Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
 
  41#include "flow_netlink.h"
  42
  43struct ovs_len_tbl {
  44	int len;
  45	const struct ovs_len_tbl *next;
  46};
  47
  48#define OVS_ATTR_NESTED -1
  49#define OVS_ATTR_VARIABLE -2
 
  50
  51static bool actions_may_change_flow(const struct nlattr *actions)
  52{
  53	struct nlattr *nla;
  54	int rem;
  55
  56	nla_for_each_nested(nla, actions, rem) {
  57		u16 action = nla_type(nla);
  58
  59		switch (action) {
  60		case OVS_ACTION_ATTR_OUTPUT:
  61		case OVS_ACTION_ATTR_RECIRC:
  62		case OVS_ACTION_ATTR_TRUNC:
  63		case OVS_ACTION_ATTR_USERSPACE:
 
 
  64			break;
  65
  66		case OVS_ACTION_ATTR_CT:
  67		case OVS_ACTION_ATTR_CT_CLEAR:
  68		case OVS_ACTION_ATTR_HASH:
  69		case OVS_ACTION_ATTR_POP_ETH:
  70		case OVS_ACTION_ATTR_POP_MPLS:
  71		case OVS_ACTION_ATTR_POP_NSH:
  72		case OVS_ACTION_ATTR_POP_VLAN:
  73		case OVS_ACTION_ATTR_PUSH_ETH:
  74		case OVS_ACTION_ATTR_PUSH_MPLS:
  75		case OVS_ACTION_ATTR_PUSH_NSH:
  76		case OVS_ACTION_ATTR_PUSH_VLAN:
  77		case OVS_ACTION_ATTR_SAMPLE:
  78		case OVS_ACTION_ATTR_SET:
  79		case OVS_ACTION_ATTR_SET_MASKED:
  80		case OVS_ACTION_ATTR_METER:
  81		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  82		case OVS_ACTION_ATTR_ADD_MPLS:
  83		case OVS_ACTION_ATTR_DEC_TTL:
  84		default:
  85			return true;
  86		}
  87	}
  88	return false;
  89}
  90
  91static void update_range(struct sw_flow_match *match,
  92			 size_t offset, size_t size, bool is_mask)
  93{
  94	struct sw_flow_key_range *range;
  95	size_t start = rounddown(offset, sizeof(long));
  96	size_t end = roundup(offset + size, sizeof(long));
  97
  98	if (!is_mask)
  99		range = &match->range;
 100	else
 101		range = &match->mask->range;
 102
 103	if (range->start == range->end) {
 104		range->start = start;
 105		range->end = end;
 106		return;
 107	}
 108
 109	if (range->start > start)
 110		range->start = start;
 111
 112	if (range->end < end)
 113		range->end = end;
 114}
 115
 116#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 117	do { \
 118		update_range(match, offsetof(struct sw_flow_key, field),    \
 119			     sizeof((match)->key->field), is_mask);	    \
 120		if (is_mask)						    \
 121			(match)->mask->key.field = value;		    \
 122		else							    \
 123			(match)->key->field = value;		            \
 124	} while (0)
 125
 126#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 127	do {								    \
 128		update_range(match, offset, len, is_mask);		    \
 129		if (is_mask)						    \
 130			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 131			       len);					   \
 132		else							    \
 133			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 134	} while (0)
 135
 136#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 137	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 138				  value_p, len, is_mask)
 139
 140#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 141	do {								    \
 142		update_range(match, offsetof(struct sw_flow_key, field),    \
 143			     sizeof((match)->key->field), is_mask);	    \
 144		if (is_mask)						    \
 145			memset((u8 *)&(match)->mask->key.field, value,      \
 146			       sizeof((match)->mask->key.field));	    \
 147		else							    \
 148			memset((u8 *)&(match)->key->field, value,           \
 149			       sizeof((match)->key->field));                \
 150	} while (0)
 151
 
 
 
 
 
 
 
 152static bool match_validate(const struct sw_flow_match *match,
 153			   u64 key_attrs, u64 mask_attrs, bool log)
 154{
 155	u64 key_expected = 0;
 156	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 157
 158	/* The following mask attributes allowed only if they
 159	 * pass the validation tests. */
 160	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 161			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 162			| (1 << OVS_KEY_ATTR_IPV6)
 163			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 164			| (1 << OVS_KEY_ATTR_TCP)
 165			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 166			| (1 << OVS_KEY_ATTR_UDP)
 167			| (1 << OVS_KEY_ATTR_SCTP)
 168			| (1 << OVS_KEY_ATTR_ICMP)
 169			| (1 << OVS_KEY_ATTR_ICMPV6)
 170			| (1 << OVS_KEY_ATTR_ARP)
 171			| (1 << OVS_KEY_ATTR_ND)
 172			| (1 << OVS_KEY_ATTR_MPLS)
 173			| (1 << OVS_KEY_ATTR_NSH));
 174
 175	/* Always allowed mask fields. */
 176	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 177		       | (1 << OVS_KEY_ATTR_IN_PORT)
 178		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 179
 180	/* Check key attributes. */
 181	if (match->key->eth.type == htons(ETH_P_ARP)
 182			|| match->key->eth.type == htons(ETH_P_RARP)) {
 183		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 184		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 185			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 186	}
 187
 188	if (eth_p_mpls(match->key->eth.type)) {
 189		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 190		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 191			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 192	}
 193
 194	if (match->key->eth.type == htons(ETH_P_IP)) {
 195		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 196		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 197			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 198			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 199		}
 200
 201		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 202			if (match->key->ip.proto == IPPROTO_UDP) {
 203				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 204				if (match->mask && (match->mask->key.ip.proto == 0xff))
 205					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 206			}
 207
 208			if (match->key->ip.proto == IPPROTO_SCTP) {
 209				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 210				if (match->mask && (match->mask->key.ip.proto == 0xff))
 211					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 212			}
 213
 214			if (match->key->ip.proto == IPPROTO_TCP) {
 215				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 216				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 217				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 218					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 219					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 220				}
 221			}
 222
 223			if (match->key->ip.proto == IPPROTO_ICMP) {
 224				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 225				if (match->mask && (match->mask->key.ip.proto == 0xff))
 226					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 227			}
 228		}
 229	}
 230
 231	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 232		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 233		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 234			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 235			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 236		}
 237
 238		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 239			if (match->key->ip.proto == IPPROTO_UDP) {
 240				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 241				if (match->mask && (match->mask->key.ip.proto == 0xff))
 242					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 243			}
 244
 245			if (match->key->ip.proto == IPPROTO_SCTP) {
 246				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 247				if (match->mask && (match->mask->key.ip.proto == 0xff))
 248					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 249			}
 250
 251			if (match->key->ip.proto == IPPROTO_TCP) {
 252				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 253				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 254				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 255					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 256					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 257				}
 258			}
 259
 260			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 261				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 262				if (match->mask && (match->mask->key.ip.proto == 0xff))
 263					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 264
 265				if (match->key->tp.src ==
 266						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 267				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 268					key_expected |= 1 << OVS_KEY_ATTR_ND;
 269					/* Original direction conntrack tuple
 270					 * uses the same space as the ND fields
 271					 * in the key, so both are not allowed
 272					 * at the same time.
 273					 */
 274					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 275					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 276						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 277				}
 278			}
 279		}
 280	}
 281
 282	if (match->key->eth.type == htons(ETH_P_NSH)) {
 283		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 284		if (match->mask &&
 285		    match->mask->key.eth.type == htons(0xffff)) {
 286			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 287		}
 288	}
 289
 290	if ((key_attrs & key_expected) != key_expected) {
 291		/* Key attributes check failed. */
 292		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 293			  (unsigned long long)key_attrs,
 294			  (unsigned long long)key_expected);
 295		return false;
 296	}
 297
 298	if ((mask_attrs & mask_allowed) != mask_attrs) {
 299		/* Mask attributes check failed. */
 300		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 301			  (unsigned long long)mask_attrs,
 302			  (unsigned long long)mask_allowed);
 303		return false;
 304	}
 305
 306	return true;
 307}
 308
 309size_t ovs_tun_key_attr_size(void)
 310{
 311	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 312	 * updating this function.
 313	 */
 314	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 315		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 316		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 317		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 318		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 319		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 320		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 321		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 322		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 323		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 324		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 325		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 326		 */
 327		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 328		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 329}
 330
 331static size_t ovs_nsh_key_attr_size(void)
 332{
 333	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 334	 * updating this function.
 335	 */
 336	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 337		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 338		 * mutually exclusive, so the bigger one can cover
 339		 * the small one.
 340		 */
 341		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 342}
 343
 344size_t ovs_key_attr_size(void)
 345{
 346	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 347	 * updating this function.
 348	 */
 349	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 29);
 350
 351	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 352		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 353		  + ovs_tun_key_attr_size()
 354		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 355		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 356		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 357		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 358		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 359		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 360		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 361		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 362		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 364		  + ovs_nsh_key_attr_size()
 365		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 366		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 368		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 369		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 370		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 371		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 372		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
 
 373}
 374
 375static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 376	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 377};
 378
 379static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 380	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 381	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 382	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 383	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 384	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 385	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 386	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 387	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 388	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 389	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 390	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 391	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 392						.next = ovs_vxlan_ext_key_lens },
 393	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 394	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 395	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 396	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 397};
 398
 399static const struct ovs_len_tbl
 400ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 401	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 402	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 403	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 404};
 405
 406/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 407static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 408	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 409	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 410	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 411	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 412	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 413	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 414	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 415	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 416	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 417	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 418	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 419	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 420	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 421	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 422	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 423	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 424	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 425	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 426	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 427	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 428				     .next = ovs_tunnel_key_lens, },
 429	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 430	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 431	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 432	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 433	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 434	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 435		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 436	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 437		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 438	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 439				     .next = ovs_nsh_key_attr_lens, },
 
 
 440};
 441
 442static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 443{
 444	return expected_len == attr_len ||
 445	       expected_len == OVS_ATTR_NESTED ||
 446	       expected_len == OVS_ATTR_VARIABLE;
 447}
 448
 449static bool is_all_zero(const u8 *fp, size_t size)
 450{
 451	int i;
 452
 453	if (!fp)
 454		return false;
 455
 456	for (i = 0; i < size; i++)
 457		if (fp[i])
 458			return false;
 459
 460	return true;
 461}
 462
 463static int __parse_flow_nlattrs(const struct nlattr *attr,
 464				const struct nlattr *a[],
 465				u64 *attrsp, bool log, bool nz)
 466{
 467	const struct nlattr *nla;
 468	u64 attrs;
 469	int rem;
 470
 471	attrs = *attrsp;
 472	nla_for_each_nested(nla, attr, rem) {
 473		u16 type = nla_type(nla);
 474		int expected_len;
 475
 476		if (type > OVS_KEY_ATTR_MAX) {
 477			OVS_NLERR(log, "Key type %d is out of range max %d",
 478				  type, OVS_KEY_ATTR_MAX);
 479			return -EINVAL;
 480		}
 481
 482		if (attrs & (1 << type)) {
 
 
 
 
 
 
 
 483			OVS_NLERR(log, "Duplicate key (type %d).", type);
 484			return -EINVAL;
 485		}
 486
 487		expected_len = ovs_key_lens[type].len;
 488		if (!check_attr_len(nla_len(nla), expected_len)) {
 489			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 490				  type, nla_len(nla), expected_len);
 491			return -EINVAL;
 492		}
 493
 494		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 495			attrs |= 1 << type;
 496			a[type] = nla;
 497		}
 498	}
 499	if (rem) {
 500		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 501		return -EINVAL;
 502	}
 503
 504	*attrsp = attrs;
 505	return 0;
 506}
 507
 508static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 509				   const struct nlattr *a[], u64 *attrsp,
 510				   bool log)
 511{
 512	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 513}
 514
 515int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 516		       u64 *attrsp, bool log)
 517{
 518	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 519}
 520
 521static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 522				     struct sw_flow_match *match, bool is_mask,
 523				     bool log)
 524{
 525	unsigned long opt_key_offset;
 526
 527	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 528		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 529			  nla_len(a), sizeof(match->key->tun_opts));
 530		return -EINVAL;
 531	}
 532
 533	if (nla_len(a) % 4 != 0) {
 534		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 535			  nla_len(a));
 536		return -EINVAL;
 537	}
 538
 539	/* We need to record the length of the options passed
 540	 * down, otherwise packets with the same format but
 541	 * additional options will be silently matched.
 542	 */
 543	if (!is_mask) {
 544		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 545				false);
 546	} else {
 547		/* This is somewhat unusual because it looks at
 548		 * both the key and mask while parsing the
 549		 * attributes (and by extension assumes the key
 550		 * is parsed first). Normally, we would verify
 551		 * that each is the correct length and that the
 552		 * attributes line up in the validate function.
 553		 * However, that is difficult because this is
 554		 * variable length and we won't have the
 555		 * information later.
 556		 */
 557		if (match->key->tun_opts_len != nla_len(a)) {
 558			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 559				  match->key->tun_opts_len, nla_len(a));
 560			return -EINVAL;
 561		}
 562
 563		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 564	}
 565
 566	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 567	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 568				  nla_len(a), is_mask);
 569	return 0;
 570}
 571
 572static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 573				     struct sw_flow_match *match, bool is_mask,
 574				     bool log)
 575{
 576	struct nlattr *a;
 577	int rem;
 578	unsigned long opt_key_offset;
 579	struct vxlan_metadata opts;
 580
 581	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 582
 583	memset(&opts, 0, sizeof(opts));
 584	nla_for_each_nested(a, attr, rem) {
 585		int type = nla_type(a);
 586
 587		if (type > OVS_VXLAN_EXT_MAX) {
 588			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 589				  type, OVS_VXLAN_EXT_MAX);
 590			return -EINVAL;
 591		}
 592
 593		if (!check_attr_len(nla_len(a),
 594				    ovs_vxlan_ext_key_lens[type].len)) {
 595			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 596				  type, nla_len(a),
 597				  ovs_vxlan_ext_key_lens[type].len);
 598			return -EINVAL;
 599		}
 600
 601		switch (type) {
 602		case OVS_VXLAN_EXT_GBP:
 603			opts.gbp = nla_get_u32(a);
 604			break;
 605		default:
 606			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 607				  type);
 608			return -EINVAL;
 609		}
 610	}
 611	if (rem) {
 612		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 613			  rem);
 614		return -EINVAL;
 615	}
 616
 617	if (!is_mask)
 618		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 619	else
 620		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 621
 622	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 623	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 624				  is_mask);
 625	return 0;
 626}
 627
 628static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 629				      struct sw_flow_match *match, bool is_mask,
 630				      bool log)
 631{
 632	unsigned long opt_key_offset;
 633
 634	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 635		     sizeof(match->key->tun_opts));
 636
 637	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 638		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 639			  nla_len(a), sizeof(match->key->tun_opts));
 640		return -EINVAL;
 641	}
 642
 643	if (!is_mask)
 644		SW_FLOW_KEY_PUT(match, tun_opts_len,
 645				sizeof(struct erspan_metadata), false);
 646	else
 647		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 648
 649	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 650	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 651				  nla_len(a), is_mask);
 652	return 0;
 653}
 654
 655static int ip_tun_from_nlattr(const struct nlattr *attr,
 656			      struct sw_flow_match *match, bool is_mask,
 657			      bool log)
 658{
 659	bool ttl = false, ipv4 = false, ipv6 = false;
 
 660	bool info_bridge_mode = false;
 661	__be16 tun_flags = 0;
 662	int opts_type = 0;
 663	struct nlattr *a;
 664	int rem;
 665
 666	nla_for_each_nested(a, attr, rem) {
 667		int type = nla_type(a);
 668		int err;
 669
 670		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 671			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 672				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 673			return -EINVAL;
 674		}
 675
 676		if (!check_attr_len(nla_len(a),
 677				    ovs_tunnel_key_lens[type].len)) {
 678			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 679				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 680			return -EINVAL;
 681		}
 682
 683		switch (type) {
 684		case OVS_TUNNEL_KEY_ATTR_ID:
 685			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 686					nla_get_be64(a), is_mask);
 687			tun_flags |= TUNNEL_KEY;
 688			break;
 689		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 690			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 691					nla_get_in_addr(a), is_mask);
 692			ipv4 = true;
 693			break;
 694		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 695			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 696					nla_get_in_addr(a), is_mask);
 697			ipv4 = true;
 698			break;
 699		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 700			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 701					nla_get_in6_addr(a), is_mask);
 702			ipv6 = true;
 703			break;
 704		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 705			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 706					nla_get_in6_addr(a), is_mask);
 707			ipv6 = true;
 708			break;
 709		case OVS_TUNNEL_KEY_ATTR_TOS:
 710			SW_FLOW_KEY_PUT(match, tun_key.tos,
 711					nla_get_u8(a), is_mask);
 712			break;
 713		case OVS_TUNNEL_KEY_ATTR_TTL:
 714			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 715					nla_get_u8(a), is_mask);
 716			ttl = true;
 717			break;
 718		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 719			tun_flags |= TUNNEL_DONT_FRAGMENT;
 720			break;
 721		case OVS_TUNNEL_KEY_ATTR_CSUM:
 722			tun_flags |= TUNNEL_CSUM;
 723			break;
 724		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 725			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 726					nla_get_be16(a), is_mask);
 727			break;
 728		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 729			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 730					nla_get_be16(a), is_mask);
 731			break;
 732		case OVS_TUNNEL_KEY_ATTR_OAM:
 733			tun_flags |= TUNNEL_OAM;
 734			break;
 735		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 736			if (opts_type) {
 737				OVS_NLERR(log, "Multiple metadata blocks provided");
 738				return -EINVAL;
 739			}
 740
 741			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 742			if (err)
 743				return err;
 744
 745			tun_flags |= TUNNEL_GENEVE_OPT;
 746			opts_type = type;
 747			break;
 748		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 749			if (opts_type) {
 750				OVS_NLERR(log, "Multiple metadata blocks provided");
 751				return -EINVAL;
 752			}
 753
 754			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 755			if (err)
 756				return err;
 757
 758			tun_flags |= TUNNEL_VXLAN_OPT;
 759			opts_type = type;
 760			break;
 761		case OVS_TUNNEL_KEY_ATTR_PAD:
 762			break;
 763		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 764			if (opts_type) {
 765				OVS_NLERR(log, "Multiple metadata blocks provided");
 766				return -EINVAL;
 767			}
 768
 769			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 770							 log);
 771			if (err)
 772				return err;
 773
 774			tun_flags |= TUNNEL_ERSPAN_OPT;
 775			opts_type = type;
 776			break;
 777		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 778			info_bridge_mode = true;
 779			ipv4 = true;
 780			break;
 781		default:
 782			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 783				  type);
 784			return -EINVAL;
 785		}
 786	}
 787
 788	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
 
 789	if (is_mask)
 790		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 791	else
 792		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 793				false);
 794
 795	if (rem > 0) {
 796		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 797			  rem);
 798		return -EINVAL;
 799	}
 800
 801	if (ipv4 && ipv6) {
 802		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 803		return -EINVAL;
 804	}
 805
 806	if (!is_mask) {
 807		if (!ipv4 && !ipv6) {
 808			OVS_NLERR(log, "IP tunnel dst address not specified");
 809			return -EINVAL;
 810		}
 811		if (ipv4) {
 812			if (info_bridge_mode) {
 
 
 813				if (match->key->tun_key.u.ipv4.src ||
 814				    match->key->tun_key.u.ipv4.dst ||
 815				    match->key->tun_key.tp_src ||
 816				    match->key->tun_key.tp_dst ||
 817				    match->key->tun_key.ttl ||
 818				    match->key->tun_key.tos ||
 819				    tun_flags & ~TUNNEL_KEY) {
 820					OVS_NLERR(log, "IPv4 tun info is not correct");
 821					return -EINVAL;
 822				}
 823			} else if (!match->key->tun_key.u.ipv4.dst) {
 824				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 825				return -EINVAL;
 826			}
 827		}
 828		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 829			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 830			return -EINVAL;
 831		}
 832
 833		if (!ttl && !info_bridge_mode) {
 834			OVS_NLERR(log, "IP tunnel TTL not specified.");
 835			return -EINVAL;
 836		}
 837	}
 838
 839	return opts_type;
 840}
 841
 842static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 843			       const void *tun_opts, int swkey_tun_opts_len)
 844{
 845	const struct vxlan_metadata *opts = tun_opts;
 846	struct nlattr *nla;
 847
 848	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 849	if (!nla)
 850		return -EMSGSIZE;
 851
 852	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 853		return -EMSGSIZE;
 854
 855	nla_nest_end(skb, nla);
 856	return 0;
 857}
 858
 859static int __ip_tun_to_nlattr(struct sk_buff *skb,
 860			      const struct ip_tunnel_key *output,
 861			      const void *tun_opts, int swkey_tun_opts_len,
 862			      unsigned short tun_proto, u8 mode)
 863{
 864	if (output->tun_flags & TUNNEL_KEY &&
 865	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 866			 OVS_TUNNEL_KEY_ATTR_PAD))
 867		return -EMSGSIZE;
 868
 869	if (mode & IP_TUNNEL_INFO_BRIDGE)
 870		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 871		       ? -EMSGSIZE : 0;
 872
 873	switch (tun_proto) {
 874	case AF_INET:
 875		if (output->u.ipv4.src &&
 876		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 877				    output->u.ipv4.src))
 878			return -EMSGSIZE;
 879		if (output->u.ipv4.dst &&
 880		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 881				    output->u.ipv4.dst))
 882			return -EMSGSIZE;
 883		break;
 884	case AF_INET6:
 885		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 886		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 887				     &output->u.ipv6.src))
 888			return -EMSGSIZE;
 889		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 890		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 891				     &output->u.ipv6.dst))
 892			return -EMSGSIZE;
 893		break;
 894	}
 895	if (output->tos &&
 896	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 897		return -EMSGSIZE;
 898	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 899		return -EMSGSIZE;
 900	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
 901	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 902		return -EMSGSIZE;
 903	if ((output->tun_flags & TUNNEL_CSUM) &&
 904	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 905		return -EMSGSIZE;
 906	if (output->tp_src &&
 907	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 908		return -EMSGSIZE;
 909	if (output->tp_dst &&
 910	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 911		return -EMSGSIZE;
 912	if ((output->tun_flags & TUNNEL_OAM) &&
 913	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 914		return -EMSGSIZE;
 915	if (swkey_tun_opts_len) {
 916		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
 917		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 918			    swkey_tun_opts_len, tun_opts))
 919			return -EMSGSIZE;
 920		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
 
 921			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 922			return -EMSGSIZE;
 923		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
 
 924			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 925				 swkey_tun_opts_len, tun_opts))
 926			return -EMSGSIZE;
 927	}
 928
 929	return 0;
 930}
 931
 932static int ip_tun_to_nlattr(struct sk_buff *skb,
 933			    const struct ip_tunnel_key *output,
 934			    const void *tun_opts, int swkey_tun_opts_len,
 935			    unsigned short tun_proto, u8 mode)
 936{
 937	struct nlattr *nla;
 938	int err;
 939
 940	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 941	if (!nla)
 942		return -EMSGSIZE;
 943
 944	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 945				 tun_proto, mode);
 946	if (err)
 947		return err;
 948
 949	nla_nest_end(skb, nla);
 950	return 0;
 951}
 952
 953int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 954			    struct ip_tunnel_info *tun_info)
 955{
 956	return __ip_tun_to_nlattr(skb, &tun_info->key,
 957				  ip_tunnel_info_opts(tun_info),
 958				  tun_info->options_len,
 959				  ip_tunnel_info_af(tun_info), tun_info->mode);
 960}
 961
 962static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 963				    const struct nlattr *a[],
 964				    bool is_mask, bool inner)
 965{
 966	__be16 tci = 0;
 967	__be16 tpid = 0;
 968
 969	if (a[OVS_KEY_ATTR_VLAN])
 970		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 971
 972	if (a[OVS_KEY_ATTR_ETHERTYPE])
 973		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
 974
 975	if (likely(!inner)) {
 976		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
 977		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
 978	} else {
 979		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
 980		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
 981	}
 982	return 0;
 983}
 984
 985static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
 986				      u64 key_attrs, bool inner,
 987				      const struct nlattr **a, bool log)
 988{
 989	__be16 tci = 0;
 990
 991	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
 992	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
 993	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
 994		/* Not a VLAN. */
 995		return 0;
 996	}
 997
 998	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
 999	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1000		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1001		return -EINVAL;
1002	}
1003
1004	if (a[OVS_KEY_ATTR_VLAN])
1005		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1006
1007	if (!(tci & htons(VLAN_CFI_MASK))) {
1008		if (tci) {
1009			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1010				  (inner) ? "C-VLAN" : "VLAN");
1011			return -EINVAL;
1012		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1013			/* Corner case for truncated VLAN header. */
1014			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1015				  (inner) ? "C-VLAN" : "VLAN");
1016			return -EINVAL;
1017		}
1018	}
1019
1020	return 1;
1021}
1022
1023static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1024					   u64 key_attrs, bool inner,
1025					   const struct nlattr **a, bool log)
1026{
1027	__be16 tci = 0;
1028	__be16 tpid = 0;
1029	bool encap_valid = !!(match->key->eth.vlan.tci &
1030			      htons(VLAN_CFI_MASK));
1031	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1032				htons(VLAN_CFI_MASK));
1033
1034	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1035		/* Not a VLAN. */
1036		return 0;
1037	}
1038
1039	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1040		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1041			  (inner) ? "C-VLAN" : "VLAN");
1042		return -EINVAL;
1043	}
1044
1045	if (a[OVS_KEY_ATTR_VLAN])
1046		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1047
1048	if (a[OVS_KEY_ATTR_ETHERTYPE])
1049		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1050
1051	if (tpid != htons(0xffff)) {
1052		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1053			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1054		return -EINVAL;
1055	}
1056	if (!(tci & htons(VLAN_CFI_MASK))) {
1057		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1058			  (inner) ? "C-VLAN" : "VLAN");
1059		return -EINVAL;
1060	}
1061
1062	return 1;
1063}
1064
1065static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1066				     u64 *key_attrs, bool inner,
1067				     const struct nlattr **a, bool is_mask,
1068				     bool log)
1069{
1070	int err;
1071	const struct nlattr *encap;
1072
1073	if (!is_mask)
1074		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1075						 a, log);
1076	else
1077		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1078						      a, log);
1079	if (err <= 0)
1080		return err;
1081
1082	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1083	if (err)
1084		return err;
1085
1086	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1087	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1088	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1089
1090	encap = a[OVS_KEY_ATTR_ENCAP];
1091
1092	if (!is_mask)
1093		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1094	else
1095		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1096
1097	return err;
1098}
1099
1100static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1101				   u64 *key_attrs, const struct nlattr **a,
1102				   bool is_mask, bool log)
1103{
1104	int err;
1105	bool encap_valid = false;
1106
1107	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1108					is_mask, log);
1109	if (err)
1110		return err;
1111
1112	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1113	if (encap_valid) {
1114		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1115						is_mask, log);
1116		if (err)
1117			return err;
1118	}
1119
1120	return 0;
1121}
1122
1123static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1124				       u64 *attrs, const struct nlattr **a,
1125				       bool is_mask, bool log)
1126{
1127	__be16 eth_type;
1128
1129	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1130	if (is_mask) {
1131		/* Always exact match EtherType. */
1132		eth_type = htons(0xffff);
1133	} else if (!eth_proto_is_802_3(eth_type)) {
1134		OVS_NLERR(log, "EtherType %x is less than min %x",
1135				ntohs(eth_type), ETH_P_802_3_MIN);
1136		return -EINVAL;
1137	}
1138
1139	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1140	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1141	return 0;
1142}
1143
1144static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1145				 u64 *attrs, const struct nlattr **a,
1146				 bool is_mask, bool log)
1147{
1148	u8 mac_proto = MAC_PROTO_ETHERNET;
1149
1150	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1151		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1152
1153		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1154		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1155	}
1156
1157	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1158		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1159
1160		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1161		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1162	}
1163
1164	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1165		SW_FLOW_KEY_PUT(match, phy.priority,
1166			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1167		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1168	}
1169
1170	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1171		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1172
1173		if (is_mask) {
1174			in_port = 0xffffffff; /* Always exact match in_port. */
1175		} else if (in_port >= DP_MAX_PORTS) {
1176			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1177				  in_port, DP_MAX_PORTS);
1178			return -EINVAL;
1179		}
1180
1181		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1182		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1183	} else if (!is_mask) {
1184		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1185	}
1186
1187	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1188		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1189
1190		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1191		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1192	}
1193	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1194		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1195				       is_mask, log) < 0)
1196			return -EINVAL;
1197		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1198	}
1199
1200	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1201	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1202		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1203
1204		if (ct_state & ~CT_SUPPORTED_MASK) {
1205			OVS_NLERR(log, "ct_state flags %08x unsupported",
1206				  ct_state);
1207			return -EINVAL;
1208		}
1209
1210		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1211		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1212	}
1213	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1214	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1215		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1216
1217		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1218		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1219	}
1220	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1221	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1222		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1223
1224		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1225		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1226	}
1227	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1228	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1229		const struct ovs_key_ct_labels *cl;
1230
1231		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1232		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1233				   sizeof(*cl), is_mask);
1234		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1235	}
1236	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1237		const struct ovs_key_ct_tuple_ipv4 *ct;
1238
1239		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1240
1241		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1242		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1243		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1244		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1245		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1246		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1247	}
1248	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1249		const struct ovs_key_ct_tuple_ipv6 *ct;
1250
1251		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1252
1253		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1254				   sizeof(match->key->ipv6.ct_orig.src),
1255				   is_mask);
1256		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1257				   sizeof(match->key->ipv6.ct_orig.dst),
1258				   is_mask);
1259		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1260		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1261		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1262		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1263	}
1264
1265	/* For layer 3 packets the Ethernet type is provided
1266	 * and treated as metadata but no MAC addresses are provided.
1267	 */
1268	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1269	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1270		mac_proto = MAC_PROTO_NONE;
1271
1272	/* Always exact match mac_proto */
1273	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1274
1275	if (mac_proto == MAC_PROTO_NONE)
1276		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1277						   log);
1278
1279	return 0;
1280}
1281
1282int nsh_hdr_from_nlattr(const struct nlattr *attr,
1283			struct nshhdr *nh, size_t size)
1284{
1285	struct nlattr *a;
1286	int rem;
1287	u8 flags = 0;
1288	u8 ttl = 0;
1289	int mdlen = 0;
1290
1291	/* validate_nsh has check this, so we needn't do duplicate check here
1292	 */
1293	if (size < NSH_BASE_HDR_LEN)
1294		return -ENOBUFS;
1295
1296	nla_for_each_nested(a, attr, rem) {
1297		int type = nla_type(a);
1298
1299		switch (type) {
1300		case OVS_NSH_KEY_ATTR_BASE: {
1301			const struct ovs_nsh_key_base *base = nla_data(a);
1302
1303			flags = base->flags;
1304			ttl = base->ttl;
1305			nh->np = base->np;
1306			nh->mdtype = base->mdtype;
1307			nh->path_hdr = base->path_hdr;
1308			break;
1309		}
1310		case OVS_NSH_KEY_ATTR_MD1:
1311			mdlen = nla_len(a);
1312			if (mdlen > size - NSH_BASE_HDR_LEN)
1313				return -ENOBUFS;
1314			memcpy(&nh->md1, nla_data(a), mdlen);
1315			break;
1316
1317		case OVS_NSH_KEY_ATTR_MD2:
1318			mdlen = nla_len(a);
1319			if (mdlen > size - NSH_BASE_HDR_LEN)
1320				return -ENOBUFS;
1321			memcpy(&nh->md2, nla_data(a), mdlen);
1322			break;
1323
1324		default:
1325			return -EINVAL;
1326		}
1327	}
1328
1329	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1330	nh->ver_flags_ttl_len = 0;
1331	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1332
1333	return 0;
1334}
1335
1336int nsh_key_from_nlattr(const struct nlattr *attr,
1337			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1338{
1339	struct nlattr *a;
1340	int rem;
1341
1342	/* validate_nsh has check this, so we needn't do duplicate check here
1343	 */
1344	nla_for_each_nested(a, attr, rem) {
1345		int type = nla_type(a);
1346
1347		switch (type) {
1348		case OVS_NSH_KEY_ATTR_BASE: {
1349			const struct ovs_nsh_key_base *base = nla_data(a);
1350			const struct ovs_nsh_key_base *base_mask = base + 1;
1351
1352			nsh->base = *base;
1353			nsh_mask->base = *base_mask;
1354			break;
1355		}
1356		case OVS_NSH_KEY_ATTR_MD1: {
1357			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1358			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1359
1360			memcpy(nsh->context, md1->context, sizeof(*md1));
1361			memcpy(nsh_mask->context, md1_mask->context,
1362			       sizeof(*md1_mask));
1363			break;
1364		}
1365		case OVS_NSH_KEY_ATTR_MD2:
1366			/* Not supported yet */
1367			return -ENOTSUPP;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	return 0;
1374}
1375
1376static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1377				   struct sw_flow_match *match, bool is_mask,
1378				   bool is_push_nsh, bool log)
1379{
1380	struct nlattr *a;
1381	int rem;
1382	bool has_base = false;
1383	bool has_md1 = false;
1384	bool has_md2 = false;
1385	u8 mdtype = 0;
1386	int mdlen = 0;
1387
1388	if (WARN_ON(is_push_nsh && is_mask))
1389		return -EINVAL;
1390
1391	nla_for_each_nested(a, attr, rem) {
1392		int type = nla_type(a);
1393		int i;
1394
1395		if (type > OVS_NSH_KEY_ATTR_MAX) {
1396			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1397				  type, OVS_NSH_KEY_ATTR_MAX);
1398			return -EINVAL;
1399		}
1400
1401		if (!check_attr_len(nla_len(a),
1402				    ovs_nsh_key_attr_lens[type].len)) {
1403			OVS_NLERR(
1404			    log,
1405			    "nsh attr %d has unexpected len %d expected %d",
1406			    type,
1407			    nla_len(a),
1408			    ovs_nsh_key_attr_lens[type].len
1409			);
1410			return -EINVAL;
1411		}
1412
1413		switch (type) {
1414		case OVS_NSH_KEY_ATTR_BASE: {
1415			const struct ovs_nsh_key_base *base = nla_data(a);
1416
1417			has_base = true;
1418			mdtype = base->mdtype;
1419			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1420					base->flags, is_mask);
1421			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1422					base->ttl, is_mask);
1423			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1424					base->mdtype, is_mask);
1425			SW_FLOW_KEY_PUT(match, nsh.base.np,
1426					base->np, is_mask);
1427			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1428					base->path_hdr, is_mask);
1429			break;
1430		}
1431		case OVS_NSH_KEY_ATTR_MD1: {
1432			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1433
1434			has_md1 = true;
1435			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1436				SW_FLOW_KEY_PUT(match, nsh.context[i],
1437						md1->context[i], is_mask);
1438			break;
1439		}
1440		case OVS_NSH_KEY_ATTR_MD2:
1441			if (!is_push_nsh) /* Not supported MD type 2 yet */
1442				return -ENOTSUPP;
1443
1444			has_md2 = true;
1445			mdlen = nla_len(a);
1446			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1447				OVS_NLERR(
1448				    log,
1449				    "Invalid MD length %d for MD type %d",
1450				    mdlen,
1451				    mdtype
1452				);
1453				return -EINVAL;
1454			}
1455			break;
1456		default:
1457			OVS_NLERR(log, "Unknown nsh attribute %d",
1458				  type);
1459			return -EINVAL;
1460		}
1461	}
1462
1463	if (rem > 0) {
1464		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1465		return -EINVAL;
1466	}
1467
1468	if (has_md1 && has_md2) {
1469		OVS_NLERR(
1470		    1,
1471		    "invalid nsh attribute: md1 and md2 are exclusive."
1472		);
1473		return -EINVAL;
1474	}
1475
1476	if (!is_mask) {
1477		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1478		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1479			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1480				  mdtype);
1481			return -EINVAL;
1482		}
1483
1484		if (is_push_nsh &&
1485		    (!has_base || (!has_md1 && !has_md2))) {
1486			OVS_NLERR(
1487			    1,
1488			    "push_nsh: missing base or metadata attributes"
1489			);
1490			return -EINVAL;
1491		}
1492	}
1493
1494	return 0;
1495}
1496
1497static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1498				u64 attrs, const struct nlattr **a,
1499				bool is_mask, bool log)
1500{
1501	int err;
1502
1503	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1504	if (err)
1505		return err;
1506
1507	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1508		const struct ovs_key_ethernet *eth_key;
1509
1510		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1511		SW_FLOW_KEY_MEMCPY(match, eth.src,
1512				eth_key->eth_src, ETH_ALEN, is_mask);
1513		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1514				eth_key->eth_dst, ETH_ALEN, is_mask);
1515		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1516
1517		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1518			/* VLAN attribute is always parsed before getting here since it
1519			 * may occur multiple times.
1520			 */
1521			OVS_NLERR(log, "VLAN attribute unexpected.");
1522			return -EINVAL;
1523		}
1524
1525		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1526			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1527							  log);
1528			if (err)
1529				return err;
1530		} else if (!is_mask) {
1531			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1532		}
1533	} else if (!match->key->eth.type) {
1534		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1535		return -EINVAL;
1536	}
1537
1538	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1539		const struct ovs_key_ipv4 *ipv4_key;
1540
1541		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1542		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1543			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1544				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1545			return -EINVAL;
1546		}
1547		SW_FLOW_KEY_PUT(match, ip.proto,
1548				ipv4_key->ipv4_proto, is_mask);
1549		SW_FLOW_KEY_PUT(match, ip.tos,
1550				ipv4_key->ipv4_tos, is_mask);
1551		SW_FLOW_KEY_PUT(match, ip.ttl,
1552				ipv4_key->ipv4_ttl, is_mask);
1553		SW_FLOW_KEY_PUT(match, ip.frag,
1554				ipv4_key->ipv4_frag, is_mask);
1555		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1556				ipv4_key->ipv4_src, is_mask);
1557		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1558				ipv4_key->ipv4_dst, is_mask);
1559		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1560	}
1561
1562	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1563		const struct ovs_key_ipv6 *ipv6_key;
1564
1565		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1566		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1567			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1568				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1569			return -EINVAL;
1570		}
1571
1572		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1573			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1574				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1575			return -EINVAL;
1576		}
1577
1578		SW_FLOW_KEY_PUT(match, ipv6.label,
1579				ipv6_key->ipv6_label, is_mask);
1580		SW_FLOW_KEY_PUT(match, ip.proto,
1581				ipv6_key->ipv6_proto, is_mask);
1582		SW_FLOW_KEY_PUT(match, ip.tos,
1583				ipv6_key->ipv6_tclass, is_mask);
1584		SW_FLOW_KEY_PUT(match, ip.ttl,
1585				ipv6_key->ipv6_hlimit, is_mask);
1586		SW_FLOW_KEY_PUT(match, ip.frag,
1587				ipv6_key->ipv6_frag, is_mask);
1588		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1589				ipv6_key->ipv6_src,
1590				sizeof(match->key->ipv6.addr.src),
1591				is_mask);
1592		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1593				ipv6_key->ipv6_dst,
1594				sizeof(match->key->ipv6.addr.dst),
1595				is_mask);
1596
1597		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1598	}
1599
 
 
 
 
 
 
 
 
 
 
 
1600	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1601		const struct ovs_key_arp *arp_key;
1602
1603		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1604		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1605			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1606				  arp_key->arp_op);
1607			return -EINVAL;
1608		}
1609
1610		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1611				arp_key->arp_sip, is_mask);
1612		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1613			arp_key->arp_tip, is_mask);
1614		SW_FLOW_KEY_PUT(match, ip.proto,
1615				ntohs(arp_key->arp_op), is_mask);
1616		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1617				arp_key->arp_sha, ETH_ALEN, is_mask);
1618		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1619				arp_key->arp_tha, ETH_ALEN, is_mask);
1620
1621		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1622	}
1623
1624	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1625		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1626					    is_mask, false, log) < 0)
1627			return -EINVAL;
1628		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1629	}
1630
1631	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1632		const struct ovs_key_mpls *mpls_key;
1633		u32 hdr_len;
1634		u32 label_count, label_count_mask, i;
1635
1636		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1637		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1638		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1639
1640		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1641		    hdr_len % sizeof(struct ovs_key_mpls))
1642			return -EINVAL;
1643
1644		label_count_mask =  GENMASK(label_count - 1, 0);
1645
1646		for (i = 0 ; i < label_count; i++)
1647			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1648					mpls_key[i].mpls_lse, is_mask);
1649
1650		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1651				label_count_mask, is_mask);
1652
1653		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1654	 }
1655
1656	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1657		const struct ovs_key_tcp *tcp_key;
1658
1659		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1660		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1661		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1662		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1663	}
1664
1665	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1666		SW_FLOW_KEY_PUT(match, tp.flags,
1667				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1668				is_mask);
1669		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1670	}
1671
1672	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1673		const struct ovs_key_udp *udp_key;
1674
1675		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1676		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1677		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1678		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1679	}
1680
1681	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1682		const struct ovs_key_sctp *sctp_key;
1683
1684		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1685		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1686		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1687		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1688	}
1689
1690	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1691		const struct ovs_key_icmp *icmp_key;
1692
1693		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1694		SW_FLOW_KEY_PUT(match, tp.src,
1695				htons(icmp_key->icmp_type), is_mask);
1696		SW_FLOW_KEY_PUT(match, tp.dst,
1697				htons(icmp_key->icmp_code), is_mask);
1698		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1699	}
1700
1701	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1702		const struct ovs_key_icmpv6 *icmpv6_key;
1703
1704		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1705		SW_FLOW_KEY_PUT(match, tp.src,
1706				htons(icmpv6_key->icmpv6_type), is_mask);
1707		SW_FLOW_KEY_PUT(match, tp.dst,
1708				htons(icmpv6_key->icmpv6_code), is_mask);
1709		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1710	}
1711
1712	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1713		const struct ovs_key_nd *nd_key;
1714
1715		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1716		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1717			nd_key->nd_target,
1718			sizeof(match->key->ipv6.nd.target),
1719			is_mask);
1720		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1721			nd_key->nd_sll, ETH_ALEN, is_mask);
1722		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1723				nd_key->nd_tll, ETH_ALEN, is_mask);
1724		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1725	}
1726
1727	if (attrs != 0) {
1728		OVS_NLERR(log, "Unknown key attributes %llx",
1729			  (unsigned long long)attrs);
1730		return -EINVAL;
1731	}
1732
1733	return 0;
1734}
1735
1736static void nlattr_set(struct nlattr *attr, u8 val,
1737		       const struct ovs_len_tbl *tbl)
1738{
1739	struct nlattr *nla;
1740	int rem;
1741
1742	/* The nlattr stream should already have been validated */
1743	nla_for_each_nested(nla, attr, rem) {
1744		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1745			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1746		else
1747			memset(nla_data(nla), val, nla_len(nla));
1748
1749		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1750			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1751	}
1752}
1753
1754static void mask_set_nlattr(struct nlattr *attr, u8 val)
1755{
1756	nlattr_set(attr, val, ovs_key_lens);
1757}
1758
1759/**
1760 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1761 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1762 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1763 * does not include any don't care bit.
1764 * @net: Used to determine per-namespace field support.
1765 * @match: receives the extracted flow match information.
1766 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1767 * sequence. The fields should of the packet that triggered the creation
1768 * of this flow.
1769 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1770 * Netlink attribute specifies the mask field of the wildcarded flow.
1771 * @log: Boolean to allow kernel error logging.  Normally true, but when
1772 * probing for feature compatibility this should be passed in as false to
1773 * suppress unnecessary error logging.
1774 */
1775int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1776		      const struct nlattr *nla_key,
1777		      const struct nlattr *nla_mask,
1778		      bool log)
1779{
1780	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1781	struct nlattr *newmask = NULL;
1782	u64 key_attrs = 0;
1783	u64 mask_attrs = 0;
1784	int err;
1785
1786	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1787	if (err)
1788		return err;
1789
1790	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1791	if (err)
1792		return err;
1793
1794	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1795	if (err)
1796		return err;
1797
1798	if (match->mask) {
1799		if (!nla_mask) {
1800			/* Create an exact match mask. We need to set to 0xff
1801			 * all the 'match->mask' fields that have been touched
1802			 * in 'match->key'. We cannot simply memset
1803			 * 'match->mask', because padding bytes and fields not
1804			 * specified in 'match->key' should be left to 0.
1805			 * Instead, we use a stream of netlink attributes,
1806			 * copied from 'key' and set to 0xff.
1807			 * ovs_key_from_nlattrs() will take care of filling
1808			 * 'match->mask' appropriately.
1809			 */
1810			newmask = kmemdup(nla_key,
1811					  nla_total_size(nla_len(nla_key)),
1812					  GFP_KERNEL);
1813			if (!newmask)
1814				return -ENOMEM;
1815
1816			mask_set_nlattr(newmask, 0xff);
1817
1818			/* The userspace does not send tunnel attributes that
1819			 * are 0, but we should not wildcard them nonetheless.
1820			 */
1821			if (match->key->tun_proto)
1822				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1823							 0xff, true);
1824
1825			nla_mask = newmask;
1826		}
1827
1828		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1829		if (err)
1830			goto free_newmask;
1831
1832		/* Always match on tci. */
1833		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1834		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1835
1836		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1837		if (err)
1838			goto free_newmask;
1839
1840		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1841					   log);
1842		if (err)
1843			goto free_newmask;
1844	}
1845
1846	if (!match_validate(match, key_attrs, mask_attrs, log))
1847		err = -EINVAL;
1848
1849free_newmask:
1850	kfree(newmask);
1851	return err;
1852}
1853
1854static size_t get_ufid_len(const struct nlattr *attr, bool log)
1855{
1856	size_t len;
1857
1858	if (!attr)
1859		return 0;
1860
1861	len = nla_len(attr);
1862	if (len < 1 || len > MAX_UFID_LENGTH) {
1863		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1864			  nla_len(attr), MAX_UFID_LENGTH);
1865		return 0;
1866	}
1867
1868	return len;
1869}
1870
1871/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1872 * or false otherwise.
1873 */
1874bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1875		      bool log)
1876{
1877	sfid->ufid_len = get_ufid_len(attr, log);
1878	if (sfid->ufid_len)
1879		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1880
1881	return sfid->ufid_len;
1882}
1883
1884int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1885			   const struct sw_flow_key *key, bool log)
1886{
1887	struct sw_flow_key *new_key;
1888
1889	if (ovs_nla_get_ufid(sfid, ufid, log))
1890		return 0;
1891
1892	/* If UFID was not provided, use unmasked key. */
1893	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1894	if (!new_key)
1895		return -ENOMEM;
1896	memcpy(new_key, key, sizeof(*key));
1897	sfid->unmasked_key = new_key;
1898
1899	return 0;
1900}
1901
1902u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1903{
1904	return attr ? nla_get_u32(attr) : 0;
1905}
1906
1907/**
1908 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1909 * @net: Network namespace.
1910 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1911 * metadata.
1912 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1913 * attributes.
1914 * @attrs: Bit mask for the netlink attributes included in @a.
1915 * @log: Boolean to allow kernel error logging.  Normally true, but when
1916 * probing for feature compatibility this should be passed in as false to
1917 * suppress unnecessary error logging.
1918 *
1919 * This parses a series of Netlink attributes that form a flow key, which must
1920 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1921 * get the metadata, that is, the parts of the flow key that cannot be
1922 * extracted from the packet itself.
1923 *
1924 * This must be called before the packet key fields are filled in 'key'.
1925 */
1926
1927int ovs_nla_get_flow_metadata(struct net *net,
1928			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1929			      u64 attrs, struct sw_flow_key *key, bool log)
1930{
1931	struct sw_flow_match match;
1932
1933	memset(&match, 0, sizeof(match));
1934	match.key = key;
1935
1936	key->ct_state = 0;
1937	key->ct_zone = 0;
1938	key->ct_orig_proto = 0;
1939	memset(&key->ct, 0, sizeof(key->ct));
1940	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1941	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1942
1943	key->phy.in_port = DP_MAX_PORTS;
1944
1945	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1946}
1947
1948static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1949			    bool is_mask)
1950{
1951	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1952
1953	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1954	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1955		return -EMSGSIZE;
1956	return 0;
1957}
1958
1959static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1960			     struct sk_buff *skb)
1961{
1962	struct nlattr *start;
1963
1964	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
1965	if (!start)
1966		return -EMSGSIZE;
1967
1968	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
1969		goto nla_put_failure;
1970
1971	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
1972		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
1973			    sizeof(nsh->context), nsh->context))
1974			goto nla_put_failure;
1975	}
1976
1977	/* Don't support MD type 2 yet */
1978
1979	nla_nest_end(skb, start);
1980
1981	return 0;
1982
1983nla_put_failure:
1984	return -EMSGSIZE;
1985}
1986
1987static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1988			     const struct sw_flow_key *output, bool is_mask,
1989			     struct sk_buff *skb)
1990{
1991	struct ovs_key_ethernet *eth_key;
1992	struct nlattr *nla;
1993	struct nlattr *encap = NULL;
1994	struct nlattr *in_encap = NULL;
1995
1996	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1997		goto nla_put_failure;
1998
1999	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2000		goto nla_put_failure;
2001
2002	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2003		goto nla_put_failure;
2004
2005	if ((swkey->tun_proto || is_mask)) {
2006		const void *opts = NULL;
2007
2008		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
2009			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2010
2011		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2012				     swkey->tun_opts_len, swkey->tun_proto, 0))
2013			goto nla_put_failure;
2014	}
2015
2016	if (swkey->phy.in_port == DP_MAX_PORTS) {
2017		if (is_mask && (output->phy.in_port == 0xffff))
2018			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2019				goto nla_put_failure;
2020	} else {
2021		u16 upper_u16;
2022		upper_u16 = !is_mask ? 0 : 0xffff;
2023
2024		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2025				(upper_u16 << 16) | output->phy.in_port))
2026			goto nla_put_failure;
2027	}
2028
2029	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2030		goto nla_put_failure;
2031
2032	if (ovs_ct_put_key(swkey, output, skb))
2033		goto nla_put_failure;
2034
2035	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2036		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2037		if (!nla)
2038			goto nla_put_failure;
2039
2040		eth_key = nla_data(nla);
2041		ether_addr_copy(eth_key->eth_src, output->eth.src);
2042		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2043
2044		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2045			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2046				goto nla_put_failure;
2047			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2048			if (!swkey->eth.vlan.tci)
2049				goto unencap;
2050
2051			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2052				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2053					goto nla_put_failure;
2054				in_encap = nla_nest_start_noflag(skb,
2055								 OVS_KEY_ATTR_ENCAP);
2056				if (!swkey->eth.cvlan.tci)
2057					goto unencap;
2058			}
2059		}
2060
2061		if (swkey->eth.type == htons(ETH_P_802_2)) {
2062			/*
2063			* Ethertype 802.2 is represented in the netlink with omitted
2064			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2065			* 0xffff in the mask attribute.  Ethertype can also
2066			* be wildcarded.
2067			*/
2068			if (is_mask && output->eth.type)
2069				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2070							output->eth.type))
2071					goto nla_put_failure;
2072			goto unencap;
2073		}
2074	}
2075
2076	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2077		goto nla_put_failure;
2078
2079	if (eth_type_vlan(swkey->eth.type)) {
2080		/* There are 3 VLAN tags, we don't know anything about the rest
2081		 * of the packet, so truncate here.
2082		 */
2083		WARN_ON_ONCE(!(encap && in_encap));
2084		goto unencap;
2085	}
2086
2087	if (swkey->eth.type == htons(ETH_P_IP)) {
2088		struct ovs_key_ipv4 *ipv4_key;
2089
2090		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2091		if (!nla)
2092			goto nla_put_failure;
2093		ipv4_key = nla_data(nla);
2094		ipv4_key->ipv4_src = output->ipv4.addr.src;
2095		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2096		ipv4_key->ipv4_proto = output->ip.proto;
2097		ipv4_key->ipv4_tos = output->ip.tos;
2098		ipv4_key->ipv4_ttl = output->ip.ttl;
2099		ipv4_key->ipv4_frag = output->ip.frag;
2100	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2101		struct ovs_key_ipv6 *ipv6_key;
 
2102
2103		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2104		if (!nla)
2105			goto nla_put_failure;
2106		ipv6_key = nla_data(nla);
2107		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2108				sizeof(ipv6_key->ipv6_src));
2109		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2110				sizeof(ipv6_key->ipv6_dst));
2111		ipv6_key->ipv6_label = output->ipv6.label;
2112		ipv6_key->ipv6_proto = output->ip.proto;
2113		ipv6_key->ipv6_tclass = output->ip.tos;
2114		ipv6_key->ipv6_hlimit = output->ip.ttl;
2115		ipv6_key->ipv6_frag = output->ip.frag;
 
 
 
 
 
 
 
2116	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2117		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2118			goto nla_put_failure;
2119	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2120		   swkey->eth.type == htons(ETH_P_RARP)) {
2121		struct ovs_key_arp *arp_key;
2122
2123		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2124		if (!nla)
2125			goto nla_put_failure;
2126		arp_key = nla_data(nla);
2127		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2128		arp_key->arp_sip = output->ipv4.addr.src;
2129		arp_key->arp_tip = output->ipv4.addr.dst;
2130		arp_key->arp_op = htons(output->ip.proto);
2131		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2132		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2133	} else if (eth_p_mpls(swkey->eth.type)) {
2134		u8 i, num_labels;
2135		struct ovs_key_mpls *mpls_key;
2136
2137		num_labels = hweight_long(output->mpls.num_labels_mask);
2138		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2139				  num_labels * sizeof(*mpls_key));
2140		if (!nla)
2141			goto nla_put_failure;
2142
2143		mpls_key = nla_data(nla);
2144		for (i = 0; i < num_labels; i++)
2145			mpls_key[i].mpls_lse = output->mpls.lse[i];
2146	}
2147
2148	if ((swkey->eth.type == htons(ETH_P_IP) ||
2149	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2150	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2151
2152		if (swkey->ip.proto == IPPROTO_TCP) {
2153			struct ovs_key_tcp *tcp_key;
2154
2155			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2156			if (!nla)
2157				goto nla_put_failure;
2158			tcp_key = nla_data(nla);
2159			tcp_key->tcp_src = output->tp.src;
2160			tcp_key->tcp_dst = output->tp.dst;
2161			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2162					 output->tp.flags))
2163				goto nla_put_failure;
2164		} else if (swkey->ip.proto == IPPROTO_UDP) {
2165			struct ovs_key_udp *udp_key;
2166
2167			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2168			if (!nla)
2169				goto nla_put_failure;
2170			udp_key = nla_data(nla);
2171			udp_key->udp_src = output->tp.src;
2172			udp_key->udp_dst = output->tp.dst;
2173		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2174			struct ovs_key_sctp *sctp_key;
2175
2176			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2177			if (!nla)
2178				goto nla_put_failure;
2179			sctp_key = nla_data(nla);
2180			sctp_key->sctp_src = output->tp.src;
2181			sctp_key->sctp_dst = output->tp.dst;
2182		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2183			   swkey->ip.proto == IPPROTO_ICMP) {
2184			struct ovs_key_icmp *icmp_key;
2185
2186			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2187			if (!nla)
2188				goto nla_put_failure;
2189			icmp_key = nla_data(nla);
2190			icmp_key->icmp_type = ntohs(output->tp.src);
2191			icmp_key->icmp_code = ntohs(output->tp.dst);
2192		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2193			   swkey->ip.proto == IPPROTO_ICMPV6) {
2194			struct ovs_key_icmpv6 *icmpv6_key;
2195
2196			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2197						sizeof(*icmpv6_key));
2198			if (!nla)
2199				goto nla_put_failure;
2200			icmpv6_key = nla_data(nla);
2201			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2202			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2203
2204			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
2205			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
2206				struct ovs_key_nd *nd_key;
2207
2208				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2209				if (!nla)
2210					goto nla_put_failure;
2211				nd_key = nla_data(nla);
2212				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2213							sizeof(nd_key->nd_target));
2214				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2215				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2216			}
2217		}
2218	}
2219
2220unencap:
2221	if (in_encap)
2222		nla_nest_end(skb, in_encap);
2223	if (encap)
2224		nla_nest_end(skb, encap);
2225
2226	return 0;
2227
2228nla_put_failure:
2229	return -EMSGSIZE;
2230}
2231
2232int ovs_nla_put_key(const struct sw_flow_key *swkey,
2233		    const struct sw_flow_key *output, int attr, bool is_mask,
2234		    struct sk_buff *skb)
2235{
2236	int err;
2237	struct nlattr *nla;
2238
2239	nla = nla_nest_start_noflag(skb, attr);
2240	if (!nla)
2241		return -EMSGSIZE;
2242	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2243	if (err)
2244		return err;
2245	nla_nest_end(skb, nla);
2246
2247	return 0;
2248}
2249
2250/* Called with ovs_mutex or RCU read lock. */
2251int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2252{
2253	if (ovs_identifier_is_ufid(&flow->id))
2254		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2255			       flow->id.ufid);
2256
2257	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2258			       OVS_FLOW_ATTR_KEY, false, skb);
2259}
2260
2261/* Called with ovs_mutex or RCU read lock. */
2262int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2263{
2264	return ovs_nla_put_key(&flow->key, &flow->key,
2265				OVS_FLOW_ATTR_KEY, false, skb);
2266}
2267
2268/* Called with ovs_mutex or RCU read lock. */
2269int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2270{
2271	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2272				OVS_FLOW_ATTR_MASK, true, skb);
2273}
2274
2275#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2276
2277static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2278{
2279	struct sw_flow_actions *sfa;
2280
2281	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2282
2283	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
2284	if (!sfa)
2285		return ERR_PTR(-ENOMEM);
2286
2287	sfa->actions_len = 0;
2288	return sfa;
2289}
2290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291static void ovs_nla_free_set_action(const struct nlattr *a)
2292{
2293	const struct nlattr *ovs_key = nla_data(a);
2294	struct ovs_tunnel_info *ovs_tun;
2295
2296	switch (nla_type(ovs_key)) {
2297	case OVS_KEY_ATTR_TUNNEL_INFO:
2298		ovs_tun = nla_data(ovs_key);
2299		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2300		break;
2301	}
2302}
2303
2304void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2305{
2306	const struct nlattr *a;
2307	int rem;
2308
2309	if (!sf_acts)
 
 
 
 
 
2310		return;
2311
2312	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
2313		switch (nla_type(a)) {
2314		case OVS_ACTION_ATTR_SET:
2315			ovs_nla_free_set_action(a);
2316			break;
 
 
 
 
 
2317		case OVS_ACTION_ATTR_CT:
2318			ovs_ct_free_action(a);
2319			break;
 
 
 
 
 
 
 
 
 
 
 
 
2320		}
2321	}
 
2322
 
 
 
 
 
 
2323	kfree(sf_acts);
2324}
2325
2326static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2327{
2328	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2329}
2330
2331/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2332 * The caller must hold rcu_read_lock for this to be sensible. */
2333void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2334{
2335	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2336}
2337
2338static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2339				       int attr_len, bool log)
2340{
2341
2342	struct sw_flow_actions *acts;
2343	int new_acts_size;
2344	size_t req_size = NLA_ALIGN(attr_len);
2345	int next_offset = offsetof(struct sw_flow_actions, actions) +
2346					(*sfa)->actions_len;
2347
2348	if (req_size <= (ksize(*sfa) - next_offset))
2349		goto out;
2350
2351	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2352
2353	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2354		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
2355			OVS_NLERR(log, "Flow action size exceeds max %u",
2356				  MAX_ACTIONS_BUFSIZE);
2357			return ERR_PTR(-EMSGSIZE);
2358		}
2359		new_acts_size = MAX_ACTIONS_BUFSIZE;
2360	}
2361
2362	acts = nla_alloc_flow_actions(new_acts_size);
2363	if (IS_ERR(acts))
2364		return (void *)acts;
2365
2366	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2367	acts->actions_len = (*sfa)->actions_len;
2368	acts->orig_len = (*sfa)->orig_len;
2369	kfree(*sfa);
2370	*sfa = acts;
2371
2372out:
2373	(*sfa)->actions_len += req_size;
2374	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2375}
2376
2377static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2378				   int attrtype, void *data, int len, bool log)
2379{
2380	struct nlattr *a;
2381
2382	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2383	if (IS_ERR(a))
2384		return a;
2385
2386	a->nla_type = attrtype;
2387	a->nla_len = nla_attr_size(len);
2388
2389	if (data)
2390		memcpy(nla_data(a), data, len);
2391	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2392
2393	return a;
2394}
2395
2396int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2397		       int len, bool log)
2398{
2399	struct nlattr *a;
2400
2401	a = __add_action(sfa, attrtype, data, len, log);
2402
2403	return PTR_ERR_OR_ZERO(a);
2404}
2405
2406static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2407					  int attrtype, bool log)
2408{
2409	int used = (*sfa)->actions_len;
2410	int err;
2411
2412	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2413	if (err)
2414		return err;
2415
2416	return used;
2417}
2418
2419static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2420					 int st_offset)
2421{
2422	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2423							       st_offset);
2424
2425	a->nla_len = sfa->actions_len - st_offset;
2426}
2427
2428static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2429				  const struct sw_flow_key *key,
2430				  struct sw_flow_actions **sfa,
2431				  __be16 eth_type, __be16 vlan_tci,
2432				  u32 mpls_label_count, bool log);
 
2433
2434static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2435				    const struct sw_flow_key *key,
2436				    struct sw_flow_actions **sfa,
2437				    __be16 eth_type, __be16 vlan_tci,
2438				    u32 mpls_label_count, bool log, bool last)
 
2439{
2440	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2441	const struct nlattr *probability, *actions;
2442	const struct nlattr *a;
2443	int rem, start, err;
2444	struct sample_arg arg;
2445
2446	memset(attrs, 0, sizeof(attrs));
2447	nla_for_each_nested(a, attr, rem) {
2448		int type = nla_type(a);
2449		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2450			return -EINVAL;
2451		attrs[type] = a;
2452	}
2453	if (rem)
2454		return -EINVAL;
2455
2456	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2457	if (!probability || nla_len(probability) != sizeof(u32))
2458		return -EINVAL;
2459
2460	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2461	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2462		return -EINVAL;
2463
2464	/* validation done, copy sample action. */
2465	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2466	if (start < 0)
2467		return start;
2468
2469	/* When both skb and flow may be changed, put the sample
2470	 * into a deferred fifo. On the other hand, if only skb
2471	 * may be modified, the actions can be executed in place.
2472	 *
2473	 * Do this analysis at the flow installation time.
2474	 * Set 'clone_action->exec' to true if the actions can be
2475	 * executed without being deferred.
2476	 *
2477	 * If the sample is the last action, it can always be excuted
2478	 * rather than deferred.
2479	 */
2480	arg.exec = last || !actions_may_change_flow(actions);
2481	arg.probability = nla_get_u32(probability);
2482
2483	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2484				 log);
2485	if (err)
2486		return err;
2487
2488	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2489				     eth_type, vlan_tci, mpls_label_count, log);
 
2490
2491	if (err)
2492		return err;
2493
2494	add_nested_action_end(*sfa, start);
2495
2496	return 0;
2497}
2498
2499static int validate_and_copy_dec_ttl(struct net *net,
2500				     const struct nlattr *attr,
2501				     const struct sw_flow_key *key,
2502				     struct sw_flow_actions **sfa,
2503				     __be16 eth_type, __be16 vlan_tci,
2504				     u32 mpls_label_count, bool log)
 
2505{
2506	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2507	int start, action_start, err, rem;
2508	const struct nlattr *a, *actions;
2509
2510	memset(attrs, 0, sizeof(attrs));
2511	nla_for_each_nested(a, attr, rem) {
2512		int type = nla_type(a);
2513
2514		/* Ignore unknown attributes to be future proof. */
2515		if (type > OVS_DEC_TTL_ATTR_MAX)
2516			continue;
2517
2518		if (!type || attrs[type]) {
2519			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2520				  type);
2521			return -EINVAL;
2522		}
2523
2524		attrs[type] = a;
2525	}
2526
2527	if (rem) {
2528		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2529		return -EINVAL;
2530	}
2531
2532	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2533	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2534		OVS_NLERR(log, "Missing valid actions attribute.");
2535		return -EINVAL;
2536	}
2537
2538	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2539	if (start < 0)
2540		return start;
2541
2542	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2543	if (action_start < 0)
2544		return action_start;
2545
2546	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2547				     vlan_tci, mpls_label_count, log);
 
2548	if (err)
2549		return err;
2550
2551	add_nested_action_end(*sfa, action_start);
2552	add_nested_action_end(*sfa, start);
2553	return 0;
2554}
2555
2556static int validate_and_copy_clone(struct net *net,
2557				   const struct nlattr *attr,
2558				   const struct sw_flow_key *key,
2559				   struct sw_flow_actions **sfa,
2560				   __be16 eth_type, __be16 vlan_tci,
2561				   u32 mpls_label_count, bool log, bool last)
 
2562{
2563	int start, err;
2564	u32 exec;
2565
2566	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2567		return -EINVAL;
2568
2569	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2570	if (start < 0)
2571		return start;
2572
2573	exec = last || !actions_may_change_flow(attr);
2574
2575	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2576				 sizeof(exec), log);
2577	if (err)
2578		return err;
2579
2580	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2581				     eth_type, vlan_tci, mpls_label_count, log);
 
2582	if (err)
2583		return err;
2584
2585	add_nested_action_end(*sfa, start);
2586
2587	return 0;
2588}
2589
2590void ovs_match_init(struct sw_flow_match *match,
2591		    struct sw_flow_key *key,
2592		    bool reset_key,
2593		    struct sw_flow_mask *mask)
2594{
2595	memset(match, 0, sizeof(*match));
2596	match->key = key;
2597	match->mask = mask;
2598
2599	if (reset_key)
2600		memset(key, 0, sizeof(*key));
2601
2602	if (mask) {
2603		memset(&mask->key, 0, sizeof(mask->key));
2604		mask->range.start = mask->range.end = 0;
2605	}
2606}
2607
2608static int validate_geneve_opts(struct sw_flow_key *key)
2609{
2610	struct geneve_opt *option;
2611	int opts_len = key->tun_opts_len;
2612	bool crit_opt = false;
2613
2614	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2615	while (opts_len > 0) {
2616		int len;
2617
2618		if (opts_len < sizeof(*option))
2619			return -EINVAL;
2620
2621		len = sizeof(*option) + option->length * 4;
2622		if (len > opts_len)
2623			return -EINVAL;
2624
2625		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2626
2627		option = (struct geneve_opt *)((u8 *)option + len);
2628		opts_len -= len;
2629	}
2630
2631	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
 
2632
2633	return 0;
2634}
2635
2636static int validate_and_copy_set_tun(const struct nlattr *attr,
2637				     struct sw_flow_actions **sfa, bool log)
2638{
 
2639	struct sw_flow_match match;
2640	struct sw_flow_key key;
2641	struct metadata_dst *tun_dst;
2642	struct ip_tunnel_info *tun_info;
2643	struct ovs_tunnel_info *ovs_tun;
2644	struct nlattr *a;
2645	int err = 0, start, opts_type;
2646	__be16 dst_opt_type;
2647
2648	dst_opt_type = 0;
2649	ovs_match_init(&match, &key, true, NULL);
2650	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2651	if (opts_type < 0)
2652		return opts_type;
2653
2654	if (key.tun_opts_len) {
2655		switch (opts_type) {
2656		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2657			err = validate_geneve_opts(&key);
2658			if (err < 0)
2659				return err;
2660			dst_opt_type = TUNNEL_GENEVE_OPT;
 
2661			break;
2662		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2663			dst_opt_type = TUNNEL_VXLAN_OPT;
2664			break;
2665		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2666			dst_opt_type = TUNNEL_ERSPAN_OPT;
2667			break;
2668		}
2669	}
2670
2671	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2672	if (start < 0)
2673		return start;
2674
2675	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2676				     GFP_KERNEL);
2677
2678	if (!tun_dst)
2679		return -ENOMEM;
2680
2681	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2682	if (err) {
2683		dst_release((struct dst_entry *)tun_dst);
2684		return err;
2685	}
2686
2687	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2688			 sizeof(*ovs_tun), log);
2689	if (IS_ERR(a)) {
2690		dst_release((struct dst_entry *)tun_dst);
2691		return PTR_ERR(a);
2692	}
2693
2694	ovs_tun = nla_data(a);
2695	ovs_tun->tun_dst = tun_dst;
2696
2697	tun_info = &tun_dst->u.tun_info;
2698	tun_info->mode = IP_TUNNEL_INFO_TX;
2699	if (key.tun_proto == AF_INET6)
2700		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2701	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2702		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2703	tun_info->key = key.tun_key;
2704
2705	/* We need to store the options in the action itself since
2706	 * everything else will go away after flow setup. We can append
2707	 * it to tun_info and then point there.
2708	 */
2709	ip_tunnel_info_opts_set(tun_info,
2710				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2711				key.tun_opts_len, dst_opt_type);
2712	add_nested_action_end(*sfa, start);
2713
2714	return err;
2715}
2716
2717static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2718			 bool is_push_nsh, bool log)
2719{
2720	struct sw_flow_match match;
2721	struct sw_flow_key key;
2722	int ret = 0;
2723
2724	ovs_match_init(&match, &key, true, NULL);
2725	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2726				      is_push_nsh, log);
2727	return !ret;
2728}
2729
2730/* Return false if there are any non-masked bits set.
2731 * Mask follows data immediately, before any netlink padding.
2732 */
2733static bool validate_masked(u8 *data, int len)
2734{
2735	u8 *mask = data + len;
2736
2737	while (len--)
2738		if (*data++ & ~*mask++)
2739			return false;
2740
2741	return true;
2742}
2743
2744static int validate_set(const struct nlattr *a,
2745			const struct sw_flow_key *flow_key,
2746			struct sw_flow_actions **sfa, bool *skip_copy,
2747			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2748{
2749	const struct nlattr *ovs_key = nla_data(a);
2750	int key_type = nla_type(ovs_key);
2751	size_t key_len;
2752
2753	/* There can be only one key in a action */
2754	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2755		return -EINVAL;
2756
2757	key_len = nla_len(ovs_key);
2758	if (masked)
2759		key_len /= 2;
2760
2761	if (key_type > OVS_KEY_ATTR_MAX ||
2762	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2763		return -EINVAL;
2764
2765	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2766		return -EINVAL;
2767
2768	switch (key_type) {
2769	case OVS_KEY_ATTR_PRIORITY:
2770	case OVS_KEY_ATTR_SKB_MARK:
2771	case OVS_KEY_ATTR_CT_MARK:
2772	case OVS_KEY_ATTR_CT_LABELS:
2773		break;
2774
2775	case OVS_KEY_ATTR_ETHERNET:
2776		if (mac_proto != MAC_PROTO_ETHERNET)
2777			return -EINVAL;
2778		break;
2779
2780	case OVS_KEY_ATTR_TUNNEL: {
2781		int err;
2782
2783		if (masked)
2784			return -EINVAL; /* Masked tunnel set not supported. */
2785
2786		*skip_copy = true;
2787		err = validate_and_copy_set_tun(a, sfa, log);
2788		if (err)
2789			return err;
2790		break;
2791	}
2792	case OVS_KEY_ATTR_IPV4: {
2793		const struct ovs_key_ipv4 *ipv4_key;
2794
2795		if (eth_type != htons(ETH_P_IP))
2796			return -EINVAL;
2797
2798		ipv4_key = nla_data(ovs_key);
2799
2800		if (masked) {
2801			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2802
2803			/* Non-writeable fields. */
2804			if (mask->ipv4_proto || mask->ipv4_frag)
2805				return -EINVAL;
2806		} else {
2807			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2808				return -EINVAL;
2809
2810			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2811				return -EINVAL;
2812		}
2813		break;
2814	}
2815	case OVS_KEY_ATTR_IPV6: {
2816		const struct ovs_key_ipv6 *ipv6_key;
2817
2818		if (eth_type != htons(ETH_P_IPV6))
2819			return -EINVAL;
2820
2821		ipv6_key = nla_data(ovs_key);
2822
2823		if (masked) {
2824			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2825
2826			/* Non-writeable fields. */
2827			if (mask->ipv6_proto || mask->ipv6_frag)
2828				return -EINVAL;
2829
2830			/* Invalid bits in the flow label mask? */
2831			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2832				return -EINVAL;
2833		} else {
2834			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2835				return -EINVAL;
2836
2837			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2838				return -EINVAL;
2839		}
2840		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2841			return -EINVAL;
2842
2843		break;
2844	}
2845	case OVS_KEY_ATTR_TCP:
2846		if ((eth_type != htons(ETH_P_IP) &&
2847		     eth_type != htons(ETH_P_IPV6)) ||
2848		    flow_key->ip.proto != IPPROTO_TCP)
2849			return -EINVAL;
2850
2851		break;
2852
2853	case OVS_KEY_ATTR_UDP:
2854		if ((eth_type != htons(ETH_P_IP) &&
2855		     eth_type != htons(ETH_P_IPV6)) ||
2856		    flow_key->ip.proto != IPPROTO_UDP)
2857			return -EINVAL;
2858
2859		break;
2860
2861	case OVS_KEY_ATTR_MPLS:
2862		if (!eth_p_mpls(eth_type))
2863			return -EINVAL;
2864		break;
2865
2866	case OVS_KEY_ATTR_SCTP:
2867		if ((eth_type != htons(ETH_P_IP) &&
2868		     eth_type != htons(ETH_P_IPV6)) ||
2869		    flow_key->ip.proto != IPPROTO_SCTP)
2870			return -EINVAL;
2871
2872		break;
2873
2874	case OVS_KEY_ATTR_NSH:
2875		if (eth_type != htons(ETH_P_NSH))
2876			return -EINVAL;
2877		if (!validate_nsh(nla_data(a), masked, false, log))
2878			return -EINVAL;
2879		break;
2880
2881	default:
2882		return -EINVAL;
2883	}
2884
2885	/* Convert non-masked non-tunnel set actions to masked set actions. */
2886	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2887		int start, len = key_len * 2;
2888		struct nlattr *at;
2889
2890		*skip_copy = true;
2891
2892		start = add_nested_action_start(sfa,
2893						OVS_ACTION_ATTR_SET_TO_MASKED,
2894						log);
2895		if (start < 0)
2896			return start;
2897
2898		at = __add_action(sfa, key_type, NULL, len, log);
2899		if (IS_ERR(at))
2900			return PTR_ERR(at);
2901
2902		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2903		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
2904		/* Clear non-writeable bits from otherwise writeable fields. */
2905		if (key_type == OVS_KEY_ATTR_IPV6) {
2906			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2907
2908			mask->ipv6_label &= htonl(0x000FFFFF);
2909		}
2910		add_nested_action_end(*sfa, start);
2911	}
2912
2913	return 0;
2914}
2915
2916static int validate_userspace(const struct nlattr *attr)
2917{
2918	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2919		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2920		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2921		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2922	};
2923	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2924	int error;
2925
2926	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
2927					    userspace_policy, NULL);
2928	if (error)
2929		return error;
2930
2931	if (!a[OVS_USERSPACE_ATTR_PID] ||
2932	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2933		return -EINVAL;
2934
2935	return 0;
2936}
2937
2938static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
2939	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
2940	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
2941	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
2942};
2943
2944static int validate_and_copy_check_pkt_len(struct net *net,
2945					   const struct nlattr *attr,
2946					   const struct sw_flow_key *key,
2947					   struct sw_flow_actions **sfa,
2948					   __be16 eth_type, __be16 vlan_tci,
2949					   u32 mpls_label_count,
2950					   bool log, bool last)
2951{
2952	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
2953	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
2954	struct check_pkt_len_arg arg;
2955	int nested_acts_start;
2956	int start, err;
2957
2958	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
2959					  nla_data(attr), nla_len(attr),
2960					  cpl_policy, NULL);
2961	if (err)
2962		return err;
2963
2964	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
2965	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
2966		return -EINVAL;
2967
2968	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
2969	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
2970
2971	/* Both the nested action should be present. */
2972	if (!acts_if_greater || !acts_if_lesser_eq)
2973		return -EINVAL;
2974
2975	/* validation done, copy the nested actions. */
2976	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
2977					log);
2978	if (start < 0)
2979		return start;
2980
2981	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
2982	arg.exec_for_lesser_equal =
2983		last || !actions_may_change_flow(acts_if_lesser_eq);
2984	arg.exec_for_greater =
2985		last || !actions_may_change_flow(acts_if_greater);
2986
2987	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
2988				 sizeof(arg), log);
2989	if (err)
2990		return err;
2991
2992	nested_acts_start = add_nested_action_start(sfa,
2993		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
2994	if (nested_acts_start < 0)
2995		return nested_acts_start;
2996
2997	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
2998				     eth_type, vlan_tci, mpls_label_count, log);
 
2999
3000	if (err)
3001		return err;
3002
3003	add_nested_action_end(*sfa, nested_acts_start);
3004
3005	nested_acts_start = add_nested_action_start(sfa,
3006		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3007	if (nested_acts_start < 0)
3008		return nested_acts_start;
3009
3010	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3011				     eth_type, vlan_tci, mpls_label_count, log);
 
3012
3013	if (err)
3014		return err;
3015
3016	add_nested_action_end(*sfa, nested_acts_start);
3017	add_nested_action_end(*sfa, start);
3018	return 0;
3019}
3020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021static int copy_action(const struct nlattr *from,
3022		       struct sw_flow_actions **sfa, bool log)
3023{
3024	int totlen = NLA_ALIGN(from->nla_len);
3025	struct nlattr *to;
3026
3027	to = reserve_sfa_size(sfa, from->nla_len, log);
3028	if (IS_ERR(to))
3029		return PTR_ERR(to);
3030
3031	memcpy(to, from, totlen);
3032	return 0;
3033}
3034
3035static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3036				  const struct sw_flow_key *key,
3037				  struct sw_flow_actions **sfa,
3038				  __be16 eth_type, __be16 vlan_tci,
3039				  u32 mpls_label_count, bool log)
 
3040{
3041	u8 mac_proto = ovs_key_mac_proto(key);
3042	const struct nlattr *a;
3043	int rem, err;
3044
 
 
 
3045	nla_for_each_nested(a, attr, rem) {
3046		/* Expected argument lengths, (u32)-1 for variable length. */
3047		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3048			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3049			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3050			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3051			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3052			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3053			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3054			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3055			[OVS_ACTION_ATTR_SET] = (u32)-1,
3056			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3057			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3058			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3059			[OVS_ACTION_ATTR_CT] = (u32)-1,
3060			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3061			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3062			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3063			[OVS_ACTION_ATTR_POP_ETH] = 0,
3064			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3065			[OVS_ACTION_ATTR_POP_NSH] = 0,
3066			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3067			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3068			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3069			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3070			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
 
 
3071		};
3072		const struct ovs_action_push_vlan *vlan;
3073		int type = nla_type(a);
3074		bool skip_copy;
3075
3076		if (type > OVS_ACTION_ATTR_MAX ||
3077		    (action_lens[type] != nla_len(a) &&
3078		     action_lens[type] != (u32)-1))
3079			return -EINVAL;
3080
3081		skip_copy = false;
3082		switch (type) {
3083		case OVS_ACTION_ATTR_UNSPEC:
3084			return -EINVAL;
3085
3086		case OVS_ACTION_ATTR_USERSPACE:
3087			err = validate_userspace(a);
3088			if (err)
3089				return err;
3090			break;
3091
3092		case OVS_ACTION_ATTR_OUTPUT:
3093			if (nla_get_u32(a) >= DP_MAX_PORTS)
3094				return -EINVAL;
3095			break;
3096
3097		case OVS_ACTION_ATTR_TRUNC: {
3098			const struct ovs_action_trunc *trunc = nla_data(a);
3099
3100			if (trunc->max_len < ETH_HLEN)
3101				return -EINVAL;
3102			break;
3103		}
3104
3105		case OVS_ACTION_ATTR_HASH: {
3106			const struct ovs_action_hash *act_hash = nla_data(a);
3107
3108			switch (act_hash->hash_alg) {
3109			case OVS_HASH_ALG_L4:
 
 
3110				break;
3111			default:
3112				return  -EINVAL;
3113			}
3114
3115			break;
3116		}
3117
3118		case OVS_ACTION_ATTR_POP_VLAN:
3119			if (mac_proto != MAC_PROTO_ETHERNET)
3120				return -EINVAL;
3121			vlan_tci = htons(0);
3122			break;
3123
3124		case OVS_ACTION_ATTR_PUSH_VLAN:
3125			if (mac_proto != MAC_PROTO_ETHERNET)
3126				return -EINVAL;
3127			vlan = nla_data(a);
3128			if (!eth_type_vlan(vlan->vlan_tpid))
3129				return -EINVAL;
3130			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3131				return -EINVAL;
3132			vlan_tci = vlan->vlan_tci;
3133			break;
3134
3135		case OVS_ACTION_ATTR_RECIRC:
3136			break;
3137
3138		case OVS_ACTION_ATTR_ADD_MPLS: {
3139			const struct ovs_action_add_mpls *mpls = nla_data(a);
3140
3141			if (!eth_p_mpls(mpls->mpls_ethertype))
3142				return -EINVAL;
3143
3144			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3145				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3146				    (eth_type != htons(ETH_P_IP) &&
3147				     eth_type != htons(ETH_P_IPV6) &&
3148				     eth_type != htons(ETH_P_ARP) &&
3149				     eth_type != htons(ETH_P_RARP) &&
3150				     !eth_p_mpls(eth_type)))
3151					return -EINVAL;
3152				mpls_label_count++;
3153			} else {
3154				if (mac_proto == MAC_PROTO_ETHERNET) {
3155					mpls_label_count = 1;
3156					mac_proto = MAC_PROTO_NONE;
3157				} else {
3158					mpls_label_count++;
3159				}
3160			}
3161			eth_type = mpls->mpls_ethertype;
3162			break;
3163		}
3164
3165		case OVS_ACTION_ATTR_PUSH_MPLS: {
3166			const struct ovs_action_push_mpls *mpls = nla_data(a);
3167
3168			if (!eth_p_mpls(mpls->mpls_ethertype))
3169				return -EINVAL;
3170			/* Prohibit push MPLS other than to a white list
3171			 * for packets that have a known tag order.
3172			 */
3173			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3174			    (eth_type != htons(ETH_P_IP) &&
3175			     eth_type != htons(ETH_P_IPV6) &&
3176			     eth_type != htons(ETH_P_ARP) &&
3177			     eth_type != htons(ETH_P_RARP) &&
3178			     !eth_p_mpls(eth_type)))
3179				return -EINVAL;
3180			eth_type = mpls->mpls_ethertype;
3181			mpls_label_count++;
3182			break;
3183		}
3184
3185		case OVS_ACTION_ATTR_POP_MPLS: {
3186			__be16  proto;
3187			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3188			    !eth_p_mpls(eth_type))
3189				return -EINVAL;
3190
3191			/* Disallow subsequent L2.5+ set actions and mpls_pop
3192			 * actions once the last MPLS label in the packet is
3193			 * is popped as there is no check here to ensure that
3194			 * the new eth type is valid and thus set actions could
3195			 * write off the end of the packet or otherwise corrupt
3196			 * it.
3197			 *
3198			 * Support for these actions is planned using packet
3199			 * recirculation.
3200			 */
3201			proto = nla_get_be16(a);
3202
3203			if (proto == htons(ETH_P_TEB) &&
3204			    mac_proto != MAC_PROTO_NONE)
3205				return -EINVAL;
3206
3207			mpls_label_count--;
3208
3209			if (!eth_p_mpls(proto) || !mpls_label_count)
3210				eth_type = htons(0);
3211			else
3212				eth_type =  proto;
3213
3214			break;
3215		}
3216
3217		case OVS_ACTION_ATTR_SET:
3218			err = validate_set(a, key, sfa,
3219					   &skip_copy, mac_proto, eth_type,
3220					   false, log);
3221			if (err)
3222				return err;
3223			break;
3224
3225		case OVS_ACTION_ATTR_SET_MASKED:
3226			err = validate_set(a, key, sfa,
3227					   &skip_copy, mac_proto, eth_type,
3228					   true, log);
3229			if (err)
3230				return err;
3231			break;
3232
3233		case OVS_ACTION_ATTR_SAMPLE: {
3234			bool last = nla_is_last(a, rem);
3235
3236			err = validate_and_copy_sample(net, a, key, sfa,
3237						       eth_type, vlan_tci,
3238						       mpls_label_count,
3239						       log, last);
3240			if (err)
3241				return err;
3242			skip_copy = true;
3243			break;
3244		}
3245
3246		case OVS_ACTION_ATTR_CT:
3247			err = ovs_ct_copy_action(net, a, key, sfa, log);
3248			if (err)
3249				return err;
3250			skip_copy = true;
3251			break;
3252
3253		case OVS_ACTION_ATTR_CT_CLEAR:
3254			break;
3255
3256		case OVS_ACTION_ATTR_PUSH_ETH:
3257			/* Disallow pushing an Ethernet header if one
3258			 * is already present */
3259			if (mac_proto != MAC_PROTO_NONE)
3260				return -EINVAL;
3261			mac_proto = MAC_PROTO_ETHERNET;
3262			break;
3263
3264		case OVS_ACTION_ATTR_POP_ETH:
3265			if (mac_proto != MAC_PROTO_ETHERNET)
3266				return -EINVAL;
3267			if (vlan_tci & htons(VLAN_CFI_MASK))
3268				return -EINVAL;
3269			mac_proto = MAC_PROTO_NONE;
3270			break;
3271
3272		case OVS_ACTION_ATTR_PUSH_NSH:
3273			if (mac_proto != MAC_PROTO_ETHERNET) {
3274				u8 next_proto;
3275
3276				next_proto = tun_p_from_eth_p(eth_type);
3277				if (!next_proto)
3278					return -EINVAL;
3279			}
3280			mac_proto = MAC_PROTO_NONE;
3281			if (!validate_nsh(nla_data(a), false, true, true))
3282				return -EINVAL;
3283			break;
3284
3285		case OVS_ACTION_ATTR_POP_NSH: {
3286			__be16 inner_proto;
3287
3288			if (eth_type != htons(ETH_P_NSH))
3289				return -EINVAL;
3290			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3291			if (!inner_proto)
3292				return -EINVAL;
3293			if (key->nsh.base.np == TUN_P_ETHERNET)
3294				mac_proto = MAC_PROTO_ETHERNET;
3295			else
3296				mac_proto = MAC_PROTO_NONE;
3297			break;
3298		}
3299
3300		case OVS_ACTION_ATTR_METER:
3301			/* Non-existent meters are simply ignored.  */
3302			break;
3303
3304		case OVS_ACTION_ATTR_CLONE: {
3305			bool last = nla_is_last(a, rem);
3306
3307			err = validate_and_copy_clone(net, a, key, sfa,
3308						      eth_type, vlan_tci,
3309						      mpls_label_count,
3310						      log, last);
3311			if (err)
3312				return err;
3313			skip_copy = true;
3314			break;
3315		}
3316
3317		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3318			bool last = nla_is_last(a, rem);
3319
3320			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3321							      eth_type,
3322							      vlan_tci,
3323							      mpls_label_count,
3324							      log, last);
 
3325			if (err)
3326				return err;
3327			skip_copy = true;
3328			break;
3329		}
3330
3331		case OVS_ACTION_ATTR_DEC_TTL:
3332			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3333							eth_type, vlan_tci,
3334							mpls_label_count, log);
 
3335			if (err)
3336				return err;
3337			skip_copy = true;
3338			break;
3339
 
 
 
 
 
 
 
 
 
 
 
3340		default:
3341			OVS_NLERR(log, "Unknown Action type %d", type);
3342			return -EINVAL;
3343		}
3344		if (!skip_copy) {
3345			err = copy_action(a, sfa, log);
3346			if (err)
3347				return err;
3348		}
3349	}
3350
3351	if (rem > 0)
3352		return -EINVAL;
3353
3354	return 0;
3355}
3356
3357/* 'key' must be the masked key. */
3358int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3359			 const struct sw_flow_key *key,
3360			 struct sw_flow_actions **sfa, bool log)
3361{
3362	int err;
3363	u32 mpls_label_count = 0;
3364
3365	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3366	if (IS_ERR(*sfa))
3367		return PTR_ERR(*sfa);
3368
3369	if (eth_p_mpls(key->eth.type))
3370		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3371
3372	(*sfa)->orig_len = nla_len(attr);
3373	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3374				     key->eth.vlan.tci, mpls_label_count, log);
 
3375	if (err)
3376		ovs_nla_free_flow_actions(*sfa);
3377
3378	return err;
3379}
3380
3381static int sample_action_to_attr(const struct nlattr *attr,
3382				 struct sk_buff *skb)
3383{
3384	struct nlattr *start, *ac_start = NULL, *sample_arg;
3385	int err = 0, rem = nla_len(attr);
3386	const struct sample_arg *arg;
3387	struct nlattr *actions;
3388
3389	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3390	if (!start)
3391		return -EMSGSIZE;
3392
3393	sample_arg = nla_data(attr);
3394	arg = nla_data(sample_arg);
3395	actions = nla_next(sample_arg, &rem);
3396
3397	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3398		err = -EMSGSIZE;
3399		goto out;
3400	}
3401
3402	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3403	if (!ac_start) {
3404		err = -EMSGSIZE;
3405		goto out;
3406	}
3407
3408	err = ovs_nla_put_actions(actions, rem, skb);
3409
3410out:
3411	if (err) {
3412		nla_nest_cancel(skb, ac_start);
3413		nla_nest_cancel(skb, start);
3414	} else {
3415		nla_nest_end(skb, ac_start);
3416		nla_nest_end(skb, start);
3417	}
3418
3419	return err;
3420}
3421
3422static int clone_action_to_attr(const struct nlattr *attr,
3423				struct sk_buff *skb)
3424{
3425	struct nlattr *start;
3426	int err = 0, rem = nla_len(attr);
3427
3428	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3429	if (!start)
3430		return -EMSGSIZE;
3431
3432	err = ovs_nla_put_actions(nla_data(attr), rem, skb);
 
 
3433
3434	if (err)
3435		nla_nest_cancel(skb, start);
3436	else
3437		nla_nest_end(skb, start);
3438
3439	return err;
3440}
3441
3442static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3443					struct sk_buff *skb)
3444{
3445	struct nlattr *start, *ac_start = NULL;
3446	const struct check_pkt_len_arg *arg;
3447	const struct nlattr *a, *cpl_arg;
3448	int err = 0, rem = nla_len(attr);
3449
3450	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3451	if (!start)
3452		return -EMSGSIZE;
3453
3454	/* The first nested attribute in 'attr' is always
3455	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3456	 */
3457	cpl_arg = nla_data(attr);
3458	arg = nla_data(cpl_arg);
3459
3460	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3461		err = -EMSGSIZE;
3462		goto out;
3463	}
3464
3465	/* Second nested attribute in 'attr' is always
3466	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3467	 */
3468	a = nla_next(cpl_arg, &rem);
3469	ac_start =  nla_nest_start_noflag(skb,
3470					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3471	if (!ac_start) {
3472		err = -EMSGSIZE;
3473		goto out;
3474	}
3475
3476	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3477	if (err) {
3478		nla_nest_cancel(skb, ac_start);
3479		goto out;
3480	} else {
3481		nla_nest_end(skb, ac_start);
3482	}
3483
3484	/* Third nested attribute in 'attr' is always
3485	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3486	 */
3487	a = nla_next(a, &rem);
3488	ac_start =  nla_nest_start_noflag(skb,
3489					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3490	if (!ac_start) {
3491		err = -EMSGSIZE;
3492		goto out;
3493	}
3494
3495	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3496	if (err) {
3497		nla_nest_cancel(skb, ac_start);
3498		goto out;
3499	} else {
3500		nla_nest_end(skb, ac_start);
3501	}
3502
3503	nla_nest_end(skb, start);
3504	return 0;
3505
3506out:
3507	nla_nest_cancel(skb, start);
3508	return err;
3509}
3510
3511static int dec_ttl_action_to_attr(const struct nlattr *attr,
3512				  struct sk_buff *skb)
3513{
3514	struct nlattr *start, *action_start;
3515	const struct nlattr *a;
3516	int err = 0, rem;
3517
3518	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3519	if (!start)
3520		return -EMSGSIZE;
3521
3522	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3523		switch (nla_type(a)) {
3524		case OVS_DEC_TTL_ATTR_ACTION:
3525
3526			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3527			if (!action_start) {
3528				err = -EMSGSIZE;
3529				goto out;
3530			}
3531
3532			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3533			if (err)
3534				goto out;
3535
3536			nla_nest_end(skb, action_start);
3537			break;
3538
3539		default:
3540			/* Ignore all other option to be future compatible */
3541			break;
3542		}
3543	}
3544
3545	nla_nest_end(skb, start);
3546	return 0;
3547
3548out:
3549	nla_nest_cancel(skb, start);
3550	return err;
3551}
3552
3553static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3554{
3555	const struct nlattr *ovs_key = nla_data(a);
3556	int key_type = nla_type(ovs_key);
3557	struct nlattr *start;
3558	int err;
3559
3560	switch (key_type) {
3561	case OVS_KEY_ATTR_TUNNEL_INFO: {
3562		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3563		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3564
3565		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3566		if (!start)
3567			return -EMSGSIZE;
3568
3569		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3570					ip_tunnel_info_opts(tun_info),
3571					tun_info->options_len,
3572					ip_tunnel_info_af(tun_info), tun_info->mode);
3573		if (err)
3574			return err;
3575		nla_nest_end(skb, start);
3576		break;
3577	}
3578	default:
3579		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3580			return -EMSGSIZE;
3581		break;
3582	}
3583
3584	return 0;
3585}
3586
3587static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3588						struct sk_buff *skb)
3589{
3590	const struct nlattr *ovs_key = nla_data(a);
3591	struct nlattr *nla;
3592	size_t key_len = nla_len(ovs_key) / 2;
3593
3594	/* Revert the conversion we did from a non-masked set action to
3595	 * masked set action.
3596	 */
3597	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3598	if (!nla)
3599		return -EMSGSIZE;
3600
3601	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3602		return -EMSGSIZE;
3603
3604	nla_nest_end(skb, nla);
3605	return 0;
3606}
3607
3608int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3609{
3610	const struct nlattr *a;
3611	int rem, err;
3612
3613	nla_for_each_attr(a, attr, len, rem) {
3614		int type = nla_type(a);
3615
3616		switch (type) {
3617		case OVS_ACTION_ATTR_SET:
3618			err = set_action_to_attr(a, skb);
3619			if (err)
3620				return err;
3621			break;
3622
3623		case OVS_ACTION_ATTR_SET_TO_MASKED:
3624			err = masked_set_action_to_set_action_attr(a, skb);
3625			if (err)
3626				return err;
3627			break;
3628
3629		case OVS_ACTION_ATTR_SAMPLE:
3630			err = sample_action_to_attr(a, skb);
3631			if (err)
3632				return err;
3633			break;
3634
3635		case OVS_ACTION_ATTR_CT:
3636			err = ovs_ct_action_to_attr(nla_data(a), skb);
3637			if (err)
3638				return err;
3639			break;
3640
3641		case OVS_ACTION_ATTR_CLONE:
3642			err = clone_action_to_attr(a, skb);
3643			if (err)
3644				return err;
3645			break;
3646
3647		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3648			err = check_pkt_len_action_to_attr(a, skb);
3649			if (err)
3650				return err;
3651			break;
3652
3653		case OVS_ACTION_ATTR_DEC_TTL:
3654			err = dec_ttl_action_to_attr(a, skb);
3655			if (err)
3656				return err;
3657			break;
3658
3659		default:
3660			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3661				return -EMSGSIZE;
3662			break;
3663		}
3664	}
3665
3666	return 0;
3667}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include "flow.h"
   9#include "datapath.h"
  10#include <linux/uaccess.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/if_ether.h>
  14#include <linux/if_vlan.h>
  15#include <net/llc_pdu.h>
  16#include <linux/kernel.h>
  17#include <linux/jhash.h>
  18#include <linux/jiffies.h>
  19#include <linux/llc.h>
  20#include <linux/module.h>
  21#include <linux/in.h>
  22#include <linux/rcupdate.h>
  23#include <linux/if_arp.h>
  24#include <linux/ip.h>
  25#include <linux/ipv6.h>
  26#include <linux/sctp.h>
  27#include <linux/tcp.h>
  28#include <linux/udp.h>
  29#include <linux/icmp.h>
  30#include <linux/icmpv6.h>
  31#include <linux/rculist.h>
  32#include <net/geneve.h>
  33#include <net/ip.h>
  34#include <net/ipv6.h>
  35#include <net/ndisc.h>
  36#include <net/mpls.h>
  37#include <net/vxlan.h>
  38#include <net/tun_proto.h>
  39#include <net/erspan.h>
  40
  41#include "drop.h"
  42#include "flow_netlink.h"
  43
  44struct ovs_len_tbl {
  45	int len;
  46	const struct ovs_len_tbl *next;
  47};
  48
  49#define OVS_ATTR_NESTED -1
  50#define OVS_ATTR_VARIABLE -2
  51#define OVS_COPY_ACTIONS_MAX_DEPTH 16
  52
  53static bool actions_may_change_flow(const struct nlattr *actions)
  54{
  55	struct nlattr *nla;
  56	int rem;
  57
  58	nla_for_each_nested(nla, actions, rem) {
  59		u16 action = nla_type(nla);
  60
  61		switch (action) {
  62		case OVS_ACTION_ATTR_OUTPUT:
  63		case OVS_ACTION_ATTR_RECIRC:
  64		case OVS_ACTION_ATTR_TRUNC:
  65		case OVS_ACTION_ATTR_USERSPACE:
  66		case OVS_ACTION_ATTR_DROP:
  67		case OVS_ACTION_ATTR_PSAMPLE:
  68			break;
  69
  70		case OVS_ACTION_ATTR_CT:
  71		case OVS_ACTION_ATTR_CT_CLEAR:
  72		case OVS_ACTION_ATTR_HASH:
  73		case OVS_ACTION_ATTR_POP_ETH:
  74		case OVS_ACTION_ATTR_POP_MPLS:
  75		case OVS_ACTION_ATTR_POP_NSH:
  76		case OVS_ACTION_ATTR_POP_VLAN:
  77		case OVS_ACTION_ATTR_PUSH_ETH:
  78		case OVS_ACTION_ATTR_PUSH_MPLS:
  79		case OVS_ACTION_ATTR_PUSH_NSH:
  80		case OVS_ACTION_ATTR_PUSH_VLAN:
  81		case OVS_ACTION_ATTR_SAMPLE:
  82		case OVS_ACTION_ATTR_SET:
  83		case OVS_ACTION_ATTR_SET_MASKED:
  84		case OVS_ACTION_ATTR_METER:
  85		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
  86		case OVS_ACTION_ATTR_ADD_MPLS:
  87		case OVS_ACTION_ATTR_DEC_TTL:
  88		default:
  89			return true;
  90		}
  91	}
  92	return false;
  93}
  94
  95static void update_range(struct sw_flow_match *match,
  96			 size_t offset, size_t size, bool is_mask)
  97{
  98	struct sw_flow_key_range *range;
  99	size_t start = rounddown(offset, sizeof(long));
 100	size_t end = roundup(offset + size, sizeof(long));
 101
 102	if (!is_mask)
 103		range = &match->range;
 104	else
 105		range = &match->mask->range;
 106
 107	if (range->start == range->end) {
 108		range->start = start;
 109		range->end = end;
 110		return;
 111	}
 112
 113	if (range->start > start)
 114		range->start = start;
 115
 116	if (range->end < end)
 117		range->end = end;
 118}
 119
 120#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
 121	do { \
 122		update_range(match, offsetof(struct sw_flow_key, field),    \
 123			     sizeof((match)->key->field), is_mask);	    \
 124		if (is_mask)						    \
 125			(match)->mask->key.field = value;		    \
 126		else							    \
 127			(match)->key->field = value;		            \
 128	} while (0)
 129
 130#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
 131	do {								    \
 132		update_range(match, offset, len, is_mask);		    \
 133		if (is_mask)						    \
 134			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
 135			       len);					   \
 136		else							    \
 137			memcpy((u8 *)(match)->key + offset, value_p, len);  \
 138	} while (0)
 139
 140#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
 141	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
 142				  value_p, len, is_mask)
 143
 144#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
 145	do {								    \
 146		update_range(match, offsetof(struct sw_flow_key, field),    \
 147			     sizeof((match)->key->field), is_mask);	    \
 148		if (is_mask)						    \
 149			memset((u8 *)&(match)->mask->key.field, value,      \
 150			       sizeof((match)->mask->key.field));	    \
 151		else							    \
 152			memset((u8 *)&(match)->key->field, value,           \
 153			       sizeof((match)->key->field));                \
 154	} while (0)
 155
 156#define SW_FLOW_KEY_BITMAP_COPY(match, field, value_p, nbits, is_mask) ({     \
 157	update_range(match, offsetof(struct sw_flow_key, field),	      \
 158		     bitmap_size(nbits), is_mask);			      \
 159	bitmap_copy(is_mask ? (match)->mask->key.field : (match)->key->field, \
 160		    value_p, nbits);					      \
 161})
 162
 163static bool match_validate(const struct sw_flow_match *match,
 164			   u64 key_attrs, u64 mask_attrs, bool log)
 165{
 166	u64 key_expected = 0;
 167	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */
 168
 169	/* The following mask attributes allowed only if they
 170	 * pass the validation tests. */
 171	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
 172			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
 173			| (1 << OVS_KEY_ATTR_IPV6)
 174			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
 175			| (1 << OVS_KEY_ATTR_TCP)
 176			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
 177			| (1 << OVS_KEY_ATTR_UDP)
 178			| (1 << OVS_KEY_ATTR_SCTP)
 179			| (1 << OVS_KEY_ATTR_ICMP)
 180			| (1 << OVS_KEY_ATTR_ICMPV6)
 181			| (1 << OVS_KEY_ATTR_ARP)
 182			| (1 << OVS_KEY_ATTR_ND)
 183			| (1 << OVS_KEY_ATTR_MPLS)
 184			| (1 << OVS_KEY_ATTR_NSH));
 185
 186	/* Always allowed mask fields. */
 187	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
 188		       | (1 << OVS_KEY_ATTR_IN_PORT)
 189		       | (1 << OVS_KEY_ATTR_ETHERTYPE));
 190
 191	/* Check key attributes. */
 192	if (match->key->eth.type == htons(ETH_P_ARP)
 193			|| match->key->eth.type == htons(ETH_P_RARP)) {
 194		key_expected |= 1 << OVS_KEY_ATTR_ARP;
 195		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 196			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
 197	}
 198
 199	if (eth_p_mpls(match->key->eth.type)) {
 200		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
 201		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
 202			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
 203	}
 204
 205	if (match->key->eth.type == htons(ETH_P_IP)) {
 206		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
 207		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 208			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
 209			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
 210		}
 211
 212		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 213			if (match->key->ip.proto == IPPROTO_UDP) {
 214				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 215				if (match->mask && (match->mask->key.ip.proto == 0xff))
 216					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 217			}
 218
 219			if (match->key->ip.proto == IPPROTO_SCTP) {
 220				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 221				if (match->mask && (match->mask->key.ip.proto == 0xff))
 222					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 223			}
 224
 225			if (match->key->ip.proto == IPPROTO_TCP) {
 226				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 227				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 228				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 229					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 230					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 231				}
 232			}
 233
 234			if (match->key->ip.proto == IPPROTO_ICMP) {
 235				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
 236				if (match->mask && (match->mask->key.ip.proto == 0xff))
 237					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
 238			}
 239		}
 240	}
 241
 242	if (match->key->eth.type == htons(ETH_P_IPV6)) {
 243		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
 244		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
 245			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
 246			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
 247		}
 248
 249		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
 250			if (match->key->ip.proto == IPPROTO_UDP) {
 251				key_expected |= 1 << OVS_KEY_ATTR_UDP;
 252				if (match->mask && (match->mask->key.ip.proto == 0xff))
 253					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
 254			}
 255
 256			if (match->key->ip.proto == IPPROTO_SCTP) {
 257				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
 258				if (match->mask && (match->mask->key.ip.proto == 0xff))
 259					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
 260			}
 261
 262			if (match->key->ip.proto == IPPROTO_TCP) {
 263				key_expected |= 1 << OVS_KEY_ATTR_TCP;
 264				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 265				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
 266					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
 267					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
 268				}
 269			}
 270
 271			if (match->key->ip.proto == IPPROTO_ICMPV6) {
 272				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
 273				if (match->mask && (match->mask->key.ip.proto == 0xff))
 274					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
 275
 276				if (match->key->tp.src ==
 277						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
 278				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
 279					key_expected |= 1 << OVS_KEY_ATTR_ND;
 280					/* Original direction conntrack tuple
 281					 * uses the same space as the ND fields
 282					 * in the key, so both are not allowed
 283					 * at the same time.
 284					 */
 285					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
 286					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
 287						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
 288				}
 289			}
 290		}
 291	}
 292
 293	if (match->key->eth.type == htons(ETH_P_NSH)) {
 294		key_expected |= 1 << OVS_KEY_ATTR_NSH;
 295		if (match->mask &&
 296		    match->mask->key.eth.type == htons(0xffff)) {
 297			mask_allowed |= 1 << OVS_KEY_ATTR_NSH;
 298		}
 299	}
 300
 301	if ((key_attrs & key_expected) != key_expected) {
 302		/* Key attributes check failed. */
 303		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
 304			  (unsigned long long)key_attrs,
 305			  (unsigned long long)key_expected);
 306		return false;
 307	}
 308
 309	if ((mask_attrs & mask_allowed) != mask_attrs) {
 310		/* Mask attributes check failed. */
 311		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
 312			  (unsigned long long)mask_attrs,
 313			  (unsigned long long)mask_allowed);
 314		return false;
 315	}
 316
 317	return true;
 318}
 319
 320size_t ovs_tun_key_attr_size(void)
 321{
 322	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
 323	 * updating this function.
 324	 */
 325	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
 326		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
 327		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
 328		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
 329		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
 330		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
 331		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
 332		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
 333		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
 334		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS and
 335		 * OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS is mutually exclusive with
 336		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
 337		 */
 338		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
 339		+ nla_total_size(2);   /* OVS_TUNNEL_KEY_ATTR_TP_DST */
 340}
 341
 342static size_t ovs_nsh_key_attr_size(void)
 343{
 344	/* Whenever adding new OVS_NSH_KEY_ FIELDS, we should consider
 345	 * updating this function.
 346	 */
 347	return  nla_total_size(NSH_BASE_HDR_LEN) /* OVS_NSH_KEY_ATTR_BASE */
 348		/* OVS_NSH_KEY_ATTR_MD1 and OVS_NSH_KEY_ATTR_MD2 are
 349		 * mutually exclusive, so the bigger one can cover
 350		 * the small one.
 351		 */
 352		+ nla_total_size(NSH_CTX_HDRS_MAX_LEN);
 353}
 354
 355size_t ovs_key_attr_size(void)
 356{
 357	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
 358	 * updating this function.
 359	 */
 360	BUILD_BUG_ON(OVS_KEY_ATTR_MAX != 32);
 361
 362	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
 363		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
 364		  + ovs_tun_key_attr_size()
 365		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
 366		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
 367		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
 368		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
 369		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
 370		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
 371		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
 372		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
 373		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
 374		+ nla_total_size(0)   /* OVS_KEY_ATTR_NSH */
 375		  + ovs_nsh_key_attr_size()
 376		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
 377		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 378		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
 379		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
 380		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
 381		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
 382		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
 383		+ nla_total_size(28)  /* OVS_KEY_ATTR_ND */
 384		+ nla_total_size(2);  /* OVS_KEY_ATTR_IPV6_EXTHDRS */
 385}
 386
 387static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
 388	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
 389};
 390
 391static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
 392	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
 393	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
 394	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
 395	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
 396	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
 397	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
 398	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
 399	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
 400	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
 401	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
 402	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 403	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
 404						.next = ovs_vxlan_ext_key_lens },
 405	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
 406	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
 407	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = OVS_ATTR_VARIABLE },
 408	[OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE]   = { .len = 0 },
 409};
 410
 411static const struct ovs_len_tbl
 412ovs_nsh_key_attr_lens[OVS_NSH_KEY_ATTR_MAX + 1] = {
 413	[OVS_NSH_KEY_ATTR_BASE] = { .len = sizeof(struct ovs_nsh_key_base) },
 414	[OVS_NSH_KEY_ATTR_MD1]  = { .len = sizeof(struct ovs_nsh_key_md1) },
 415	[OVS_NSH_KEY_ATTR_MD2]  = { .len = OVS_ATTR_VARIABLE },
 416};
 417
 418/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
 419static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
 420	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
 421	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
 422	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
 423	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
 424	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
 425	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
 426	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
 427	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
 428	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
 429	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
 430	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
 431	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
 432	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
 433	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
 434	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
 435	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
 436	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
 437	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
 438	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
 439	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
 440				     .next = ovs_tunnel_key_lens, },
 441	[OVS_KEY_ATTR_MPLS]	 = { .len = OVS_ATTR_VARIABLE },
 442	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
 443	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
 444	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
 445	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
 446	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
 447		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
 448	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
 449		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
 450	[OVS_KEY_ATTR_NSH]       = { .len = OVS_ATTR_NESTED,
 451				     .next = ovs_nsh_key_attr_lens, },
 452	[OVS_KEY_ATTR_IPV6_EXTHDRS] = {
 453		.len = sizeof(struct ovs_key_ipv6_exthdrs) },
 454};
 455
 456static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
 457{
 458	return expected_len == attr_len ||
 459	       expected_len == OVS_ATTR_NESTED ||
 460	       expected_len == OVS_ATTR_VARIABLE;
 461}
 462
 463static bool is_all_zero(const u8 *fp, size_t size)
 464{
 465	int i;
 466
 467	if (!fp)
 468		return false;
 469
 470	for (i = 0; i < size; i++)
 471		if (fp[i])
 472			return false;
 473
 474	return true;
 475}
 476
 477static int __parse_flow_nlattrs(const struct nlattr *attr,
 478				const struct nlattr *a[],
 479				u64 *attrsp, bool log, bool nz)
 480{
 481	const struct nlattr *nla;
 482	u64 attrs;
 483	int rem;
 484
 485	attrs = *attrsp;
 486	nla_for_each_nested(nla, attr, rem) {
 487		u16 type = nla_type(nla);
 488		int expected_len;
 489
 490		if (type > OVS_KEY_ATTR_MAX) {
 491			OVS_NLERR(log, "Key type %d is out of range max %d",
 492				  type, OVS_KEY_ATTR_MAX);
 493			return -EINVAL;
 494		}
 495
 496		if (type == OVS_KEY_ATTR_PACKET_TYPE ||
 497		    type == OVS_KEY_ATTR_ND_EXTENSIONS ||
 498		    type == OVS_KEY_ATTR_TUNNEL_INFO) {
 499			OVS_NLERR(log, "Key type %d is not supported", type);
 500			return -EINVAL;
 501		}
 502
 503		if (attrs & (1ULL << type)) {
 504			OVS_NLERR(log, "Duplicate key (type %d).", type);
 505			return -EINVAL;
 506		}
 507
 508		expected_len = ovs_key_lens[type].len;
 509		if (!check_attr_len(nla_len(nla), expected_len)) {
 510			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
 511				  type, nla_len(nla), expected_len);
 512			return -EINVAL;
 513		}
 514
 515		if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
 516			attrs |= 1ULL << type;
 517			a[type] = nla;
 518		}
 519	}
 520	if (rem) {
 521		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
 522		return -EINVAL;
 523	}
 524
 525	*attrsp = attrs;
 526	return 0;
 527}
 528
 529static int parse_flow_mask_nlattrs(const struct nlattr *attr,
 530				   const struct nlattr *a[], u64 *attrsp,
 531				   bool log)
 532{
 533	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
 534}
 535
 536int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
 537		       u64 *attrsp, bool log)
 538{
 539	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
 540}
 541
 542static int genev_tun_opt_from_nlattr(const struct nlattr *a,
 543				     struct sw_flow_match *match, bool is_mask,
 544				     bool log)
 545{
 546	unsigned long opt_key_offset;
 547
 548	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 549		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
 550			  nla_len(a), sizeof(match->key->tun_opts));
 551		return -EINVAL;
 552	}
 553
 554	if (nla_len(a) % 4 != 0) {
 555		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
 556			  nla_len(a));
 557		return -EINVAL;
 558	}
 559
 560	/* We need to record the length of the options passed
 561	 * down, otherwise packets with the same format but
 562	 * additional options will be silently matched.
 563	 */
 564	if (!is_mask) {
 565		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
 566				false);
 567	} else {
 568		/* This is somewhat unusual because it looks at
 569		 * both the key and mask while parsing the
 570		 * attributes (and by extension assumes the key
 571		 * is parsed first). Normally, we would verify
 572		 * that each is the correct length and that the
 573		 * attributes line up in the validate function.
 574		 * However, that is difficult because this is
 575		 * variable length and we won't have the
 576		 * information later.
 577		 */
 578		if (match->key->tun_opts_len != nla_len(a)) {
 579			OVS_NLERR(log, "Geneve option len %d != mask len %d",
 580				  match->key->tun_opts_len, nla_len(a));
 581			return -EINVAL;
 582		}
 583
 584		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 585	}
 586
 587	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 588	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 589				  nla_len(a), is_mask);
 590	return 0;
 591}
 592
 593static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
 594				     struct sw_flow_match *match, bool is_mask,
 595				     bool log)
 596{
 597	struct nlattr *a;
 598	int rem;
 599	unsigned long opt_key_offset;
 600	struct vxlan_metadata opts;
 601
 602	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
 603
 604	memset(&opts, 0, sizeof(opts));
 605	nla_for_each_nested(a, attr, rem) {
 606		int type = nla_type(a);
 607
 608		if (type > OVS_VXLAN_EXT_MAX) {
 609			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
 610				  type, OVS_VXLAN_EXT_MAX);
 611			return -EINVAL;
 612		}
 613
 614		if (!check_attr_len(nla_len(a),
 615				    ovs_vxlan_ext_key_lens[type].len)) {
 616			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
 617				  type, nla_len(a),
 618				  ovs_vxlan_ext_key_lens[type].len);
 619			return -EINVAL;
 620		}
 621
 622		switch (type) {
 623		case OVS_VXLAN_EXT_GBP:
 624			opts.gbp = nla_get_u32(a);
 625			break;
 626		default:
 627			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
 628				  type);
 629			return -EINVAL;
 630		}
 631	}
 632	if (rem) {
 633		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
 634			  rem);
 635		return -EINVAL;
 636	}
 637
 638	if (!is_mask)
 639		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
 640	else
 641		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 642
 643	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
 644	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
 645				  is_mask);
 646	return 0;
 647}
 648
 649static int erspan_tun_opt_from_nlattr(const struct nlattr *a,
 650				      struct sw_flow_match *match, bool is_mask,
 651				      bool log)
 652{
 653	unsigned long opt_key_offset;
 654
 655	BUILD_BUG_ON(sizeof(struct erspan_metadata) >
 656		     sizeof(match->key->tun_opts));
 657
 658	if (nla_len(a) > sizeof(match->key->tun_opts)) {
 659		OVS_NLERR(log, "ERSPAN option length err (len %d, max %zu).",
 660			  nla_len(a), sizeof(match->key->tun_opts));
 661		return -EINVAL;
 662	}
 663
 664	if (!is_mask)
 665		SW_FLOW_KEY_PUT(match, tun_opts_len,
 666				sizeof(struct erspan_metadata), false);
 667	else
 668		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
 669
 670	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
 671	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
 672				  nla_len(a), is_mask);
 673	return 0;
 674}
 675
 676static int ip_tun_from_nlattr(const struct nlattr *attr,
 677			      struct sw_flow_match *match, bool is_mask,
 678			      bool log)
 679{
 680	bool ttl = false, ipv4 = false, ipv6 = false;
 681	IP_TUNNEL_DECLARE_FLAGS(tun_flags) = { };
 682	bool info_bridge_mode = false;
 
 683	int opts_type = 0;
 684	struct nlattr *a;
 685	int rem;
 686
 687	nla_for_each_nested(a, attr, rem) {
 688		int type = nla_type(a);
 689		int err;
 690
 691		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
 692			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
 693				  type, OVS_TUNNEL_KEY_ATTR_MAX);
 694			return -EINVAL;
 695		}
 696
 697		if (!check_attr_len(nla_len(a),
 698				    ovs_tunnel_key_lens[type].len)) {
 699			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
 700				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
 701			return -EINVAL;
 702		}
 703
 704		switch (type) {
 705		case OVS_TUNNEL_KEY_ATTR_ID:
 706			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
 707					nla_get_be64(a), is_mask);
 708			__set_bit(IP_TUNNEL_KEY_BIT, tun_flags);
 709			break;
 710		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
 711			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
 712					nla_get_in_addr(a), is_mask);
 713			ipv4 = true;
 714			break;
 715		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
 716			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
 717					nla_get_in_addr(a), is_mask);
 718			ipv4 = true;
 719			break;
 720		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
 721			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
 722					nla_get_in6_addr(a), is_mask);
 723			ipv6 = true;
 724			break;
 725		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
 726			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
 727					nla_get_in6_addr(a), is_mask);
 728			ipv6 = true;
 729			break;
 730		case OVS_TUNNEL_KEY_ATTR_TOS:
 731			SW_FLOW_KEY_PUT(match, tun_key.tos,
 732					nla_get_u8(a), is_mask);
 733			break;
 734		case OVS_TUNNEL_KEY_ATTR_TTL:
 735			SW_FLOW_KEY_PUT(match, tun_key.ttl,
 736					nla_get_u8(a), is_mask);
 737			ttl = true;
 738			break;
 739		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
 740			__set_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, tun_flags);
 741			break;
 742		case OVS_TUNNEL_KEY_ATTR_CSUM:
 743			__set_bit(IP_TUNNEL_CSUM_BIT, tun_flags);
 744			break;
 745		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
 746			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
 747					nla_get_be16(a), is_mask);
 748			break;
 749		case OVS_TUNNEL_KEY_ATTR_TP_DST:
 750			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
 751					nla_get_be16(a), is_mask);
 752			break;
 753		case OVS_TUNNEL_KEY_ATTR_OAM:
 754			__set_bit(IP_TUNNEL_OAM_BIT, tun_flags);
 755			break;
 756		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
 757			if (opts_type) {
 758				OVS_NLERR(log, "Multiple metadata blocks provided");
 759				return -EINVAL;
 760			}
 761
 762			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
 763			if (err)
 764				return err;
 765
 766			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, tun_flags);
 767			opts_type = type;
 768			break;
 769		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
 770			if (opts_type) {
 771				OVS_NLERR(log, "Multiple metadata blocks provided");
 772				return -EINVAL;
 773			}
 774
 775			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
 776			if (err)
 777				return err;
 778
 779			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, tun_flags);
 780			opts_type = type;
 781			break;
 782		case OVS_TUNNEL_KEY_ATTR_PAD:
 783			break;
 784		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
 785			if (opts_type) {
 786				OVS_NLERR(log, "Multiple metadata blocks provided");
 787				return -EINVAL;
 788			}
 789
 790			err = erspan_tun_opt_from_nlattr(a, match, is_mask,
 791							 log);
 792			if (err)
 793				return err;
 794
 795			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, tun_flags);
 796			opts_type = type;
 797			break;
 798		case OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE:
 799			info_bridge_mode = true;
 800			ipv4 = true;
 801			break;
 802		default:
 803			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
 804				  type);
 805			return -EINVAL;
 806		}
 807	}
 808
 809	SW_FLOW_KEY_BITMAP_COPY(match, tun_key.tun_flags, tun_flags,
 810				__IP_TUNNEL_FLAG_NUM, is_mask);
 811	if (is_mask)
 812		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
 813	else
 814		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
 815				false);
 816
 817	if (rem > 0) {
 818		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
 819			  rem);
 820		return -EINVAL;
 821	}
 822
 823	if (ipv4 && ipv6) {
 824		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
 825		return -EINVAL;
 826	}
 827
 828	if (!is_mask) {
 829		if (!ipv4 && !ipv6) {
 830			OVS_NLERR(log, "IP tunnel dst address not specified");
 831			return -EINVAL;
 832		}
 833		if (ipv4) {
 834			if (info_bridge_mode) {
 835				__clear_bit(IP_TUNNEL_KEY_BIT, tun_flags);
 836
 837				if (match->key->tun_key.u.ipv4.src ||
 838				    match->key->tun_key.u.ipv4.dst ||
 839				    match->key->tun_key.tp_src ||
 840				    match->key->tun_key.tp_dst ||
 841				    match->key->tun_key.ttl ||
 842				    match->key->tun_key.tos ||
 843				    !ip_tunnel_flags_empty(tun_flags)) {
 844					OVS_NLERR(log, "IPv4 tun info is not correct");
 845					return -EINVAL;
 846				}
 847			} else if (!match->key->tun_key.u.ipv4.dst) {
 848				OVS_NLERR(log, "IPv4 tunnel dst address is zero");
 849				return -EINVAL;
 850			}
 851		}
 852		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
 853			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
 854			return -EINVAL;
 855		}
 856
 857		if (!ttl && !info_bridge_mode) {
 858			OVS_NLERR(log, "IP tunnel TTL not specified.");
 859			return -EINVAL;
 860		}
 861	}
 862
 863	return opts_type;
 864}
 865
 866static int vxlan_opt_to_nlattr(struct sk_buff *skb,
 867			       const void *tun_opts, int swkey_tun_opts_len)
 868{
 869	const struct vxlan_metadata *opts = tun_opts;
 870	struct nlattr *nla;
 871
 872	nla = nla_nest_start_noflag(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
 873	if (!nla)
 874		return -EMSGSIZE;
 875
 876	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
 877		return -EMSGSIZE;
 878
 879	nla_nest_end(skb, nla);
 880	return 0;
 881}
 882
 883static int __ip_tun_to_nlattr(struct sk_buff *skb,
 884			      const struct ip_tunnel_key *output,
 885			      const void *tun_opts, int swkey_tun_opts_len,
 886			      unsigned short tun_proto, u8 mode)
 887{
 888	if (test_bit(IP_TUNNEL_KEY_BIT, output->tun_flags) &&
 889	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
 890			 OVS_TUNNEL_KEY_ATTR_PAD))
 891		return -EMSGSIZE;
 892
 893	if (mode & IP_TUNNEL_INFO_BRIDGE)
 894		return nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_IPV4_INFO_BRIDGE)
 895		       ? -EMSGSIZE : 0;
 896
 897	switch (tun_proto) {
 898	case AF_INET:
 899		if (output->u.ipv4.src &&
 900		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
 901				    output->u.ipv4.src))
 902			return -EMSGSIZE;
 903		if (output->u.ipv4.dst &&
 904		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
 905				    output->u.ipv4.dst))
 906			return -EMSGSIZE;
 907		break;
 908	case AF_INET6:
 909		if (!ipv6_addr_any(&output->u.ipv6.src) &&
 910		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
 911				     &output->u.ipv6.src))
 912			return -EMSGSIZE;
 913		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
 914		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
 915				     &output->u.ipv6.dst))
 916			return -EMSGSIZE;
 917		break;
 918	}
 919	if (output->tos &&
 920	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
 921		return -EMSGSIZE;
 922	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
 923		return -EMSGSIZE;
 924	if (test_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, output->tun_flags) &&
 925	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
 926		return -EMSGSIZE;
 927	if (test_bit(IP_TUNNEL_CSUM_BIT, output->tun_flags) &&
 928	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
 929		return -EMSGSIZE;
 930	if (output->tp_src &&
 931	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
 932		return -EMSGSIZE;
 933	if (output->tp_dst &&
 934	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
 935		return -EMSGSIZE;
 936	if (test_bit(IP_TUNNEL_OAM_BIT, output->tun_flags) &&
 937	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
 938		return -EMSGSIZE;
 939	if (swkey_tun_opts_len) {
 940		if (test_bit(IP_TUNNEL_GENEVE_OPT_BIT, output->tun_flags) &&
 941		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
 942			    swkey_tun_opts_len, tun_opts))
 943			return -EMSGSIZE;
 944		else if (test_bit(IP_TUNNEL_VXLAN_OPT_BIT,
 945				  output->tun_flags) &&
 946			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
 947			return -EMSGSIZE;
 948		else if (test_bit(IP_TUNNEL_ERSPAN_OPT_BIT,
 949				  output->tun_flags) &&
 950			 nla_put(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
 951				 swkey_tun_opts_len, tun_opts))
 952			return -EMSGSIZE;
 953	}
 954
 955	return 0;
 956}
 957
 958static int ip_tun_to_nlattr(struct sk_buff *skb,
 959			    const struct ip_tunnel_key *output,
 960			    const void *tun_opts, int swkey_tun_opts_len,
 961			    unsigned short tun_proto, u8 mode)
 962{
 963	struct nlattr *nla;
 964	int err;
 965
 966	nla = nla_nest_start_noflag(skb, OVS_KEY_ATTR_TUNNEL);
 967	if (!nla)
 968		return -EMSGSIZE;
 969
 970	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
 971				 tun_proto, mode);
 972	if (err)
 973		return err;
 974
 975	nla_nest_end(skb, nla);
 976	return 0;
 977}
 978
 979int ovs_nla_put_tunnel_info(struct sk_buff *skb,
 980			    struct ip_tunnel_info *tun_info)
 981{
 982	return __ip_tun_to_nlattr(skb, &tun_info->key,
 983				  ip_tunnel_info_opts(tun_info),
 984				  tun_info->options_len,
 985				  ip_tunnel_info_af(tun_info), tun_info->mode);
 986}
 987
 988static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
 989				    const struct nlattr *a[],
 990				    bool is_mask, bool inner)
 991{
 992	__be16 tci = 0;
 993	__be16 tpid = 0;
 994
 995	if (a[OVS_KEY_ATTR_VLAN])
 996		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
 997
 998	if (a[OVS_KEY_ATTR_ETHERTYPE])
 999		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1000
1001	if (likely(!inner)) {
1002		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
1003		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
1004	} else {
1005		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
1006		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
1007	}
1008	return 0;
1009}
1010
1011static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
1012				      u64 key_attrs, bool inner,
1013				      const struct nlattr **a, bool log)
1014{
1015	__be16 tci = 0;
1016
1017	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1018	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1019	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
1020		/* Not a VLAN. */
1021		return 0;
1022	}
1023
1024	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1025	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1026		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
1027		return -EINVAL;
1028	}
1029
1030	if (a[OVS_KEY_ATTR_VLAN])
1031		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1032
1033	if (!(tci & htons(VLAN_CFI_MASK))) {
1034		if (tci) {
1035			OVS_NLERR(log, "%s TCI does not have VLAN_CFI_MASK bit set.",
1036				  (inner) ? "C-VLAN" : "VLAN");
1037			return -EINVAL;
1038		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
1039			/* Corner case for truncated VLAN header. */
1040			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
1041				  (inner) ? "C-VLAN" : "VLAN");
1042			return -EINVAL;
1043		}
1044	}
1045
1046	return 1;
1047}
1048
1049static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
1050					   u64 key_attrs, bool inner,
1051					   const struct nlattr **a, bool log)
1052{
1053	__be16 tci = 0;
1054	__be16 tpid = 0;
1055	bool encap_valid = !!(match->key->eth.vlan.tci &
1056			      htons(VLAN_CFI_MASK));
1057	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
1058				htons(VLAN_CFI_MASK));
1059
1060	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
1061		/* Not a VLAN. */
1062		return 0;
1063	}
1064
1065	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
1066		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
1067			  (inner) ? "C-VLAN" : "VLAN");
1068		return -EINVAL;
1069	}
1070
1071	if (a[OVS_KEY_ATTR_VLAN])
1072		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1073
1074	if (a[OVS_KEY_ATTR_ETHERTYPE])
1075		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1076
1077	if (tpid != htons(0xffff)) {
1078		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
1079			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
1080		return -EINVAL;
1081	}
1082	if (!(tci & htons(VLAN_CFI_MASK))) {
1083		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_CFI_MASK bit.",
1084			  (inner) ? "C-VLAN" : "VLAN");
1085		return -EINVAL;
1086	}
1087
1088	return 1;
1089}
1090
1091static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
1092				     u64 *key_attrs, bool inner,
1093				     const struct nlattr **a, bool is_mask,
1094				     bool log)
1095{
1096	int err;
1097	const struct nlattr *encap;
1098
1099	if (!is_mask)
1100		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
1101						 a, log);
1102	else
1103		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
1104						      a, log);
1105	if (err <= 0)
1106		return err;
1107
1108	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
1109	if (err)
1110		return err;
1111
1112	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1113	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
1114	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1115
1116	encap = a[OVS_KEY_ATTR_ENCAP];
1117
1118	if (!is_mask)
1119		err = parse_flow_nlattrs(encap, a, key_attrs, log);
1120	else
1121		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
1122
1123	return err;
1124}
1125
1126static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1127				   u64 *key_attrs, const struct nlattr **a,
1128				   bool is_mask, bool log)
1129{
1130	int err;
1131	bool encap_valid = false;
1132
1133	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1134					is_mask, log);
1135	if (err)
1136		return err;
1137
1138	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_CFI_MASK));
1139	if (encap_valid) {
1140		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1141						is_mask, log);
1142		if (err)
1143			return err;
1144	}
1145
1146	return 0;
1147}
1148
1149static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1150				       u64 *attrs, const struct nlattr **a,
1151				       bool is_mask, bool log)
1152{
1153	__be16 eth_type;
1154
1155	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1156	if (is_mask) {
1157		/* Always exact match EtherType. */
1158		eth_type = htons(0xffff);
1159	} else if (!eth_proto_is_802_3(eth_type)) {
1160		OVS_NLERR(log, "EtherType %x is less than min %x",
1161				ntohs(eth_type), ETH_P_802_3_MIN);
1162		return -EINVAL;
1163	}
1164
1165	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1166	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1167	return 0;
1168}
1169
1170static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1171				 u64 *attrs, const struct nlattr **a,
1172				 bool is_mask, bool log)
1173{
1174	u8 mac_proto = MAC_PROTO_ETHERNET;
1175
1176	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1177		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1178
1179		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1180		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1181	}
1182
1183	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1184		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1185
1186		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1187		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1188	}
1189
1190	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1191		SW_FLOW_KEY_PUT(match, phy.priority,
1192			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1193		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1194	}
1195
1196	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1197		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1198
1199		if (is_mask) {
1200			in_port = 0xffffffff; /* Always exact match in_port. */
1201		} else if (in_port >= DP_MAX_PORTS) {
1202			OVS_NLERR(log, "Port %d exceeds max allowable %d",
1203				  in_port, DP_MAX_PORTS);
1204			return -EINVAL;
1205		}
1206
1207		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1208		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1209	} else if (!is_mask) {
1210		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1211	}
1212
1213	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1214		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1215
1216		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1217		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1218	}
1219	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1220		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1221				       is_mask, log) < 0)
1222			return -EINVAL;
1223		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1224	}
1225
1226	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1227	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1228		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1229
1230		if (ct_state & ~CT_SUPPORTED_MASK) {
1231			OVS_NLERR(log, "ct_state flags %08x unsupported",
1232				  ct_state);
1233			return -EINVAL;
1234		}
1235
1236		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1237		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1238	}
1239	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1240	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1241		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1242
1243		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1244		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1245	}
1246	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1247	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1248		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1249
1250		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1251		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1252	}
1253	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1254	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1255		const struct ovs_key_ct_labels *cl;
1256
1257		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1258		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1259				   sizeof(*cl), is_mask);
1260		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1261	}
1262	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1263		const struct ovs_key_ct_tuple_ipv4 *ct;
1264
1265		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1266
1267		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1268		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1269		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1270		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1271		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1272		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1273	}
1274	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1275		const struct ovs_key_ct_tuple_ipv6 *ct;
1276
1277		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1278
1279		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1280				   sizeof(match->key->ipv6.ct_orig.src),
1281				   is_mask);
1282		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1283				   sizeof(match->key->ipv6.ct_orig.dst),
1284				   is_mask);
1285		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1286		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1287		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1288		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1289	}
1290
1291	/* For layer 3 packets the Ethernet type is provided
1292	 * and treated as metadata but no MAC addresses are provided.
1293	 */
1294	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1295	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1296		mac_proto = MAC_PROTO_NONE;
1297
1298	/* Always exact match mac_proto */
1299	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1300
1301	if (mac_proto == MAC_PROTO_NONE)
1302		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1303						   log);
1304
1305	return 0;
1306}
1307
1308int nsh_hdr_from_nlattr(const struct nlattr *attr,
1309			struct nshhdr *nh, size_t size)
1310{
1311	struct nlattr *a;
1312	int rem;
1313	u8 flags = 0;
1314	u8 ttl = 0;
1315	int mdlen = 0;
1316
1317	/* validate_nsh has check this, so we needn't do duplicate check here
1318	 */
1319	if (size < NSH_BASE_HDR_LEN)
1320		return -ENOBUFS;
1321
1322	nla_for_each_nested(a, attr, rem) {
1323		int type = nla_type(a);
1324
1325		switch (type) {
1326		case OVS_NSH_KEY_ATTR_BASE: {
1327			const struct ovs_nsh_key_base *base = nla_data(a);
1328
1329			flags = base->flags;
1330			ttl = base->ttl;
1331			nh->np = base->np;
1332			nh->mdtype = base->mdtype;
1333			nh->path_hdr = base->path_hdr;
1334			break;
1335		}
1336		case OVS_NSH_KEY_ATTR_MD1:
1337			mdlen = nla_len(a);
1338			if (mdlen > size - NSH_BASE_HDR_LEN)
1339				return -ENOBUFS;
1340			memcpy(&nh->md1, nla_data(a), mdlen);
1341			break;
1342
1343		case OVS_NSH_KEY_ATTR_MD2:
1344			mdlen = nla_len(a);
1345			if (mdlen > size - NSH_BASE_HDR_LEN)
1346				return -ENOBUFS;
1347			memcpy(&nh->md2, nla_data(a), mdlen);
1348			break;
1349
1350		default:
1351			return -EINVAL;
1352		}
1353	}
1354
1355	/* nsh header length  = NSH_BASE_HDR_LEN + mdlen */
1356	nh->ver_flags_ttl_len = 0;
1357	nsh_set_flags_ttl_len(nh, flags, ttl, NSH_BASE_HDR_LEN + mdlen);
1358
1359	return 0;
1360}
1361
1362int nsh_key_from_nlattr(const struct nlattr *attr,
1363			struct ovs_key_nsh *nsh, struct ovs_key_nsh *nsh_mask)
1364{
1365	struct nlattr *a;
1366	int rem;
1367
1368	/* validate_nsh has check this, so we needn't do duplicate check here
1369	 */
1370	nla_for_each_nested(a, attr, rem) {
1371		int type = nla_type(a);
1372
1373		switch (type) {
1374		case OVS_NSH_KEY_ATTR_BASE: {
1375			const struct ovs_nsh_key_base *base = nla_data(a);
1376			const struct ovs_nsh_key_base *base_mask = base + 1;
1377
1378			nsh->base = *base;
1379			nsh_mask->base = *base_mask;
1380			break;
1381		}
1382		case OVS_NSH_KEY_ATTR_MD1: {
1383			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1384			const struct ovs_nsh_key_md1 *md1_mask = md1 + 1;
1385
1386			memcpy(nsh->context, md1->context, sizeof(*md1));
1387			memcpy(nsh_mask->context, md1_mask->context,
1388			       sizeof(*md1_mask));
1389			break;
1390		}
1391		case OVS_NSH_KEY_ATTR_MD2:
1392			/* Not supported yet */
1393			return -ENOTSUPP;
1394		default:
1395			return -EINVAL;
1396		}
1397	}
1398
1399	return 0;
1400}
1401
1402static int nsh_key_put_from_nlattr(const struct nlattr *attr,
1403				   struct sw_flow_match *match, bool is_mask,
1404				   bool is_push_nsh, bool log)
1405{
1406	struct nlattr *a;
1407	int rem;
1408	bool has_base = false;
1409	bool has_md1 = false;
1410	bool has_md2 = false;
1411	u8 mdtype = 0;
1412	int mdlen = 0;
1413
1414	if (WARN_ON(is_push_nsh && is_mask))
1415		return -EINVAL;
1416
1417	nla_for_each_nested(a, attr, rem) {
1418		int type = nla_type(a);
1419		int i;
1420
1421		if (type > OVS_NSH_KEY_ATTR_MAX) {
1422			OVS_NLERR(log, "nsh attr %d is out of range max %d",
1423				  type, OVS_NSH_KEY_ATTR_MAX);
1424			return -EINVAL;
1425		}
1426
1427		if (!check_attr_len(nla_len(a),
1428				    ovs_nsh_key_attr_lens[type].len)) {
1429			OVS_NLERR(
1430			    log,
1431			    "nsh attr %d has unexpected len %d expected %d",
1432			    type,
1433			    nla_len(a),
1434			    ovs_nsh_key_attr_lens[type].len
1435			);
1436			return -EINVAL;
1437		}
1438
1439		switch (type) {
1440		case OVS_NSH_KEY_ATTR_BASE: {
1441			const struct ovs_nsh_key_base *base = nla_data(a);
1442
1443			has_base = true;
1444			mdtype = base->mdtype;
1445			SW_FLOW_KEY_PUT(match, nsh.base.flags,
1446					base->flags, is_mask);
1447			SW_FLOW_KEY_PUT(match, nsh.base.ttl,
1448					base->ttl, is_mask);
1449			SW_FLOW_KEY_PUT(match, nsh.base.mdtype,
1450					base->mdtype, is_mask);
1451			SW_FLOW_KEY_PUT(match, nsh.base.np,
1452					base->np, is_mask);
1453			SW_FLOW_KEY_PUT(match, nsh.base.path_hdr,
1454					base->path_hdr, is_mask);
1455			break;
1456		}
1457		case OVS_NSH_KEY_ATTR_MD1: {
1458			const struct ovs_nsh_key_md1 *md1 = nla_data(a);
1459
1460			has_md1 = true;
1461			for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++)
1462				SW_FLOW_KEY_PUT(match, nsh.context[i],
1463						md1->context[i], is_mask);
1464			break;
1465		}
1466		case OVS_NSH_KEY_ATTR_MD2:
1467			if (!is_push_nsh) /* Not supported MD type 2 yet */
1468				return -ENOTSUPP;
1469
1470			has_md2 = true;
1471			mdlen = nla_len(a);
1472			if (mdlen > NSH_CTX_HDRS_MAX_LEN || mdlen <= 0) {
1473				OVS_NLERR(
1474				    log,
1475				    "Invalid MD length %d for MD type %d",
1476				    mdlen,
1477				    mdtype
1478				);
1479				return -EINVAL;
1480			}
1481			break;
1482		default:
1483			OVS_NLERR(log, "Unknown nsh attribute %d",
1484				  type);
1485			return -EINVAL;
1486		}
1487	}
1488
1489	if (rem > 0) {
1490		OVS_NLERR(log, "nsh attribute has %d unknown bytes.", rem);
1491		return -EINVAL;
1492	}
1493
1494	if (has_md1 && has_md2) {
1495		OVS_NLERR(
1496		    1,
1497		    "invalid nsh attribute: md1 and md2 are exclusive."
1498		);
1499		return -EINVAL;
1500	}
1501
1502	if (!is_mask) {
1503		if ((has_md1 && mdtype != NSH_M_TYPE1) ||
1504		    (has_md2 && mdtype != NSH_M_TYPE2)) {
1505			OVS_NLERR(1, "nsh attribute has unmatched MD type %d.",
1506				  mdtype);
1507			return -EINVAL;
1508		}
1509
1510		if (is_push_nsh &&
1511		    (!has_base || (!has_md1 && !has_md2))) {
1512			OVS_NLERR(
1513			    1,
1514			    "push_nsh: missing base or metadata attributes"
1515			);
1516			return -EINVAL;
1517		}
1518	}
1519
1520	return 0;
1521}
1522
1523static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1524				u64 attrs, const struct nlattr **a,
1525				bool is_mask, bool log)
1526{
1527	int err;
1528
1529	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1530	if (err)
1531		return err;
1532
1533	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1534		const struct ovs_key_ethernet *eth_key;
1535
1536		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1537		SW_FLOW_KEY_MEMCPY(match, eth.src,
1538				eth_key->eth_src, ETH_ALEN, is_mask);
1539		SW_FLOW_KEY_MEMCPY(match, eth.dst,
1540				eth_key->eth_dst, ETH_ALEN, is_mask);
1541		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1542
1543		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1544			/* VLAN attribute is always parsed before getting here since it
1545			 * may occur multiple times.
1546			 */
1547			OVS_NLERR(log, "VLAN attribute unexpected.");
1548			return -EINVAL;
1549		}
1550
1551		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1552			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1553							  log);
1554			if (err)
1555				return err;
1556		} else if (!is_mask) {
1557			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1558		}
1559	} else if (!match->key->eth.type) {
1560		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1561		return -EINVAL;
1562	}
1563
1564	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1565		const struct ovs_key_ipv4 *ipv4_key;
1566
1567		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1568		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1569			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1570				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1571			return -EINVAL;
1572		}
1573		SW_FLOW_KEY_PUT(match, ip.proto,
1574				ipv4_key->ipv4_proto, is_mask);
1575		SW_FLOW_KEY_PUT(match, ip.tos,
1576				ipv4_key->ipv4_tos, is_mask);
1577		SW_FLOW_KEY_PUT(match, ip.ttl,
1578				ipv4_key->ipv4_ttl, is_mask);
1579		SW_FLOW_KEY_PUT(match, ip.frag,
1580				ipv4_key->ipv4_frag, is_mask);
1581		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1582				ipv4_key->ipv4_src, is_mask);
1583		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1584				ipv4_key->ipv4_dst, is_mask);
1585		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1586	}
1587
1588	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1589		const struct ovs_key_ipv6 *ipv6_key;
1590
1591		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1592		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1593			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1594				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1595			return -EINVAL;
1596		}
1597
1598		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1599			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
1600				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1601			return -EINVAL;
1602		}
1603
1604		SW_FLOW_KEY_PUT(match, ipv6.label,
1605				ipv6_key->ipv6_label, is_mask);
1606		SW_FLOW_KEY_PUT(match, ip.proto,
1607				ipv6_key->ipv6_proto, is_mask);
1608		SW_FLOW_KEY_PUT(match, ip.tos,
1609				ipv6_key->ipv6_tclass, is_mask);
1610		SW_FLOW_KEY_PUT(match, ip.ttl,
1611				ipv6_key->ipv6_hlimit, is_mask);
1612		SW_FLOW_KEY_PUT(match, ip.frag,
1613				ipv6_key->ipv6_frag, is_mask);
1614		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1615				ipv6_key->ipv6_src,
1616				sizeof(match->key->ipv6.addr.src),
1617				is_mask);
1618		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1619				ipv6_key->ipv6_dst,
1620				sizeof(match->key->ipv6.addr.dst),
1621				is_mask);
1622
1623		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1624	}
1625
1626	if (attrs & (1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS)) {
1627		const struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
1628
1629		ipv6_exthdrs_key = nla_data(a[OVS_KEY_ATTR_IPV6_EXTHDRS]);
1630
1631		SW_FLOW_KEY_PUT(match, ipv6.exthdrs,
1632				ipv6_exthdrs_key->hdrs, is_mask);
1633
1634		attrs &= ~(1ULL << OVS_KEY_ATTR_IPV6_EXTHDRS);
1635	}
1636
1637	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1638		const struct ovs_key_arp *arp_key;
1639
1640		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1641		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1642			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1643				  arp_key->arp_op);
1644			return -EINVAL;
1645		}
1646
1647		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1648				arp_key->arp_sip, is_mask);
1649		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1650			arp_key->arp_tip, is_mask);
1651		SW_FLOW_KEY_PUT(match, ip.proto,
1652				ntohs(arp_key->arp_op), is_mask);
1653		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1654				arp_key->arp_sha, ETH_ALEN, is_mask);
1655		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1656				arp_key->arp_tha, ETH_ALEN, is_mask);
1657
1658		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1659	}
1660
1661	if (attrs & (1 << OVS_KEY_ATTR_NSH)) {
1662		if (nsh_key_put_from_nlattr(a[OVS_KEY_ATTR_NSH], match,
1663					    is_mask, false, log) < 0)
1664			return -EINVAL;
1665		attrs &= ~(1 << OVS_KEY_ATTR_NSH);
1666	}
1667
1668	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1669		const struct ovs_key_mpls *mpls_key;
1670		u32 hdr_len;
1671		u32 label_count, label_count_mask, i;
1672
1673		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1674		hdr_len = nla_len(a[OVS_KEY_ATTR_MPLS]);
1675		label_count = hdr_len / sizeof(struct ovs_key_mpls);
1676
1677		if (label_count == 0 || label_count > MPLS_LABEL_DEPTH ||
1678		    hdr_len % sizeof(struct ovs_key_mpls))
1679			return -EINVAL;
1680
1681		label_count_mask =  GENMASK(label_count - 1, 0);
1682
1683		for (i = 0 ; i < label_count; i++)
1684			SW_FLOW_KEY_PUT(match, mpls.lse[i],
1685					mpls_key[i].mpls_lse, is_mask);
1686
1687		SW_FLOW_KEY_PUT(match, mpls.num_labels_mask,
1688				label_count_mask, is_mask);
1689
1690		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1691	 }
1692
1693	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1694		const struct ovs_key_tcp *tcp_key;
1695
1696		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1697		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1698		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1699		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1700	}
1701
1702	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1703		SW_FLOW_KEY_PUT(match, tp.flags,
1704				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1705				is_mask);
1706		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1707	}
1708
1709	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1710		const struct ovs_key_udp *udp_key;
1711
1712		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1713		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1714		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1715		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1716	}
1717
1718	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1719		const struct ovs_key_sctp *sctp_key;
1720
1721		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1722		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1723		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1724		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1725	}
1726
1727	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1728		const struct ovs_key_icmp *icmp_key;
1729
1730		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1731		SW_FLOW_KEY_PUT(match, tp.src,
1732				htons(icmp_key->icmp_type), is_mask);
1733		SW_FLOW_KEY_PUT(match, tp.dst,
1734				htons(icmp_key->icmp_code), is_mask);
1735		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1736	}
1737
1738	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1739		const struct ovs_key_icmpv6 *icmpv6_key;
1740
1741		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1742		SW_FLOW_KEY_PUT(match, tp.src,
1743				htons(icmpv6_key->icmpv6_type), is_mask);
1744		SW_FLOW_KEY_PUT(match, tp.dst,
1745				htons(icmpv6_key->icmpv6_code), is_mask);
1746		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1747	}
1748
1749	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1750		const struct ovs_key_nd *nd_key;
1751
1752		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1753		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1754			nd_key->nd_target,
1755			sizeof(match->key->ipv6.nd.target),
1756			is_mask);
1757		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1758			nd_key->nd_sll, ETH_ALEN, is_mask);
1759		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1760				nd_key->nd_tll, ETH_ALEN, is_mask);
1761		attrs &= ~(1 << OVS_KEY_ATTR_ND);
1762	}
1763
1764	if (attrs != 0) {
1765		OVS_NLERR(log, "Unknown key attributes %llx",
1766			  (unsigned long long)attrs);
1767		return -EINVAL;
1768	}
1769
1770	return 0;
1771}
1772
1773static void nlattr_set(struct nlattr *attr, u8 val,
1774		       const struct ovs_len_tbl *tbl)
1775{
1776	struct nlattr *nla;
1777	int rem;
1778
1779	/* The nlattr stream should already have been validated */
1780	nla_for_each_nested(nla, attr, rem) {
1781		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1782			nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
1783		else
1784			memset(nla_data(nla), val, nla_len(nla));
1785
1786		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1787			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1788	}
1789}
1790
1791static void mask_set_nlattr(struct nlattr *attr, u8 val)
1792{
1793	nlattr_set(attr, val, ovs_key_lens);
1794}
1795
1796/**
1797 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1798 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1799 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1800 * does not include any don't care bit.
1801 * @net: Used to determine per-namespace field support.
1802 * @match: receives the extracted flow match information.
1803 * @nla_key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1804 * sequence. The fields should of the packet that triggered the creation
1805 * of this flow.
1806 * @nla_mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_*
1807 * Netlink attribute specifies the mask field of the wildcarded flow.
1808 * @log: Boolean to allow kernel error logging.  Normally true, but when
1809 * probing for feature compatibility this should be passed in as false to
1810 * suppress unnecessary error logging.
1811 */
1812int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1813		      const struct nlattr *nla_key,
1814		      const struct nlattr *nla_mask,
1815		      bool log)
1816{
1817	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1818	struct nlattr *newmask = NULL;
1819	u64 key_attrs = 0;
1820	u64 mask_attrs = 0;
1821	int err;
1822
1823	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1824	if (err)
1825		return err;
1826
1827	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1828	if (err)
1829		return err;
1830
1831	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1832	if (err)
1833		return err;
1834
1835	if (match->mask) {
1836		if (!nla_mask) {
1837			/* Create an exact match mask. We need to set to 0xff
1838			 * all the 'match->mask' fields that have been touched
1839			 * in 'match->key'. We cannot simply memset
1840			 * 'match->mask', because padding bytes and fields not
1841			 * specified in 'match->key' should be left to 0.
1842			 * Instead, we use a stream of netlink attributes,
1843			 * copied from 'key' and set to 0xff.
1844			 * ovs_key_from_nlattrs() will take care of filling
1845			 * 'match->mask' appropriately.
1846			 */
1847			newmask = kmemdup(nla_key,
1848					  nla_total_size(nla_len(nla_key)),
1849					  GFP_KERNEL);
1850			if (!newmask)
1851				return -ENOMEM;
1852
1853			mask_set_nlattr(newmask, 0xff);
1854
1855			/* The userspace does not send tunnel attributes that
1856			 * are 0, but we should not wildcard them nonetheless.
1857			 */
1858			if (match->key->tun_proto)
1859				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1860							 0xff, true);
1861
1862			nla_mask = newmask;
1863		}
1864
1865		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1866		if (err)
1867			goto free_newmask;
1868
1869		/* Always match on tci. */
1870		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1871		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1872
1873		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1874		if (err)
1875			goto free_newmask;
1876
1877		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1878					   log);
1879		if (err)
1880			goto free_newmask;
1881	}
1882
1883	if (!match_validate(match, key_attrs, mask_attrs, log))
1884		err = -EINVAL;
1885
1886free_newmask:
1887	kfree(newmask);
1888	return err;
1889}
1890
1891static size_t get_ufid_len(const struct nlattr *attr, bool log)
1892{
1893	size_t len;
1894
1895	if (!attr)
1896		return 0;
1897
1898	len = nla_len(attr);
1899	if (len < 1 || len > MAX_UFID_LENGTH) {
1900		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1901			  nla_len(attr), MAX_UFID_LENGTH);
1902		return 0;
1903	}
1904
1905	return len;
1906}
1907
1908/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1909 * or false otherwise.
1910 */
1911bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1912		      bool log)
1913{
1914	sfid->ufid_len = get_ufid_len(attr, log);
1915	if (sfid->ufid_len)
1916		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1917
1918	return sfid->ufid_len;
1919}
1920
1921int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1922			   const struct sw_flow_key *key, bool log)
1923{
1924	struct sw_flow_key *new_key;
1925
1926	if (ovs_nla_get_ufid(sfid, ufid, log))
1927		return 0;
1928
1929	/* If UFID was not provided, use unmasked key. */
1930	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1931	if (!new_key)
1932		return -ENOMEM;
1933	memcpy(new_key, key, sizeof(*key));
1934	sfid->unmasked_key = new_key;
1935
1936	return 0;
1937}
1938
1939u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1940{
1941	return nla_get_u32_default(attr, 0);
1942}
1943
1944/**
1945 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1946 * @net: Network namespace.
1947 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1948 * metadata.
1949 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1950 * attributes.
1951 * @attrs: Bit mask for the netlink attributes included in @a.
1952 * @log: Boolean to allow kernel error logging.  Normally true, but when
1953 * probing for feature compatibility this should be passed in as false to
1954 * suppress unnecessary error logging.
1955 *
1956 * This parses a series of Netlink attributes that form a flow key, which must
1957 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1958 * get the metadata, that is, the parts of the flow key that cannot be
1959 * extracted from the packet itself.
1960 *
1961 * This must be called before the packet key fields are filled in 'key'.
1962 */
1963
1964int ovs_nla_get_flow_metadata(struct net *net,
1965			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1966			      u64 attrs, struct sw_flow_key *key, bool log)
1967{
1968	struct sw_flow_match match;
1969
1970	memset(&match, 0, sizeof(match));
1971	match.key = key;
1972
1973	key->ct_state = 0;
1974	key->ct_zone = 0;
1975	key->ct_orig_proto = 0;
1976	memset(&key->ct, 0, sizeof(key->ct));
1977	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1978	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1979
1980	key->phy.in_port = DP_MAX_PORTS;
1981
1982	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1983}
1984
1985static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1986			    bool is_mask)
1987{
1988	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1989
1990	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1991	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1992		return -EMSGSIZE;
1993	return 0;
1994}
1995
1996static int nsh_key_to_nlattr(const struct ovs_key_nsh *nsh, bool is_mask,
1997			     struct sk_buff *skb)
1998{
1999	struct nlattr *start;
2000
2001	start = nla_nest_start_noflag(skb, OVS_KEY_ATTR_NSH);
2002	if (!start)
2003		return -EMSGSIZE;
2004
2005	if (nla_put(skb, OVS_NSH_KEY_ATTR_BASE, sizeof(nsh->base), &nsh->base))
2006		goto nla_put_failure;
2007
2008	if (is_mask || nsh->base.mdtype == NSH_M_TYPE1) {
2009		if (nla_put(skb, OVS_NSH_KEY_ATTR_MD1,
2010			    sizeof(nsh->context), nsh->context))
2011			goto nla_put_failure;
2012	}
2013
2014	/* Don't support MD type 2 yet */
2015
2016	nla_nest_end(skb, start);
2017
2018	return 0;
2019
2020nla_put_failure:
2021	return -EMSGSIZE;
2022}
2023
2024static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
2025			     const struct sw_flow_key *output, bool is_mask,
2026			     struct sk_buff *skb)
2027{
2028	struct ovs_key_ethernet *eth_key;
2029	struct nlattr *nla;
2030	struct nlattr *encap = NULL;
2031	struct nlattr *in_encap = NULL;
2032
2033	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
2034		goto nla_put_failure;
2035
2036	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
2037		goto nla_put_failure;
2038
2039	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
2040		goto nla_put_failure;
2041
2042	if ((swkey->tun_proto || is_mask)) {
2043		const void *opts = NULL;
2044
2045		if (ip_tunnel_is_options_present(output->tun_key.tun_flags))
2046			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
2047
2048		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
2049				     swkey->tun_opts_len, swkey->tun_proto, 0))
2050			goto nla_put_failure;
2051	}
2052
2053	if (swkey->phy.in_port == DP_MAX_PORTS) {
2054		if (is_mask && (output->phy.in_port == 0xffff))
2055			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
2056				goto nla_put_failure;
2057	} else {
2058		u16 upper_u16;
2059		upper_u16 = !is_mask ? 0 : 0xffff;
2060
2061		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
2062				(upper_u16 << 16) | output->phy.in_port))
2063			goto nla_put_failure;
2064	}
2065
2066	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
2067		goto nla_put_failure;
2068
2069	if (ovs_ct_put_key(swkey, output, skb))
2070		goto nla_put_failure;
2071
2072	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
2073		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
2074		if (!nla)
2075			goto nla_put_failure;
2076
2077		eth_key = nla_data(nla);
2078		ether_addr_copy(eth_key->eth_src, output->eth.src);
2079		ether_addr_copy(eth_key->eth_dst, output->eth.dst);
2080
2081		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
2082			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
2083				goto nla_put_failure;
2084			encap = nla_nest_start_noflag(skb, OVS_KEY_ATTR_ENCAP);
2085			if (!swkey->eth.vlan.tci)
2086				goto unencap;
2087
2088			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
2089				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
2090					goto nla_put_failure;
2091				in_encap = nla_nest_start_noflag(skb,
2092								 OVS_KEY_ATTR_ENCAP);
2093				if (!swkey->eth.cvlan.tci)
2094					goto unencap;
2095			}
2096		}
2097
2098		if (swkey->eth.type == htons(ETH_P_802_2)) {
2099			/*
2100			* Ethertype 802.2 is represented in the netlink with omitted
2101			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
2102			* 0xffff in the mask attribute.  Ethertype can also
2103			* be wildcarded.
2104			*/
2105			if (is_mask && output->eth.type)
2106				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
2107							output->eth.type))
2108					goto nla_put_failure;
2109			goto unencap;
2110		}
2111	}
2112
2113	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
2114		goto nla_put_failure;
2115
2116	if (eth_type_vlan(swkey->eth.type)) {
2117		/* There are 3 VLAN tags, we don't know anything about the rest
2118		 * of the packet, so truncate here.
2119		 */
2120		WARN_ON_ONCE(!(encap && in_encap));
2121		goto unencap;
2122	}
2123
2124	if (swkey->eth.type == htons(ETH_P_IP)) {
2125		struct ovs_key_ipv4 *ipv4_key;
2126
2127		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
2128		if (!nla)
2129			goto nla_put_failure;
2130		ipv4_key = nla_data(nla);
2131		ipv4_key->ipv4_src = output->ipv4.addr.src;
2132		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
2133		ipv4_key->ipv4_proto = output->ip.proto;
2134		ipv4_key->ipv4_tos = output->ip.tos;
2135		ipv4_key->ipv4_ttl = output->ip.ttl;
2136		ipv4_key->ipv4_frag = output->ip.frag;
2137	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
2138		struct ovs_key_ipv6 *ipv6_key;
2139		struct ovs_key_ipv6_exthdrs *ipv6_exthdrs_key;
2140
2141		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
2142		if (!nla)
2143			goto nla_put_failure;
2144		ipv6_key = nla_data(nla);
2145		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
2146				sizeof(ipv6_key->ipv6_src));
2147		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
2148				sizeof(ipv6_key->ipv6_dst));
2149		ipv6_key->ipv6_label = output->ipv6.label;
2150		ipv6_key->ipv6_proto = output->ip.proto;
2151		ipv6_key->ipv6_tclass = output->ip.tos;
2152		ipv6_key->ipv6_hlimit = output->ip.ttl;
2153		ipv6_key->ipv6_frag = output->ip.frag;
2154
2155		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6_EXTHDRS,
2156				  sizeof(*ipv6_exthdrs_key));
2157		if (!nla)
2158			goto nla_put_failure;
2159		ipv6_exthdrs_key = nla_data(nla);
2160		ipv6_exthdrs_key->hdrs = output->ipv6.exthdrs;
2161	} else if (swkey->eth.type == htons(ETH_P_NSH)) {
2162		if (nsh_key_to_nlattr(&output->nsh, is_mask, skb))
2163			goto nla_put_failure;
2164	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
2165		   swkey->eth.type == htons(ETH_P_RARP)) {
2166		struct ovs_key_arp *arp_key;
2167
2168		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
2169		if (!nla)
2170			goto nla_put_failure;
2171		arp_key = nla_data(nla);
2172		memset(arp_key, 0, sizeof(struct ovs_key_arp));
2173		arp_key->arp_sip = output->ipv4.addr.src;
2174		arp_key->arp_tip = output->ipv4.addr.dst;
2175		arp_key->arp_op = htons(output->ip.proto);
2176		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
2177		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
2178	} else if (eth_p_mpls(swkey->eth.type)) {
2179		u8 i, num_labels;
2180		struct ovs_key_mpls *mpls_key;
2181
2182		num_labels = hweight_long(output->mpls.num_labels_mask);
2183		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS,
2184				  num_labels * sizeof(*mpls_key));
2185		if (!nla)
2186			goto nla_put_failure;
2187
2188		mpls_key = nla_data(nla);
2189		for (i = 0; i < num_labels; i++)
2190			mpls_key[i].mpls_lse = output->mpls.lse[i];
2191	}
2192
2193	if ((swkey->eth.type == htons(ETH_P_IP) ||
2194	     swkey->eth.type == htons(ETH_P_IPV6)) &&
2195	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
2196
2197		if (swkey->ip.proto == IPPROTO_TCP) {
2198			struct ovs_key_tcp *tcp_key;
2199
2200			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
2201			if (!nla)
2202				goto nla_put_failure;
2203			tcp_key = nla_data(nla);
2204			tcp_key->tcp_src = output->tp.src;
2205			tcp_key->tcp_dst = output->tp.dst;
2206			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
2207					 output->tp.flags))
2208				goto nla_put_failure;
2209		} else if (swkey->ip.proto == IPPROTO_UDP) {
2210			struct ovs_key_udp *udp_key;
2211
2212			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
2213			if (!nla)
2214				goto nla_put_failure;
2215			udp_key = nla_data(nla);
2216			udp_key->udp_src = output->tp.src;
2217			udp_key->udp_dst = output->tp.dst;
2218		} else if (swkey->ip.proto == IPPROTO_SCTP) {
2219			struct ovs_key_sctp *sctp_key;
2220
2221			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
2222			if (!nla)
2223				goto nla_put_failure;
2224			sctp_key = nla_data(nla);
2225			sctp_key->sctp_src = output->tp.src;
2226			sctp_key->sctp_dst = output->tp.dst;
2227		} else if (swkey->eth.type == htons(ETH_P_IP) &&
2228			   swkey->ip.proto == IPPROTO_ICMP) {
2229			struct ovs_key_icmp *icmp_key;
2230
2231			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
2232			if (!nla)
2233				goto nla_put_failure;
2234			icmp_key = nla_data(nla);
2235			icmp_key->icmp_type = ntohs(output->tp.src);
2236			icmp_key->icmp_code = ntohs(output->tp.dst);
2237		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
2238			   swkey->ip.proto == IPPROTO_ICMPV6) {
2239			struct ovs_key_icmpv6 *icmpv6_key;
2240
2241			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
2242						sizeof(*icmpv6_key));
2243			if (!nla)
2244				goto nla_put_failure;
2245			icmpv6_key = nla_data(nla);
2246			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
2247			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
2248
2249			if (swkey->tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
2250			    swkey->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
2251				struct ovs_key_nd *nd_key;
2252
2253				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
2254				if (!nla)
2255					goto nla_put_failure;
2256				nd_key = nla_data(nla);
2257				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
2258							sizeof(nd_key->nd_target));
2259				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
2260				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
2261			}
2262		}
2263	}
2264
2265unencap:
2266	if (in_encap)
2267		nla_nest_end(skb, in_encap);
2268	if (encap)
2269		nla_nest_end(skb, encap);
2270
2271	return 0;
2272
2273nla_put_failure:
2274	return -EMSGSIZE;
2275}
2276
2277int ovs_nla_put_key(const struct sw_flow_key *swkey,
2278		    const struct sw_flow_key *output, int attr, bool is_mask,
2279		    struct sk_buff *skb)
2280{
2281	int err;
2282	struct nlattr *nla;
2283
2284	nla = nla_nest_start_noflag(skb, attr);
2285	if (!nla)
2286		return -EMSGSIZE;
2287	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
2288	if (err)
2289		return err;
2290	nla_nest_end(skb, nla);
2291
2292	return 0;
2293}
2294
2295/* Called with ovs_mutex or RCU read lock. */
2296int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
2297{
2298	if (ovs_identifier_is_ufid(&flow->id))
2299		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
2300			       flow->id.ufid);
2301
2302	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
2303			       OVS_FLOW_ATTR_KEY, false, skb);
2304}
2305
2306/* Called with ovs_mutex or RCU read lock. */
2307int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
2308{
2309	return ovs_nla_put_key(&flow->key, &flow->key,
2310				OVS_FLOW_ATTR_KEY, false, skb);
2311}
2312
2313/* Called with ovs_mutex or RCU read lock. */
2314int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
2315{
2316	return ovs_nla_put_key(&flow->key, &flow->mask->key,
2317				OVS_FLOW_ATTR_MASK, true, skb);
2318}
2319
2320#define MAX_ACTIONS_BUFSIZE	(32 * 1024)
2321
2322static struct sw_flow_actions *nla_alloc_flow_actions(int size)
2323{
2324	struct sw_flow_actions *sfa;
2325
2326	WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
2327
2328	sfa = kmalloc(kmalloc_size_roundup(sizeof(*sfa) + size), GFP_KERNEL);
2329	if (!sfa)
2330		return ERR_PTR(-ENOMEM);
2331
2332	sfa->actions_len = 0;
2333	return sfa;
2334}
2335
2336static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len);
2337
2338static void ovs_nla_free_check_pkt_len_action(const struct nlattr *action)
2339{
2340	const struct nlattr *a;
2341	int rem;
2342
2343	nla_for_each_nested(a, action, rem) {
2344		switch (nla_type(a)) {
2345		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL:
2346		case OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER:
2347			ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2348			break;
2349		}
2350	}
2351}
2352
2353static void ovs_nla_free_clone_action(const struct nlattr *action)
2354{
2355	const struct nlattr *a = nla_data(action);
2356	int rem = nla_len(action);
2357
2358	switch (nla_type(a)) {
2359	case OVS_CLONE_ATTR_EXEC:
2360		/* The real list of actions follows this attribute. */
2361		a = nla_next(a, &rem);
2362		ovs_nla_free_nested_actions(a, rem);
2363		break;
2364	}
2365}
2366
2367static void ovs_nla_free_dec_ttl_action(const struct nlattr *action)
2368{
2369	const struct nlattr *a = nla_data(action);
2370
2371	switch (nla_type(a)) {
2372	case OVS_DEC_TTL_ATTR_ACTION:
2373		ovs_nla_free_nested_actions(nla_data(a), nla_len(a));
2374		break;
2375	}
2376}
2377
2378static void ovs_nla_free_sample_action(const struct nlattr *action)
2379{
2380	const struct nlattr *a = nla_data(action);
2381	int rem = nla_len(action);
2382
2383	switch (nla_type(a)) {
2384	case OVS_SAMPLE_ATTR_ARG:
2385		/* The real list of actions follows this attribute. */
2386		a = nla_next(a, &rem);
2387		ovs_nla_free_nested_actions(a, rem);
2388		break;
2389	}
2390}
2391
2392static void ovs_nla_free_set_action(const struct nlattr *a)
2393{
2394	const struct nlattr *ovs_key = nla_data(a);
2395	struct ovs_tunnel_info *ovs_tun;
2396
2397	switch (nla_type(ovs_key)) {
2398	case OVS_KEY_ATTR_TUNNEL_INFO:
2399		ovs_tun = nla_data(ovs_key);
2400		dst_release((struct dst_entry *)ovs_tun->tun_dst);
2401		break;
2402	}
2403}
2404
2405static void ovs_nla_free_nested_actions(const struct nlattr *actions, int len)
2406{
2407	const struct nlattr *a;
2408	int rem;
2409
2410	/* Whenever new actions are added, the need to update this
2411	 * function should be considered.
2412	 */
2413	BUILD_BUG_ON(OVS_ACTION_ATTR_MAX != 25);
2414
2415	if (!actions)
2416		return;
2417
2418	nla_for_each_attr(a, actions, len, rem) {
2419		switch (nla_type(a)) {
2420		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
2421			ovs_nla_free_check_pkt_len_action(a);
2422			break;
2423
2424		case OVS_ACTION_ATTR_CLONE:
2425			ovs_nla_free_clone_action(a);
2426			break;
2427
2428		case OVS_ACTION_ATTR_CT:
2429			ovs_ct_free_action(a);
2430			break;
2431
2432		case OVS_ACTION_ATTR_DEC_TTL:
2433			ovs_nla_free_dec_ttl_action(a);
2434			break;
2435
2436		case OVS_ACTION_ATTR_SAMPLE:
2437			ovs_nla_free_sample_action(a);
2438			break;
2439
2440		case OVS_ACTION_ATTR_SET:
2441			ovs_nla_free_set_action(a);
2442			break;
2443		}
2444	}
2445}
2446
2447void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
2448{
2449	if (!sf_acts)
2450		return;
2451
2452	ovs_nla_free_nested_actions(sf_acts->actions, sf_acts->actions_len);
2453	kfree(sf_acts);
2454}
2455
2456static void __ovs_nla_free_flow_actions(struct rcu_head *head)
2457{
2458	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
2459}
2460
2461/* Schedules 'sf_acts' to be freed after the next RCU grace period.
2462 * The caller must hold rcu_read_lock for this to be sensible. */
2463void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
2464{
2465	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
2466}
2467
2468static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
2469				       int attr_len, bool log)
2470{
2471
2472	struct sw_flow_actions *acts;
2473	int new_acts_size;
2474	size_t req_size = NLA_ALIGN(attr_len);
2475	int next_offset = offsetof(struct sw_flow_actions, actions) +
2476					(*sfa)->actions_len;
2477
2478	if (req_size <= (ksize(*sfa) - next_offset))
2479		goto out;
2480
2481	new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
2482
2483	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
2484		if ((next_offset + req_size) > MAX_ACTIONS_BUFSIZE) {
2485			OVS_NLERR(log, "Flow action size exceeds max %u",
2486				  MAX_ACTIONS_BUFSIZE);
2487			return ERR_PTR(-EMSGSIZE);
2488		}
2489		new_acts_size = MAX_ACTIONS_BUFSIZE;
2490	}
2491
2492	acts = nla_alloc_flow_actions(new_acts_size);
2493	if (IS_ERR(acts))
2494		return ERR_CAST(acts);
2495
2496	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
2497	acts->actions_len = (*sfa)->actions_len;
2498	acts->orig_len = (*sfa)->orig_len;
2499	kfree(*sfa);
2500	*sfa = acts;
2501
2502out:
2503	(*sfa)->actions_len += req_size;
2504	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2505}
2506
2507static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2508				   int attrtype, void *data, int len, bool log)
2509{
2510	struct nlattr *a;
2511
2512	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2513	if (IS_ERR(a))
2514		return a;
2515
2516	a->nla_type = attrtype;
2517	a->nla_len = nla_attr_size(len);
2518
2519	if (data)
2520		memcpy(nla_data(a), data, len);
2521	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2522
2523	return a;
2524}
2525
2526int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2527		       int len, bool log)
2528{
2529	struct nlattr *a;
2530
2531	a = __add_action(sfa, attrtype, data, len, log);
2532
2533	return PTR_ERR_OR_ZERO(a);
2534}
2535
2536static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2537					  int attrtype, bool log)
2538{
2539	int used = (*sfa)->actions_len;
2540	int err;
2541
2542	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2543	if (err)
2544		return err;
2545
2546	return used;
2547}
2548
2549static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2550					 int st_offset)
2551{
2552	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2553							       st_offset);
2554
2555	a->nla_len = sfa->actions_len - st_offset;
2556}
2557
2558static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2559				  const struct sw_flow_key *key,
2560				  struct sw_flow_actions **sfa,
2561				  __be16 eth_type, __be16 vlan_tci,
2562				  u32 mpls_label_count, bool log,
2563				  u32 depth);
2564
2565static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2566				    const struct sw_flow_key *key,
2567				    struct sw_flow_actions **sfa,
2568				    __be16 eth_type, __be16 vlan_tci,
2569				    u32 mpls_label_count, bool log, bool last,
2570				    u32 depth)
2571{
2572	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2573	const struct nlattr *probability, *actions;
2574	const struct nlattr *a;
2575	int rem, start, err;
2576	struct sample_arg arg;
2577
2578	memset(attrs, 0, sizeof(attrs));
2579	nla_for_each_nested(a, attr, rem) {
2580		int type = nla_type(a);
2581		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2582			return -EINVAL;
2583		attrs[type] = a;
2584	}
2585	if (rem)
2586		return -EINVAL;
2587
2588	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2589	if (!probability || nla_len(probability) != sizeof(u32))
2590		return -EINVAL;
2591
2592	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2593	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2594		return -EINVAL;
2595
2596	/* validation done, copy sample action. */
2597	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2598	if (start < 0)
2599		return start;
2600
2601	/* When both skb and flow may be changed, put the sample
2602	 * into a deferred fifo. On the other hand, if only skb
2603	 * may be modified, the actions can be executed in place.
2604	 *
2605	 * Do this analysis at the flow installation time.
2606	 * Set 'clone_action->exec' to true if the actions can be
2607	 * executed without being deferred.
2608	 *
2609	 * If the sample is the last action, it can always be excuted
2610	 * rather than deferred.
2611	 */
2612	arg.exec = last || !actions_may_change_flow(actions);
2613	arg.probability = nla_get_u32(probability);
2614
2615	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2616				 log);
2617	if (err)
2618		return err;
2619
2620	err = __ovs_nla_copy_actions(net, actions, key, sfa,
2621				     eth_type, vlan_tci, mpls_label_count, log,
2622				     depth + 1);
2623
2624	if (err)
2625		return err;
2626
2627	add_nested_action_end(*sfa, start);
2628
2629	return 0;
2630}
2631
2632static int validate_and_copy_dec_ttl(struct net *net,
2633				     const struct nlattr *attr,
2634				     const struct sw_flow_key *key,
2635				     struct sw_flow_actions **sfa,
2636				     __be16 eth_type, __be16 vlan_tci,
2637				     u32 mpls_label_count, bool log,
2638				     u32 depth)
2639{
2640	const struct nlattr *attrs[OVS_DEC_TTL_ATTR_MAX + 1];
2641	int start, action_start, err, rem;
2642	const struct nlattr *a, *actions;
2643
2644	memset(attrs, 0, sizeof(attrs));
2645	nla_for_each_nested(a, attr, rem) {
2646		int type = nla_type(a);
2647
2648		/* Ignore unknown attributes to be future proof. */
2649		if (type > OVS_DEC_TTL_ATTR_MAX)
2650			continue;
2651
2652		if (!type || attrs[type]) {
2653			OVS_NLERR(log, "Duplicate or invalid key (type %d).",
2654				  type);
2655			return -EINVAL;
2656		}
2657
2658		attrs[type] = a;
2659	}
2660
2661	if (rem) {
2662		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
2663		return -EINVAL;
2664	}
2665
2666	actions = attrs[OVS_DEC_TTL_ATTR_ACTION];
2667	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN)) {
2668		OVS_NLERR(log, "Missing valid actions attribute.");
2669		return -EINVAL;
2670	}
2671
2672	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_DEC_TTL, log);
2673	if (start < 0)
2674		return start;
2675
2676	action_start = add_nested_action_start(sfa, OVS_DEC_TTL_ATTR_ACTION, log);
2677	if (action_start < 0)
2678		return action_start;
2679
2680	err = __ovs_nla_copy_actions(net, actions, key, sfa, eth_type,
2681				     vlan_tci, mpls_label_count, log,
2682				     depth + 1);
2683	if (err)
2684		return err;
2685
2686	add_nested_action_end(*sfa, action_start);
2687	add_nested_action_end(*sfa, start);
2688	return 0;
2689}
2690
2691static int validate_and_copy_clone(struct net *net,
2692				   const struct nlattr *attr,
2693				   const struct sw_flow_key *key,
2694				   struct sw_flow_actions **sfa,
2695				   __be16 eth_type, __be16 vlan_tci,
2696				   u32 mpls_label_count, bool log, bool last,
2697				   u32 depth)
2698{
2699	int start, err;
2700	u32 exec;
2701
2702	if (nla_len(attr) && nla_len(attr) < NLA_HDRLEN)
2703		return -EINVAL;
2704
2705	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CLONE, log);
2706	if (start < 0)
2707		return start;
2708
2709	exec = last || !actions_may_change_flow(attr);
2710
2711	err = ovs_nla_add_action(sfa, OVS_CLONE_ATTR_EXEC, &exec,
2712				 sizeof(exec), log);
2713	if (err)
2714		return err;
2715
2716	err = __ovs_nla_copy_actions(net, attr, key, sfa,
2717				     eth_type, vlan_tci, mpls_label_count, log,
2718				     depth + 1);
2719	if (err)
2720		return err;
2721
2722	add_nested_action_end(*sfa, start);
2723
2724	return 0;
2725}
2726
2727void ovs_match_init(struct sw_flow_match *match,
2728		    struct sw_flow_key *key,
2729		    bool reset_key,
2730		    struct sw_flow_mask *mask)
2731{
2732	memset(match, 0, sizeof(*match));
2733	match->key = key;
2734	match->mask = mask;
2735
2736	if (reset_key)
2737		memset(key, 0, sizeof(*key));
2738
2739	if (mask) {
2740		memset(&mask->key, 0, sizeof(mask->key));
2741		mask->range.start = mask->range.end = 0;
2742	}
2743}
2744
2745static int validate_geneve_opts(struct sw_flow_key *key)
2746{
2747	struct geneve_opt *option;
2748	int opts_len = key->tun_opts_len;
2749	bool crit_opt = false;
2750
2751	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2752	while (opts_len > 0) {
2753		int len;
2754
2755		if (opts_len < sizeof(*option))
2756			return -EINVAL;
2757
2758		len = sizeof(*option) + option->length * 4;
2759		if (len > opts_len)
2760			return -EINVAL;
2761
2762		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2763
2764		option = (struct geneve_opt *)((u8 *)option + len);
2765		opts_len -= len;
2766	}
2767
2768	if (crit_opt)
2769		__set_bit(IP_TUNNEL_CRIT_OPT_BIT, key->tun_key.tun_flags);
2770
2771	return 0;
2772}
2773
2774static int validate_and_copy_set_tun(const struct nlattr *attr,
2775				     struct sw_flow_actions **sfa, bool log)
2776{
2777	IP_TUNNEL_DECLARE_FLAGS(dst_opt_type) = { };
2778	struct sw_flow_match match;
2779	struct sw_flow_key key;
2780	struct metadata_dst *tun_dst;
2781	struct ip_tunnel_info *tun_info;
2782	struct ovs_tunnel_info *ovs_tun;
2783	struct nlattr *a;
2784	int err = 0, start, opts_type;
 
2785
 
2786	ovs_match_init(&match, &key, true, NULL);
2787	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2788	if (opts_type < 0)
2789		return opts_type;
2790
2791	if (key.tun_opts_len) {
2792		switch (opts_type) {
2793		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2794			err = validate_geneve_opts(&key);
2795			if (err < 0)
2796				return err;
2797
2798			__set_bit(IP_TUNNEL_GENEVE_OPT_BIT, dst_opt_type);
2799			break;
2800		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2801			__set_bit(IP_TUNNEL_VXLAN_OPT_BIT, dst_opt_type);
2802			break;
2803		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
2804			__set_bit(IP_TUNNEL_ERSPAN_OPT_BIT, dst_opt_type);
2805			break;
2806		}
2807	}
2808
2809	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2810	if (start < 0)
2811		return start;
2812
2813	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2814				     GFP_KERNEL);
2815
2816	if (!tun_dst)
2817		return -ENOMEM;
2818
2819	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2820	if (err) {
2821		dst_release((struct dst_entry *)tun_dst);
2822		return err;
2823	}
2824
2825	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2826			 sizeof(*ovs_tun), log);
2827	if (IS_ERR(a)) {
2828		dst_release((struct dst_entry *)tun_dst);
2829		return PTR_ERR(a);
2830	}
2831
2832	ovs_tun = nla_data(a);
2833	ovs_tun->tun_dst = tun_dst;
2834
2835	tun_info = &tun_dst->u.tun_info;
2836	tun_info->mode = IP_TUNNEL_INFO_TX;
2837	if (key.tun_proto == AF_INET6)
2838		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2839	else if (key.tun_proto == AF_INET && key.tun_key.u.ipv4.dst == 0)
2840		tun_info->mode |= IP_TUNNEL_INFO_BRIDGE;
2841	tun_info->key = key.tun_key;
2842
2843	/* We need to store the options in the action itself since
2844	 * everything else will go away after flow setup. We can append
2845	 * it to tun_info and then point there.
2846	 */
2847	ip_tunnel_info_opts_set(tun_info,
2848				TUN_METADATA_OPTS(&key, key.tun_opts_len),
2849				key.tun_opts_len, dst_opt_type);
2850	add_nested_action_end(*sfa, start);
2851
2852	return err;
2853}
2854
2855static bool validate_nsh(const struct nlattr *attr, bool is_mask,
2856			 bool is_push_nsh, bool log)
2857{
2858	struct sw_flow_match match;
2859	struct sw_flow_key key;
2860	int ret = 0;
2861
2862	ovs_match_init(&match, &key, true, NULL);
2863	ret = nsh_key_put_from_nlattr(attr, &match, is_mask,
2864				      is_push_nsh, log);
2865	return !ret;
2866}
2867
2868/* Return false if there are any non-masked bits set.
2869 * Mask follows data immediately, before any netlink padding.
2870 */
2871static bool validate_masked(u8 *data, int len)
2872{
2873	u8 *mask = data + len;
2874
2875	while (len--)
2876		if (*data++ & ~*mask++)
2877			return false;
2878
2879	return true;
2880}
2881
2882static int validate_set(const struct nlattr *a,
2883			const struct sw_flow_key *flow_key,
2884			struct sw_flow_actions **sfa, bool *skip_copy,
2885			u8 mac_proto, __be16 eth_type, bool masked, bool log)
2886{
2887	const struct nlattr *ovs_key = nla_data(a);
2888	int key_type = nla_type(ovs_key);
2889	size_t key_len;
2890
2891	/* There can be only one key in a action */
2892	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2893		return -EINVAL;
2894
2895	key_len = nla_len(ovs_key);
2896	if (masked)
2897		key_len /= 2;
2898
2899	if (key_type > OVS_KEY_ATTR_MAX ||
2900	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
2901		return -EINVAL;
2902
2903	if (masked && !validate_masked(nla_data(ovs_key), key_len))
2904		return -EINVAL;
2905
2906	switch (key_type) {
2907	case OVS_KEY_ATTR_PRIORITY:
2908	case OVS_KEY_ATTR_SKB_MARK:
2909	case OVS_KEY_ATTR_CT_MARK:
2910	case OVS_KEY_ATTR_CT_LABELS:
2911		break;
2912
2913	case OVS_KEY_ATTR_ETHERNET:
2914		if (mac_proto != MAC_PROTO_ETHERNET)
2915			return -EINVAL;
2916		break;
2917
2918	case OVS_KEY_ATTR_TUNNEL: {
2919		int err;
2920
2921		if (masked)
2922			return -EINVAL; /* Masked tunnel set not supported. */
2923
2924		*skip_copy = true;
2925		err = validate_and_copy_set_tun(a, sfa, log);
2926		if (err)
2927			return err;
2928		break;
2929	}
2930	case OVS_KEY_ATTR_IPV4: {
2931		const struct ovs_key_ipv4 *ipv4_key;
2932
2933		if (eth_type != htons(ETH_P_IP))
2934			return -EINVAL;
2935
2936		ipv4_key = nla_data(ovs_key);
2937
2938		if (masked) {
2939			const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2940
2941			/* Non-writeable fields. */
2942			if (mask->ipv4_proto || mask->ipv4_frag)
2943				return -EINVAL;
2944		} else {
2945			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2946				return -EINVAL;
2947
2948			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2949				return -EINVAL;
2950		}
2951		break;
2952	}
2953	case OVS_KEY_ATTR_IPV6: {
2954		const struct ovs_key_ipv6 *ipv6_key;
2955
2956		if (eth_type != htons(ETH_P_IPV6))
2957			return -EINVAL;
2958
2959		ipv6_key = nla_data(ovs_key);
2960
2961		if (masked) {
2962			const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2963
2964			/* Non-writeable fields. */
2965			if (mask->ipv6_proto || mask->ipv6_frag)
2966				return -EINVAL;
2967
2968			/* Invalid bits in the flow label mask? */
2969			if (ntohl(mask->ipv6_label) & 0xFFF00000)
2970				return -EINVAL;
2971		} else {
2972			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2973				return -EINVAL;
2974
2975			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2976				return -EINVAL;
2977		}
2978		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2979			return -EINVAL;
2980
2981		break;
2982	}
2983	case OVS_KEY_ATTR_TCP:
2984		if ((eth_type != htons(ETH_P_IP) &&
2985		     eth_type != htons(ETH_P_IPV6)) ||
2986		    flow_key->ip.proto != IPPROTO_TCP)
2987			return -EINVAL;
2988
2989		break;
2990
2991	case OVS_KEY_ATTR_UDP:
2992		if ((eth_type != htons(ETH_P_IP) &&
2993		     eth_type != htons(ETH_P_IPV6)) ||
2994		    flow_key->ip.proto != IPPROTO_UDP)
2995			return -EINVAL;
2996
2997		break;
2998
2999	case OVS_KEY_ATTR_MPLS:
3000		if (!eth_p_mpls(eth_type))
3001			return -EINVAL;
3002		break;
3003
3004	case OVS_KEY_ATTR_SCTP:
3005		if ((eth_type != htons(ETH_P_IP) &&
3006		     eth_type != htons(ETH_P_IPV6)) ||
3007		    flow_key->ip.proto != IPPROTO_SCTP)
3008			return -EINVAL;
3009
3010		break;
3011
3012	case OVS_KEY_ATTR_NSH:
3013		if (eth_type != htons(ETH_P_NSH))
3014			return -EINVAL;
3015		if (!validate_nsh(nla_data(a), masked, false, log))
3016			return -EINVAL;
3017		break;
3018
3019	default:
3020		return -EINVAL;
3021	}
3022
3023	/* Convert non-masked non-tunnel set actions to masked set actions. */
3024	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
3025		int start, len = key_len * 2;
3026		struct nlattr *at;
3027
3028		*skip_copy = true;
3029
3030		start = add_nested_action_start(sfa,
3031						OVS_ACTION_ATTR_SET_TO_MASKED,
3032						log);
3033		if (start < 0)
3034			return start;
3035
3036		at = __add_action(sfa, key_type, NULL, len, log);
3037		if (IS_ERR(at))
3038			return PTR_ERR(at);
3039
3040		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
3041		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
3042		/* Clear non-writeable bits from otherwise writeable fields. */
3043		if (key_type == OVS_KEY_ATTR_IPV6) {
3044			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
3045
3046			mask->ipv6_label &= htonl(0x000FFFFF);
3047		}
3048		add_nested_action_end(*sfa, start);
3049	}
3050
3051	return 0;
3052}
3053
3054static int validate_userspace(const struct nlattr *attr)
3055{
3056	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
3057		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
3058		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
3059		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
3060	};
3061	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
3062	int error;
3063
3064	error = nla_parse_nested_deprecated(a, OVS_USERSPACE_ATTR_MAX, attr,
3065					    userspace_policy, NULL);
3066	if (error)
3067		return error;
3068
3069	if (!a[OVS_USERSPACE_ATTR_PID] ||
3070	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
3071		return -EINVAL;
3072
3073	return 0;
3074}
3075
3076static const struct nla_policy cpl_policy[OVS_CHECK_PKT_LEN_ATTR_MAX + 1] = {
3077	[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] = {.type = NLA_U16 },
3078	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER] = {.type = NLA_NESTED },
3079	[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL] = {.type = NLA_NESTED },
3080};
3081
3082static int validate_and_copy_check_pkt_len(struct net *net,
3083					   const struct nlattr *attr,
3084					   const struct sw_flow_key *key,
3085					   struct sw_flow_actions **sfa,
3086					   __be16 eth_type, __be16 vlan_tci,
3087					   u32 mpls_label_count,
3088					   bool log, bool last, u32 depth)
3089{
3090	const struct nlattr *acts_if_greater, *acts_if_lesser_eq;
3091	struct nlattr *a[OVS_CHECK_PKT_LEN_ATTR_MAX + 1];
3092	struct check_pkt_len_arg arg;
3093	int nested_acts_start;
3094	int start, err;
3095
3096	err = nla_parse_deprecated_strict(a, OVS_CHECK_PKT_LEN_ATTR_MAX,
3097					  nla_data(attr), nla_len(attr),
3098					  cpl_policy, NULL);
3099	if (err)
3100		return err;
3101
3102	if (!a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN] ||
3103	    !nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]))
3104		return -EINVAL;
3105
3106	acts_if_lesser_eq = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL];
3107	acts_if_greater = a[OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER];
3108
3109	/* Both the nested action should be present. */
3110	if (!acts_if_greater || !acts_if_lesser_eq)
3111		return -EINVAL;
3112
3113	/* validation done, copy the nested actions. */
3114	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_CHECK_PKT_LEN,
3115					log);
3116	if (start < 0)
3117		return start;
3118
3119	arg.pkt_len = nla_get_u16(a[OVS_CHECK_PKT_LEN_ATTR_PKT_LEN]);
3120	arg.exec_for_lesser_equal =
3121		last || !actions_may_change_flow(acts_if_lesser_eq);
3122	arg.exec_for_greater =
3123		last || !actions_may_change_flow(acts_if_greater);
3124
3125	err = ovs_nla_add_action(sfa, OVS_CHECK_PKT_LEN_ATTR_ARG, &arg,
3126				 sizeof(arg), log);
3127	if (err)
3128		return err;
3129
3130	nested_acts_start = add_nested_action_start(sfa,
3131		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL, log);
3132	if (nested_acts_start < 0)
3133		return nested_acts_start;
3134
3135	err = __ovs_nla_copy_actions(net, acts_if_lesser_eq, key, sfa,
3136				     eth_type, vlan_tci, mpls_label_count, log,
3137				     depth + 1);
3138
3139	if (err)
3140		return err;
3141
3142	add_nested_action_end(*sfa, nested_acts_start);
3143
3144	nested_acts_start = add_nested_action_start(sfa,
3145		OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER, log);
3146	if (nested_acts_start < 0)
3147		return nested_acts_start;
3148
3149	err = __ovs_nla_copy_actions(net, acts_if_greater, key, sfa,
3150				     eth_type, vlan_tci, mpls_label_count, log,
3151				     depth + 1);
3152
3153	if (err)
3154		return err;
3155
3156	add_nested_action_end(*sfa, nested_acts_start);
3157	add_nested_action_end(*sfa, start);
3158	return 0;
3159}
3160
3161static int validate_psample(const struct nlattr *attr)
3162{
3163	static const struct nla_policy policy[OVS_PSAMPLE_ATTR_MAX + 1] = {
3164		[OVS_PSAMPLE_ATTR_GROUP] = { .type = NLA_U32 },
3165		[OVS_PSAMPLE_ATTR_COOKIE] = {
3166			.type = NLA_BINARY,
3167			.len = OVS_PSAMPLE_COOKIE_MAX_SIZE,
3168		},
3169	};
3170	struct nlattr *a[OVS_PSAMPLE_ATTR_MAX + 1];
3171	int err;
3172
3173	if (!IS_ENABLED(CONFIG_PSAMPLE))
3174		return -EOPNOTSUPP;
3175
3176	err = nla_parse_nested(a, OVS_PSAMPLE_ATTR_MAX, attr, policy, NULL);
3177	if (err)
3178		return err;
3179
3180	return a[OVS_PSAMPLE_ATTR_GROUP] ? 0 : -EINVAL;
3181}
3182
3183static int copy_action(const struct nlattr *from,
3184		       struct sw_flow_actions **sfa, bool log)
3185{
3186	int totlen = NLA_ALIGN(from->nla_len);
3187	struct nlattr *to;
3188
3189	to = reserve_sfa_size(sfa, from->nla_len, log);
3190	if (IS_ERR(to))
3191		return PTR_ERR(to);
3192
3193	memcpy(to, from, totlen);
3194	return 0;
3195}
3196
3197static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3198				  const struct sw_flow_key *key,
3199				  struct sw_flow_actions **sfa,
3200				  __be16 eth_type, __be16 vlan_tci,
3201				  u32 mpls_label_count, bool log,
3202				  u32 depth)
3203{
3204	u8 mac_proto = ovs_key_mac_proto(key);
3205	const struct nlattr *a;
3206	int rem, err;
3207
3208	if (depth > OVS_COPY_ACTIONS_MAX_DEPTH)
3209		return -EOVERFLOW;
3210
3211	nla_for_each_nested(a, attr, rem) {
3212		/* Expected argument lengths, (u32)-1 for variable length. */
3213		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
3214			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
3215			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
3216			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
3217			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
3218			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
3219			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
3220			[OVS_ACTION_ATTR_POP_VLAN] = 0,
3221			[OVS_ACTION_ATTR_SET] = (u32)-1,
3222			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
3223			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
3224			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
3225			[OVS_ACTION_ATTR_CT] = (u32)-1,
3226			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
3227			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
3228			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
3229			[OVS_ACTION_ATTR_POP_ETH] = 0,
3230			[OVS_ACTION_ATTR_PUSH_NSH] = (u32)-1,
3231			[OVS_ACTION_ATTR_POP_NSH] = 0,
3232			[OVS_ACTION_ATTR_METER] = sizeof(u32),
3233			[OVS_ACTION_ATTR_CLONE] = (u32)-1,
3234			[OVS_ACTION_ATTR_CHECK_PKT_LEN] = (u32)-1,
3235			[OVS_ACTION_ATTR_ADD_MPLS] = sizeof(struct ovs_action_add_mpls),
3236			[OVS_ACTION_ATTR_DEC_TTL] = (u32)-1,
3237			[OVS_ACTION_ATTR_DROP] = sizeof(u32),
3238			[OVS_ACTION_ATTR_PSAMPLE] = (u32)-1,
3239		};
3240		const struct ovs_action_push_vlan *vlan;
3241		int type = nla_type(a);
3242		bool skip_copy;
3243
3244		if (type > OVS_ACTION_ATTR_MAX ||
3245		    (action_lens[type] != nla_len(a) &&
3246		     action_lens[type] != (u32)-1))
3247			return -EINVAL;
3248
3249		skip_copy = false;
3250		switch (type) {
3251		case OVS_ACTION_ATTR_UNSPEC:
3252			return -EINVAL;
3253
3254		case OVS_ACTION_ATTR_USERSPACE:
3255			err = validate_userspace(a);
3256			if (err)
3257				return err;
3258			break;
3259
3260		case OVS_ACTION_ATTR_OUTPUT:
3261			if (nla_get_u32(a) >= DP_MAX_PORTS)
3262				return -EINVAL;
3263			break;
3264
3265		case OVS_ACTION_ATTR_TRUNC: {
3266			const struct ovs_action_trunc *trunc = nla_data(a);
3267
3268			if (trunc->max_len < ETH_HLEN)
3269				return -EINVAL;
3270			break;
3271		}
3272
3273		case OVS_ACTION_ATTR_HASH: {
3274			const struct ovs_action_hash *act_hash = nla_data(a);
3275
3276			switch (act_hash->hash_alg) {
3277			case OVS_HASH_ALG_L4:
3278				fallthrough;
3279			case OVS_HASH_ALG_SYM_L4:
3280				break;
3281			default:
3282				return  -EINVAL;
3283			}
3284
3285			break;
3286		}
3287
3288		case OVS_ACTION_ATTR_POP_VLAN:
3289			if (mac_proto != MAC_PROTO_ETHERNET)
3290				return -EINVAL;
3291			vlan_tci = htons(0);
3292			break;
3293
3294		case OVS_ACTION_ATTR_PUSH_VLAN:
3295			if (mac_proto != MAC_PROTO_ETHERNET)
3296				return -EINVAL;
3297			vlan = nla_data(a);
3298			if (!eth_type_vlan(vlan->vlan_tpid))
3299				return -EINVAL;
3300			if (!(vlan->vlan_tci & htons(VLAN_CFI_MASK)))
3301				return -EINVAL;
3302			vlan_tci = vlan->vlan_tci;
3303			break;
3304
3305		case OVS_ACTION_ATTR_RECIRC:
3306			break;
3307
3308		case OVS_ACTION_ATTR_ADD_MPLS: {
3309			const struct ovs_action_add_mpls *mpls = nla_data(a);
3310
3311			if (!eth_p_mpls(mpls->mpls_ethertype))
3312				return -EINVAL;
3313
3314			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) {
3315				if (vlan_tci & htons(VLAN_CFI_MASK) ||
3316				    (eth_type != htons(ETH_P_IP) &&
3317				     eth_type != htons(ETH_P_IPV6) &&
3318				     eth_type != htons(ETH_P_ARP) &&
3319				     eth_type != htons(ETH_P_RARP) &&
3320				     !eth_p_mpls(eth_type)))
3321					return -EINVAL;
3322				mpls_label_count++;
3323			} else {
3324				if (mac_proto == MAC_PROTO_ETHERNET) {
3325					mpls_label_count = 1;
3326					mac_proto = MAC_PROTO_NONE;
3327				} else {
3328					mpls_label_count++;
3329				}
3330			}
3331			eth_type = mpls->mpls_ethertype;
3332			break;
3333		}
3334
3335		case OVS_ACTION_ATTR_PUSH_MPLS: {
3336			const struct ovs_action_push_mpls *mpls = nla_data(a);
3337
3338			if (!eth_p_mpls(mpls->mpls_ethertype))
3339				return -EINVAL;
3340			/* Prohibit push MPLS other than to a white list
3341			 * for packets that have a known tag order.
3342			 */
3343			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3344			    (eth_type != htons(ETH_P_IP) &&
3345			     eth_type != htons(ETH_P_IPV6) &&
3346			     eth_type != htons(ETH_P_ARP) &&
3347			     eth_type != htons(ETH_P_RARP) &&
3348			     !eth_p_mpls(eth_type)))
3349				return -EINVAL;
3350			eth_type = mpls->mpls_ethertype;
3351			mpls_label_count++;
3352			break;
3353		}
3354
3355		case OVS_ACTION_ATTR_POP_MPLS: {
3356			__be16  proto;
3357			if (vlan_tci & htons(VLAN_CFI_MASK) ||
3358			    !eth_p_mpls(eth_type))
3359				return -EINVAL;
3360
3361			/* Disallow subsequent L2.5+ set actions and mpls_pop
3362			 * actions once the last MPLS label in the packet is
3363			 * popped as there is no check here to ensure that
3364			 * the new eth type is valid and thus set actions could
3365			 * write off the end of the packet or otherwise corrupt
3366			 * it.
3367			 *
3368			 * Support for these actions is planned using packet
3369			 * recirculation.
3370			 */
3371			proto = nla_get_be16(a);
3372
3373			if (proto == htons(ETH_P_TEB) &&
3374			    mac_proto != MAC_PROTO_NONE)
3375				return -EINVAL;
3376
3377			mpls_label_count--;
3378
3379			if (!eth_p_mpls(proto) || !mpls_label_count)
3380				eth_type = htons(0);
3381			else
3382				eth_type =  proto;
3383
3384			break;
3385		}
3386
3387		case OVS_ACTION_ATTR_SET:
3388			err = validate_set(a, key, sfa,
3389					   &skip_copy, mac_proto, eth_type,
3390					   false, log);
3391			if (err)
3392				return err;
3393			break;
3394
3395		case OVS_ACTION_ATTR_SET_MASKED:
3396			err = validate_set(a, key, sfa,
3397					   &skip_copy, mac_proto, eth_type,
3398					   true, log);
3399			if (err)
3400				return err;
3401			break;
3402
3403		case OVS_ACTION_ATTR_SAMPLE: {
3404			bool last = nla_is_last(a, rem);
3405
3406			err = validate_and_copy_sample(net, a, key, sfa,
3407						       eth_type, vlan_tci,
3408						       mpls_label_count,
3409						       log, last, depth);
3410			if (err)
3411				return err;
3412			skip_copy = true;
3413			break;
3414		}
3415
3416		case OVS_ACTION_ATTR_CT:
3417			err = ovs_ct_copy_action(net, a, key, sfa, log);
3418			if (err)
3419				return err;
3420			skip_copy = true;
3421			break;
3422
3423		case OVS_ACTION_ATTR_CT_CLEAR:
3424			break;
3425
3426		case OVS_ACTION_ATTR_PUSH_ETH:
3427			/* Disallow pushing an Ethernet header if one
3428			 * is already present */
3429			if (mac_proto != MAC_PROTO_NONE)
3430				return -EINVAL;
3431			mac_proto = MAC_PROTO_ETHERNET;
3432			break;
3433
3434		case OVS_ACTION_ATTR_POP_ETH:
3435			if (mac_proto != MAC_PROTO_ETHERNET)
3436				return -EINVAL;
3437			if (vlan_tci & htons(VLAN_CFI_MASK))
3438				return -EINVAL;
3439			mac_proto = MAC_PROTO_NONE;
3440			break;
3441
3442		case OVS_ACTION_ATTR_PUSH_NSH:
3443			if (mac_proto != MAC_PROTO_ETHERNET) {
3444				u8 next_proto;
3445
3446				next_proto = tun_p_from_eth_p(eth_type);
3447				if (!next_proto)
3448					return -EINVAL;
3449			}
3450			mac_proto = MAC_PROTO_NONE;
3451			if (!validate_nsh(nla_data(a), false, true, true))
3452				return -EINVAL;
3453			break;
3454
3455		case OVS_ACTION_ATTR_POP_NSH: {
3456			__be16 inner_proto;
3457
3458			if (eth_type != htons(ETH_P_NSH))
3459				return -EINVAL;
3460			inner_proto = tun_p_to_eth_p(key->nsh.base.np);
3461			if (!inner_proto)
3462				return -EINVAL;
3463			if (key->nsh.base.np == TUN_P_ETHERNET)
3464				mac_proto = MAC_PROTO_ETHERNET;
3465			else
3466				mac_proto = MAC_PROTO_NONE;
3467			break;
3468		}
3469
3470		case OVS_ACTION_ATTR_METER:
3471			/* Non-existent meters are simply ignored.  */
3472			break;
3473
3474		case OVS_ACTION_ATTR_CLONE: {
3475			bool last = nla_is_last(a, rem);
3476
3477			err = validate_and_copy_clone(net, a, key, sfa,
3478						      eth_type, vlan_tci,
3479						      mpls_label_count,
3480						      log, last, depth);
3481			if (err)
3482				return err;
3483			skip_copy = true;
3484			break;
3485		}
3486
3487		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
3488			bool last = nla_is_last(a, rem);
3489
3490			err = validate_and_copy_check_pkt_len(net, a, key, sfa,
3491							      eth_type,
3492							      vlan_tci,
3493							      mpls_label_count,
3494							      log, last,
3495							      depth);
3496			if (err)
3497				return err;
3498			skip_copy = true;
3499			break;
3500		}
3501
3502		case OVS_ACTION_ATTR_DEC_TTL:
3503			err = validate_and_copy_dec_ttl(net, a, key, sfa,
3504							eth_type, vlan_tci,
3505							mpls_label_count, log,
3506							depth);
3507			if (err)
3508				return err;
3509			skip_copy = true;
3510			break;
3511
3512		case OVS_ACTION_ATTR_DROP:
3513			if (!nla_is_last(a, rem))
3514				return -EINVAL;
3515			break;
3516
3517		case OVS_ACTION_ATTR_PSAMPLE:
3518			err = validate_psample(a);
3519			if (err)
3520				return err;
3521			break;
3522
3523		default:
3524			OVS_NLERR(log, "Unknown Action type %d", type);
3525			return -EINVAL;
3526		}
3527		if (!skip_copy) {
3528			err = copy_action(a, sfa, log);
3529			if (err)
3530				return err;
3531		}
3532	}
3533
3534	if (rem > 0)
3535		return -EINVAL;
3536
3537	return 0;
3538}
3539
3540/* 'key' must be the masked key. */
3541int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
3542			 const struct sw_flow_key *key,
3543			 struct sw_flow_actions **sfa, bool log)
3544{
3545	int err;
3546	u32 mpls_label_count = 0;
3547
3548	*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
3549	if (IS_ERR(*sfa))
3550		return PTR_ERR(*sfa);
3551
3552	if (eth_p_mpls(key->eth.type))
3553		mpls_label_count = hweight_long(key->mpls.num_labels_mask);
3554
3555	(*sfa)->orig_len = nla_len(attr);
3556	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
3557				     key->eth.vlan.tci, mpls_label_count, log,
3558				     0);
3559	if (err)
3560		ovs_nla_free_flow_actions(*sfa);
3561
3562	return err;
3563}
3564
3565static int sample_action_to_attr(const struct nlattr *attr,
3566				 struct sk_buff *skb)
3567{
3568	struct nlattr *start, *ac_start = NULL, *sample_arg;
3569	int err = 0, rem = nla_len(attr);
3570	const struct sample_arg *arg;
3571	struct nlattr *actions;
3572
3573	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SAMPLE);
3574	if (!start)
3575		return -EMSGSIZE;
3576
3577	sample_arg = nla_data(attr);
3578	arg = nla_data(sample_arg);
3579	actions = nla_next(sample_arg, &rem);
3580
3581	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
3582		err = -EMSGSIZE;
3583		goto out;
3584	}
3585
3586	ac_start = nla_nest_start_noflag(skb, OVS_SAMPLE_ATTR_ACTIONS);
3587	if (!ac_start) {
3588		err = -EMSGSIZE;
3589		goto out;
3590	}
3591
3592	err = ovs_nla_put_actions(actions, rem, skb);
3593
3594out:
3595	if (err) {
3596		nla_nest_cancel(skb, ac_start);
3597		nla_nest_cancel(skb, start);
3598	} else {
3599		nla_nest_end(skb, ac_start);
3600		nla_nest_end(skb, start);
3601	}
3602
3603	return err;
3604}
3605
3606static int clone_action_to_attr(const struct nlattr *attr,
3607				struct sk_buff *skb)
3608{
3609	struct nlattr *start;
3610	int err = 0, rem = nla_len(attr);
3611
3612	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CLONE);
3613	if (!start)
3614		return -EMSGSIZE;
3615
3616	/* Skipping the OVS_CLONE_ATTR_EXEC that is always the first attribute. */
3617	attr = nla_next(nla_data(attr), &rem);
3618	err = ovs_nla_put_actions(attr, rem, skb);
3619
3620	if (err)
3621		nla_nest_cancel(skb, start);
3622	else
3623		nla_nest_end(skb, start);
3624
3625	return err;
3626}
3627
3628static int check_pkt_len_action_to_attr(const struct nlattr *attr,
3629					struct sk_buff *skb)
3630{
3631	struct nlattr *start, *ac_start = NULL;
3632	const struct check_pkt_len_arg *arg;
3633	const struct nlattr *a, *cpl_arg;
3634	int err = 0, rem = nla_len(attr);
3635
3636	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_CHECK_PKT_LEN);
3637	if (!start)
3638		return -EMSGSIZE;
3639
3640	/* The first nested attribute in 'attr' is always
3641	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
3642	 */
3643	cpl_arg = nla_data(attr);
3644	arg = nla_data(cpl_arg);
3645
3646	if (nla_put_u16(skb, OVS_CHECK_PKT_LEN_ATTR_PKT_LEN, arg->pkt_len)) {
3647		err = -EMSGSIZE;
3648		goto out;
3649	}
3650
3651	/* Second nested attribute in 'attr' is always
3652	 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
3653	 */
3654	a = nla_next(cpl_arg, &rem);
3655	ac_start =  nla_nest_start_noflag(skb,
3656					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL);
3657	if (!ac_start) {
3658		err = -EMSGSIZE;
3659		goto out;
3660	}
3661
3662	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3663	if (err) {
3664		nla_nest_cancel(skb, ac_start);
3665		goto out;
3666	} else {
3667		nla_nest_end(skb, ac_start);
3668	}
3669
3670	/* Third nested attribute in 'attr' is always
3671	 * OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER.
3672	 */
3673	a = nla_next(a, &rem);
3674	ac_start =  nla_nest_start_noflag(skb,
3675					  OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER);
3676	if (!ac_start) {
3677		err = -EMSGSIZE;
3678		goto out;
3679	}
3680
3681	err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3682	if (err) {
3683		nla_nest_cancel(skb, ac_start);
3684		goto out;
3685	} else {
3686		nla_nest_end(skb, ac_start);
3687	}
3688
3689	nla_nest_end(skb, start);
3690	return 0;
3691
3692out:
3693	nla_nest_cancel(skb, start);
3694	return err;
3695}
3696
3697static int dec_ttl_action_to_attr(const struct nlattr *attr,
3698				  struct sk_buff *skb)
3699{
3700	struct nlattr *start, *action_start;
3701	const struct nlattr *a;
3702	int err = 0, rem;
3703
3704	start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_DEC_TTL);
3705	if (!start)
3706		return -EMSGSIZE;
3707
3708	nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
3709		switch (nla_type(a)) {
3710		case OVS_DEC_TTL_ATTR_ACTION:
3711
3712			action_start = nla_nest_start_noflag(skb, OVS_DEC_TTL_ATTR_ACTION);
3713			if (!action_start) {
3714				err = -EMSGSIZE;
3715				goto out;
3716			}
3717
3718			err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
3719			if (err)
3720				goto out;
3721
3722			nla_nest_end(skb, action_start);
3723			break;
3724
3725		default:
3726			/* Ignore all other option to be future compatible */
3727			break;
3728		}
3729	}
3730
3731	nla_nest_end(skb, start);
3732	return 0;
3733
3734out:
3735	nla_nest_cancel(skb, start);
3736	return err;
3737}
3738
3739static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
3740{
3741	const struct nlattr *ovs_key = nla_data(a);
3742	int key_type = nla_type(ovs_key);
3743	struct nlattr *start;
3744	int err;
3745
3746	switch (key_type) {
3747	case OVS_KEY_ATTR_TUNNEL_INFO: {
3748		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
3749		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
3750
3751		start = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3752		if (!start)
3753			return -EMSGSIZE;
3754
3755		err =  ip_tun_to_nlattr(skb, &tun_info->key,
3756					ip_tunnel_info_opts(tun_info),
3757					tun_info->options_len,
3758					ip_tunnel_info_af(tun_info), tun_info->mode);
3759		if (err)
3760			return err;
3761		nla_nest_end(skb, start);
3762		break;
3763	}
3764	default:
3765		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
3766			return -EMSGSIZE;
3767		break;
3768	}
3769
3770	return 0;
3771}
3772
3773static int masked_set_action_to_set_action_attr(const struct nlattr *a,
3774						struct sk_buff *skb)
3775{
3776	const struct nlattr *ovs_key = nla_data(a);
3777	struct nlattr *nla;
3778	size_t key_len = nla_len(ovs_key) / 2;
3779
3780	/* Revert the conversion we did from a non-masked set action to
3781	 * masked set action.
3782	 */
3783	nla = nla_nest_start_noflag(skb, OVS_ACTION_ATTR_SET);
3784	if (!nla)
3785		return -EMSGSIZE;
3786
3787	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
3788		return -EMSGSIZE;
3789
3790	nla_nest_end(skb, nla);
3791	return 0;
3792}
3793
3794int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
3795{
3796	const struct nlattr *a;
3797	int rem, err;
3798
3799	nla_for_each_attr(a, attr, len, rem) {
3800		int type = nla_type(a);
3801
3802		switch (type) {
3803		case OVS_ACTION_ATTR_SET:
3804			err = set_action_to_attr(a, skb);
3805			if (err)
3806				return err;
3807			break;
3808
3809		case OVS_ACTION_ATTR_SET_TO_MASKED:
3810			err = masked_set_action_to_set_action_attr(a, skb);
3811			if (err)
3812				return err;
3813			break;
3814
3815		case OVS_ACTION_ATTR_SAMPLE:
3816			err = sample_action_to_attr(a, skb);
3817			if (err)
3818				return err;
3819			break;
3820
3821		case OVS_ACTION_ATTR_CT:
3822			err = ovs_ct_action_to_attr(nla_data(a), skb);
3823			if (err)
3824				return err;
3825			break;
3826
3827		case OVS_ACTION_ATTR_CLONE:
3828			err = clone_action_to_attr(a, skb);
3829			if (err)
3830				return err;
3831			break;
3832
3833		case OVS_ACTION_ATTR_CHECK_PKT_LEN:
3834			err = check_pkt_len_action_to_attr(a, skb);
3835			if (err)
3836				return err;
3837			break;
3838
3839		case OVS_ACTION_ATTR_DEC_TTL:
3840			err = dec_ttl_action_to_attr(a, skb);
3841			if (err)
3842				return err;
3843			break;
3844
3845		default:
3846			if (nla_put(skb, type, nla_len(a), nla_data(a)))
3847				return -EMSGSIZE;
3848			break;
3849		}
3850	}
3851
3852	return 0;
3853}