Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9/* For the CLR_() macros */
10#include <pthread.h>
11
12#include <subcmd/parse-options.h>
13#include "../util/cloexec.h"
14
15#include "bench.h"
16
17#include <errno.h>
18#include <sched.h>
19#include <stdio.h>
20#include <assert.h>
21#include <malloc.h>
22#include <signal.h>
23#include <stdlib.h>
24#include <string.h>
25#include <unistd.h>
26#include <sys/mman.h>
27#include <sys/time.h>
28#include <sys/resource.h>
29#include <sys/wait.h>
30#include <sys/prctl.h>
31#include <sys/types.h>
32#include <linux/kernel.h>
33#include <linux/time64.h>
34#include <linux/numa.h>
35#include <linux/zalloc.h>
36
37#include <numa.h>
38#include <numaif.h>
39
40#ifndef RUSAGE_THREAD
41# define RUSAGE_THREAD 1
42#endif
43
44/*
45 * Regular printout to the terminal, suppressed if -q is specified:
46 */
47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
48
49/*
50 * Debug printf:
51 */
52#undef dprintf
53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
54
55struct thread_data {
56 int curr_cpu;
57 cpu_set_t bind_cpumask;
58 int bind_node;
59 u8 *process_data;
60 int process_nr;
61 int thread_nr;
62 int task_nr;
63 unsigned int loops_done;
64 u64 val;
65 u64 runtime_ns;
66 u64 system_time_ns;
67 u64 user_time_ns;
68 double speed_gbs;
69 pthread_mutex_t *process_lock;
70};
71
72/* Parameters set by options: */
73
74struct params {
75 /* Startup synchronization: */
76 bool serialize_startup;
77
78 /* Task hierarchy: */
79 int nr_proc;
80 int nr_threads;
81
82 /* Working set sizes: */
83 const char *mb_global_str;
84 const char *mb_proc_str;
85 const char *mb_proc_locked_str;
86 const char *mb_thread_str;
87
88 double mb_global;
89 double mb_proc;
90 double mb_proc_locked;
91 double mb_thread;
92
93 /* Access patterns to the working set: */
94 bool data_reads;
95 bool data_writes;
96 bool data_backwards;
97 bool data_zero_memset;
98 bool data_rand_walk;
99 u32 nr_loops;
100 u32 nr_secs;
101 u32 sleep_usecs;
102
103 /* Working set initialization: */
104 bool init_zero;
105 bool init_random;
106 bool init_cpu0;
107
108 /* Misc options: */
109 int show_details;
110 int run_all;
111 int thp;
112
113 long bytes_global;
114 long bytes_process;
115 long bytes_process_locked;
116 long bytes_thread;
117
118 int nr_tasks;
119 bool show_quiet;
120
121 bool show_convergence;
122 bool measure_convergence;
123
124 int perturb_secs;
125 int nr_cpus;
126 int nr_nodes;
127
128 /* Affinity options -C and -N: */
129 char *cpu_list_str;
130 char *node_list_str;
131};
132
133
134/* Global, read-writable area, accessible to all processes and threads: */
135
136struct global_info {
137 u8 *data;
138
139 pthread_mutex_t startup_mutex;
140 pthread_cond_t startup_cond;
141 int nr_tasks_started;
142
143 pthread_mutex_t start_work_mutex;
144 pthread_cond_t start_work_cond;
145 int nr_tasks_working;
146 bool start_work;
147
148 pthread_mutex_t stop_work_mutex;
149 u64 bytes_done;
150
151 struct thread_data *threads;
152
153 /* Convergence latency measurement: */
154 bool all_converged;
155 bool stop_work;
156
157 int print_once;
158
159 struct params p;
160};
161
162static struct global_info *g = NULL;
163
164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
166
167struct params p0;
168
169static const struct option options[] = {
170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
172
173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
177
178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
181
182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
187
188
189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
193
194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
198 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
202
203 /* Special option string parsing callbacks: */
204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
205 "bind the first N tasks to these specific cpus (the rest is unbound)",
206 parse_cpus_opt),
207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
208 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
209 parse_nodes_opt),
210 OPT_END()
211};
212
213static const char * const bench_numa_usage[] = {
214 "perf bench numa <options>",
215 NULL
216};
217
218static const char * const numa_usage[] = {
219 "perf bench numa mem [<options>]",
220 NULL
221};
222
223/*
224 * To get number of numa nodes present.
225 */
226static int nr_numa_nodes(void)
227{
228 int i, nr_nodes = 0;
229
230 for (i = 0; i < g->p.nr_nodes; i++) {
231 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
232 nr_nodes++;
233 }
234
235 return nr_nodes;
236}
237
238/*
239 * To check if given numa node is present.
240 */
241static int is_node_present(int node)
242{
243 return numa_bitmask_isbitset(numa_nodes_ptr, node);
244}
245
246/*
247 * To check given numa node has cpus.
248 */
249static bool node_has_cpus(int node)
250{
251 struct bitmask *cpumask = numa_allocate_cpumask();
252 bool ret = false; /* fall back to nocpus */
253 int cpu;
254
255 BUG_ON(!cpumask);
256 if (!numa_node_to_cpus(node, cpumask)) {
257 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
258 if (numa_bitmask_isbitset(cpumask, cpu)) {
259 ret = true;
260 break;
261 }
262 }
263 }
264 numa_free_cpumask(cpumask);
265
266 return ret;
267}
268
269static cpu_set_t bind_to_cpu(int target_cpu)
270{
271 cpu_set_t orig_mask, mask;
272 int ret;
273
274 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
275 BUG_ON(ret);
276
277 CPU_ZERO(&mask);
278
279 if (target_cpu == -1) {
280 int cpu;
281
282 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
283 CPU_SET(cpu, &mask);
284 } else {
285 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
286 CPU_SET(target_cpu, &mask);
287 }
288
289 ret = sched_setaffinity(0, sizeof(mask), &mask);
290 BUG_ON(ret);
291
292 return orig_mask;
293}
294
295static cpu_set_t bind_to_node(int target_node)
296{
297 cpu_set_t orig_mask, mask;
298 int cpu;
299 int ret;
300
301 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
302 BUG_ON(ret);
303
304 CPU_ZERO(&mask);
305
306 if (target_node == NUMA_NO_NODE) {
307 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
308 CPU_SET(cpu, &mask);
309 } else {
310 struct bitmask *cpumask = numa_allocate_cpumask();
311
312 BUG_ON(!cpumask);
313 if (!numa_node_to_cpus(target_node, cpumask)) {
314 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
315 if (numa_bitmask_isbitset(cpumask, cpu))
316 CPU_SET(cpu, &mask);
317 }
318 }
319 numa_free_cpumask(cpumask);
320 }
321
322 ret = sched_setaffinity(0, sizeof(mask), &mask);
323 BUG_ON(ret);
324
325 return orig_mask;
326}
327
328static void bind_to_cpumask(cpu_set_t mask)
329{
330 int ret;
331
332 ret = sched_setaffinity(0, sizeof(mask), &mask);
333 BUG_ON(ret);
334}
335
336static void mempol_restore(void)
337{
338 int ret;
339
340 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
341
342 BUG_ON(ret);
343}
344
345static void bind_to_memnode(int node)
346{
347 struct bitmask *node_mask;
348 int ret;
349
350 if (node == NUMA_NO_NODE)
351 return;
352
353 node_mask = numa_allocate_nodemask();
354 BUG_ON(!node_mask);
355
356 numa_bitmask_clearall(node_mask);
357 numa_bitmask_setbit(node_mask, node);
358
359 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
360 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
361
362 numa_bitmask_free(node_mask);
363 BUG_ON(ret);
364}
365
366#define HPSIZE (2*1024*1024)
367
368#define set_taskname(fmt...) \
369do { \
370 char name[20]; \
371 \
372 snprintf(name, 20, fmt); \
373 prctl(PR_SET_NAME, name); \
374} while (0)
375
376static u8 *alloc_data(ssize_t bytes0, int map_flags,
377 int init_zero, int init_cpu0, int thp, int init_random)
378{
379 cpu_set_t orig_mask;
380 ssize_t bytes;
381 u8 *buf;
382 int ret;
383
384 if (!bytes0)
385 return NULL;
386
387 /* Allocate and initialize all memory on CPU#0: */
388 if (init_cpu0) {
389 int node = numa_node_of_cpu(0);
390
391 orig_mask = bind_to_node(node);
392 bind_to_memnode(node);
393 }
394
395 bytes = bytes0 + HPSIZE;
396
397 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
398 BUG_ON(buf == (void *)-1);
399
400 if (map_flags == MAP_PRIVATE) {
401 if (thp > 0) {
402 ret = madvise(buf, bytes, MADV_HUGEPAGE);
403 if (ret && !g->print_once) {
404 g->print_once = 1;
405 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
406 }
407 }
408 if (thp < 0) {
409 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
410 if (ret && !g->print_once) {
411 g->print_once = 1;
412 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
413 }
414 }
415 }
416
417 if (init_zero) {
418 bzero(buf, bytes);
419 } else {
420 /* Initialize random contents, different in each word: */
421 if (init_random) {
422 u64 *wbuf = (void *)buf;
423 long off = rand();
424 long i;
425
426 for (i = 0; i < bytes/8; i++)
427 wbuf[i] = i + off;
428 }
429 }
430
431 /* Align to 2MB boundary: */
432 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
433
434 /* Restore affinity: */
435 if (init_cpu0) {
436 bind_to_cpumask(orig_mask);
437 mempol_restore();
438 }
439
440 return buf;
441}
442
443static void free_data(void *data, ssize_t bytes)
444{
445 int ret;
446
447 if (!data)
448 return;
449
450 ret = munmap(data, bytes);
451 BUG_ON(ret);
452}
453
454/*
455 * Create a shared memory buffer that can be shared between processes, zeroed:
456 */
457static void * zalloc_shared_data(ssize_t bytes)
458{
459 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
460}
461
462/*
463 * Create a shared memory buffer that can be shared between processes:
464 */
465static void * setup_shared_data(ssize_t bytes)
466{
467 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
468}
469
470/*
471 * Allocate process-local memory - this will either be shared between
472 * threads of this process, or only be accessed by this thread:
473 */
474static void * setup_private_data(ssize_t bytes)
475{
476 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
477}
478
479/*
480 * Return a process-shared (global) mutex:
481 */
482static void init_global_mutex(pthread_mutex_t *mutex)
483{
484 pthread_mutexattr_t attr;
485
486 pthread_mutexattr_init(&attr);
487 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
488 pthread_mutex_init(mutex, &attr);
489}
490
491/*
492 * Return a process-shared (global) condition variable:
493 */
494static void init_global_cond(pthread_cond_t *cond)
495{
496 pthread_condattr_t attr;
497
498 pthread_condattr_init(&attr);
499 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
500 pthread_cond_init(cond, &attr);
501}
502
503static int parse_cpu_list(const char *arg)
504{
505 p0.cpu_list_str = strdup(arg);
506
507 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
508
509 return 0;
510}
511
512static int parse_setup_cpu_list(void)
513{
514 struct thread_data *td;
515 char *str0, *str;
516 int t;
517
518 if (!g->p.cpu_list_str)
519 return 0;
520
521 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
522
523 str0 = str = strdup(g->p.cpu_list_str);
524 t = 0;
525
526 BUG_ON(!str);
527
528 tprintf("# binding tasks to CPUs:\n");
529 tprintf("# ");
530
531 while (true) {
532 int bind_cpu, bind_cpu_0, bind_cpu_1;
533 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
534 int bind_len;
535 int step;
536 int mul;
537
538 tok = strsep(&str, ",");
539 if (!tok)
540 break;
541
542 tok_end = strstr(tok, "-");
543
544 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
545 if (!tok_end) {
546 /* Single CPU specified: */
547 bind_cpu_0 = bind_cpu_1 = atol(tok);
548 } else {
549 /* CPU range specified (for example: "5-11"): */
550 bind_cpu_0 = atol(tok);
551 bind_cpu_1 = atol(tok_end + 1);
552 }
553
554 step = 1;
555 tok_step = strstr(tok, "#");
556 if (tok_step) {
557 step = atol(tok_step + 1);
558 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
559 }
560
561 /*
562 * Mask length.
563 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
564 * where the _4 means the next 4 CPUs are allowed.
565 */
566 bind_len = 1;
567 tok_len = strstr(tok, "_");
568 if (tok_len) {
569 bind_len = atol(tok_len + 1);
570 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
571 }
572
573 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
574 mul = 1;
575 tok_mul = strstr(tok, "x");
576 if (tok_mul) {
577 mul = atol(tok_mul + 1);
578 BUG_ON(mul <= 0);
579 }
580
581 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
582
583 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
584 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
585 return -1;
586 }
587
588 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
589 BUG_ON(bind_cpu_0 > bind_cpu_1);
590
591 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
592 int i;
593
594 for (i = 0; i < mul; i++) {
595 int cpu;
596
597 if (t >= g->p.nr_tasks) {
598 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
599 goto out;
600 }
601 td = g->threads + t;
602
603 if (t)
604 tprintf(",");
605 if (bind_len > 1) {
606 tprintf("%2d/%d", bind_cpu, bind_len);
607 } else {
608 tprintf("%2d", bind_cpu);
609 }
610
611 CPU_ZERO(&td->bind_cpumask);
612 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
613 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
614 CPU_SET(cpu, &td->bind_cpumask);
615 }
616 t++;
617 }
618 }
619 }
620out:
621
622 tprintf("\n");
623
624 if (t < g->p.nr_tasks)
625 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
626
627 free(str0);
628 return 0;
629}
630
631static int parse_cpus_opt(const struct option *opt __maybe_unused,
632 const char *arg, int unset __maybe_unused)
633{
634 if (!arg)
635 return -1;
636
637 return parse_cpu_list(arg);
638}
639
640static int parse_node_list(const char *arg)
641{
642 p0.node_list_str = strdup(arg);
643
644 dprintf("got NODE list: {%s}\n", p0.node_list_str);
645
646 return 0;
647}
648
649static int parse_setup_node_list(void)
650{
651 struct thread_data *td;
652 char *str0, *str;
653 int t;
654
655 if (!g->p.node_list_str)
656 return 0;
657
658 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
659
660 str0 = str = strdup(g->p.node_list_str);
661 t = 0;
662
663 BUG_ON(!str);
664
665 tprintf("# binding tasks to NODEs:\n");
666 tprintf("# ");
667
668 while (true) {
669 int bind_node, bind_node_0, bind_node_1;
670 char *tok, *tok_end, *tok_step, *tok_mul;
671 int step;
672 int mul;
673
674 tok = strsep(&str, ",");
675 if (!tok)
676 break;
677
678 tok_end = strstr(tok, "-");
679
680 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
681 if (!tok_end) {
682 /* Single NODE specified: */
683 bind_node_0 = bind_node_1 = atol(tok);
684 } else {
685 /* NODE range specified (for example: "5-11"): */
686 bind_node_0 = atol(tok);
687 bind_node_1 = atol(tok_end + 1);
688 }
689
690 step = 1;
691 tok_step = strstr(tok, "#");
692 if (tok_step) {
693 step = atol(tok_step + 1);
694 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
695 }
696
697 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
698 mul = 1;
699 tok_mul = strstr(tok, "x");
700 if (tok_mul) {
701 mul = atol(tok_mul + 1);
702 BUG_ON(mul <= 0);
703 }
704
705 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
706
707 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
708 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
709 return -1;
710 }
711
712 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
713 BUG_ON(bind_node_0 > bind_node_1);
714
715 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
716 int i;
717
718 for (i = 0; i < mul; i++) {
719 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
720 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
721 goto out;
722 }
723 td = g->threads + t;
724
725 if (!t)
726 tprintf(" %2d", bind_node);
727 else
728 tprintf(",%2d", bind_node);
729
730 td->bind_node = bind_node;
731 t++;
732 }
733 }
734 }
735out:
736
737 tprintf("\n");
738
739 if (t < g->p.nr_tasks)
740 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
741
742 free(str0);
743 return 0;
744}
745
746static int parse_nodes_opt(const struct option *opt __maybe_unused,
747 const char *arg, int unset __maybe_unused)
748{
749 if (!arg)
750 return -1;
751
752 return parse_node_list(arg);
753}
754
755#define BIT(x) (1ul << x)
756
757static inline uint32_t lfsr_32(uint32_t lfsr)
758{
759 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
760 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
761}
762
763/*
764 * Make sure there's real data dependency to RAM (when read
765 * accesses are enabled), so the compiler, the CPU and the
766 * kernel (KSM, zero page, etc.) cannot optimize away RAM
767 * accesses:
768 */
769static inline u64 access_data(u64 *data, u64 val)
770{
771 if (g->p.data_reads)
772 val += *data;
773 if (g->p.data_writes)
774 *data = val + 1;
775 return val;
776}
777
778/*
779 * The worker process does two types of work, a forwards going
780 * loop and a backwards going loop.
781 *
782 * We do this so that on multiprocessor systems we do not create
783 * a 'train' of processing, with highly synchronized processes,
784 * skewing the whole benchmark.
785 */
786static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
787{
788 long words = bytes/sizeof(u64);
789 u64 *data = (void *)__data;
790 long chunk_0, chunk_1;
791 u64 *d0, *d, *d1;
792 long off;
793 long i;
794
795 BUG_ON(!data && words);
796 BUG_ON(data && !words);
797
798 if (!data)
799 return val;
800
801 /* Very simple memset() work variant: */
802 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
803 bzero(data, bytes);
804 return val;
805 }
806
807 /* Spread out by PID/TID nr and by loop nr: */
808 chunk_0 = words/nr_max;
809 chunk_1 = words/g->p.nr_loops;
810 off = nr*chunk_0 + loop*chunk_1;
811
812 while (off >= words)
813 off -= words;
814
815 if (g->p.data_rand_walk) {
816 u32 lfsr = nr + loop + val;
817 int j;
818
819 for (i = 0; i < words/1024; i++) {
820 long start, end;
821
822 lfsr = lfsr_32(lfsr);
823
824 start = lfsr % words;
825 end = min(start + 1024, words-1);
826
827 if (g->p.data_zero_memset) {
828 bzero(data + start, (end-start) * sizeof(u64));
829 } else {
830 for (j = start; j < end; j++)
831 val = access_data(data + j, val);
832 }
833 }
834 } else if (!g->p.data_backwards || (nr + loop) & 1) {
835 /* Process data forwards: */
836
837 d0 = data + off;
838 d = data + off + 1;
839 d1 = data + words;
840
841 for (;;) {
842 if (unlikely(d >= d1))
843 d = data;
844 if (unlikely(d == d0))
845 break;
846
847 val = access_data(d, val);
848
849 d++;
850 }
851 } else {
852 /* Process data backwards: */
853
854 d0 = data + off;
855 d = data + off - 1;
856 d1 = data + words;
857
858 for (;;) {
859 if (unlikely(d < data))
860 d = data + words-1;
861 if (unlikely(d == d0))
862 break;
863
864 val = access_data(d, val);
865
866 d--;
867 }
868 }
869
870 return val;
871}
872
873static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
874{
875 unsigned int cpu;
876
877 cpu = sched_getcpu();
878
879 g->threads[task_nr].curr_cpu = cpu;
880 prctl(0, bytes_worked);
881}
882
883/*
884 * Count the number of nodes a process's threads
885 * are spread out on.
886 *
887 * A count of 1 means that the process is compressed
888 * to a single node. A count of g->p.nr_nodes means it's
889 * spread out on the whole system.
890 */
891static int count_process_nodes(int process_nr)
892{
893 char *node_present;
894 int nodes;
895 int n, t;
896
897 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
898 BUG_ON(!node_present);
899 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
900 node_present[nodes] = 0;
901
902 for (t = 0; t < g->p.nr_threads; t++) {
903 struct thread_data *td;
904 int task_nr;
905 int node;
906
907 task_nr = process_nr*g->p.nr_threads + t;
908 td = g->threads + task_nr;
909
910 node = numa_node_of_cpu(td->curr_cpu);
911 if (node < 0) /* curr_cpu was likely still -1 */ {
912 free(node_present);
913 return 0;
914 }
915
916 node_present[node] = 1;
917 }
918
919 nodes = 0;
920
921 for (n = 0; n < g->p.nr_nodes; n++)
922 nodes += node_present[n];
923
924 free(node_present);
925 return nodes;
926}
927
928/*
929 * Count the number of distinct process-threads a node contains.
930 *
931 * A count of 1 means that the node contains only a single
932 * process. If all nodes on the system contain at most one
933 * process then we are well-converged.
934 */
935static int count_node_processes(int node)
936{
937 int processes = 0;
938 int t, p;
939
940 for (p = 0; p < g->p.nr_proc; p++) {
941 for (t = 0; t < g->p.nr_threads; t++) {
942 struct thread_data *td;
943 int task_nr;
944 int n;
945
946 task_nr = p*g->p.nr_threads + t;
947 td = g->threads + task_nr;
948
949 n = numa_node_of_cpu(td->curr_cpu);
950 if (n == node) {
951 processes++;
952 break;
953 }
954 }
955 }
956
957 return processes;
958}
959
960static void calc_convergence_compression(int *strong)
961{
962 unsigned int nodes_min, nodes_max;
963 int p;
964
965 nodes_min = -1;
966 nodes_max = 0;
967
968 for (p = 0; p < g->p.nr_proc; p++) {
969 unsigned int nodes = count_process_nodes(p);
970
971 if (!nodes) {
972 *strong = 0;
973 return;
974 }
975
976 nodes_min = min(nodes, nodes_min);
977 nodes_max = max(nodes, nodes_max);
978 }
979
980 /* Strong convergence: all threads compress on a single node: */
981 if (nodes_min == 1 && nodes_max == 1) {
982 *strong = 1;
983 } else {
984 *strong = 0;
985 tprintf(" {%d-%d}", nodes_min, nodes_max);
986 }
987}
988
989static void calc_convergence(double runtime_ns_max, double *convergence)
990{
991 unsigned int loops_done_min, loops_done_max;
992 int process_groups;
993 int *nodes;
994 int distance;
995 int nr_min;
996 int nr_max;
997 int strong;
998 int sum;
999 int nr;
1000 int node;
1001 int cpu;
1002 int t;
1003
1004 if (!g->p.show_convergence && !g->p.measure_convergence)
1005 return;
1006
1007 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008 BUG_ON(!nodes);
1009 for (node = 0; node < g->p.nr_nodes; node++)
1010 nodes[node] = 0;
1011
1012 loops_done_min = -1;
1013 loops_done_max = 0;
1014
1015 for (t = 0; t < g->p.nr_tasks; t++) {
1016 struct thread_data *td = g->threads + t;
1017 unsigned int loops_done;
1018
1019 cpu = td->curr_cpu;
1020
1021 /* Not all threads have written it yet: */
1022 if (cpu < 0)
1023 continue;
1024
1025 node = numa_node_of_cpu(cpu);
1026
1027 nodes[node]++;
1028
1029 loops_done = td->loops_done;
1030 loops_done_min = min(loops_done, loops_done_min);
1031 loops_done_max = max(loops_done, loops_done_max);
1032 }
1033
1034 nr_max = 0;
1035 nr_min = g->p.nr_tasks;
1036 sum = 0;
1037
1038 for (node = 0; node < g->p.nr_nodes; node++) {
1039 if (!is_node_present(node))
1040 continue;
1041 nr = nodes[node];
1042 nr_min = min(nr, nr_min);
1043 nr_max = max(nr, nr_max);
1044 sum += nr;
1045 }
1046 BUG_ON(nr_min > nr_max);
1047
1048 BUG_ON(sum > g->p.nr_tasks);
1049
1050 if (0 && (sum < g->p.nr_tasks)) {
1051 free(nodes);
1052 return;
1053 }
1054
1055 /*
1056 * Count the number of distinct process groups present
1057 * on nodes - when we are converged this will decrease
1058 * to g->p.nr_proc:
1059 */
1060 process_groups = 0;
1061
1062 for (node = 0; node < g->p.nr_nodes; node++) {
1063 int processes;
1064
1065 if (!is_node_present(node))
1066 continue;
1067 processes = count_node_processes(node);
1068 nr = nodes[node];
1069 tprintf(" %2d/%-2d", nr, processes);
1070
1071 process_groups += processes;
1072 }
1073
1074 distance = nr_max - nr_min;
1075
1076 tprintf(" [%2d/%-2d]", distance, process_groups);
1077
1078 tprintf(" l:%3d-%-3d (%3d)",
1079 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080
1081 if (loops_done_min && loops_done_max) {
1082 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083
1084 tprintf(" [%4.1f%%]", skew * 100.0);
1085 }
1086
1087 calc_convergence_compression(&strong);
1088
1089 if (strong && process_groups == g->p.nr_proc) {
1090 if (!*convergence) {
1091 *convergence = runtime_ns_max;
1092 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093 if (g->p.measure_convergence) {
1094 g->all_converged = true;
1095 g->stop_work = true;
1096 }
1097 }
1098 } else {
1099 if (*convergence) {
1100 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101 *convergence = 0;
1102 }
1103 tprintf("\n");
1104 }
1105
1106 free(nodes);
1107}
1108
1109static void show_summary(double runtime_ns_max, int l, double *convergence)
1110{
1111 tprintf("\r # %5.1f%% [%.1f mins]",
1112 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113
1114 calc_convergence(runtime_ns_max, convergence);
1115
1116 if (g->p.show_details >= 0)
1117 fflush(stdout);
1118}
1119
1120static void *worker_thread(void *__tdata)
1121{
1122 struct thread_data *td = __tdata;
1123 struct timeval start0, start, stop, diff;
1124 int process_nr = td->process_nr;
1125 int thread_nr = td->thread_nr;
1126 unsigned long last_perturbance;
1127 int task_nr = td->task_nr;
1128 int details = g->p.show_details;
1129 int first_task, last_task;
1130 double convergence = 0;
1131 u64 val = td->val;
1132 double runtime_ns_max;
1133 u8 *global_data;
1134 u8 *process_data;
1135 u8 *thread_data;
1136 u64 bytes_done, secs;
1137 long work_done;
1138 u32 l;
1139 struct rusage rusage;
1140
1141 bind_to_cpumask(td->bind_cpumask);
1142 bind_to_memnode(td->bind_node);
1143
1144 set_taskname("thread %d/%d", process_nr, thread_nr);
1145
1146 global_data = g->data;
1147 process_data = td->process_data;
1148 thread_data = setup_private_data(g->p.bytes_thread);
1149
1150 bytes_done = 0;
1151
1152 last_task = 0;
1153 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154 last_task = 1;
1155
1156 first_task = 0;
1157 if (process_nr == 0 && thread_nr == 0)
1158 first_task = 1;
1159
1160 if (details >= 2) {
1161 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162 process_nr, thread_nr, global_data, process_data, thread_data);
1163 }
1164
1165 if (g->p.serialize_startup) {
1166 pthread_mutex_lock(&g->startup_mutex);
1167 g->nr_tasks_started++;
1168 /* The last thread wakes the main process. */
1169 if (g->nr_tasks_started == g->p.nr_tasks)
1170 pthread_cond_signal(&g->startup_cond);
1171
1172 pthread_mutex_unlock(&g->startup_mutex);
1173
1174 /* Here we will wait for the main process to start us all at once: */
1175 pthread_mutex_lock(&g->start_work_mutex);
1176 g->start_work = false;
1177 g->nr_tasks_working++;
1178 while (!g->start_work)
1179 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1180
1181 pthread_mutex_unlock(&g->start_work_mutex);
1182 }
1183
1184 gettimeofday(&start0, NULL);
1185
1186 start = stop = start0;
1187 last_perturbance = start.tv_sec;
1188
1189 for (l = 0; l < g->p.nr_loops; l++) {
1190 start = stop;
1191
1192 if (g->stop_work)
1193 break;
1194
1195 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1196 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1197 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1198
1199 if (g->p.sleep_usecs) {
1200 pthread_mutex_lock(td->process_lock);
1201 usleep(g->p.sleep_usecs);
1202 pthread_mutex_unlock(td->process_lock);
1203 }
1204 /*
1205 * Amount of work to be done under a process-global lock:
1206 */
1207 if (g->p.bytes_process_locked) {
1208 pthread_mutex_lock(td->process_lock);
1209 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1210 pthread_mutex_unlock(td->process_lock);
1211 }
1212
1213 work_done = g->p.bytes_global + g->p.bytes_process +
1214 g->p.bytes_process_locked + g->p.bytes_thread;
1215
1216 update_curr_cpu(task_nr, work_done);
1217 bytes_done += work_done;
1218
1219 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220 continue;
1221
1222 td->loops_done = l;
1223
1224 gettimeofday(&stop, NULL);
1225
1226 /* Check whether our max runtime timed out: */
1227 if (g->p.nr_secs) {
1228 timersub(&stop, &start0, &diff);
1229 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230 g->stop_work = true;
1231 break;
1232 }
1233 }
1234
1235 /* Update the summary at most once per second: */
1236 if (start.tv_sec == stop.tv_sec)
1237 continue;
1238
1239 /*
1240 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241 * by migrating to CPU#0:
1242 */
1243 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244 cpu_set_t orig_mask;
1245 int target_cpu;
1246 int this_cpu;
1247
1248 last_perturbance = stop.tv_sec;
1249
1250 /*
1251 * Depending on where we are running, move into
1252 * the other half of the system, to create some
1253 * real disturbance:
1254 */
1255 this_cpu = g->threads[task_nr].curr_cpu;
1256 if (this_cpu < g->p.nr_cpus/2)
1257 target_cpu = g->p.nr_cpus-1;
1258 else
1259 target_cpu = 0;
1260
1261 orig_mask = bind_to_cpu(target_cpu);
1262
1263 /* Here we are running on the target CPU already */
1264 if (details >= 1)
1265 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266
1267 bind_to_cpumask(orig_mask);
1268 }
1269
1270 if (details >= 3) {
1271 timersub(&stop, &start, &diff);
1272 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274
1275 if (details >= 0) {
1276 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278 }
1279 fflush(stdout);
1280 }
1281 if (!last_task)
1282 continue;
1283
1284 timersub(&stop, &start0, &diff);
1285 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287
1288 show_summary(runtime_ns_max, l, &convergence);
1289 }
1290
1291 gettimeofday(&stop, NULL);
1292 timersub(&stop, &start0, &diff);
1293 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295 secs = td->runtime_ns / NSEC_PER_SEC;
1296 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297
1298 getrusage(RUSAGE_THREAD, &rusage);
1299 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303
1304 free_data(thread_data, g->p.bytes_thread);
1305
1306 pthread_mutex_lock(&g->stop_work_mutex);
1307 g->bytes_done += bytes_done;
1308 pthread_mutex_unlock(&g->stop_work_mutex);
1309
1310 return NULL;
1311}
1312
1313/*
1314 * A worker process starts a couple of threads:
1315 */
1316static void worker_process(int process_nr)
1317{
1318 pthread_mutex_t process_lock;
1319 struct thread_data *td;
1320 pthread_t *pthreads;
1321 u8 *process_data;
1322 int task_nr;
1323 int ret;
1324 int t;
1325
1326 pthread_mutex_init(&process_lock, NULL);
1327 set_taskname("process %d", process_nr);
1328
1329 /*
1330 * Pick up the memory policy and the CPU binding of our first thread,
1331 * so that we initialize memory accordingly:
1332 */
1333 task_nr = process_nr*g->p.nr_threads;
1334 td = g->threads + task_nr;
1335
1336 bind_to_memnode(td->bind_node);
1337 bind_to_cpumask(td->bind_cpumask);
1338
1339 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340 process_data = setup_private_data(g->p.bytes_process);
1341
1342 if (g->p.show_details >= 3) {
1343 printf(" # process %2d global mem: %p, process mem: %p\n",
1344 process_nr, g->data, process_data);
1345 }
1346
1347 for (t = 0; t < g->p.nr_threads; t++) {
1348 task_nr = process_nr*g->p.nr_threads + t;
1349 td = g->threads + task_nr;
1350
1351 td->process_data = process_data;
1352 td->process_nr = process_nr;
1353 td->thread_nr = t;
1354 td->task_nr = task_nr;
1355 td->val = rand();
1356 td->curr_cpu = -1;
1357 td->process_lock = &process_lock;
1358
1359 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360 BUG_ON(ret);
1361 }
1362
1363 for (t = 0; t < g->p.nr_threads; t++) {
1364 ret = pthread_join(pthreads[t], NULL);
1365 BUG_ON(ret);
1366 }
1367
1368 free_data(process_data, g->p.bytes_process);
1369 free(pthreads);
1370}
1371
1372static void print_summary(void)
1373{
1374 if (g->p.show_details < 0)
1375 return;
1376
1377 printf("\n ###\n");
1378 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380 printf(" # %5dx %5ldMB global shared mem operations\n",
1381 g->p.nr_loops, g->p.bytes_global/1024/1024);
1382 printf(" # %5dx %5ldMB process shared mem operations\n",
1383 g->p.nr_loops, g->p.bytes_process/1024/1024);
1384 printf(" # %5dx %5ldMB thread local mem operations\n",
1385 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386
1387 printf(" ###\n");
1388
1389 printf("\n ###\n"); fflush(stdout);
1390}
1391
1392static void init_thread_data(void)
1393{
1394 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395 int t;
1396
1397 g->threads = zalloc_shared_data(size);
1398
1399 for (t = 0; t < g->p.nr_tasks; t++) {
1400 struct thread_data *td = g->threads + t;
1401 int cpu;
1402
1403 /* Allow all nodes by default: */
1404 td->bind_node = NUMA_NO_NODE;
1405
1406 /* Allow all CPUs by default: */
1407 CPU_ZERO(&td->bind_cpumask);
1408 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409 CPU_SET(cpu, &td->bind_cpumask);
1410 }
1411}
1412
1413static void deinit_thread_data(void)
1414{
1415 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1416
1417 free_data(g->threads, size);
1418}
1419
1420static int init(void)
1421{
1422 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423
1424 /* Copy over options: */
1425 g->p = p0;
1426
1427 g->p.nr_cpus = numa_num_configured_cpus();
1428
1429 g->p.nr_nodes = numa_max_node() + 1;
1430
1431 /* char array in count_process_nodes(): */
1432 BUG_ON(g->p.nr_nodes < 0);
1433
1434 if (g->p.show_quiet && !g->p.show_details)
1435 g->p.show_details = -1;
1436
1437 /* Some memory should be specified: */
1438 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439 return -1;
1440
1441 if (g->p.mb_global_str) {
1442 g->p.mb_global = atof(g->p.mb_global_str);
1443 BUG_ON(g->p.mb_global < 0);
1444 }
1445
1446 if (g->p.mb_proc_str) {
1447 g->p.mb_proc = atof(g->p.mb_proc_str);
1448 BUG_ON(g->p.mb_proc < 0);
1449 }
1450
1451 if (g->p.mb_proc_locked_str) {
1452 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453 BUG_ON(g->p.mb_proc_locked < 0);
1454 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455 }
1456
1457 if (g->p.mb_thread_str) {
1458 g->p.mb_thread = atof(g->p.mb_thread_str);
1459 BUG_ON(g->p.mb_thread < 0);
1460 }
1461
1462 BUG_ON(g->p.nr_threads <= 0);
1463 BUG_ON(g->p.nr_proc <= 0);
1464
1465 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466
1467 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1468 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1469 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1470 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1471
1472 g->data = setup_shared_data(g->p.bytes_global);
1473
1474 /* Startup serialization: */
1475 init_global_mutex(&g->start_work_mutex);
1476 init_global_cond(&g->start_work_cond);
1477 init_global_mutex(&g->startup_mutex);
1478 init_global_cond(&g->startup_cond);
1479 init_global_mutex(&g->stop_work_mutex);
1480
1481 init_thread_data();
1482
1483 tprintf("#\n");
1484 if (parse_setup_cpu_list() || parse_setup_node_list())
1485 return -1;
1486 tprintf("#\n");
1487
1488 print_summary();
1489
1490 return 0;
1491}
1492
1493static void deinit(void)
1494{
1495 free_data(g->data, g->p.bytes_global);
1496 g->data = NULL;
1497
1498 deinit_thread_data();
1499
1500 free_data(g, sizeof(*g));
1501 g = NULL;
1502}
1503
1504/*
1505 * Print a short or long result, depending on the verbosity setting:
1506 */
1507static void print_res(const char *name, double val,
1508 const char *txt_unit, const char *txt_short, const char *txt_long)
1509{
1510 if (!name)
1511 name = "main,";
1512
1513 if (!g->p.show_quiet)
1514 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515 else
1516 printf(" %14.3f %s\n", val, txt_long);
1517}
1518
1519static int __bench_numa(const char *name)
1520{
1521 struct timeval start, stop, diff;
1522 u64 runtime_ns_min, runtime_ns_sum;
1523 pid_t *pids, pid, wpid;
1524 double delta_runtime;
1525 double runtime_avg;
1526 double runtime_sec_max;
1527 double runtime_sec_min;
1528 int wait_stat;
1529 double bytes;
1530 int i, t, p;
1531
1532 if (init())
1533 return -1;
1534
1535 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536 pid = -1;
1537
1538 if (g->p.serialize_startup) {
1539 tprintf(" #\n");
1540 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541 }
1542
1543 gettimeofday(&start, NULL);
1544
1545 for (i = 0; i < g->p.nr_proc; i++) {
1546 pid = fork();
1547 dprintf(" # process %2d: PID %d\n", i, pid);
1548
1549 BUG_ON(pid < 0);
1550 if (!pid) {
1551 /* Child process: */
1552 worker_process(i);
1553
1554 exit(0);
1555 }
1556 pids[i] = pid;
1557
1558 }
1559
1560 if (g->p.serialize_startup) {
1561 bool threads_ready = false;
1562 double startup_sec;
1563
1564 /*
1565 * Wait for all the threads to start up. The last thread will
1566 * signal this process.
1567 */
1568 pthread_mutex_lock(&g->startup_mutex);
1569 while (g->nr_tasks_started != g->p.nr_tasks)
1570 pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571
1572 pthread_mutex_unlock(&g->startup_mutex);
1573
1574 /* Wait for all threads to be at the start_work_cond. */
1575 while (!threads_ready) {
1576 pthread_mutex_lock(&g->start_work_mutex);
1577 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578 pthread_mutex_unlock(&g->start_work_mutex);
1579 if (!threads_ready)
1580 usleep(1);
1581 }
1582
1583 gettimeofday(&stop, NULL);
1584
1585 timersub(&stop, &start, &diff);
1586
1587 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589 startup_sec /= NSEC_PER_SEC;
1590
1591 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592 tprintf(" #\n");
1593
1594 start = stop;
1595 /* Start all threads running. */
1596 pthread_mutex_lock(&g->start_work_mutex);
1597 g->start_work = true;
1598 pthread_mutex_unlock(&g->start_work_mutex);
1599 pthread_cond_broadcast(&g->start_work_cond);
1600 } else {
1601 gettimeofday(&start, NULL);
1602 }
1603
1604 /* Parent process: */
1605
1606
1607 for (i = 0; i < g->p.nr_proc; i++) {
1608 wpid = waitpid(pids[i], &wait_stat, 0);
1609 BUG_ON(wpid < 0);
1610 BUG_ON(!WIFEXITED(wait_stat));
1611
1612 }
1613
1614 runtime_ns_sum = 0;
1615 runtime_ns_min = -1LL;
1616
1617 for (t = 0; t < g->p.nr_tasks; t++) {
1618 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619
1620 runtime_ns_sum += thread_runtime_ns;
1621 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622 }
1623
1624 gettimeofday(&stop, NULL);
1625 timersub(&stop, &start, &diff);
1626
1627 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628
1629 tprintf("\n ###\n");
1630 tprintf("\n");
1631
1632 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634 runtime_sec_max /= NSEC_PER_SEC;
1635
1636 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637
1638 bytes = g->bytes_done;
1639 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640
1641 if (g->p.measure_convergence) {
1642 print_res(name, runtime_sec_max,
1643 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644 }
1645
1646 print_res(name, runtime_sec_max,
1647 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1648
1649 print_res(name, runtime_sec_min,
1650 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1651
1652 print_res(name, runtime_avg,
1653 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1654
1655 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1658
1659 print_res(name, bytes / g->p.nr_tasks / 1e9,
1660 "GB,", "data/thread", "GB data processed, per thread");
1661
1662 print_res(name, bytes / 1e9,
1663 "GB,", "data-total", "GB data processed, total");
1664
1665 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667
1668 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1670
1671 print_res(name, bytes / runtime_sec_max / 1e9,
1672 "GB/sec,", "total-speed", "GB/sec total speed");
1673
1674 if (g->p.show_details >= 2) {
1675 char tname[14 + 2 * 10 + 1];
1676 struct thread_data *td;
1677 for (p = 0; p < g->p.nr_proc; p++) {
1678 for (t = 0; t < g->p.nr_threads; t++) {
1679 memset(tname, 0, sizeof(tname));
1680 td = g->threads + p*g->p.nr_threads + t;
1681 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682 print_res(tname, td->speed_gbs,
1683 "GB/sec", "thread-speed", "GB/sec/thread speed");
1684 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685 "secs", "thread-system-time", "system CPU time/thread");
1686 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687 "secs", "thread-user-time", "user CPU time/thread");
1688 }
1689 }
1690 }
1691
1692 free(pids);
1693
1694 deinit();
1695
1696 return 0;
1697}
1698
1699#define MAX_ARGS 50
1700
1701static int command_size(const char **argv)
1702{
1703 int size = 0;
1704
1705 while (*argv) {
1706 size++;
1707 argv++;
1708 }
1709
1710 BUG_ON(size >= MAX_ARGS);
1711
1712 return size;
1713}
1714
1715static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716{
1717 int i;
1718
1719 printf("\n # Running %s \"perf bench numa", name);
1720
1721 for (i = 0; i < argc; i++)
1722 printf(" %s", argv[i]);
1723
1724 printf("\"\n");
1725
1726 memset(p, 0, sizeof(*p));
1727
1728 /* Initialize nonzero defaults: */
1729
1730 p->serialize_startup = 1;
1731 p->data_reads = true;
1732 p->data_writes = true;
1733 p->data_backwards = true;
1734 p->data_rand_walk = true;
1735 p->nr_loops = -1;
1736 p->init_random = true;
1737 p->mb_global_str = "1";
1738 p->nr_proc = 1;
1739 p->nr_threads = 1;
1740 p->nr_secs = 5;
1741 p->run_all = argc == 1;
1742}
1743
1744static int run_bench_numa(const char *name, const char **argv)
1745{
1746 int argc = command_size(argv);
1747
1748 init_params(&p0, name, argc, argv);
1749 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750 if (argc)
1751 goto err;
1752
1753 if (__bench_numa(name))
1754 goto err;
1755
1756 return 0;
1757
1758err:
1759 return -1;
1760}
1761
1762#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1763#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1764
1765#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1766#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1767
1768#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1769#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1770
1771/*
1772 * The built-in test-suite executed by "perf bench numa -a".
1773 *
1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775 */
1776static const char *tests[][MAX_ARGS] = {
1777 /* Basic single-stream NUMA bandwidth measurements: */
1778 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1779 "-C" , "0", "-M", "0", OPT_BW_RAM },
1780 { "RAM-bw-local-NOTHP,",
1781 "mem", "-p", "1", "-t", "1", "-P", "1024",
1782 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1783 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1784 "-C" , "0", "-M", "1", OPT_BW_RAM },
1785
1786 /* 2-stream NUMA bandwidth measurements: */
1787 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1788 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1790 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791
1792 /* Cross-stream NUMA bandwidth measurement: */
1793 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1794 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795
1796 /* Convergence latency measurements: */
1797 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1798 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1799 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1800 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1801 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1802 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1803 { " 4x4-convergence-NOTHP,",
1804 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1805 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1806 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1807 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1808 { " 8x4-convergence-NOTHP,",
1809 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1810 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1811 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1812 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1813 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1814 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1815
1816 /* Various NUMA process/thread layout bandwidth measurements: */
1817 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1818 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1819 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1820 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1821 { " 8x1-bw-process-NOTHP,",
1822 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1823 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1824
1825 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1826 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1827 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1828 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1829
1830 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1831 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1832 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1833 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1834 { " 4x8-bw-process-NOTHP,",
1835 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1836 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1837 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1838
1839 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1840 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1841
1842 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1843 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1844 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1845 { "numa01-bw-thread-NOTHP,",
1846 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1847};
1848
1849static int bench_all(void)
1850{
1851 int nr = ARRAY_SIZE(tests);
1852 int ret;
1853 int i;
1854
1855 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856 BUG_ON(ret < 0);
1857
1858 for (i = 0; i < nr; i++) {
1859 run_bench_numa(tests[i][0], tests[i] + 1);
1860 }
1861
1862 printf("\n");
1863
1864 return 0;
1865}
1866
1867int bench_numa(int argc, const char **argv)
1868{
1869 init_params(&p0, "main,", argc, argv);
1870 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871 if (argc)
1872 goto err;
1873
1874 if (p0.run_all)
1875 return bench_all();
1876
1877 if (__bench_numa(NULL))
1878 goto err;
1879
1880 return 0;
1881
1882err:
1883 usage_with_options(numa_usage, options);
1884 return -1;
1885}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * numa.c
4 *
5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6 */
7
8#include <inttypes.h>
9
10#include <subcmd/parse-options.h>
11#include "../util/cloexec.h"
12
13#include "bench.h"
14
15#include <errno.h>
16#include <sched.h>
17#include <stdio.h>
18#include <assert.h>
19#include <debug.h>
20#include <malloc.h>
21#include <signal.h>
22#include <stdlib.h>
23#include <string.h>
24#include <unistd.h>
25#include <sys/mman.h>
26#include <sys/time.h>
27#include <sys/resource.h>
28#include <sys/wait.h>
29#include <sys/prctl.h>
30#include <sys/stat.h>
31#include <sys/types.h>
32#include <linux/kernel.h>
33#include <linux/time64.h>
34#include <linux/numa.h>
35#include <linux/zalloc.h>
36
37#include "../util/header.h"
38#include "../util/mutex.h"
39#include <api/fs/fs.h>
40#include <numa.h>
41#include <numaif.h>
42
43#ifndef RUSAGE_THREAD
44# define RUSAGE_THREAD 1
45#endif
46
47/*
48 * Regular printout to the terminal, suppressed if -q is specified:
49 */
50#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
51
52/*
53 * Debug printf:
54 */
55#undef dprintf
56#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
57
58struct thread_data {
59 int curr_cpu;
60 cpu_set_t *bind_cpumask;
61 int bind_node;
62 u8 *process_data;
63 int process_nr;
64 int thread_nr;
65 int task_nr;
66 unsigned int loops_done;
67 u64 val;
68 u64 runtime_ns;
69 u64 system_time_ns;
70 u64 user_time_ns;
71 double speed_gbs;
72 struct mutex *process_lock;
73};
74
75/* Parameters set by options: */
76
77struct params {
78 /* Startup synchronization: */
79 bool serialize_startup;
80
81 /* Task hierarchy: */
82 int nr_proc;
83 int nr_threads;
84
85 /* Working set sizes: */
86 const char *mb_global_str;
87 const char *mb_proc_str;
88 const char *mb_proc_locked_str;
89 const char *mb_thread_str;
90
91 double mb_global;
92 double mb_proc;
93 double mb_proc_locked;
94 double mb_thread;
95
96 /* Access patterns to the working set: */
97 bool data_reads;
98 bool data_writes;
99 bool data_backwards;
100 bool data_zero_memset;
101 bool data_rand_walk;
102 u32 nr_loops;
103 u32 nr_secs;
104 u32 sleep_usecs;
105
106 /* Working set initialization: */
107 bool init_zero;
108 bool init_random;
109 bool init_cpu0;
110
111 /* Misc options: */
112 int show_details;
113 int run_all;
114 int thp;
115
116 long bytes_global;
117 long bytes_process;
118 long bytes_process_locked;
119 long bytes_thread;
120
121 int nr_tasks;
122
123 bool show_convergence;
124 bool measure_convergence;
125
126 int perturb_secs;
127 int nr_cpus;
128 int nr_nodes;
129
130 /* Affinity options -C and -N: */
131 char *cpu_list_str;
132 char *node_list_str;
133};
134
135
136/* Global, read-writable area, accessible to all processes and threads: */
137
138struct global_info {
139 u8 *data;
140
141 struct mutex startup_mutex;
142 struct cond startup_cond;
143 int nr_tasks_started;
144
145 struct mutex start_work_mutex;
146 struct cond start_work_cond;
147 int nr_tasks_working;
148 bool start_work;
149
150 struct mutex stop_work_mutex;
151 u64 bytes_done;
152
153 struct thread_data *threads;
154
155 /* Convergence latency measurement: */
156 bool all_converged;
157 bool stop_work;
158
159 int print_once;
160
161 struct params p;
162};
163
164static struct global_info *g = NULL;
165
166static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
167static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
168
169struct params p0;
170
171static const struct option options[] = {
172 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
173 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
174
175 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
176 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
177 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
178 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
179
180 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
181 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
182 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
183
184 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"),
185 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
186 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
187 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
188 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
189
190
191 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
192 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
193 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
194 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
195
196 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
197 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
198 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
199 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
200 "convergence is reached when each process (all its threads) is running on a single NUMA node."),
201 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
202 OPT_BOOLEAN('q', "quiet" , &quiet,
203 "quiet mode (do not show any warnings or messages)"),
204 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
205
206 /* Special option string parsing callbacks: */
207 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
208 "bind the first N tasks to these specific cpus (the rest is unbound)",
209 parse_cpus_opt),
210 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
211 "bind the first N tasks to these specific memory nodes (the rest is unbound)",
212 parse_nodes_opt),
213 OPT_END()
214};
215
216static const char * const bench_numa_usage[] = {
217 "perf bench numa <options>",
218 NULL
219};
220
221static const char * const numa_usage[] = {
222 "perf bench numa mem [<options>]",
223 NULL
224};
225
226/*
227 * To get number of numa nodes present.
228 */
229static int nr_numa_nodes(void)
230{
231 int i, nr_nodes = 0;
232
233 for (i = 0; i < g->p.nr_nodes; i++) {
234 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
235 nr_nodes++;
236 }
237
238 return nr_nodes;
239}
240
241/*
242 * To check if given numa node is present.
243 */
244static int is_node_present(int node)
245{
246 return numa_bitmask_isbitset(numa_nodes_ptr, node);
247}
248
249/*
250 * To check given numa node has cpus.
251 */
252static bool node_has_cpus(int node)
253{
254 struct bitmask *cpumask = numa_allocate_cpumask();
255 bool ret = false; /* fall back to nocpus */
256 int cpu;
257
258 BUG_ON(!cpumask);
259 if (!numa_node_to_cpus(node, cpumask)) {
260 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
261 if (numa_bitmask_isbitset(cpumask, cpu)) {
262 ret = true;
263 break;
264 }
265 }
266 }
267 numa_free_cpumask(cpumask);
268
269 return ret;
270}
271
272static cpu_set_t *bind_to_cpu(int target_cpu)
273{
274 int nrcpus = numa_num_possible_cpus();
275 cpu_set_t *orig_mask, *mask;
276 size_t size;
277
278 orig_mask = CPU_ALLOC(nrcpus);
279 BUG_ON(!orig_mask);
280 size = CPU_ALLOC_SIZE(nrcpus);
281 CPU_ZERO_S(size, orig_mask);
282
283 if (sched_getaffinity(0, size, orig_mask))
284 goto err_out;
285
286 mask = CPU_ALLOC(nrcpus);
287 if (!mask)
288 goto err_out;
289
290 CPU_ZERO_S(size, mask);
291
292 if (target_cpu == -1) {
293 int cpu;
294
295 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
296 CPU_SET_S(cpu, size, mask);
297 } else {
298 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
299 goto err;
300
301 CPU_SET_S(target_cpu, size, mask);
302 }
303
304 if (sched_setaffinity(0, size, mask))
305 goto err;
306
307 return orig_mask;
308
309err:
310 CPU_FREE(mask);
311err_out:
312 CPU_FREE(orig_mask);
313
314 /* BUG_ON due to failure in allocation of orig_mask/mask */
315 BUG_ON(-1);
316 return NULL;
317}
318
319static cpu_set_t *bind_to_node(int target_node)
320{
321 int nrcpus = numa_num_possible_cpus();
322 size_t size;
323 cpu_set_t *orig_mask, *mask;
324 int cpu;
325
326 orig_mask = CPU_ALLOC(nrcpus);
327 BUG_ON(!orig_mask);
328 size = CPU_ALLOC_SIZE(nrcpus);
329 CPU_ZERO_S(size, orig_mask);
330
331 if (sched_getaffinity(0, size, orig_mask))
332 goto err_out;
333
334 mask = CPU_ALLOC(nrcpus);
335 if (!mask)
336 goto err_out;
337
338 CPU_ZERO_S(size, mask);
339
340 if (target_node == NUMA_NO_NODE) {
341 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
342 CPU_SET_S(cpu, size, mask);
343 } else {
344 struct bitmask *cpumask = numa_allocate_cpumask();
345
346 if (!cpumask)
347 goto err;
348
349 if (!numa_node_to_cpus(target_node, cpumask)) {
350 for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
351 if (numa_bitmask_isbitset(cpumask, cpu))
352 CPU_SET_S(cpu, size, mask);
353 }
354 }
355 numa_free_cpumask(cpumask);
356 }
357
358 if (sched_setaffinity(0, size, mask))
359 goto err;
360
361 return orig_mask;
362
363err:
364 CPU_FREE(mask);
365err_out:
366 CPU_FREE(orig_mask);
367
368 /* BUG_ON due to failure in allocation of orig_mask/mask */
369 BUG_ON(-1);
370 return NULL;
371}
372
373static void bind_to_cpumask(cpu_set_t *mask)
374{
375 int ret;
376 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
377
378 ret = sched_setaffinity(0, size, mask);
379 if (ret) {
380 CPU_FREE(mask);
381 BUG_ON(ret);
382 }
383}
384
385static void mempol_restore(void)
386{
387 int ret;
388
389 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
390
391 BUG_ON(ret);
392}
393
394static void bind_to_memnode(int node)
395{
396 struct bitmask *node_mask;
397 int ret;
398
399 if (node == NUMA_NO_NODE)
400 return;
401
402 node_mask = numa_allocate_nodemask();
403 BUG_ON(!node_mask);
404
405 numa_bitmask_clearall(node_mask);
406 numa_bitmask_setbit(node_mask, node);
407
408 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
409 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
410
411 numa_bitmask_free(node_mask);
412 BUG_ON(ret);
413}
414
415#define HPSIZE (2*1024*1024)
416
417#define set_taskname(fmt...) \
418do { \
419 char name[20]; \
420 \
421 snprintf(name, 20, fmt); \
422 prctl(PR_SET_NAME, name); \
423} while (0)
424
425static u8 *alloc_data(ssize_t bytes0, int map_flags,
426 int init_zero, int init_cpu0, int thp, int init_random)
427{
428 cpu_set_t *orig_mask = NULL;
429 ssize_t bytes;
430 u8 *buf;
431 int ret;
432
433 if (!bytes0)
434 return NULL;
435
436 /* Allocate and initialize all memory on CPU#0: */
437 if (init_cpu0) {
438 int node = numa_node_of_cpu(0);
439
440 orig_mask = bind_to_node(node);
441 bind_to_memnode(node);
442 }
443
444 bytes = bytes0 + HPSIZE;
445
446 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
447 BUG_ON(buf == (void *)-1);
448
449 if (map_flags == MAP_PRIVATE) {
450 if (thp > 0) {
451 ret = madvise(buf, bytes, MADV_HUGEPAGE);
452 if (ret && !g->print_once) {
453 g->print_once = 1;
454 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
455 }
456 }
457 if (thp < 0) {
458 ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
459 if (ret && !g->print_once) {
460 g->print_once = 1;
461 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
462 }
463 }
464 }
465
466 if (init_zero) {
467 bzero(buf, bytes);
468 } else {
469 /* Initialize random contents, different in each word: */
470 if (init_random) {
471 u64 *wbuf = (void *)buf;
472 long off = rand();
473 long i;
474
475 for (i = 0; i < bytes/8; i++)
476 wbuf[i] = i + off;
477 }
478 }
479
480 /* Align to 2MB boundary: */
481 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
482
483 /* Restore affinity: */
484 if (init_cpu0) {
485 bind_to_cpumask(orig_mask);
486 CPU_FREE(orig_mask);
487 mempol_restore();
488 }
489
490 return buf;
491}
492
493static void free_data(void *data, ssize_t bytes)
494{
495 int ret;
496
497 if (!data)
498 return;
499
500 ret = munmap(data, bytes);
501 BUG_ON(ret);
502}
503
504/*
505 * Create a shared memory buffer that can be shared between processes, zeroed:
506 */
507static void * zalloc_shared_data(ssize_t bytes)
508{
509 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
510}
511
512/*
513 * Create a shared memory buffer that can be shared between processes:
514 */
515static void * setup_shared_data(ssize_t bytes)
516{
517 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
518}
519
520/*
521 * Allocate process-local memory - this will either be shared between
522 * threads of this process, or only be accessed by this thread:
523 */
524static void * setup_private_data(ssize_t bytes)
525{
526 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
527}
528
529static int parse_cpu_list(const char *arg)
530{
531 p0.cpu_list_str = strdup(arg);
532
533 dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
534
535 return 0;
536}
537
538/*
539 * Check whether a CPU is online
540 *
541 * Returns:
542 * 1 -> if CPU is online
543 * 0 -> if CPU is offline
544 * -1 -> error case
545 */
546static int is_cpu_online(unsigned int cpu)
547{
548 char *str;
549 size_t strlen;
550 char buf[256];
551 int status = -1;
552 struct stat statbuf;
553
554 snprintf(buf, sizeof(buf),
555 "/sys/devices/system/cpu/cpu%d", cpu);
556 if (stat(buf, &statbuf) != 0)
557 return 0;
558
559 /*
560 * Check if /sys/devices/system/cpu/cpux/online file
561 * exists. Some cases cpu0 won't have online file since
562 * it is not expected to be turned off generally.
563 * In kernels without CONFIG_HOTPLUG_CPU, this
564 * file won't exist
565 */
566 snprintf(buf, sizeof(buf),
567 "/sys/devices/system/cpu/cpu%d/online", cpu);
568 if (stat(buf, &statbuf) != 0)
569 return 1;
570
571 /*
572 * Read online file using sysfs__read_str.
573 * If read or open fails, return -1.
574 * If read succeeds, return value from file
575 * which gets stored in "str"
576 */
577 snprintf(buf, sizeof(buf),
578 "devices/system/cpu/cpu%d/online", cpu);
579
580 if (sysfs__read_str(buf, &str, &strlen) < 0)
581 return status;
582
583 status = atoi(str);
584
585 free(str);
586 return status;
587}
588
589static int parse_setup_cpu_list(void)
590{
591 struct thread_data *td;
592 char *str0, *str;
593 int t;
594
595 if (!g->p.cpu_list_str)
596 return 0;
597
598 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
599
600 str0 = str = strdup(g->p.cpu_list_str);
601 t = 0;
602
603 BUG_ON(!str);
604
605 tprintf("# binding tasks to CPUs:\n");
606 tprintf("# ");
607
608 while (true) {
609 int bind_cpu, bind_cpu_0, bind_cpu_1;
610 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
611 int bind_len;
612 int step;
613 int mul;
614
615 tok = strsep(&str, ",");
616 if (!tok)
617 break;
618
619 tok_end = strstr(tok, "-");
620
621 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
622 if (!tok_end) {
623 /* Single CPU specified: */
624 bind_cpu_0 = bind_cpu_1 = atol(tok);
625 } else {
626 /* CPU range specified (for example: "5-11"): */
627 bind_cpu_0 = atol(tok);
628 bind_cpu_1 = atol(tok_end + 1);
629 }
630
631 step = 1;
632 tok_step = strstr(tok, "#");
633 if (tok_step) {
634 step = atol(tok_step + 1);
635 BUG_ON(step <= 0 || step >= g->p.nr_cpus);
636 }
637
638 /*
639 * Mask length.
640 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
641 * where the _4 means the next 4 CPUs are allowed.
642 */
643 bind_len = 1;
644 tok_len = strstr(tok, "_");
645 if (tok_len) {
646 bind_len = atol(tok_len + 1);
647 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
648 }
649
650 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
651 mul = 1;
652 tok_mul = strstr(tok, "x");
653 if (tok_mul) {
654 mul = atol(tok_mul + 1);
655 BUG_ON(mul <= 0);
656 }
657
658 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
659
660 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
661 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
662 return -1;
663 }
664
665 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
666 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
667 return -1;
668 }
669
670 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
671 BUG_ON(bind_cpu_0 > bind_cpu_1);
672
673 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
674 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
675 int i;
676
677 for (i = 0; i < mul; i++) {
678 int cpu;
679
680 if (t >= g->p.nr_tasks) {
681 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
682 goto out;
683 }
684 td = g->threads + t;
685
686 if (t)
687 tprintf(",");
688 if (bind_len > 1) {
689 tprintf("%2d/%d", bind_cpu, bind_len);
690 } else {
691 tprintf("%2d", bind_cpu);
692 }
693
694 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
695 BUG_ON(!td->bind_cpumask);
696 CPU_ZERO_S(size, td->bind_cpumask);
697 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
698 if (cpu < 0 || cpu >= g->p.nr_cpus) {
699 CPU_FREE(td->bind_cpumask);
700 BUG_ON(-1);
701 }
702 CPU_SET_S(cpu, size, td->bind_cpumask);
703 }
704 t++;
705 }
706 }
707 }
708out:
709
710 tprintf("\n");
711
712 if (t < g->p.nr_tasks)
713 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
714
715 free(str0);
716 return 0;
717}
718
719static int parse_cpus_opt(const struct option *opt __maybe_unused,
720 const char *arg, int unset __maybe_unused)
721{
722 if (!arg)
723 return -1;
724
725 return parse_cpu_list(arg);
726}
727
728static int parse_node_list(const char *arg)
729{
730 p0.node_list_str = strdup(arg);
731
732 dprintf("got NODE list: {%s}\n", p0.node_list_str);
733
734 return 0;
735}
736
737static int parse_setup_node_list(void)
738{
739 struct thread_data *td;
740 char *str0, *str;
741 int t;
742
743 if (!g->p.node_list_str)
744 return 0;
745
746 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
747
748 str0 = str = strdup(g->p.node_list_str);
749 t = 0;
750
751 BUG_ON(!str);
752
753 tprintf("# binding tasks to NODEs:\n");
754 tprintf("# ");
755
756 while (true) {
757 int bind_node, bind_node_0, bind_node_1;
758 char *tok, *tok_end, *tok_step, *tok_mul;
759 int step;
760 int mul;
761
762 tok = strsep(&str, ",");
763 if (!tok)
764 break;
765
766 tok_end = strstr(tok, "-");
767
768 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
769 if (!tok_end) {
770 /* Single NODE specified: */
771 bind_node_0 = bind_node_1 = atol(tok);
772 } else {
773 /* NODE range specified (for example: "5-11"): */
774 bind_node_0 = atol(tok);
775 bind_node_1 = atol(tok_end + 1);
776 }
777
778 step = 1;
779 tok_step = strstr(tok, "#");
780 if (tok_step) {
781 step = atol(tok_step + 1);
782 BUG_ON(step <= 0 || step >= g->p.nr_nodes);
783 }
784
785 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
786 mul = 1;
787 tok_mul = strstr(tok, "x");
788 if (tok_mul) {
789 mul = atol(tok_mul + 1);
790 BUG_ON(mul <= 0);
791 }
792
793 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
794
795 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
796 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
797 return -1;
798 }
799
800 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
801 BUG_ON(bind_node_0 > bind_node_1);
802
803 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
804 int i;
805
806 for (i = 0; i < mul; i++) {
807 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
808 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
809 goto out;
810 }
811 td = g->threads + t;
812
813 if (!t)
814 tprintf(" %2d", bind_node);
815 else
816 tprintf(",%2d", bind_node);
817
818 td->bind_node = bind_node;
819 t++;
820 }
821 }
822 }
823out:
824
825 tprintf("\n");
826
827 if (t < g->p.nr_tasks)
828 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
829
830 free(str0);
831 return 0;
832}
833
834static int parse_nodes_opt(const struct option *opt __maybe_unused,
835 const char *arg, int unset __maybe_unused)
836{
837 if (!arg)
838 return -1;
839
840 return parse_node_list(arg);
841}
842
843static inline uint32_t lfsr_32(uint32_t lfsr)
844{
845 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
846 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
847}
848
849/*
850 * Make sure there's real data dependency to RAM (when read
851 * accesses are enabled), so the compiler, the CPU and the
852 * kernel (KSM, zero page, etc.) cannot optimize away RAM
853 * accesses:
854 */
855static inline u64 access_data(u64 *data, u64 val)
856{
857 if (g->p.data_reads)
858 val += *data;
859 if (g->p.data_writes)
860 *data = val + 1;
861 return val;
862}
863
864/*
865 * The worker process does two types of work, a forwards going
866 * loop and a backwards going loop.
867 *
868 * We do this so that on multiprocessor systems we do not create
869 * a 'train' of processing, with highly synchronized processes,
870 * skewing the whole benchmark.
871 */
872static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
873{
874 long words = bytes/sizeof(u64);
875 u64 *data = (void *)__data;
876 long chunk_0, chunk_1;
877 u64 *d0, *d, *d1;
878 long off;
879 long i;
880
881 BUG_ON(!data && words);
882 BUG_ON(data && !words);
883
884 if (!data)
885 return val;
886
887 /* Very simple memset() work variant: */
888 if (g->p.data_zero_memset && !g->p.data_rand_walk) {
889 bzero(data, bytes);
890 return val;
891 }
892
893 /* Spread out by PID/TID nr and by loop nr: */
894 chunk_0 = words/nr_max;
895 chunk_1 = words/g->p.nr_loops;
896 off = nr*chunk_0 + loop*chunk_1;
897
898 while (off >= words)
899 off -= words;
900
901 if (g->p.data_rand_walk) {
902 u32 lfsr = nr + loop + val;
903 long j;
904
905 for (i = 0; i < words/1024; i++) {
906 long start, end;
907
908 lfsr = lfsr_32(lfsr);
909
910 start = lfsr % words;
911 end = min(start + 1024, words-1);
912
913 if (g->p.data_zero_memset) {
914 bzero(data + start, (end-start) * sizeof(u64));
915 } else {
916 for (j = start; j < end; j++)
917 val = access_data(data + j, val);
918 }
919 }
920 } else if (!g->p.data_backwards || (nr + loop) & 1) {
921 /* Process data forwards: */
922
923 d0 = data + off;
924 d = data + off + 1;
925 d1 = data + words;
926
927 for (;;) {
928 if (unlikely(d >= d1))
929 d = data;
930 if (unlikely(d == d0))
931 break;
932
933 val = access_data(d, val);
934
935 d++;
936 }
937 } else {
938 /* Process data backwards: */
939
940 d0 = data + off;
941 d = data + off - 1;
942 d1 = data + words;
943
944 for (;;) {
945 if (unlikely(d < data))
946 d = data + words-1;
947 if (unlikely(d == d0))
948 break;
949
950 val = access_data(d, val);
951
952 d--;
953 }
954 }
955
956 return val;
957}
958
959static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
960{
961 unsigned int cpu;
962
963 cpu = sched_getcpu();
964
965 g->threads[task_nr].curr_cpu = cpu;
966 prctl(0, bytes_worked);
967}
968
969/*
970 * Count the number of nodes a process's threads
971 * are spread out on.
972 *
973 * A count of 1 means that the process is compressed
974 * to a single node. A count of g->p.nr_nodes means it's
975 * spread out on the whole system.
976 */
977static int count_process_nodes(int process_nr)
978{
979 char *node_present;
980 int nodes;
981 int n, t;
982
983 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
984 BUG_ON(!node_present);
985 for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
986 node_present[nodes] = 0;
987
988 for (t = 0; t < g->p.nr_threads; t++) {
989 struct thread_data *td;
990 int task_nr;
991 int node;
992
993 task_nr = process_nr*g->p.nr_threads + t;
994 td = g->threads + task_nr;
995
996 node = numa_node_of_cpu(td->curr_cpu);
997 if (node < 0) /* curr_cpu was likely still -1 */ {
998 free(node_present);
999 return 0;
1000 }
1001
1002 node_present[node] = 1;
1003 }
1004
1005 nodes = 0;
1006
1007 for (n = 0; n < g->p.nr_nodes; n++)
1008 nodes += node_present[n];
1009
1010 free(node_present);
1011 return nodes;
1012}
1013
1014/*
1015 * Count the number of distinct process-threads a node contains.
1016 *
1017 * A count of 1 means that the node contains only a single
1018 * process. If all nodes on the system contain at most one
1019 * process then we are well-converged.
1020 */
1021static int count_node_processes(int node)
1022{
1023 int processes = 0;
1024 int t, p;
1025
1026 for (p = 0; p < g->p.nr_proc; p++) {
1027 for (t = 0; t < g->p.nr_threads; t++) {
1028 struct thread_data *td;
1029 int task_nr;
1030 int n;
1031
1032 task_nr = p*g->p.nr_threads + t;
1033 td = g->threads + task_nr;
1034
1035 n = numa_node_of_cpu(td->curr_cpu);
1036 if (n == node) {
1037 processes++;
1038 break;
1039 }
1040 }
1041 }
1042
1043 return processes;
1044}
1045
1046static void calc_convergence_compression(int *strong)
1047{
1048 unsigned int nodes_min, nodes_max;
1049 int p;
1050
1051 nodes_min = -1;
1052 nodes_max = 0;
1053
1054 for (p = 0; p < g->p.nr_proc; p++) {
1055 unsigned int nodes = count_process_nodes(p);
1056
1057 if (!nodes) {
1058 *strong = 0;
1059 return;
1060 }
1061
1062 nodes_min = min(nodes, nodes_min);
1063 nodes_max = max(nodes, nodes_max);
1064 }
1065
1066 /* Strong convergence: all threads compress on a single node: */
1067 if (nodes_min == 1 && nodes_max == 1) {
1068 *strong = 1;
1069 } else {
1070 *strong = 0;
1071 tprintf(" {%d-%d}", nodes_min, nodes_max);
1072 }
1073}
1074
1075static void calc_convergence(double runtime_ns_max, double *convergence)
1076{
1077 unsigned int loops_done_min, loops_done_max;
1078 int process_groups;
1079 int *nodes;
1080 int distance;
1081 int nr_min;
1082 int nr_max;
1083 int strong;
1084 int sum;
1085 int nr;
1086 int node;
1087 int cpu;
1088 int t;
1089
1090 if (!g->p.show_convergence && !g->p.measure_convergence)
1091 return;
1092
1093 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1094 BUG_ON(!nodes);
1095 for (node = 0; node < g->p.nr_nodes; node++)
1096 nodes[node] = 0;
1097
1098 loops_done_min = -1;
1099 loops_done_max = 0;
1100
1101 for (t = 0; t < g->p.nr_tasks; t++) {
1102 struct thread_data *td = g->threads + t;
1103 unsigned int loops_done;
1104
1105 cpu = td->curr_cpu;
1106
1107 /* Not all threads have written it yet: */
1108 if (cpu < 0)
1109 continue;
1110
1111 node = numa_node_of_cpu(cpu);
1112
1113 nodes[node]++;
1114
1115 loops_done = td->loops_done;
1116 loops_done_min = min(loops_done, loops_done_min);
1117 loops_done_max = max(loops_done, loops_done_max);
1118 }
1119
1120 nr_max = 0;
1121 nr_min = g->p.nr_tasks;
1122 sum = 0;
1123
1124 for (node = 0; node < g->p.nr_nodes; node++) {
1125 if (!is_node_present(node))
1126 continue;
1127 nr = nodes[node];
1128 nr_min = min(nr, nr_min);
1129 nr_max = max(nr, nr_max);
1130 sum += nr;
1131 }
1132 BUG_ON(nr_min > nr_max);
1133
1134 BUG_ON(sum > g->p.nr_tasks);
1135
1136 if (0 && (sum < g->p.nr_tasks)) {
1137 free(nodes);
1138 return;
1139 }
1140
1141 /*
1142 * Count the number of distinct process groups present
1143 * on nodes - when we are converged this will decrease
1144 * to g->p.nr_proc:
1145 */
1146 process_groups = 0;
1147
1148 for (node = 0; node < g->p.nr_nodes; node++) {
1149 int processes;
1150
1151 if (!is_node_present(node))
1152 continue;
1153 processes = count_node_processes(node);
1154 nr = nodes[node];
1155 tprintf(" %2d/%-2d", nr, processes);
1156
1157 process_groups += processes;
1158 }
1159
1160 distance = nr_max - nr_min;
1161
1162 tprintf(" [%2d/%-2d]", distance, process_groups);
1163
1164 tprintf(" l:%3d-%-3d (%3d)",
1165 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1166
1167 if (loops_done_min && loops_done_max) {
1168 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1169
1170 tprintf(" [%4.1f%%]", skew * 100.0);
1171 }
1172
1173 calc_convergence_compression(&strong);
1174
1175 if (strong && process_groups == g->p.nr_proc) {
1176 if (!*convergence) {
1177 *convergence = runtime_ns_max;
1178 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1179 if (g->p.measure_convergence) {
1180 g->all_converged = true;
1181 g->stop_work = true;
1182 }
1183 }
1184 } else {
1185 if (*convergence) {
1186 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1187 *convergence = 0;
1188 }
1189 tprintf("\n");
1190 }
1191
1192 free(nodes);
1193}
1194
1195static void show_summary(double runtime_ns_max, int l, double *convergence)
1196{
1197 tprintf("\r # %5.1f%% [%.1f mins]",
1198 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1199
1200 calc_convergence(runtime_ns_max, convergence);
1201
1202 if (g->p.show_details >= 0)
1203 fflush(stdout);
1204}
1205
1206static void *worker_thread(void *__tdata)
1207{
1208 struct thread_data *td = __tdata;
1209 struct timeval start0, start, stop, diff;
1210 int process_nr = td->process_nr;
1211 int thread_nr = td->thread_nr;
1212 unsigned long last_perturbance;
1213 int task_nr = td->task_nr;
1214 int details = g->p.show_details;
1215 int first_task, last_task;
1216 double convergence = 0;
1217 u64 val = td->val;
1218 double runtime_ns_max;
1219 u8 *global_data;
1220 u8 *process_data;
1221 u8 *thread_data;
1222 u64 bytes_done, secs;
1223 long work_done;
1224 u32 l;
1225 struct rusage rusage;
1226
1227 bind_to_cpumask(td->bind_cpumask);
1228 bind_to_memnode(td->bind_node);
1229
1230 set_taskname("thread %d/%d", process_nr, thread_nr);
1231
1232 global_data = g->data;
1233 process_data = td->process_data;
1234 thread_data = setup_private_data(g->p.bytes_thread);
1235
1236 bytes_done = 0;
1237
1238 last_task = 0;
1239 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1240 last_task = 1;
1241
1242 first_task = 0;
1243 if (process_nr == 0 && thread_nr == 0)
1244 first_task = 1;
1245
1246 if (details >= 2) {
1247 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1248 process_nr, thread_nr, global_data, process_data, thread_data);
1249 }
1250
1251 if (g->p.serialize_startup) {
1252 mutex_lock(&g->startup_mutex);
1253 g->nr_tasks_started++;
1254 /* The last thread wakes the main process. */
1255 if (g->nr_tasks_started == g->p.nr_tasks)
1256 cond_signal(&g->startup_cond);
1257
1258 mutex_unlock(&g->startup_mutex);
1259
1260 /* Here we will wait for the main process to start us all at once: */
1261 mutex_lock(&g->start_work_mutex);
1262 g->start_work = false;
1263 g->nr_tasks_working++;
1264 while (!g->start_work)
1265 cond_wait(&g->start_work_cond, &g->start_work_mutex);
1266
1267 mutex_unlock(&g->start_work_mutex);
1268 }
1269
1270 gettimeofday(&start0, NULL);
1271
1272 start = stop = start0;
1273 last_perturbance = start.tv_sec;
1274
1275 for (l = 0; l < g->p.nr_loops; l++) {
1276 start = stop;
1277
1278 if (g->stop_work)
1279 break;
1280
1281 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
1282 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
1283 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
1284
1285 if (g->p.sleep_usecs) {
1286 mutex_lock(td->process_lock);
1287 usleep(g->p.sleep_usecs);
1288 mutex_unlock(td->process_lock);
1289 }
1290 /*
1291 * Amount of work to be done under a process-global lock:
1292 */
1293 if (g->p.bytes_process_locked) {
1294 mutex_lock(td->process_lock);
1295 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
1296 mutex_unlock(td->process_lock);
1297 }
1298
1299 work_done = g->p.bytes_global + g->p.bytes_process +
1300 g->p.bytes_process_locked + g->p.bytes_thread;
1301
1302 update_curr_cpu(task_nr, work_done);
1303 bytes_done += work_done;
1304
1305 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1306 continue;
1307
1308 td->loops_done = l;
1309
1310 gettimeofday(&stop, NULL);
1311
1312 /* Check whether our max runtime timed out: */
1313 if (g->p.nr_secs) {
1314 timersub(&stop, &start0, &diff);
1315 if ((u32)diff.tv_sec >= g->p.nr_secs) {
1316 g->stop_work = true;
1317 break;
1318 }
1319 }
1320
1321 /* Update the summary at most once per second: */
1322 if (start.tv_sec == stop.tv_sec)
1323 continue;
1324
1325 /*
1326 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1327 * by migrating to CPU#0:
1328 */
1329 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1330 cpu_set_t *orig_mask;
1331 int target_cpu;
1332 int this_cpu;
1333
1334 last_perturbance = stop.tv_sec;
1335
1336 /*
1337 * Depending on where we are running, move into
1338 * the other half of the system, to create some
1339 * real disturbance:
1340 */
1341 this_cpu = g->threads[task_nr].curr_cpu;
1342 if (this_cpu < g->p.nr_cpus/2)
1343 target_cpu = g->p.nr_cpus-1;
1344 else
1345 target_cpu = 0;
1346
1347 orig_mask = bind_to_cpu(target_cpu);
1348
1349 /* Here we are running on the target CPU already */
1350 if (details >= 1)
1351 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1352
1353 bind_to_cpumask(orig_mask);
1354 CPU_FREE(orig_mask);
1355 }
1356
1357 if (details >= 3) {
1358 timersub(&stop, &start, &diff);
1359 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1360 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1361
1362 if (details >= 0) {
1363 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1364 process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1365 }
1366 fflush(stdout);
1367 }
1368 if (!last_task)
1369 continue;
1370
1371 timersub(&stop, &start0, &diff);
1372 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1373 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1374
1375 show_summary(runtime_ns_max, l, &convergence);
1376 }
1377
1378 gettimeofday(&stop, NULL);
1379 timersub(&stop, &start0, &diff);
1380 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1381 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1382 secs = td->runtime_ns / NSEC_PER_SEC;
1383 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1384
1385 getrusage(RUSAGE_THREAD, &rusage);
1386 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1387 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1388 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1389 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1390
1391 free_data(thread_data, g->p.bytes_thread);
1392
1393 mutex_lock(&g->stop_work_mutex);
1394 g->bytes_done += bytes_done;
1395 mutex_unlock(&g->stop_work_mutex);
1396
1397 return NULL;
1398}
1399
1400/*
1401 * A worker process starts a couple of threads:
1402 */
1403static void worker_process(int process_nr)
1404{
1405 struct mutex process_lock;
1406 struct thread_data *td;
1407 pthread_t *pthreads;
1408 u8 *process_data;
1409 int task_nr;
1410 int ret;
1411 int t;
1412
1413 mutex_init(&process_lock);
1414 set_taskname("process %d", process_nr);
1415
1416 /*
1417 * Pick up the memory policy and the CPU binding of our first thread,
1418 * so that we initialize memory accordingly:
1419 */
1420 task_nr = process_nr*g->p.nr_threads;
1421 td = g->threads + task_nr;
1422
1423 bind_to_memnode(td->bind_node);
1424 bind_to_cpumask(td->bind_cpumask);
1425
1426 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1427 process_data = setup_private_data(g->p.bytes_process);
1428
1429 if (g->p.show_details >= 3) {
1430 printf(" # process %2d global mem: %p, process mem: %p\n",
1431 process_nr, g->data, process_data);
1432 }
1433
1434 for (t = 0; t < g->p.nr_threads; t++) {
1435 task_nr = process_nr*g->p.nr_threads + t;
1436 td = g->threads + task_nr;
1437
1438 td->process_data = process_data;
1439 td->process_nr = process_nr;
1440 td->thread_nr = t;
1441 td->task_nr = task_nr;
1442 td->val = rand();
1443 td->curr_cpu = -1;
1444 td->process_lock = &process_lock;
1445
1446 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1447 BUG_ON(ret);
1448 }
1449
1450 for (t = 0; t < g->p.nr_threads; t++) {
1451 ret = pthread_join(pthreads[t], NULL);
1452 BUG_ON(ret);
1453 }
1454
1455 free_data(process_data, g->p.bytes_process);
1456 free(pthreads);
1457}
1458
1459static void print_summary(void)
1460{
1461 if (g->p.show_details < 0)
1462 return;
1463
1464 printf("\n ###\n");
1465 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1466 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1467 printf(" # %5dx %5ldMB global shared mem operations\n",
1468 g->p.nr_loops, g->p.bytes_global/1024/1024);
1469 printf(" # %5dx %5ldMB process shared mem operations\n",
1470 g->p.nr_loops, g->p.bytes_process/1024/1024);
1471 printf(" # %5dx %5ldMB thread local mem operations\n",
1472 g->p.nr_loops, g->p.bytes_thread/1024/1024);
1473
1474 printf(" ###\n");
1475
1476 printf("\n ###\n"); fflush(stdout);
1477}
1478
1479static void init_thread_data(void)
1480{
1481 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1482 int t;
1483
1484 g->threads = zalloc_shared_data(size);
1485
1486 for (t = 0; t < g->p.nr_tasks; t++) {
1487 struct thread_data *td = g->threads + t;
1488 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1489 int cpu;
1490
1491 /* Allow all nodes by default: */
1492 td->bind_node = NUMA_NO_NODE;
1493
1494 /* Allow all CPUs by default: */
1495 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1496 BUG_ON(!td->bind_cpumask);
1497 CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1498 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1499 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1500 }
1501}
1502
1503static void deinit_thread_data(void)
1504{
1505 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1506 int t;
1507
1508 /* Free the bind_cpumask allocated for thread_data */
1509 for (t = 0; t < g->p.nr_tasks; t++) {
1510 struct thread_data *td = g->threads + t;
1511 CPU_FREE(td->bind_cpumask);
1512 }
1513
1514 free_data(g->threads, size);
1515}
1516
1517static int init(void)
1518{
1519 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1520
1521 /* Copy over options: */
1522 g->p = p0;
1523
1524 g->p.nr_cpus = numa_num_configured_cpus();
1525
1526 g->p.nr_nodes = numa_max_node() + 1;
1527
1528 /* char array in count_process_nodes(): */
1529 BUG_ON(g->p.nr_nodes < 0);
1530
1531 if (quiet && !g->p.show_details)
1532 g->p.show_details = -1;
1533
1534 /* Some memory should be specified: */
1535 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1536 return -1;
1537
1538 if (g->p.mb_global_str) {
1539 g->p.mb_global = atof(g->p.mb_global_str);
1540 BUG_ON(g->p.mb_global < 0);
1541 }
1542
1543 if (g->p.mb_proc_str) {
1544 g->p.mb_proc = atof(g->p.mb_proc_str);
1545 BUG_ON(g->p.mb_proc < 0);
1546 }
1547
1548 if (g->p.mb_proc_locked_str) {
1549 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1550 BUG_ON(g->p.mb_proc_locked < 0);
1551 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1552 }
1553
1554 if (g->p.mb_thread_str) {
1555 g->p.mb_thread = atof(g->p.mb_thread_str);
1556 BUG_ON(g->p.mb_thread < 0);
1557 }
1558
1559 BUG_ON(g->p.nr_threads <= 0);
1560 BUG_ON(g->p.nr_proc <= 0);
1561
1562 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1563
1564 g->p.bytes_global = g->p.mb_global *1024L*1024L;
1565 g->p.bytes_process = g->p.mb_proc *1024L*1024L;
1566 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
1567 g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
1568
1569 g->data = setup_shared_data(g->p.bytes_global);
1570
1571 /* Startup serialization: */
1572 mutex_init_pshared(&g->start_work_mutex);
1573 cond_init_pshared(&g->start_work_cond);
1574 mutex_init_pshared(&g->startup_mutex);
1575 cond_init_pshared(&g->startup_cond);
1576 mutex_init_pshared(&g->stop_work_mutex);
1577
1578 init_thread_data();
1579
1580 tprintf("#\n");
1581 if (parse_setup_cpu_list() || parse_setup_node_list())
1582 return -1;
1583 tprintf("#\n");
1584
1585 print_summary();
1586
1587 return 0;
1588}
1589
1590static void deinit(void)
1591{
1592 free_data(g->data, g->p.bytes_global);
1593 g->data = NULL;
1594
1595 deinit_thread_data();
1596
1597 free_data(g, sizeof(*g));
1598 g = NULL;
1599}
1600
1601/*
1602 * Print a short or long result, depending on the verbosity setting:
1603 */
1604static void print_res(const char *name, double val,
1605 const char *txt_unit, const char *txt_short, const char *txt_long)
1606{
1607 if (!name)
1608 name = "main,";
1609
1610 if (!quiet)
1611 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1612 else
1613 printf(" %14.3f %s\n", val, txt_long);
1614}
1615
1616static int __bench_numa(const char *name)
1617{
1618 struct timeval start, stop, diff;
1619 u64 runtime_ns_min, runtime_ns_sum;
1620 pid_t *pids, pid, wpid;
1621 double delta_runtime;
1622 double runtime_avg;
1623 double runtime_sec_max;
1624 double runtime_sec_min;
1625 int wait_stat;
1626 double bytes;
1627 int i, t, p;
1628
1629 if (init())
1630 return -1;
1631
1632 pids = zalloc(g->p.nr_proc * sizeof(*pids));
1633 pid = -1;
1634
1635 if (g->p.serialize_startup) {
1636 tprintf(" #\n");
1637 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1638 }
1639
1640 gettimeofday(&start, NULL);
1641
1642 for (i = 0; i < g->p.nr_proc; i++) {
1643 pid = fork();
1644 dprintf(" # process %2d: PID %d\n", i, pid);
1645
1646 BUG_ON(pid < 0);
1647 if (!pid) {
1648 /* Child process: */
1649 worker_process(i);
1650
1651 exit(0);
1652 }
1653 pids[i] = pid;
1654
1655 }
1656
1657 if (g->p.serialize_startup) {
1658 bool threads_ready = false;
1659 double startup_sec;
1660
1661 /*
1662 * Wait for all the threads to start up. The last thread will
1663 * signal this process.
1664 */
1665 mutex_lock(&g->startup_mutex);
1666 while (g->nr_tasks_started != g->p.nr_tasks)
1667 cond_wait(&g->startup_cond, &g->startup_mutex);
1668
1669 mutex_unlock(&g->startup_mutex);
1670
1671 /* Wait for all threads to be at the start_work_cond. */
1672 while (!threads_ready) {
1673 mutex_lock(&g->start_work_mutex);
1674 threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1675 mutex_unlock(&g->start_work_mutex);
1676 if (!threads_ready)
1677 usleep(1);
1678 }
1679
1680 gettimeofday(&stop, NULL);
1681
1682 timersub(&stop, &start, &diff);
1683
1684 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1685 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1686 startup_sec /= NSEC_PER_SEC;
1687
1688 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1689 tprintf(" #\n");
1690
1691 start = stop;
1692 /* Start all threads running. */
1693 mutex_lock(&g->start_work_mutex);
1694 g->start_work = true;
1695 mutex_unlock(&g->start_work_mutex);
1696 cond_broadcast(&g->start_work_cond);
1697 } else {
1698 gettimeofday(&start, NULL);
1699 }
1700
1701 /* Parent process: */
1702
1703
1704 for (i = 0; i < g->p.nr_proc; i++) {
1705 wpid = waitpid(pids[i], &wait_stat, 0);
1706 BUG_ON(wpid < 0);
1707 BUG_ON(!WIFEXITED(wait_stat));
1708
1709 }
1710
1711 runtime_ns_sum = 0;
1712 runtime_ns_min = -1LL;
1713
1714 for (t = 0; t < g->p.nr_tasks; t++) {
1715 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1716
1717 runtime_ns_sum += thread_runtime_ns;
1718 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1719 }
1720
1721 gettimeofday(&stop, NULL);
1722 timersub(&stop, &start, &diff);
1723
1724 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1725
1726 tprintf("\n ###\n");
1727 tprintf("\n");
1728
1729 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1730 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1731 runtime_sec_max /= NSEC_PER_SEC;
1732
1733 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1734
1735 bytes = g->bytes_done;
1736 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1737
1738 if (g->p.measure_convergence) {
1739 print_res(name, runtime_sec_max,
1740 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1741 }
1742
1743 print_res(name, runtime_sec_max,
1744 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
1745
1746 print_res(name, runtime_sec_min,
1747 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
1748
1749 print_res(name, runtime_avg,
1750 "secs,", "runtime-avg/thread", "secs average thread-runtime");
1751
1752 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1753 print_res(name, delta_runtime / runtime_sec_max * 100.0,
1754 "%,", "spread-runtime/thread", "% difference between max/avg runtime");
1755
1756 print_res(name, bytes / g->p.nr_tasks / 1e9,
1757 "GB,", "data/thread", "GB data processed, per thread");
1758
1759 print_res(name, bytes / 1e9,
1760 "GB,", "data-total", "GB data processed, total");
1761
1762 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1763 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1764
1765 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1766 "GB/sec,", "thread-speed", "GB/sec/thread speed");
1767
1768 print_res(name, bytes / runtime_sec_max / 1e9,
1769 "GB/sec,", "total-speed", "GB/sec total speed");
1770
1771 if (g->p.show_details >= 2) {
1772 char tname[14 + 2 * 11 + 1];
1773 struct thread_data *td;
1774 for (p = 0; p < g->p.nr_proc; p++) {
1775 for (t = 0; t < g->p.nr_threads; t++) {
1776 memset(tname, 0, sizeof(tname));
1777 td = g->threads + p*g->p.nr_threads + t;
1778 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1779 print_res(tname, td->speed_gbs,
1780 "GB/sec", "thread-speed", "GB/sec/thread speed");
1781 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1782 "secs", "thread-system-time", "system CPU time/thread");
1783 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1784 "secs", "thread-user-time", "user CPU time/thread");
1785 }
1786 }
1787 }
1788
1789 free(pids);
1790
1791 deinit();
1792
1793 return 0;
1794}
1795
1796#define MAX_ARGS 50
1797
1798static int command_size(const char **argv)
1799{
1800 int size = 0;
1801
1802 while (*argv) {
1803 size++;
1804 argv++;
1805 }
1806
1807 BUG_ON(size >= MAX_ARGS);
1808
1809 return size;
1810}
1811
1812static void init_params(struct params *p, const char *name, int argc, const char **argv)
1813{
1814 int i;
1815
1816 printf("\n # Running %s \"perf bench numa", name);
1817
1818 for (i = 0; i < argc; i++)
1819 printf(" %s", argv[i]);
1820
1821 printf("\"\n");
1822
1823 memset(p, 0, sizeof(*p));
1824
1825 /* Initialize nonzero defaults: */
1826
1827 p->serialize_startup = 1;
1828 p->data_reads = true;
1829 p->data_writes = true;
1830 p->data_backwards = true;
1831 p->data_rand_walk = true;
1832 p->nr_loops = -1;
1833 p->init_random = true;
1834 p->mb_global_str = "1";
1835 p->nr_proc = 1;
1836 p->nr_threads = 1;
1837 p->nr_secs = 5;
1838 p->run_all = argc == 1;
1839}
1840
1841static int run_bench_numa(const char *name, const char **argv)
1842{
1843 int argc = command_size(argv);
1844
1845 init_params(&p0, name, argc, argv);
1846 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1847 if (argc)
1848 goto err;
1849
1850 if (__bench_numa(name))
1851 goto err;
1852
1853 return 0;
1854
1855err:
1856 return -1;
1857}
1858
1859#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
1860#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
1861
1862#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
1863#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
1864
1865#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
1866#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
1867
1868/*
1869 * The built-in test-suite executed by "perf bench numa -a".
1870 *
1871 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1872 */
1873static const char *tests[][MAX_ARGS] = {
1874 /* Basic single-stream NUMA bandwidth measurements: */
1875 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1876 "-C" , "0", "-M", "0", OPT_BW_RAM },
1877 { "RAM-bw-local-NOTHP,",
1878 "mem", "-p", "1", "-t", "1", "-P", "1024",
1879 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
1880 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
1881 "-C" , "0", "-M", "1", OPT_BW_RAM },
1882
1883 /* 2-stream NUMA bandwidth measurements: */
1884 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1885 "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1886 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1887 "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1888
1889 /* Cross-stream NUMA bandwidth measurement: */
1890 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
1891 "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1892
1893 /* Convergence latency measurements: */
1894 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
1895 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
1896 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
1897 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV },
1898 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
1899 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
1900 { " 4x4-convergence-NOTHP,",
1901 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1902 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
1903 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
1904 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
1905 { " 8x4-convergence-NOTHP,",
1906 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
1907 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
1908 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
1909 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
1910 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
1911 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
1912
1913 /* Various NUMA process/thread layout bandwidth measurements: */
1914 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
1915 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
1916 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
1917 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
1918 { " 8x1-bw-process-NOTHP,",
1919 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
1920 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
1921
1922 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
1923 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
1924 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
1925 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
1926
1927 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
1928 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
1929 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
1930 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
1931 { " 4x8-bw-process-NOTHP,",
1932 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
1933 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
1934 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
1935
1936 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
1937 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
1938
1939 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
1940 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
1941 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
1942 { "numa01-bw-thread-NOTHP,",
1943 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
1944};
1945
1946static int bench_all(void)
1947{
1948 int nr = ARRAY_SIZE(tests);
1949 int ret;
1950 int i;
1951
1952 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1953 BUG_ON(ret < 0);
1954
1955 for (i = 0; i < nr; i++) {
1956 run_bench_numa(tests[i][0], tests[i] + 1);
1957 }
1958
1959 printf("\n");
1960
1961 return 0;
1962}
1963
1964int bench_numa(int argc, const char **argv)
1965{
1966 init_params(&p0, "main,", argc, argv);
1967 argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1968 if (argc)
1969 goto err;
1970
1971 if (p0.run_all)
1972 return bench_all();
1973
1974 if (__bench_numa(NULL))
1975 goto err;
1976
1977 return 0;
1978
1979err:
1980 usage_with_options(numa_usage, options);
1981 return -1;
1982}