Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_sched.h"
5
6/**
7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
8 * @pi: port information structure
9 * @info: Scheduler element information from firmware
10 *
11 * This function inserts the root node of the scheduling tree topology
12 * to the SW DB.
13 */
14static enum ice_status
15ice_sched_add_root_node(struct ice_port_info *pi,
16 struct ice_aqc_txsched_elem_data *info)
17{
18 struct ice_sched_node *root;
19 struct ice_hw *hw;
20
21 if (!pi)
22 return ICE_ERR_PARAM;
23
24 hw = pi->hw;
25
26 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
27 if (!root)
28 return ICE_ERR_NO_MEMORY;
29
30 /* coverity[suspicious_sizeof] */
31 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
32 sizeof(*root), GFP_KERNEL);
33 if (!root->children) {
34 devm_kfree(ice_hw_to_dev(hw), root);
35 return ICE_ERR_NO_MEMORY;
36 }
37
38 memcpy(&root->info, info, sizeof(*info));
39 pi->root = root;
40 return 0;
41}
42
43/**
44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
46 * @teid: node TEID to search
47 *
48 * This function searches for a node matching the TEID in the scheduling tree
49 * from the SW DB. The search is recursive and is restricted by the number of
50 * layers it has searched through; stopping at the max supported layer.
51 *
52 * This function needs to be called when holding the port_info->sched_lock
53 */
54struct ice_sched_node *
55ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
56{
57 u16 i;
58
59 /* The TEID is same as that of the start_node */
60 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
61 return start_node;
62
63 /* The node has no children or is at the max layer */
64 if (!start_node->num_children ||
65 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
66 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
67 return NULL;
68
69 /* Check if TEID matches to any of the children nodes */
70 for (i = 0; i < start_node->num_children; i++)
71 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
72 return start_node->children[i];
73
74 /* Search within each child's sub-tree */
75 for (i = 0; i < start_node->num_children; i++) {
76 struct ice_sched_node *tmp;
77
78 tmp = ice_sched_find_node_by_teid(start_node->children[i],
79 teid);
80 if (tmp)
81 return tmp;
82 }
83
84 return NULL;
85}
86
87/**
88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
89 * @hw: pointer to the HW struct
90 * @cmd_opc: cmd opcode
91 * @elems_req: number of elements to request
92 * @buf: pointer to buffer
93 * @buf_size: buffer size in bytes
94 * @elems_resp: returns total number of elements response
95 * @cd: pointer to command details structure or NULL
96 *
97 * This function sends a scheduling elements cmd (cmd_opc)
98 */
99static enum ice_status
100ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
101 u16 elems_req, void *buf, u16 buf_size,
102 u16 *elems_resp, struct ice_sq_cd *cd)
103{
104 struct ice_aqc_sched_elem_cmd *cmd;
105 struct ice_aq_desc desc;
106 enum ice_status status;
107
108 cmd = &desc.params.sched_elem_cmd;
109 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
110 cmd->num_elem_req = cpu_to_le16(elems_req);
111 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
112 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
113 if (!status && elems_resp)
114 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
115
116 return status;
117}
118
119/**
120 * ice_aq_query_sched_elems - query scheduler elements
121 * @hw: pointer to the HW struct
122 * @elems_req: number of elements to query
123 * @buf: pointer to buffer
124 * @buf_size: buffer size in bytes
125 * @elems_ret: returns total number of elements returned
126 * @cd: pointer to command details structure or NULL
127 *
128 * Query scheduling elements (0x0404)
129 */
130enum ice_status
131ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
132 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
133 u16 *elems_ret, struct ice_sq_cd *cd)
134{
135 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
136 elems_req, (void *)buf, buf_size,
137 elems_ret, cd);
138}
139
140/**
141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
142 * @pi: port information structure
143 * @layer: Scheduler layer of the node
144 * @info: Scheduler element information from firmware
145 *
146 * This function inserts a scheduler node to the SW DB.
147 */
148enum ice_status
149ice_sched_add_node(struct ice_port_info *pi, u8 layer,
150 struct ice_aqc_txsched_elem_data *info)
151{
152 struct ice_aqc_txsched_elem_data elem;
153 struct ice_sched_node *parent;
154 struct ice_sched_node *node;
155 enum ice_status status;
156 struct ice_hw *hw;
157
158 if (!pi)
159 return ICE_ERR_PARAM;
160
161 hw = pi->hw;
162
163 /* A valid parent node should be there */
164 parent = ice_sched_find_node_by_teid(pi->root,
165 le32_to_cpu(info->parent_teid));
166 if (!parent) {
167 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
168 le32_to_cpu(info->parent_teid));
169 return ICE_ERR_PARAM;
170 }
171
172 /* query the current node information from FW before adding it
173 * to the SW DB
174 */
175 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
176 if (status)
177 return status;
178
179 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
180 if (!node)
181 return ICE_ERR_NO_MEMORY;
182 if (hw->max_children[layer]) {
183 /* coverity[suspicious_sizeof] */
184 node->children = devm_kcalloc(ice_hw_to_dev(hw),
185 hw->max_children[layer],
186 sizeof(*node), GFP_KERNEL);
187 if (!node->children) {
188 devm_kfree(ice_hw_to_dev(hw), node);
189 return ICE_ERR_NO_MEMORY;
190 }
191 }
192
193 node->in_use = true;
194 node->parent = parent;
195 node->tx_sched_layer = layer;
196 parent->children[parent->num_children++] = node;
197 node->info = elem;
198 return 0;
199}
200
201/**
202 * ice_aq_delete_sched_elems - delete scheduler elements
203 * @hw: pointer to the HW struct
204 * @grps_req: number of groups to delete
205 * @buf: pointer to buffer
206 * @buf_size: buffer size in bytes
207 * @grps_del: returns total number of elements deleted
208 * @cd: pointer to command details structure or NULL
209 *
210 * Delete scheduling elements (0x040F)
211 */
212static enum ice_status
213ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
214 struct ice_aqc_delete_elem *buf, u16 buf_size,
215 u16 *grps_del, struct ice_sq_cd *cd)
216{
217 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
218 grps_req, (void *)buf, buf_size,
219 grps_del, cd);
220}
221
222/**
223 * ice_sched_remove_elems - remove nodes from HW
224 * @hw: pointer to the HW struct
225 * @parent: pointer to the parent node
226 * @num_nodes: number of nodes
227 * @node_teids: array of node teids to be deleted
228 *
229 * This function remove nodes from HW
230 */
231static enum ice_status
232ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
233 u16 num_nodes, u32 *node_teids)
234{
235 struct ice_aqc_delete_elem *buf;
236 u16 i, num_groups_removed = 0;
237 enum ice_status status;
238 u16 buf_size;
239
240 buf_size = struct_size(buf, teid, num_nodes);
241 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
242 if (!buf)
243 return ICE_ERR_NO_MEMORY;
244
245 buf->hdr.parent_teid = parent->info.node_teid;
246 buf->hdr.num_elems = cpu_to_le16(num_nodes);
247 for (i = 0; i < num_nodes; i++)
248 buf->teid[i] = cpu_to_le32(node_teids[i]);
249
250 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
251 &num_groups_removed, NULL);
252 if (status || num_groups_removed != 1)
253 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
254 hw->adminq.sq_last_status);
255
256 devm_kfree(ice_hw_to_dev(hw), buf);
257 return status;
258}
259
260/**
261 * ice_sched_get_first_node - get the first node of the given layer
262 * @pi: port information structure
263 * @parent: pointer the base node of the subtree
264 * @layer: layer number
265 *
266 * This function retrieves the first node of the given layer from the subtree
267 */
268static struct ice_sched_node *
269ice_sched_get_first_node(struct ice_port_info *pi,
270 struct ice_sched_node *parent, u8 layer)
271{
272 return pi->sib_head[parent->tc_num][layer];
273}
274
275/**
276 * ice_sched_get_tc_node - get pointer to TC node
277 * @pi: port information structure
278 * @tc: TC number
279 *
280 * This function returns the TC node pointer
281 */
282struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
283{
284 u8 i;
285
286 if (!pi || !pi->root)
287 return NULL;
288 for (i = 0; i < pi->root->num_children; i++)
289 if (pi->root->children[i]->tc_num == tc)
290 return pi->root->children[i];
291 return NULL;
292}
293
294/**
295 * ice_free_sched_node - Free a Tx scheduler node from SW DB
296 * @pi: port information structure
297 * @node: pointer to the ice_sched_node struct
298 *
299 * This function frees up a node from SW DB as well as from HW
300 *
301 * This function needs to be called with the port_info->sched_lock held
302 */
303void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
304{
305 struct ice_sched_node *parent;
306 struct ice_hw *hw = pi->hw;
307 u8 i, j;
308
309 /* Free the children before freeing up the parent node
310 * The parent array is updated below and that shifts the nodes
311 * in the array. So always pick the first child if num children > 0
312 */
313 while (node->num_children)
314 ice_free_sched_node(pi, node->children[0]);
315
316 /* Leaf, TC and root nodes can't be deleted by SW */
317 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
318 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
319 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
320 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
321 u32 teid = le32_to_cpu(node->info.node_teid);
322
323 ice_sched_remove_elems(hw, node->parent, 1, &teid);
324 }
325 parent = node->parent;
326 /* root has no parent */
327 if (parent) {
328 struct ice_sched_node *p;
329
330 /* update the parent */
331 for (i = 0; i < parent->num_children; i++)
332 if (parent->children[i] == node) {
333 for (j = i + 1; j < parent->num_children; j++)
334 parent->children[j - 1] =
335 parent->children[j];
336 parent->num_children--;
337 break;
338 }
339
340 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
341 while (p) {
342 if (p->sibling == node) {
343 p->sibling = node->sibling;
344 break;
345 }
346 p = p->sibling;
347 }
348
349 /* update the sibling head if head is getting removed */
350 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
351 pi->sib_head[node->tc_num][node->tx_sched_layer] =
352 node->sibling;
353 }
354
355 /* leaf nodes have no children */
356 if (node->children)
357 devm_kfree(ice_hw_to_dev(hw), node->children);
358 devm_kfree(ice_hw_to_dev(hw), node);
359}
360
361/**
362 * ice_aq_get_dflt_topo - gets default scheduler topology
363 * @hw: pointer to the HW struct
364 * @lport: logical port number
365 * @buf: pointer to buffer
366 * @buf_size: buffer size in bytes
367 * @num_branches: returns total number of queue to port branches
368 * @cd: pointer to command details structure or NULL
369 *
370 * Get default scheduler topology (0x400)
371 */
372static enum ice_status
373ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
374 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
375 u8 *num_branches, struct ice_sq_cd *cd)
376{
377 struct ice_aqc_get_topo *cmd;
378 struct ice_aq_desc desc;
379 enum ice_status status;
380
381 cmd = &desc.params.get_topo;
382 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
383 cmd->port_num = lport;
384 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
385 if (!status && num_branches)
386 *num_branches = cmd->num_branches;
387
388 return status;
389}
390
391/**
392 * ice_aq_add_sched_elems - adds scheduling element
393 * @hw: pointer to the HW struct
394 * @grps_req: the number of groups that are requested to be added
395 * @buf: pointer to buffer
396 * @buf_size: buffer size in bytes
397 * @grps_added: returns total number of groups added
398 * @cd: pointer to command details structure or NULL
399 *
400 * Add scheduling elements (0x0401)
401 */
402static enum ice_status
403ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
404 struct ice_aqc_add_elem *buf, u16 buf_size,
405 u16 *grps_added, struct ice_sq_cd *cd)
406{
407 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
408 grps_req, (void *)buf, buf_size,
409 grps_added, cd);
410}
411
412/**
413 * ice_aq_cfg_sched_elems - configures scheduler elements
414 * @hw: pointer to the HW struct
415 * @elems_req: number of elements to configure
416 * @buf: pointer to buffer
417 * @buf_size: buffer size in bytes
418 * @elems_cfgd: returns total number of elements configured
419 * @cd: pointer to command details structure or NULL
420 *
421 * Configure scheduling elements (0x0403)
422 */
423static enum ice_status
424ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
425 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
426 u16 *elems_cfgd, struct ice_sq_cd *cd)
427{
428 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
429 elems_req, (void *)buf, buf_size,
430 elems_cfgd, cd);
431}
432
433/**
434 * ice_aq_move_sched_elems - move scheduler elements
435 * @hw: pointer to the HW struct
436 * @grps_req: number of groups to move
437 * @buf: pointer to buffer
438 * @buf_size: buffer size in bytes
439 * @grps_movd: returns total number of groups moved
440 * @cd: pointer to command details structure or NULL
441 *
442 * Move scheduling elements (0x0408)
443 */
444static enum ice_status
445ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
446 struct ice_aqc_move_elem *buf, u16 buf_size,
447 u16 *grps_movd, struct ice_sq_cd *cd)
448{
449 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
450 grps_req, (void *)buf, buf_size,
451 grps_movd, cd);
452}
453
454/**
455 * ice_aq_suspend_sched_elems - suspend scheduler elements
456 * @hw: pointer to the HW struct
457 * @elems_req: number of elements to suspend
458 * @buf: pointer to buffer
459 * @buf_size: buffer size in bytes
460 * @elems_ret: returns total number of elements suspended
461 * @cd: pointer to command details structure or NULL
462 *
463 * Suspend scheduling elements (0x0409)
464 */
465static enum ice_status
466ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
467 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
468{
469 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
470 elems_req, (void *)buf, buf_size,
471 elems_ret, cd);
472}
473
474/**
475 * ice_aq_resume_sched_elems - resume scheduler elements
476 * @hw: pointer to the HW struct
477 * @elems_req: number of elements to resume
478 * @buf: pointer to buffer
479 * @buf_size: buffer size in bytes
480 * @elems_ret: returns total number of elements resumed
481 * @cd: pointer to command details structure or NULL
482 *
483 * resume scheduling elements (0x040A)
484 */
485static enum ice_status
486ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
487 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
488{
489 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
490 elems_req, (void *)buf, buf_size,
491 elems_ret, cd);
492}
493
494/**
495 * ice_aq_query_sched_res - query scheduler resource
496 * @hw: pointer to the HW struct
497 * @buf_size: buffer size in bytes
498 * @buf: pointer to buffer
499 * @cd: pointer to command details structure or NULL
500 *
501 * Query scheduler resource allocation (0x0412)
502 */
503static enum ice_status
504ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
505 struct ice_aqc_query_txsched_res_resp *buf,
506 struct ice_sq_cd *cd)
507{
508 struct ice_aq_desc desc;
509
510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
511 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
512}
513
514/**
515 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
516 * @hw: pointer to the HW struct
517 * @num_nodes: number of nodes
518 * @node_teids: array of node teids to be suspended or resumed
519 * @suspend: true means suspend / false means resume
520 *
521 * This function suspends or resumes HW nodes
522 */
523static enum ice_status
524ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
525 bool suspend)
526{
527 u16 i, buf_size, num_elem_ret = 0;
528 enum ice_status status;
529 __le32 *buf;
530
531 buf_size = sizeof(*buf) * num_nodes;
532 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
533 if (!buf)
534 return ICE_ERR_NO_MEMORY;
535
536 for (i = 0; i < num_nodes; i++)
537 buf[i] = cpu_to_le32(node_teids[i]);
538
539 if (suspend)
540 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
541 buf_size, &num_elem_ret,
542 NULL);
543 else
544 status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
545 buf_size, &num_elem_ret,
546 NULL);
547 if (status || num_elem_ret != num_nodes)
548 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
549
550 devm_kfree(ice_hw_to_dev(hw), buf);
551 return status;
552}
553
554/**
555 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
556 * @hw: pointer to the HW struct
557 * @vsi_handle: VSI handle
558 * @tc: TC number
559 * @new_numqs: number of queues
560 */
561static enum ice_status
562ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
563{
564 struct ice_vsi_ctx *vsi_ctx;
565 struct ice_q_ctx *q_ctx;
566
567 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
568 if (!vsi_ctx)
569 return ICE_ERR_PARAM;
570 /* allocate LAN queue contexts */
571 if (!vsi_ctx->lan_q_ctx[tc]) {
572 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
573 new_numqs,
574 sizeof(*q_ctx),
575 GFP_KERNEL);
576 if (!vsi_ctx->lan_q_ctx[tc])
577 return ICE_ERR_NO_MEMORY;
578 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
579 return 0;
580 }
581 /* num queues are increased, update the queue contexts */
582 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
583 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
584
585 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
586 sizeof(*q_ctx), GFP_KERNEL);
587 if (!q_ctx)
588 return ICE_ERR_NO_MEMORY;
589 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
590 prev_num * sizeof(*q_ctx));
591 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
592 vsi_ctx->lan_q_ctx[tc] = q_ctx;
593 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
594 }
595 return 0;
596}
597
598/**
599 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
600 * @hw: pointer to the HW struct
601 * @vsi_handle: VSI handle
602 * @tc: TC number
603 * @new_numqs: number of queues
604 */
605static enum ice_status
606ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
607{
608 struct ice_vsi_ctx *vsi_ctx;
609 struct ice_q_ctx *q_ctx;
610
611 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
612 if (!vsi_ctx)
613 return ICE_ERR_PARAM;
614 /* allocate RDMA queue contexts */
615 if (!vsi_ctx->rdma_q_ctx[tc]) {
616 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
617 new_numqs,
618 sizeof(*q_ctx),
619 GFP_KERNEL);
620 if (!vsi_ctx->rdma_q_ctx[tc])
621 return ICE_ERR_NO_MEMORY;
622 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
623 return 0;
624 }
625 /* num queues are increased, update the queue contexts */
626 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
627 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
628
629 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
630 sizeof(*q_ctx), GFP_KERNEL);
631 if (!q_ctx)
632 return ICE_ERR_NO_MEMORY;
633 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
634 prev_num * sizeof(*q_ctx));
635 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
636 vsi_ctx->rdma_q_ctx[tc] = q_ctx;
637 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
638 }
639 return 0;
640}
641
642/**
643 * ice_aq_rl_profile - performs a rate limiting task
644 * @hw: pointer to the HW struct
645 * @opcode: opcode for add, query, or remove profile(s)
646 * @num_profiles: the number of profiles
647 * @buf: pointer to buffer
648 * @buf_size: buffer size in bytes
649 * @num_processed: number of processed add or remove profile(s) to return
650 * @cd: pointer to command details structure
651 *
652 * RL profile function to add, query, or remove profile(s)
653 */
654static enum ice_status
655ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
656 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
657 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
658{
659 struct ice_aqc_rl_profile *cmd;
660 struct ice_aq_desc desc;
661 enum ice_status status;
662
663 cmd = &desc.params.rl_profile;
664
665 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
666 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
667 cmd->num_profiles = cpu_to_le16(num_profiles);
668 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
669 if (!status && num_processed)
670 *num_processed = le16_to_cpu(cmd->num_processed);
671 return status;
672}
673
674/**
675 * ice_aq_add_rl_profile - adds rate limiting profile(s)
676 * @hw: pointer to the HW struct
677 * @num_profiles: the number of profile(s) to be add
678 * @buf: pointer to buffer
679 * @buf_size: buffer size in bytes
680 * @num_profiles_added: total number of profiles added to return
681 * @cd: pointer to command details structure
682 *
683 * Add RL profile (0x0410)
684 */
685static enum ice_status
686ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
687 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
688 u16 *num_profiles_added, struct ice_sq_cd *cd)
689{
690 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
691 buf, buf_size, num_profiles_added, cd);
692}
693
694/**
695 * ice_aq_remove_rl_profile - removes RL profile(s)
696 * @hw: pointer to the HW struct
697 * @num_profiles: the number of profile(s) to remove
698 * @buf: pointer to buffer
699 * @buf_size: buffer size in bytes
700 * @num_profiles_removed: total number of profiles removed to return
701 * @cd: pointer to command details structure or NULL
702 *
703 * Remove RL profile (0x0415)
704 */
705static enum ice_status
706ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
707 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
708 u16 *num_profiles_removed, struct ice_sq_cd *cd)
709{
710 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
711 num_profiles, buf, buf_size,
712 num_profiles_removed, cd);
713}
714
715/**
716 * ice_sched_del_rl_profile - remove RL profile
717 * @hw: pointer to the HW struct
718 * @rl_info: rate limit profile information
719 *
720 * If the profile ID is not referenced anymore, it removes profile ID with
721 * its associated parameters from HW DB,and locally. The caller needs to
722 * hold scheduler lock.
723 */
724static enum ice_status
725ice_sched_del_rl_profile(struct ice_hw *hw,
726 struct ice_aqc_rl_profile_info *rl_info)
727{
728 struct ice_aqc_rl_profile_elem *buf;
729 u16 num_profiles_removed;
730 enum ice_status status;
731 u16 num_profiles = 1;
732
733 if (rl_info->prof_id_ref != 0)
734 return ICE_ERR_IN_USE;
735
736 /* Safe to remove profile ID */
737 buf = &rl_info->profile;
738 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
739 &num_profiles_removed, NULL);
740 if (status || num_profiles_removed != num_profiles)
741 return ICE_ERR_CFG;
742
743 /* Delete stale entry now */
744 list_del(&rl_info->list_entry);
745 devm_kfree(ice_hw_to_dev(hw), rl_info);
746 return status;
747}
748
749/**
750 * ice_sched_clear_rl_prof - clears RL prof entries
751 * @pi: port information structure
752 *
753 * This function removes all RL profile from HW as well as from SW DB.
754 */
755static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
756{
757 u16 ln;
758
759 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
760 struct ice_aqc_rl_profile_info *rl_prof_elem;
761 struct ice_aqc_rl_profile_info *rl_prof_tmp;
762
763 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
764 &pi->rl_prof_list[ln], list_entry) {
765 struct ice_hw *hw = pi->hw;
766 enum ice_status status;
767
768 rl_prof_elem->prof_id_ref = 0;
769 status = ice_sched_del_rl_profile(hw, rl_prof_elem);
770 if (status) {
771 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
772 /* On error, free mem required */
773 list_del(&rl_prof_elem->list_entry);
774 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
775 }
776 }
777 }
778}
779
780/**
781 * ice_sched_clear_agg - clears the aggregator related information
782 * @hw: pointer to the hardware structure
783 *
784 * This function removes aggregator list and free up aggregator related memory
785 * previously allocated.
786 */
787void ice_sched_clear_agg(struct ice_hw *hw)
788{
789 struct ice_sched_agg_info *agg_info;
790 struct ice_sched_agg_info *atmp;
791
792 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
793 struct ice_sched_agg_vsi_info *agg_vsi_info;
794 struct ice_sched_agg_vsi_info *vtmp;
795
796 list_for_each_entry_safe(agg_vsi_info, vtmp,
797 &agg_info->agg_vsi_list, list_entry) {
798 list_del(&agg_vsi_info->list_entry);
799 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
800 }
801 list_del(&agg_info->list_entry);
802 devm_kfree(ice_hw_to_dev(hw), agg_info);
803 }
804}
805
806/**
807 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
808 * @pi: port information structure
809 *
810 * This function removes all the nodes from HW as well as from SW DB.
811 */
812static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
813{
814 if (!pi)
815 return;
816 /* remove RL profiles related lists */
817 ice_sched_clear_rl_prof(pi);
818 if (pi->root) {
819 ice_free_sched_node(pi, pi->root);
820 pi->root = NULL;
821 }
822}
823
824/**
825 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
826 * @pi: port information structure
827 *
828 * Cleanup scheduling elements from SW DB
829 */
830void ice_sched_clear_port(struct ice_port_info *pi)
831{
832 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
833 return;
834
835 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
836 mutex_lock(&pi->sched_lock);
837 ice_sched_clear_tx_topo(pi);
838 mutex_unlock(&pi->sched_lock);
839 mutex_destroy(&pi->sched_lock);
840}
841
842/**
843 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
844 * @hw: pointer to the HW struct
845 *
846 * Cleanup scheduling elements from SW DB for all the ports
847 */
848void ice_sched_cleanup_all(struct ice_hw *hw)
849{
850 if (!hw)
851 return;
852
853 if (hw->layer_info) {
854 devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
855 hw->layer_info = NULL;
856 }
857
858 ice_sched_clear_port(hw->port_info);
859
860 hw->num_tx_sched_layers = 0;
861 hw->num_tx_sched_phys_layers = 0;
862 hw->flattened_layers = 0;
863 hw->max_cgds = 0;
864}
865
866/**
867 * ice_sched_add_elems - add nodes to HW and SW DB
868 * @pi: port information structure
869 * @tc_node: pointer to the branch node
870 * @parent: pointer to the parent node
871 * @layer: layer number to add nodes
872 * @num_nodes: number of nodes
873 * @num_nodes_added: pointer to num nodes added
874 * @first_node_teid: if new nodes are added then return the TEID of first node
875 *
876 * This function add nodes to HW as well as to SW DB for a given layer
877 */
878static enum ice_status
879ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
880 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
881 u16 *num_nodes_added, u32 *first_node_teid)
882{
883 struct ice_sched_node *prev, *new_node;
884 struct ice_aqc_add_elem *buf;
885 u16 i, num_groups_added = 0;
886 enum ice_status status = 0;
887 struct ice_hw *hw = pi->hw;
888 size_t buf_size;
889 u32 teid;
890
891 buf_size = struct_size(buf, generic, num_nodes);
892 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
893 if (!buf)
894 return ICE_ERR_NO_MEMORY;
895
896 buf->hdr.parent_teid = parent->info.node_teid;
897 buf->hdr.num_elems = cpu_to_le16(num_nodes);
898 for (i = 0; i < num_nodes; i++) {
899 buf->generic[i].parent_teid = parent->info.node_teid;
900 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
901 buf->generic[i].data.valid_sections =
902 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
903 ICE_AQC_ELEM_VALID_EIR;
904 buf->generic[i].data.generic = 0;
905 buf->generic[i].data.cir_bw.bw_profile_idx =
906 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
907 buf->generic[i].data.cir_bw.bw_alloc =
908 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
909 buf->generic[i].data.eir_bw.bw_profile_idx =
910 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
911 buf->generic[i].data.eir_bw.bw_alloc =
912 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
913 }
914
915 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
916 &num_groups_added, NULL);
917 if (status || num_groups_added != 1) {
918 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
919 hw->adminq.sq_last_status);
920 devm_kfree(ice_hw_to_dev(hw), buf);
921 return ICE_ERR_CFG;
922 }
923
924 *num_nodes_added = num_nodes;
925 /* add nodes to the SW DB */
926 for (i = 0; i < num_nodes; i++) {
927 status = ice_sched_add_node(pi, layer, &buf->generic[i]);
928 if (status) {
929 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
930 status);
931 break;
932 }
933
934 teid = le32_to_cpu(buf->generic[i].node_teid);
935 new_node = ice_sched_find_node_by_teid(parent, teid);
936 if (!new_node) {
937 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
938 break;
939 }
940
941 new_node->sibling = NULL;
942 new_node->tc_num = tc_node->tc_num;
943
944 /* add it to previous node sibling pointer */
945 /* Note: siblings are not linked across branches */
946 prev = ice_sched_get_first_node(pi, tc_node, layer);
947 if (prev && prev != new_node) {
948 while (prev->sibling)
949 prev = prev->sibling;
950 prev->sibling = new_node;
951 }
952
953 /* initialize the sibling head */
954 if (!pi->sib_head[tc_node->tc_num][layer])
955 pi->sib_head[tc_node->tc_num][layer] = new_node;
956
957 if (i == 0)
958 *first_node_teid = teid;
959 }
960
961 devm_kfree(ice_hw_to_dev(hw), buf);
962 return status;
963}
964
965/**
966 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
967 * @pi: port information structure
968 * @tc_node: pointer to TC node
969 * @parent: pointer to parent node
970 * @layer: layer number to add nodes
971 * @num_nodes: number of nodes to be added
972 * @first_node_teid: pointer to the first node TEID
973 * @num_nodes_added: pointer to number of nodes added
974 *
975 * Add nodes into specific HW layer.
976 */
977static enum ice_status
978ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
979 struct ice_sched_node *tc_node,
980 struct ice_sched_node *parent, u8 layer,
981 u16 num_nodes, u32 *first_node_teid,
982 u16 *num_nodes_added)
983{
984 u16 max_child_nodes;
985
986 *num_nodes_added = 0;
987
988 if (!num_nodes)
989 return 0;
990
991 if (!parent || layer < pi->hw->sw_entry_point_layer)
992 return ICE_ERR_PARAM;
993
994 /* max children per node per layer */
995 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
996
997 /* current number of children + required nodes exceed max children */
998 if ((parent->num_children + num_nodes) > max_child_nodes) {
999 /* Fail if the parent is a TC node */
1000 if (parent == tc_node)
1001 return ICE_ERR_CFG;
1002 return ICE_ERR_MAX_LIMIT;
1003 }
1004
1005 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1006 num_nodes_added, first_node_teid);
1007}
1008
1009/**
1010 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1011 * @pi: port information structure
1012 * @tc_node: pointer to TC node
1013 * @parent: pointer to parent node
1014 * @layer: layer number to add nodes
1015 * @num_nodes: number of nodes to be added
1016 * @first_node_teid: pointer to the first node TEID
1017 * @num_nodes_added: pointer to number of nodes added
1018 *
1019 * This function add nodes to a given layer.
1020 */
1021static enum ice_status
1022ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1023 struct ice_sched_node *tc_node,
1024 struct ice_sched_node *parent, u8 layer,
1025 u16 num_nodes, u32 *first_node_teid,
1026 u16 *num_nodes_added)
1027{
1028 u32 *first_teid_ptr = first_node_teid;
1029 u16 new_num_nodes = num_nodes;
1030 enum ice_status status = 0;
1031
1032 *num_nodes_added = 0;
1033 while (*num_nodes_added < num_nodes) {
1034 u16 max_child_nodes, num_added = 0;
1035 /* cppcheck-suppress unusedVariable */
1036 u32 temp;
1037
1038 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1039 layer, new_num_nodes,
1040 first_teid_ptr,
1041 &num_added);
1042 if (!status)
1043 *num_nodes_added += num_added;
1044 /* added more nodes than requested ? */
1045 if (*num_nodes_added > num_nodes) {
1046 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1047 *num_nodes_added);
1048 status = ICE_ERR_CFG;
1049 break;
1050 }
1051 /* break if all the nodes are added successfully */
1052 if (!status && (*num_nodes_added == num_nodes))
1053 break;
1054 /* break if the error is not max limit */
1055 if (status && status != ICE_ERR_MAX_LIMIT)
1056 break;
1057 /* Exceeded the max children */
1058 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1059 /* utilize all the spaces if the parent is not full */
1060 if (parent->num_children < max_child_nodes) {
1061 new_num_nodes = max_child_nodes - parent->num_children;
1062 } else {
1063 /* This parent is full, try the next sibling */
1064 parent = parent->sibling;
1065 /* Don't modify the first node TEID memory if the
1066 * first node was added already in the above call.
1067 * Instead send some temp memory for all other
1068 * recursive calls.
1069 */
1070 if (num_added)
1071 first_teid_ptr = &temp;
1072
1073 new_num_nodes = num_nodes - *num_nodes_added;
1074 }
1075 }
1076 return status;
1077}
1078
1079/**
1080 * ice_sched_get_qgrp_layer - get the current queue group layer number
1081 * @hw: pointer to the HW struct
1082 *
1083 * This function returns the current queue group layer number
1084 */
1085static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1086{
1087 /* It's always total layers - 1, the array is 0 relative so -2 */
1088 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1089}
1090
1091/**
1092 * ice_sched_get_vsi_layer - get the current VSI layer number
1093 * @hw: pointer to the HW struct
1094 *
1095 * This function returns the current VSI layer number
1096 */
1097static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1098{
1099 /* Num Layers VSI layer
1100 * 9 6
1101 * 7 4
1102 * 5 or less sw_entry_point_layer
1103 */
1104 /* calculate the VSI layer based on number of layers. */
1105 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1106 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1107
1108 if (layer > hw->sw_entry_point_layer)
1109 return layer;
1110 }
1111 return hw->sw_entry_point_layer;
1112}
1113
1114/**
1115 * ice_sched_get_agg_layer - get the current aggregator layer number
1116 * @hw: pointer to the HW struct
1117 *
1118 * This function returns the current aggregator layer number
1119 */
1120static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1121{
1122 /* Num Layers aggregator layer
1123 * 9 4
1124 * 7 or less sw_entry_point_layer
1125 */
1126 /* calculate the aggregator layer based on number of layers. */
1127 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1128 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1129
1130 if (layer > hw->sw_entry_point_layer)
1131 return layer;
1132 }
1133 return hw->sw_entry_point_layer;
1134}
1135
1136/**
1137 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1138 * @pi: port information structure
1139 *
1140 * This function removes the leaf node that was created by the FW
1141 * during initialization
1142 */
1143static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1144{
1145 struct ice_sched_node *node;
1146
1147 node = pi->root;
1148 while (node) {
1149 if (!node->num_children)
1150 break;
1151 node = node->children[0];
1152 }
1153 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1154 u32 teid = le32_to_cpu(node->info.node_teid);
1155 enum ice_status status;
1156
1157 /* remove the default leaf node */
1158 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1159 if (!status)
1160 ice_free_sched_node(pi, node);
1161 }
1162}
1163
1164/**
1165 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1166 * @pi: port information structure
1167 *
1168 * This function frees all the nodes except root and TC that were created by
1169 * the FW during initialization
1170 */
1171static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1172{
1173 struct ice_sched_node *node;
1174
1175 ice_rm_dflt_leaf_node(pi);
1176
1177 /* remove the default nodes except TC and root nodes */
1178 node = pi->root;
1179 while (node) {
1180 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1181 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1182 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1183 ice_free_sched_node(pi, node);
1184 break;
1185 }
1186
1187 if (!node->num_children)
1188 break;
1189 node = node->children[0];
1190 }
1191}
1192
1193/**
1194 * ice_sched_init_port - Initialize scheduler by querying information from FW
1195 * @pi: port info structure for the tree to cleanup
1196 *
1197 * This function is the initial call to find the total number of Tx scheduler
1198 * resources, default topology created by firmware and storing the information
1199 * in SW DB.
1200 */
1201enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1202{
1203 struct ice_aqc_get_topo_elem *buf;
1204 enum ice_status status;
1205 struct ice_hw *hw;
1206 u8 num_branches;
1207 u16 num_elems;
1208 u8 i, j;
1209
1210 if (!pi)
1211 return ICE_ERR_PARAM;
1212 hw = pi->hw;
1213
1214 /* Query the Default Topology from FW */
1215 buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1216 if (!buf)
1217 return ICE_ERR_NO_MEMORY;
1218
1219 /* Query default scheduling tree topology */
1220 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1221 &num_branches, NULL);
1222 if (status)
1223 goto err_init_port;
1224
1225 /* num_branches should be between 1-8 */
1226 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1227 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1228 num_branches);
1229 status = ICE_ERR_PARAM;
1230 goto err_init_port;
1231 }
1232
1233 /* get the number of elements on the default/first branch */
1234 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1235
1236 /* num_elems should always be between 1-9 */
1237 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1238 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1239 num_elems);
1240 status = ICE_ERR_PARAM;
1241 goto err_init_port;
1242 }
1243
1244 /* If the last node is a leaf node then the index of the queue group
1245 * layer is two less than the number of elements.
1246 */
1247 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1248 ICE_AQC_ELEM_TYPE_LEAF)
1249 pi->last_node_teid =
1250 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1251 else
1252 pi->last_node_teid =
1253 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1254
1255 /* Insert the Tx Sched root node */
1256 status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1257 if (status)
1258 goto err_init_port;
1259
1260 /* Parse the default tree and cache the information */
1261 for (i = 0; i < num_branches; i++) {
1262 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1263
1264 /* Skip root element as already inserted */
1265 for (j = 1; j < num_elems; j++) {
1266 /* update the sw entry point */
1267 if (buf[0].generic[j].data.elem_type ==
1268 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1269 hw->sw_entry_point_layer = j;
1270
1271 status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1272 if (status)
1273 goto err_init_port;
1274 }
1275 }
1276
1277 /* Remove the default nodes. */
1278 if (pi->root)
1279 ice_sched_rm_dflt_nodes(pi);
1280
1281 /* initialize the port for handling the scheduler tree */
1282 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1283 mutex_init(&pi->sched_lock);
1284 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1285 INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1286
1287err_init_port:
1288 if (status && pi->root) {
1289 ice_free_sched_node(pi, pi->root);
1290 pi->root = NULL;
1291 }
1292
1293 devm_kfree(ice_hw_to_dev(hw), buf);
1294 return status;
1295}
1296
1297/**
1298 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1299 * @hw: pointer to the HW struct
1300 *
1301 * query FW for allocated scheduler resources and store in HW struct
1302 */
1303enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1304{
1305 struct ice_aqc_query_txsched_res_resp *buf;
1306 enum ice_status status = 0;
1307 __le16 max_sibl;
1308 u16 i;
1309
1310 if (hw->layer_info)
1311 return status;
1312
1313 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1314 if (!buf)
1315 return ICE_ERR_NO_MEMORY;
1316
1317 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1318 if (status)
1319 goto sched_query_out;
1320
1321 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1322 hw->num_tx_sched_phys_layers =
1323 le16_to_cpu(buf->sched_props.phys_levels);
1324 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1325 hw->max_cgds = buf->sched_props.max_pf_cgds;
1326
1327 /* max sibling group size of current layer refers to the max children
1328 * of the below layer node.
1329 * layer 1 node max children will be layer 2 max sibling group size
1330 * layer 2 node max children will be layer 3 max sibling group size
1331 * and so on. This array will be populated from root (index 0) to
1332 * qgroup layer 7. Leaf node has no children.
1333 */
1334 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1335 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1336 hw->max_children[i] = le16_to_cpu(max_sibl);
1337 }
1338
1339 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1340 (hw->num_tx_sched_layers *
1341 sizeof(*hw->layer_info)),
1342 GFP_KERNEL);
1343 if (!hw->layer_info) {
1344 status = ICE_ERR_NO_MEMORY;
1345 goto sched_query_out;
1346 }
1347
1348sched_query_out:
1349 devm_kfree(ice_hw_to_dev(hw), buf);
1350 return status;
1351}
1352
1353/**
1354 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1355 * @hw: pointer to the HW struct
1356 *
1357 * Determine the PSM clock frequency and store in HW struct
1358 */
1359void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1360{
1361 u32 val, clk_src;
1362
1363 val = rd32(hw, GLGEN_CLKSTAT_SRC);
1364 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1365 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1366
1367#define PSM_CLK_SRC_367_MHZ 0x0
1368#define PSM_CLK_SRC_416_MHZ 0x1
1369#define PSM_CLK_SRC_446_MHZ 0x2
1370#define PSM_CLK_SRC_390_MHZ 0x3
1371
1372 switch (clk_src) {
1373 case PSM_CLK_SRC_367_MHZ:
1374 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1375 break;
1376 case PSM_CLK_SRC_416_MHZ:
1377 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1378 break;
1379 case PSM_CLK_SRC_446_MHZ:
1380 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1381 break;
1382 case PSM_CLK_SRC_390_MHZ:
1383 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1384 break;
1385 default:
1386 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1387 clk_src);
1388 /* fall back to a safe default */
1389 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1390 }
1391}
1392
1393/**
1394 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1395 * @hw: pointer to the HW struct
1396 * @base: pointer to the base node
1397 * @node: pointer to the node to search
1398 *
1399 * This function checks whether a given node is part of the base node
1400 * subtree or not
1401 */
1402static bool
1403ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1404 struct ice_sched_node *node)
1405{
1406 u8 i;
1407
1408 for (i = 0; i < base->num_children; i++) {
1409 struct ice_sched_node *child = base->children[i];
1410
1411 if (node == child)
1412 return true;
1413
1414 if (child->tx_sched_layer > node->tx_sched_layer)
1415 return false;
1416
1417 /* this recursion is intentional, and wouldn't
1418 * go more than 8 calls
1419 */
1420 if (ice_sched_find_node_in_subtree(hw, child, node))
1421 return true;
1422 }
1423 return false;
1424}
1425
1426/**
1427 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1428 * @pi: port information structure
1429 * @vsi_node: software VSI handle
1430 * @qgrp_node: first queue group node identified for scanning
1431 * @owner: LAN or RDMA
1432 *
1433 * This function retrieves a free LAN or RDMA queue group node by scanning
1434 * qgrp_node and its siblings for the queue group with the fewest number
1435 * of queues currently assigned.
1436 */
1437static struct ice_sched_node *
1438ice_sched_get_free_qgrp(struct ice_port_info *pi,
1439 struct ice_sched_node *vsi_node,
1440 struct ice_sched_node *qgrp_node, u8 owner)
1441{
1442 struct ice_sched_node *min_qgrp;
1443 u8 min_children;
1444
1445 if (!qgrp_node)
1446 return qgrp_node;
1447 min_children = qgrp_node->num_children;
1448 if (!min_children)
1449 return qgrp_node;
1450 min_qgrp = qgrp_node;
1451 /* scan all queue groups until find a node which has less than the
1452 * minimum number of children. This way all queue group nodes get
1453 * equal number of shares and active. The bandwidth will be equally
1454 * distributed across all queues.
1455 */
1456 while (qgrp_node) {
1457 /* make sure the qgroup node is part of the VSI subtree */
1458 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1459 if (qgrp_node->num_children < min_children &&
1460 qgrp_node->owner == owner) {
1461 /* replace the new min queue group node */
1462 min_qgrp = qgrp_node;
1463 min_children = min_qgrp->num_children;
1464 /* break if it has no children, */
1465 if (!min_children)
1466 break;
1467 }
1468 qgrp_node = qgrp_node->sibling;
1469 }
1470 return min_qgrp;
1471}
1472
1473/**
1474 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1475 * @pi: port information structure
1476 * @vsi_handle: software VSI handle
1477 * @tc: branch number
1478 * @owner: LAN or RDMA
1479 *
1480 * This function retrieves a free LAN or RDMA queue group node
1481 */
1482struct ice_sched_node *
1483ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1484 u8 owner)
1485{
1486 struct ice_sched_node *vsi_node, *qgrp_node;
1487 struct ice_vsi_ctx *vsi_ctx;
1488 u16 max_children;
1489 u8 qgrp_layer;
1490
1491 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1492 max_children = pi->hw->max_children[qgrp_layer];
1493
1494 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1495 if (!vsi_ctx)
1496 return NULL;
1497 vsi_node = vsi_ctx->sched.vsi_node[tc];
1498 /* validate invalid VSI ID */
1499 if (!vsi_node)
1500 return NULL;
1501
1502 /* get the first queue group node from VSI sub-tree */
1503 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1504 while (qgrp_node) {
1505 /* make sure the qgroup node is part of the VSI subtree */
1506 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1507 if (qgrp_node->num_children < max_children &&
1508 qgrp_node->owner == owner)
1509 break;
1510 qgrp_node = qgrp_node->sibling;
1511 }
1512
1513 /* Select the best queue group */
1514 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1515}
1516
1517/**
1518 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1519 * @pi: pointer to the port information structure
1520 * @tc_node: pointer to the TC node
1521 * @vsi_handle: software VSI handle
1522 *
1523 * This function retrieves a VSI node for a given VSI ID from a given
1524 * TC branch
1525 */
1526static struct ice_sched_node *
1527ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1528 u16 vsi_handle)
1529{
1530 struct ice_sched_node *node;
1531 u8 vsi_layer;
1532
1533 vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1534 node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1535
1536 /* Check whether it already exists */
1537 while (node) {
1538 if (node->vsi_handle == vsi_handle)
1539 return node;
1540 node = node->sibling;
1541 }
1542
1543 return node;
1544}
1545
1546/**
1547 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1548 * @pi: pointer to the port information structure
1549 * @tc_node: pointer to the TC node
1550 * @agg_id: aggregator ID
1551 *
1552 * This function retrieves an aggregator node for a given aggregator ID from
1553 * a given TC branch
1554 */
1555static struct ice_sched_node *
1556ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1557 u32 agg_id)
1558{
1559 struct ice_sched_node *node;
1560 struct ice_hw *hw = pi->hw;
1561 u8 agg_layer;
1562
1563 if (!hw)
1564 return NULL;
1565 agg_layer = ice_sched_get_agg_layer(hw);
1566 node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1567
1568 /* Check whether it already exists */
1569 while (node) {
1570 if (node->agg_id == agg_id)
1571 return node;
1572 node = node->sibling;
1573 }
1574
1575 return node;
1576}
1577
1578/**
1579 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1580 * @hw: pointer to the HW struct
1581 * @num_qs: number of queues
1582 * @num_nodes: num nodes array
1583 *
1584 * This function calculates the number of VSI child nodes based on the
1585 * number of queues.
1586 */
1587static void
1588ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1589{
1590 u16 num = num_qs;
1591 u8 i, qgl, vsil;
1592
1593 qgl = ice_sched_get_qgrp_layer(hw);
1594 vsil = ice_sched_get_vsi_layer(hw);
1595
1596 /* calculate num nodes from queue group to VSI layer */
1597 for (i = qgl; i > vsil; i--) {
1598 /* round to the next integer if there is a remainder */
1599 num = DIV_ROUND_UP(num, hw->max_children[i]);
1600
1601 /* need at least one node */
1602 num_nodes[i] = num ? num : 1;
1603 }
1604}
1605
1606/**
1607 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1608 * @pi: port information structure
1609 * @vsi_handle: software VSI handle
1610 * @tc_node: pointer to the TC node
1611 * @num_nodes: pointer to the num nodes that needs to be added per layer
1612 * @owner: node owner (LAN or RDMA)
1613 *
1614 * This function adds the VSI child nodes to tree. It gets called for
1615 * LAN and RDMA separately.
1616 */
1617static enum ice_status
1618ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1619 struct ice_sched_node *tc_node, u16 *num_nodes,
1620 u8 owner)
1621{
1622 struct ice_sched_node *parent, *node;
1623 struct ice_hw *hw = pi->hw;
1624 enum ice_status status;
1625 u32 first_node_teid;
1626 u16 num_added = 0;
1627 u8 i, qgl, vsil;
1628
1629 qgl = ice_sched_get_qgrp_layer(hw);
1630 vsil = ice_sched_get_vsi_layer(hw);
1631 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1632 for (i = vsil + 1; i <= qgl; i++) {
1633 if (!parent)
1634 return ICE_ERR_CFG;
1635
1636 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1637 num_nodes[i],
1638 &first_node_teid,
1639 &num_added);
1640 if (status || num_nodes[i] != num_added)
1641 return ICE_ERR_CFG;
1642
1643 /* The newly added node can be a new parent for the next
1644 * layer nodes
1645 */
1646 if (num_added) {
1647 parent = ice_sched_find_node_by_teid(tc_node,
1648 first_node_teid);
1649 node = parent;
1650 while (node) {
1651 node->owner = owner;
1652 node = node->sibling;
1653 }
1654 } else {
1655 parent = parent->children[0];
1656 }
1657 }
1658
1659 return 0;
1660}
1661
1662/**
1663 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1664 * @pi: pointer to the port info structure
1665 * @tc_node: pointer to TC node
1666 * @num_nodes: pointer to num nodes array
1667 *
1668 * This function calculates the number of supported nodes needed to add this
1669 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1670 * layers
1671 */
1672static void
1673ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1674 struct ice_sched_node *tc_node, u16 *num_nodes)
1675{
1676 struct ice_sched_node *node;
1677 u8 vsil;
1678 int i;
1679
1680 vsil = ice_sched_get_vsi_layer(pi->hw);
1681 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1682 /* Add intermediate nodes if TC has no children and
1683 * need at least one node for VSI
1684 */
1685 if (!tc_node->num_children || i == vsil) {
1686 num_nodes[i]++;
1687 } else {
1688 /* If intermediate nodes are reached max children
1689 * then add a new one.
1690 */
1691 node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1692 /* scan all the siblings */
1693 while (node) {
1694 if (node->num_children < pi->hw->max_children[i])
1695 break;
1696 node = node->sibling;
1697 }
1698
1699 /* tree has one intermediate node to add this new VSI.
1700 * So no need to calculate supported nodes for below
1701 * layers.
1702 */
1703 if (node)
1704 break;
1705 /* all the nodes are full, allocate a new one */
1706 num_nodes[i]++;
1707 }
1708}
1709
1710/**
1711 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1712 * @pi: port information structure
1713 * @vsi_handle: software VSI handle
1714 * @tc_node: pointer to TC node
1715 * @num_nodes: pointer to num nodes array
1716 *
1717 * This function adds the VSI supported nodes into Tx tree including the
1718 * VSI, its parent and intermediate nodes in below layers
1719 */
1720static enum ice_status
1721ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1722 struct ice_sched_node *tc_node, u16 *num_nodes)
1723{
1724 struct ice_sched_node *parent = tc_node;
1725 enum ice_status status;
1726 u32 first_node_teid;
1727 u16 num_added = 0;
1728 u8 i, vsil;
1729
1730 if (!pi)
1731 return ICE_ERR_PARAM;
1732
1733 vsil = ice_sched_get_vsi_layer(pi->hw);
1734 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1735 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1736 i, num_nodes[i],
1737 &first_node_teid,
1738 &num_added);
1739 if (status || num_nodes[i] != num_added)
1740 return ICE_ERR_CFG;
1741
1742 /* The newly added node can be a new parent for the next
1743 * layer nodes
1744 */
1745 if (num_added)
1746 parent = ice_sched_find_node_by_teid(tc_node,
1747 first_node_teid);
1748 else
1749 parent = parent->children[0];
1750
1751 if (!parent)
1752 return ICE_ERR_CFG;
1753
1754 if (i == vsil)
1755 parent->vsi_handle = vsi_handle;
1756 }
1757
1758 return 0;
1759}
1760
1761/**
1762 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1763 * @pi: port information structure
1764 * @vsi_handle: software VSI handle
1765 * @tc: TC number
1766 *
1767 * This function adds a new VSI into scheduler tree
1768 */
1769static enum ice_status
1770ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1771{
1772 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1773 struct ice_sched_node *tc_node;
1774
1775 tc_node = ice_sched_get_tc_node(pi, tc);
1776 if (!tc_node)
1777 return ICE_ERR_PARAM;
1778
1779 /* calculate number of supported nodes needed for this VSI */
1780 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1781
1782 /* add VSI supported nodes to TC subtree */
1783 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1784 num_nodes);
1785}
1786
1787/**
1788 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1789 * @pi: port information structure
1790 * @vsi_handle: software VSI handle
1791 * @tc: TC number
1792 * @new_numqs: new number of max queues
1793 * @owner: owner of this subtree
1794 *
1795 * This function updates the VSI child nodes based on the number of queues
1796 */
1797static enum ice_status
1798ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1799 u8 tc, u16 new_numqs, u8 owner)
1800{
1801 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1802 struct ice_sched_node *vsi_node;
1803 struct ice_sched_node *tc_node;
1804 struct ice_vsi_ctx *vsi_ctx;
1805 enum ice_status status = 0;
1806 struct ice_hw *hw = pi->hw;
1807 u16 prev_numqs;
1808
1809 tc_node = ice_sched_get_tc_node(pi, tc);
1810 if (!tc_node)
1811 return ICE_ERR_CFG;
1812
1813 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1814 if (!vsi_node)
1815 return ICE_ERR_CFG;
1816
1817 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1818 if (!vsi_ctx)
1819 return ICE_ERR_PARAM;
1820
1821 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1822 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1823 else
1824 prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1825 /* num queues are not changed or less than the previous number */
1826 if (new_numqs <= prev_numqs)
1827 return status;
1828 if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1829 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1830 if (status)
1831 return status;
1832 } else {
1833 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1834 if (status)
1835 return status;
1836 }
1837
1838 if (new_numqs)
1839 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1840 /* Keep the max number of queue configuration all the time. Update the
1841 * tree only if number of queues > previous number of queues. This may
1842 * leave some extra nodes in the tree if number of queues < previous
1843 * number but that wouldn't harm anything. Removing those extra nodes
1844 * may complicate the code if those nodes are part of SRL or
1845 * individually rate limited.
1846 */
1847 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1848 new_num_nodes, owner);
1849 if (status)
1850 return status;
1851 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1852 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1853 else
1854 vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1855
1856 return 0;
1857}
1858
1859/**
1860 * ice_sched_cfg_vsi - configure the new/existing VSI
1861 * @pi: port information structure
1862 * @vsi_handle: software VSI handle
1863 * @tc: TC number
1864 * @maxqs: max number of queues
1865 * @owner: LAN or RDMA
1866 * @enable: TC enabled or disabled
1867 *
1868 * This function adds/updates VSI nodes based on the number of queues. If TC is
1869 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1870 * disabled then suspend the VSI if it is not already.
1871 */
1872enum ice_status
1873ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1874 u8 owner, bool enable)
1875{
1876 struct ice_sched_node *vsi_node, *tc_node;
1877 struct ice_vsi_ctx *vsi_ctx;
1878 enum ice_status status = 0;
1879 struct ice_hw *hw = pi->hw;
1880
1881 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1882 tc_node = ice_sched_get_tc_node(pi, tc);
1883 if (!tc_node)
1884 return ICE_ERR_PARAM;
1885 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1886 if (!vsi_ctx)
1887 return ICE_ERR_PARAM;
1888 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1889
1890 /* suspend the VSI if TC is not enabled */
1891 if (!enable) {
1892 if (vsi_node && vsi_node->in_use) {
1893 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1894
1895 status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1896 true);
1897 if (!status)
1898 vsi_node->in_use = false;
1899 }
1900 return status;
1901 }
1902
1903 /* TC is enabled, if it is a new VSI then add it to the tree */
1904 if (!vsi_node) {
1905 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1906 if (status)
1907 return status;
1908
1909 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1910 if (!vsi_node)
1911 return ICE_ERR_CFG;
1912
1913 vsi_ctx->sched.vsi_node[tc] = vsi_node;
1914 vsi_node->in_use = true;
1915 /* invalidate the max queues whenever VSI gets added first time
1916 * into the scheduler tree (boot or after reset). We need to
1917 * recreate the child nodes all the time in these cases.
1918 */
1919 vsi_ctx->sched.max_lanq[tc] = 0;
1920 vsi_ctx->sched.max_rdmaq[tc] = 0;
1921 }
1922
1923 /* update the VSI child nodes */
1924 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1925 owner);
1926 if (status)
1927 return status;
1928
1929 /* TC is enabled, resume the VSI if it is in the suspend state */
1930 if (!vsi_node->in_use) {
1931 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1932
1933 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1934 if (!status)
1935 vsi_node->in_use = true;
1936 }
1937
1938 return status;
1939}
1940
1941/**
1942 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1943 * @pi: port information structure
1944 * @vsi_handle: software VSI handle
1945 *
1946 * This function removes single aggregator VSI info entry from
1947 * aggregator list.
1948 */
1949static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1950{
1951 struct ice_sched_agg_info *agg_info;
1952 struct ice_sched_agg_info *atmp;
1953
1954 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1955 list_entry) {
1956 struct ice_sched_agg_vsi_info *agg_vsi_info;
1957 struct ice_sched_agg_vsi_info *vtmp;
1958
1959 list_for_each_entry_safe(agg_vsi_info, vtmp,
1960 &agg_info->agg_vsi_list, list_entry)
1961 if (agg_vsi_info->vsi_handle == vsi_handle) {
1962 list_del(&agg_vsi_info->list_entry);
1963 devm_kfree(ice_hw_to_dev(pi->hw),
1964 agg_vsi_info);
1965 return;
1966 }
1967 }
1968}
1969
1970/**
1971 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1972 * @node: pointer to the sub-tree node
1973 *
1974 * This function checks for a leaf node presence in a given sub-tree node.
1975 */
1976static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1977{
1978 u8 i;
1979
1980 for (i = 0; i < node->num_children; i++)
1981 if (ice_sched_is_leaf_node_present(node->children[i]))
1982 return true;
1983 /* check for a leaf node */
1984 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1985}
1986
1987/**
1988 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1989 * @pi: port information structure
1990 * @vsi_handle: software VSI handle
1991 * @owner: LAN or RDMA
1992 *
1993 * This function removes the VSI and its LAN or RDMA children nodes from the
1994 * scheduler tree.
1995 */
1996static enum ice_status
1997ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1998{
1999 enum ice_status status = ICE_ERR_PARAM;
2000 struct ice_vsi_ctx *vsi_ctx;
2001 u8 i;
2002
2003 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2004 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2005 return status;
2006 mutex_lock(&pi->sched_lock);
2007 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2008 if (!vsi_ctx)
2009 goto exit_sched_rm_vsi_cfg;
2010
2011 ice_for_each_traffic_class(i) {
2012 struct ice_sched_node *vsi_node, *tc_node;
2013 u8 j = 0;
2014
2015 tc_node = ice_sched_get_tc_node(pi, i);
2016 if (!tc_node)
2017 continue;
2018
2019 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2020 if (!vsi_node)
2021 continue;
2022
2023 if (ice_sched_is_leaf_node_present(vsi_node)) {
2024 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2025 status = ICE_ERR_IN_USE;
2026 goto exit_sched_rm_vsi_cfg;
2027 }
2028 while (j < vsi_node->num_children) {
2029 if (vsi_node->children[j]->owner == owner) {
2030 ice_free_sched_node(pi, vsi_node->children[j]);
2031
2032 /* reset the counter again since the num
2033 * children will be updated after node removal
2034 */
2035 j = 0;
2036 } else {
2037 j++;
2038 }
2039 }
2040 /* remove the VSI if it has no children */
2041 if (!vsi_node->num_children) {
2042 ice_free_sched_node(pi, vsi_node);
2043 vsi_ctx->sched.vsi_node[i] = NULL;
2044
2045 /* clean up aggregator related VSI info if any */
2046 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2047 }
2048 if (owner == ICE_SCHED_NODE_OWNER_LAN)
2049 vsi_ctx->sched.max_lanq[i] = 0;
2050 else
2051 vsi_ctx->sched.max_rdmaq[i] = 0;
2052 }
2053 status = 0;
2054
2055exit_sched_rm_vsi_cfg:
2056 mutex_unlock(&pi->sched_lock);
2057 return status;
2058}
2059
2060/**
2061 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2062 * @pi: port information structure
2063 * @vsi_handle: software VSI handle
2064 *
2065 * This function clears the VSI and its LAN children nodes from scheduler tree
2066 * for all TCs.
2067 */
2068enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2069{
2070 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2071}
2072
2073/**
2074 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2075 * @pi: port information structure
2076 * @vsi_handle: software VSI handle
2077 *
2078 * This function clears the VSI and its RDMA children nodes from scheduler tree
2079 * for all TCs.
2080 */
2081enum ice_status ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2082{
2083 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2084}
2085
2086/**
2087 * ice_get_agg_info - get the aggregator ID
2088 * @hw: pointer to the hardware structure
2089 * @agg_id: aggregator ID
2090 *
2091 * This function validates aggregator ID. The function returns info if
2092 * aggregator ID is present in list otherwise it returns null.
2093 */
2094static struct ice_sched_agg_info *
2095ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2096{
2097 struct ice_sched_agg_info *agg_info;
2098
2099 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2100 if (agg_info->agg_id == agg_id)
2101 return agg_info;
2102
2103 return NULL;
2104}
2105
2106/**
2107 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2108 * @hw: pointer to the HW struct
2109 * @node: pointer to a child node
2110 * @num_nodes: num nodes count array
2111 *
2112 * This function walks through the aggregator subtree to find a free parent
2113 * node
2114 */
2115static struct ice_sched_node *
2116ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2117 u16 *num_nodes)
2118{
2119 u8 l = node->tx_sched_layer;
2120 u8 vsil, i;
2121
2122 vsil = ice_sched_get_vsi_layer(hw);
2123
2124 /* Is it VSI parent layer ? */
2125 if (l == vsil - 1)
2126 return (node->num_children < hw->max_children[l]) ? node : NULL;
2127
2128 /* We have intermediate nodes. Let's walk through the subtree. If the
2129 * intermediate node has space to add a new node then clear the count
2130 */
2131 if (node->num_children < hw->max_children[l])
2132 num_nodes[l] = 0;
2133 /* The below recursive call is intentional and wouldn't go more than
2134 * 2 or 3 iterations.
2135 */
2136
2137 for (i = 0; i < node->num_children; i++) {
2138 struct ice_sched_node *parent;
2139
2140 parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2141 num_nodes);
2142 if (parent)
2143 return parent;
2144 }
2145
2146 return NULL;
2147}
2148
2149/**
2150 * ice_sched_update_parent - update the new parent in SW DB
2151 * @new_parent: pointer to a new parent node
2152 * @node: pointer to a child node
2153 *
2154 * This function removes the child from the old parent and adds it to a new
2155 * parent
2156 */
2157static void
2158ice_sched_update_parent(struct ice_sched_node *new_parent,
2159 struct ice_sched_node *node)
2160{
2161 struct ice_sched_node *old_parent;
2162 u8 i, j;
2163
2164 old_parent = node->parent;
2165
2166 /* update the old parent children */
2167 for (i = 0; i < old_parent->num_children; i++)
2168 if (old_parent->children[i] == node) {
2169 for (j = i + 1; j < old_parent->num_children; j++)
2170 old_parent->children[j - 1] =
2171 old_parent->children[j];
2172 old_parent->num_children--;
2173 break;
2174 }
2175
2176 /* now move the node to a new parent */
2177 new_parent->children[new_parent->num_children++] = node;
2178 node->parent = new_parent;
2179 node->info.parent_teid = new_parent->info.node_teid;
2180}
2181
2182/**
2183 * ice_sched_move_nodes - move child nodes to a given parent
2184 * @pi: port information structure
2185 * @parent: pointer to parent node
2186 * @num_items: number of child nodes to be moved
2187 * @list: pointer to child node teids
2188 *
2189 * This function move the child nodes to a given parent.
2190 */
2191static enum ice_status
2192ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2193 u16 num_items, u32 *list)
2194{
2195 struct ice_aqc_move_elem *buf;
2196 struct ice_sched_node *node;
2197 enum ice_status status = 0;
2198 u16 i, grps_movd = 0;
2199 struct ice_hw *hw;
2200 u16 buf_len;
2201
2202 hw = pi->hw;
2203
2204 if (!parent || !num_items)
2205 return ICE_ERR_PARAM;
2206
2207 /* Does parent have enough space */
2208 if (parent->num_children + num_items >
2209 hw->max_children[parent->tx_sched_layer])
2210 return ICE_ERR_AQ_FULL;
2211
2212 buf_len = struct_size(buf, teid, 1);
2213 buf = kzalloc(buf_len, GFP_KERNEL);
2214 if (!buf)
2215 return ICE_ERR_NO_MEMORY;
2216
2217 for (i = 0; i < num_items; i++) {
2218 node = ice_sched_find_node_by_teid(pi->root, list[i]);
2219 if (!node) {
2220 status = ICE_ERR_PARAM;
2221 goto move_err_exit;
2222 }
2223
2224 buf->hdr.src_parent_teid = node->info.parent_teid;
2225 buf->hdr.dest_parent_teid = parent->info.node_teid;
2226 buf->teid[0] = node->info.node_teid;
2227 buf->hdr.num_elems = cpu_to_le16(1);
2228 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2229 &grps_movd, NULL);
2230 if (status && grps_movd != 1) {
2231 status = ICE_ERR_CFG;
2232 goto move_err_exit;
2233 }
2234
2235 /* update the SW DB */
2236 ice_sched_update_parent(parent, node);
2237 }
2238
2239move_err_exit:
2240 kfree(buf);
2241 return status;
2242}
2243
2244/**
2245 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2246 * @pi: port information structure
2247 * @vsi_handle: software VSI handle
2248 * @agg_id: aggregator ID
2249 * @tc: TC number
2250 *
2251 * This function moves a VSI to an aggregator node or its subtree.
2252 * Intermediate nodes may be created if required.
2253 */
2254static enum ice_status
2255ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2256 u8 tc)
2257{
2258 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2259 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2260 u32 first_node_teid, vsi_teid;
2261 enum ice_status status;
2262 u16 num_nodes_added;
2263 u8 aggl, vsil, i;
2264
2265 tc_node = ice_sched_get_tc_node(pi, tc);
2266 if (!tc_node)
2267 return ICE_ERR_CFG;
2268
2269 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2270 if (!agg_node)
2271 return ICE_ERR_DOES_NOT_EXIST;
2272
2273 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2274 if (!vsi_node)
2275 return ICE_ERR_DOES_NOT_EXIST;
2276
2277 /* Is this VSI already part of given aggregator? */
2278 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2279 return 0;
2280
2281 aggl = ice_sched_get_agg_layer(pi->hw);
2282 vsil = ice_sched_get_vsi_layer(pi->hw);
2283
2284 /* set intermediate node count to 1 between aggregator and VSI layers */
2285 for (i = aggl + 1; i < vsil; i++)
2286 num_nodes[i] = 1;
2287
2288 /* Check if the aggregator subtree has any free node to add the VSI */
2289 for (i = 0; i < agg_node->num_children; i++) {
2290 parent = ice_sched_get_free_vsi_parent(pi->hw,
2291 agg_node->children[i],
2292 num_nodes);
2293 if (parent)
2294 goto move_nodes;
2295 }
2296
2297 /* add new nodes */
2298 parent = agg_node;
2299 for (i = aggl + 1; i < vsil; i++) {
2300 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2301 num_nodes[i],
2302 &first_node_teid,
2303 &num_nodes_added);
2304 if (status || num_nodes[i] != num_nodes_added)
2305 return ICE_ERR_CFG;
2306
2307 /* The newly added node can be a new parent for the next
2308 * layer nodes
2309 */
2310 if (num_nodes_added)
2311 parent = ice_sched_find_node_by_teid(tc_node,
2312 first_node_teid);
2313 else
2314 parent = parent->children[0];
2315
2316 if (!parent)
2317 return ICE_ERR_CFG;
2318 }
2319
2320move_nodes:
2321 vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2322 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2323}
2324
2325/**
2326 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2327 * @pi: port information structure
2328 * @agg_info: aggregator info
2329 * @tc: traffic class number
2330 * @rm_vsi_info: true or false
2331 *
2332 * This function move all the VSI(s) to the default aggregator and delete
2333 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2334 * caller holds the scheduler lock.
2335 */
2336static enum ice_status
2337ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2338 struct ice_sched_agg_info *agg_info, u8 tc,
2339 bool rm_vsi_info)
2340{
2341 struct ice_sched_agg_vsi_info *agg_vsi_info;
2342 struct ice_sched_agg_vsi_info *tmp;
2343 enum ice_status status = 0;
2344
2345 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2346 list_entry) {
2347 u16 vsi_handle = agg_vsi_info->vsi_handle;
2348
2349 /* Move VSI to default aggregator */
2350 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2351 continue;
2352
2353 status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2354 ICE_DFLT_AGG_ID, tc);
2355 if (status)
2356 break;
2357
2358 clear_bit(tc, agg_vsi_info->tc_bitmap);
2359 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2360 list_del(&agg_vsi_info->list_entry);
2361 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2362 }
2363 }
2364
2365 return status;
2366}
2367
2368/**
2369 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2370 * @pi: port information structure
2371 * @node: node pointer
2372 *
2373 * This function checks whether the aggregator is attached with any VSI or not.
2374 */
2375static bool
2376ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2377{
2378 u8 vsil, i;
2379
2380 vsil = ice_sched_get_vsi_layer(pi->hw);
2381 if (node->tx_sched_layer < vsil - 1) {
2382 for (i = 0; i < node->num_children; i++)
2383 if (ice_sched_is_agg_inuse(pi, node->children[i]))
2384 return true;
2385 return false;
2386 } else {
2387 return node->num_children ? true : false;
2388 }
2389}
2390
2391/**
2392 * ice_sched_rm_agg_cfg - remove the aggregator node
2393 * @pi: port information structure
2394 * @agg_id: aggregator ID
2395 * @tc: TC number
2396 *
2397 * This function removes the aggregator node and intermediate nodes if any
2398 * from the given TC
2399 */
2400static enum ice_status
2401ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2402{
2403 struct ice_sched_node *tc_node, *agg_node;
2404 struct ice_hw *hw = pi->hw;
2405
2406 tc_node = ice_sched_get_tc_node(pi, tc);
2407 if (!tc_node)
2408 return ICE_ERR_CFG;
2409
2410 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2411 if (!agg_node)
2412 return ICE_ERR_DOES_NOT_EXIST;
2413
2414 /* Can't remove the aggregator node if it has children */
2415 if (ice_sched_is_agg_inuse(pi, agg_node))
2416 return ICE_ERR_IN_USE;
2417
2418 /* need to remove the whole subtree if aggregator node is the
2419 * only child.
2420 */
2421 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2422 struct ice_sched_node *parent = agg_node->parent;
2423
2424 if (!parent)
2425 return ICE_ERR_CFG;
2426
2427 if (parent->num_children > 1)
2428 break;
2429
2430 agg_node = parent;
2431 }
2432
2433 ice_free_sched_node(pi, agg_node);
2434 return 0;
2435}
2436
2437/**
2438 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2439 * @pi: port information structure
2440 * @agg_info: aggregator ID
2441 * @tc: TC number
2442 * @rm_vsi_info: bool value true or false
2443 *
2444 * This function removes aggregator reference to VSI of given TC. It removes
2445 * the aggregator configuration completely for requested TC. The caller needs
2446 * to hold the scheduler lock.
2447 */
2448static enum ice_status
2449ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2450 u8 tc, bool rm_vsi_info)
2451{
2452 enum ice_status status = 0;
2453
2454 /* If nothing to remove - return success */
2455 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2456 goto exit_rm_agg_cfg_tc;
2457
2458 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2459 if (status)
2460 goto exit_rm_agg_cfg_tc;
2461
2462 /* Delete aggregator node(s) */
2463 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2464 if (status)
2465 goto exit_rm_agg_cfg_tc;
2466
2467 clear_bit(tc, agg_info->tc_bitmap);
2468exit_rm_agg_cfg_tc:
2469 return status;
2470}
2471
2472/**
2473 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2474 * @pi: port information structure
2475 * @agg_id: aggregator ID
2476 * @tc_bitmap: 8 bits TC bitmap
2477 *
2478 * Save aggregator TC bitmap. This function needs to be called with scheduler
2479 * lock held.
2480 */
2481static enum ice_status
2482ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2483 unsigned long *tc_bitmap)
2484{
2485 struct ice_sched_agg_info *agg_info;
2486
2487 agg_info = ice_get_agg_info(pi->hw, agg_id);
2488 if (!agg_info)
2489 return ICE_ERR_PARAM;
2490 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2491 ICE_MAX_TRAFFIC_CLASS);
2492 return 0;
2493}
2494
2495/**
2496 * ice_sched_add_agg_cfg - create an aggregator node
2497 * @pi: port information structure
2498 * @agg_id: aggregator ID
2499 * @tc: TC number
2500 *
2501 * This function creates an aggregator node and intermediate nodes if required
2502 * for the given TC
2503 */
2504static enum ice_status
2505ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2506{
2507 struct ice_sched_node *parent, *agg_node, *tc_node;
2508 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2509 enum ice_status status = 0;
2510 struct ice_hw *hw = pi->hw;
2511 u32 first_node_teid;
2512 u16 num_nodes_added;
2513 u8 i, aggl;
2514
2515 tc_node = ice_sched_get_tc_node(pi, tc);
2516 if (!tc_node)
2517 return ICE_ERR_CFG;
2518
2519 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2520 /* Does Agg node already exist ? */
2521 if (agg_node)
2522 return status;
2523
2524 aggl = ice_sched_get_agg_layer(hw);
2525
2526 /* need one node in Agg layer */
2527 num_nodes[aggl] = 1;
2528
2529 /* Check whether the intermediate nodes have space to add the
2530 * new aggregator. If they are full, then SW needs to allocate a new
2531 * intermediate node on those layers
2532 */
2533 for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2534 parent = ice_sched_get_first_node(pi, tc_node, i);
2535
2536 /* scan all the siblings */
2537 while (parent) {
2538 if (parent->num_children < hw->max_children[i])
2539 break;
2540 parent = parent->sibling;
2541 }
2542
2543 /* all the nodes are full, reserve one for this layer */
2544 if (!parent)
2545 num_nodes[i]++;
2546 }
2547
2548 /* add the aggregator node */
2549 parent = tc_node;
2550 for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2551 if (!parent)
2552 return ICE_ERR_CFG;
2553
2554 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2555 num_nodes[i],
2556 &first_node_teid,
2557 &num_nodes_added);
2558 if (status || num_nodes[i] != num_nodes_added)
2559 return ICE_ERR_CFG;
2560
2561 /* The newly added node can be a new parent for the next
2562 * layer nodes
2563 */
2564 if (num_nodes_added) {
2565 parent = ice_sched_find_node_by_teid(tc_node,
2566 first_node_teid);
2567 /* register aggregator ID with the aggregator node */
2568 if (parent && i == aggl)
2569 parent->agg_id = agg_id;
2570 } else {
2571 parent = parent->children[0];
2572 }
2573 }
2574
2575 return 0;
2576}
2577
2578/**
2579 * ice_sched_cfg_agg - configure aggregator node
2580 * @pi: port information structure
2581 * @agg_id: aggregator ID
2582 * @agg_type: aggregator type queue, VSI, or aggregator group
2583 * @tc_bitmap: bits TC bitmap
2584 *
2585 * It registers a unique aggregator node into scheduler services. It
2586 * allows a user to register with a unique ID to track it's resources.
2587 * The aggregator type determines if this is a queue group, VSI group
2588 * or aggregator group. It then creates the aggregator node(s) for requested
2589 * TC(s) or removes an existing aggregator node including its configuration
2590 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2591 * resources and remove aggregator ID.
2592 * This function needs to be called with scheduler lock held.
2593 */
2594static enum ice_status
2595ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2596 enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2597{
2598 struct ice_sched_agg_info *agg_info;
2599 enum ice_status status = 0;
2600 struct ice_hw *hw = pi->hw;
2601 u8 tc;
2602
2603 agg_info = ice_get_agg_info(hw, agg_id);
2604 if (!agg_info) {
2605 /* Create new entry for new aggregator ID */
2606 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2607 GFP_KERNEL);
2608 if (!agg_info)
2609 return ICE_ERR_NO_MEMORY;
2610
2611 agg_info->agg_id = agg_id;
2612 agg_info->agg_type = agg_type;
2613 agg_info->tc_bitmap[0] = 0;
2614
2615 /* Initialize the aggregator VSI list head */
2616 INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2617
2618 /* Add new entry in aggregator list */
2619 list_add(&agg_info->list_entry, &hw->agg_list);
2620 }
2621 /* Create aggregator node(s) for requested TC(s) */
2622 ice_for_each_traffic_class(tc) {
2623 if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2624 /* Delete aggregator cfg TC if it exists previously */
2625 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2626 if (status)
2627 break;
2628 continue;
2629 }
2630
2631 /* Check if aggregator node for TC already exists */
2632 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2633 continue;
2634
2635 /* Create new aggregator node for TC */
2636 status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2637 if (status)
2638 break;
2639
2640 /* Save aggregator node's TC information */
2641 set_bit(tc, agg_info->tc_bitmap);
2642 }
2643
2644 return status;
2645}
2646
2647/**
2648 * ice_cfg_agg - config aggregator node
2649 * @pi: port information structure
2650 * @agg_id: aggregator ID
2651 * @agg_type: aggregator type queue, VSI, or aggregator group
2652 * @tc_bitmap: bits TC bitmap
2653 *
2654 * This function configures aggregator node(s).
2655 */
2656enum ice_status
2657ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2658 u8 tc_bitmap)
2659{
2660 unsigned long bitmap = tc_bitmap;
2661 enum ice_status status;
2662
2663 mutex_lock(&pi->sched_lock);
2664 status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2665 (unsigned long *)&bitmap);
2666 if (!status)
2667 status = ice_save_agg_tc_bitmap(pi, agg_id,
2668 (unsigned long *)&bitmap);
2669 mutex_unlock(&pi->sched_lock);
2670 return status;
2671}
2672
2673/**
2674 * ice_get_agg_vsi_info - get the aggregator ID
2675 * @agg_info: aggregator info
2676 * @vsi_handle: software VSI handle
2677 *
2678 * The function returns aggregator VSI info based on VSI handle. This function
2679 * needs to be called with scheduler lock held.
2680 */
2681static struct ice_sched_agg_vsi_info *
2682ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2683{
2684 struct ice_sched_agg_vsi_info *agg_vsi_info;
2685
2686 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2687 if (agg_vsi_info->vsi_handle == vsi_handle)
2688 return agg_vsi_info;
2689
2690 return NULL;
2691}
2692
2693/**
2694 * ice_get_vsi_agg_info - get the aggregator info of VSI
2695 * @hw: pointer to the hardware structure
2696 * @vsi_handle: Sw VSI handle
2697 *
2698 * The function returns aggregator info of VSI represented via vsi_handle. The
2699 * VSI has in this case a different aggregator than the default one. This
2700 * function needs to be called with scheduler lock held.
2701 */
2702static struct ice_sched_agg_info *
2703ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2704{
2705 struct ice_sched_agg_info *agg_info;
2706
2707 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2708 struct ice_sched_agg_vsi_info *agg_vsi_info;
2709
2710 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2711 if (agg_vsi_info)
2712 return agg_info;
2713 }
2714 return NULL;
2715}
2716
2717/**
2718 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2719 * @pi: port information structure
2720 * @agg_id: aggregator ID
2721 * @vsi_handle: software VSI handle
2722 * @tc_bitmap: TC bitmap of enabled TC(s)
2723 *
2724 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2725 * lock held.
2726 */
2727static enum ice_status
2728ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2729 unsigned long *tc_bitmap)
2730{
2731 struct ice_sched_agg_vsi_info *agg_vsi_info;
2732 struct ice_sched_agg_info *agg_info;
2733
2734 agg_info = ice_get_agg_info(pi->hw, agg_id);
2735 if (!agg_info)
2736 return ICE_ERR_PARAM;
2737 /* check if entry already exist */
2738 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2739 if (!agg_vsi_info)
2740 return ICE_ERR_PARAM;
2741 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2742 ICE_MAX_TRAFFIC_CLASS);
2743 return 0;
2744}
2745
2746/**
2747 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2748 * @pi: port information structure
2749 * @agg_id: aggregator ID
2750 * @vsi_handle: software VSI handle
2751 * @tc_bitmap: TC bitmap of enabled TC(s)
2752 *
2753 * This function moves VSI to a new or default aggregator node. If VSI is
2754 * already associated to the aggregator node then no operation is performed on
2755 * the tree. This function needs to be called with scheduler lock held.
2756 */
2757static enum ice_status
2758ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2759 u16 vsi_handle, unsigned long *tc_bitmap)
2760{
2761 struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2762 struct ice_sched_agg_info *agg_info, *old_agg_info;
2763 enum ice_status status = 0;
2764 struct ice_hw *hw = pi->hw;
2765 u8 tc;
2766
2767 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2768 return ICE_ERR_PARAM;
2769 agg_info = ice_get_agg_info(hw, agg_id);
2770 if (!agg_info)
2771 return ICE_ERR_PARAM;
2772 /* If the VSI is already part of another aggregator then update
2773 * its VSI info list
2774 */
2775 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2776 if (old_agg_info && old_agg_info != agg_info) {
2777 struct ice_sched_agg_vsi_info *vtmp;
2778
2779 list_for_each_entry_safe(old_agg_vsi_info, vtmp,
2780 &old_agg_info->agg_vsi_list,
2781 list_entry)
2782 if (old_agg_vsi_info->vsi_handle == vsi_handle)
2783 break;
2784 }
2785
2786 /* check if entry already exist */
2787 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2788 if (!agg_vsi_info) {
2789 /* Create new entry for VSI under aggregator list */
2790 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2791 sizeof(*agg_vsi_info), GFP_KERNEL);
2792 if (!agg_vsi_info)
2793 return ICE_ERR_PARAM;
2794
2795 /* add VSI ID into the aggregator list */
2796 agg_vsi_info->vsi_handle = vsi_handle;
2797 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2798 }
2799 /* Move VSI node to new aggregator node for requested TC(s) */
2800 ice_for_each_traffic_class(tc) {
2801 if (!ice_is_tc_ena(*tc_bitmap, tc))
2802 continue;
2803
2804 /* Move VSI to new aggregator */
2805 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2806 if (status)
2807 break;
2808
2809 set_bit(tc, agg_vsi_info->tc_bitmap);
2810 if (old_agg_vsi_info)
2811 clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2812 }
2813 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2814 list_del(&old_agg_vsi_info->list_entry);
2815 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2816 }
2817 return status;
2818}
2819
2820/**
2821 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2822 * @pi: port information structure
2823 *
2824 * This function removes unused rate limit profiles from the HW and
2825 * SW DB. The caller needs to hold scheduler lock.
2826 */
2827static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2828{
2829 u16 ln;
2830
2831 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2832 struct ice_aqc_rl_profile_info *rl_prof_elem;
2833 struct ice_aqc_rl_profile_info *rl_prof_tmp;
2834
2835 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2836 &pi->rl_prof_list[ln], list_entry) {
2837 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2838 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2839 }
2840 }
2841}
2842
2843/**
2844 * ice_sched_update_elem - update element
2845 * @hw: pointer to the HW struct
2846 * @node: pointer to node
2847 * @info: node info to update
2848 *
2849 * Update the HW DB, and local SW DB of node. Update the scheduling
2850 * parameters of node from argument info data buffer (Info->data buf) and
2851 * returns success or error on config sched element failure. The caller
2852 * needs to hold scheduler lock.
2853 */
2854static enum ice_status
2855ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2856 struct ice_aqc_txsched_elem_data *info)
2857{
2858 struct ice_aqc_txsched_elem_data buf;
2859 enum ice_status status;
2860 u16 elem_cfgd = 0;
2861 u16 num_elems = 1;
2862
2863 buf = *info;
2864 /* Parent TEID is reserved field in this aq call */
2865 buf.parent_teid = 0;
2866 /* Element type is reserved field in this aq call */
2867 buf.data.elem_type = 0;
2868 /* Flags is reserved field in this aq call */
2869 buf.data.flags = 0;
2870
2871 /* Update HW DB */
2872 /* Configure element node */
2873 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2874 &elem_cfgd, NULL);
2875 if (status || elem_cfgd != num_elems) {
2876 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2877 return ICE_ERR_CFG;
2878 }
2879
2880 /* Config success case */
2881 /* Now update local SW DB */
2882 /* Only copy the data portion of info buffer */
2883 node->info.data = info->data;
2884 return status;
2885}
2886
2887/**
2888 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2889 * @hw: pointer to the HW struct
2890 * @node: sched node to configure
2891 * @rl_type: rate limit type CIR, EIR, or shared
2892 * @bw_alloc: BW weight/allocation
2893 *
2894 * This function configures node element's BW allocation.
2895 */
2896static enum ice_status
2897ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2898 enum ice_rl_type rl_type, u16 bw_alloc)
2899{
2900 struct ice_aqc_txsched_elem_data buf;
2901 struct ice_aqc_txsched_elem *data;
2902
2903 buf = node->info;
2904 data = &buf.data;
2905 if (rl_type == ICE_MIN_BW) {
2906 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2907 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2908 } else if (rl_type == ICE_MAX_BW) {
2909 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2910 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2911 } else {
2912 return ICE_ERR_PARAM;
2913 }
2914
2915 /* Configure element */
2916 return ice_sched_update_elem(hw, node, &buf);
2917}
2918
2919/**
2920 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2921 * @pi: port information structure
2922 * @agg_id: aggregator ID
2923 * @vsi_handle: software VSI handle
2924 * @tc_bitmap: TC bitmap of enabled TC(s)
2925 *
2926 * Move or associate VSI to a new or default aggregator node.
2927 */
2928enum ice_status
2929ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2930 u8 tc_bitmap)
2931{
2932 unsigned long bitmap = tc_bitmap;
2933 enum ice_status status;
2934
2935 mutex_lock(&pi->sched_lock);
2936 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2937 (unsigned long *)&bitmap);
2938 if (!status)
2939 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2940 (unsigned long *)&bitmap);
2941 mutex_unlock(&pi->sched_lock);
2942 return status;
2943}
2944
2945/**
2946 * ice_set_clear_cir_bw - set or clear CIR BW
2947 * @bw_t_info: bandwidth type information structure
2948 * @bw: bandwidth in Kbps - Kilo bits per sec
2949 *
2950 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2951 */
2952static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2953{
2954 if (bw == ICE_SCHED_DFLT_BW) {
2955 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2956 bw_t_info->cir_bw.bw = 0;
2957 } else {
2958 /* Save type of BW information */
2959 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2960 bw_t_info->cir_bw.bw = bw;
2961 }
2962}
2963
2964/**
2965 * ice_set_clear_eir_bw - set or clear EIR BW
2966 * @bw_t_info: bandwidth type information structure
2967 * @bw: bandwidth in Kbps - Kilo bits per sec
2968 *
2969 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2970 */
2971static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2972{
2973 if (bw == ICE_SCHED_DFLT_BW) {
2974 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2975 bw_t_info->eir_bw.bw = 0;
2976 } else {
2977 /* EIR BW and Shared BW profiles are mutually exclusive and
2978 * hence only one of them may be set for any given element.
2979 * First clear earlier saved shared BW information.
2980 */
2981 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2982 bw_t_info->shared_bw = 0;
2983 /* save EIR BW information */
2984 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2985 bw_t_info->eir_bw.bw = bw;
2986 }
2987}
2988
2989/**
2990 * ice_set_clear_shared_bw - set or clear shared BW
2991 * @bw_t_info: bandwidth type information structure
2992 * @bw: bandwidth in Kbps - Kilo bits per sec
2993 *
2994 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2995 */
2996static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2997{
2998 if (bw == ICE_SCHED_DFLT_BW) {
2999 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3000 bw_t_info->shared_bw = 0;
3001 } else {
3002 /* EIR BW and Shared BW profiles are mutually exclusive and
3003 * hence only one of them may be set for any given element.
3004 * First clear earlier saved EIR BW information.
3005 */
3006 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3007 bw_t_info->eir_bw.bw = 0;
3008 /* save shared BW information */
3009 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3010 bw_t_info->shared_bw = bw;
3011 }
3012}
3013
3014/**
3015 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3016 * @hw: pointer to the HW struct
3017 * @bw: bandwidth in Kbps
3018 *
3019 * This function calculates the wakeup parameter of RL profile.
3020 */
3021static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3022{
3023 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3024 s32 wakeup_f_int;
3025 u16 wakeup = 0;
3026
3027 /* Get the wakeup integer value */
3028 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3029 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3030 if (wakeup_int > 63) {
3031 wakeup = (u16)((1 << 15) | wakeup_int);
3032 } else {
3033 /* Calculate fraction value up to 4 decimals
3034 * Convert Integer value to a constant multiplier
3035 */
3036 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3037 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3038 hw->psm_clk_freq, bytes_per_sec);
3039
3040 /* Get Fraction value */
3041 wakeup_f = wakeup_a - wakeup_b;
3042
3043 /* Round up the Fractional value via Ceil(Fractional value) */
3044 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3045 wakeup_f += 1;
3046
3047 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3048 ICE_RL_PROF_MULTIPLIER);
3049 wakeup |= (u16)(wakeup_int << 9);
3050 wakeup |= (u16)(0x1ff & wakeup_f_int);
3051 }
3052
3053 return wakeup;
3054}
3055
3056/**
3057 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3058 * @hw: pointer to the HW struct
3059 * @bw: bandwidth in Kbps
3060 * @profile: profile parameters to return
3061 *
3062 * This function converts the BW to profile structure format.
3063 */
3064static enum ice_status
3065ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3066 struct ice_aqc_rl_profile_elem *profile)
3067{
3068 enum ice_status status = ICE_ERR_PARAM;
3069 s64 bytes_per_sec, ts_rate, mv_tmp;
3070 bool found = false;
3071 s32 encode = 0;
3072 s64 mv = 0;
3073 s32 i;
3074
3075 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3076 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3077 return status;
3078
3079 /* Bytes per second from Kbps */
3080 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3081
3082 /* encode is 6 bits but really useful are 5 bits */
3083 for (i = 0; i < 64; i++) {
3084 u64 pow_result = BIT_ULL(i);
3085
3086 ts_rate = div64_long((s64)hw->psm_clk_freq,
3087 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3088 if (ts_rate <= 0)
3089 continue;
3090
3091 /* Multiplier value */
3092 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3093 ts_rate);
3094
3095 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3096 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3097
3098 /* First multiplier value greater than the given
3099 * accuracy bytes
3100 */
3101 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3102 encode = i;
3103 found = true;
3104 break;
3105 }
3106 }
3107 if (found) {
3108 u16 wm;
3109
3110 wm = ice_sched_calc_wakeup(hw, bw);
3111 profile->rl_multiply = cpu_to_le16(mv);
3112 profile->wake_up_calc = cpu_to_le16(wm);
3113 profile->rl_encode = cpu_to_le16(encode);
3114 status = 0;
3115 } else {
3116 status = ICE_ERR_DOES_NOT_EXIST;
3117 }
3118
3119 return status;
3120}
3121
3122/**
3123 * ice_sched_add_rl_profile - add RL profile
3124 * @pi: port information structure
3125 * @rl_type: type of rate limit BW - min, max, or shared
3126 * @bw: bandwidth in Kbps - Kilo bits per sec
3127 * @layer_num: specifies in which layer to create profile
3128 *
3129 * This function first checks the existing list for corresponding BW
3130 * parameter. If it exists, it returns the associated profile otherwise
3131 * it creates a new rate limit profile for requested BW, and adds it to
3132 * the HW DB and local list. It returns the new profile or null on error.
3133 * The caller needs to hold the scheduler lock.
3134 */
3135static struct ice_aqc_rl_profile_info *
3136ice_sched_add_rl_profile(struct ice_port_info *pi,
3137 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3138{
3139 struct ice_aqc_rl_profile_info *rl_prof_elem;
3140 u16 profiles_added = 0, num_profiles = 1;
3141 struct ice_aqc_rl_profile_elem *buf;
3142 enum ice_status status;
3143 struct ice_hw *hw;
3144 u8 profile_type;
3145
3146 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3147 return NULL;
3148 switch (rl_type) {
3149 case ICE_MIN_BW:
3150 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3151 break;
3152 case ICE_MAX_BW:
3153 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3154 break;
3155 case ICE_SHARED_BW:
3156 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3157 break;
3158 default:
3159 return NULL;
3160 }
3161
3162 if (!pi)
3163 return NULL;
3164 hw = pi->hw;
3165 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3166 list_entry)
3167 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3168 profile_type && rl_prof_elem->bw == bw)
3169 /* Return existing profile ID info */
3170 return rl_prof_elem;
3171
3172 /* Create new profile ID */
3173 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3174 GFP_KERNEL);
3175
3176 if (!rl_prof_elem)
3177 return NULL;
3178
3179 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3180 if (status)
3181 goto exit_add_rl_prof;
3182
3183 rl_prof_elem->bw = bw;
3184 /* layer_num is zero relative, and fw expects level from 1 to 9 */
3185 rl_prof_elem->profile.level = layer_num + 1;
3186 rl_prof_elem->profile.flags = profile_type;
3187 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3188
3189 /* Create new entry in HW DB */
3190 buf = &rl_prof_elem->profile;
3191 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3192 &profiles_added, NULL);
3193 if (status || profiles_added != num_profiles)
3194 goto exit_add_rl_prof;
3195
3196 /* Good entry - add in the list */
3197 rl_prof_elem->prof_id_ref = 0;
3198 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3199 return rl_prof_elem;
3200
3201exit_add_rl_prof:
3202 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3203 return NULL;
3204}
3205
3206/**
3207 * ice_sched_cfg_node_bw_lmt - configure node sched params
3208 * @hw: pointer to the HW struct
3209 * @node: sched node to configure
3210 * @rl_type: rate limit type CIR, EIR, or shared
3211 * @rl_prof_id: rate limit profile ID
3212 *
3213 * This function configures node element's BW limit.
3214 */
3215static enum ice_status
3216ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3217 enum ice_rl_type rl_type, u16 rl_prof_id)
3218{
3219 struct ice_aqc_txsched_elem_data buf;
3220 struct ice_aqc_txsched_elem *data;
3221
3222 buf = node->info;
3223 data = &buf.data;
3224 switch (rl_type) {
3225 case ICE_MIN_BW:
3226 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3227 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3228 break;
3229 case ICE_MAX_BW:
3230 /* EIR BW and Shared BW profiles are mutually exclusive and
3231 * hence only one of them may be set for any given element
3232 */
3233 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3234 return ICE_ERR_CFG;
3235 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3236 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3237 break;
3238 case ICE_SHARED_BW:
3239 /* Check for removing shared BW */
3240 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3241 /* remove shared profile */
3242 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3243 data->srl_id = 0; /* clear SRL field */
3244
3245 /* enable back EIR to default profile */
3246 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3247 data->eir_bw.bw_profile_idx =
3248 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3249 break;
3250 }
3251 /* EIR BW and Shared BW profiles are mutually exclusive and
3252 * hence only one of them may be set for any given element
3253 */
3254 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3255 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3256 ICE_SCHED_DFLT_RL_PROF_ID))
3257 return ICE_ERR_CFG;
3258 /* EIR BW is set to default, disable it */
3259 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3260 /* Okay to enable shared BW now */
3261 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3262 data->srl_id = cpu_to_le16(rl_prof_id);
3263 break;
3264 default:
3265 /* Unknown rate limit type */
3266 return ICE_ERR_PARAM;
3267 }
3268
3269 /* Configure element */
3270 return ice_sched_update_elem(hw, node, &buf);
3271}
3272
3273/**
3274 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3275 * @node: sched node
3276 * @rl_type: rate limit type
3277 *
3278 * If existing profile matches, it returns the corresponding rate
3279 * limit profile ID, otherwise it returns an invalid ID as error.
3280 */
3281static u16
3282ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3283 enum ice_rl_type rl_type)
3284{
3285 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3286 struct ice_aqc_txsched_elem *data;
3287
3288 data = &node->info.data;
3289 switch (rl_type) {
3290 case ICE_MIN_BW:
3291 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3292 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3293 break;
3294 case ICE_MAX_BW:
3295 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3296 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3297 break;
3298 case ICE_SHARED_BW:
3299 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3300 rl_prof_id = le16_to_cpu(data->srl_id);
3301 break;
3302 default:
3303 break;
3304 }
3305
3306 return rl_prof_id;
3307}
3308
3309/**
3310 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3311 * @pi: port information structure
3312 * @rl_type: type of rate limit BW - min, max, or shared
3313 * @layer_index: layer index
3314 *
3315 * This function returns requested profile creation layer.
3316 */
3317static u8
3318ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3319 u8 layer_index)
3320{
3321 struct ice_hw *hw = pi->hw;
3322
3323 if (layer_index >= hw->num_tx_sched_layers)
3324 return ICE_SCHED_INVAL_LAYER_NUM;
3325 switch (rl_type) {
3326 case ICE_MIN_BW:
3327 if (hw->layer_info[layer_index].max_cir_rl_profiles)
3328 return layer_index;
3329 break;
3330 case ICE_MAX_BW:
3331 if (hw->layer_info[layer_index].max_eir_rl_profiles)
3332 return layer_index;
3333 break;
3334 case ICE_SHARED_BW:
3335 /* if current layer doesn't support SRL profile creation
3336 * then try a layer up or down.
3337 */
3338 if (hw->layer_info[layer_index].max_srl_profiles)
3339 return layer_index;
3340 else if (layer_index < hw->num_tx_sched_layers - 1 &&
3341 hw->layer_info[layer_index + 1].max_srl_profiles)
3342 return layer_index + 1;
3343 else if (layer_index > 0 &&
3344 hw->layer_info[layer_index - 1].max_srl_profiles)
3345 return layer_index - 1;
3346 break;
3347 default:
3348 break;
3349 }
3350 return ICE_SCHED_INVAL_LAYER_NUM;
3351}
3352
3353/**
3354 * ice_sched_get_srl_node - get shared rate limit node
3355 * @node: tree node
3356 * @srl_layer: shared rate limit layer
3357 *
3358 * This function returns SRL node to be used for shared rate limit purpose.
3359 * The caller needs to hold scheduler lock.
3360 */
3361static struct ice_sched_node *
3362ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3363{
3364 if (srl_layer > node->tx_sched_layer)
3365 return node->children[0];
3366 else if (srl_layer < node->tx_sched_layer)
3367 /* Node can't be created without a parent. It will always
3368 * have a valid parent except root node.
3369 */
3370 return node->parent;
3371 else
3372 return node;
3373}
3374
3375/**
3376 * ice_sched_rm_rl_profile - remove RL profile ID
3377 * @pi: port information structure
3378 * @layer_num: layer number where profiles are saved
3379 * @profile_type: profile type like EIR, CIR, or SRL
3380 * @profile_id: profile ID to remove
3381 *
3382 * This function removes rate limit profile from layer 'layer_num' of type
3383 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3384 * scheduler lock.
3385 */
3386static enum ice_status
3387ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3388 u16 profile_id)
3389{
3390 struct ice_aqc_rl_profile_info *rl_prof_elem;
3391 enum ice_status status = 0;
3392
3393 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3394 return ICE_ERR_PARAM;
3395 /* Check the existing list for RL profile */
3396 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3397 list_entry)
3398 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3399 profile_type &&
3400 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3401 profile_id) {
3402 if (rl_prof_elem->prof_id_ref)
3403 rl_prof_elem->prof_id_ref--;
3404
3405 /* Remove old profile ID from database */
3406 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3407 if (status && status != ICE_ERR_IN_USE)
3408 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3409 break;
3410 }
3411 if (status == ICE_ERR_IN_USE)
3412 status = 0;
3413 return status;
3414}
3415
3416/**
3417 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3418 * @pi: port information structure
3419 * @node: pointer to node structure
3420 * @rl_type: rate limit type min, max, or shared
3421 * @layer_num: layer number where RL profiles are saved
3422 *
3423 * This function configures node element's BW rate limit profile ID of
3424 * type CIR, EIR, or SRL to default. This function needs to be called
3425 * with the scheduler lock held.
3426 */
3427static enum ice_status
3428ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3429 struct ice_sched_node *node,
3430 enum ice_rl_type rl_type, u8 layer_num)
3431{
3432 enum ice_status status;
3433 struct ice_hw *hw;
3434 u8 profile_type;
3435 u16 rl_prof_id;
3436 u16 old_id;
3437
3438 hw = pi->hw;
3439 switch (rl_type) {
3440 case ICE_MIN_BW:
3441 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3442 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3443 break;
3444 case ICE_MAX_BW:
3445 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3446 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3447 break;
3448 case ICE_SHARED_BW:
3449 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3450 /* No SRL is configured for default case */
3451 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3452 break;
3453 default:
3454 return ICE_ERR_PARAM;
3455 }
3456 /* Save existing RL prof ID for later clean up */
3457 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3458 /* Configure BW scheduling parameters */
3459 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3460 if (status)
3461 return status;
3462
3463 /* Remove stale RL profile ID */
3464 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3465 old_id == ICE_SCHED_INVAL_PROF_ID)
3466 return 0;
3467
3468 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3469}
3470
3471/**
3472 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3473 * @pi: port information structure
3474 * @node: pointer to node structure
3475 * @layer_num: layer number where rate limit profiles are saved
3476 * @rl_type: rate limit type min, max, or shared
3477 * @bw: bandwidth value
3478 *
3479 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3480 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3481 * them may be set for any given element. This function needs to be called
3482 * with the scheduler lock held.
3483 */
3484static enum ice_status
3485ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3486 struct ice_sched_node *node,
3487 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3488{
3489 if (rl_type == ICE_SHARED_BW) {
3490 /* SRL node passed in this case, it may be different node */
3491 if (bw == ICE_SCHED_DFLT_BW)
3492 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
3493 * enables EIR to default. EIR is not set in this
3494 * case, so no additional action is required.
3495 */
3496 return 0;
3497
3498 /* SRL being configured, set EIR to default here.
3499 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3500 * configures SRL
3501 */
3502 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3503 layer_num);
3504 } else if (rl_type == ICE_MAX_BW &&
3505 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3506 /* Remove Shared profile. Set default shared BW call
3507 * removes shared profile for a node.
3508 */
3509 return ice_sched_set_node_bw_dflt(pi, node,
3510 ICE_SHARED_BW,
3511 layer_num);
3512 }
3513 return 0;
3514}
3515
3516/**
3517 * ice_sched_set_node_bw - set node's bandwidth
3518 * @pi: port information structure
3519 * @node: tree node
3520 * @rl_type: rate limit type min, max, or shared
3521 * @bw: bandwidth in Kbps - Kilo bits per sec
3522 * @layer_num: layer number
3523 *
3524 * This function adds new profile corresponding to requested BW, configures
3525 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3526 * ID from local database. The caller needs to hold scheduler lock.
3527 */
3528static enum ice_status
3529ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3530 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3531{
3532 struct ice_aqc_rl_profile_info *rl_prof_info;
3533 enum ice_status status = ICE_ERR_PARAM;
3534 struct ice_hw *hw = pi->hw;
3535 u16 old_id, rl_prof_id;
3536
3537 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3538 if (!rl_prof_info)
3539 return status;
3540
3541 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3542
3543 /* Save existing RL prof ID for later clean up */
3544 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3545 /* Configure BW scheduling parameters */
3546 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3547 if (status)
3548 return status;
3549
3550 /* New changes has been applied */
3551 /* Increment the profile ID reference count */
3552 rl_prof_info->prof_id_ref++;
3553
3554 /* Check for old ID removal */
3555 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3556 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3557 return 0;
3558
3559 return ice_sched_rm_rl_profile(pi, layer_num,
3560 rl_prof_info->profile.flags &
3561 ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3562}
3563
3564/**
3565 * ice_sched_set_node_bw_lmt - set node's BW limit
3566 * @pi: port information structure
3567 * @node: tree node
3568 * @rl_type: rate limit type min, max, or shared
3569 * @bw: bandwidth in Kbps - Kilo bits per sec
3570 *
3571 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3572 * EIR, or SRL. The caller needs to hold scheduler lock.
3573 */
3574static enum ice_status
3575ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3576 enum ice_rl_type rl_type, u32 bw)
3577{
3578 struct ice_sched_node *cfg_node = node;
3579 enum ice_status status;
3580
3581 struct ice_hw *hw;
3582 u8 layer_num;
3583
3584 if (!pi)
3585 return ICE_ERR_PARAM;
3586 hw = pi->hw;
3587 /* Remove unused RL profile IDs from HW and SW DB */
3588 ice_sched_rm_unused_rl_prof(pi);
3589 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3590 node->tx_sched_layer);
3591 if (layer_num >= hw->num_tx_sched_layers)
3592 return ICE_ERR_PARAM;
3593
3594 if (rl_type == ICE_SHARED_BW) {
3595 /* SRL node may be different */
3596 cfg_node = ice_sched_get_srl_node(node, layer_num);
3597 if (!cfg_node)
3598 return ICE_ERR_CFG;
3599 }
3600 /* EIR BW and Shared BW profiles are mutually exclusive and
3601 * hence only one of them may be set for any given element
3602 */
3603 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3604 bw);
3605 if (status)
3606 return status;
3607 if (bw == ICE_SCHED_DFLT_BW)
3608 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3609 layer_num);
3610 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3611}
3612
3613/**
3614 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3615 * @pi: port information structure
3616 * @node: pointer to node structure
3617 * @rl_type: rate limit type min, max, or shared
3618 *
3619 * This function configures node element's BW rate limit profile ID of
3620 * type CIR, EIR, or SRL to default. This function needs to be called
3621 * with the scheduler lock held.
3622 */
3623static enum ice_status
3624ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3625 struct ice_sched_node *node,
3626 enum ice_rl_type rl_type)
3627{
3628 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3629 ICE_SCHED_DFLT_BW);
3630}
3631
3632/**
3633 * ice_sched_validate_srl_node - Check node for SRL applicability
3634 * @node: sched node to configure
3635 * @sel_layer: selected SRL layer
3636 *
3637 * This function checks if the SRL can be applied to a selected layer node on
3638 * behalf of the requested node (first argument). This function needs to be
3639 * called with scheduler lock held.
3640 */
3641static enum ice_status
3642ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3643{
3644 /* SRL profiles are not available on all layers. Check if the
3645 * SRL profile can be applied to a node above or below the
3646 * requested node. SRL configuration is possible only if the
3647 * selected layer's node has single child.
3648 */
3649 if (sel_layer == node->tx_sched_layer ||
3650 ((sel_layer == node->tx_sched_layer + 1) &&
3651 node->num_children == 1) ||
3652 ((sel_layer == node->tx_sched_layer - 1) &&
3653 (node->parent && node->parent->num_children == 1)))
3654 return 0;
3655
3656 return ICE_ERR_CFG;
3657}
3658
3659/**
3660 * ice_sched_save_q_bw - save queue node's BW information
3661 * @q_ctx: queue context structure
3662 * @rl_type: rate limit type min, max, or shared
3663 * @bw: bandwidth in Kbps - Kilo bits per sec
3664 *
3665 * Save BW information of queue type node for post replay use.
3666 */
3667static enum ice_status
3668ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3669{
3670 switch (rl_type) {
3671 case ICE_MIN_BW:
3672 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3673 break;
3674 case ICE_MAX_BW:
3675 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3676 break;
3677 case ICE_SHARED_BW:
3678 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3679 break;
3680 default:
3681 return ICE_ERR_PARAM;
3682 }
3683 return 0;
3684}
3685
3686/**
3687 * ice_sched_set_q_bw_lmt - sets queue BW limit
3688 * @pi: port information structure
3689 * @vsi_handle: sw VSI handle
3690 * @tc: traffic class
3691 * @q_handle: software queue handle
3692 * @rl_type: min, max, or shared
3693 * @bw: bandwidth in Kbps
3694 *
3695 * This function sets BW limit of queue scheduling node.
3696 */
3697static enum ice_status
3698ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3699 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3700{
3701 enum ice_status status = ICE_ERR_PARAM;
3702 struct ice_sched_node *node;
3703 struct ice_q_ctx *q_ctx;
3704
3705 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3706 return ICE_ERR_PARAM;
3707 mutex_lock(&pi->sched_lock);
3708 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3709 if (!q_ctx)
3710 goto exit_q_bw_lmt;
3711 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3712 if (!node) {
3713 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3714 goto exit_q_bw_lmt;
3715 }
3716
3717 /* Return error if it is not a leaf node */
3718 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3719 goto exit_q_bw_lmt;
3720
3721 /* SRL bandwidth layer selection */
3722 if (rl_type == ICE_SHARED_BW) {
3723 u8 sel_layer; /* selected layer */
3724
3725 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3726 node->tx_sched_layer);
3727 if (sel_layer >= pi->hw->num_tx_sched_layers) {
3728 status = ICE_ERR_PARAM;
3729 goto exit_q_bw_lmt;
3730 }
3731 status = ice_sched_validate_srl_node(node, sel_layer);
3732 if (status)
3733 goto exit_q_bw_lmt;
3734 }
3735
3736 if (bw == ICE_SCHED_DFLT_BW)
3737 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3738 else
3739 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3740
3741 if (!status)
3742 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3743
3744exit_q_bw_lmt:
3745 mutex_unlock(&pi->sched_lock);
3746 return status;
3747}
3748
3749/**
3750 * ice_cfg_q_bw_lmt - configure queue BW limit
3751 * @pi: port information structure
3752 * @vsi_handle: sw VSI handle
3753 * @tc: traffic class
3754 * @q_handle: software queue handle
3755 * @rl_type: min, max, or shared
3756 * @bw: bandwidth in Kbps
3757 *
3758 * This function configures BW limit of queue scheduling node.
3759 */
3760enum ice_status
3761ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3762 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3763{
3764 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3765 bw);
3766}
3767
3768/**
3769 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3770 * @pi: port information structure
3771 * @vsi_handle: sw VSI handle
3772 * @tc: traffic class
3773 * @q_handle: software queue handle
3774 * @rl_type: min, max, or shared
3775 *
3776 * This function configures BW default limit of queue scheduling node.
3777 */
3778enum ice_status
3779ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3780 u16 q_handle, enum ice_rl_type rl_type)
3781{
3782 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3783 ICE_SCHED_DFLT_BW);
3784}
3785
3786/**
3787 * ice_cfg_rl_burst_size - Set burst size value
3788 * @hw: pointer to the HW struct
3789 * @bytes: burst size in bytes
3790 *
3791 * This function configures/set the burst size to requested new value. The new
3792 * burst size value is used for future rate limit calls. It doesn't change the
3793 * existing or previously created RL profiles.
3794 */
3795enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
3796{
3797 u16 burst_size_to_prog;
3798
3799 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
3800 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
3801 return ICE_ERR_PARAM;
3802 if (ice_round_to_num(bytes, 64) <=
3803 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
3804 /* 64 byte granularity case */
3805 /* Disable MSB granularity bit */
3806 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
3807 /* round number to nearest 64 byte granularity */
3808 bytes = ice_round_to_num(bytes, 64);
3809 /* The value is in 64 byte chunks */
3810 burst_size_to_prog |= (u16)(bytes / 64);
3811 } else {
3812 /* k bytes granularity case */
3813 /* Enable MSB granularity bit */
3814 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
3815 /* round number to nearest 1024 granularity */
3816 bytes = ice_round_to_num(bytes, 1024);
3817 /* check rounding doesn't go beyond allowed */
3818 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
3819 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
3820 /* The value is in k bytes */
3821 burst_size_to_prog |= (u16)(bytes / 1024);
3822 }
3823 hw->max_burst_size = burst_size_to_prog;
3824 return 0;
3825}
3826
3827/**
3828 * ice_sched_replay_node_prio - re-configure node priority
3829 * @hw: pointer to the HW struct
3830 * @node: sched node to configure
3831 * @priority: priority value
3832 *
3833 * This function configures node element's priority value. It
3834 * needs to be called with scheduler lock held.
3835 */
3836static enum ice_status
3837ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
3838 u8 priority)
3839{
3840 struct ice_aqc_txsched_elem_data buf;
3841 struct ice_aqc_txsched_elem *data;
3842 enum ice_status status;
3843
3844 buf = node->info;
3845 data = &buf.data;
3846 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3847 data->generic = priority;
3848
3849 /* Configure element */
3850 status = ice_sched_update_elem(hw, node, &buf);
3851 return status;
3852}
3853
3854/**
3855 * ice_sched_replay_node_bw - replay node(s) BW
3856 * @hw: pointer to the HW struct
3857 * @node: sched node to configure
3858 * @bw_t_info: BW type information
3859 *
3860 * This function restores node's BW from bw_t_info. The caller needs
3861 * to hold the scheduler lock.
3862 */
3863static enum ice_status
3864ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
3865 struct ice_bw_type_info *bw_t_info)
3866{
3867 struct ice_port_info *pi = hw->port_info;
3868 enum ice_status status = ICE_ERR_PARAM;
3869 u16 bw_alloc;
3870
3871 if (!node)
3872 return status;
3873 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
3874 return 0;
3875 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
3876 status = ice_sched_replay_node_prio(hw, node,
3877 bw_t_info->generic);
3878 if (status)
3879 return status;
3880 }
3881 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
3882 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
3883 bw_t_info->cir_bw.bw);
3884 if (status)
3885 return status;
3886 }
3887 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
3888 bw_alloc = bw_t_info->cir_bw.bw_alloc;
3889 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
3890 bw_alloc);
3891 if (status)
3892 return status;
3893 }
3894 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
3895 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
3896 bw_t_info->eir_bw.bw);
3897 if (status)
3898 return status;
3899 }
3900 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
3901 bw_alloc = bw_t_info->eir_bw.bw_alloc;
3902 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
3903 bw_alloc);
3904 if (status)
3905 return status;
3906 }
3907 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
3908 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
3909 bw_t_info->shared_bw);
3910 return status;
3911}
3912
3913/**
3914 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
3915 * @pi: port info struct
3916 * @tc_bitmap: 8 bits TC bitmap to check
3917 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
3918 *
3919 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
3920 * may be missing, it returns enabled TCs. This function needs to be called with
3921 * scheduler lock held.
3922 */
3923static void
3924ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
3925 unsigned long *tc_bitmap,
3926 unsigned long *ena_tc_bitmap)
3927{
3928 u8 tc;
3929
3930 /* Some TC(s) may be missing after reset, adjust for replay */
3931 ice_for_each_traffic_class(tc)
3932 if (ice_is_tc_ena(*tc_bitmap, tc) &&
3933 (ice_sched_get_tc_node(pi, tc)))
3934 set_bit(tc, ena_tc_bitmap);
3935}
3936
3937/**
3938 * ice_sched_replay_agg - recreate aggregator node(s)
3939 * @hw: pointer to the HW struct
3940 *
3941 * This function recreate aggregator type nodes which are not replayed earlier.
3942 * It also replay aggregator BW information. These aggregator nodes are not
3943 * associated with VSI type node yet.
3944 */
3945void ice_sched_replay_agg(struct ice_hw *hw)
3946{
3947 struct ice_port_info *pi = hw->port_info;
3948 struct ice_sched_agg_info *agg_info;
3949
3950 mutex_lock(&pi->sched_lock);
3951 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
3952 /* replay aggregator (re-create aggregator node) */
3953 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
3954 ICE_MAX_TRAFFIC_CLASS)) {
3955 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
3956 enum ice_status status;
3957
3958 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
3959 ice_sched_get_ena_tc_bitmap(pi,
3960 agg_info->replay_tc_bitmap,
3961 replay_bitmap);
3962 status = ice_sched_cfg_agg(hw->port_info,
3963 agg_info->agg_id,
3964 ICE_AGG_TYPE_AGG,
3965 replay_bitmap);
3966 if (status) {
3967 dev_info(ice_hw_to_dev(hw),
3968 "Replay agg id[%d] failed\n",
3969 agg_info->agg_id);
3970 /* Move on to next one */
3971 continue;
3972 }
3973 }
3974 mutex_unlock(&pi->sched_lock);
3975}
3976
3977/**
3978 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
3979 * @hw: pointer to the HW struct
3980 *
3981 * This function initialize aggregator(s) TC bitmap to zero. A required
3982 * preinit step for replaying aggregators.
3983 */
3984void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
3985{
3986 struct ice_port_info *pi = hw->port_info;
3987 struct ice_sched_agg_info *agg_info;
3988
3989 mutex_lock(&pi->sched_lock);
3990 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
3991 struct ice_sched_agg_vsi_info *agg_vsi_info;
3992
3993 agg_info->tc_bitmap[0] = 0;
3994 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
3995 list_entry)
3996 agg_vsi_info->tc_bitmap[0] = 0;
3997 }
3998 mutex_unlock(&pi->sched_lock);
3999}
4000
4001/**
4002 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4003 * @hw: pointer to the HW struct
4004 * @vsi_handle: software VSI handle
4005 *
4006 * This function replays aggregator node, VSI to aggregator type nodes, and
4007 * their node bandwidth information. This function needs to be called with
4008 * scheduler lock held.
4009 */
4010static enum ice_status
4011ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4012{
4013 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4014 struct ice_sched_agg_vsi_info *agg_vsi_info;
4015 struct ice_port_info *pi = hw->port_info;
4016 struct ice_sched_agg_info *agg_info;
4017 enum ice_status status;
4018
4019 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4020 if (!ice_is_vsi_valid(hw, vsi_handle))
4021 return ICE_ERR_PARAM;
4022 agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4023 if (!agg_info)
4024 return 0; /* Not present in list - default Agg case */
4025 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4026 if (!agg_vsi_info)
4027 return 0; /* Not present in list - default Agg case */
4028 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4029 replay_bitmap);
4030 /* Replay aggregator node associated to vsi_handle */
4031 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4032 ICE_AGG_TYPE_AGG, replay_bitmap);
4033 if (status)
4034 return status;
4035
4036 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4037 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4038 replay_bitmap);
4039 /* Move this VSI (vsi_handle) to above aggregator */
4040 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4041 replay_bitmap);
4042}
4043
4044/**
4045 * ice_replay_vsi_agg - replay VSI to aggregator node
4046 * @hw: pointer to the HW struct
4047 * @vsi_handle: software VSI handle
4048 *
4049 * This function replays association of VSI to aggregator type nodes, and
4050 * node bandwidth information.
4051 */
4052enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4053{
4054 struct ice_port_info *pi = hw->port_info;
4055 enum ice_status status;
4056
4057 mutex_lock(&pi->sched_lock);
4058 status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4059 mutex_unlock(&pi->sched_lock);
4060 return status;
4061}
4062
4063/**
4064 * ice_sched_replay_q_bw - replay queue type node BW
4065 * @pi: port information structure
4066 * @q_ctx: queue context structure
4067 *
4068 * This function replays queue type node bandwidth. This function needs to be
4069 * called with scheduler lock held.
4070 */
4071enum ice_status
4072ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4073{
4074 struct ice_sched_node *q_node;
4075
4076 /* Following also checks the presence of node in tree */
4077 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4078 if (!q_node)
4079 return ICE_ERR_PARAM;
4080 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4081}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include <net/devlink.h>
5#include "ice_sched.h"
6
7/**
8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
9 * @pi: port information structure
10 * @info: Scheduler element information from firmware
11 *
12 * This function inserts the root node of the scheduling tree topology
13 * to the SW DB.
14 */
15static int
16ice_sched_add_root_node(struct ice_port_info *pi,
17 struct ice_aqc_txsched_elem_data *info)
18{
19 struct ice_sched_node *root;
20 struct ice_hw *hw;
21
22 if (!pi)
23 return -EINVAL;
24
25 hw = pi->hw;
26
27 root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
28 if (!root)
29 return -ENOMEM;
30
31 /* coverity[suspicious_sizeof] */
32 root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
33 sizeof(*root), GFP_KERNEL);
34 if (!root->children) {
35 devm_kfree(ice_hw_to_dev(hw), root);
36 return -ENOMEM;
37 }
38
39 memcpy(&root->info, info, sizeof(*info));
40 pi->root = root;
41 return 0;
42}
43
44/**
45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
47 * @teid: node TEID to search
48 *
49 * This function searches for a node matching the TEID in the scheduling tree
50 * from the SW DB. The search is recursive and is restricted by the number of
51 * layers it has searched through; stopping at the max supported layer.
52 *
53 * This function needs to be called when holding the port_info->sched_lock
54 */
55struct ice_sched_node *
56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
57{
58 u16 i;
59
60 /* The TEID is same as that of the start_node */
61 if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
62 return start_node;
63
64 /* The node has no children or is at the max layer */
65 if (!start_node->num_children ||
66 start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
67 start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
68 return NULL;
69
70 /* Check if TEID matches to any of the children nodes */
71 for (i = 0; i < start_node->num_children; i++)
72 if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
73 return start_node->children[i];
74
75 /* Search within each child's sub-tree */
76 for (i = 0; i < start_node->num_children; i++) {
77 struct ice_sched_node *tmp;
78
79 tmp = ice_sched_find_node_by_teid(start_node->children[i],
80 teid);
81 if (tmp)
82 return tmp;
83 }
84
85 return NULL;
86}
87
88/**
89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
90 * @hw: pointer to the HW struct
91 * @cmd_opc: cmd opcode
92 * @elems_req: number of elements to request
93 * @buf: pointer to buffer
94 * @buf_size: buffer size in bytes
95 * @elems_resp: returns total number of elements response
96 * @cd: pointer to command details structure or NULL
97 *
98 * This function sends a scheduling elements cmd (cmd_opc)
99 */
100static int
101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
102 u16 elems_req, void *buf, u16 buf_size,
103 u16 *elems_resp, struct ice_sq_cd *cd)
104{
105 struct ice_aqc_sched_elem_cmd *cmd;
106 struct ice_aq_desc desc;
107 int status;
108
109 cmd = &desc.params.sched_elem_cmd;
110 ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
111 cmd->num_elem_req = cpu_to_le16(elems_req);
112 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
113 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
114 if (!status && elems_resp)
115 *elems_resp = le16_to_cpu(cmd->num_elem_resp);
116
117 return status;
118}
119
120/**
121 * ice_aq_query_sched_elems - query scheduler elements
122 * @hw: pointer to the HW struct
123 * @elems_req: number of elements to query
124 * @buf: pointer to buffer
125 * @buf_size: buffer size in bytes
126 * @elems_ret: returns total number of elements returned
127 * @cd: pointer to command details structure or NULL
128 *
129 * Query scheduling elements (0x0404)
130 */
131int
132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
133 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
134 u16 *elems_ret, struct ice_sq_cd *cd)
135{
136 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
137 elems_req, (void *)buf, buf_size,
138 elems_ret, cd);
139}
140
141/**
142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
143 * @pi: port information structure
144 * @layer: Scheduler layer of the node
145 * @info: Scheduler element information from firmware
146 * @prealloc_node: preallocated ice_sched_node struct for SW DB
147 *
148 * This function inserts a scheduler node to the SW DB.
149 */
150int
151ice_sched_add_node(struct ice_port_info *pi, u8 layer,
152 struct ice_aqc_txsched_elem_data *info,
153 struct ice_sched_node *prealloc_node)
154{
155 struct ice_aqc_txsched_elem_data elem;
156 struct ice_sched_node *parent;
157 struct ice_sched_node *node;
158 struct ice_hw *hw;
159 int status;
160
161 if (!pi)
162 return -EINVAL;
163
164 hw = pi->hw;
165
166 /* A valid parent node should be there */
167 parent = ice_sched_find_node_by_teid(pi->root,
168 le32_to_cpu(info->parent_teid));
169 if (!parent) {
170 ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
171 le32_to_cpu(info->parent_teid));
172 return -EINVAL;
173 }
174
175 /* query the current node information from FW before adding it
176 * to the SW DB
177 */
178 status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
179 if (status)
180 return status;
181
182 if (prealloc_node)
183 node = prealloc_node;
184 else
185 node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
186 if (!node)
187 return -ENOMEM;
188 if (hw->max_children[layer]) {
189 /* coverity[suspicious_sizeof] */
190 node->children = devm_kcalloc(ice_hw_to_dev(hw),
191 hw->max_children[layer],
192 sizeof(*node), GFP_KERNEL);
193 if (!node->children) {
194 devm_kfree(ice_hw_to_dev(hw), node);
195 return -ENOMEM;
196 }
197 }
198
199 node->in_use = true;
200 node->parent = parent;
201 node->tx_sched_layer = layer;
202 parent->children[parent->num_children++] = node;
203 node->info = elem;
204 return 0;
205}
206
207/**
208 * ice_aq_delete_sched_elems - delete scheduler elements
209 * @hw: pointer to the HW struct
210 * @grps_req: number of groups to delete
211 * @buf: pointer to buffer
212 * @buf_size: buffer size in bytes
213 * @grps_del: returns total number of elements deleted
214 * @cd: pointer to command details structure or NULL
215 *
216 * Delete scheduling elements (0x040F)
217 */
218static int
219ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
220 struct ice_aqc_delete_elem *buf, u16 buf_size,
221 u16 *grps_del, struct ice_sq_cd *cd)
222{
223 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
224 grps_req, (void *)buf, buf_size,
225 grps_del, cd);
226}
227
228/**
229 * ice_sched_remove_elems - remove nodes from HW
230 * @hw: pointer to the HW struct
231 * @parent: pointer to the parent node
232 * @num_nodes: number of nodes
233 * @node_teids: array of node teids to be deleted
234 *
235 * This function remove nodes from HW
236 */
237static int
238ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
239 u16 num_nodes, u32 *node_teids)
240{
241 struct ice_aqc_delete_elem *buf;
242 u16 i, num_groups_removed = 0;
243 u16 buf_size;
244 int status;
245
246 buf_size = struct_size(buf, teid, num_nodes);
247 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
248 if (!buf)
249 return -ENOMEM;
250
251 buf->hdr.parent_teid = parent->info.node_teid;
252 buf->hdr.num_elems = cpu_to_le16(num_nodes);
253 for (i = 0; i < num_nodes; i++)
254 buf->teid[i] = cpu_to_le32(node_teids[i]);
255
256 status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
257 &num_groups_removed, NULL);
258 if (status || num_groups_removed != 1)
259 ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
260 hw->adminq.sq_last_status);
261
262 devm_kfree(ice_hw_to_dev(hw), buf);
263 return status;
264}
265
266/**
267 * ice_sched_get_first_node - get the first node of the given layer
268 * @pi: port information structure
269 * @parent: pointer the base node of the subtree
270 * @layer: layer number
271 *
272 * This function retrieves the first node of the given layer from the subtree
273 */
274static struct ice_sched_node *
275ice_sched_get_first_node(struct ice_port_info *pi,
276 struct ice_sched_node *parent, u8 layer)
277{
278 return pi->sib_head[parent->tc_num][layer];
279}
280
281/**
282 * ice_sched_get_tc_node - get pointer to TC node
283 * @pi: port information structure
284 * @tc: TC number
285 *
286 * This function returns the TC node pointer
287 */
288struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
289{
290 u8 i;
291
292 if (!pi || !pi->root)
293 return NULL;
294 for (i = 0; i < pi->root->num_children; i++)
295 if (pi->root->children[i]->tc_num == tc)
296 return pi->root->children[i];
297 return NULL;
298}
299
300/**
301 * ice_free_sched_node - Free a Tx scheduler node from SW DB
302 * @pi: port information structure
303 * @node: pointer to the ice_sched_node struct
304 *
305 * This function frees up a node from SW DB as well as from HW
306 *
307 * This function needs to be called with the port_info->sched_lock held
308 */
309void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
310{
311 struct ice_sched_node *parent;
312 struct ice_hw *hw = pi->hw;
313 u8 i, j;
314
315 /* Free the children before freeing up the parent node
316 * The parent array is updated below and that shifts the nodes
317 * in the array. So always pick the first child if num children > 0
318 */
319 while (node->num_children)
320 ice_free_sched_node(pi, node->children[0]);
321
322 /* Leaf, TC and root nodes can't be deleted by SW */
323 if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
324 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
325 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
326 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
327 u32 teid = le32_to_cpu(node->info.node_teid);
328
329 ice_sched_remove_elems(hw, node->parent, 1, &teid);
330 }
331 parent = node->parent;
332 /* root has no parent */
333 if (parent) {
334 struct ice_sched_node *p;
335
336 /* update the parent */
337 for (i = 0; i < parent->num_children; i++)
338 if (parent->children[i] == node) {
339 for (j = i + 1; j < parent->num_children; j++)
340 parent->children[j - 1] =
341 parent->children[j];
342 parent->num_children--;
343 break;
344 }
345
346 p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
347 while (p) {
348 if (p->sibling == node) {
349 p->sibling = node->sibling;
350 break;
351 }
352 p = p->sibling;
353 }
354
355 /* update the sibling head if head is getting removed */
356 if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
357 pi->sib_head[node->tc_num][node->tx_sched_layer] =
358 node->sibling;
359 }
360
361 /* leaf nodes have no children */
362 if (node->children)
363 devm_kfree(ice_hw_to_dev(hw), node->children);
364
365 kfree(node->name);
366 xa_erase(&pi->sched_node_ids, node->id);
367 devm_kfree(ice_hw_to_dev(hw), node);
368}
369
370/**
371 * ice_aq_get_dflt_topo - gets default scheduler topology
372 * @hw: pointer to the HW struct
373 * @lport: logical port number
374 * @buf: pointer to buffer
375 * @buf_size: buffer size in bytes
376 * @num_branches: returns total number of queue to port branches
377 * @cd: pointer to command details structure or NULL
378 *
379 * Get default scheduler topology (0x400)
380 */
381static int
382ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
383 struct ice_aqc_get_topo_elem *buf, u16 buf_size,
384 u8 *num_branches, struct ice_sq_cd *cd)
385{
386 struct ice_aqc_get_topo *cmd;
387 struct ice_aq_desc desc;
388 int status;
389
390 cmd = &desc.params.get_topo;
391 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
392 cmd->port_num = lport;
393 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
394 if (!status && num_branches)
395 *num_branches = cmd->num_branches;
396
397 return status;
398}
399
400/**
401 * ice_aq_add_sched_elems - adds scheduling element
402 * @hw: pointer to the HW struct
403 * @grps_req: the number of groups that are requested to be added
404 * @buf: pointer to buffer
405 * @buf_size: buffer size in bytes
406 * @grps_added: returns total number of groups added
407 * @cd: pointer to command details structure or NULL
408 *
409 * Add scheduling elements (0x0401)
410 */
411static int
412ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
413 struct ice_aqc_add_elem *buf, u16 buf_size,
414 u16 *grps_added, struct ice_sq_cd *cd)
415{
416 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
417 grps_req, (void *)buf, buf_size,
418 grps_added, cd);
419}
420
421/**
422 * ice_aq_cfg_sched_elems - configures scheduler elements
423 * @hw: pointer to the HW struct
424 * @elems_req: number of elements to configure
425 * @buf: pointer to buffer
426 * @buf_size: buffer size in bytes
427 * @elems_cfgd: returns total number of elements configured
428 * @cd: pointer to command details structure or NULL
429 *
430 * Configure scheduling elements (0x0403)
431 */
432static int
433ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
434 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
435 u16 *elems_cfgd, struct ice_sq_cd *cd)
436{
437 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
438 elems_req, (void *)buf, buf_size,
439 elems_cfgd, cd);
440}
441
442/**
443 * ice_aq_move_sched_elems - move scheduler elements
444 * @hw: pointer to the HW struct
445 * @grps_req: number of groups to move
446 * @buf: pointer to buffer
447 * @buf_size: buffer size in bytes
448 * @grps_movd: returns total number of groups moved
449 * @cd: pointer to command details structure or NULL
450 *
451 * Move scheduling elements (0x0408)
452 */
453static int
454ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
455 struct ice_aqc_move_elem *buf, u16 buf_size,
456 u16 *grps_movd, struct ice_sq_cd *cd)
457{
458 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
459 grps_req, (void *)buf, buf_size,
460 grps_movd, cd);
461}
462
463/**
464 * ice_aq_suspend_sched_elems - suspend scheduler elements
465 * @hw: pointer to the HW struct
466 * @elems_req: number of elements to suspend
467 * @buf: pointer to buffer
468 * @buf_size: buffer size in bytes
469 * @elems_ret: returns total number of elements suspended
470 * @cd: pointer to command details structure or NULL
471 *
472 * Suspend scheduling elements (0x0409)
473 */
474static int
475ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
476 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
477{
478 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
479 elems_req, (void *)buf, buf_size,
480 elems_ret, cd);
481}
482
483/**
484 * ice_aq_resume_sched_elems - resume scheduler elements
485 * @hw: pointer to the HW struct
486 * @elems_req: number of elements to resume
487 * @buf: pointer to buffer
488 * @buf_size: buffer size in bytes
489 * @elems_ret: returns total number of elements resumed
490 * @cd: pointer to command details structure or NULL
491 *
492 * resume scheduling elements (0x040A)
493 */
494static int
495ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
496 u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
497{
498 return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
499 elems_req, (void *)buf, buf_size,
500 elems_ret, cd);
501}
502
503/**
504 * ice_aq_query_sched_res - query scheduler resource
505 * @hw: pointer to the HW struct
506 * @buf_size: buffer size in bytes
507 * @buf: pointer to buffer
508 * @cd: pointer to command details structure or NULL
509 *
510 * Query scheduler resource allocation (0x0412)
511 */
512static int
513ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
514 struct ice_aqc_query_txsched_res_resp *buf,
515 struct ice_sq_cd *cd)
516{
517 struct ice_aq_desc desc;
518
519 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
520 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
521}
522
523/**
524 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
525 * @hw: pointer to the HW struct
526 * @num_nodes: number of nodes
527 * @node_teids: array of node teids to be suspended or resumed
528 * @suspend: true means suspend / false means resume
529 *
530 * This function suspends or resumes HW nodes
531 */
532static int
533ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
534 bool suspend)
535{
536 u16 i, buf_size, num_elem_ret = 0;
537 __le32 *buf;
538 int status;
539
540 buf_size = sizeof(*buf) * num_nodes;
541 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
542 if (!buf)
543 return -ENOMEM;
544
545 for (i = 0; i < num_nodes; i++)
546 buf[i] = cpu_to_le32(node_teids[i]);
547
548 if (suspend)
549 status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
550 buf_size, &num_elem_ret,
551 NULL);
552 else
553 status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
554 buf_size, &num_elem_ret,
555 NULL);
556 if (status || num_elem_ret != num_nodes)
557 ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
558
559 devm_kfree(ice_hw_to_dev(hw), buf);
560 return status;
561}
562
563/**
564 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
565 * @hw: pointer to the HW struct
566 * @vsi_handle: VSI handle
567 * @tc: TC number
568 * @new_numqs: number of queues
569 */
570static int
571ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
572{
573 struct ice_vsi_ctx *vsi_ctx;
574 struct ice_q_ctx *q_ctx;
575
576 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
577 if (!vsi_ctx)
578 return -EINVAL;
579 /* allocate LAN queue contexts */
580 if (!vsi_ctx->lan_q_ctx[tc]) {
581 vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
582 new_numqs,
583 sizeof(*q_ctx),
584 GFP_KERNEL);
585 if (!vsi_ctx->lan_q_ctx[tc])
586 return -ENOMEM;
587 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
588 return 0;
589 }
590 /* num queues are increased, update the queue contexts */
591 if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
592 u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
593
594 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
595 sizeof(*q_ctx), GFP_KERNEL);
596 if (!q_ctx)
597 return -ENOMEM;
598 memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
599 prev_num * sizeof(*q_ctx));
600 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
601 vsi_ctx->lan_q_ctx[tc] = q_ctx;
602 vsi_ctx->num_lan_q_entries[tc] = new_numqs;
603 }
604 return 0;
605}
606
607/**
608 * ice_alloc_rdma_q_ctx - allocate RDMA queue contexts for the given VSI and TC
609 * @hw: pointer to the HW struct
610 * @vsi_handle: VSI handle
611 * @tc: TC number
612 * @new_numqs: number of queues
613 */
614static int
615ice_alloc_rdma_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
616{
617 struct ice_vsi_ctx *vsi_ctx;
618 struct ice_q_ctx *q_ctx;
619
620 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
621 if (!vsi_ctx)
622 return -EINVAL;
623 /* allocate RDMA queue contexts */
624 if (!vsi_ctx->rdma_q_ctx[tc]) {
625 vsi_ctx->rdma_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
626 new_numqs,
627 sizeof(*q_ctx),
628 GFP_KERNEL);
629 if (!vsi_ctx->rdma_q_ctx[tc])
630 return -ENOMEM;
631 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
632 return 0;
633 }
634 /* num queues are increased, update the queue contexts */
635 if (new_numqs > vsi_ctx->num_rdma_q_entries[tc]) {
636 u16 prev_num = vsi_ctx->num_rdma_q_entries[tc];
637
638 q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
639 sizeof(*q_ctx), GFP_KERNEL);
640 if (!q_ctx)
641 return -ENOMEM;
642 memcpy(q_ctx, vsi_ctx->rdma_q_ctx[tc],
643 prev_num * sizeof(*q_ctx));
644 devm_kfree(ice_hw_to_dev(hw), vsi_ctx->rdma_q_ctx[tc]);
645 vsi_ctx->rdma_q_ctx[tc] = q_ctx;
646 vsi_ctx->num_rdma_q_entries[tc] = new_numqs;
647 }
648 return 0;
649}
650
651/**
652 * ice_aq_rl_profile - performs a rate limiting task
653 * @hw: pointer to the HW struct
654 * @opcode: opcode for add, query, or remove profile(s)
655 * @num_profiles: the number of profiles
656 * @buf: pointer to buffer
657 * @buf_size: buffer size in bytes
658 * @num_processed: number of processed add or remove profile(s) to return
659 * @cd: pointer to command details structure
660 *
661 * RL profile function to add, query, or remove profile(s)
662 */
663static int
664ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
665 u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
666 u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
667{
668 struct ice_aqc_rl_profile *cmd;
669 struct ice_aq_desc desc;
670 int status;
671
672 cmd = &desc.params.rl_profile;
673
674 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
675 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
676 cmd->num_profiles = cpu_to_le16(num_profiles);
677 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
678 if (!status && num_processed)
679 *num_processed = le16_to_cpu(cmd->num_processed);
680 return status;
681}
682
683/**
684 * ice_aq_add_rl_profile - adds rate limiting profile(s)
685 * @hw: pointer to the HW struct
686 * @num_profiles: the number of profile(s) to be add
687 * @buf: pointer to buffer
688 * @buf_size: buffer size in bytes
689 * @num_profiles_added: total number of profiles added to return
690 * @cd: pointer to command details structure
691 *
692 * Add RL profile (0x0410)
693 */
694static int
695ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
696 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
697 u16 *num_profiles_added, struct ice_sq_cd *cd)
698{
699 return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
700 buf, buf_size, num_profiles_added, cd);
701}
702
703/**
704 * ice_aq_remove_rl_profile - removes RL profile(s)
705 * @hw: pointer to the HW struct
706 * @num_profiles: the number of profile(s) to remove
707 * @buf: pointer to buffer
708 * @buf_size: buffer size in bytes
709 * @num_profiles_removed: total number of profiles removed to return
710 * @cd: pointer to command details structure or NULL
711 *
712 * Remove RL profile (0x0415)
713 */
714static int
715ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
716 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
717 u16 *num_profiles_removed, struct ice_sq_cd *cd)
718{
719 return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
720 num_profiles, buf, buf_size,
721 num_profiles_removed, cd);
722}
723
724/**
725 * ice_sched_del_rl_profile - remove RL profile
726 * @hw: pointer to the HW struct
727 * @rl_info: rate limit profile information
728 *
729 * If the profile ID is not referenced anymore, it removes profile ID with
730 * its associated parameters from HW DB,and locally. The caller needs to
731 * hold scheduler lock.
732 */
733static int
734ice_sched_del_rl_profile(struct ice_hw *hw,
735 struct ice_aqc_rl_profile_info *rl_info)
736{
737 struct ice_aqc_rl_profile_elem *buf;
738 u16 num_profiles_removed;
739 u16 num_profiles = 1;
740 int status;
741
742 if (rl_info->prof_id_ref != 0)
743 return -EBUSY;
744
745 /* Safe to remove profile ID */
746 buf = &rl_info->profile;
747 status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
748 &num_profiles_removed, NULL);
749 if (status || num_profiles_removed != num_profiles)
750 return -EIO;
751
752 /* Delete stale entry now */
753 list_del(&rl_info->list_entry);
754 devm_kfree(ice_hw_to_dev(hw), rl_info);
755 return status;
756}
757
758/**
759 * ice_sched_clear_rl_prof - clears RL prof entries
760 * @pi: port information structure
761 *
762 * This function removes all RL profile from HW as well as from SW DB.
763 */
764static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
765{
766 u16 ln;
767
768 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
769 struct ice_aqc_rl_profile_info *rl_prof_elem;
770 struct ice_aqc_rl_profile_info *rl_prof_tmp;
771
772 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
773 &pi->rl_prof_list[ln], list_entry) {
774 struct ice_hw *hw = pi->hw;
775 int status;
776
777 rl_prof_elem->prof_id_ref = 0;
778 status = ice_sched_del_rl_profile(hw, rl_prof_elem);
779 if (status) {
780 ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
781 /* On error, free mem required */
782 list_del(&rl_prof_elem->list_entry);
783 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
784 }
785 }
786 }
787}
788
789/**
790 * ice_sched_clear_agg - clears the aggregator related information
791 * @hw: pointer to the hardware structure
792 *
793 * This function removes aggregator list and free up aggregator related memory
794 * previously allocated.
795 */
796void ice_sched_clear_agg(struct ice_hw *hw)
797{
798 struct ice_sched_agg_info *agg_info;
799 struct ice_sched_agg_info *atmp;
800
801 list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
802 struct ice_sched_agg_vsi_info *agg_vsi_info;
803 struct ice_sched_agg_vsi_info *vtmp;
804
805 list_for_each_entry_safe(agg_vsi_info, vtmp,
806 &agg_info->agg_vsi_list, list_entry) {
807 list_del(&agg_vsi_info->list_entry);
808 devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
809 }
810 list_del(&agg_info->list_entry);
811 devm_kfree(ice_hw_to_dev(hw), agg_info);
812 }
813}
814
815/**
816 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
817 * @pi: port information structure
818 *
819 * This function removes all the nodes from HW as well as from SW DB.
820 */
821static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
822{
823 if (!pi)
824 return;
825 /* remove RL profiles related lists */
826 ice_sched_clear_rl_prof(pi);
827 if (pi->root) {
828 ice_free_sched_node(pi, pi->root);
829 pi->root = NULL;
830 }
831}
832
833/**
834 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
835 * @pi: port information structure
836 *
837 * Cleanup scheduling elements from SW DB
838 */
839void ice_sched_clear_port(struct ice_port_info *pi)
840{
841 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
842 return;
843
844 pi->port_state = ICE_SCHED_PORT_STATE_INIT;
845 mutex_lock(&pi->sched_lock);
846 ice_sched_clear_tx_topo(pi);
847 mutex_unlock(&pi->sched_lock);
848 mutex_destroy(&pi->sched_lock);
849}
850
851/**
852 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
853 * @hw: pointer to the HW struct
854 *
855 * Cleanup scheduling elements from SW DB for all the ports
856 */
857void ice_sched_cleanup_all(struct ice_hw *hw)
858{
859 if (!hw)
860 return;
861
862 if (hw->layer_info) {
863 devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
864 hw->layer_info = NULL;
865 }
866
867 ice_sched_clear_port(hw->port_info);
868
869 hw->num_tx_sched_layers = 0;
870 hw->num_tx_sched_phys_layers = 0;
871 hw->flattened_layers = 0;
872 hw->max_cgds = 0;
873}
874
875/**
876 * ice_sched_add_elems - add nodes to HW and SW DB
877 * @pi: port information structure
878 * @tc_node: pointer to the branch node
879 * @parent: pointer to the parent node
880 * @layer: layer number to add nodes
881 * @num_nodes: number of nodes
882 * @num_nodes_added: pointer to num nodes added
883 * @first_node_teid: if new nodes are added then return the TEID of first node
884 * @prealloc_nodes: preallocated nodes struct for software DB
885 *
886 * This function add nodes to HW as well as to SW DB for a given layer
887 */
888int
889ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
890 struct ice_sched_node *parent, u8 layer, u16 num_nodes,
891 u16 *num_nodes_added, u32 *first_node_teid,
892 struct ice_sched_node **prealloc_nodes)
893{
894 struct ice_sched_node *prev, *new_node;
895 struct ice_aqc_add_elem *buf;
896 u16 i, num_groups_added = 0;
897 struct ice_hw *hw = pi->hw;
898 size_t buf_size;
899 int status = 0;
900 u32 teid;
901
902 buf_size = struct_size(buf, generic, num_nodes);
903 buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
904 if (!buf)
905 return -ENOMEM;
906
907 buf->hdr.parent_teid = parent->info.node_teid;
908 buf->hdr.num_elems = cpu_to_le16(num_nodes);
909 for (i = 0; i < num_nodes; i++) {
910 buf->generic[i].parent_teid = parent->info.node_teid;
911 buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
912 buf->generic[i].data.valid_sections =
913 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
914 ICE_AQC_ELEM_VALID_EIR;
915 buf->generic[i].data.generic = 0;
916 buf->generic[i].data.cir_bw.bw_profile_idx =
917 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
918 buf->generic[i].data.cir_bw.bw_alloc =
919 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
920 buf->generic[i].data.eir_bw.bw_profile_idx =
921 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
922 buf->generic[i].data.eir_bw.bw_alloc =
923 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
924 }
925
926 status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
927 &num_groups_added, NULL);
928 if (status || num_groups_added != 1) {
929 ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
930 hw->adminq.sq_last_status);
931 devm_kfree(ice_hw_to_dev(hw), buf);
932 return -EIO;
933 }
934
935 *num_nodes_added = num_nodes;
936 /* add nodes to the SW DB */
937 for (i = 0; i < num_nodes; i++) {
938 if (prealloc_nodes)
939 status = ice_sched_add_node(pi, layer, &buf->generic[i], prealloc_nodes[i]);
940 else
941 status = ice_sched_add_node(pi, layer, &buf->generic[i], NULL);
942
943 if (status) {
944 ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
945 status);
946 break;
947 }
948
949 teid = le32_to_cpu(buf->generic[i].node_teid);
950 new_node = ice_sched_find_node_by_teid(parent, teid);
951 if (!new_node) {
952 ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
953 break;
954 }
955
956 new_node->sibling = NULL;
957 new_node->tc_num = tc_node->tc_num;
958 new_node->tx_weight = ICE_SCHED_DFLT_BW_WT;
959 new_node->tx_share = ICE_SCHED_DFLT_BW;
960 new_node->tx_max = ICE_SCHED_DFLT_BW;
961 new_node->name = kzalloc(SCHED_NODE_NAME_MAX_LEN, GFP_KERNEL);
962 if (!new_node->name)
963 return -ENOMEM;
964
965 status = xa_alloc(&pi->sched_node_ids, &new_node->id, NULL, XA_LIMIT(0, UINT_MAX),
966 GFP_KERNEL);
967 if (status) {
968 ice_debug(hw, ICE_DBG_SCHED, "xa_alloc failed for sched node status =%d\n",
969 status);
970 break;
971 }
972
973 snprintf(new_node->name, SCHED_NODE_NAME_MAX_LEN, "node_%u", new_node->id);
974
975 /* add it to previous node sibling pointer */
976 /* Note: siblings are not linked across branches */
977 prev = ice_sched_get_first_node(pi, tc_node, layer);
978 if (prev && prev != new_node) {
979 while (prev->sibling)
980 prev = prev->sibling;
981 prev->sibling = new_node;
982 }
983
984 /* initialize the sibling head */
985 if (!pi->sib_head[tc_node->tc_num][layer])
986 pi->sib_head[tc_node->tc_num][layer] = new_node;
987
988 if (i == 0)
989 *first_node_teid = teid;
990 }
991
992 devm_kfree(ice_hw_to_dev(hw), buf);
993 return status;
994}
995
996/**
997 * ice_sched_add_nodes_to_hw_layer - Add nodes to HW layer
998 * @pi: port information structure
999 * @tc_node: pointer to TC node
1000 * @parent: pointer to parent node
1001 * @layer: layer number to add nodes
1002 * @num_nodes: number of nodes to be added
1003 * @first_node_teid: pointer to the first node TEID
1004 * @num_nodes_added: pointer to number of nodes added
1005 *
1006 * Add nodes into specific HW layer.
1007 */
1008static int
1009ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
1010 struct ice_sched_node *tc_node,
1011 struct ice_sched_node *parent, u8 layer,
1012 u16 num_nodes, u32 *first_node_teid,
1013 u16 *num_nodes_added)
1014{
1015 u16 max_child_nodes;
1016
1017 *num_nodes_added = 0;
1018
1019 if (!num_nodes)
1020 return 0;
1021
1022 if (!parent || layer < pi->hw->sw_entry_point_layer)
1023 return -EINVAL;
1024
1025 /* max children per node per layer */
1026 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1027
1028 /* current number of children + required nodes exceed max children */
1029 if ((parent->num_children + num_nodes) > max_child_nodes) {
1030 /* Fail if the parent is a TC node */
1031 if (parent == tc_node)
1032 return -EIO;
1033 return -ENOSPC;
1034 }
1035
1036 return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1037 num_nodes_added, first_node_teid, NULL);
1038}
1039
1040/**
1041 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1042 * @pi: port information structure
1043 * @tc_node: pointer to TC node
1044 * @parent: pointer to parent node
1045 * @layer: layer number to add nodes
1046 * @num_nodes: number of nodes to be added
1047 * @first_node_teid: pointer to the first node TEID
1048 * @num_nodes_added: pointer to number of nodes added
1049 *
1050 * This function add nodes to a given layer.
1051 */
1052static int
1053ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1054 struct ice_sched_node *tc_node,
1055 struct ice_sched_node *parent, u8 layer,
1056 u16 num_nodes, u32 *first_node_teid,
1057 u16 *num_nodes_added)
1058{
1059 u32 *first_teid_ptr = first_node_teid;
1060 u16 new_num_nodes = num_nodes;
1061 int status = 0;
1062
1063 *num_nodes_added = 0;
1064 while (*num_nodes_added < num_nodes) {
1065 u16 max_child_nodes, num_added = 0;
1066 /* cppcheck-suppress unusedVariable */
1067 u32 temp;
1068
1069 status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1070 layer, new_num_nodes,
1071 first_teid_ptr,
1072 &num_added);
1073 if (!status)
1074 *num_nodes_added += num_added;
1075 /* added more nodes than requested ? */
1076 if (*num_nodes_added > num_nodes) {
1077 ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1078 *num_nodes_added);
1079 status = -EIO;
1080 break;
1081 }
1082 /* break if all the nodes are added successfully */
1083 if (!status && (*num_nodes_added == num_nodes))
1084 break;
1085 /* break if the error is not max limit */
1086 if (status && status != -ENOSPC)
1087 break;
1088 /* Exceeded the max children */
1089 max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1090 /* utilize all the spaces if the parent is not full */
1091 if (parent->num_children < max_child_nodes) {
1092 new_num_nodes = max_child_nodes - parent->num_children;
1093 } else {
1094 /* This parent is full, try the next sibling */
1095 parent = parent->sibling;
1096 /* Don't modify the first node TEID memory if the
1097 * first node was added already in the above call.
1098 * Instead send some temp memory for all other
1099 * recursive calls.
1100 */
1101 if (num_added)
1102 first_teid_ptr = &temp;
1103
1104 new_num_nodes = num_nodes - *num_nodes_added;
1105 }
1106 }
1107 return status;
1108}
1109
1110/**
1111 * ice_sched_get_qgrp_layer - get the current queue group layer number
1112 * @hw: pointer to the HW struct
1113 *
1114 * This function returns the current queue group layer number
1115 */
1116static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1117{
1118 /* It's always total layers - 1, the array is 0 relative so -2 */
1119 return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1120}
1121
1122/**
1123 * ice_sched_get_vsi_layer - get the current VSI layer number
1124 * @hw: pointer to the HW struct
1125 *
1126 * This function returns the current VSI layer number
1127 */
1128static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1129{
1130 /* Num Layers VSI layer
1131 * 9 6
1132 * 7 4
1133 * 5 or less sw_entry_point_layer
1134 */
1135 /* calculate the VSI layer based on number of layers. */
1136 if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1137 u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1138
1139 if (layer > hw->sw_entry_point_layer)
1140 return layer;
1141 }
1142 return hw->sw_entry_point_layer;
1143}
1144
1145/**
1146 * ice_sched_get_agg_layer - get the current aggregator layer number
1147 * @hw: pointer to the HW struct
1148 *
1149 * This function returns the current aggregator layer number
1150 */
1151static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1152{
1153 /* Num Layers aggregator layer
1154 * 9 4
1155 * 7 or less sw_entry_point_layer
1156 */
1157 /* calculate the aggregator layer based on number of layers. */
1158 if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1159 u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1160
1161 if (layer > hw->sw_entry_point_layer)
1162 return layer;
1163 }
1164 return hw->sw_entry_point_layer;
1165}
1166
1167/**
1168 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1169 * @pi: port information structure
1170 *
1171 * This function removes the leaf node that was created by the FW
1172 * during initialization
1173 */
1174static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1175{
1176 struct ice_sched_node *node;
1177
1178 node = pi->root;
1179 while (node) {
1180 if (!node->num_children)
1181 break;
1182 node = node->children[0];
1183 }
1184 if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1185 u32 teid = le32_to_cpu(node->info.node_teid);
1186 int status;
1187
1188 /* remove the default leaf node */
1189 status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1190 if (!status)
1191 ice_free_sched_node(pi, node);
1192 }
1193}
1194
1195/**
1196 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1197 * @pi: port information structure
1198 *
1199 * This function frees all the nodes except root and TC that were created by
1200 * the FW during initialization
1201 */
1202static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1203{
1204 struct ice_sched_node *node;
1205
1206 ice_rm_dflt_leaf_node(pi);
1207
1208 /* remove the default nodes except TC and root nodes */
1209 node = pi->root;
1210 while (node) {
1211 if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1212 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1213 node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1214 ice_free_sched_node(pi, node);
1215 break;
1216 }
1217
1218 if (!node->num_children)
1219 break;
1220 node = node->children[0];
1221 }
1222}
1223
1224/**
1225 * ice_sched_init_port - Initialize scheduler by querying information from FW
1226 * @pi: port info structure for the tree to cleanup
1227 *
1228 * This function is the initial call to find the total number of Tx scheduler
1229 * resources, default topology created by firmware and storing the information
1230 * in SW DB.
1231 */
1232int ice_sched_init_port(struct ice_port_info *pi)
1233{
1234 struct ice_aqc_get_topo_elem *buf;
1235 struct ice_hw *hw;
1236 u8 num_branches;
1237 u16 num_elems;
1238 int status;
1239 u8 i, j;
1240
1241 if (!pi)
1242 return -EINVAL;
1243 hw = pi->hw;
1244
1245 /* Query the Default Topology from FW */
1246 buf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1247 if (!buf)
1248 return -ENOMEM;
1249
1250 /* Query default scheduling tree topology */
1251 status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1252 &num_branches, NULL);
1253 if (status)
1254 goto err_init_port;
1255
1256 /* num_branches should be between 1-8 */
1257 if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1258 ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1259 num_branches);
1260 status = -EINVAL;
1261 goto err_init_port;
1262 }
1263
1264 /* get the number of elements on the default/first branch */
1265 num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1266
1267 /* num_elems should always be between 1-9 */
1268 if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1269 ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1270 num_elems);
1271 status = -EINVAL;
1272 goto err_init_port;
1273 }
1274
1275 /* If the last node is a leaf node then the index of the queue group
1276 * layer is two less than the number of elements.
1277 */
1278 if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1279 ICE_AQC_ELEM_TYPE_LEAF)
1280 pi->last_node_teid =
1281 le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1282 else
1283 pi->last_node_teid =
1284 le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1285
1286 /* Insert the Tx Sched root node */
1287 status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1288 if (status)
1289 goto err_init_port;
1290
1291 /* Parse the default tree and cache the information */
1292 for (i = 0; i < num_branches; i++) {
1293 num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1294
1295 /* Skip root element as already inserted */
1296 for (j = 1; j < num_elems; j++) {
1297 /* update the sw entry point */
1298 if (buf[0].generic[j].data.elem_type ==
1299 ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1300 hw->sw_entry_point_layer = j;
1301
1302 status = ice_sched_add_node(pi, j, &buf[i].generic[j], NULL);
1303 if (status)
1304 goto err_init_port;
1305 }
1306 }
1307
1308 /* Remove the default nodes. */
1309 if (pi->root)
1310 ice_sched_rm_dflt_nodes(pi);
1311
1312 /* initialize the port for handling the scheduler tree */
1313 pi->port_state = ICE_SCHED_PORT_STATE_READY;
1314 mutex_init(&pi->sched_lock);
1315 for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1316 INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1317
1318err_init_port:
1319 if (status && pi->root) {
1320 ice_free_sched_node(pi, pi->root);
1321 pi->root = NULL;
1322 }
1323
1324 kfree(buf);
1325 return status;
1326}
1327
1328/**
1329 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1330 * @hw: pointer to the HW struct
1331 *
1332 * query FW for allocated scheduler resources and store in HW struct
1333 */
1334int ice_sched_query_res_alloc(struct ice_hw *hw)
1335{
1336 struct ice_aqc_query_txsched_res_resp *buf;
1337 __le16 max_sibl;
1338 int status = 0;
1339 u16 i;
1340
1341 if (hw->layer_info)
1342 return status;
1343
1344 buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1345 if (!buf)
1346 return -ENOMEM;
1347
1348 status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1349 if (status)
1350 goto sched_query_out;
1351
1352 hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1353 hw->num_tx_sched_phys_layers =
1354 le16_to_cpu(buf->sched_props.phys_levels);
1355 hw->flattened_layers = buf->sched_props.flattening_bitmap;
1356 hw->max_cgds = buf->sched_props.max_pf_cgds;
1357
1358 /* max sibling group size of current layer refers to the max children
1359 * of the below layer node.
1360 * layer 1 node max children will be layer 2 max sibling group size
1361 * layer 2 node max children will be layer 3 max sibling group size
1362 * and so on. This array will be populated from root (index 0) to
1363 * qgroup layer 7. Leaf node has no children.
1364 */
1365 for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1366 max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1367 hw->max_children[i] = le16_to_cpu(max_sibl);
1368 }
1369
1370 hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1371 (hw->num_tx_sched_layers *
1372 sizeof(*hw->layer_info)),
1373 GFP_KERNEL);
1374 if (!hw->layer_info) {
1375 status = -ENOMEM;
1376 goto sched_query_out;
1377 }
1378
1379sched_query_out:
1380 devm_kfree(ice_hw_to_dev(hw), buf);
1381 return status;
1382}
1383
1384/**
1385 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1386 * @hw: pointer to the HW struct
1387 *
1388 * Determine the PSM clock frequency and store in HW struct
1389 */
1390void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1391{
1392 u32 val, clk_src;
1393
1394 val = rd32(hw, GLGEN_CLKSTAT_SRC);
1395 clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1396 GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1397
1398#define PSM_CLK_SRC_367_MHZ 0x0
1399#define PSM_CLK_SRC_416_MHZ 0x1
1400#define PSM_CLK_SRC_446_MHZ 0x2
1401#define PSM_CLK_SRC_390_MHZ 0x3
1402
1403 switch (clk_src) {
1404 case PSM_CLK_SRC_367_MHZ:
1405 hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1406 break;
1407 case PSM_CLK_SRC_416_MHZ:
1408 hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1409 break;
1410 case PSM_CLK_SRC_446_MHZ:
1411 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1412 break;
1413 case PSM_CLK_SRC_390_MHZ:
1414 hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1415 break;
1416 default:
1417 ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1418 clk_src);
1419 /* fall back to a safe default */
1420 hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1421 }
1422}
1423
1424/**
1425 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1426 * @hw: pointer to the HW struct
1427 * @base: pointer to the base node
1428 * @node: pointer to the node to search
1429 *
1430 * This function checks whether a given node is part of the base node
1431 * subtree or not
1432 */
1433static bool
1434ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1435 struct ice_sched_node *node)
1436{
1437 u8 i;
1438
1439 for (i = 0; i < base->num_children; i++) {
1440 struct ice_sched_node *child = base->children[i];
1441
1442 if (node == child)
1443 return true;
1444
1445 if (child->tx_sched_layer > node->tx_sched_layer)
1446 return false;
1447
1448 /* this recursion is intentional, and wouldn't
1449 * go more than 8 calls
1450 */
1451 if (ice_sched_find_node_in_subtree(hw, child, node))
1452 return true;
1453 }
1454 return false;
1455}
1456
1457/**
1458 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1459 * @pi: port information structure
1460 * @vsi_node: software VSI handle
1461 * @qgrp_node: first queue group node identified for scanning
1462 * @owner: LAN or RDMA
1463 *
1464 * This function retrieves a free LAN or RDMA queue group node by scanning
1465 * qgrp_node and its siblings for the queue group with the fewest number
1466 * of queues currently assigned.
1467 */
1468static struct ice_sched_node *
1469ice_sched_get_free_qgrp(struct ice_port_info *pi,
1470 struct ice_sched_node *vsi_node,
1471 struct ice_sched_node *qgrp_node, u8 owner)
1472{
1473 struct ice_sched_node *min_qgrp;
1474 u8 min_children;
1475
1476 if (!qgrp_node)
1477 return qgrp_node;
1478 min_children = qgrp_node->num_children;
1479 if (!min_children)
1480 return qgrp_node;
1481 min_qgrp = qgrp_node;
1482 /* scan all queue groups until find a node which has less than the
1483 * minimum number of children. This way all queue group nodes get
1484 * equal number of shares and active. The bandwidth will be equally
1485 * distributed across all queues.
1486 */
1487 while (qgrp_node) {
1488 /* make sure the qgroup node is part of the VSI subtree */
1489 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1490 if (qgrp_node->num_children < min_children &&
1491 qgrp_node->owner == owner) {
1492 /* replace the new min queue group node */
1493 min_qgrp = qgrp_node;
1494 min_children = min_qgrp->num_children;
1495 /* break if it has no children, */
1496 if (!min_children)
1497 break;
1498 }
1499 qgrp_node = qgrp_node->sibling;
1500 }
1501 return min_qgrp;
1502}
1503
1504/**
1505 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1506 * @pi: port information structure
1507 * @vsi_handle: software VSI handle
1508 * @tc: branch number
1509 * @owner: LAN or RDMA
1510 *
1511 * This function retrieves a free LAN or RDMA queue group node
1512 */
1513struct ice_sched_node *
1514ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1515 u8 owner)
1516{
1517 struct ice_sched_node *vsi_node, *qgrp_node;
1518 struct ice_vsi_ctx *vsi_ctx;
1519 u16 max_children;
1520 u8 qgrp_layer;
1521
1522 qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1523 max_children = pi->hw->max_children[qgrp_layer];
1524
1525 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1526 if (!vsi_ctx)
1527 return NULL;
1528 vsi_node = vsi_ctx->sched.vsi_node[tc];
1529 /* validate invalid VSI ID */
1530 if (!vsi_node)
1531 return NULL;
1532
1533 /* get the first queue group node from VSI sub-tree */
1534 qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1535 while (qgrp_node) {
1536 /* make sure the qgroup node is part of the VSI subtree */
1537 if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1538 if (qgrp_node->num_children < max_children &&
1539 qgrp_node->owner == owner)
1540 break;
1541 qgrp_node = qgrp_node->sibling;
1542 }
1543
1544 /* Select the best queue group */
1545 return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1546}
1547
1548/**
1549 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1550 * @pi: pointer to the port information structure
1551 * @tc_node: pointer to the TC node
1552 * @vsi_handle: software VSI handle
1553 *
1554 * This function retrieves a VSI node for a given VSI ID from a given
1555 * TC branch
1556 */
1557static struct ice_sched_node *
1558ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1559 u16 vsi_handle)
1560{
1561 struct ice_sched_node *node;
1562 u8 vsi_layer;
1563
1564 vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1565 node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1566
1567 /* Check whether it already exists */
1568 while (node) {
1569 if (node->vsi_handle == vsi_handle)
1570 return node;
1571 node = node->sibling;
1572 }
1573
1574 return node;
1575}
1576
1577/**
1578 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1579 * @pi: pointer to the port information structure
1580 * @tc_node: pointer to the TC node
1581 * @agg_id: aggregator ID
1582 *
1583 * This function retrieves an aggregator node for a given aggregator ID from
1584 * a given TC branch
1585 */
1586static struct ice_sched_node *
1587ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1588 u32 agg_id)
1589{
1590 struct ice_sched_node *node;
1591 struct ice_hw *hw = pi->hw;
1592 u8 agg_layer;
1593
1594 if (!hw)
1595 return NULL;
1596 agg_layer = ice_sched_get_agg_layer(hw);
1597 node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1598
1599 /* Check whether it already exists */
1600 while (node) {
1601 if (node->agg_id == agg_id)
1602 return node;
1603 node = node->sibling;
1604 }
1605
1606 return node;
1607}
1608
1609/**
1610 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1611 * @hw: pointer to the HW struct
1612 * @num_qs: number of queues
1613 * @num_nodes: num nodes array
1614 *
1615 * This function calculates the number of VSI child nodes based on the
1616 * number of queues.
1617 */
1618static void
1619ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1620{
1621 u16 num = num_qs;
1622 u8 i, qgl, vsil;
1623
1624 qgl = ice_sched_get_qgrp_layer(hw);
1625 vsil = ice_sched_get_vsi_layer(hw);
1626
1627 /* calculate num nodes from queue group to VSI layer */
1628 for (i = qgl; i > vsil; i--) {
1629 /* round to the next integer if there is a remainder */
1630 num = DIV_ROUND_UP(num, hw->max_children[i]);
1631
1632 /* need at least one node */
1633 num_nodes[i] = num ? num : 1;
1634 }
1635}
1636
1637/**
1638 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1639 * @pi: port information structure
1640 * @vsi_handle: software VSI handle
1641 * @tc_node: pointer to the TC node
1642 * @num_nodes: pointer to the num nodes that needs to be added per layer
1643 * @owner: node owner (LAN or RDMA)
1644 *
1645 * This function adds the VSI child nodes to tree. It gets called for
1646 * LAN and RDMA separately.
1647 */
1648static int
1649ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1650 struct ice_sched_node *tc_node, u16 *num_nodes,
1651 u8 owner)
1652{
1653 struct ice_sched_node *parent, *node;
1654 struct ice_hw *hw = pi->hw;
1655 u32 first_node_teid;
1656 u16 num_added = 0;
1657 u8 i, qgl, vsil;
1658 int status;
1659
1660 qgl = ice_sched_get_qgrp_layer(hw);
1661 vsil = ice_sched_get_vsi_layer(hw);
1662 parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1663 for (i = vsil + 1; i <= qgl; i++) {
1664 if (!parent)
1665 return -EIO;
1666
1667 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1668 num_nodes[i],
1669 &first_node_teid,
1670 &num_added);
1671 if (status || num_nodes[i] != num_added)
1672 return -EIO;
1673
1674 /* The newly added node can be a new parent for the next
1675 * layer nodes
1676 */
1677 if (num_added) {
1678 parent = ice_sched_find_node_by_teid(tc_node,
1679 first_node_teid);
1680 node = parent;
1681 while (node) {
1682 node->owner = owner;
1683 node = node->sibling;
1684 }
1685 } else {
1686 parent = parent->children[0];
1687 }
1688 }
1689
1690 return 0;
1691}
1692
1693/**
1694 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1695 * @pi: pointer to the port info structure
1696 * @tc_node: pointer to TC node
1697 * @num_nodes: pointer to num nodes array
1698 *
1699 * This function calculates the number of supported nodes needed to add this
1700 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1701 * layers
1702 */
1703static void
1704ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1705 struct ice_sched_node *tc_node, u16 *num_nodes)
1706{
1707 struct ice_sched_node *node;
1708 u8 vsil;
1709 int i;
1710
1711 vsil = ice_sched_get_vsi_layer(pi->hw);
1712 for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1713 /* Add intermediate nodes if TC has no children and
1714 * need at least one node for VSI
1715 */
1716 if (!tc_node->num_children || i == vsil) {
1717 num_nodes[i]++;
1718 } else {
1719 /* If intermediate nodes are reached max children
1720 * then add a new one.
1721 */
1722 node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1723 /* scan all the siblings */
1724 while (node) {
1725 if (node->num_children < pi->hw->max_children[i])
1726 break;
1727 node = node->sibling;
1728 }
1729
1730 /* tree has one intermediate node to add this new VSI.
1731 * So no need to calculate supported nodes for below
1732 * layers.
1733 */
1734 if (node)
1735 break;
1736 /* all the nodes are full, allocate a new one */
1737 num_nodes[i]++;
1738 }
1739}
1740
1741/**
1742 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1743 * @pi: port information structure
1744 * @vsi_handle: software VSI handle
1745 * @tc_node: pointer to TC node
1746 * @num_nodes: pointer to num nodes array
1747 *
1748 * This function adds the VSI supported nodes into Tx tree including the
1749 * VSI, its parent and intermediate nodes in below layers
1750 */
1751static int
1752ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1753 struct ice_sched_node *tc_node, u16 *num_nodes)
1754{
1755 struct ice_sched_node *parent = tc_node;
1756 u32 first_node_teid;
1757 u16 num_added = 0;
1758 u8 i, vsil;
1759 int status;
1760
1761 if (!pi)
1762 return -EINVAL;
1763
1764 vsil = ice_sched_get_vsi_layer(pi->hw);
1765 for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1766 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1767 i, num_nodes[i],
1768 &first_node_teid,
1769 &num_added);
1770 if (status || num_nodes[i] != num_added)
1771 return -EIO;
1772
1773 /* The newly added node can be a new parent for the next
1774 * layer nodes
1775 */
1776 if (num_added)
1777 parent = ice_sched_find_node_by_teid(tc_node,
1778 first_node_teid);
1779 else
1780 parent = parent->children[0];
1781
1782 if (!parent)
1783 return -EIO;
1784
1785 if (i == vsil)
1786 parent->vsi_handle = vsi_handle;
1787 }
1788
1789 return 0;
1790}
1791
1792/**
1793 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1794 * @pi: port information structure
1795 * @vsi_handle: software VSI handle
1796 * @tc: TC number
1797 *
1798 * This function adds a new VSI into scheduler tree
1799 */
1800static int
1801ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1802{
1803 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1804 struct ice_sched_node *tc_node;
1805
1806 tc_node = ice_sched_get_tc_node(pi, tc);
1807 if (!tc_node)
1808 return -EINVAL;
1809
1810 /* calculate number of supported nodes needed for this VSI */
1811 ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1812
1813 /* add VSI supported nodes to TC subtree */
1814 return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1815 num_nodes);
1816}
1817
1818/**
1819 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1820 * @pi: port information structure
1821 * @vsi_handle: software VSI handle
1822 * @tc: TC number
1823 * @new_numqs: new number of max queues
1824 * @owner: owner of this subtree
1825 *
1826 * This function updates the VSI child nodes based on the number of queues
1827 */
1828static int
1829ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1830 u8 tc, u16 new_numqs, u8 owner)
1831{
1832 u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1833 struct ice_sched_node *vsi_node;
1834 struct ice_sched_node *tc_node;
1835 struct ice_vsi_ctx *vsi_ctx;
1836 struct ice_hw *hw = pi->hw;
1837 u16 prev_numqs;
1838 int status = 0;
1839
1840 tc_node = ice_sched_get_tc_node(pi, tc);
1841 if (!tc_node)
1842 return -EIO;
1843
1844 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1845 if (!vsi_node)
1846 return -EIO;
1847
1848 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1849 if (!vsi_ctx)
1850 return -EINVAL;
1851
1852 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1853 prev_numqs = vsi_ctx->sched.max_lanq[tc];
1854 else
1855 prev_numqs = vsi_ctx->sched.max_rdmaq[tc];
1856 /* num queues are not changed or less than the previous number */
1857 if (new_numqs <= prev_numqs)
1858 return status;
1859 if (owner == ICE_SCHED_NODE_OWNER_LAN) {
1860 status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1861 if (status)
1862 return status;
1863 } else {
1864 status = ice_alloc_rdma_q_ctx(hw, vsi_handle, tc, new_numqs);
1865 if (status)
1866 return status;
1867 }
1868
1869 if (new_numqs)
1870 ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1871 /* Keep the max number of queue configuration all the time. Update the
1872 * tree only if number of queues > previous number of queues. This may
1873 * leave some extra nodes in the tree if number of queues < previous
1874 * number but that wouldn't harm anything. Removing those extra nodes
1875 * may complicate the code if those nodes are part of SRL or
1876 * individually rate limited.
1877 */
1878 status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1879 new_num_nodes, owner);
1880 if (status)
1881 return status;
1882 if (owner == ICE_SCHED_NODE_OWNER_LAN)
1883 vsi_ctx->sched.max_lanq[tc] = new_numqs;
1884 else
1885 vsi_ctx->sched.max_rdmaq[tc] = new_numqs;
1886
1887 return 0;
1888}
1889
1890/**
1891 * ice_sched_cfg_vsi - configure the new/existing VSI
1892 * @pi: port information structure
1893 * @vsi_handle: software VSI handle
1894 * @tc: TC number
1895 * @maxqs: max number of queues
1896 * @owner: LAN or RDMA
1897 * @enable: TC enabled or disabled
1898 *
1899 * This function adds/updates VSI nodes based on the number of queues. If TC is
1900 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1901 * disabled then suspend the VSI if it is not already.
1902 */
1903int
1904ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1905 u8 owner, bool enable)
1906{
1907 struct ice_sched_node *vsi_node, *tc_node;
1908 struct ice_vsi_ctx *vsi_ctx;
1909 struct ice_hw *hw = pi->hw;
1910 int status = 0;
1911
1912 ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1913 tc_node = ice_sched_get_tc_node(pi, tc);
1914 if (!tc_node)
1915 return -EINVAL;
1916 vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1917 if (!vsi_ctx)
1918 return -EINVAL;
1919 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1920
1921 /* suspend the VSI if TC is not enabled */
1922 if (!enable) {
1923 if (vsi_node && vsi_node->in_use) {
1924 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1925
1926 status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1927 true);
1928 if (!status)
1929 vsi_node->in_use = false;
1930 }
1931 return status;
1932 }
1933
1934 /* TC is enabled, if it is a new VSI then add it to the tree */
1935 if (!vsi_node) {
1936 status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1937 if (status)
1938 return status;
1939
1940 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1941 if (!vsi_node)
1942 return -EIO;
1943
1944 vsi_ctx->sched.vsi_node[tc] = vsi_node;
1945 vsi_node->in_use = true;
1946 /* invalidate the max queues whenever VSI gets added first time
1947 * into the scheduler tree (boot or after reset). We need to
1948 * recreate the child nodes all the time in these cases.
1949 */
1950 vsi_ctx->sched.max_lanq[tc] = 0;
1951 vsi_ctx->sched.max_rdmaq[tc] = 0;
1952 }
1953
1954 /* update the VSI child nodes */
1955 status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1956 owner);
1957 if (status)
1958 return status;
1959
1960 /* TC is enabled, resume the VSI if it is in the suspend state */
1961 if (!vsi_node->in_use) {
1962 u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1963
1964 status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1965 if (!status)
1966 vsi_node->in_use = true;
1967 }
1968
1969 return status;
1970}
1971
1972/**
1973 * ice_sched_rm_agg_vsi_info - remove aggregator related VSI info entry
1974 * @pi: port information structure
1975 * @vsi_handle: software VSI handle
1976 *
1977 * This function removes single aggregator VSI info entry from
1978 * aggregator list.
1979 */
1980static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1981{
1982 struct ice_sched_agg_info *agg_info;
1983 struct ice_sched_agg_info *atmp;
1984
1985 list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1986 list_entry) {
1987 struct ice_sched_agg_vsi_info *agg_vsi_info;
1988 struct ice_sched_agg_vsi_info *vtmp;
1989
1990 list_for_each_entry_safe(agg_vsi_info, vtmp,
1991 &agg_info->agg_vsi_list, list_entry)
1992 if (agg_vsi_info->vsi_handle == vsi_handle) {
1993 list_del(&agg_vsi_info->list_entry);
1994 devm_kfree(ice_hw_to_dev(pi->hw),
1995 agg_vsi_info);
1996 return;
1997 }
1998 }
1999}
2000
2001/**
2002 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2003 * @node: pointer to the sub-tree node
2004 *
2005 * This function checks for a leaf node presence in a given sub-tree node.
2006 */
2007static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2008{
2009 u8 i;
2010
2011 for (i = 0; i < node->num_children; i++)
2012 if (ice_sched_is_leaf_node_present(node->children[i]))
2013 return true;
2014 /* check for a leaf node */
2015 return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2016}
2017
2018/**
2019 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2020 * @pi: port information structure
2021 * @vsi_handle: software VSI handle
2022 * @owner: LAN or RDMA
2023 *
2024 * This function removes the VSI and its LAN or RDMA children nodes from the
2025 * scheduler tree.
2026 */
2027static int
2028ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2029{
2030 struct ice_vsi_ctx *vsi_ctx;
2031 int status = -EINVAL;
2032 u8 i;
2033
2034 ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2035 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2036 return status;
2037 mutex_lock(&pi->sched_lock);
2038 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2039 if (!vsi_ctx)
2040 goto exit_sched_rm_vsi_cfg;
2041
2042 ice_for_each_traffic_class(i) {
2043 struct ice_sched_node *vsi_node, *tc_node;
2044 u8 j = 0;
2045
2046 tc_node = ice_sched_get_tc_node(pi, i);
2047 if (!tc_node)
2048 continue;
2049
2050 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2051 if (!vsi_node)
2052 continue;
2053
2054 if (ice_sched_is_leaf_node_present(vsi_node)) {
2055 ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2056 status = -EBUSY;
2057 goto exit_sched_rm_vsi_cfg;
2058 }
2059 while (j < vsi_node->num_children) {
2060 if (vsi_node->children[j]->owner == owner) {
2061 ice_free_sched_node(pi, vsi_node->children[j]);
2062
2063 /* reset the counter again since the num
2064 * children will be updated after node removal
2065 */
2066 j = 0;
2067 } else {
2068 j++;
2069 }
2070 }
2071 /* remove the VSI if it has no children */
2072 if (!vsi_node->num_children) {
2073 ice_free_sched_node(pi, vsi_node);
2074 vsi_ctx->sched.vsi_node[i] = NULL;
2075
2076 /* clean up aggregator related VSI info if any */
2077 ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2078 }
2079 if (owner == ICE_SCHED_NODE_OWNER_LAN)
2080 vsi_ctx->sched.max_lanq[i] = 0;
2081 else
2082 vsi_ctx->sched.max_rdmaq[i] = 0;
2083 }
2084 status = 0;
2085
2086exit_sched_rm_vsi_cfg:
2087 mutex_unlock(&pi->sched_lock);
2088 return status;
2089}
2090
2091/**
2092 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2093 * @pi: port information structure
2094 * @vsi_handle: software VSI handle
2095 *
2096 * This function clears the VSI and its LAN children nodes from scheduler tree
2097 * for all TCs.
2098 */
2099int ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2100{
2101 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2102}
2103
2104/**
2105 * ice_rm_vsi_rdma_cfg - remove VSI and its RDMA children nodes
2106 * @pi: port information structure
2107 * @vsi_handle: software VSI handle
2108 *
2109 * This function clears the VSI and its RDMA children nodes from scheduler tree
2110 * for all TCs.
2111 */
2112int ice_rm_vsi_rdma_cfg(struct ice_port_info *pi, u16 vsi_handle)
2113{
2114 return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_RDMA);
2115}
2116
2117/**
2118 * ice_get_agg_info - get the aggregator ID
2119 * @hw: pointer to the hardware structure
2120 * @agg_id: aggregator ID
2121 *
2122 * This function validates aggregator ID. The function returns info if
2123 * aggregator ID is present in list otherwise it returns null.
2124 */
2125static struct ice_sched_agg_info *
2126ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2127{
2128 struct ice_sched_agg_info *agg_info;
2129
2130 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
2131 if (agg_info->agg_id == agg_id)
2132 return agg_info;
2133
2134 return NULL;
2135}
2136
2137/**
2138 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2139 * @hw: pointer to the HW struct
2140 * @node: pointer to a child node
2141 * @num_nodes: num nodes count array
2142 *
2143 * This function walks through the aggregator subtree to find a free parent
2144 * node
2145 */
2146static struct ice_sched_node *
2147ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2148 u16 *num_nodes)
2149{
2150 u8 l = node->tx_sched_layer;
2151 u8 vsil, i;
2152
2153 vsil = ice_sched_get_vsi_layer(hw);
2154
2155 /* Is it VSI parent layer ? */
2156 if (l == vsil - 1)
2157 return (node->num_children < hw->max_children[l]) ? node : NULL;
2158
2159 /* We have intermediate nodes. Let's walk through the subtree. If the
2160 * intermediate node has space to add a new node then clear the count
2161 */
2162 if (node->num_children < hw->max_children[l])
2163 num_nodes[l] = 0;
2164 /* The below recursive call is intentional and wouldn't go more than
2165 * 2 or 3 iterations.
2166 */
2167
2168 for (i = 0; i < node->num_children; i++) {
2169 struct ice_sched_node *parent;
2170
2171 parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2172 num_nodes);
2173 if (parent)
2174 return parent;
2175 }
2176
2177 return NULL;
2178}
2179
2180/**
2181 * ice_sched_update_parent - update the new parent in SW DB
2182 * @new_parent: pointer to a new parent node
2183 * @node: pointer to a child node
2184 *
2185 * This function removes the child from the old parent and adds it to a new
2186 * parent
2187 */
2188void
2189ice_sched_update_parent(struct ice_sched_node *new_parent,
2190 struct ice_sched_node *node)
2191{
2192 struct ice_sched_node *old_parent;
2193 u8 i, j;
2194
2195 old_parent = node->parent;
2196
2197 /* update the old parent children */
2198 for (i = 0; i < old_parent->num_children; i++)
2199 if (old_parent->children[i] == node) {
2200 for (j = i + 1; j < old_parent->num_children; j++)
2201 old_parent->children[j - 1] =
2202 old_parent->children[j];
2203 old_parent->num_children--;
2204 break;
2205 }
2206
2207 /* now move the node to a new parent */
2208 new_parent->children[new_parent->num_children++] = node;
2209 node->parent = new_parent;
2210 node->info.parent_teid = new_parent->info.node_teid;
2211}
2212
2213/**
2214 * ice_sched_move_nodes - move child nodes to a given parent
2215 * @pi: port information structure
2216 * @parent: pointer to parent node
2217 * @num_items: number of child nodes to be moved
2218 * @list: pointer to child node teids
2219 *
2220 * This function move the child nodes to a given parent.
2221 */
2222int
2223ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2224 u16 num_items, u32 *list)
2225{
2226 struct ice_aqc_move_elem *buf;
2227 struct ice_sched_node *node;
2228 u16 i, grps_movd = 0;
2229 struct ice_hw *hw;
2230 int status = 0;
2231 u16 buf_len;
2232
2233 hw = pi->hw;
2234
2235 if (!parent || !num_items)
2236 return -EINVAL;
2237
2238 /* Does parent have enough space */
2239 if (parent->num_children + num_items >
2240 hw->max_children[parent->tx_sched_layer])
2241 return -ENOSPC;
2242
2243 buf_len = struct_size(buf, teid, 1);
2244 buf = kzalloc(buf_len, GFP_KERNEL);
2245 if (!buf)
2246 return -ENOMEM;
2247
2248 for (i = 0; i < num_items; i++) {
2249 node = ice_sched_find_node_by_teid(pi->root, list[i]);
2250 if (!node) {
2251 status = -EINVAL;
2252 goto move_err_exit;
2253 }
2254
2255 buf->hdr.src_parent_teid = node->info.parent_teid;
2256 buf->hdr.dest_parent_teid = parent->info.node_teid;
2257 buf->teid[0] = node->info.node_teid;
2258 buf->hdr.num_elems = cpu_to_le16(1);
2259 status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2260 &grps_movd, NULL);
2261 if (status && grps_movd != 1) {
2262 status = -EIO;
2263 goto move_err_exit;
2264 }
2265
2266 /* update the SW DB */
2267 ice_sched_update_parent(parent, node);
2268 }
2269
2270move_err_exit:
2271 kfree(buf);
2272 return status;
2273}
2274
2275/**
2276 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2277 * @pi: port information structure
2278 * @vsi_handle: software VSI handle
2279 * @agg_id: aggregator ID
2280 * @tc: TC number
2281 *
2282 * This function moves a VSI to an aggregator node or its subtree.
2283 * Intermediate nodes may be created if required.
2284 */
2285static int
2286ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2287 u8 tc)
2288{
2289 struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2290 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2291 u32 first_node_teid, vsi_teid;
2292 u16 num_nodes_added;
2293 u8 aggl, vsil, i;
2294 int status;
2295
2296 tc_node = ice_sched_get_tc_node(pi, tc);
2297 if (!tc_node)
2298 return -EIO;
2299
2300 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2301 if (!agg_node)
2302 return -ENOENT;
2303
2304 vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2305 if (!vsi_node)
2306 return -ENOENT;
2307
2308 /* Is this VSI already part of given aggregator? */
2309 if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2310 return 0;
2311
2312 aggl = ice_sched_get_agg_layer(pi->hw);
2313 vsil = ice_sched_get_vsi_layer(pi->hw);
2314
2315 /* set intermediate node count to 1 between aggregator and VSI layers */
2316 for (i = aggl + 1; i < vsil; i++)
2317 num_nodes[i] = 1;
2318
2319 /* Check if the aggregator subtree has any free node to add the VSI */
2320 for (i = 0; i < agg_node->num_children; i++) {
2321 parent = ice_sched_get_free_vsi_parent(pi->hw,
2322 agg_node->children[i],
2323 num_nodes);
2324 if (parent)
2325 goto move_nodes;
2326 }
2327
2328 /* add new nodes */
2329 parent = agg_node;
2330 for (i = aggl + 1; i < vsil; i++) {
2331 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2332 num_nodes[i],
2333 &first_node_teid,
2334 &num_nodes_added);
2335 if (status || num_nodes[i] != num_nodes_added)
2336 return -EIO;
2337
2338 /* The newly added node can be a new parent for the next
2339 * layer nodes
2340 */
2341 if (num_nodes_added)
2342 parent = ice_sched_find_node_by_teid(tc_node,
2343 first_node_teid);
2344 else
2345 parent = parent->children[0];
2346
2347 if (!parent)
2348 return -EIO;
2349 }
2350
2351move_nodes:
2352 vsi_teid = le32_to_cpu(vsi_node->info.node_teid);
2353 return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2354}
2355
2356/**
2357 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2358 * @pi: port information structure
2359 * @agg_info: aggregator info
2360 * @tc: traffic class number
2361 * @rm_vsi_info: true or false
2362 *
2363 * This function move all the VSI(s) to the default aggregator and delete
2364 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2365 * caller holds the scheduler lock.
2366 */
2367static int
2368ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2369 struct ice_sched_agg_info *agg_info, u8 tc,
2370 bool rm_vsi_info)
2371{
2372 struct ice_sched_agg_vsi_info *agg_vsi_info;
2373 struct ice_sched_agg_vsi_info *tmp;
2374 int status = 0;
2375
2376 list_for_each_entry_safe(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2377 list_entry) {
2378 u16 vsi_handle = agg_vsi_info->vsi_handle;
2379
2380 /* Move VSI to default aggregator */
2381 if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2382 continue;
2383
2384 status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2385 ICE_DFLT_AGG_ID, tc);
2386 if (status)
2387 break;
2388
2389 clear_bit(tc, agg_vsi_info->tc_bitmap);
2390 if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2391 list_del(&agg_vsi_info->list_entry);
2392 devm_kfree(ice_hw_to_dev(pi->hw), agg_vsi_info);
2393 }
2394 }
2395
2396 return status;
2397}
2398
2399/**
2400 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2401 * @pi: port information structure
2402 * @node: node pointer
2403 *
2404 * This function checks whether the aggregator is attached with any VSI or not.
2405 */
2406static bool
2407ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2408{
2409 u8 vsil, i;
2410
2411 vsil = ice_sched_get_vsi_layer(pi->hw);
2412 if (node->tx_sched_layer < vsil - 1) {
2413 for (i = 0; i < node->num_children; i++)
2414 if (ice_sched_is_agg_inuse(pi, node->children[i]))
2415 return true;
2416 return false;
2417 } else {
2418 return node->num_children ? true : false;
2419 }
2420}
2421
2422/**
2423 * ice_sched_rm_agg_cfg - remove the aggregator node
2424 * @pi: port information structure
2425 * @agg_id: aggregator ID
2426 * @tc: TC number
2427 *
2428 * This function removes the aggregator node and intermediate nodes if any
2429 * from the given TC
2430 */
2431static int
2432ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2433{
2434 struct ice_sched_node *tc_node, *agg_node;
2435 struct ice_hw *hw = pi->hw;
2436
2437 tc_node = ice_sched_get_tc_node(pi, tc);
2438 if (!tc_node)
2439 return -EIO;
2440
2441 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2442 if (!agg_node)
2443 return -ENOENT;
2444
2445 /* Can't remove the aggregator node if it has children */
2446 if (ice_sched_is_agg_inuse(pi, agg_node))
2447 return -EBUSY;
2448
2449 /* need to remove the whole subtree if aggregator node is the
2450 * only child.
2451 */
2452 while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2453 struct ice_sched_node *parent = agg_node->parent;
2454
2455 if (!parent)
2456 return -EIO;
2457
2458 if (parent->num_children > 1)
2459 break;
2460
2461 agg_node = parent;
2462 }
2463
2464 ice_free_sched_node(pi, agg_node);
2465 return 0;
2466}
2467
2468/**
2469 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2470 * @pi: port information structure
2471 * @agg_info: aggregator ID
2472 * @tc: TC number
2473 * @rm_vsi_info: bool value true or false
2474 *
2475 * This function removes aggregator reference to VSI of given TC. It removes
2476 * the aggregator configuration completely for requested TC. The caller needs
2477 * to hold the scheduler lock.
2478 */
2479static int
2480ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2481 u8 tc, bool rm_vsi_info)
2482{
2483 int status = 0;
2484
2485 /* If nothing to remove - return success */
2486 if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2487 goto exit_rm_agg_cfg_tc;
2488
2489 status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2490 if (status)
2491 goto exit_rm_agg_cfg_tc;
2492
2493 /* Delete aggregator node(s) */
2494 status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2495 if (status)
2496 goto exit_rm_agg_cfg_tc;
2497
2498 clear_bit(tc, agg_info->tc_bitmap);
2499exit_rm_agg_cfg_tc:
2500 return status;
2501}
2502
2503/**
2504 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2505 * @pi: port information structure
2506 * @agg_id: aggregator ID
2507 * @tc_bitmap: 8 bits TC bitmap
2508 *
2509 * Save aggregator TC bitmap. This function needs to be called with scheduler
2510 * lock held.
2511 */
2512static int
2513ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2514 unsigned long *tc_bitmap)
2515{
2516 struct ice_sched_agg_info *agg_info;
2517
2518 agg_info = ice_get_agg_info(pi->hw, agg_id);
2519 if (!agg_info)
2520 return -EINVAL;
2521 bitmap_copy(agg_info->replay_tc_bitmap, tc_bitmap,
2522 ICE_MAX_TRAFFIC_CLASS);
2523 return 0;
2524}
2525
2526/**
2527 * ice_sched_add_agg_cfg - create an aggregator node
2528 * @pi: port information structure
2529 * @agg_id: aggregator ID
2530 * @tc: TC number
2531 *
2532 * This function creates an aggregator node and intermediate nodes if required
2533 * for the given TC
2534 */
2535static int
2536ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2537{
2538 struct ice_sched_node *parent, *agg_node, *tc_node;
2539 u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2540 struct ice_hw *hw = pi->hw;
2541 u32 first_node_teid;
2542 u16 num_nodes_added;
2543 int status = 0;
2544 u8 i, aggl;
2545
2546 tc_node = ice_sched_get_tc_node(pi, tc);
2547 if (!tc_node)
2548 return -EIO;
2549
2550 agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2551 /* Does Agg node already exist ? */
2552 if (agg_node)
2553 return status;
2554
2555 aggl = ice_sched_get_agg_layer(hw);
2556
2557 /* need one node in Agg layer */
2558 num_nodes[aggl] = 1;
2559
2560 /* Check whether the intermediate nodes have space to add the
2561 * new aggregator. If they are full, then SW needs to allocate a new
2562 * intermediate node on those layers
2563 */
2564 for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2565 parent = ice_sched_get_first_node(pi, tc_node, i);
2566
2567 /* scan all the siblings */
2568 while (parent) {
2569 if (parent->num_children < hw->max_children[i])
2570 break;
2571 parent = parent->sibling;
2572 }
2573
2574 /* all the nodes are full, reserve one for this layer */
2575 if (!parent)
2576 num_nodes[i]++;
2577 }
2578
2579 /* add the aggregator node */
2580 parent = tc_node;
2581 for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2582 if (!parent)
2583 return -EIO;
2584
2585 status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2586 num_nodes[i],
2587 &first_node_teid,
2588 &num_nodes_added);
2589 if (status || num_nodes[i] != num_nodes_added)
2590 return -EIO;
2591
2592 /* The newly added node can be a new parent for the next
2593 * layer nodes
2594 */
2595 if (num_nodes_added) {
2596 parent = ice_sched_find_node_by_teid(tc_node,
2597 first_node_teid);
2598 /* register aggregator ID with the aggregator node */
2599 if (parent && i == aggl)
2600 parent->agg_id = agg_id;
2601 } else {
2602 parent = parent->children[0];
2603 }
2604 }
2605
2606 return 0;
2607}
2608
2609/**
2610 * ice_sched_cfg_agg - configure aggregator node
2611 * @pi: port information structure
2612 * @agg_id: aggregator ID
2613 * @agg_type: aggregator type queue, VSI, or aggregator group
2614 * @tc_bitmap: bits TC bitmap
2615 *
2616 * It registers a unique aggregator node into scheduler services. It
2617 * allows a user to register with a unique ID to track it's resources.
2618 * The aggregator type determines if this is a queue group, VSI group
2619 * or aggregator group. It then creates the aggregator node(s) for requested
2620 * TC(s) or removes an existing aggregator node including its configuration
2621 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2622 * resources and remove aggregator ID.
2623 * This function needs to be called with scheduler lock held.
2624 */
2625static int
2626ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2627 enum ice_agg_type agg_type, unsigned long *tc_bitmap)
2628{
2629 struct ice_sched_agg_info *agg_info;
2630 struct ice_hw *hw = pi->hw;
2631 int status = 0;
2632 u8 tc;
2633
2634 agg_info = ice_get_agg_info(hw, agg_id);
2635 if (!agg_info) {
2636 /* Create new entry for new aggregator ID */
2637 agg_info = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*agg_info),
2638 GFP_KERNEL);
2639 if (!agg_info)
2640 return -ENOMEM;
2641
2642 agg_info->agg_id = agg_id;
2643 agg_info->agg_type = agg_type;
2644 agg_info->tc_bitmap[0] = 0;
2645
2646 /* Initialize the aggregator VSI list head */
2647 INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2648
2649 /* Add new entry in aggregator list */
2650 list_add(&agg_info->list_entry, &hw->agg_list);
2651 }
2652 /* Create aggregator node(s) for requested TC(s) */
2653 ice_for_each_traffic_class(tc) {
2654 if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2655 /* Delete aggregator cfg TC if it exists previously */
2656 status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2657 if (status)
2658 break;
2659 continue;
2660 }
2661
2662 /* Check if aggregator node for TC already exists */
2663 if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2664 continue;
2665
2666 /* Create new aggregator node for TC */
2667 status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2668 if (status)
2669 break;
2670
2671 /* Save aggregator node's TC information */
2672 set_bit(tc, agg_info->tc_bitmap);
2673 }
2674
2675 return status;
2676}
2677
2678/**
2679 * ice_cfg_agg - config aggregator node
2680 * @pi: port information structure
2681 * @agg_id: aggregator ID
2682 * @agg_type: aggregator type queue, VSI, or aggregator group
2683 * @tc_bitmap: bits TC bitmap
2684 *
2685 * This function configures aggregator node(s).
2686 */
2687int
2688ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2689 u8 tc_bitmap)
2690{
2691 unsigned long bitmap = tc_bitmap;
2692 int status;
2693
2694 mutex_lock(&pi->sched_lock);
2695 status = ice_sched_cfg_agg(pi, agg_id, agg_type, &bitmap);
2696 if (!status)
2697 status = ice_save_agg_tc_bitmap(pi, agg_id, &bitmap);
2698 mutex_unlock(&pi->sched_lock);
2699 return status;
2700}
2701
2702/**
2703 * ice_get_agg_vsi_info - get the aggregator ID
2704 * @agg_info: aggregator info
2705 * @vsi_handle: software VSI handle
2706 *
2707 * The function returns aggregator VSI info based on VSI handle. This function
2708 * needs to be called with scheduler lock held.
2709 */
2710static struct ice_sched_agg_vsi_info *
2711ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2712{
2713 struct ice_sched_agg_vsi_info *agg_vsi_info;
2714
2715 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list, list_entry)
2716 if (agg_vsi_info->vsi_handle == vsi_handle)
2717 return agg_vsi_info;
2718
2719 return NULL;
2720}
2721
2722/**
2723 * ice_get_vsi_agg_info - get the aggregator info of VSI
2724 * @hw: pointer to the hardware structure
2725 * @vsi_handle: Sw VSI handle
2726 *
2727 * The function returns aggregator info of VSI represented via vsi_handle. The
2728 * VSI has in this case a different aggregator than the default one. This
2729 * function needs to be called with scheduler lock held.
2730 */
2731static struct ice_sched_agg_info *
2732ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2733{
2734 struct ice_sched_agg_info *agg_info;
2735
2736 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
2737 struct ice_sched_agg_vsi_info *agg_vsi_info;
2738
2739 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2740 if (agg_vsi_info)
2741 return agg_info;
2742 }
2743 return NULL;
2744}
2745
2746/**
2747 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2748 * @pi: port information structure
2749 * @agg_id: aggregator ID
2750 * @vsi_handle: software VSI handle
2751 * @tc_bitmap: TC bitmap of enabled TC(s)
2752 *
2753 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2754 * lock held.
2755 */
2756static int
2757ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2758 unsigned long *tc_bitmap)
2759{
2760 struct ice_sched_agg_vsi_info *agg_vsi_info;
2761 struct ice_sched_agg_info *agg_info;
2762
2763 agg_info = ice_get_agg_info(pi->hw, agg_id);
2764 if (!agg_info)
2765 return -EINVAL;
2766 /* check if entry already exist */
2767 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2768 if (!agg_vsi_info)
2769 return -EINVAL;
2770 bitmap_copy(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2771 ICE_MAX_TRAFFIC_CLASS);
2772 return 0;
2773}
2774
2775/**
2776 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2777 * @pi: port information structure
2778 * @agg_id: aggregator ID
2779 * @vsi_handle: software VSI handle
2780 * @tc_bitmap: TC bitmap of enabled TC(s)
2781 *
2782 * This function moves VSI to a new or default aggregator node. If VSI is
2783 * already associated to the aggregator node then no operation is performed on
2784 * the tree. This function needs to be called with scheduler lock held.
2785 */
2786static int
2787ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2788 u16 vsi_handle, unsigned long *tc_bitmap)
2789{
2790 struct ice_sched_agg_vsi_info *agg_vsi_info, *old_agg_vsi_info = NULL;
2791 struct ice_sched_agg_info *agg_info, *old_agg_info;
2792 struct ice_hw *hw = pi->hw;
2793 int status = 0;
2794 u8 tc;
2795
2796 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2797 return -EINVAL;
2798 agg_info = ice_get_agg_info(hw, agg_id);
2799 if (!agg_info)
2800 return -EINVAL;
2801 /* If the VSI is already part of another aggregator then update
2802 * its VSI info list
2803 */
2804 old_agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
2805 if (old_agg_info && old_agg_info != agg_info) {
2806 struct ice_sched_agg_vsi_info *vtmp;
2807
2808 list_for_each_entry_safe(old_agg_vsi_info, vtmp,
2809 &old_agg_info->agg_vsi_list,
2810 list_entry)
2811 if (old_agg_vsi_info->vsi_handle == vsi_handle)
2812 break;
2813 }
2814
2815 /* check if entry already exist */
2816 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2817 if (!agg_vsi_info) {
2818 /* Create new entry for VSI under aggregator list */
2819 agg_vsi_info = devm_kzalloc(ice_hw_to_dev(hw),
2820 sizeof(*agg_vsi_info), GFP_KERNEL);
2821 if (!agg_vsi_info)
2822 return -EINVAL;
2823
2824 /* add VSI ID into the aggregator list */
2825 agg_vsi_info->vsi_handle = vsi_handle;
2826 list_add(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2827 }
2828 /* Move VSI node to new aggregator node for requested TC(s) */
2829 ice_for_each_traffic_class(tc) {
2830 if (!ice_is_tc_ena(*tc_bitmap, tc))
2831 continue;
2832
2833 /* Move VSI to new aggregator */
2834 status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2835 if (status)
2836 break;
2837
2838 set_bit(tc, agg_vsi_info->tc_bitmap);
2839 if (old_agg_vsi_info)
2840 clear_bit(tc, old_agg_vsi_info->tc_bitmap);
2841 }
2842 if (old_agg_vsi_info && !old_agg_vsi_info->tc_bitmap[0]) {
2843 list_del(&old_agg_vsi_info->list_entry);
2844 devm_kfree(ice_hw_to_dev(pi->hw), old_agg_vsi_info);
2845 }
2846 return status;
2847}
2848
2849/**
2850 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2851 * @pi: port information structure
2852 *
2853 * This function removes unused rate limit profiles from the HW and
2854 * SW DB. The caller needs to hold scheduler lock.
2855 */
2856static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
2857{
2858 u16 ln;
2859
2860 for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
2861 struct ice_aqc_rl_profile_info *rl_prof_elem;
2862 struct ice_aqc_rl_profile_info *rl_prof_tmp;
2863
2864 list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
2865 &pi->rl_prof_list[ln], list_entry) {
2866 if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
2867 ice_debug(pi->hw, ICE_DBG_SCHED, "Removed rl profile\n");
2868 }
2869 }
2870}
2871
2872/**
2873 * ice_sched_update_elem - update element
2874 * @hw: pointer to the HW struct
2875 * @node: pointer to node
2876 * @info: node info to update
2877 *
2878 * Update the HW DB, and local SW DB of node. Update the scheduling
2879 * parameters of node from argument info data buffer (Info->data buf) and
2880 * returns success or error on config sched element failure. The caller
2881 * needs to hold scheduler lock.
2882 */
2883static int
2884ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2885 struct ice_aqc_txsched_elem_data *info)
2886{
2887 struct ice_aqc_txsched_elem_data buf;
2888 u16 elem_cfgd = 0;
2889 u16 num_elems = 1;
2890 int status;
2891
2892 buf = *info;
2893 /* Parent TEID is reserved field in this aq call */
2894 buf.parent_teid = 0;
2895 /* Element type is reserved field in this aq call */
2896 buf.data.elem_type = 0;
2897 /* Flags is reserved field in this aq call */
2898 buf.data.flags = 0;
2899
2900 /* Update HW DB */
2901 /* Configure element node */
2902 status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2903 &elem_cfgd, NULL);
2904 if (status || elem_cfgd != num_elems) {
2905 ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2906 return -EIO;
2907 }
2908
2909 /* Config success case */
2910 /* Now update local SW DB */
2911 /* Only copy the data portion of info buffer */
2912 node->info.data = info->data;
2913 return status;
2914}
2915
2916/**
2917 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2918 * @hw: pointer to the HW struct
2919 * @node: sched node to configure
2920 * @rl_type: rate limit type CIR, EIR, or shared
2921 * @bw_alloc: BW weight/allocation
2922 *
2923 * This function configures node element's BW allocation.
2924 */
2925static int
2926ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2927 enum ice_rl_type rl_type, u16 bw_alloc)
2928{
2929 struct ice_aqc_txsched_elem_data buf;
2930 struct ice_aqc_txsched_elem *data;
2931
2932 buf = node->info;
2933 data = &buf.data;
2934 if (rl_type == ICE_MIN_BW) {
2935 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2936 data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2937 } else if (rl_type == ICE_MAX_BW) {
2938 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2939 data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
2940 } else {
2941 return -EINVAL;
2942 }
2943
2944 /* Configure element */
2945 return ice_sched_update_elem(hw, node, &buf);
2946}
2947
2948/**
2949 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2950 * @pi: port information structure
2951 * @agg_id: aggregator ID
2952 * @vsi_handle: software VSI handle
2953 * @tc_bitmap: TC bitmap of enabled TC(s)
2954 *
2955 * Move or associate VSI to a new or default aggregator node.
2956 */
2957int
2958ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2959 u8 tc_bitmap)
2960{
2961 unsigned long bitmap = tc_bitmap;
2962 int status;
2963
2964 mutex_lock(&pi->sched_lock);
2965 status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
2966 (unsigned long *)&bitmap);
2967 if (!status)
2968 status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
2969 (unsigned long *)&bitmap);
2970 mutex_unlock(&pi->sched_lock);
2971 return status;
2972}
2973
2974/**
2975 * ice_set_clear_cir_bw - set or clear CIR BW
2976 * @bw_t_info: bandwidth type information structure
2977 * @bw: bandwidth in Kbps - Kilo bits per sec
2978 *
2979 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
2980 */
2981static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2982{
2983 if (bw == ICE_SCHED_DFLT_BW) {
2984 clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2985 bw_t_info->cir_bw.bw = 0;
2986 } else {
2987 /* Save type of BW information */
2988 set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
2989 bw_t_info->cir_bw.bw = bw;
2990 }
2991}
2992
2993/**
2994 * ice_set_clear_eir_bw - set or clear EIR BW
2995 * @bw_t_info: bandwidth type information structure
2996 * @bw: bandwidth in Kbps - Kilo bits per sec
2997 *
2998 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2999 */
3000static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3001{
3002 if (bw == ICE_SCHED_DFLT_BW) {
3003 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3004 bw_t_info->eir_bw.bw = 0;
3005 } else {
3006 /* EIR BW and Shared BW profiles are mutually exclusive and
3007 * hence only one of them may be set for any given element.
3008 * First clear earlier saved shared BW information.
3009 */
3010 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3011 bw_t_info->shared_bw = 0;
3012 /* save EIR BW information */
3013 set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3014 bw_t_info->eir_bw.bw = bw;
3015 }
3016}
3017
3018/**
3019 * ice_set_clear_shared_bw - set or clear shared BW
3020 * @bw_t_info: bandwidth type information structure
3021 * @bw: bandwidth in Kbps - Kilo bits per sec
3022 *
3023 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3024 */
3025static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3026{
3027 if (bw == ICE_SCHED_DFLT_BW) {
3028 clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3029 bw_t_info->shared_bw = 0;
3030 } else {
3031 /* EIR BW and Shared BW profiles are mutually exclusive and
3032 * hence only one of them may be set for any given element.
3033 * First clear earlier saved EIR BW information.
3034 */
3035 clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3036 bw_t_info->eir_bw.bw = 0;
3037 /* save shared BW information */
3038 set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3039 bw_t_info->shared_bw = bw;
3040 }
3041}
3042
3043/**
3044 * ice_sched_save_vsi_bw - save VSI node's BW information
3045 * @pi: port information structure
3046 * @vsi_handle: sw VSI handle
3047 * @tc: traffic class
3048 * @rl_type: rate limit type min, max, or shared
3049 * @bw: bandwidth in Kbps - Kilo bits per sec
3050 *
3051 * Save BW information of VSI type node for post replay use.
3052 */
3053static int
3054ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3055 enum ice_rl_type rl_type, u32 bw)
3056{
3057 struct ice_vsi_ctx *vsi_ctx;
3058
3059 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3060 return -EINVAL;
3061 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3062 if (!vsi_ctx)
3063 return -EINVAL;
3064 switch (rl_type) {
3065 case ICE_MIN_BW:
3066 ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3067 break;
3068 case ICE_MAX_BW:
3069 ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3070 break;
3071 case ICE_SHARED_BW:
3072 ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3073 break;
3074 default:
3075 return -EINVAL;
3076 }
3077 return 0;
3078}
3079
3080/**
3081 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3082 * @hw: pointer to the HW struct
3083 * @bw: bandwidth in Kbps
3084 *
3085 * This function calculates the wakeup parameter of RL profile.
3086 */
3087static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3088{
3089 s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3090 s32 wakeup_f_int;
3091 u16 wakeup = 0;
3092
3093 /* Get the wakeup integer value */
3094 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3095 wakeup_int = div64_long(hw->psm_clk_freq, bytes_per_sec);
3096 if (wakeup_int > 63) {
3097 wakeup = (u16)((1 << 15) | wakeup_int);
3098 } else {
3099 /* Calculate fraction value up to 4 decimals
3100 * Convert Integer value to a constant multiplier
3101 */
3102 wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3103 wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
3104 hw->psm_clk_freq, bytes_per_sec);
3105
3106 /* Get Fraction value */
3107 wakeup_f = wakeup_a - wakeup_b;
3108
3109 /* Round up the Fractional value via Ceil(Fractional value) */
3110 if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
3111 wakeup_f += 1;
3112
3113 wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
3114 ICE_RL_PROF_MULTIPLIER);
3115 wakeup |= (u16)(wakeup_int << 9);
3116 wakeup |= (u16)(0x1ff & wakeup_f_int);
3117 }
3118
3119 return wakeup;
3120}
3121
3122/**
3123 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3124 * @hw: pointer to the HW struct
3125 * @bw: bandwidth in Kbps
3126 * @profile: profile parameters to return
3127 *
3128 * This function converts the BW to profile structure format.
3129 */
3130static int
3131ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3132 struct ice_aqc_rl_profile_elem *profile)
3133{
3134 s64 bytes_per_sec, ts_rate, mv_tmp;
3135 int status = -EINVAL;
3136 bool found = false;
3137 s32 encode = 0;
3138 s64 mv = 0;
3139 s32 i;
3140
3141 /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3142 if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3143 return status;
3144
3145 /* Bytes per second from Kbps */
3146 bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
3147
3148 /* encode is 6 bits but really useful are 5 bits */
3149 for (i = 0; i < 64; i++) {
3150 u64 pow_result = BIT_ULL(i);
3151
3152 ts_rate = div64_long((s64)hw->psm_clk_freq,
3153 pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3154 if (ts_rate <= 0)
3155 continue;
3156
3157 /* Multiplier value */
3158 mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3159 ts_rate);
3160
3161 /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3162 mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3163
3164 /* First multiplier value greater than the given
3165 * accuracy bytes
3166 */
3167 if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3168 encode = i;
3169 found = true;
3170 break;
3171 }
3172 }
3173 if (found) {
3174 u16 wm;
3175
3176 wm = ice_sched_calc_wakeup(hw, bw);
3177 profile->rl_multiply = cpu_to_le16(mv);
3178 profile->wake_up_calc = cpu_to_le16(wm);
3179 profile->rl_encode = cpu_to_le16(encode);
3180 status = 0;
3181 } else {
3182 status = -ENOENT;
3183 }
3184
3185 return status;
3186}
3187
3188/**
3189 * ice_sched_add_rl_profile - add RL profile
3190 * @pi: port information structure
3191 * @rl_type: type of rate limit BW - min, max, or shared
3192 * @bw: bandwidth in Kbps - Kilo bits per sec
3193 * @layer_num: specifies in which layer to create profile
3194 *
3195 * This function first checks the existing list for corresponding BW
3196 * parameter. If it exists, it returns the associated profile otherwise
3197 * it creates a new rate limit profile for requested BW, and adds it to
3198 * the HW DB and local list. It returns the new profile or null on error.
3199 * The caller needs to hold the scheduler lock.
3200 */
3201static struct ice_aqc_rl_profile_info *
3202ice_sched_add_rl_profile(struct ice_port_info *pi,
3203 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3204{
3205 struct ice_aqc_rl_profile_info *rl_prof_elem;
3206 u16 profiles_added = 0, num_profiles = 1;
3207 struct ice_aqc_rl_profile_elem *buf;
3208 struct ice_hw *hw;
3209 u8 profile_type;
3210 int status;
3211
3212 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3213 return NULL;
3214 switch (rl_type) {
3215 case ICE_MIN_BW:
3216 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3217 break;
3218 case ICE_MAX_BW:
3219 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3220 break;
3221 case ICE_SHARED_BW:
3222 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3223 break;
3224 default:
3225 return NULL;
3226 }
3227
3228 if (!pi)
3229 return NULL;
3230 hw = pi->hw;
3231 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3232 list_entry)
3233 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3234 profile_type && rl_prof_elem->bw == bw)
3235 /* Return existing profile ID info */
3236 return rl_prof_elem;
3237
3238 /* Create new profile ID */
3239 rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
3240 GFP_KERNEL);
3241
3242 if (!rl_prof_elem)
3243 return NULL;
3244
3245 status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3246 if (status)
3247 goto exit_add_rl_prof;
3248
3249 rl_prof_elem->bw = bw;
3250 /* layer_num is zero relative, and fw expects level from 1 to 9 */
3251 rl_prof_elem->profile.level = layer_num + 1;
3252 rl_prof_elem->profile.flags = profile_type;
3253 rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
3254
3255 /* Create new entry in HW DB */
3256 buf = &rl_prof_elem->profile;
3257 status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3258 &profiles_added, NULL);
3259 if (status || profiles_added != num_profiles)
3260 goto exit_add_rl_prof;
3261
3262 /* Good entry - add in the list */
3263 rl_prof_elem->prof_id_ref = 0;
3264 list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
3265 return rl_prof_elem;
3266
3267exit_add_rl_prof:
3268 devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
3269 return NULL;
3270}
3271
3272/**
3273 * ice_sched_cfg_node_bw_lmt - configure node sched params
3274 * @hw: pointer to the HW struct
3275 * @node: sched node to configure
3276 * @rl_type: rate limit type CIR, EIR, or shared
3277 * @rl_prof_id: rate limit profile ID
3278 *
3279 * This function configures node element's BW limit.
3280 */
3281static int
3282ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3283 enum ice_rl_type rl_type, u16 rl_prof_id)
3284{
3285 struct ice_aqc_txsched_elem_data buf;
3286 struct ice_aqc_txsched_elem *data;
3287
3288 buf = node->info;
3289 data = &buf.data;
3290 switch (rl_type) {
3291 case ICE_MIN_BW:
3292 data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
3293 data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3294 break;
3295 case ICE_MAX_BW:
3296 /* EIR BW and Shared BW profiles are mutually exclusive and
3297 * hence only one of them may be set for any given element
3298 */
3299 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3300 return -EIO;
3301 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3302 data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
3303 break;
3304 case ICE_SHARED_BW:
3305 /* Check for removing shared BW */
3306 if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
3307 /* remove shared profile */
3308 data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
3309 data->srl_id = 0; /* clear SRL field */
3310
3311 /* enable back EIR to default profile */
3312 data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
3313 data->eir_bw.bw_profile_idx =
3314 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
3315 break;
3316 }
3317 /* EIR BW and Shared BW profiles are mutually exclusive and
3318 * hence only one of them may be set for any given element
3319 */
3320 if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
3321 (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
3322 ICE_SCHED_DFLT_RL_PROF_ID))
3323 return -EIO;
3324 /* EIR BW is set to default, disable it */
3325 data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
3326 /* Okay to enable shared BW now */
3327 data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
3328 data->srl_id = cpu_to_le16(rl_prof_id);
3329 break;
3330 default:
3331 /* Unknown rate limit type */
3332 return -EINVAL;
3333 }
3334
3335 /* Configure element */
3336 return ice_sched_update_elem(hw, node, &buf);
3337}
3338
3339/**
3340 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
3341 * @node: sched node
3342 * @rl_type: rate limit type
3343 *
3344 * If existing profile matches, it returns the corresponding rate
3345 * limit profile ID, otherwise it returns an invalid ID as error.
3346 */
3347static u16
3348ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
3349 enum ice_rl_type rl_type)
3350{
3351 u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
3352 struct ice_aqc_txsched_elem *data;
3353
3354 data = &node->info.data;
3355 switch (rl_type) {
3356 case ICE_MIN_BW:
3357 if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
3358 rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
3359 break;
3360 case ICE_MAX_BW:
3361 if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
3362 rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
3363 break;
3364 case ICE_SHARED_BW:
3365 if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
3366 rl_prof_id = le16_to_cpu(data->srl_id);
3367 break;
3368 default:
3369 break;
3370 }
3371
3372 return rl_prof_id;
3373}
3374
3375/**
3376 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
3377 * @pi: port information structure
3378 * @rl_type: type of rate limit BW - min, max, or shared
3379 * @layer_index: layer index
3380 *
3381 * This function returns requested profile creation layer.
3382 */
3383static u8
3384ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
3385 u8 layer_index)
3386{
3387 struct ice_hw *hw = pi->hw;
3388
3389 if (layer_index >= hw->num_tx_sched_layers)
3390 return ICE_SCHED_INVAL_LAYER_NUM;
3391 switch (rl_type) {
3392 case ICE_MIN_BW:
3393 if (hw->layer_info[layer_index].max_cir_rl_profiles)
3394 return layer_index;
3395 break;
3396 case ICE_MAX_BW:
3397 if (hw->layer_info[layer_index].max_eir_rl_profiles)
3398 return layer_index;
3399 break;
3400 case ICE_SHARED_BW:
3401 /* if current layer doesn't support SRL profile creation
3402 * then try a layer up or down.
3403 */
3404 if (hw->layer_info[layer_index].max_srl_profiles)
3405 return layer_index;
3406 else if (layer_index < hw->num_tx_sched_layers - 1 &&
3407 hw->layer_info[layer_index + 1].max_srl_profiles)
3408 return layer_index + 1;
3409 else if (layer_index > 0 &&
3410 hw->layer_info[layer_index - 1].max_srl_profiles)
3411 return layer_index - 1;
3412 break;
3413 default:
3414 break;
3415 }
3416 return ICE_SCHED_INVAL_LAYER_NUM;
3417}
3418
3419/**
3420 * ice_sched_get_srl_node - get shared rate limit node
3421 * @node: tree node
3422 * @srl_layer: shared rate limit layer
3423 *
3424 * This function returns SRL node to be used for shared rate limit purpose.
3425 * The caller needs to hold scheduler lock.
3426 */
3427static struct ice_sched_node *
3428ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
3429{
3430 if (srl_layer > node->tx_sched_layer)
3431 return node->children[0];
3432 else if (srl_layer < node->tx_sched_layer)
3433 /* Node can't be created without a parent. It will always
3434 * have a valid parent except root node.
3435 */
3436 return node->parent;
3437 else
3438 return node;
3439}
3440
3441/**
3442 * ice_sched_rm_rl_profile - remove RL profile ID
3443 * @pi: port information structure
3444 * @layer_num: layer number where profiles are saved
3445 * @profile_type: profile type like EIR, CIR, or SRL
3446 * @profile_id: profile ID to remove
3447 *
3448 * This function removes rate limit profile from layer 'layer_num' of type
3449 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
3450 * scheduler lock.
3451 */
3452static int
3453ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
3454 u16 profile_id)
3455{
3456 struct ice_aqc_rl_profile_info *rl_prof_elem;
3457 int status = 0;
3458
3459 if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3460 return -EINVAL;
3461 /* Check the existing list for RL profile */
3462 list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
3463 list_entry)
3464 if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3465 profile_type &&
3466 le16_to_cpu(rl_prof_elem->profile.profile_id) ==
3467 profile_id) {
3468 if (rl_prof_elem->prof_id_ref)
3469 rl_prof_elem->prof_id_ref--;
3470
3471 /* Remove old profile ID from database */
3472 status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
3473 if (status && status != -EBUSY)
3474 ice_debug(pi->hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
3475 break;
3476 }
3477 if (status == -EBUSY)
3478 status = 0;
3479 return status;
3480}
3481
3482/**
3483 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
3484 * @pi: port information structure
3485 * @node: pointer to node structure
3486 * @rl_type: rate limit type min, max, or shared
3487 * @layer_num: layer number where RL profiles are saved
3488 *
3489 * This function configures node element's BW rate limit profile ID of
3490 * type CIR, EIR, or SRL to default. This function needs to be called
3491 * with the scheduler lock held.
3492 */
3493static int
3494ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
3495 struct ice_sched_node *node,
3496 enum ice_rl_type rl_type, u8 layer_num)
3497{
3498 struct ice_hw *hw;
3499 u8 profile_type;
3500 u16 rl_prof_id;
3501 u16 old_id;
3502 int status;
3503
3504 hw = pi->hw;
3505 switch (rl_type) {
3506 case ICE_MIN_BW:
3507 profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3508 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3509 break;
3510 case ICE_MAX_BW:
3511 profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3512 rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
3513 break;
3514 case ICE_SHARED_BW:
3515 profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3516 /* No SRL is configured for default case */
3517 rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
3518 break;
3519 default:
3520 return -EINVAL;
3521 }
3522 /* Save existing RL prof ID for later clean up */
3523 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3524 /* Configure BW scheduling parameters */
3525 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3526 if (status)
3527 return status;
3528
3529 /* Remove stale RL profile ID */
3530 if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
3531 old_id == ICE_SCHED_INVAL_PROF_ID)
3532 return 0;
3533
3534 return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
3535}
3536
3537/**
3538 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
3539 * @pi: port information structure
3540 * @node: pointer to node structure
3541 * @layer_num: layer number where rate limit profiles are saved
3542 * @rl_type: rate limit type min, max, or shared
3543 * @bw: bandwidth value
3544 *
3545 * This function prepares node element's bandwidth to SRL or EIR exclusively.
3546 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
3547 * them may be set for any given element. This function needs to be called
3548 * with the scheduler lock held.
3549 */
3550static int
3551ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
3552 struct ice_sched_node *node,
3553 u8 layer_num, enum ice_rl_type rl_type, u32 bw)
3554{
3555 if (rl_type == ICE_SHARED_BW) {
3556 /* SRL node passed in this case, it may be different node */
3557 if (bw == ICE_SCHED_DFLT_BW)
3558 /* SRL being removed, ice_sched_cfg_node_bw_lmt()
3559 * enables EIR to default. EIR is not set in this
3560 * case, so no additional action is required.
3561 */
3562 return 0;
3563
3564 /* SRL being configured, set EIR to default here.
3565 * ice_sched_cfg_node_bw_lmt() disables EIR when it
3566 * configures SRL
3567 */
3568 return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
3569 layer_num);
3570 } else if (rl_type == ICE_MAX_BW &&
3571 node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
3572 /* Remove Shared profile. Set default shared BW call
3573 * removes shared profile for a node.
3574 */
3575 return ice_sched_set_node_bw_dflt(pi, node,
3576 ICE_SHARED_BW,
3577 layer_num);
3578 }
3579 return 0;
3580}
3581
3582/**
3583 * ice_sched_set_node_bw - set node's bandwidth
3584 * @pi: port information structure
3585 * @node: tree node
3586 * @rl_type: rate limit type min, max, or shared
3587 * @bw: bandwidth in Kbps - Kilo bits per sec
3588 * @layer_num: layer number
3589 *
3590 * This function adds new profile corresponding to requested BW, configures
3591 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
3592 * ID from local database. The caller needs to hold scheduler lock.
3593 */
3594int
3595ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
3596 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
3597{
3598 struct ice_aqc_rl_profile_info *rl_prof_info;
3599 struct ice_hw *hw = pi->hw;
3600 u16 old_id, rl_prof_id;
3601 int status = -EINVAL;
3602
3603 rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
3604 if (!rl_prof_info)
3605 return status;
3606
3607 rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
3608
3609 /* Save existing RL prof ID for later clean up */
3610 old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
3611 /* Configure BW scheduling parameters */
3612 status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
3613 if (status)
3614 return status;
3615
3616 /* New changes has been applied */
3617 /* Increment the profile ID reference count */
3618 rl_prof_info->prof_id_ref++;
3619
3620 /* Check for old ID removal */
3621 if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
3622 old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
3623 return 0;
3624
3625 return ice_sched_rm_rl_profile(pi, layer_num,
3626 rl_prof_info->profile.flags &
3627 ICE_AQC_RL_PROFILE_TYPE_M, old_id);
3628}
3629
3630/**
3631 * ice_sched_set_node_priority - set node's priority
3632 * @pi: port information structure
3633 * @node: tree node
3634 * @priority: number 0-7 representing priority among siblings
3635 *
3636 * This function sets priority of a node among it's siblings.
3637 */
3638int
3639ice_sched_set_node_priority(struct ice_port_info *pi, struct ice_sched_node *node,
3640 u16 priority)
3641{
3642 struct ice_aqc_txsched_elem_data buf;
3643 struct ice_aqc_txsched_elem *data;
3644
3645 buf = node->info;
3646 data = &buf.data;
3647
3648 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
3649 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_PRIO_M, priority);
3650
3651 return ice_sched_update_elem(pi->hw, node, &buf);
3652}
3653
3654/**
3655 * ice_sched_set_node_weight - set node's weight
3656 * @pi: port information structure
3657 * @node: tree node
3658 * @weight: number 1-200 representing weight for WFQ
3659 *
3660 * This function sets weight of the node for WFQ algorithm.
3661 */
3662int
3663ice_sched_set_node_weight(struct ice_port_info *pi, struct ice_sched_node *node, u16 weight)
3664{
3665 struct ice_aqc_txsched_elem_data buf;
3666 struct ice_aqc_txsched_elem *data;
3667
3668 buf = node->info;
3669 data = &buf.data;
3670
3671 data->valid_sections = ICE_AQC_ELEM_VALID_CIR | ICE_AQC_ELEM_VALID_EIR |
3672 ICE_AQC_ELEM_VALID_GENERIC;
3673 data->cir_bw.bw_alloc = cpu_to_le16(weight);
3674 data->eir_bw.bw_alloc = cpu_to_le16(weight);
3675
3676 data->generic |= FIELD_PREP(ICE_AQC_ELEM_GENERIC_SP_M, 0x0);
3677
3678 return ice_sched_update_elem(pi->hw, node, &buf);
3679}
3680
3681/**
3682 * ice_sched_set_node_bw_lmt - set node's BW limit
3683 * @pi: port information structure
3684 * @node: tree node
3685 * @rl_type: rate limit type min, max, or shared
3686 * @bw: bandwidth in Kbps - Kilo bits per sec
3687 *
3688 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
3689 * EIR, or SRL. The caller needs to hold scheduler lock.
3690 */
3691int
3692ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
3693 enum ice_rl_type rl_type, u32 bw)
3694{
3695 struct ice_sched_node *cfg_node = node;
3696 int status;
3697
3698 struct ice_hw *hw;
3699 u8 layer_num;
3700
3701 if (!pi)
3702 return -EINVAL;
3703 hw = pi->hw;
3704 /* Remove unused RL profile IDs from HW and SW DB */
3705 ice_sched_rm_unused_rl_prof(pi);
3706 layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
3707 node->tx_sched_layer);
3708 if (layer_num >= hw->num_tx_sched_layers)
3709 return -EINVAL;
3710
3711 if (rl_type == ICE_SHARED_BW) {
3712 /* SRL node may be different */
3713 cfg_node = ice_sched_get_srl_node(node, layer_num);
3714 if (!cfg_node)
3715 return -EIO;
3716 }
3717 /* EIR BW and Shared BW profiles are mutually exclusive and
3718 * hence only one of them may be set for any given element
3719 */
3720 status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
3721 bw);
3722 if (status)
3723 return status;
3724 if (bw == ICE_SCHED_DFLT_BW)
3725 return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
3726 layer_num);
3727 return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
3728}
3729
3730/**
3731 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
3732 * @pi: port information structure
3733 * @node: pointer to node structure
3734 * @rl_type: rate limit type min, max, or shared
3735 *
3736 * This function configures node element's BW rate limit profile ID of
3737 * type CIR, EIR, or SRL to default. This function needs to be called
3738 * with the scheduler lock held.
3739 */
3740static int
3741ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
3742 struct ice_sched_node *node,
3743 enum ice_rl_type rl_type)
3744{
3745 return ice_sched_set_node_bw_lmt(pi, node, rl_type,
3746 ICE_SCHED_DFLT_BW);
3747}
3748
3749/**
3750 * ice_sched_validate_srl_node - Check node for SRL applicability
3751 * @node: sched node to configure
3752 * @sel_layer: selected SRL layer
3753 *
3754 * This function checks if the SRL can be applied to a selected layer node on
3755 * behalf of the requested node (first argument). This function needs to be
3756 * called with scheduler lock held.
3757 */
3758static int
3759ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
3760{
3761 /* SRL profiles are not available on all layers. Check if the
3762 * SRL profile can be applied to a node above or below the
3763 * requested node. SRL configuration is possible only if the
3764 * selected layer's node has single child.
3765 */
3766 if (sel_layer == node->tx_sched_layer ||
3767 ((sel_layer == node->tx_sched_layer + 1) &&
3768 node->num_children == 1) ||
3769 ((sel_layer == node->tx_sched_layer - 1) &&
3770 (node->parent && node->parent->num_children == 1)))
3771 return 0;
3772
3773 return -EIO;
3774}
3775
3776/**
3777 * ice_sched_save_q_bw - save queue node's BW information
3778 * @q_ctx: queue context structure
3779 * @rl_type: rate limit type min, max, or shared
3780 * @bw: bandwidth in Kbps - Kilo bits per sec
3781 *
3782 * Save BW information of queue type node for post replay use.
3783 */
3784static int
3785ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
3786{
3787 switch (rl_type) {
3788 case ICE_MIN_BW:
3789 ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
3790 break;
3791 case ICE_MAX_BW:
3792 ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
3793 break;
3794 case ICE_SHARED_BW:
3795 ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
3796 break;
3797 default:
3798 return -EINVAL;
3799 }
3800 return 0;
3801}
3802
3803/**
3804 * ice_sched_set_q_bw_lmt - sets queue BW limit
3805 * @pi: port information structure
3806 * @vsi_handle: sw VSI handle
3807 * @tc: traffic class
3808 * @q_handle: software queue handle
3809 * @rl_type: min, max, or shared
3810 * @bw: bandwidth in Kbps
3811 *
3812 * This function sets BW limit of queue scheduling node.
3813 */
3814static int
3815ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3816 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3817{
3818 struct ice_sched_node *node;
3819 struct ice_q_ctx *q_ctx;
3820 int status = -EINVAL;
3821
3822 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3823 return -EINVAL;
3824 mutex_lock(&pi->sched_lock);
3825 q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
3826 if (!q_ctx)
3827 goto exit_q_bw_lmt;
3828 node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
3829 if (!node) {
3830 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
3831 goto exit_q_bw_lmt;
3832 }
3833
3834 /* Return error if it is not a leaf node */
3835 if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
3836 goto exit_q_bw_lmt;
3837
3838 /* SRL bandwidth layer selection */
3839 if (rl_type == ICE_SHARED_BW) {
3840 u8 sel_layer; /* selected layer */
3841
3842 sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
3843 node->tx_sched_layer);
3844 if (sel_layer >= pi->hw->num_tx_sched_layers) {
3845 status = -EINVAL;
3846 goto exit_q_bw_lmt;
3847 }
3848 status = ice_sched_validate_srl_node(node, sel_layer);
3849 if (status)
3850 goto exit_q_bw_lmt;
3851 }
3852
3853 if (bw == ICE_SCHED_DFLT_BW)
3854 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3855 else
3856 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3857
3858 if (!status)
3859 status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
3860
3861exit_q_bw_lmt:
3862 mutex_unlock(&pi->sched_lock);
3863 return status;
3864}
3865
3866/**
3867 * ice_cfg_q_bw_lmt - configure queue BW limit
3868 * @pi: port information structure
3869 * @vsi_handle: sw VSI handle
3870 * @tc: traffic class
3871 * @q_handle: software queue handle
3872 * @rl_type: min, max, or shared
3873 * @bw: bandwidth in Kbps
3874 *
3875 * This function configures BW limit of queue scheduling node.
3876 */
3877int
3878ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3879 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
3880{
3881 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3882 bw);
3883}
3884
3885/**
3886 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
3887 * @pi: port information structure
3888 * @vsi_handle: sw VSI handle
3889 * @tc: traffic class
3890 * @q_handle: software queue handle
3891 * @rl_type: min, max, or shared
3892 *
3893 * This function configures BW default limit of queue scheduling node.
3894 */
3895int
3896ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3897 u16 q_handle, enum ice_rl_type rl_type)
3898{
3899 return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
3900 ICE_SCHED_DFLT_BW);
3901}
3902
3903/**
3904 * ice_sched_get_node_by_id_type - get node from ID type
3905 * @pi: port information structure
3906 * @id: identifier
3907 * @agg_type: type of aggregator
3908 * @tc: traffic class
3909 *
3910 * This function returns node identified by ID of type aggregator, and
3911 * based on traffic class (TC). This function needs to be called with
3912 * the scheduler lock held.
3913 */
3914static struct ice_sched_node *
3915ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
3916 enum ice_agg_type agg_type, u8 tc)
3917{
3918 struct ice_sched_node *node = NULL;
3919
3920 switch (agg_type) {
3921 case ICE_AGG_TYPE_VSI: {
3922 struct ice_vsi_ctx *vsi_ctx;
3923 u16 vsi_handle = (u16)id;
3924
3925 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3926 break;
3927 /* Get sched_vsi_info */
3928 vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3929 if (!vsi_ctx)
3930 break;
3931 node = vsi_ctx->sched.vsi_node[tc];
3932 break;
3933 }
3934
3935 case ICE_AGG_TYPE_AGG: {
3936 struct ice_sched_node *tc_node;
3937
3938 tc_node = ice_sched_get_tc_node(pi, tc);
3939 if (tc_node)
3940 node = ice_sched_get_agg_node(pi, tc_node, id);
3941 break;
3942 }
3943
3944 default:
3945 break;
3946 }
3947
3948 return node;
3949}
3950
3951/**
3952 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
3953 * @pi: port information structure
3954 * @id: ID (software VSI handle or AGG ID)
3955 * @agg_type: aggregator type (VSI or AGG type node)
3956 * @tc: traffic class
3957 * @rl_type: min or max
3958 * @bw: bandwidth in Kbps
3959 *
3960 * This function sets BW limit of VSI or Aggregator scheduling node
3961 * based on TC information from passed in argument BW.
3962 */
3963int
3964ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
3965 enum ice_agg_type agg_type, u8 tc,
3966 enum ice_rl_type rl_type, u32 bw)
3967{
3968 struct ice_sched_node *node;
3969 int status = -EINVAL;
3970
3971 if (!pi)
3972 return status;
3973
3974 if (rl_type == ICE_UNKNOWN_BW)
3975 return status;
3976
3977 mutex_lock(&pi->sched_lock);
3978 node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
3979 if (!node) {
3980 ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
3981 goto exit_set_node_bw_lmt_per_tc;
3982 }
3983 if (bw == ICE_SCHED_DFLT_BW)
3984 status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
3985 else
3986 status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
3987
3988exit_set_node_bw_lmt_per_tc:
3989 mutex_unlock(&pi->sched_lock);
3990 return status;
3991}
3992
3993/**
3994 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3995 * @pi: port information structure
3996 * @vsi_handle: software VSI handle
3997 * @tc: traffic class
3998 * @rl_type: min or max
3999 * @bw: bandwidth in Kbps
4000 *
4001 * This function configures BW limit of VSI scheduling node based on TC
4002 * information.
4003 */
4004int
4005ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4006 enum ice_rl_type rl_type, u32 bw)
4007{
4008 int status;
4009
4010 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4011 ICE_AGG_TYPE_VSI,
4012 tc, rl_type, bw);
4013 if (!status) {
4014 mutex_lock(&pi->sched_lock);
4015 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4016 mutex_unlock(&pi->sched_lock);
4017 }
4018 return status;
4019}
4020
4021/**
4022 * ice_cfg_vsi_bw_dflt_lmt_per_tc - configure default VSI BW limit per TC
4023 * @pi: port information structure
4024 * @vsi_handle: software VSI handle
4025 * @tc: traffic class
4026 * @rl_type: min or max
4027 *
4028 * This function configures default BW limit of VSI scheduling node based on TC
4029 * information.
4030 */
4031int
4032ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4033 enum ice_rl_type rl_type)
4034{
4035 int status;
4036
4037 status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
4038 ICE_AGG_TYPE_VSI,
4039 tc, rl_type,
4040 ICE_SCHED_DFLT_BW);
4041 if (!status) {
4042 mutex_lock(&pi->sched_lock);
4043 status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
4044 ICE_SCHED_DFLT_BW);
4045 mutex_unlock(&pi->sched_lock);
4046 }
4047 return status;
4048}
4049
4050/**
4051 * ice_cfg_rl_burst_size - Set burst size value
4052 * @hw: pointer to the HW struct
4053 * @bytes: burst size in bytes
4054 *
4055 * This function configures/set the burst size to requested new value. The new
4056 * burst size value is used for future rate limit calls. It doesn't change the
4057 * existing or previously created RL profiles.
4058 */
4059int ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
4060{
4061 u16 burst_size_to_prog;
4062
4063 if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
4064 bytes > ICE_MAX_BURST_SIZE_ALLOWED)
4065 return -EINVAL;
4066 if (ice_round_to_num(bytes, 64) <=
4067 ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
4068 /* 64 byte granularity case */
4069 /* Disable MSB granularity bit */
4070 burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
4071 /* round number to nearest 64 byte granularity */
4072 bytes = ice_round_to_num(bytes, 64);
4073 /* The value is in 64 byte chunks */
4074 burst_size_to_prog |= (u16)(bytes / 64);
4075 } else {
4076 /* k bytes granularity case */
4077 /* Enable MSB granularity bit */
4078 burst_size_to_prog = ICE_KBYTE_GRANULARITY;
4079 /* round number to nearest 1024 granularity */
4080 bytes = ice_round_to_num(bytes, 1024);
4081 /* check rounding doesn't go beyond allowed */
4082 if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
4083 bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
4084 /* The value is in k bytes */
4085 burst_size_to_prog |= (u16)(bytes / 1024);
4086 }
4087 hw->max_burst_size = burst_size_to_prog;
4088 return 0;
4089}
4090
4091/**
4092 * ice_sched_replay_node_prio - re-configure node priority
4093 * @hw: pointer to the HW struct
4094 * @node: sched node to configure
4095 * @priority: priority value
4096 *
4097 * This function configures node element's priority value. It
4098 * needs to be called with scheduler lock held.
4099 */
4100static int
4101ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
4102 u8 priority)
4103{
4104 struct ice_aqc_txsched_elem_data buf;
4105 struct ice_aqc_txsched_elem *data;
4106 int status;
4107
4108 buf = node->info;
4109 data = &buf.data;
4110 data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
4111 data->generic = priority;
4112
4113 /* Configure element */
4114 status = ice_sched_update_elem(hw, node, &buf);
4115 return status;
4116}
4117
4118/**
4119 * ice_sched_replay_node_bw - replay node(s) BW
4120 * @hw: pointer to the HW struct
4121 * @node: sched node to configure
4122 * @bw_t_info: BW type information
4123 *
4124 * This function restores node's BW from bw_t_info. The caller needs
4125 * to hold the scheduler lock.
4126 */
4127static int
4128ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
4129 struct ice_bw_type_info *bw_t_info)
4130{
4131 struct ice_port_info *pi = hw->port_info;
4132 int status = -EINVAL;
4133 u16 bw_alloc;
4134
4135 if (!node)
4136 return status;
4137 if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
4138 return 0;
4139 if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
4140 status = ice_sched_replay_node_prio(hw, node,
4141 bw_t_info->generic);
4142 if (status)
4143 return status;
4144 }
4145 if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
4146 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
4147 bw_t_info->cir_bw.bw);
4148 if (status)
4149 return status;
4150 }
4151 if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
4152 bw_alloc = bw_t_info->cir_bw.bw_alloc;
4153 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
4154 bw_alloc);
4155 if (status)
4156 return status;
4157 }
4158 if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
4159 status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
4160 bw_t_info->eir_bw.bw);
4161 if (status)
4162 return status;
4163 }
4164 if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
4165 bw_alloc = bw_t_info->eir_bw.bw_alloc;
4166 status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
4167 bw_alloc);
4168 if (status)
4169 return status;
4170 }
4171 if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
4172 status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
4173 bw_t_info->shared_bw);
4174 return status;
4175}
4176
4177/**
4178 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
4179 * @pi: port info struct
4180 * @tc_bitmap: 8 bits TC bitmap to check
4181 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
4182 *
4183 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
4184 * may be missing, it returns enabled TCs. This function needs to be called with
4185 * scheduler lock held.
4186 */
4187static void
4188ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi,
4189 unsigned long *tc_bitmap,
4190 unsigned long *ena_tc_bitmap)
4191{
4192 u8 tc;
4193
4194 /* Some TC(s) may be missing after reset, adjust for replay */
4195 ice_for_each_traffic_class(tc)
4196 if (ice_is_tc_ena(*tc_bitmap, tc) &&
4197 (ice_sched_get_tc_node(pi, tc)))
4198 set_bit(tc, ena_tc_bitmap);
4199}
4200
4201/**
4202 * ice_sched_replay_agg - recreate aggregator node(s)
4203 * @hw: pointer to the HW struct
4204 *
4205 * This function recreate aggregator type nodes which are not replayed earlier.
4206 * It also replay aggregator BW information. These aggregator nodes are not
4207 * associated with VSI type node yet.
4208 */
4209void ice_sched_replay_agg(struct ice_hw *hw)
4210{
4211 struct ice_port_info *pi = hw->port_info;
4212 struct ice_sched_agg_info *agg_info;
4213
4214 mutex_lock(&pi->sched_lock);
4215 list_for_each_entry(agg_info, &hw->agg_list, list_entry)
4216 /* replay aggregator (re-create aggregator node) */
4217 if (!bitmap_equal(agg_info->tc_bitmap, agg_info->replay_tc_bitmap,
4218 ICE_MAX_TRAFFIC_CLASS)) {
4219 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4220 int status;
4221
4222 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4223 ice_sched_get_ena_tc_bitmap(pi,
4224 agg_info->replay_tc_bitmap,
4225 replay_bitmap);
4226 status = ice_sched_cfg_agg(hw->port_info,
4227 agg_info->agg_id,
4228 ICE_AGG_TYPE_AGG,
4229 replay_bitmap);
4230 if (status) {
4231 dev_info(ice_hw_to_dev(hw),
4232 "Replay agg id[%d] failed\n",
4233 agg_info->agg_id);
4234 /* Move on to next one */
4235 continue;
4236 }
4237 }
4238 mutex_unlock(&pi->sched_lock);
4239}
4240
4241/**
4242 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
4243 * @hw: pointer to the HW struct
4244 *
4245 * This function initialize aggregator(s) TC bitmap to zero. A required
4246 * preinit step for replaying aggregators.
4247 */
4248void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
4249{
4250 struct ice_port_info *pi = hw->port_info;
4251 struct ice_sched_agg_info *agg_info;
4252
4253 mutex_lock(&pi->sched_lock);
4254 list_for_each_entry(agg_info, &hw->agg_list, list_entry) {
4255 struct ice_sched_agg_vsi_info *agg_vsi_info;
4256
4257 agg_info->tc_bitmap[0] = 0;
4258 list_for_each_entry(agg_vsi_info, &agg_info->agg_vsi_list,
4259 list_entry)
4260 agg_vsi_info->tc_bitmap[0] = 0;
4261 }
4262 mutex_unlock(&pi->sched_lock);
4263}
4264
4265/**
4266 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
4267 * @hw: pointer to the HW struct
4268 * @vsi_handle: software VSI handle
4269 *
4270 * This function replays aggregator node, VSI to aggregator type nodes, and
4271 * their node bandwidth information. This function needs to be called with
4272 * scheduler lock held.
4273 */
4274static int ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4275{
4276 DECLARE_BITMAP(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4277 struct ice_sched_agg_vsi_info *agg_vsi_info;
4278 struct ice_port_info *pi = hw->port_info;
4279 struct ice_sched_agg_info *agg_info;
4280 int status;
4281
4282 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4283 if (!ice_is_vsi_valid(hw, vsi_handle))
4284 return -EINVAL;
4285 agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
4286 if (!agg_info)
4287 return 0; /* Not present in list - default Agg case */
4288 agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
4289 if (!agg_vsi_info)
4290 return 0; /* Not present in list - default Agg case */
4291 ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
4292 replay_bitmap);
4293 /* Replay aggregator node associated to vsi_handle */
4294 status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
4295 ICE_AGG_TYPE_AGG, replay_bitmap);
4296 if (status)
4297 return status;
4298
4299 bitmap_zero(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
4300 ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
4301 replay_bitmap);
4302 /* Move this VSI (vsi_handle) to above aggregator */
4303 return ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
4304 replay_bitmap);
4305}
4306
4307/**
4308 * ice_replay_vsi_agg - replay VSI to aggregator node
4309 * @hw: pointer to the HW struct
4310 * @vsi_handle: software VSI handle
4311 *
4312 * This function replays association of VSI to aggregator type nodes, and
4313 * node bandwidth information.
4314 */
4315int ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
4316{
4317 struct ice_port_info *pi = hw->port_info;
4318 int status;
4319
4320 mutex_lock(&pi->sched_lock);
4321 status = ice_sched_replay_vsi_agg(hw, vsi_handle);
4322 mutex_unlock(&pi->sched_lock);
4323 return status;
4324}
4325
4326/**
4327 * ice_sched_replay_q_bw - replay queue type node BW
4328 * @pi: port information structure
4329 * @q_ctx: queue context structure
4330 *
4331 * This function replays queue type node bandwidth. This function needs to be
4332 * called with scheduler lock held.
4333 */
4334int ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
4335{
4336 struct ice_sched_node *q_node;
4337
4338 /* Following also checks the presence of node in tree */
4339 q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4340 if (!q_node)
4341 return -EINVAL;
4342 return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
4343}