;
 
 
 
 
 972	complete(&comp_pkt->host_event);
 973}
 974
 975static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 976						u32 wslot);
 977
 978static void get_pcichild(struct hv_pci_dev *hpdev)
 979{
 980	refcount_inc(&hpdev->refs);
 981}
 982
 983static void put_pcichild(struct hv_pci_dev *hpdev)
 984{
 985	if (refcount_dec_and_test(&hpdev->refs))
 986		kfree(hpdev);
 987}
 988
 989/*
 990 * There is no good way to get notified from vmbus_onoffer_rescind(),
 991 * so let's use polling here, since this is not a hot path.
 992 */
 993static int wait_for_response(struct hv_device *hdev,
 994			     struct completion *comp)
 995{
 996	while (true) {
 997		if (hdev->channel->rescind) {
 998			dev_warn_once(&hdev->device, "The device is gone.\n");
 999			return -ENODEV;
1000		}
1001
1002		if (wait_for_completion_timeout(comp, HZ / 10))
1003			break;
1004	}
1005
1006	return 0;
1007}
1008
1009/**
1010 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1011 * @devfn:	The Linux representation of PCI slot
1012 *
1013 * Windows uses a slightly different representation of PCI slot.
1014 *
1015 * Return: The Windows representation
1016 */
1017static u32 devfn_to_wslot(int devfn)
1018{
1019	union win_slot_encoding wslot;
1020
1021	wslot.slot = 0;
1022	wslot.bits.dev = PCI_SLOT(devfn);
1023	wslot.bits.func = PCI_FUNC(devfn);
1024
1025	return wslot.slot;
1026}
1027
1028/**
1029 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1030 * @wslot:	The Windows representation of PCI slot
1031 *
1032 * Windows uses a slightly different representation of PCI slot.
1033 *
1034 * Return: The Linux representation
1035 */
1036static int wslot_to_devfn(u32 wslot)
1037{
1038	union win_slot_encoding slot_no;
1039
1040	slot_no.slot = wslot;
1041	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1042}
1043
1044/*
1045 * PCI Configuration Space for these root PCI buses is implemented as a pair
1046 * of pages in memory-mapped I/O space.  Writing to the first page chooses
1047 * the PCI function being written or read.  Once the first page has been
1048 * written to, the following page maps in the entire configuration space of
1049 * the function.
1050 */
1051
1052/**
1053 * _hv_pcifront_read_config() - Internal PCI config read
1054 * @hpdev:	The PCI driver's representation of the device
1055 * @where:	Offset within config space
1056 * @size:	Size of the transfer
1057 * @val:	Pointer to the buffer receiving the data
1058 */
1059static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1060				     int size, u32 *val)
1061{
1062	unsigned long flags;
1063	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1064
1065	/*
1066	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1067	 */
1068	if (where + size <= PCI_COMMAND) {
1069		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1070	} else if (where >= PCI_CLASS_REVISION && where + size <=
1071		   PCI_CACHE_LINE_SIZE) {
1072		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1073		       PCI_CLASS_REVISION, size);
1074	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1075		   PCI_ROM_ADDRESS) {
1076		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1077		       PCI_SUBSYSTEM_VENDOR_ID, size);
1078	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1079		   PCI_CAPABILITY_LIST) {
1080		/* ROM BARs are unimplemented */
1081		*val = 0;
1082	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
1083		   PCI_INTERRUPT_PIN) {
1084		/*
1085		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1086		 * because this front-end only supports message-signaled
1087		 * interrupts.
1088		 */
1089		*val = 0;
1090	} else if (where + size <= CFG_PAGE_SIZE) {
1091		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1092		/* Choose the function to be read. (See comment above) */
1093		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1094		/* Make sure the function was chosen before we start reading. */
1095		mb();
1096		/* Read from that function's config space. */
1097		switch (size) {
1098		case 1:
1099			*val = readb(addr);
1100			break;
1101		case 2:
1102			*val = readw(addr);
1103			break;
1104		default:
1105			*val = readl(addr);
1106			break;
1107		}
1108		/*
1109		 * Make sure the read was done before we release the spinlock
1110		 * allowing consecutive reads/writes.
1111		 */
1112		mb();
1113		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1114	} else {
1115		dev_err(&hpdev->hbus->hdev->device,
1116			"Attempt to read beyond a function's config space.\n");
1117	}
1118}
1119
1120static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1121{
1122	u16 ret;
1123	unsigned long flags;
1124	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
1125			     PCI_VENDOR_ID;
1126
1127	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1128
1129	/* Choose the function to be read. (See comment above) */
1130	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1131	/* Make sure the function was chosen before we start reading. */
1132	mb();
1133	/* Read from that function's config space. */
1134	ret = readw(addr);
1135	/*
1136	 * mb() is not required here, because the spin_unlock_irqrestore()
1137	 * is a barrier.
1138	 */
1139
1140	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1141
1142	return ret;
1143}
1144
1145/**
1146 * _hv_pcifront_write_config() - Internal PCI config write
1147 * @hpdev:	The PCI driver's representation of the device
1148 * @where:	Offset within config space
1149 * @size:	Size of the transfer
1150 * @val:	The data being transferred
1151 */
1152static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1153				      int size, u32 val)
1154{
1155	unsigned long flags;
1156	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
1157
1158	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1159	    where + size <= PCI_CAPABILITY_LIST) {
1160		/* SSIDs and ROM BARs are read-only */
1161	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1162		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
1163		/* Choose the function to be written. (See comment above) */
1164		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
1165		/* Make sure the function was chosen before we start writing. */
1166		wmb();
1167		/* Write to that function's config space. */
1168		switch (size) {
1169		case 1:
1170			writeb(val, addr);
1171			break;
1172		case 2:
1173			writew(val, addr);
1174			break;
1175		default:
1176			writel(val, addr);
1177			break;
1178		}
1179		/*
1180		 * Make sure the write was done before we release the spinlock
1181		 * allowing consecutive reads/writes.
1182		 */
1183		mb();
1184		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
1185	} else {
1186		dev_err(&hpdev->hbus->hdev->device,
1187			"Attempt to write beyond a function's config space.\n");
1188	}
1189}
1190
1191/**
1192 * hv_pcifront_read_config() - Read configuration space
1193 * @bus: PCI Bus structure
1194 * @devfn: Device/function
1195 * @where: Offset from base
1196 * @size: Byte/word/dword
1197 * @val: Value to be read
1198 *
1199 * Return: PCIBIOS_SUCCESSFUL on success
1200 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1201 */
1202static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1203				   int where, int size, u32 *val)
1204{
1205	struct hv_pcibus_device *hbus =
1206		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1207	struct hv_pci_dev *hpdev;
1208
1209	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1210	if (!hpdev)
1211		return PCIBIOS_DEVICE_NOT_FOUND;
1212
1213	_hv_pcifront_read_config(hpdev, where, size, val);
1214
1215	put_pcichild(hpdev);
1216	return PCIBIOS_SUCCESSFUL;
1217}
1218
1219/**
1220 * hv_pcifront_write_config() - Write configuration space
1221 * @bus: PCI Bus structure
1222 * @devfn: Device/function
1223 * @where: Offset from base
1224 * @size: Byte/word/dword
1225 * @val: Value to be written to device
1226 *
1227 * Return: PCIBIOS_SUCCESSFUL on success
1228 *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1229 */
1230static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1231				    int where, int size, u32 val)
1232{
1233	struct hv_pcibus_device *hbus =
1234	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1235	struct hv_pci_dev *hpdev;
1236
1237	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1238	if (!hpdev)
1239		return PCIBIOS_DEVICE_NOT_FOUND;
1240
1241	_hv_pcifront_write_config(hpdev, where, size, val);
1242
1243	put_pcichild(hpdev);
1244	return PCIBIOS_SUCCESSFUL;
1245}
1246
1247/* PCIe operations */
1248static struct pci_ops hv_pcifront_ops = {
1249	.read  = hv_pcifront_read_config,
1250	.write = hv_pcifront_write_config,
1251};
1252
1253/*
1254 * Paravirtual backchannel
1255 *
1256 * Hyper-V SR-IOV provides a backchannel mechanism in software for
1257 * communication between a VF driver and a PF driver.  These
1258 * "configuration blocks" are similar in concept to PCI configuration space,
1259 * but instead of doing reads and writes in 32-bit chunks through a very slow
1260 * path, packets of up to 128 bytes can be sent or received asynchronously.
1261 *
1262 * Nearly every SR-IOV device contains just such a communications channel in
1263 * hardware, so using this one in software is usually optional.  Using the
1264 * software channel, however, allows driver implementers to leverage software
1265 * tools that fuzz the communications channel looking for vulnerabilities.
1266 *
1267 * The usage model for these packets puts the responsibility for reading or
1268 * writing on the VF driver.  The VF driver sends a read or a write packet,
1269 * indicating which "block" is being referred to by number.
1270 *
1271 * If the PF driver wishes to initiate communication, it can "invalidate" one or
1272 * more of the first 64 blocks.  This invalidation is delivered via a callback
1273 * supplied by the VF driver by this driver.
1274 *
1275 * No protocol is implied, except that supplied by the PF and VF drivers.
1276 */
1277
1278struct hv_read_config_compl {
1279	struct hv_pci_compl comp_pkt;
1280	void *buf;
1281	unsigned int len;
1282	unsigned int bytes_returned;
1283};
1284
1285/**
1286 * hv_pci_read_config_compl() - Invoked when a response packet
1287 * for a read config block operation arrives.
1288 * @context:		Identifies the read config operation
1289 * @resp:		The response packet itself
1290 * @resp_packet_size:	Size in bytes of the response packet
1291 */
1292static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1293				     int resp_packet_size)
1294{
1295	struct hv_read_config_compl *comp = context;
1296	struct pci_read_block_response *read_resp =
1297		(struct pci_read_block_response *)resp;
1298	unsigned int data_len, hdr_len;
1299
1300	hdr_len = offsetof(struct pci_read_block_response, bytes);
1301	if (resp_packet_size < hdr_len) {
1302		comp->comp_pkt.completion_status = -1;
1303		goto out;
1304	}
1305
1306	data_len = resp_packet_size - hdr_len;
1307	if (data_len > 0 && read_resp->status == 0) {
1308		comp->bytes_returned = min(comp->len, data_len);
1309		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1310	} else {
1311		comp->bytes_returned = 0;
1312	}
1313
1314	comp->comp_pkt.completion_status = read_resp->status;
1315out:
1316	complete(&comp->comp_pkt.host_event);
1317}
1318
1319/**
1320 * hv_read_config_block() - Sends a read config block request to
1321 * the back-end driver running in the Hyper-V parent partition.
1322 * @pdev:		The PCI driver's representation for this device.
1323 * @buf:		Buffer into which the config block will be copied.
1324 * @len:		Size in bytes of buf.
1325 * @block_id:		Identifies the config block which has been requested.
1326 * @bytes_returned:	Size which came back from the back-end driver.
1327 *
1328 * Return: 0 on success, -errno on failure
1329 */
1330static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1331				unsigned int len, unsigned int block_id,
1332				unsigned int *bytes_returned)
1333{
1334	struct hv_pcibus_device *hbus =
1335		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1336			     sysdata);
1337	struct {
1338		struct pci_packet pkt;
1339		char buf[sizeof(struct pci_read_block)];
1340	} pkt;
1341	struct hv_read_config_compl comp_pkt;
1342	struct pci_read_block *read_blk;
1343	int ret;
1344
1345	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1346		return -EINVAL;
1347
1348	init_completion(&comp_pkt.comp_pkt.host_event);
1349	comp_pkt.buf = buf;
1350	comp_pkt.len = len;
1351
1352	memset(&pkt, 0, sizeof(pkt));
1353	pkt.pkt.completion_func = hv_pci_read_config_compl;
1354	pkt.pkt.compl_ctxt = &comp_pkt;
1355	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1356	read_blk->message_type.type = PCI_READ_BLOCK;
1357	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1358	read_blk->block_id = block_id;
1359	read_blk->bytes_requested = len;
1360
1361	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1362			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1363			       VM_PKT_DATA_INBAND,
1364			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1365	if (ret)
1366		return ret;
1367
1368	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1369	if (ret)
1370		return ret;
1371
1372	if (comp_pkt.comp_pkt.completion_status != 0 ||
1373	    comp_pkt.bytes_returned == 0) {
1374		dev_err(&hbus->hdev->device,
1375			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1376			comp_pkt.comp_pkt.completion_status,
1377			comp_pkt.bytes_returned);
1378		return -EIO;
1379	}
1380
1381	*bytes_returned = comp_pkt.bytes_returned;
1382	return 0;
1383}
1384
1385/**
1386 * hv_pci_write_config_compl() - Invoked when a response packet for a write
1387 * config block operation arrives.
1388 * @context:		Identifies the write config operation
1389 * @resp:		The response packet itself
1390 * @resp_packet_size:	Size in bytes of the response packet
1391 */
1392static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1393				      int resp_packet_size)
1394{
1395	struct hv_pci_compl *comp_pkt = context;
1396
1397	comp_pkt->completion_status = resp->status;
1398	complete(&comp_pkt->host_event);
1399}
1400
1401/**
1402 * hv_write_config_block() - Sends a write config block request to the
1403 * back-end driver running in the Hyper-V parent partition.
1404 * @pdev:		The PCI driver's representation for this device.
1405 * @buf:		Buffer from which the config block will	be copied.
1406 * @len:		Size in bytes of buf.
1407 * @block_id:		Identifies the config block which is being written.
1408 *
1409 * Return: 0 on success, -errno on failure
1410 */
1411static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1412				unsigned int len, unsigned int block_id)
1413{
1414	struct hv_pcibus_device *hbus =
1415		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1416			     sysdata);
1417	struct {
1418		struct pci_packet pkt;
1419		char buf[sizeof(struct pci_write_block)];
1420		u32 reserved;
1421	} pkt;
1422	struct hv_pci_compl comp_pkt;
1423	struct pci_write_block *write_blk;
1424	u32 pkt_size;
1425	int ret;
1426
1427	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1428		return -EINVAL;
1429
1430	init_completion(&comp_pkt.host_event);
1431
1432	memset(&pkt, 0, sizeof(pkt));
1433	pkt.pkt.completion_func = hv_pci_write_config_compl;
1434	pkt.pkt.compl_ctxt = &comp_pkt;
1435	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1436	write_blk->message_type.type = PCI_WRITE_BLOCK;
1437	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1438	write_blk->block_id = block_id;
1439	write_blk->byte_count = len;
1440	memcpy(write_blk->bytes, buf, len);
1441	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1442	/*
1443	 * This quirk is required on some hosts shipped around 2018, because
1444	 * these hosts don't check the pkt_size correctly (new hosts have been
1445	 * fixed since early 2019). The quirk is also safe on very old hosts
1446	 * and new hosts, because, on them, what really matters is the length
1447	 * specified in write_blk->byte_count.
1448	 */
1449	pkt_size += sizeof(pkt.reserved);
1450
1451	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1452			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1453			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1454	if (ret)
1455		return ret;
1456
1457	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1458	if (ret)
1459		return ret;
1460
1461	if (comp_pkt.completion_status != 0) {
1462		dev_err(&hbus->hdev->device,
1463			"Write Config Block failed: 0x%x\n",
1464			comp_pkt.completion_status);
1465		return -EIO;
1466	}
1467
1468	return 0;
1469}
1470
1471/**
1472 * hv_register_block_invalidate() - Invoked when a config block invalidation
1473 * arrives from the back-end driver.
1474 * @pdev:		The PCI driver's representation for this device.
1475 * @context:		Identifies the device.
1476 * @block_invalidate:	Identifies all of the blocks being invalidated.
1477 *
1478 * Return: 0 on success, -errno on failure
1479 */
1480static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1481					void (*block_invalidate)(void *context,
1482								 u64 block_mask))
1483{
1484	struct hv_pcibus_device *hbus =
1485		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1486			     sysdata);
1487	struct hv_pci_dev *hpdev;
1488
1489	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1490	if (!hpdev)
1491		return -ENODEV;
1492
1493	hpdev->block_invalidate = block_invalidate;
1494	hpdev->invalidate_context = context;
1495
1496	put_pcichild(hpdev);
1497	return 0;
1498
1499}
1500
1501/* Interrupt management hooks */
1502static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1503			     struct tran_int_desc *int_desc)
1504{
1505	struct pci_delete_interrupt *int_pkt;
1506	struct {
1507		struct pci_packet pkt;
1508		u8 buffer[sizeof(struct pci_delete_interrupt)];
1509	} ctxt;
1510
1511	if (!int_desc->vector_count) {
1512		kfree(int_desc);
1513		return;
1514	}
1515	memset(&ctxt, 0, sizeof(ctxt));
1516	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1517	int_pkt->message_type.type =
1518		PCI_DELETE_INTERRUPT_MESSAGE;
1519	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1520	int_pkt->int_desc = *int_desc;
1521	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1522			 0, VM_PKT_DATA_INBAND, 0);
1523	kfree(int_desc);
1524}
1525
1526/**
1527 * hv_msi_free() - Free the MSI.
1528 * @domain:	The interrupt domain pointer
1529 * @info:	Extra MSI-related context
1530 * @irq:	Identifies the IRQ.
1531 *
1532 * The Hyper-V parent partition and hypervisor are tracking the
1533 * messages that are in use, keeping the interrupt redirection
1534 * table up to date.  This callback sends a message that frees
1535 * the IRT entry and related tracking nonsense.
1536 */
1537static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1538			unsigned int irq)
1539{
1540	struct hv_pcibus_device *hbus;
1541	struct hv_pci_dev *hpdev;
1542	struct pci_dev *pdev;
1543	struct tran_int_desc *int_desc;
1544	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1545	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1546
1547	pdev = msi_desc_to_pci_dev(msi);
1548	hbus = info->data;
1549	int_desc = irq_data_get_irq_chip_data(irq_data);
1550	if (!int_desc)
1551		return;
1552
1553	irq_data->chip_data = NULL;
1554	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1555	if (!hpdev) {
1556		kfree(int_desc);
1557		return;
1558	}
1559
1560	hv_int_desc_free(hpdev, int_desc);
1561	put_pcichild(hpdev);
1562}
1563
 
 
 
 
 
 
 
 
1564static void hv_irq_mask(struct irq_data *data)
1565{
1566	pci_msi_mask_irq(data);
1567	if (data->parent_data->chip->irq_mask)
1568		irq_chip_mask_parent(data);
1569}
1570
 
 
 
 
 
 
 
 
 
 
1571static void hv_irq_unmask(struct irq_data *data)
1572{
1573	hv_arch_irq_unmask(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575	if (data->parent_data->chip->irq_unmask)
1576		irq_chip_unmask_parent(data);
1577	pci_msi_unmask_irq(data);
1578}
1579
1580struct compose_comp_ctxt {
1581	struct hv_pci_compl comp_pkt;
1582	struct tran_int_desc int_desc;
1583};
1584
1585static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1586				 int resp_packet_size)
1587{
1588	struct compose_comp_ctxt *comp_pkt = context;
1589	struct pci_create_int_response *int_resp =
1590		(struct pci_create_int_response *)resp;
1591
1592	if (resp_packet_size < sizeof(*int_resp)) {
1593		comp_pkt->comp_pkt.completion_status = -1;
1594		goto out;
1595	}
1596	comp_pkt->comp_pkt.completion_status = resp->status;
1597	comp_pkt->int_desc = int_resp->int_desc;
1598out:
1599	complete(&comp_pkt->comp_pkt.host_event);
1600}
1601
1602static u32 hv_compose_msi_req_v1(
1603	struct pci_create_interrupt *int_pkt,
1604	u32 slot, u8 vector, u16 vector_count)
1605{
1606	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1607	int_pkt->wslot.slot = slot;
1608	int_pkt->int_desc.vector = vector;
1609	int_pkt->int_desc.vector_count = vector_count;
1610	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1611
1612	/*
1613	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1614	 * hv_irq_unmask().
1615	 */
1616	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1617
1618	return sizeof(*int_pkt);
1619}
1620
1621/*
1622 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1623 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1624 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1625 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1626 * not irrelevant because Hyper-V chooses the physical CPU to handle the
1627 * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1628 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1629 * but assigning too many vPCI device interrupts to the same pCPU can cause a
1630 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1631 * to spread out the pCPUs that it selects.
1632 *
1633 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1634 * to always return the same dummy vCPU, because a second call to
1635 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1636 * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1637 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1638 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1639 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1640 * the same pCPU, even though the vCPUs will be spread out by later calls
1641 * to hv_irq_unmask(), but that is the best we can do now.
1642 *
1643 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1644 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1645 * enhancement is planned for a future version. With that enhancement, the
1646 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1647 * device will be spread across multiple pCPUs.
1648 */
1649
1650/*
1651 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1652 * by subsequent retarget in hv_irq_unmask().
1653 */
1654static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1655{
1656	return cpumask_first_and(affinity, cpu_online_mask);
1657}
1658
1659/*
1660 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1661 */
1662static int hv_compose_multi_msi_req_get_cpu(void)
1663{
1664	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1665
1666	/* -1 means starting with CPU 0 */
1667	static int cpu_next = -1;
1668
1669	unsigned long flags;
1670	int cpu;
1671
1672	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1673
1674	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1675				     false);
1676	cpu = cpu_next;
1677
1678	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1679
1680	return cpu;
1681}
1682
1683static u32 hv_compose_msi_req_v2(
1684	struct pci_create_interrupt2 *int_pkt, int cpu,
1685	u32 slot, u8 vector, u16 vector_count)
1686{
1687	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1688	int_pkt->wslot.slot = slot;
1689	int_pkt->int_desc.vector = vector;
1690	int_pkt->int_desc.vector_count = vector_count;
1691	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1692	int_pkt->int_desc.processor_array[0] =
1693		hv_cpu_number_to_vp_number(cpu);
1694	int_pkt->int_desc.processor_count = 1;
1695
1696	return sizeof(*int_pkt);
1697}
1698
1699static u32 hv_compose_msi_req_v3(
1700	struct pci_create_interrupt3 *int_pkt, int cpu,
1701	u32 slot, u32 vector, u16 vector_count)
1702{
1703	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1704	int_pkt->wslot.slot = slot;
1705	int_pkt->int_desc.vector = vector;
1706	int_pkt->int_desc.reserved = 0;
1707	int_pkt->int_desc.vector_count = vector_count;
1708	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1709	int_pkt->int_desc.processor_array[0] =
1710		hv_cpu_number_to_vp_number(cpu);
1711	int_pkt->int_desc.processor_count = 1;
1712
1713	return sizeof(*int_pkt);
1714}
1715
1716/**
1717 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1718 * @data:	Everything about this MSI
1719 * @msg:	Buffer that is filled in by this function
1720 *
1721 * This function unpacks the IRQ looking for target CPU set, IDT
1722 * vector and mode and sends a message to the parent partition
1723 * asking for a mapping for that tuple in this partition.  The
1724 * response supplies a data value and address to which that data
1725 * should be written to trigger that interrupt.
1726 */
1727static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1728{
 
1729	struct hv_pcibus_device *hbus;
1730	struct vmbus_channel *channel;
1731	struct hv_pci_dev *hpdev;
1732	struct pci_bus *pbus;
1733	struct pci_dev *pdev;
1734	const struct cpumask *dest;
1735	struct compose_comp_ctxt comp;
1736	struct tran_int_desc *int_desc;
1737	struct msi_desc *msi_desc;
1738	/*
1739	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1740	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1741	 */
1742	u16 vector_count;
1743	u32 vector;
1744	struct {
1745		struct pci_packet pci_pkt;
1746		union {
1747			struct pci_create_interrupt v1;
1748			struct pci_create_interrupt2 v2;
1749			struct pci_create_interrupt3 v3;
1750		} int_pkts;
1751	} __packed ctxt;
1752	bool multi_msi;
1753	u64 trans_id;
1754	u32 size;
1755	int ret;
1756	int cpu;
1757
1758	msi_desc  = irq_data_get_msi_desc(data);
1759	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1760		    msi_desc->nvec_used > 1;
1761
1762	/* Reuse the previous allocation */
1763	if (data->chip_data && multi_msi) {
1764		int_desc = data->chip_data;
1765		msg->address_hi = int_desc->address >> 32;
1766		msg->address_lo = int_desc->address & 0xffffffff;
1767		msg->data = int_desc->data;
1768		return;
1769	}
1770
1771	pdev = msi_desc_to_pci_dev(msi_desc);
1772	dest = irq_data_get_effective_affinity_mask(data);
1773	pbus = pdev->bus;
1774	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1775	channel = hbus->hdev->channel;
1776	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1777	if (!hpdev)
1778		goto return_null_message;
1779
1780	/* Free any previous message that might have already been composed. */
1781	if (data->chip_data && !multi_msi) {
1782		int_desc = data->chip_data;
1783		data->chip_data = NULL;
1784		hv_int_desc_free(hpdev, int_desc);
1785	}
1786
1787	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1788	if (!int_desc)
1789		goto drop_reference;
1790
1791	if (multi_msi) {
1792		/*
1793		 * If this is not the first MSI of Multi MSI, we already have
1794		 * a mapping.  Can exit early.
1795		 */
1796		if (msi_desc->irq != data->irq) {
1797			data->chip_data = int_desc;
1798			int_desc->address = msi_desc->msg.address_lo |
1799					    (u64)msi_desc->msg.address_hi << 32;
1800			int_desc->data = msi_desc->msg.data +
1801					 (data->irq - msi_desc->irq);
1802			msg->address_hi = msi_desc->msg.address_hi;
1803			msg->address_lo = msi_desc->msg.address_lo;
1804			msg->data = int_desc->data;
1805			put_pcichild(hpdev);
1806			return;
1807		}
1808		/*
1809		 * The vector we select here is a dummy value.  The correct
1810		 * value gets sent to the hypervisor in unmask().  This needs
1811		 * to be aligned with the count, and also not zero.  Multi-msi
1812		 * is powers of 2 up to 32, so 32 will always work here.
1813		 */
1814		vector = 32;
1815		vector_count = msi_desc->nvec_used;
1816		cpu = hv_compose_multi_msi_req_get_cpu();
1817	} else {
1818		vector = hv_msi_get_int_vector(data);
1819		vector_count = 1;
1820		cpu = hv_compose_msi_req_get_cpu(dest);
1821	}
1822
1823	/*
1824	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1825	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1826	 * for better readability.
1827	 */
1828	memset(&ctxt, 0, sizeof(ctxt));
1829	init_completion(&comp.comp_pkt.host_event);
1830	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1831	ctxt.pci_pkt.compl_ctxt = &comp;
1832
1833	switch (hbus->protocol_version) {
1834	case PCI_PROTOCOL_VERSION_1_1:
1835		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
 
1836					hpdev->desc.win_slot.slot,
1837					(u8)vector,
1838					vector_count);
1839		break;
1840
1841	case PCI_PROTOCOL_VERSION_1_2:
1842	case PCI_PROTOCOL_VERSION_1_3:
1843		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1844					cpu,
1845					hpdev->desc.win_slot.slot,
1846					(u8)vector,
1847					vector_count);
1848		break;
1849
1850	case PCI_PROTOCOL_VERSION_1_4:
1851		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1852					cpu,
1853					hpdev->desc.win_slot.slot,
1854					vector,
1855					vector_count);
1856		break;
1857
1858	default:
1859		/* As we only negotiate protocol versions known to this driver,
1860		 * this path should never hit. However, this is it not a hot
1861		 * path so we print a message to aid future updates.
1862		 */
1863		dev_err(&hbus->hdev->device,
1864			"Unexpected vPCI protocol, update driver.");
1865		goto free_int_desc;
1866	}
1867
1868	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1869				     size, (unsigned long)&ctxt.pci_pkt,
1870				     &trans_id, VM_PKT_DATA_INBAND,
1871				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1872	if (ret) {
1873		dev_err(&hbus->hdev->device,
1874			"Sending request for interrupt failed: 0x%x",
1875			comp.comp_pkt.completion_status);
1876		goto free_int_desc;
1877	}
1878
1879	/*
1880	 * Prevents hv_pci_onchannelcallback() from running concurrently
1881	 * in the tasklet.
1882	 */
1883	tasklet_disable_in_atomic(&channel->callback_event);
1884
1885	/*
1886	 * Since this function is called with IRQ locks held, can't
1887	 * do normal wait for completion; instead poll.
1888	 */
1889	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1890		unsigned long flags;
1891
1892		/* 0xFFFF means an invalid PCI VENDOR ID. */
1893		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1894			dev_err_once(&hbus->hdev->device,
1895				     "the device has gone\n");
1896			goto enable_tasklet;
1897		}
1898
1899		/*
1900		 * Make sure that the ring buffer data structure doesn't get
1901		 * freed while we dereference the ring buffer pointer.  Test
1902		 * for the channel's onchannel_callback being NULL within a
1903		 * sched_lock critical section.  See also the inline comments
1904		 * in vmbus_reset_channel_cb().
1905		 */
1906		spin_lock_irqsave(&channel->sched_lock, flags);
1907		if (unlikely(channel->onchannel_callback == NULL)) {
1908			spin_unlock_irqrestore(&channel->sched_lock, flags);
1909			goto enable_tasklet;
1910		}
1911		hv_pci_onchannelcallback(hbus);
1912		spin_unlock_irqrestore(&channel->sched_lock, flags);
1913
1914		if (hpdev->state == hv_pcichild_ejecting) {
1915			dev_err_once(&hbus->hdev->device,
1916				     "the device is being ejected\n");
1917			goto enable_tasklet;
1918		}
1919
1920		udelay(100);
1921	}
1922
1923	tasklet_enable(&channel->callback_event);
1924
1925	if (comp.comp_pkt.completion_status < 0) {
1926		dev_err(&hbus->hdev->device,
1927			"Request for interrupt failed: 0x%x",
1928			comp.comp_pkt.completion_status);
1929		goto free_int_desc;
1930	}
1931
1932	/*
1933	 * Record the assignment so that this can be unwound later. Using
1934	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1935	 * is already held.
1936	 */
1937	*int_desc = comp.int_desc;
1938	data->chip_data = int_desc;
1939
1940	/* Pass up the result. */
1941	msg->address_hi = comp.int_desc.address >> 32;
1942	msg->address_lo = comp.int_desc.address & 0xffffffff;
1943	msg->data = comp.int_desc.data;
1944
1945	put_pcichild(hpdev);
1946	return;
1947
1948enable_tasklet:
1949	tasklet_enable(&channel->callback_event);
1950	/*
1951	 * The completion packet on the stack becomes invalid after 'return';
1952	 * remove the ID from the VMbus requestor if the identifier is still
1953	 * mapped to/associated with the packet.  (The identifier could have
1954	 * been 're-used', i.e., already removed and (re-)mapped.)
1955	 *
1956	 * Cf. hv_pci_onchannelcallback().
1957	 */
1958	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
1959free_int_desc:
1960	kfree(int_desc);
1961drop_reference:
1962	put_pcichild(hpdev);
1963return_null_message:
1964	msg->address_hi = 0;
1965	msg->address_lo = 0;
1966	msg->data = 0;
1967}
1968
1969/* HW Interrupt Chip Descriptor */
1970static struct irq_chip hv_msi_irq_chip = {
1971	.name			= "Hyper-V PCIe MSI",
1972	.irq_compose_msi_msg	= hv_compose_msi_msg,
1973	.irq_set_affinity	= irq_chip_set_affinity_parent,
1974#ifdef CONFIG_X86
1975	.irq_ack		= irq_chip_ack_parent,
1976#elif defined(CONFIG_ARM64)
1977	.irq_eoi		= irq_chip_eoi_parent,
1978#endif
1979	.irq_mask		= hv_irq_mask,
1980	.irq_unmask		= hv_irq_unmask,
1981};
1982
1983static struct msi_domain_ops hv_msi_ops = {
1984	.msi_prepare	= hv_msi_prepare,
1985	.msi_free	= hv_msi_free,
1986};
1987
1988/**
1989 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1990 * @hbus:	The root PCI bus
1991 *
1992 * This function creates an IRQ domain which will be used for
1993 * interrupts from devices that have been passed through.  These
1994 * devices only support MSI and MSI-X, not line-based interrupts
1995 * or simulations of line-based interrupts through PCIe's
1996 * fabric-layer messages.  Because interrupts are remapped, we
1997 * can support multi-message MSI here.
1998 *
1999 * Return: '0' on success and error value on failure
2000 */
2001static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2002{
2003	hbus->msi_info.chip = &hv_msi_irq_chip;
2004	hbus->msi_info.ops = &hv_msi_ops;
2005	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2006		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2007		MSI_FLAG_PCI_MSIX);
2008	hbus->msi_info.handler = FLOW_HANDLER;
2009	hbus->msi_info.handler_name = FLOW_NAME;
2010	hbus->msi_info.data = hbus;
2011	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2012						     &hbus->msi_info,
2013						     hv_pci_get_root_domain());
2014	if (!hbus->irq_domain) {
2015		dev_err(&hbus->hdev->device,
2016			"Failed to build an MSI IRQ domain\n");
2017		return -ENODEV;
2018	}
2019
2020	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2021
2022	return 0;
2023}
2024
2025/**
2026 * get_bar_size() - Get the address space consumed by a BAR
2027 * @bar_val:	Value that a BAR returned after -1 was written
2028 *              to it.
2029 *
2030 * This function returns the size of the BAR, rounded up to 1
2031 * page.  It has to be rounded up because the hypervisor's page
2032 * table entry that maps the BAR into the VM can't specify an
2033 * offset within a page.  The invariant is that the hypervisor
2034 * must place any BARs of smaller than page length at the
2035 * beginning of a page.
2036 *
2037 * Return:	Size in bytes of the consumed MMIO space.
2038 */
2039static u64 get_bar_size(u64 bar_val)
2040{
2041	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2042			PAGE_SIZE);
2043}
2044
2045/**
2046 * survey_child_resources() - Total all MMIO requirements
2047 * @hbus:	Root PCI bus, as understood by this driver
2048 */
2049static void survey_child_resources(struct hv_pcibus_device *hbus)
2050{
2051	struct hv_pci_dev *hpdev;
2052	resource_size_t bar_size = 0;
2053	unsigned long flags;
2054	struct completion *event;
2055	u64 bar_val;
2056	int i;
2057
2058	/* If nobody is waiting on the answer, don't compute it. */
2059	event = xchg(&hbus->survey_event, NULL);
2060	if (!event)
2061		return;
2062
2063	/* If the answer has already been computed, go with it. */
2064	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2065		complete(event);
2066		return;
2067	}
2068
2069	spin_lock_irqsave(&hbus->device_list_lock, flags);
2070
2071	/*
2072	 * Due to an interesting quirk of the PCI spec, all memory regions
2073	 * for a child device are a power of 2 in size and aligned in memory,
2074	 * so it's sufficient to just add them up without tracking alignment.
2075	 */
2076	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2077		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2078			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2079				dev_err(&hbus->hdev->device,
2080					"There's an I/O BAR in this list!\n");
2081
2082			if (hpdev->probed_bar[i] != 0) {
2083				/*
2084				 * A probed BAR has all the upper bits set that
2085				 * can be changed.
2086				 */
2087
2088				bar_val = hpdev->probed_bar[i];
2089				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2090					bar_val |=
2091					((u64)hpdev->probed_bar[++i] << 32);
2092				else
2093					bar_val |= 0xffffffff00000000ULL;
2094
2095				bar_size = get_bar_size(bar_val);
2096
2097				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2098					hbus->high_mmio_space += bar_size;
2099				else
2100					hbus->low_mmio_space += bar_size;
2101			}
2102		}
2103	}
2104
2105	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2106	complete(event);
2107}
2108
2109/**
2110 * prepopulate_bars() - Fill in BARs with defaults
2111 * @hbus:	Root PCI bus, as understood by this driver
2112 *
2113 * The core PCI driver code seems much, much happier if the BARs
2114 * for a device have values upon first scan. So fill them in.
2115 * The algorithm below works down from large sizes to small,
2116 * attempting to pack the assignments optimally. The assumption,
2117 * enforced in other parts of the code, is that the beginning of
2118 * the memory-mapped I/O space will be aligned on the largest
2119 * BAR size.
2120 */
2121static void prepopulate_bars(struct hv_pcibus_device *hbus)
2122{
2123	resource_size_t high_size = 0;
2124	resource_size_t low_size = 0;
2125	resource_size_t high_base = 0;
2126	resource_size_t low_base = 0;
2127	resource_size_t bar_size;
2128	struct hv_pci_dev *hpdev;
2129	unsigned long flags;
2130	u64 bar_val;
2131	u32 command;
2132	bool high;
2133	int i;
2134
2135	if (hbus->low_mmio_space) {
2136		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2137		low_base = hbus->low_mmio_res->start;
2138	}
2139
2140	if (hbus->high_mmio_space) {
2141		high_size = 1ULL <<
2142			(63 - __builtin_clzll(hbus->high_mmio_space));
2143		high_base = hbus->high_mmio_res->start;
2144	}
2145
2146	spin_lock_irqsave(&hbus->device_list_lock, flags);
2147
2148	/*
2149	 * Clear the memory enable bit, in case it's already set. This occurs
2150	 * in the suspend path of hibernation, where the device is suspended,
2151	 * resumed and suspended again: see hibernation_snapshot() and
2152	 * hibernation_platform_enter().
2153	 *
2154	 * If the memory enable bit is already set, Hyper-V silently ignores
2155	 * the below BAR updates, and the related PCI device driver can not
2156	 * work, because reading from the device register(s) always returns
2157	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2158	 */
2159	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2160		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2161		command &= ~PCI_COMMAND_MEMORY;
2162		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2163	}
2164
2165	/* Pick addresses for the BARs. */
2166	do {
2167		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2168			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2169				bar_val = hpdev->probed_bar[i];
2170				if (bar_val == 0)
2171					continue;
2172				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2173				if (high) {
2174					bar_val |=
2175						((u64)hpdev->probed_bar[i + 1]
2176						 << 32);
2177				} else {
2178					bar_val |= 0xffffffffULL << 32;
2179				}
2180				bar_size = get_bar_size(bar_val);
2181				if (high) {
2182					if (high_size != bar_size) {
2183						i++;
2184						continue;
2185					}
2186					_hv_pcifront_write_config(hpdev,
2187						PCI_BASE_ADDRESS_0 + (4 * i),
2188						4,
2189						(u32)(high_base & 0xffffff00));
2190					i++;
2191					_hv_pcifront_write_config(hpdev,
2192						PCI_BASE_ADDRESS_0 + (4 * i),
2193						4, (u32)(high_base >> 32));
2194					high_base += bar_size;
2195				} else {
2196					if (low_size != bar_size)
2197						continue;
2198					_hv_pcifront_write_config(hpdev,
2199						PCI_BASE_ADDRESS_0 + (4 * i),
2200						4,
2201						(u32)(low_base & 0xffffff00));
2202					low_base += bar_size;
2203				}
2204			}
2205			if (high_size <= 1 && low_size <= 1) {
2206				/*
2207				 * No need to set the PCI_COMMAND_MEMORY bit as
2208				 * the core PCI driver doesn't require the bit
2209				 * to be pre-set. Actually here we intentionally
2210				 * keep the bit off so that the PCI BAR probing
2211				 * in the core PCI driver doesn't cause Hyper-V
2212				 * to unnecessarily unmap/map the virtual BARs
2213				 * from/to the physical BARs multiple times.
2214				 * This reduces the VM boot time significantly
2215				 * if the BAR sizes are huge.
2216				 */
2217				break;
2218			}
2219		}
2220
2221		high_size >>= 1;
2222		low_size >>= 1;
2223	}  while (high_size || low_size);
2224
2225	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2226}
2227
2228/*
2229 * Assign entries in sysfs pci slot directory.
2230 *
2231 * Note that this function does not need to lock the children list
2232 * because it is called from pci_devices_present_work which
2233 * is serialized with hv_eject_device_work because they are on the
2234 * same ordered workqueue. Therefore hbus->children list will not change
2235 * even when pci_create_slot sleeps.
2236 */
2237static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2238{
2239	struct hv_pci_dev *hpdev;
2240	char name[SLOT_NAME_SIZE];
2241	int slot_nr;
2242
2243	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2244		if (hpdev->pci_slot)
2245			continue;
2246
2247		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2248		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2249		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2250					  name, NULL);
2251		if (IS_ERR(hpdev->pci_slot)) {
2252			pr_warn("pci_create slot %s failed\n", name);
2253			hpdev->pci_slot = NULL;
2254		}
2255	}
2256}
2257
2258/*
2259 * Remove entries in sysfs pci slot directory.
2260 */
2261static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2262{
2263	struct hv_pci_dev *hpdev;
2264
2265	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2266		if (!hpdev->pci_slot)
2267			continue;
2268		pci_destroy_slot(hpdev->pci_slot);
2269		hpdev->pci_slot = NULL;
2270	}
2271}
2272
2273/*
2274 * Set NUMA node for the devices on the bus
2275 */
2276static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2277{
2278	struct pci_dev *dev;
2279	struct pci_bus *bus = hbus->bridge->bus;
2280	struct hv_pci_dev *hv_dev;
2281
2282	list_for_each_entry(dev, &bus->devices, bus_list) {
2283		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2284		if (!hv_dev)
2285			continue;
2286
2287		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2288		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2289			/*
2290			 * The kernel may boot with some NUMA nodes offline
2291			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2292			 * "numa=off". In those cases, adjust the host provided
2293			 * NUMA node to a valid NUMA node used by the kernel.
2294			 */
2295			set_dev_node(&dev->dev,
2296				     numa_map_to_online_node(
2297					     hv_dev->desc.virtual_numa_node));
2298
2299		put_pcichild(hv_dev);
2300	}
2301}
2302
2303/**
2304 * create_root_hv_pci_bus() - Expose a new root PCI bus
2305 * @hbus:	Root PCI bus, as understood by this driver
2306 *
2307 * Return: 0 on success, -errno on failure
2308 */
2309static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2310{
2311	int error;
2312	struct pci_host_bridge *bridge = hbus->bridge;
2313
2314	bridge->dev.parent = &hbus->hdev->device;
2315	bridge->sysdata = &hbus->sysdata;
2316	bridge->ops = &hv_pcifront_ops;
2317
2318	error = pci_scan_root_bus_bridge(bridge);
2319	if (error)
2320		return error;
2321
2322	pci_lock_rescan_remove();
 
2323	hv_pci_assign_numa_node(hbus);
2324	pci_bus_assign_resources(bridge->bus);
2325	hv_pci_assign_slots(hbus);
2326	pci_bus_add_devices(bridge->bus);
2327	pci_unlock_rescan_remove();
2328	hbus->state = hv_pcibus_installed;
2329	return 0;
2330}
2331
2332struct q_res_req_compl {
2333	struct completion host_event;
2334	struct hv_pci_dev *hpdev;
2335};
2336
2337/**
2338 * q_resource_requirements() - Query Resource Requirements
2339 * @context:		The completion context.
2340 * @resp:		The response that came from the host.
2341 * @resp_packet_size:	The size in bytes of resp.
2342 *
2343 * This function is invoked on completion of a Query Resource
2344 * Requirements packet.
2345 */
2346static void q_resource_requirements(void *context, struct pci_response *resp,
2347				    int resp_packet_size)
2348{
2349	struct q_res_req_compl *completion = context;
2350	struct pci_q_res_req_response *q_res_req =
2351		(struct pci_q_res_req_response *)resp;
2352	s32 status;
2353	int i;
2354
2355	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2356	if (status < 0) {
2357		dev_err(&completion->hpdev->hbus->hdev->device,
2358			"query resource requirements failed: %x\n",
2359			status);
2360	} else {
2361		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2362			completion->hpdev->probed_bar[i] =
2363				q_res_req->probed_bar[i];
2364		}
2365	}
2366
2367	complete(&completion->host_event);
2368}
2369
2370/**
2371 * new_pcichild_device() - Create a new child device
2372 * @hbus:	The internal struct tracking this root PCI bus.
2373 * @desc:	The information supplied so far from the host
2374 *              about the device.
2375 *
2376 * This function creates the tracking structure for a new child
2377 * device and kicks off the process of figuring out what it is.
2378 *
2379 * Return: Pointer to the new tracking struct
2380 */
2381static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2382		struct hv_pcidev_description *desc)
2383{
2384	struct hv_pci_dev *hpdev;
2385	struct pci_child_message *res_req;
2386	struct q_res_req_compl comp_pkt;
2387	struct {
2388		struct pci_packet init_packet;
2389		u8 buffer[sizeof(struct pci_child_message)];
2390	} pkt;
2391	unsigned long flags;
2392	int ret;
2393
2394	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2395	if (!hpdev)
2396		return NULL;
2397
2398	hpdev->hbus = hbus;
2399
2400	memset(&pkt, 0, sizeof(pkt));
2401	init_completion(&comp_pkt.host_event);
2402	comp_pkt.hpdev = hpdev;
2403	pkt.init_packet.compl_ctxt = &comp_pkt;
2404	pkt.init_packet.completion_func = q_resource_requirements;
2405	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2406	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2407	res_req->wslot.slot = desc->win_slot.slot;
2408
2409	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2410			       sizeof(struct pci_child_message),
2411			       (unsigned long)&pkt.init_packet,
2412			       VM_PKT_DATA_INBAND,
2413			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2414	if (ret)
2415		goto error;
2416
2417	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2418		goto error;
2419
2420	hpdev->desc = *desc;
2421	refcount_set(&hpdev->refs, 1);
2422	get_pcichild(hpdev);
2423	spin_lock_irqsave(&hbus->device_list_lock, flags);
2424
2425	list_add_tail(&hpdev->list_entry, &hbus->children);
2426	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2427	return hpdev;
2428
2429error:
2430	kfree(hpdev);
2431	return NULL;
2432}
2433
2434/**
2435 * get_pcichild_wslot() - Find device from slot
2436 * @hbus:	Root PCI bus, as understood by this driver
2437 * @wslot:	Location on the bus
2438 *
2439 * This function looks up a PCI device and returns the internal
2440 * representation of it.  It acquires a reference on it, so that
2441 * the device won't be deleted while somebody is using it.  The
2442 * caller is responsible for calling put_pcichild() to release
2443 * this reference.
2444 *
2445 * Return:	Internal representation of a PCI device
2446 */
2447static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2448					     u32 wslot)
2449{
2450	unsigned long flags;
2451	struct hv_pci_dev *iter, *hpdev = NULL;
2452
2453	spin_lock_irqsave(&hbus->device_list_lock, flags);
2454	list_for_each_entry(iter, &hbus->children, list_entry) {
2455		if (iter->desc.win_slot.slot == wslot) {
2456			hpdev = iter;
2457			get_pcichild(hpdev);
2458			break;
2459		}
2460	}
2461	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2462
2463	return hpdev;
2464}
2465
2466/**
2467 * pci_devices_present_work() - Handle new list of child devices
2468 * @work:	Work struct embedded in struct hv_dr_work
2469 *
2470 * "Bus Relations" is the Windows term for "children of this
2471 * bus."  The terminology is preserved here for people trying to
2472 * debug the interaction between Hyper-V and Linux.  This
2473 * function is called when the parent partition reports a list
2474 * of functions that should be observed under this PCI Express
2475 * port (bus).
2476 *
2477 * This function updates the list, and must tolerate being
2478 * called multiple times with the same information.  The typical
2479 * number of child devices is one, with very atypical cases
2480 * involving three or four, so the algorithms used here can be
2481 * simple and inefficient.
2482 *
2483 * It must also treat the omission of a previously observed device as
2484 * notification that the device no longer exists.
2485 *
2486 * Note that this function is serialized with hv_eject_device_work(),
2487 * because both are pushed to the ordered workqueue hbus->wq.
2488 */
2489static void pci_devices_present_work(struct work_struct *work)
2490{
2491	u32 child_no;
2492	bool found;
2493	struct hv_pcidev_description *new_desc;
2494	struct hv_pci_dev *hpdev;
2495	struct hv_pcibus_device *hbus;
2496	struct list_head removed;
2497	struct hv_dr_work *dr_wrk;
2498	struct hv_dr_state *dr = NULL;
2499	unsigned long flags;
2500
2501	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2502	hbus = dr_wrk->bus;
2503	kfree(dr_wrk);
2504
2505	INIT_LIST_HEAD(&removed);
2506
2507	/* Pull this off the queue and process it if it was the last one. */
2508	spin_lock_irqsave(&hbus->device_list_lock, flags);
2509	while (!list_empty(&hbus->dr_list)) {
2510		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2511				      list_entry);
2512		list_del(&dr->list_entry);
2513
2514		/* Throw this away if the list still has stuff in it. */
2515		if (!list_empty(&hbus->dr_list)) {
2516			kfree(dr);
2517			continue;
2518		}
2519	}
2520	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2521
2522	if (!dr)
2523		return;
2524
2525	/* First, mark all existing children as reported missing. */
2526	spin_lock_irqsave(&hbus->device_list_lock, flags);
2527	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2528		hpdev->reported_missing = true;
2529	}
2530	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2531
2532	/* Next, add back any reported devices. */
2533	for (child_no = 0; child_no < dr->device_count; child_no++) {
2534		found = false;
2535		new_desc = &dr->func[child_no];
2536
2537		spin_lock_irqsave(&hbus->device_list_lock, flags);
2538		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2539			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2540			    (hpdev->desc.v_id == new_desc->v_id) &&
2541			    (hpdev->desc.d_id == new_desc->d_id) &&
2542			    (hpdev->desc.ser == new_desc->ser)) {
2543				hpdev->reported_missing = false;
2544				found = true;
2545			}
2546		}
2547		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2548
2549		if (!found) {
2550			hpdev = new_pcichild_device(hbus, new_desc);
2551			if (!hpdev)
2552				dev_err(&hbus->hdev->device,
2553					"couldn't record a child device.\n");
2554		}
2555	}
2556
2557	/* Move missing children to a list on the stack. */
2558	spin_lock_irqsave(&hbus->device_list_lock, flags);
2559	do {
2560		found = false;
2561		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2562			if (hpdev->reported_missing) {
2563				found = true;
2564				put_pcichild(hpdev);
2565				list_move_tail(&hpdev->list_entry, &removed);
2566				break;
2567			}
2568		}
2569	} while (found);
2570	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2571
2572	/* Delete everything that should no longer exist. */
2573	while (!list_empty(&removed)) {
2574		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2575					 list_entry);
2576		list_del(&hpdev->list_entry);
2577
2578		if (hpdev->pci_slot)
2579			pci_destroy_slot(hpdev->pci_slot);
2580
2581		put_pcichild(hpdev);
2582	}
2583
2584	switch (hbus->state) {
2585	case hv_pcibus_installed:
2586		/*
2587		 * Tell the core to rescan bus
2588		 * because there may have been changes.
2589		 */
2590		pci_lock_rescan_remove();
2591		pci_scan_child_bus(hbus->bridge->bus);
2592		hv_pci_assign_numa_node(hbus);
2593		hv_pci_assign_slots(hbus);
2594		pci_unlock_rescan_remove();
2595		break;
2596
2597	case hv_pcibus_init:
2598	case hv_pcibus_probed:
2599		survey_child_resources(hbus);
2600		break;
2601
2602	default:
2603		break;
2604	}
2605
2606	kfree(dr);
2607}
2608
2609/**
2610 * hv_pci_start_relations_work() - Queue work to start device discovery
2611 * @hbus:	Root PCI bus, as understood by this driver
2612 * @dr:		The list of children returned from host
2613 *
2614 * Return:  0 on success, -errno on failure
2615 */
2616static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2617				       struct hv_dr_state *dr)
2618{
2619	struct hv_dr_work *dr_wrk;
2620	unsigned long flags;
2621	bool pending_dr;
2622
2623	if (hbus->state == hv_pcibus_removing) {
2624		dev_info(&hbus->hdev->device,
2625			 "PCI VMBus BUS_RELATIONS: ignored\n");
2626		return -ENOENT;
2627	}
2628
2629	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2630	if (!dr_wrk)
2631		return -ENOMEM;
2632
2633	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2634	dr_wrk->bus = hbus;
2635
2636	spin_lock_irqsave(&hbus->device_list_lock, flags);
2637	/*
2638	 * If pending_dr is true, we have already queued a work,
2639	 * which will see the new dr. Otherwise, we need to
2640	 * queue a new work.
2641	 */
2642	pending_dr = !list_empty(&hbus->dr_list);
2643	list_add_tail(&dr->list_entry, &hbus->dr_list);
2644	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2645
2646	if (pending_dr)
2647		kfree(dr_wrk);
2648	else
2649		queue_work(hbus->wq, &dr_wrk->wrk);
2650
2651	return 0;
2652}
2653
2654/**
2655 * hv_pci_devices_present() - Handle list of new children
2656 * @hbus:      Root PCI bus, as understood by this driver
2657 * @relations: Packet from host listing children
2658 *
2659 * Process a new list of devices on the bus. The list of devices is
2660 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2661 * whenever a new list of devices for this bus appears.
2662 */
2663static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2664				   struct pci_bus_relations *relations)
2665{
2666	struct hv_dr_state *dr;
2667	int i;
2668
2669	dr = kzalloc(struct_size(dr, func, relations->device_count),
2670		     GFP_NOWAIT);
2671	if (!dr)
2672		return;
2673
2674	dr->device_count = relations->device_count;
2675	for (i = 0; i < dr->device_count; i++) {
2676		dr->func[i].v_id = relations->func[i].v_id;
2677		dr->func[i].d_id = relations->func[i].d_id;
2678		dr->func[i].rev = relations->func[i].rev;
2679		dr->func[i].prog_intf = relations->func[i].prog_intf;
2680		dr->func[i].subclass = relations->func[i].subclass;
2681		dr->func[i].base_class = relations->func[i].base_class;
2682		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2683		dr->func[i].win_slot = relations->func[i].win_slot;
2684		dr->func[i].ser = relations->func[i].ser;
2685	}
2686
2687	if (hv_pci_start_relations_work(hbus, dr))
2688		kfree(dr);
2689}
2690
2691/**
2692 * hv_pci_devices_present2() - Handle list of new children
2693 * @hbus:	Root PCI bus, as understood by this driver
2694 * @relations:	Packet from host listing children
2695 *
2696 * This function is the v2 version of hv_pci_devices_present()
2697 */
2698static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2699				    struct pci_bus_relations2 *relations)
2700{
2701	struct hv_dr_state *dr;
2702	int i;
2703
2704	dr = kzalloc(struct_size(dr, func, relations->device_count),
2705		     GFP_NOWAIT);
2706	if (!dr)
2707		return;
2708
2709	dr->device_count = relations->device_count;
2710	for (i = 0; i < dr->device_count; i++) {
2711		dr->func[i].v_id = relations->func[i].v_id;
2712		dr->func[i].d_id = relations->func[i].d_id;
2713		dr->func[i].rev = relations->func[i].rev;
2714		dr->func[i].prog_intf = relations->func[i].prog_intf;
2715		dr->func[i].subclass = relations->func[i].subclass;
2716		dr->func[i].base_class = relations->func[i].base_class;
2717		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2718		dr->func[i].win_slot = relations->func[i].win_slot;
2719		dr->func[i].ser = relations->func[i].ser;
2720		dr->func[i].flags = relations->func[i].flags;
2721		dr->func[i].virtual_numa_node =
2722			relations->func[i].virtual_numa_node;
2723	}
2724
2725	if (hv_pci_start_relations_work(hbus, dr))
2726		kfree(dr);
2727}
2728
2729/**
2730 * hv_eject_device_work() - Asynchronously handles ejection
2731 * @work:	Work struct embedded in internal device struct
2732 *
2733 * This function handles ejecting a device.  Windows will
2734 * attempt to gracefully eject a device, waiting 60 seconds to
2735 * hear back from the guest OS that this completed successfully.
2736 * If this timer expires, the device will be forcibly removed.
2737 */
2738static void hv_eject_device_work(struct work_struct *work)
2739{
2740	struct pci_eject_response *ejct_pkt;
2741	struct hv_pcibus_device *hbus;
2742	struct hv_pci_dev *hpdev;
2743	struct pci_dev *pdev;
2744	unsigned long flags;
2745	int wslot;
2746	struct {
2747		struct pci_packet pkt;
2748		u8 buffer[sizeof(struct pci_eject_response)];
2749	} ctxt;
2750
2751	hpdev = container_of(work, struct hv_pci_dev, wrk);
2752	hbus = hpdev->hbus;
2753
2754	WARN_ON(hpdev->state != hv_pcichild_ejecting);
2755
2756	/*
2757	 * Ejection can come before or after the PCI bus has been set up, so
2758	 * attempt to find it and tear down the bus state, if it exists.  This
2759	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2760	 * because hbus->bridge->bus may not exist yet.
2761	 */
2762	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2763	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2764	if (pdev) {
2765		pci_lock_rescan_remove();
2766		pci_stop_and_remove_bus_device(pdev);
2767		pci_dev_put(pdev);
2768		pci_unlock_rescan_remove();
2769	}
2770
2771	spin_lock_irqsave(&hbus->device_list_lock, flags);
2772	list_del(&hpdev->list_entry);
2773	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2774
2775	if (hpdev->pci_slot)
2776		pci_destroy_slot(hpdev->pci_slot);
2777
2778	memset(&ctxt, 0, sizeof(ctxt));
2779	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2780	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2781	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2782	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2783			 sizeof(*ejct_pkt), 0,
2784			 VM_PKT_DATA_INBAND, 0);
2785
2786	/* For the get_pcichild() in hv_pci_eject_device() */
2787	put_pcichild(hpdev);
2788	/* For the two refs got in new_pcichild_device() */
2789	put_pcichild(hpdev);
2790	put_pcichild(hpdev);
2791	/* hpdev has been freed. Do not use it any more. */
2792}
2793
2794/**
2795 * hv_pci_eject_device() - Handles device ejection
2796 * @hpdev:	Internal device tracking struct
2797 *
2798 * This function is invoked when an ejection packet arrives.  It
2799 * just schedules work so that we don't re-enter the packet
2800 * delivery code handling the ejection.
2801 */
2802static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2803{
2804	struct hv_pcibus_device *hbus = hpdev->hbus;
2805	struct hv_device *hdev = hbus->hdev;
2806
2807	if (hbus->state == hv_pcibus_removing) {
2808		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2809		return;
2810	}
2811
2812	hpdev->state = hv_pcichild_ejecting;
2813	get_pcichild(hpdev);
2814	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2815	queue_work(hbus->wq, &hpdev->wrk);
2816}
2817
2818/**
2819 * hv_pci_onchannelcallback() - Handles incoming packets
2820 * @context:	Internal bus tracking struct
2821 *
2822 * This function is invoked whenever the host sends a packet to
2823 * this channel (which is private to this root PCI bus).
2824 */
2825static void hv_pci_onchannelcallback(void *context)
2826{
2827	const int packet_size = 0x100;
2828	int ret;
2829	struct hv_pcibus_device *hbus = context;
2830	struct vmbus_channel *chan = hbus->hdev->channel;
2831	u32 bytes_recvd;
2832	u64 req_id, req_addr;
2833	struct vmpacket_descriptor *desc;
2834	unsigned char *buffer;
2835	int bufferlen = packet_size;
2836	struct pci_packet *comp_packet;
2837	struct pci_response *response;
2838	struct pci_incoming_message *new_message;
2839	struct pci_bus_relations *bus_rel;
2840	struct pci_bus_relations2 *bus_rel2;
2841	struct pci_dev_inval_block *inval;
2842	struct pci_dev_incoming *dev_message;
2843	struct hv_pci_dev *hpdev;
2844	unsigned long flags;
2845
2846	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2847	if (!buffer)
2848		return;
2849
2850	while (1) {
2851		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2852					   &bytes_recvd, &req_id);
2853
2854		if (ret == -ENOBUFS) {
2855			kfree(buffer);
2856			/* Handle large packet */
2857			bufferlen = bytes_recvd;
2858			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2859			if (!buffer)
2860				return;
2861			continue;
2862		}
2863
2864		/* Zero length indicates there are no more packets. */
2865		if (ret || !bytes_recvd)
2866			break;
2867
2868		/*
2869		 * All incoming packets must be at least as large as a
2870		 * response.
2871		 */
2872		if (bytes_recvd <= sizeof(struct pci_response))
2873			continue;
2874		desc = (struct vmpacket_descriptor *)buffer;
2875
2876		switch (desc->type) {
2877		case VM_PKT_COMP:
2878
2879			lock_requestor(chan, flags);
2880			req_addr = __vmbus_request_addr_match(chan, req_id,
2881							      VMBUS_RQST_ADDR_ANY);
2882			if (req_addr == VMBUS_RQST_ERROR) {
2883				unlock_requestor(chan, flags);
2884				dev_err(&hbus->hdev->device,
2885					"Invalid transaction ID %llx\n",
2886					req_id);
2887				break;
2888			}
2889			comp_packet = (struct pci_packet *)req_addr;
2890			response = (struct pci_response *)buffer;
2891			/*
2892			 * Call ->completion_func() within the critical section to make
2893			 * sure that the packet pointer is still valid during the call:
2894			 * here 'valid' means that there's a task still waiting for the
2895			 * completion, and that the packet data is still on the waiting
2896			 * task's stack.  Cf. hv_compose_msi_msg().
2897			 */
 
 
2898			comp_packet->completion_func(comp_packet->compl_ctxt,
2899						     response,
2900						     bytes_recvd);
2901			unlock_requestor(chan, flags);
2902			break;
2903
2904		case VM_PKT_DATA_INBAND:
2905
2906			new_message = (struct pci_incoming_message *)buffer;
2907			switch (new_message->message_type.type) {
2908			case PCI_BUS_RELATIONS:
2909
2910				bus_rel = (struct pci_bus_relations *)buffer;
2911				if (bytes_recvd < sizeof(*bus_rel) ||
2912				    bytes_recvd <
2913					struct_size(bus_rel, func,
2914						    bus_rel->device_count)) {
2915					dev_err(&hbus->hdev->device,
2916						"bus relations too small\n");
2917					break;
2918				}
2919
2920				hv_pci_devices_present(hbus, bus_rel);
2921				break;
2922
2923			case PCI_BUS_RELATIONS2:
2924
2925				bus_rel2 = (struct pci_bus_relations2 *)buffer;
2926				if (bytes_recvd < sizeof(*bus_rel2) ||
2927				    bytes_recvd <
2928					struct_size(bus_rel2, func,
2929						    bus_rel2->device_count)) {
2930					dev_err(&hbus->hdev->device,
2931						"bus relations v2 too small\n");
2932					break;
2933				}
2934
2935				hv_pci_devices_present2(hbus, bus_rel2);
2936				break;
2937
2938			case PCI_EJECT:
2939
2940				dev_message = (struct pci_dev_incoming *)buffer;
2941				if (bytes_recvd < sizeof(*dev_message)) {
2942					dev_err(&hbus->hdev->device,
2943						"eject message too small\n");
2944					break;
2945				}
2946				hpdev = get_pcichild_wslot(hbus,
2947						      dev_message->wslot.slot);
2948				if (hpdev) {
2949					hv_pci_eject_device(hpdev);
2950					put_pcichild(hpdev);
2951				}
2952				break;
2953
2954			case PCI_INVALIDATE_BLOCK:
2955
2956				inval = (struct pci_dev_inval_block *)buffer;
2957				if (bytes_recvd < sizeof(*inval)) {
2958					dev_err(&hbus->hdev->device,
2959						"invalidate message too small\n");
2960					break;
2961				}
2962				hpdev = get_pcichild_wslot(hbus,
2963							   inval->wslot.slot);
2964				if (hpdev) {
2965					if (hpdev->block_invalidate) {
2966						hpdev->block_invalidate(
2967						    hpdev->invalidate_context,
2968						    inval->block_mask);
2969					}
2970					put_pcichild(hpdev);
2971				}
2972				break;
2973
2974			default:
2975				dev_warn(&hbus->hdev->device,
2976					"Unimplemented protocol message %x\n",
2977					new_message->message_type.type);
2978				break;
2979			}
2980			break;
2981
2982		default:
2983			dev_err(&hbus->hdev->device,
2984				"unhandled packet type %d, tid %llx len %d\n",
2985				desc->type, req_id, bytes_recvd);
2986			break;
2987		}
2988	}
2989
2990	kfree(buffer);
2991}
2992
2993/**
2994 * hv_pci_protocol_negotiation() - Set up protocol
2995 * @hdev:		VMBus's tracking struct for this root PCI bus.
2996 * @version:		Array of supported channel protocol versions in
2997 *			the order of probing - highest go first.
2998 * @num_version:	Number of elements in the version array.
2999 *
3000 * This driver is intended to support running on Windows 10
3001 * (server) and later versions. It will not run on earlier
3002 * versions, as they assume that many of the operations which
3003 * Linux needs accomplished with a spinlock held were done via
3004 * asynchronous messaging via VMBus.  Windows 10 increases the
3005 * surface area of PCI emulation so that these actions can take
3006 * place by suspending a virtual processor for their duration.
3007 *
3008 * This function negotiates the channel protocol version,
3009 * failing if the host doesn't support the necessary protocol
3010 * level.
3011 */
3012static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3013				       enum pci_protocol_version_t version[],
3014				       int num_version)
3015{
3016	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017	struct pci_version_request *version_req;
3018	struct hv_pci_compl comp_pkt;
3019	struct pci_packet *pkt;
3020	int ret;
3021	int i;
3022
3023	/*
3024	 * Initiate the handshake with the host and negotiate
3025	 * a version that the host can support. We start with the
3026	 * highest version number and go down if the host cannot
3027	 * support it.
3028	 */
3029	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3030	if (!pkt)
3031		return -ENOMEM;
3032
3033	init_completion(&comp_pkt.host_event);
3034	pkt->completion_func = hv_pci_generic_compl;
3035	pkt->compl_ctxt = &comp_pkt;
3036	version_req = (struct pci_version_request *)&pkt->message;
3037	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3038
3039	for (i = 0; i < num_version; i++) {
3040		version_req->protocol_version = version[i];
3041		ret = vmbus_sendpacket(hdev->channel, version_req,
3042				sizeof(struct pci_version_request),
3043				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3044				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3045		if (!ret)
3046			ret = wait_for_response(hdev, &comp_pkt.host_event);
3047
3048		if (ret) {
3049			dev_err(&hdev->device,
3050				"PCI Pass-through VSP failed to request version: %d",
3051				ret);
3052			goto exit;
3053		}
3054
3055		if (comp_pkt.completion_status >= 0) {
3056			hbus->protocol_version = version[i];
3057			dev_info(&hdev->device,
3058				"PCI VMBus probing: Using version %#x\n",
3059				hbus->protocol_version);
3060			goto exit;
3061		}
3062
3063		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3064			dev_err(&hdev->device,
3065				"PCI Pass-through VSP failed version request: %#x",
3066				comp_pkt.completion_status);
3067			ret = -EPROTO;
3068			goto exit;
3069		}
3070
3071		reinit_completion(&comp_pkt.host_event);
3072	}
3073
3074	dev_err(&hdev->device,
3075		"PCI pass-through VSP failed to find supported version");
3076	ret = -EPROTO;
3077
3078exit:
3079	kfree(pkt);
3080	return ret;
3081}
3082
3083/**
3084 * hv_pci_free_bridge_windows() - Release memory regions for the
3085 * bus
3086 * @hbus:	Root PCI bus, as understood by this driver
3087 */
3088static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3089{
3090	/*
3091	 * Set the resources back to the way they looked when they
3092	 * were allocated by setting IORESOURCE_BUSY again.
3093	 */
3094
3095	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3096		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3097		vmbus_free_mmio(hbus->low_mmio_res->start,
3098				resource_size(hbus->low_mmio_res));
3099	}
3100
3101	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3102		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3103		vmbus_free_mmio(hbus->high_mmio_res->start,
3104				resource_size(hbus->high_mmio_res));
3105	}
3106}
3107
3108/**
3109 * hv_pci_allocate_bridge_windows() - Allocate memory regions
3110 * for the bus
3111 * @hbus:	Root PCI bus, as understood by this driver
3112 *
3113 * This function calls vmbus_allocate_mmio(), which is itself a
3114 * bit of a compromise.  Ideally, we might change the pnp layer
3115 * in the kernel such that it comprehends either PCI devices
3116 * which are "grandchildren of ACPI," with some intermediate bus
3117 * node (in this case, VMBus) or change it such that it
3118 * understands VMBus.  The pnp layer, however, has been declared
3119 * deprecated, and not subject to change.
3120 *
3121 * The workaround, implemented here, is to ask VMBus to allocate
3122 * MMIO space for this bus.  VMBus itself knows which ranges are
3123 * appropriate by looking at its own ACPI objects.  Then, after
3124 * these ranges are claimed, they're modified to look like they
3125 * would have looked if the ACPI and pnp code had allocated
3126 * bridge windows.  These descriptors have to exist in this form
3127 * in order to satisfy the code which will get invoked when the
3128 * endpoint PCI function driver calls request_mem_region() or
3129 * request_mem_region_exclusive().
3130 *
3131 * Return: 0 on success, -errno on failure
3132 */
3133static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3134{
3135	resource_size_t align;
3136	int ret;
3137
3138	if (hbus->low_mmio_space) {
3139		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3140		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3141					  (u64)(u32)0xffffffff,
3142					  hbus->low_mmio_space,
3143					  align, false);
3144		if (ret) {
3145			dev_err(&hbus->hdev->device,
3146				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3147				hbus->low_mmio_space);
3148			return ret;
3149		}
3150
3151		/* Modify this resource to become a bridge window. */
3152		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3153		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3154		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
 
3155	}
3156
3157	if (hbus->high_mmio_space) {
3158		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3159		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3160					  0x100000000, -1,
3161					  hbus->high_mmio_space, align,
3162					  false);
3163		if (ret) {
3164			dev_err(&hbus->hdev->device,
3165				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3166				hbus->high_mmio_space);
3167			goto release_low_mmio;
3168		}
3169
3170		/* Modify this resource to become a bridge window. */
3171		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3172		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3173		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
 
3174	}
3175
3176	return 0;
3177
3178release_low_mmio:
3179	if (hbus->low_mmio_res) {
3180		vmbus_free_mmio(hbus->low_mmio_res->start,
3181				resource_size(hbus->low_mmio_res));
3182	}
3183
3184	return ret;
3185}
3186
3187/**
3188 * hv_allocate_config_window() - Find MMIO space for PCI Config
3189 * @hbus:	Root PCI bus, as understood by this driver
3190 *
3191 * This function claims memory-mapped I/O space for accessing
3192 * configuration space for the functions on this bus.
3193 *
3194 * Return: 0 on success, -errno on failure
3195 */
3196static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3197{
3198	int ret;
3199
3200	/*
3201	 * Set up a region of MMIO space to use for accessing configuration
3202	 * space.
3203	 */
3204	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3205				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3206	if (ret)
3207		return ret;
3208
3209	/*
3210	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3211	 * resource claims (those which cannot be overlapped) and the ranges
3212	 * which are valid for the children of this bus, which are intended
3213	 * to be overlapped by those children.  Set the flag on this claim
3214	 * meaning that this region can't be overlapped.
3215	 */
3216
3217	hbus->mem_config->flags |= IORESOURCE_BUSY;
3218
3219	return 0;
3220}
3221
3222static void hv_free_config_window(struct hv_pcibus_device *hbus)
3223{
3224	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3225}
3226
3227static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3228
3229/**
3230 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3231 * @hdev:	VMBus's tracking struct for this root PCI bus
3232 *
3233 * Return: 0 on success, -errno on failure
3234 */
3235static int hv_pci_enter_d0(struct hv_device *hdev)
3236{
3237	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3238	struct pci_bus_d0_entry *d0_entry;
3239	struct hv_pci_compl comp_pkt;
3240	struct pci_packet *pkt;
3241	int ret;
3242
3243	/*
3244	 * Tell the host that the bus is ready to use, and moved into the
3245	 * powered-on state.  This includes telling the host which region
3246	 * of memory-mapped I/O space has been chosen for configuration space
3247	 * access.
3248	 */
3249	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3250	if (!pkt)
3251		return -ENOMEM;
3252
3253	init_completion(&comp_pkt.host_event);
3254	pkt->completion_func = hv_pci_generic_compl;
3255	pkt->compl_ctxt = &comp_pkt;
3256	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3257	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3258	d0_entry->mmio_base = hbus->mem_config->start;
3259
3260	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3261			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3262			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3263	if (!ret)
3264		ret = wait_for_response(hdev, &comp_pkt.host_event);
3265
3266	if (ret)
3267		goto exit;
3268
3269	if (comp_pkt.completion_status < 0) {
3270		dev_err(&hdev->device,
3271			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3272			comp_pkt.completion_status);
3273		ret = -EPROTO;
3274		goto exit;
3275	}
3276
3277	ret = 0;
3278
3279exit:
3280	kfree(pkt);
3281	return ret;
3282}
3283
3284/**
3285 * hv_pci_query_relations() - Ask host to send list of child
3286 * devices
3287 * @hdev:	VMBus's tracking struct for this root PCI bus
3288 *
3289 * Return: 0 on success, -errno on failure
3290 */
3291static int hv_pci_query_relations(struct hv_device *hdev)
3292{
3293	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3294	struct pci_message message;
3295	struct completion comp;
3296	int ret;
3297
3298	/* Ask the host to send along the list of child devices */
3299	init_completion(&comp);
3300	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3301		return -ENOTEMPTY;
3302
3303	memset(&message, 0, sizeof(message));
3304	message.type = PCI_QUERY_BUS_RELATIONS;
3305
3306	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3307			       0, VM_PKT_DATA_INBAND, 0);
3308	if (!ret)
3309		ret = wait_for_response(hdev, &comp);
3310
3311	return ret;
3312}
3313
3314/**
3315 * hv_send_resources_allocated() - Report local resource choices
3316 * @hdev:	VMBus's tracking struct for this root PCI bus
3317 *
3318 * The host OS is expecting to be sent a request as a message
3319 * which contains all the resources that the device will use.
3320 * The response contains those same resources, "translated"
3321 * which is to say, the values which should be used by the
3322 * hardware, when it delivers an interrupt.  (MMIO resources are
3323 * used in local terms.)  This is nice for Windows, and lines up
3324 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3325 * is deeply expecting to scan an emulated PCI configuration
3326 * space.  So this message is sent here only to drive the state
3327 * machine on the host forward.
3328 *
3329 * Return: 0 on success, -errno on failure
3330 */
3331static int hv_send_resources_allocated(struct hv_device *hdev)
3332{
3333	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3334	struct pci_resources_assigned *res_assigned;
3335	struct pci_resources_assigned2 *res_assigned2;
3336	struct hv_pci_compl comp_pkt;
3337	struct hv_pci_dev *hpdev;
3338	struct pci_packet *pkt;
3339	size_t size_res;
3340	int wslot;
3341	int ret;
3342
3343	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3344			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3345
3346	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3347	if (!pkt)
3348		return -ENOMEM;
3349
3350	ret = 0;
3351
3352	for (wslot = 0; wslot < 256; wslot++) {
3353		hpdev = get_pcichild_wslot(hbus, wslot);
3354		if (!hpdev)
3355			continue;
3356
3357		memset(pkt, 0, sizeof(*pkt) + size_res);
3358		init_completion(&comp_pkt.host_event);
3359		pkt->completion_func = hv_pci_generic_compl;
3360		pkt->compl_ctxt = &comp_pkt;
3361
3362		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3363			res_assigned =
3364				(struct pci_resources_assigned *)&pkt->message;
3365			res_assigned->message_type.type =
3366				PCI_RESOURCES_ASSIGNED;
3367			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3368		} else {
3369			res_assigned2 =
3370				(struct pci_resources_assigned2 *)&pkt->message;
3371			res_assigned2->message_type.type =
3372				PCI_RESOURCES_ASSIGNED2;
3373			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3374		}
3375		put_pcichild(hpdev);
3376
3377		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3378				size_res, (unsigned long)pkt,
3379				VM_PKT_DATA_INBAND,
3380				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3381		if (!ret)
3382			ret = wait_for_response(hdev, &comp_pkt.host_event);
3383		if (ret)
3384			break;
3385
3386		if (comp_pkt.completion_status < 0) {
3387			ret = -EPROTO;
3388			dev_err(&hdev->device,
3389				"resource allocated returned 0x%x",
3390				comp_pkt.completion_status);
3391			break;
3392		}
3393
3394		hbus->wslot_res_allocated = wslot;
3395	}
3396
3397	kfree(pkt);
3398	return ret;
3399}
3400
3401/**
3402 * hv_send_resources_released() - Report local resources
3403 * released
3404 * @hdev:	VMBus's tracking struct for this root PCI bus
3405 *
3406 * Return: 0 on success, -errno on failure
3407 */
3408static int hv_send_resources_released(struct hv_device *hdev)
3409{
3410	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3411	struct pci_child_message pkt;
3412	struct hv_pci_dev *hpdev;
3413	int wslot;
3414	int ret;
3415
3416	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3417		hpdev = get_pcichild_wslot(hbus, wslot);
3418		if (!hpdev)
3419			continue;
3420
3421		memset(&pkt, 0, sizeof(pkt));
3422		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3423		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3424
3425		put_pcichild(hpdev);
3426
3427		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3428				       VM_PKT_DATA_INBAND, 0);
3429		if (ret)
3430			return ret;
3431
3432		hbus->wslot_res_allocated = wslot - 1;
3433	}
3434
3435	hbus->wslot_res_allocated = -1;
3436
3437	return 0;
3438}
3439
3440#define HVPCI_DOM_MAP_SIZE (64 * 1024)
3441static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3442
3443/*
3444 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3445 * as invalid for passthrough PCI devices of this driver.
3446 */
3447#define HVPCI_DOM_INVALID 0
3448
3449/**
3450 * hv_get_dom_num() - Get a valid PCI domain number
3451 * Check if the PCI domain number is in use, and return another number if
3452 * it is in use.
3453 *
3454 * @dom: Requested domain number
3455 *
3456 * return: domain number on success, HVPCI_DOM_INVALID on failure
3457 */
3458static u16 hv_get_dom_num(u16 dom)
3459{
3460	unsigned int i;
3461
3462	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3463		return dom;
3464
3465	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3466		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3467			return i;
3468	}
3469
3470	return HVPCI_DOM_INVALID;
3471}
3472
3473/**
3474 * hv_put_dom_num() - Mark the PCI domain number as free
3475 * @dom: Domain number to be freed
3476 */
3477static void hv_put_dom_num(u16 dom)
3478{
3479	clear_bit(dom, hvpci_dom_map);
3480}
3481
3482/**
3483 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3484 * @hdev:	VMBus's tracking struct for this root PCI bus
3485 * @dev_id:	Identifies the device itself
3486 *
3487 * Return: 0 on success, -errno on failure
3488 */
3489static int hv_pci_probe(struct hv_device *hdev,
3490			const struct hv_vmbus_device_id *dev_id)
3491{
3492	struct pci_host_bridge *bridge;
3493	struct hv_pcibus_device *hbus;
3494	u16 dom_req, dom;
3495	char *name;
3496	bool enter_d0_retry = true;
3497	int ret;
3498
3499	/*
3500	 * hv_pcibus_device contains the hypercall arguments for retargeting in
3501	 * hv_irq_unmask(). Those must not cross a page boundary.
3502	 */
3503	BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3504
3505	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3506	if (!bridge)
3507		return -ENOMEM;
3508
3509	/*
3510	 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3511	 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3512	 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3513	 * alignment of hbus is important because hbus's field
3514	 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3515	 *
3516	 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3517	 * allocated by the latter is not tracked and scanned by kmemleak, and
3518	 * hence kmemleak reports the pointer contained in the hbus buffer
3519	 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3520	 * is tracked by hbus->children) as memory leak (false positive).
3521	 *
3522	 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3523	 * used to allocate the hbus buffer and we can avoid the kmemleak false
3524	 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3525	 * kmemleak to track and scan the hbus buffer.
3526	 */
3527	hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3528	if (!hbus)
3529		return -ENOMEM;
3530
3531	hbus->bridge = bridge;
3532	hbus->state = hv_pcibus_init;
3533	hbus->wslot_res_allocated = -1;
3534
3535	/*
3536	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3537	 * specs. Pull it from the instance ID, to get something usually
3538	 * unique. In rare cases of collision, we will find out another number
3539	 * not in use.
3540	 *
3541	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3542	 * together with this guest driver can guarantee that (1) The only
3543	 * domain used by Gen1 VMs for something that looks like a physical
3544	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3545	 * (2) There will be no overlap between domains (after fixing possible
3546	 * collisions) in the same VM.
3547	 */
3548	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3549	dom = hv_get_dom_num(dom_req);
3550
3551	if (dom == HVPCI_DOM_INVALID) {
3552		dev_err(&hdev->device,
3553			"Unable to use dom# 0x%x or other numbers", dom_req);
3554		ret = -EINVAL;
3555		goto free_bus;
3556	}
3557
3558	if (dom != dom_req)
3559		dev_info(&hdev->device,
3560			 "PCI dom# 0x%x has collision, using 0x%x",
3561			 dom_req, dom);
3562
3563	hbus->bridge->domain_nr = dom;
3564#ifdef CONFIG_X86
3565	hbus->sysdata.domain = dom;
3566#elif defined(CONFIG_ARM64)
3567	/*
3568	 * Set the PCI bus parent to be the corresponding VMbus
3569	 * device. Then the VMbus device will be assigned as the
3570	 * ACPI companion in pcibios_root_bridge_prepare() and
3571	 * pci_dma_configure() will propagate device coherence
3572	 * information to devices created on the bus.
3573	 */
3574	hbus->sysdata.parent = hdev->device.parent;
3575#endif
3576
3577	hbus->hdev = hdev;
3578	INIT_LIST_HEAD(&hbus->children);
3579	INIT_LIST_HEAD(&hbus->dr_list);
 
3580	spin_lock_init(&hbus->config_lock);
3581	spin_lock_init(&hbus->device_list_lock);
3582	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3583	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3584					   hbus->bridge->domain_nr);
3585	if (!hbus->wq) {
3586		ret = -ENOMEM;
3587		goto free_dom;
3588	}
3589
3590	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3591	hdev->channel->request_addr_callback = vmbus_request_addr;
3592	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3593
3594	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3595			 hv_pci_onchannelcallback, hbus);
3596	if (ret)
3597		goto destroy_wq;
3598
3599	hv_set_drvdata(hdev, hbus);
3600
3601	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3602					  ARRAY_SIZE(pci_protocol_versions));
3603	if (ret)
3604		goto close;
3605
3606	ret = hv_allocate_config_window(hbus);
3607	if (ret)
3608		goto close;
3609
3610	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3611				 PCI_CONFIG_MMIO_LENGTH);
3612	if (!hbus->cfg_addr) {
3613		dev_err(&hdev->device,
3614			"Unable to map a virtual address for config space\n");
3615		ret = -ENOMEM;
3616		goto free_config;
3617	}
3618
3619	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3620	if (!name) {
3621		ret = -ENOMEM;
3622		goto unmap;
3623	}
3624
3625	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3626	kfree(name);
3627	if (!hbus->fwnode) {
3628		ret = -ENOMEM;
3629		goto unmap;
3630	}
3631
3632	ret = hv_pcie_init_irq_domain(hbus);
3633	if (ret)
3634		goto free_fwnode;
3635
3636retry:
3637	ret = hv_pci_query_relations(hdev);
3638	if (ret)
3639		goto free_irq_domain;
3640
3641	ret = hv_pci_enter_d0(hdev);
3642	/*
3643	 * In certain case (Kdump) the pci device of interest was
3644	 * not cleanly shut down and resource is still held on host
3645	 * side, the host could return invalid device status.
3646	 * We need to explicitly request host to release the resource
3647	 * and try to enter D0 again.
3648	 * Since the hv_pci_bus_exit() call releases structures
3649	 * of all its child devices, we need to start the retry from
3650	 * hv_pci_query_relations() call, requesting host to send
3651	 * the synchronous child device relations message before this
3652	 * information is needed in hv_send_resources_allocated()
3653	 * call later.
3654	 */
3655	if (ret == -EPROTO && enter_d0_retry) {
3656		enter_d0_retry = false;
3657
3658		dev_err(&hdev->device, "Retrying D0 Entry\n");
3659
3660		/*
3661		 * Hv_pci_bus_exit() calls hv_send_resources_released()
3662		 * to free up resources of its child devices.
3663		 * In the kdump kernel we need to set the
3664		 * wslot_res_allocated to 255 so it scans all child
3665		 * devices to release resources allocated in the
3666		 * normal kernel before panic happened.
3667		 */
3668		hbus->wslot_res_allocated = 255;
3669		ret = hv_pci_bus_exit(hdev, true);
3670
3671		if (ret == 0)
3672			goto retry;
3673
3674		dev_err(&hdev->device,
3675			"Retrying D0 failed with ret %d\n", ret);
3676	}
3677	if (ret)
3678		goto free_irq_domain;
3679
3680	ret = hv_pci_allocate_bridge_windows(hbus);
3681	if (ret)
3682		goto exit_d0;
3683
3684	ret = hv_send_resources_allocated(hdev);
3685	if (ret)
3686		goto free_windows;
3687
3688	prepopulate_bars(hbus);
3689
3690	hbus->state = hv_pcibus_probed;
3691
3692	ret = create_root_hv_pci_bus(hbus);
3693	if (ret)
3694		goto free_windows;
3695
3696	return 0;
3697
3698free_windows:
3699	hv_pci_free_bridge_windows(hbus);
3700exit_d0:
3701	(void) hv_pci_bus_exit(hdev, true);
3702free_irq_domain:
3703	irq_domain_remove(hbus->irq_domain);
3704free_fwnode:
3705	irq_domain_free_fwnode(hbus->fwnode);
3706unmap:
3707	iounmap(hbus->cfg_addr);
3708free_config:
3709	hv_free_config_window(hbus);
3710close:
3711	vmbus_close(hdev->channel);
3712destroy_wq:
3713	destroy_workqueue(hbus->wq);
3714free_dom:
3715	hv_put_dom_num(hbus->bridge->domain_nr);
3716free_bus:
3717	kfree(hbus);
3718	return ret;
3719}
3720
3721static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3722{
3723	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3724	struct vmbus_channel *chan = hdev->channel;
3725	struct {
3726		struct pci_packet teardown_packet;
3727		u8 buffer[sizeof(struct pci_message)];
3728	} pkt;
3729	struct hv_pci_compl comp_pkt;
3730	struct hv_pci_dev *hpdev, *tmp;
3731	unsigned long flags;
3732	u64 trans_id;
3733	int ret;
3734
3735	/*
3736	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3737	 * access the per-channel ringbuffer any longer.
3738	 */
3739	if (chan->rescind)
3740		return 0;
3741
3742	if (!keep_devs) {
3743		struct list_head removed;
3744
3745		/* Move all present children to the list on stack */
3746		INIT_LIST_HEAD(&removed);
3747		spin_lock_irqsave(&hbus->device_list_lock, flags);
3748		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3749			list_move_tail(&hpdev->list_entry, &removed);
3750		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3751
3752		/* Remove all children in the list */
3753		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3754			list_del(&hpdev->list_entry);
3755			if (hpdev->pci_slot)
3756				pci_destroy_slot(hpdev->pci_slot);
3757			/* For the two refs got in new_pcichild_device() */
3758			put_pcichild(hpdev);
3759			put_pcichild(hpdev);
3760		}
3761	}
3762
3763	ret = hv_send_resources_released(hdev);
3764	if (ret) {
3765		dev_err(&hdev->device,
3766			"Couldn't send resources released packet(s)\n");
3767		return ret;
3768	}
3769
3770	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3771	init_completion(&comp_pkt.host_event);
3772	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3773	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3774	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3775
3776	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3777				     sizeof(struct pci_message),
3778				     (unsigned long)&pkt.teardown_packet,
3779				     &trans_id, VM_PKT_DATA_INBAND,
3780				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3781	if (ret)
3782		return ret;
3783
3784	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3785		/*
3786		 * The completion packet on the stack becomes invalid after
3787		 * 'return'; remove the ID from the VMbus requestor if the
3788		 * identifier is still mapped to/associated with the packet.
3789		 *
3790		 * Cf. hv_pci_onchannelcallback().
3791		 */
3792		vmbus_request_addr_match(chan, trans_id,
3793					 (unsigned long)&pkt.teardown_packet);
3794		return -ETIMEDOUT;
3795	}
3796
3797	return 0;
3798}
3799
3800/**
3801 * hv_pci_remove() - Remove routine for this VMBus channel
3802 * @hdev:	VMBus's tracking struct for this root PCI bus
3803 *
3804 * Return: 0 on success, -errno on failure
3805 */
3806static int hv_pci_remove(struct hv_device *hdev)
3807{
3808	struct hv_pcibus_device *hbus;
3809	int ret;
3810
3811	hbus = hv_get_drvdata(hdev);
3812	if (hbus->state == hv_pcibus_installed) {
3813		tasklet_disable(&hdev->channel->callback_event);
3814		hbus->state = hv_pcibus_removing;
3815		tasklet_enable(&hdev->channel->callback_event);
3816		destroy_workqueue(hbus->wq);
3817		hbus->wq = NULL;
3818		/*
3819		 * At this point, no work is running or can be scheduled
3820		 * on hbus-wq. We can't race with hv_pci_devices_present()
3821		 * or hv_pci_eject_device(), it's safe to proceed.
3822		 */
3823
3824		/* Remove the bus from PCI's point of view. */
3825		pci_lock_rescan_remove();
3826		pci_stop_root_bus(hbus->bridge->bus);
3827		hv_pci_remove_slots(hbus);
3828		pci_remove_root_bus(hbus->bridge->bus);
3829		pci_unlock_rescan_remove();
3830	}
3831
3832	ret = hv_pci_bus_exit(hdev, false);
3833
3834	vmbus_close(hdev->channel);
3835
3836	iounmap(hbus->cfg_addr);
3837	hv_free_config_window(hbus);
 
3838	hv_pci_free_bridge_windows(hbus);
3839	irq_domain_remove(hbus->irq_domain);
3840	irq_domain_free_fwnode(hbus->fwnode);
3841
3842	hv_put_dom_num(hbus->bridge->domain_nr);
3843
3844	kfree(hbus);
3845	return ret;
3846}
3847
3848static int hv_pci_suspend(struct hv_device *hdev)
3849{
3850	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3851	enum hv_pcibus_state old_state;
3852	int ret;
3853
3854	/*
3855	 * hv_pci_suspend() must make sure there are no pending work items
3856	 * before calling vmbus_close(), since it runs in a process context
3857	 * as a callback in dpm_suspend().  When it starts to run, the channel
3858	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3859	 * context, can be still running concurrently and scheduling new work
3860	 * items onto hbus->wq in hv_pci_devices_present() and
3861	 * hv_pci_eject_device(), and the work item handlers can access the
3862	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3863	 * the work item handler pci_devices_present_work() ->
3864	 * new_pcichild_device() writes to the vmbus channel.
3865	 *
3866	 * To eliminate the race, hv_pci_suspend() disables the channel
3867	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3868	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3869	 * it knows that no new work item can be scheduled, and then it flushes
3870	 * hbus->wq and safely closes the vmbus channel.
3871	 */
3872	tasklet_disable(&hdev->channel->callback_event);
3873
3874	/* Change the hbus state to prevent new work items. */
3875	old_state = hbus->state;
3876	if (hbus->state == hv_pcibus_installed)
3877		hbus->state = hv_pcibus_removing;
3878
3879	tasklet_enable(&hdev->channel->callback_event);
3880
3881	if (old_state != hv_pcibus_installed)
3882		return -EINVAL;
3883
3884	flush_workqueue(hbus->wq);
3885
3886	ret = hv_pci_bus_exit(hdev, true);
3887	if (ret)
3888		return ret;
3889
3890	vmbus_close(hdev->channel);
3891
3892	return 0;
3893}
3894
3895static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3896{
 
3897	struct irq_data *irq_data;
3898	struct msi_desc *entry;
3899	int ret = 0;
3900
3901	msi_lock_descs(&pdev->dev);
3902	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3903		irq_data = irq_get_irq_data(entry->irq);
3904		if (WARN_ON_ONCE(!irq_data)) {
3905			ret = -EINVAL;
3906			break;
3907		}
3908
3909		hv_compose_msi_msg(irq_data, &entry->msg);
3910	}
3911	msi_unlock_descs(&pdev->dev);
3912
3913	return ret;
3914}
3915
3916/*
3917 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3918 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3919 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3920 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3921 * Table entries.
3922 */
3923static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3924{
3925	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
3926}
3927
3928static int hv_pci_resume(struct hv_device *hdev)
3929{
3930	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3931	enum pci_protocol_version_t version[1];
3932	int ret;
3933
3934	hbus->state = hv_pcibus_init;
3935
3936	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3937	hdev->channel->request_addr_callback = vmbus_request_addr;
3938	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3939
3940	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3941			 hv_pci_onchannelcallback, hbus);
3942	if (ret)
3943		return ret;
3944
3945	/* Only use the version that was in use before hibernation. */
3946	version[0] = hbus->protocol_version;
3947	ret = hv_pci_protocol_negotiation(hdev, version, 1);
3948	if (ret)
3949		goto out;
3950
3951	ret = hv_pci_query_relations(hdev);
3952	if (ret)
3953		goto out;
3954
3955	ret = hv_pci_enter_d0(hdev);
3956	if (ret)
3957		goto out;
3958
3959	ret = hv_send_resources_allocated(hdev);
3960	if (ret)
3961		goto out;
3962
3963	prepopulate_bars(hbus);
3964
3965	hv_pci_restore_msi_state(hbus);
3966
3967	hbus->state = hv_pcibus_installed;
3968	return 0;
3969out:
3970	vmbus_close(hdev->channel);
3971	return ret;
3972}
3973
3974static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3975	/* PCI Pass-through Class ID */
3976	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3977	{ HV_PCIE_GUID, },
3978	{ },
3979};
3980
3981MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3982
3983static struct hv_driver hv_pci_drv = {
3984	.name		= "hv_pci",
3985	.id_table	= hv_pci_id_table,
3986	.probe		= hv_pci_probe,
3987	.remove		= hv_pci_remove,
3988	.suspend	= hv_pci_suspend,
3989	.resume		= hv_pci_resume,
3990};
3991
3992static void __exit exit_hv_pci_drv(void)
3993{
3994	vmbus_driver_unregister(&hv_pci_drv);
3995
3996	hvpci_block_ops.read_block = NULL;
3997	hvpci_block_ops.write_block = NULL;
3998	hvpci_block_ops.reg_blk_invalidate = NULL;
3999}
4000
4001static int __init init_hv_pci_drv(void)
4002{
4003	int ret;
4004
4005	if (!hv_is_hyperv_initialized())
4006		return -ENODEV;
4007
4008	ret = hv_pci_irqchip_init();
4009	if (ret)
4010		return ret;
4011
4012	/* Set the invalid domain number's bit, so it will not be used */
4013	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4014
4015	/* Initialize PCI block r/w interface */
4016	hvpci_block_ops.read_block = hv_read_config_block;
4017	hvpci_block_ops.write_block = hv_write_config_block;
4018	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4019
4020	return vmbus_driver_register(&hv_pci_drv);
4021}
4022
4023module_init(init_hv_pci_drv);
4024module_exit(exit_hv_pci_drv);
4025
4026MODULE_DESCRIPTION("Hyper-V PCI");
4027MODULE_LICENSE("GPL v2");