Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/list.h>
37#include <linux/notifier.h>
38#include <linux/interrupt.h>
39#include <linux/delay.h>
40#include <linux/nmi.h>
41#include <linux/time.h>
42#include <linux/ptrace.h>
43#include <linux/sysctl.h>
44#include <linux/cpu.h>
45#include <linux/kdebug.h>
46#include <linux/proc_fs.h>
47#include <linux/uaccess.h>
48#include <linux/slab.h>
49#include "kdb_private.h"
50
51#undef MODULE_PARAM_PREFIX
52#define MODULE_PARAM_PREFIX "kdb."
53
54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56
57char kdb_grep_string[KDB_GREP_STRLEN];
58int kdb_grepping_flag;
59EXPORT_SYMBOL(kdb_grepping_flag);
60int kdb_grep_leading;
61int kdb_grep_trailing;
62
63/*
64 * Kernel debugger state flags
65 */
66unsigned int kdb_flags;
67
68/*
69 * kdb_lock protects updates to kdb_initial_cpu. Used to
70 * single thread processors through the kernel debugger.
71 */
72int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73int kdb_nextline = 1;
74int kdb_state; /* General KDB state */
75
76struct task_struct *kdb_current_task;
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_cmds_head describes the available commands. */
89static LIST_HEAD(kdb_cmds_head);
90
91typedef struct _kdbmsg {
92 int km_diag; /* kdb diagnostic */
93 char *km_msg; /* Corresponding message text */
94} kdbmsg_t;
95
96#define KDBMSG(msgnum, text) \
97 { KDB_##msgnum, text }
98
99static kdbmsg_t kdbmsgs[] = {
100 KDBMSG(NOTFOUND, "Command Not Found"),
101 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
102 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
103 "8 is only allowed on 64 bit systems"),
104 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
105 KDBMSG(NOTENV, "Cannot find environment variable"),
106 KDBMSG(NOENVVALUE, "Environment variable should have value"),
107 KDBMSG(NOTIMP, "Command not implemented"),
108 KDBMSG(ENVFULL, "Environment full"),
109 KDBMSG(ENVBUFFULL, "Environment buffer full"),
110 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
111#ifdef CONFIG_CPU_XSCALE
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
113#else
114 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
115#endif
116 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
117 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
118 KDBMSG(BADMODE, "Invalid IDMODE"),
119 KDBMSG(BADINT, "Illegal numeric value"),
120 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
121 KDBMSG(BADREG, "Invalid register name"),
122 KDBMSG(BADCPUNUM, "Invalid cpu number"),
123 KDBMSG(BADLENGTH, "Invalid length field"),
124 KDBMSG(NOBP, "No Breakpoint exists"),
125 KDBMSG(BADADDR, "Invalid address"),
126 KDBMSG(NOPERM, "Permission denied"),
127};
128#undef KDBMSG
129
130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
131
132
133/*
134 * Initial environment. This is all kept static and local to
135 * this file. We don't want to rely on the memory allocation
136 * mechanisms in the kernel, so we use a very limited allocate-only
137 * heap for new and altered environment variables. The entire
138 * environment is limited to a fixed number of entries (add more
139 * to __env[] if required) and a fixed amount of heap (add more to
140 * KDB_ENVBUFSIZE if required).
141 */
142
143static char *__env[31] = {
144#if defined(CONFIG_SMP)
145 "PROMPT=[%d]kdb> ",
146#else
147 "PROMPT=kdb> ",
148#endif
149 "MOREPROMPT=more> ",
150 "RADIX=16",
151 "MDCOUNT=8", /* lines of md output */
152 KDB_PLATFORM_ENV,
153 "DTABCOUNT=30",
154 "NOSECT=1",
155};
156
157static const int __nenv = ARRAY_SIZE(__env);
158
159struct task_struct *kdb_curr_task(int cpu)
160{
161 struct task_struct *p = curr_task(cpu);
162#ifdef _TIF_MCA_INIT
163 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
164 p = krp->p;
165#endif
166 return p;
167}
168
169/*
170 * Check whether the flags of the current command and the permissions
171 * of the kdb console has allow a command to be run.
172 */
173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
174 bool no_args)
175{
176 /* permissions comes from userspace so needs massaging slightly */
177 permissions &= KDB_ENABLE_MASK;
178 permissions |= KDB_ENABLE_ALWAYS_SAFE;
179
180 /* some commands change group when launched with no arguments */
181 if (no_args)
182 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
183
184 flags |= KDB_ENABLE_ALL;
185
186 return permissions & flags;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdb_setenv() - Alter an existing environment variable or create a new one.
298 * @var: Name of the variable
299 * @val: Value of the variable
300 *
301 * Return: Zero on success, a kdb diagnostic on failure.
302 */
303static int kdb_setenv(const char *var, const char *val)
304{
305 int i;
306 char *ep;
307 size_t varlen, vallen;
308
309 varlen = strlen(var);
310 vallen = strlen(val);
311 ep = kdballocenv(varlen + vallen + 2);
312 if (ep == (char *)0)
313 return KDB_ENVBUFFULL;
314
315 sprintf(ep, "%s=%s", var, val);
316
317 for (i = 0; i < __nenv; i++) {
318 if (__env[i]
319 && ((strncmp(__env[i], var, varlen) == 0)
320 && ((__env[i][varlen] == '\0')
321 || (__env[i][varlen] == '=')))) {
322 __env[i] = ep;
323 return 0;
324 }
325 }
326
327 /*
328 * Wasn't existing variable. Fit into slot.
329 */
330 for (i = 0; i < __nenv-1; i++) {
331 if (__env[i] == (char *)0) {
332 __env[i] = ep;
333 return 0;
334 }
335 }
336
337 return KDB_ENVFULL;
338}
339
340/*
341 * kdb_printenv() - Display the current environment variables.
342 */
343static void kdb_printenv(void)
344{
345 int i;
346
347 for (i = 0; i < __nenv; i++) {
348 if (__env[i])
349 kdb_printf("%s\n", __env[i]);
350 }
351}
352
353/*
354 * kdbgetularg - This function will convert a numeric string into an
355 * unsigned long value.
356 * Parameters:
357 * arg A character string representing a numeric value
358 * Outputs:
359 * *value the unsigned long representation of arg.
360 * Returns:
361 * Zero on success, a kdb diagnostic on failure.
362 */
363int kdbgetularg(const char *arg, unsigned long *value)
364{
365 char *endp;
366 unsigned long val;
367
368 val = simple_strtoul(arg, &endp, 0);
369
370 if (endp == arg) {
371 /*
372 * Also try base 16, for us folks too lazy to type the
373 * leading 0x...
374 */
375 val = simple_strtoul(arg, &endp, 16);
376 if (endp == arg)
377 return KDB_BADINT;
378 }
379
380 *value = val;
381
382 return 0;
383}
384
385int kdbgetu64arg(const char *arg, u64 *value)
386{
387 char *endp;
388 u64 val;
389
390 val = simple_strtoull(arg, &endp, 0);
391
392 if (endp == arg) {
393
394 val = simple_strtoull(arg, &endp, 16);
395 if (endp == arg)
396 return KDB_BADINT;
397 }
398
399 *value = val;
400
401 return 0;
402}
403
404/*
405 * kdb_set - This function implements the 'set' command. Alter an
406 * existing environment variable or create a new one.
407 */
408int kdb_set(int argc, const char **argv)
409{
410 /*
411 * we can be invoked two ways:
412 * set var=value argv[1]="var", argv[2]="value"
413 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
414 * - if the latter, shift 'em down.
415 */
416 if (argc == 3) {
417 argv[2] = argv[3];
418 argc--;
419 }
420
421 if (argc != 2)
422 return KDB_ARGCOUNT;
423
424 /*
425 * Censor sensitive variables
426 */
427 if (strcmp(argv[1], "PROMPT") == 0 &&
428 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
429 return KDB_NOPERM;
430
431 /*
432 * Check for internal variables
433 */
434 if (strcmp(argv[1], "KDBDEBUG") == 0) {
435 unsigned int debugflags;
436 char *cp;
437
438 debugflags = simple_strtoul(argv[2], &cp, 0);
439 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
440 kdb_printf("kdb: illegal debug flags '%s'\n",
441 argv[2]);
442 return 0;
443 }
444 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
445 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
446
447 return 0;
448 }
449
450 /*
451 * Tokenizer squashed the '=' sign. argv[1] is variable
452 * name, argv[2] = value.
453 */
454 return kdb_setenv(argv[1], argv[2]);
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexadecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 bool usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static bool defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = false;
678 if (!s->count)
679 s->usable = false;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = false;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = true;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = true;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (!str_has_prefix(cp, "grep ")) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimiter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012 if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013 (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014 break;
1015
1016 if (strcmp(argv[0], tp->cmd_name) == 0)
1017 break;
1018 }
1019
1020 /*
1021 * If we don't find a command by this name, see if the first
1022 * few characters of this match any of the known commands.
1023 * e.g., md1c20 should match md.
1024 */
1025 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027 if (strncmp(argv[0], tp->cmd_name,
1028 strlen(tp->cmd_name)) == 0)
1029 break;
1030 }
1031 }
1032
1033 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034 int result;
1035
1036 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037 return KDB_NOPERM;
1038
1039 KDB_STATE_SET(CMD);
1040 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041 if (result && ignore_errors && result > KDB_CMD_GO)
1042 result = 0;
1043 KDB_STATE_CLEAR(CMD);
1044
1045 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046 return result;
1047
1048 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049 if (argv[argc])
1050 *(argv[argc]) = '\0';
1051 return result;
1052 }
1053
1054 /*
1055 * If the input with which we were presented does not
1056 * map to an existing command, attempt to parse it as an
1057 * address argument and display the result. Useful for
1058 * obtaining the address of a variable, or the nearest symbol
1059 * to an address contained in a register.
1060 */
1061 {
1062 unsigned long value;
1063 char *name = NULL;
1064 long offset;
1065 int nextarg = 0;
1066
1067 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068 &value, &offset, &name)) {
1069 return KDB_NOTFOUND;
1070 }
1071
1072 kdb_printf("%s = ", argv[0]);
1073 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074 kdb_printf("\n");
1075 return 0;
1076 }
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P 16
1083#define CTRL_N 14
1084
1085 /* initial situation */
1086 if (cmd_head == cmd_tail)
1087 return 0;
1088 switch (*cmd) {
1089 case CTRL_P:
1090 if (cmdptr != cmd_tail)
1091 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092 KDB_CMD_HISTORY_COUNT;
1093 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094 return 1;
1095 case CTRL_N:
1096 if (cmdptr != cmd_head)
1097 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099 return 1;
1100 }
1101 return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command. Reboot
1106 * the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110 emergency_restart();
1111 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112 while (1)
1113 cpu_relax();
1114 /* NOTREACHED */
1115 return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120 int old_lvl = console_loglevel;
1121 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122 kdb_trap_printk++;
1123 show_regs(regs);
1124 kdb_trap_printk--;
1125 kdb_printf("\n");
1126 console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131 kdb_current_task = p;
1132
1133 if (kdb_task_has_cpu(p)) {
1134 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135 return;
1136 }
1137 kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142 size_t len = strlen(buf);
1143
1144 if (len == 0)
1145 return;
1146 if (*(buf + len - 1) == '\n')
1147 *(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289 /* PROMPT can only be set if we have MEM_READ permission. */
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292 if (defcmd_in_progress)
1293 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295 /*
1296 * Fetch command from keyboard
1297 */
1298 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299 if (*cmdbuf != '\n') {
1300 if (*cmdbuf < 32) {
1301 if (cmdptr == cmd_head) {
1302 strscpy(cmd_hist[cmd_head], cmd_cur,
1303 CMD_BUFLEN);
1304 *(cmd_hist[cmd_head] +
1305 strlen(cmd_hist[cmd_head])-1) = '\0';
1306 }
1307 if (!handle_ctrl_cmd(cmdbuf))
1308 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309 cmdbuf = cmd_cur;
1310 goto do_full_getstr;
1311 } else {
1312 strscpy(cmd_hist[cmd_head], cmd_cur,
1313 CMD_BUFLEN);
1314 }
1315
1316 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317 if (cmd_head == cmd_tail)
1318 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319 }
1320
1321 cmdptr = cmd_head;
1322 diag = kdb_parse(cmdbuf);
1323 if (diag == KDB_NOTFOUND) {
1324 drop_newline(cmdbuf);
1325 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326 diag = 0;
1327 }
1328 if (diag == KDB_CMD_GO
1329 || diag == KDB_CMD_CPU
1330 || diag == KDB_CMD_SS
1331 || diag == KDB_CMD_KGDB)
1332 break;
1333
1334 if (diag)
1335 kdb_cmderror(diag);
1336 }
1337 KDB_DEBUG_STATE("kdb_local 9", diag);
1338 return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 * for debugging.
1345 * Inputs:
1346 * text Identifies the debug point
1347 * value Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353 kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 * controlling cpu, all cpus are in this loop. One cpu is in
1359 * control and will issue the kdb prompt, the others will spin
1360 * until 'go' or cpu switch.
1361 *
1362 * To get a consistent view of the kernel stacks for all
1363 * processes, this routine is invoked from the main kdb code via
1364 * an architecture specific routine. kdba_main_loop is
1365 * responsible for making the kernel stacks consistent for all
1366 * processes, there should be no difference between a blocked
1367 * process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 * reason The reason KDB was invoked
1370 * error The hardware-defined error code
1371 * reason2 kdb's current reason code.
1372 * Initially error but can change
1373 * according to kdb state.
1374 * db_result Result code from break or debug point.
1375 * regs The exception frame at time of fault/breakpoint.
1376 * should always be valid.
1377 * Returns:
1378 * 0 KDB was invoked for an event which it wasn't responsible
1379 * 1 KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382 kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384 int result = 1;
1385 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1386 while (1) {
1387 /*
1388 * All processors except the one that is in control
1389 * will spin here.
1390 */
1391 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392 while (KDB_STATE(HOLD_CPU)) {
1393 /* state KDB is turned off by kdb_cpu to see if the
1394 * other cpus are still live, each cpu in this loop
1395 * turns it back on.
1396 */
1397 if (!KDB_STATE(KDB))
1398 KDB_STATE_SET(KDB);
1399 }
1400
1401 KDB_STATE_CLEAR(SUPPRESS);
1402 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403 if (KDB_STATE(LEAVING))
1404 break; /* Another cpu said 'go' */
1405 /* Still using kdb, this processor is in control */
1406 result = kdb_local(reason2, error, regs, db_result);
1407 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409 if (result == KDB_CMD_CPU)
1410 break;
1411
1412 if (result == KDB_CMD_SS) {
1413 KDB_STATE_SET(DOING_SS);
1414 break;
1415 }
1416
1417 if (result == KDB_CMD_KGDB) {
1418 if (!KDB_STATE(DOING_KGDB))
1419 kdb_printf("Entering please attach debugger "
1420 "or use $D#44+ or $3#33\n");
1421 break;
1422 }
1423 if (result && result != 1 && result != KDB_CMD_GO)
1424 kdb_printf("\nUnexpected kdb_local return code %d\n",
1425 result);
1426 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427 break;
1428 }
1429 if (KDB_STATE(DOING_SS))
1430 KDB_STATE_CLEAR(SSBPT);
1431
1432 /* Clean up any keyboard devices before leaving */
1433 kdb_kbd_cleanup_state();
1434
1435 return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 * mdr <addr arg>,<byte count>
1442 * Inputs:
1443 * addr Start address
1444 * count Number of bytes
1445 * Returns:
1446 * Always 0. Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450 unsigned char c;
1451 while (count--) {
1452 if (kdb_getarea(c, addr))
1453 return 0;
1454 kdb_printf("%02x", c);
1455 addr++;
1456 }
1457 kdb_printf("\n");
1458 return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 * 'md8' 'mdr' and 'mds' commands.
1464 *
1465 * md|mds [<addr arg> [<line count> [<radix>]]]
1466 * mdWcN [<addr arg> [<line count> [<radix>]]]
1467 * where W = is the width (1, 2, 4 or 8) and N is the count.
1468 * for eg., md1c20 reads 20 bytes, 1 at a time.
1469 * mdr <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472 int symbolic, int nosect, int bytesperword,
1473 int num, int repeat, int phys)
1474{
1475 /* print just one line of data */
1476 kdb_symtab_t symtab;
1477 char cbuf[32];
1478 char *c = cbuf;
1479 int i;
1480 int j;
1481 unsigned long word;
1482
1483 memset(cbuf, '\0', sizeof(cbuf));
1484 if (phys)
1485 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486 else
1487 kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489 for (i = 0; i < num && repeat--; i++) {
1490 if (phys) {
1491 if (kdb_getphysword(&word, addr, bytesperword))
1492 break;
1493 } else if (kdb_getword(&word, addr, bytesperword))
1494 break;
1495 kdb_printf(fmtstr, word);
1496 if (symbolic)
1497 kdbnearsym(word, &symtab);
1498 else
1499 memset(&symtab, 0, sizeof(symtab));
1500 if (symtab.sym_name) {
1501 kdb_symbol_print(word, &symtab, 0);
1502 if (!nosect) {
1503 kdb_printf("\n");
1504 kdb_printf(" %s %s "
1505 kdb_machreg_fmt " "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt, symtab.mod_name,
1508 symtab.sec_name, symtab.sec_start,
1509 symtab.sym_start, symtab.sym_end);
1510 }
1511 addr += bytesperword;
1512 } else {
1513 union {
1514 u64 word;
1515 unsigned char c[8];
1516 } wc;
1517 unsigned char *cp;
1518#ifdef __BIG_ENDIAN
1519 cp = wc.c + 8 - bytesperword;
1520#else
1521 cp = wc.c;
1522#endif
1523 wc.word = word;
1524#define printable_char(c) \
1525 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526 for (j = 0; j < bytesperword; j++)
1527 *c++ = printable_char(*cp++);
1528 addr += bytesperword;
1529#undef printable_char
1530 }
1531 }
1532 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533 " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538 static unsigned long last_addr;
1539 static int last_radix, last_bytesperword, last_repeat;
1540 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541 int nosect = 0;
1542 char fmtchar, fmtstr[64];
1543 unsigned long addr;
1544 unsigned long word;
1545 long offset = 0;
1546 int symbolic = 0;
1547 int valid = 0;
1548 int phys = 0;
1549 int raw = 0;
1550
1551 kdbgetintenv("MDCOUNT", &mdcount);
1552 kdbgetintenv("RADIX", &radix);
1553 kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555 /* Assume 'md <addr>' and start with environment values */
1556 repeat = mdcount * 16 / bytesperword;
1557
1558 if (strcmp(argv[0], "mdr") == 0) {
1559 if (argc == 2 || (argc == 0 && last_addr != 0))
1560 valid = raw = 1;
1561 else
1562 return KDB_ARGCOUNT;
1563 } else if (isdigit(argv[0][2])) {
1564 bytesperword = (int)(argv[0][2] - '0');
1565 if (bytesperword == 0) {
1566 bytesperword = last_bytesperword;
1567 if (bytesperword == 0)
1568 bytesperword = 4;
1569 }
1570 last_bytesperword = bytesperword;
1571 repeat = mdcount * 16 / bytesperword;
1572 if (!argv[0][3])
1573 valid = 1;
1574 else if (argv[0][3] == 'c' && argv[0][4]) {
1575 char *p;
1576 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577 mdcount = ((repeat * bytesperword) + 15) / 16;
1578 valid = !*p;
1579 }
1580 last_repeat = repeat;
1581 } else if (strcmp(argv[0], "md") == 0)
1582 valid = 1;
1583 else if (strcmp(argv[0], "mds") == 0)
1584 valid = 1;
1585 else if (strcmp(argv[0], "mdp") == 0) {
1586 phys = valid = 1;
1587 }
1588 if (!valid)
1589 return KDB_NOTFOUND;
1590
1591 if (argc == 0) {
1592 if (last_addr == 0)
1593 return KDB_ARGCOUNT;
1594 addr = last_addr;
1595 radix = last_radix;
1596 bytesperword = last_bytesperword;
1597 repeat = last_repeat;
1598 if (raw)
1599 mdcount = repeat;
1600 else
1601 mdcount = ((repeat * bytesperword) + 15) / 16;
1602 }
1603
1604 if (argc) {
1605 unsigned long val;
1606 int diag, nextarg = 1;
1607 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608 &offset, NULL);
1609 if (diag)
1610 return diag;
1611 if (argc > nextarg+2)
1612 return KDB_ARGCOUNT;
1613
1614 if (argc >= nextarg) {
1615 diag = kdbgetularg(argv[nextarg], &val);
1616 if (!diag) {
1617 mdcount = (int) val;
1618 if (raw)
1619 repeat = mdcount;
1620 else
1621 repeat = mdcount * 16 / bytesperword;
1622 }
1623 }
1624 if (argc >= nextarg+1) {
1625 diag = kdbgetularg(argv[nextarg+1], &val);
1626 if (!diag)
1627 radix = (int) val;
1628 }
1629 }
1630
1631 if (strcmp(argv[0], "mdr") == 0) {
1632 int ret;
1633 last_addr = addr;
1634 ret = kdb_mdr(addr, mdcount);
1635 last_addr += mdcount;
1636 last_repeat = mdcount;
1637 last_bytesperword = bytesperword; // to make REPEAT happy
1638 return ret;
1639 }
1640
1641 switch (radix) {
1642 case 10:
1643 fmtchar = 'd';
1644 break;
1645 case 16:
1646 fmtchar = 'x';
1647 break;
1648 case 8:
1649 fmtchar = 'o';
1650 break;
1651 default:
1652 return KDB_BADRADIX;
1653 }
1654
1655 last_radix = radix;
1656
1657 if (bytesperword > KDB_WORD_SIZE)
1658 return KDB_BADWIDTH;
1659
1660 switch (bytesperword) {
1661 case 8:
1662 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663 break;
1664 case 4:
1665 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666 break;
1667 case 2:
1668 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669 break;
1670 case 1:
1671 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672 break;
1673 default:
1674 return KDB_BADWIDTH;
1675 }
1676
1677 last_repeat = repeat;
1678 last_bytesperword = bytesperword;
1679
1680 if (strcmp(argv[0], "mds") == 0) {
1681 symbolic = 1;
1682 /* Do not save these changes as last_*, they are temporary mds
1683 * overrides.
1684 */
1685 bytesperword = KDB_WORD_SIZE;
1686 repeat = mdcount;
1687 kdbgetintenv("NOSECT", &nosect);
1688 }
1689
1690 /* Round address down modulo BYTESPERWORD */
1691
1692 addr &= ~(bytesperword-1);
1693
1694 while (repeat > 0) {
1695 unsigned long a;
1696 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698 if (KDB_FLAG(CMD_INTERRUPT))
1699 return 0;
1700 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701 if (phys) {
1702 if (kdb_getphysword(&word, a, bytesperword)
1703 || word)
1704 break;
1705 } else if (kdb_getword(&word, a, bytesperword) || word)
1706 break;
1707 }
1708 n = min(num, repeat);
1709 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710 num, repeat, phys);
1711 addr += bytesperword * n;
1712 repeat -= n;
1713 z = (z + num - 1) / num;
1714 if (z > 2) {
1715 int s = num * (z-2);
1716 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717 " zero suppressed\n",
1718 addr, addr + bytesperword * s - 1);
1719 addr += bytesperword * s;
1720 repeat -= s;
1721 }
1722 }
1723 last_addr = addr;
1724
1725 return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 * mm address-expression new-value
1731 * Remarks:
1732 * mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736 int diag;
1737 unsigned long addr;
1738 long offset = 0;
1739 unsigned long contents;
1740 int nextarg;
1741 int width;
1742
1743 if (argv[0][2] && !isdigit(argv[0][2]))
1744 return KDB_NOTFOUND;
1745
1746 if (argc < 2)
1747 return KDB_ARGCOUNT;
1748
1749 nextarg = 1;
1750 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751 if (diag)
1752 return diag;
1753
1754 if (nextarg > argc)
1755 return KDB_ARGCOUNT;
1756 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757 if (diag)
1758 return diag;
1759
1760 if (nextarg != argc + 1)
1761 return KDB_ARGCOUNT;
1762
1763 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764 diag = kdb_putword(addr, contents, width);
1765 if (diag)
1766 return diag;
1767
1768 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770 return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 * go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779 unsigned long addr;
1780 int diag;
1781 int nextarg;
1782 long offset;
1783
1784 if (raw_smp_processor_id() != kdb_initial_cpu) {
1785 kdb_printf("go must execute on the entry cpu, "
1786 "please use \"cpu %d\" and then execute go\n",
1787 kdb_initial_cpu);
1788 return KDB_BADCPUNUM;
1789 }
1790 if (argc == 1) {
1791 nextarg = 1;
1792 diag = kdbgetaddrarg(argc, argv, &nextarg,
1793 &addr, &offset, NULL);
1794 if (diag)
1795 return diag;
1796 } else if (argc) {
1797 return KDB_ARGCOUNT;
1798 }
1799
1800 diag = KDB_CMD_GO;
1801 if (KDB_FLAG(CATASTROPHIC)) {
1802 kdb_printf("Catastrophic error detected\n");
1803 kdb_printf("kdb_continue_catastrophic=%d, ",
1804 kdb_continue_catastrophic);
1805 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806 kdb_printf("type go a second time if you really want "
1807 "to continue\n");
1808 return 0;
1809 }
1810 if (kdb_continue_catastrophic == 2) {
1811 kdb_printf("forcing reboot\n");
1812 kdb_reboot(0, NULL);
1813 }
1814 kdb_printf("attempting to continue\n");
1815 }
1816 return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824 int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826 int i;
1827 char *rname;
1828 int rsize;
1829 u64 reg64;
1830 u32 reg32;
1831 u16 reg16;
1832 u8 reg8;
1833
1834 if (len)
1835 return len;
1836
1837 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838 rsize = dbg_reg_def[i].size * 2;
1839 if (rsize > 16)
1840 rsize = 2;
1841 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842 len = 0;
1843 kdb_printf("\n");
1844 }
1845 if (len)
1846 len += kdb_printf(" ");
1847 switch(dbg_reg_def[i].size * 8) {
1848 case 8:
1849 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1850 if (!rname)
1851 break;
1852 len += kdb_printf("%s: %02x", rname, reg8);
1853 break;
1854 case 16:
1855 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1856 if (!rname)
1857 break;
1858 len += kdb_printf("%s: %04x", rname, reg16);
1859 break;
1860 case 32:
1861 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1862 if (!rname)
1863 break;
1864 len += kdb_printf("%s: %08x", rname, reg32);
1865 break;
1866 case 64:
1867 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1868 if (!rname)
1869 break;
1870 len += kdb_printf("%s: %016llx", rname, reg64);
1871 break;
1872 default:
1873 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874 }
1875 }
1876 kdb_printf("\n");
1877#else
1878 if (len)
1879 return len;
1880
1881 kdb_dumpregs(kdb_current_regs);
1882#endif
1883 return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify) command.
1888 * rm register-name new-contents
1889 * Remarks:
1890 * Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895 int diag;
1896 const char *rname;
1897 int i;
1898 u64 reg64;
1899 u32 reg32;
1900 u16 reg16;
1901 u8 reg8;
1902
1903 if (argc != 2)
1904 return KDB_ARGCOUNT;
1905 /*
1906 * Allow presence or absence of leading '%' symbol.
1907 */
1908 rname = argv[1];
1909 if (*rname == '%')
1910 rname++;
1911
1912 diag = kdbgetu64arg(argv[2], ®64);
1913 if (diag)
1914 return diag;
1915
1916 diag = kdb_check_regs();
1917 if (diag)
1918 return diag;
1919
1920 diag = KDB_BADREG;
1921 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923 diag = 0;
1924 break;
1925 }
1926 }
1927 if (!diag) {
1928 switch(dbg_reg_def[i].size * 8) {
1929 case 8:
1930 reg8 = reg64;
1931 dbg_set_reg(i, ®8, kdb_current_regs);
1932 break;
1933 case 16:
1934 reg16 = reg64;
1935 dbg_set_reg(i, ®16, kdb_current_regs);
1936 break;
1937 case 32:
1938 reg32 = reg64;
1939 dbg_set_reg(i, ®32, kdb_current_regs);
1940 break;
1941 case 64:
1942 dbg_set_reg(i, ®64, kdb_current_regs);
1943 break;
1944 }
1945 }
1946 return diag;
1947#else
1948 kdb_printf("ERROR: Register set currently not implemented\n");
1949 return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 * sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961 bool check_mask =
1962 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964 if (argc != 1)
1965 return KDB_ARGCOUNT;
1966
1967 kdb_trap_printk++;
1968 __handle_sysrq(*argv[1], check_mask);
1969 kdb_trap_printk--;
1970
1971 return 0;
1972}
1973#endif /* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 * frame) command. This command takes an address and expects to
1978 * find an exception frame at that address, formats and prints
1979 * it.
1980 * regs address-expression
1981 * Remarks:
1982 * Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986 int diag;
1987 unsigned long addr;
1988 long offset;
1989 int nextarg;
1990
1991 if (argc != 1)
1992 return KDB_ARGCOUNT;
1993
1994 nextarg = 1;
1995 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996 if (diag)
1997 return diag;
1998 show_regs((struct pt_regs *)addr);
1999 return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2005 * currently loaded kernel modules.
2006 * Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010 struct module *mod;
2011
2012 if (argc != 0)
2013 return KDB_ARGCOUNT;
2014
2015 kdb_printf("Module Size modstruct Used by\n");
2016 list_for_each_entry(mod, kdb_modules, list) {
2017 if (mod->state == MODULE_STATE_UNFORMED)
2018 continue;
2019
2020 kdb_printf("%-20s%8u 0x%px ", mod->name,
2021 mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023 kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025 if (mod->state == MODULE_STATE_GOING)
2026 kdb_printf(" (Unloading)");
2027 else if (mod->state == MODULE_STATE_COMING)
2028 kdb_printf(" (Loading)");
2029 else
2030 kdb_printf(" (Live)");
2031 kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034 {
2035 struct module_use *use;
2036 kdb_printf(" [ ");
2037 list_for_each_entry(use, &mod->source_list,
2038 source_list)
2039 kdb_printf("%s ", use->target->name);
2040 kdb_printf("]\n");
2041 }
2042#endif
2043 }
2044
2045 return 0;
2046}
2047
2048#endif /* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command. Display the
2052 * current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057 kdb_printenv();
2058
2059 if (KDB_DEBUG(MASK))
2060 kdb_printf("KDBDEBUG=0x%x\n",
2061 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063 return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 * the contents of the syslog buffer.
2070 * dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074 int diag;
2075 int logging;
2076 int lines = 0;
2077 int adjust = 0;
2078 int n = 0;
2079 int skip = 0;
2080 struct kmsg_dump_iter iter;
2081 size_t len;
2082 char buf[201];
2083
2084 if (argc > 2)
2085 return KDB_ARGCOUNT;
2086 if (argc) {
2087 char *cp;
2088 lines = simple_strtol(argv[1], &cp, 0);
2089 if (*cp)
2090 lines = 0;
2091 if (argc > 1) {
2092 adjust = simple_strtoul(argv[2], &cp, 0);
2093 if (*cp || adjust < 0)
2094 adjust = 0;
2095 }
2096 }
2097
2098 /* disable LOGGING if set */
2099 diag = kdbgetintenv("LOGGING", &logging);
2100 if (!diag && logging) {
2101 const char *setargs[] = { "set", "LOGGING", "0" };
2102 kdb_set(2, setargs);
2103 }
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107 n++;
2108
2109 if (lines < 0) {
2110 if (adjust >= n)
2111 kdb_printf("buffer only contains %d lines, nothing "
2112 "printed\n", n);
2113 else if (adjust - lines >= n)
2114 kdb_printf("buffer only contains %d lines, last %d "
2115 "lines printed\n", n, n - adjust);
2116 skip = adjust;
2117 lines = abs(lines);
2118 } else if (lines > 0) {
2119 skip = n - lines - adjust;
2120 lines = abs(lines);
2121 if (adjust >= n) {
2122 kdb_printf("buffer only contains %d lines, "
2123 "nothing printed\n", n);
2124 skip = n;
2125 } else if (skip < 0) {
2126 lines += skip;
2127 skip = 0;
2128 kdb_printf("buffer only contains %d lines, first "
2129 "%d lines printed\n", n, lines);
2130 }
2131 } else {
2132 lines = n;
2133 }
2134
2135 if (skip >= n || skip < 0)
2136 return 0;
2137
2138 kmsg_dump_rewind(&iter);
2139 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140 if (skip) {
2141 skip--;
2142 continue;
2143 }
2144 if (!lines--)
2145 break;
2146 if (KDB_FLAG(CMD_INTERRUPT))
2147 return 0;
2148
2149 kdb_printf("%.*s\n", (int)len - 1, buf);
2150 }
2151
2152 return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161 if (atomic_read(&kdb_nmi_disabled))
2162 return 0;
2163 atomic_set(&kdb_nmi_disabled, 1);
2164 arch_kgdb_ops.enable_nmi(0);
2165 return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171 return -EINVAL;
2172 arch_kgdb_ops.enable_nmi(1);
2173 return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177 .set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 * cpu [<cpunum>]
2184 * Returns:
2185 * KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189 int i, start_cpu, first_print = 1;
2190 char state, prev_state = '?';
2191
2192 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193 kdb_printf("Available cpus: ");
2194 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195 if (!cpu_online(i)) {
2196 state = 'F'; /* cpu is offline */
2197 } else if (!kgdb_info[i].enter_kgdb) {
2198 state = 'D'; /* cpu is online but unresponsive */
2199 } else {
2200 state = ' '; /* cpu is responding to kdb */
2201 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202 state = 'I'; /* idle task */
2203 }
2204 if (state != prev_state) {
2205 if (prev_state != '?') {
2206 if (!first_print)
2207 kdb_printf(", ");
2208 first_print = 0;
2209 kdb_printf("%d", start_cpu);
2210 if (start_cpu < i-1)
2211 kdb_printf("-%d", i-1);
2212 if (prev_state != ' ')
2213 kdb_printf("(%c)", prev_state);
2214 }
2215 prev_state = state;
2216 start_cpu = i;
2217 }
2218 }
2219 /* print the trailing cpus, ignoring them if they are all offline */
2220 if (prev_state != 'F') {
2221 if (!first_print)
2222 kdb_printf(", ");
2223 kdb_printf("%d", start_cpu);
2224 if (start_cpu < i-1)
2225 kdb_printf("-%d", i-1);
2226 if (prev_state != ' ')
2227 kdb_printf("(%c)", prev_state);
2228 }
2229 kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234 unsigned long cpunum;
2235 int diag;
2236
2237 if (argc == 0) {
2238 kdb_cpu_status();
2239 return 0;
2240 }
2241
2242 if (argc != 1)
2243 return KDB_ARGCOUNT;
2244
2245 diag = kdbgetularg(argv[1], &cpunum);
2246 if (diag)
2247 return diag;
2248
2249 /*
2250 * Validate cpunum
2251 */
2252 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253 return KDB_BADCPUNUM;
2254
2255 dbg_switch_cpu = cpunum;
2256
2257 /*
2258 * Switch to other cpu
2259 */
2260 return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268 int idle = 0, daemon = 0;
2269 unsigned long mask_I = kdb_task_state_string("I"),
2270 mask_M = kdb_task_state_string("M");
2271 unsigned long cpu;
2272 const struct task_struct *p, *g;
2273 for_each_online_cpu(cpu) {
2274 p = kdb_curr_task(cpu);
2275 if (kdb_task_state(p, mask_I))
2276 ++idle;
2277 }
2278 for_each_process_thread(g, p) {
2279 if (kdb_task_state(p, mask_M))
2280 ++daemon;
2281 }
2282 if (idle || daemon) {
2283 if (idle)
2284 kdb_printf("%d idle process%s (state I)%s\n",
2285 idle, idle == 1 ? "" : "es",
2286 daemon ? " and " : "");
2287 if (daemon)
2288 kdb_printf("%d sleeping system daemon (state M) "
2289 "process%s", daemon,
2290 daemon == 1 ? "" : "es");
2291 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292 }
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 * list of the active processes.
2298 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302 int cpu;
2303 unsigned long tmp;
2304
2305 if (!p ||
2306 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307 return;
2308
2309 cpu = kdb_process_cpu(p);
2310 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2311 (void *)p, p->pid, p->parent->pid,
2312 kdb_task_has_cpu(p), kdb_process_cpu(p),
2313 kdb_task_state_char(p),
2314 (void *)(&p->thread),
2315 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316 p->comm);
2317 if (kdb_task_has_cpu(p)) {
2318 if (!KDB_TSK(cpu)) {
2319 kdb_printf(" Error: no saved data for this cpu\n");
2320 } else {
2321 if (KDB_TSK(cpu) != p)
2322 kdb_printf(" Error: does not match running "
2323 "process table (0x%px)\n", KDB_TSK(cpu));
2324 }
2325 }
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330 struct task_struct *g, *p;
2331 unsigned long mask, cpu;
2332
2333 if (argc == 0)
2334 kdb_ps_suppressed();
2335 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2336 (int)(2*sizeof(void *))+2, "Task Addr",
2337 (int)(2*sizeof(void *))+2, "Thread");
2338 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339 /* Run the active tasks first */
2340 for_each_online_cpu(cpu) {
2341 if (KDB_FLAG(CMD_INTERRUPT))
2342 return 0;
2343 p = kdb_curr_task(cpu);
2344 if (kdb_task_state(p, mask))
2345 kdb_ps1(p);
2346 }
2347 kdb_printf("\n");
2348 /* Now the real tasks */
2349 for_each_process_thread(g, p) {
2350 if (KDB_FLAG(CMD_INTERRUPT))
2351 return 0;
2352 if (kdb_task_state(p, mask))
2353 kdb_ps1(p);
2354 }
2355
2356 return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 * the currently active process.
2362 * pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366 struct task_struct *p;
2367 unsigned long val;
2368 int diag;
2369
2370 if (argc > 1)
2371 return KDB_ARGCOUNT;
2372
2373 if (argc) {
2374 if (strcmp(argv[1], "R") == 0) {
2375 p = KDB_TSK(kdb_initial_cpu);
2376 } else {
2377 diag = kdbgetularg(argv[1], &val);
2378 if (diag)
2379 return KDB_BADINT;
2380
2381 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2382 if (!p) {
2383 kdb_printf("No task with pid=%d\n", (pid_t)val);
2384 return 0;
2385 }
2386 }
2387 kdb_set_current_task(p);
2388 }
2389 kdb_printf("KDB current process is %s(pid=%d)\n",
2390 kdb_current_task->comm,
2391 kdb_current_task->pid);
2392
2393 return 0;
2394}
2395
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398 return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406 kdbtab_t *kt;
2407
2408 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409 kdb_printf("-----------------------------"
2410 "-----------------------------\n");
2411 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412 char *space = "";
2413 if (KDB_FLAG(CMD_INTERRUPT))
2414 return 0;
2415 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416 continue;
2417 if (strlen(kt->cmd_usage) > 20)
2418 space = "\n ";
2419 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420 kt->cmd_usage, space, kt->cmd_help);
2421 }
2422 return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430 long sig, pid;
2431 char *endp;
2432 struct task_struct *p;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if ((sig >= 0) || !valid_signal(-sig)) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 kdb_send_sig(p, sig);
2462 return 0;
2463}
2464
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472 u64 uptime = ktime_get_mono_fast_ns();
2473
2474 memset(val, 0, sizeof(*val));
2475 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476 val->loads[0] = avenrun[0];
2477 val->loads[1] = avenrun[1];
2478 val->loads[2] = avenrun[2];
2479 val->procs = nr_threads-1;
2480 si_meminfo(val);
2481
2482 return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490 time64_t now;
2491 struct sysinfo val;
2492
2493 if (argc)
2494 return KDB_ARGCOUNT;
2495
2496 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2497 kdb_printf("release %s\n", init_uts_ns.name.release);
2498 kdb_printf("version %s\n", init_uts_ns.name.version);
2499 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2500 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2501 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2502
2503 now = __ktime_get_real_seconds();
2504 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505 kdb_sysinfo(&val);
2506 kdb_printf("uptime ");
2507 if (val.uptime > (24*60*60)) {
2508 int days = val.uptime / (24*60*60);
2509 val.uptime %= (24*60*60);
2510 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511 }
2512 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
2514 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
2519 /* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2522 "Buffers: %8lu kB\n",
2523 K(val.totalram), K(val.freeram), K(val.bufferram));
2524 return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532 char fmtstr[64];
2533 int cpu, diag, nextarg = 1;
2534 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536 if (argc < 1 || argc > 3)
2537 return KDB_ARGCOUNT;
2538
2539 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540 if (diag)
2541 return diag;
2542
2543 if (argc >= 2) {
2544 diag = kdbgetularg(argv[2], &bytesperword);
2545 if (diag)
2546 return diag;
2547 }
2548 if (!bytesperword)
2549 bytesperword = KDB_WORD_SIZE;
2550 else if (bytesperword > KDB_WORD_SIZE)
2551 return KDB_BADWIDTH;
2552 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553 if (argc >= 3) {
2554 diag = kdbgetularg(argv[3], &whichcpu);
2555 if (diag)
2556 return diag;
2557 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558 kdb_printf("cpu %ld is not online\n", whichcpu);
2559 return KDB_BADCPUNUM;
2560 }
2561 }
2562
2563 /* Most architectures use __per_cpu_offset[cpu], some use
2564 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565 */
2566#ifdef __per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575 for_each_online_cpu(cpu) {
2576 if (KDB_FLAG(CMD_INTERRUPT))
2577 return 0;
2578
2579 if (whichcpu != ~0UL && whichcpu != cpu)
2580 continue;
2581 addr = symaddr + KDB_PCU(cpu);
2582 diag = kdb_getword(&val, addr, bytesperword);
2583 if (diag) {
2584 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585 "read, diag=%d\n", cpu, addr, diag);
2586 continue;
2587 }
2588 kdb_printf("%5d ", cpu);
2589 kdb_md_line(fmtstr, addr,
2590 bytesperword == KDB_WORD_SIZE,
2591 1, bytesperword, 1, 1, 0);
2592 }
2593#undef KDB_PCU
2594 return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602 kdb_printf("Usage of cmd args | grep pattern:\n");
2603 kdb_printf(" Any command's output may be filtered through an ");
2604 kdb_printf("emulated 'pipe'.\n");
2605 kdb_printf(" 'grep' is just a key word.\n");
2606 kdb_printf(" The pattern may include a very limited set of "
2607 "metacharacters:\n");
2608 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2609 kdb_printf(" And if there are spaces in the pattern, you may "
2610 "quote it:\n");
2611 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612 " or \"^pat tern$\"\n");
2613 return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * debugger command.
2619 * Inputs:
2620 * cmd Command name
2621 * func Function to execute the command
2622 * usage A simple usage string showing arguments
2623 * help A simple help string describing command
2624 * repeat Does the command auto repeat on enter?
2625 * Returns:
2626 * zero for success, one if a duplicate command.
2627 */
2628int kdb_register_flags(char *cmd,
2629 kdb_func_t func,
2630 char *usage,
2631 char *help,
2632 short minlen,
2633 kdb_cmdflags_t flags)
2634{
2635 kdbtab_t *kp;
2636
2637 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638 if (strcmp(kp->cmd_name, cmd) == 0) {
2639 kdb_printf("Duplicate kdb command registered: "
2640 "%s, func %px help %s\n", cmd, func, help);
2641 return 1;
2642 }
2643 }
2644
2645 kp = kmalloc(sizeof(*kp), GFP_KDB);
2646 if (!kp) {
2647 kdb_printf("Could not allocate new kdb_command table\n");
2648 return 1;
2649 }
2650
2651 kp->cmd_name = cmd;
2652 kp->cmd_func = func;
2653 kp->cmd_usage = usage;
2654 kp->cmd_help = help;
2655 kp->cmd_minlen = minlen;
2656 kp->cmd_flags = flags;
2657 kp->is_dynamic = true;
2658
2659 list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661 return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 * table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673 while (len--) {
2674 list_add_tail(&kp->list_node, &kdb_cmds_head);
2675 kp++;
2676 }
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 * not need to specify a repeat state. Equivalent to
2682 * kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 * cmd Command name
2685 * func Function to execute the command
2686 * usage A simple usage string showing arguments
2687 * help A simple help string describing command
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen)
2696{
2697 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 * debugger command. It is generally called when a module which
2704 * implements kdb commands is unloaded.
2705 * Inputs:
2706 * cmd Command name
2707 * Returns:
2708 * zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
2712 kdbtab_t *kp;
2713
2714 /*
2715 * find the command.
2716 */
2717 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718 if (strcmp(kp->cmd_name, cmd) == 0) {
2719 list_del(&kp->list_node);
2720 if (kp->is_dynamic)
2721 kfree(kp);
2722 return 0;
2723 }
2724 }
2725
2726 /* Couldn't find it. */
2727 return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732 { .cmd_name = "md",
2733 .cmd_func = kdb_md,
2734 .cmd_usage = "<vaddr>",
2735 .cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736 .cmd_minlen = 1,
2737 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738 },
2739 { .cmd_name = "mdr",
2740 .cmd_func = kdb_md,
2741 .cmd_usage = "<vaddr> <bytes>",
2742 .cmd_help = "Display Raw Memory",
2743 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744 },
2745 { .cmd_name = "mdp",
2746 .cmd_func = kdb_md,
2747 .cmd_usage = "<paddr> <bytes>",
2748 .cmd_help = "Display Physical Memory",
2749 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750 },
2751 { .cmd_name = "mds",
2752 .cmd_func = kdb_md,
2753 .cmd_usage = "<vaddr>",
2754 .cmd_help = "Display Memory Symbolically",
2755 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756 },
2757 { .cmd_name = "mm",
2758 .cmd_func = kdb_mm,
2759 .cmd_usage = "<vaddr> <contents>",
2760 .cmd_help = "Modify Memory Contents",
2761 .cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762 },
2763 { .cmd_name = "go",
2764 .cmd_func = kdb_go,
2765 .cmd_usage = "[<vaddr>]",
2766 .cmd_help = "Continue Execution",
2767 .cmd_minlen = 1,
2768 .cmd_flags = KDB_ENABLE_REG_WRITE |
2769 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770 },
2771 { .cmd_name = "rd",
2772 .cmd_func = kdb_rd,
2773 .cmd_usage = "",
2774 .cmd_help = "Display Registers",
2775 .cmd_flags = KDB_ENABLE_REG_READ,
2776 },
2777 { .cmd_name = "rm",
2778 .cmd_func = kdb_rm,
2779 .cmd_usage = "<reg> <contents>",
2780 .cmd_help = "Modify Registers",
2781 .cmd_flags = KDB_ENABLE_REG_WRITE,
2782 },
2783 { .cmd_name = "ef",
2784 .cmd_func = kdb_ef,
2785 .cmd_usage = "<vaddr>",
2786 .cmd_help = "Display exception frame",
2787 .cmd_flags = KDB_ENABLE_MEM_READ,
2788 },
2789 { .cmd_name = "bt",
2790 .cmd_func = kdb_bt,
2791 .cmd_usage = "[<vaddr>]",
2792 .cmd_help = "Stack traceback",
2793 .cmd_minlen = 1,
2794 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795 },
2796 { .cmd_name = "btp",
2797 .cmd_func = kdb_bt,
2798 .cmd_usage = "<pid>",
2799 .cmd_help = "Display stack for process <pid>",
2800 .cmd_flags = KDB_ENABLE_INSPECT,
2801 },
2802 { .cmd_name = "bta",
2803 .cmd_func = kdb_bt,
2804 .cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805 .cmd_help = "Backtrace all processes matching state flag",
2806 .cmd_flags = KDB_ENABLE_INSPECT,
2807 },
2808 { .cmd_name = "btc",
2809 .cmd_func = kdb_bt,
2810 .cmd_usage = "",
2811 .cmd_help = "Backtrace current process on each cpu",
2812 .cmd_flags = KDB_ENABLE_INSPECT,
2813 },
2814 { .cmd_name = "btt",
2815 .cmd_func = kdb_bt,
2816 .cmd_usage = "<vaddr>",
2817 .cmd_help = "Backtrace process given its struct task address",
2818 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819 },
2820 { .cmd_name = "env",
2821 .cmd_func = kdb_env,
2822 .cmd_usage = "",
2823 .cmd_help = "Show environment variables",
2824 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825 },
2826 { .cmd_name = "set",
2827 .cmd_func = kdb_set,
2828 .cmd_usage = "",
2829 .cmd_help = "Set environment variables",
2830 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831 },
2832 { .cmd_name = "help",
2833 .cmd_func = kdb_help,
2834 .cmd_usage = "",
2835 .cmd_help = "Display Help Message",
2836 .cmd_minlen = 1,
2837 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839 { .cmd_name = "?",
2840 .cmd_func = kdb_help,
2841 .cmd_usage = "",
2842 .cmd_help = "Display Help Message",
2843 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844 },
2845 { .cmd_name = "cpu",
2846 .cmd_func = kdb_cpu,
2847 .cmd_usage = "<cpunum>",
2848 .cmd_help = "Switch to new cpu",
2849 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850 },
2851 { .cmd_name = "kgdb",
2852 .cmd_func = kdb_kgdb,
2853 .cmd_usage = "",
2854 .cmd_help = "Enter kgdb mode",
2855 .cmd_flags = 0,
2856 },
2857 { .cmd_name = "ps",
2858 .cmd_func = kdb_ps,
2859 .cmd_usage = "[<flags>|A]",
2860 .cmd_help = "Display active task list",
2861 .cmd_flags = KDB_ENABLE_INSPECT,
2862 },
2863 { .cmd_name = "pid",
2864 .cmd_func = kdb_pid,
2865 .cmd_usage = "<pidnum>",
2866 .cmd_help = "Switch to another task",
2867 .cmd_flags = KDB_ENABLE_INSPECT,
2868 },
2869 { .cmd_name = "reboot",
2870 .cmd_func = kdb_reboot,
2871 .cmd_usage = "",
2872 .cmd_help = "Reboot the machine immediately",
2873 .cmd_flags = KDB_ENABLE_REBOOT,
2874 },
2875#if defined(CONFIG_MODULES)
2876 { .cmd_name = "lsmod",
2877 .cmd_func = kdb_lsmod,
2878 .cmd_usage = "",
2879 .cmd_help = "List loaded kernel modules",
2880 .cmd_flags = KDB_ENABLE_INSPECT,
2881 },
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884 { .cmd_name = "sr",
2885 .cmd_func = kdb_sr,
2886 .cmd_usage = "<key>",
2887 .cmd_help = "Magic SysRq key",
2888 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889 },
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 { .cmd_name = "dmesg",
2893 .cmd_func = kdb_dmesg,
2894 .cmd_usage = "[lines]",
2895 .cmd_help = "Display syslog buffer",
2896 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897 },
2898#endif
2899 { .cmd_name = "defcmd",
2900 .cmd_func = kdb_defcmd,
2901 .cmd_usage = "name \"usage\" \"help\"",
2902 .cmd_help = "Define a set of commands, down to endefcmd",
2903 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904 },
2905 { .cmd_name = "kill",
2906 .cmd_func = kdb_kill,
2907 .cmd_usage = "<-signal> <pid>",
2908 .cmd_help = "Send a signal to a process",
2909 .cmd_flags = KDB_ENABLE_SIGNAL,
2910 },
2911 { .cmd_name = "summary",
2912 .cmd_func = kdb_summary,
2913 .cmd_usage = "",
2914 .cmd_help = "Summarize the system",
2915 .cmd_minlen = 4,
2916 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917 },
2918 { .cmd_name = "per_cpu",
2919 .cmd_func = kdb_per_cpu,
2920 .cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921 .cmd_help = "Display per_cpu variables",
2922 .cmd_minlen = 3,
2923 .cmd_flags = KDB_ENABLE_MEM_READ,
2924 },
2925 { .cmd_name = "grephelp",
2926 .cmd_func = kdb_grep_help,
2927 .cmd_usage = "",
2928 .cmd_help = "Display help on | grep",
2929 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930 },
2931};
2932
2933static kdbtab_t nmicmd = {
2934 .cmd_name = "disable_nmi",
2935 .cmd_func = kdb_disable_nmi,
2936 .cmd_usage = "",
2937 .cmd_help = "Disable NMI entry to KDB",
2938 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945 if (arch_kgdb_ops.enable_nmi)
2946 kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds. */
2950static void __init kdb_cmd_init(void)
2951{
2952 int i, diag;
2953 for (i = 0; kdb_cmds[i]; ++i) {
2954 diag = kdb_parse(kdb_cmds[i]);
2955 if (diag)
2956 kdb_printf("kdb command %s failed, kdb diag %d\n",
2957 kdb_cmds[i], diag);
2958 }
2959 if (defcmd_in_progress) {
2960 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961 kdb_parse("endefcmd");
2962 }
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969 int i;
2970
2971 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972 return;
2973 for (i = kdb_init_lvl; i < lvl; i++) {
2974 switch (i) {
2975 case KDB_NOT_INITIALIZED:
2976 kdb_inittab(); /* Initialize Command Table */
2977 kdb_initbptab(); /* Initialize Breakpoints */
2978 break;
2979 case KDB_INIT_EARLY:
2980 kdb_cmd_init(); /* Build kdb_cmds tables */
2981 break;
2982 }
2983 }
2984 kdb_init_lvl = lvl;
2985}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158/*
159 * Update the permissions flags (kdb_cmd_enabled) to match the
160 * current lockdown state.
161 *
162 * Within this function the calls to security_locked_down() are "lazy". We
163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
164 * flags that might be subject to lockdown. Additionally we deliberately check
165 * the lockdown flags independently (even though read lockdown implies write
166 * lockdown) since that results in both simpler code and clearer messages to
167 * the user on first-time debugger entry.
168 *
169 * The permission masks during a read+write lockdown permits the following
170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
171 *
172 * The INSPECT commands are not blocked during lockdown because they are
173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
174 * forcing them to have no arguments) and lsmod. These commands do expose
175 * some kernel state but do not allow the developer seated at the console to
176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
177 * given these are allowed for root during lockdown already.
178 */
179static void kdb_check_for_lockdown(void)
180{
181 const int write_flags = KDB_ENABLE_MEM_WRITE |
182 KDB_ENABLE_REG_WRITE |
183 KDB_ENABLE_FLOW_CTRL;
184 const int read_flags = KDB_ENABLE_MEM_READ |
185 KDB_ENABLE_REG_READ;
186
187 bool need_to_lockdown_write = false;
188 bool need_to_lockdown_read = false;
189
190 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
191 need_to_lockdown_write =
192 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
193
194 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
195 need_to_lockdown_read =
196 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
197
198 /* De-compose KDB_ENABLE_ALL if required */
199 if (need_to_lockdown_write || need_to_lockdown_read)
200 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
201 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
202
203 if (need_to_lockdown_write)
204 kdb_cmd_enabled &= ~write_flags;
205
206 if (need_to_lockdown_read)
207 kdb_cmd_enabled &= ~read_flags;
208}
209
210/*
211 * Check whether the flags of the current command, the permissions of the kdb
212 * console and the lockdown state allow a command to be run.
213 */
214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
215 bool no_args)
216{
217 /* permissions comes from userspace so needs massaging slightly */
218 permissions &= KDB_ENABLE_MASK;
219 permissions |= KDB_ENABLE_ALWAYS_SAFE;
220
221 /* some commands change group when launched with no arguments */
222 if (no_args)
223 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
224
225 flags |= KDB_ENABLE_ALL;
226
227 return permissions & flags;
228}
229
230/*
231 * kdbgetenv - This function will return the character string value of
232 * an environment variable.
233 * Parameters:
234 * match A character string representing an environment variable.
235 * Returns:
236 * NULL No environment variable matches 'match'
237 * char* Pointer to string value of environment variable.
238 */
239char *kdbgetenv(const char *match)
240{
241 char **ep = __env;
242 int matchlen = strlen(match);
243 int i;
244
245 for (i = 0; i < __nenv; i++) {
246 char *e = *ep++;
247
248 if (!e)
249 continue;
250
251 if ((strncmp(match, e, matchlen) == 0)
252 && ((e[matchlen] == '\0')
253 || (e[matchlen] == '='))) {
254 char *cp = strchr(e, '=');
255 return cp ? ++cp : "";
256 }
257 }
258 return NULL;
259}
260
261/*
262 * kdballocenv - This function is used to allocate bytes for
263 * environment entries.
264 * Parameters:
265 * bytes The number of bytes to allocate in the static buffer.
266 * Returns:
267 * A pointer to the allocated space in the buffer on success.
268 * NULL if bytes > size available in the envbuffer.
269 * Remarks:
270 * We use a static environment buffer (envbuffer) to hold the values
271 * of dynamically generated environment variables (see kdb_set). Buffer
272 * space once allocated is never free'd, so over time, the amount of space
273 * (currently 512 bytes) will be exhausted if env variables are changed
274 * frequently.
275 */
276static char *kdballocenv(size_t bytes)
277{
278#define KDB_ENVBUFSIZE 512
279 static char envbuffer[KDB_ENVBUFSIZE];
280 static int envbufsize;
281 char *ep = NULL;
282
283 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
284 ep = &envbuffer[envbufsize];
285 envbufsize += bytes;
286 }
287 return ep;
288}
289
290/*
291 * kdbgetulenv - This function will return the value of an unsigned
292 * long-valued environment variable.
293 * Parameters:
294 * match A character string representing a numeric value
295 * Outputs:
296 * *value the unsigned long representation of the env variable 'match'
297 * Returns:
298 * Zero on success, a kdb diagnostic on failure.
299 */
300static int kdbgetulenv(const char *match, unsigned long *value)
301{
302 char *ep;
303
304 ep = kdbgetenv(match);
305 if (!ep)
306 return KDB_NOTENV;
307 if (strlen(ep) == 0)
308 return KDB_NOENVVALUE;
309 if (kstrtoul(ep, 0, value))
310 return KDB_BADINT;
311
312 return 0;
313}
314
315/*
316 * kdbgetintenv - This function will return the value of an
317 * integer-valued environment variable.
318 * Parameters:
319 * match A character string representing an integer-valued env variable
320 * Outputs:
321 * *value the integer representation of the environment variable 'match'
322 * Returns:
323 * Zero on success, a kdb diagnostic on failure.
324 */
325int kdbgetintenv(const char *match, int *value)
326{
327 unsigned long val;
328 int diag;
329
330 diag = kdbgetulenv(match, &val);
331 if (!diag)
332 *value = (int) val;
333 return diag;
334}
335
336/*
337 * kdb_setenv() - Alter an existing environment variable or create a new one.
338 * @var: Name of the variable
339 * @val: Value of the variable
340 *
341 * Return: Zero on success, a kdb diagnostic on failure.
342 */
343static int kdb_setenv(const char *var, const char *val)
344{
345 int i;
346 char *ep;
347 size_t varlen, vallen;
348
349 varlen = strlen(var);
350 vallen = strlen(val);
351 ep = kdballocenv(varlen + vallen + 2);
352 if (ep == (char *)0)
353 return KDB_ENVBUFFULL;
354
355 sprintf(ep, "%s=%s", var, val);
356
357 for (i = 0; i < __nenv; i++) {
358 if (__env[i]
359 && ((strncmp(__env[i], var, varlen) == 0)
360 && ((__env[i][varlen] == '\0')
361 || (__env[i][varlen] == '=')))) {
362 __env[i] = ep;
363 return 0;
364 }
365 }
366
367 /*
368 * Wasn't existing variable. Fit into slot.
369 */
370 for (i = 0; i < __nenv-1; i++) {
371 if (__env[i] == (char *)0) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 return KDB_ENVFULL;
378}
379
380/*
381 * kdb_printenv() - Display the current environment variables.
382 */
383static void kdb_printenv(void)
384{
385 int i;
386
387 for (i = 0; i < __nenv; i++) {
388 if (__env[i])
389 kdb_printf("%s\n", __env[i]);
390 }
391}
392
393/*
394 * kdbgetularg - This function will convert a numeric string into an
395 * unsigned long value.
396 * Parameters:
397 * arg A character string representing a numeric value
398 * Outputs:
399 * *value the unsigned long representation of arg.
400 * Returns:
401 * Zero on success, a kdb diagnostic on failure.
402 */
403int kdbgetularg(const char *arg, unsigned long *value)
404{
405 if (kstrtoul(arg, 0, value))
406 return KDB_BADINT;
407 return 0;
408}
409
410int kdbgetu64arg(const char *arg, u64 *value)
411{
412 if (kstrtou64(arg, 0, value))
413 return KDB_BADINT;
414 return 0;
415}
416
417/*
418 * kdb_set - This function implements the 'set' command. Alter an
419 * existing environment variable or create a new one.
420 */
421int kdb_set(int argc, const char **argv)
422{
423 /*
424 * we can be invoked two ways:
425 * set var=value argv[1]="var", argv[2]="value"
426 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
427 * - if the latter, shift 'em down.
428 */
429 if (argc == 3) {
430 argv[2] = argv[3];
431 argc--;
432 }
433
434 if (argc != 2)
435 return KDB_ARGCOUNT;
436
437 /*
438 * Censor sensitive variables
439 */
440 if (strcmp(argv[1], "PROMPT") == 0 &&
441 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
442 return KDB_NOPERM;
443
444 /*
445 * Check for internal variables
446 */
447 if (strcmp(argv[1], "KDBDEBUG") == 0) {
448 unsigned int debugflags;
449 int ret;
450
451 ret = kstrtouint(argv[2], 0, &debugflags);
452 if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
453 kdb_printf("kdb: illegal debug flags '%s'\n",
454 argv[2]);
455 return 0;
456 }
457 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
458 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
459
460 return 0;
461 }
462
463 /*
464 * Tokenizer squashed the '=' sign. argv[1] is variable
465 * name, argv[2] = value.
466 */
467 return kdb_setenv(argv[1], argv[2]);
468}
469
470static int kdb_check_regs(void)
471{
472 if (!kdb_current_regs) {
473 kdb_printf("No current kdb registers."
474 " You may need to select another task\n");
475 return KDB_BADREG;
476 }
477 return 0;
478}
479
480/*
481 * kdbgetaddrarg - This function is responsible for parsing an
482 * address-expression and returning the value of the expression,
483 * symbol name, and offset to the caller.
484 *
485 * The argument may consist of a numeric value (decimal or
486 * hexadecimal), a symbol name, a register name (preceded by the
487 * percent sign), an environment variable with a numeric value
488 * (preceded by a dollar sign) or a simple arithmetic expression
489 * consisting of a symbol name, +/-, and a numeric constant value
490 * (offset).
491 * Parameters:
492 * argc - count of arguments in argv
493 * argv - argument vector
494 * *nextarg - index to next unparsed argument in argv[]
495 * regs - Register state at time of KDB entry
496 * Outputs:
497 * *value - receives the value of the address-expression
498 * *offset - receives the offset specified, if any
499 * *name - receives the symbol name, if any
500 * *nextarg - index to next unparsed argument in argv[]
501 * Returns:
502 * zero is returned on success, a kdb diagnostic code is
503 * returned on error.
504 */
505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
506 unsigned long *value, long *offset,
507 char **name)
508{
509 unsigned long addr;
510 unsigned long off = 0;
511 int positive;
512 int diag;
513 int found = 0;
514 char *symname;
515 char symbol = '\0';
516 char *cp;
517 kdb_symtab_t symtab;
518
519 /*
520 * If the enable flags prohibit both arbitrary memory access
521 * and flow control then there are no reasonable grounds to
522 * provide symbol lookup.
523 */
524 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
525 kdb_cmd_enabled, false))
526 return KDB_NOPERM;
527
528 /*
529 * Process arguments which follow the following syntax:
530 *
531 * symbol | numeric-address [+/- numeric-offset]
532 * %register
533 * $environment-variable
534 */
535
536 if (*nextarg > argc)
537 return KDB_ARGCOUNT;
538
539 symname = (char *)argv[*nextarg];
540
541 /*
542 * If there is no whitespace between the symbol
543 * or address and the '+' or '-' symbols, we
544 * remember the character and replace it with a
545 * null so the symbol/value can be properly parsed
546 */
547 cp = strpbrk(symname, "+-");
548 if (cp != NULL) {
549 symbol = *cp;
550 *cp++ = '\0';
551 }
552
553 if (symname[0] == '$') {
554 diag = kdbgetulenv(&symname[1], &addr);
555 if (diag)
556 return diag;
557 } else if (symname[0] == '%') {
558 diag = kdb_check_regs();
559 if (diag)
560 return diag;
561 /* Implement register values with % at a later time as it is
562 * arch optional.
563 */
564 return KDB_NOTIMP;
565 } else {
566 found = kdbgetsymval(symname, &symtab);
567 if (found) {
568 addr = symtab.sym_start;
569 } else {
570 diag = kdbgetularg(argv[*nextarg], &addr);
571 if (diag)
572 return diag;
573 }
574 }
575
576 if (!found)
577 found = kdbnearsym(addr, &symtab);
578
579 (*nextarg)++;
580
581 if (name)
582 *name = symname;
583 if (value)
584 *value = addr;
585 if (offset && name && *name)
586 *offset = addr - symtab.sym_start;
587
588 if ((*nextarg > argc)
589 && (symbol == '\0'))
590 return 0;
591
592 /*
593 * check for +/- and offset
594 */
595
596 if (symbol == '\0') {
597 if ((argv[*nextarg][0] != '+')
598 && (argv[*nextarg][0] != '-')) {
599 /*
600 * Not our argument. Return.
601 */
602 return 0;
603 } else {
604 positive = (argv[*nextarg][0] == '+');
605 (*nextarg)++;
606 }
607 } else
608 positive = (symbol == '+');
609
610 /*
611 * Now there must be an offset!
612 */
613 if ((*nextarg > argc)
614 && (symbol == '\0')) {
615 return KDB_INVADDRFMT;
616 }
617
618 if (!symbol) {
619 cp = (char *)argv[*nextarg];
620 (*nextarg)++;
621 }
622
623 diag = kdbgetularg(cp, &off);
624 if (diag)
625 return diag;
626
627 if (!positive)
628 off = -off;
629
630 if (offset)
631 *offset += off;
632
633 if (value)
634 *value += off;
635
636 return 0;
637}
638
639static void kdb_cmderror(int diag)
640{
641 int i;
642
643 if (diag >= 0) {
644 kdb_printf("no error detected (diagnostic is %d)\n", diag);
645 return;
646 }
647
648 for (i = 0; i < __nkdb_err; i++) {
649 if (kdbmsgs[i].km_diag == diag) {
650 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
651 return;
652 }
653 }
654
655 kdb_printf("Unknown diag %d\n", -diag);
656}
657
658/*
659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
660 * command which defines one command as a set of other commands,
661 * terminated by endefcmd. kdb_defcmd processes the initial
662 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
663 * the following commands until 'endefcmd'.
664 * Inputs:
665 * argc argument count
666 * argv argument vector
667 * Returns:
668 * zero for success, a kdb diagnostic if error
669 */
670struct kdb_macro {
671 kdbtab_t cmd; /* Macro command */
672 struct list_head statements; /* Associated statement list */
673};
674
675struct kdb_macro_statement {
676 char *statement; /* Statement text */
677 struct list_head list_node; /* Statement list node */
678};
679
680static struct kdb_macro *kdb_macro;
681static bool defcmd_in_progress;
682
683/* Forward references */
684static int kdb_exec_defcmd(int argc, const char **argv);
685
686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
687{
688 struct kdb_macro_statement *kms;
689
690 if (!kdb_macro)
691 return KDB_NOTIMP;
692
693 if (strcmp(argv0, "endefcmd") == 0) {
694 defcmd_in_progress = false;
695 if (!list_empty(&kdb_macro->statements))
696 kdb_register(&kdb_macro->cmd);
697 return 0;
698 }
699
700 kms = kmalloc(sizeof(*kms), GFP_KDB);
701 if (!kms) {
702 kdb_printf("Could not allocate new kdb macro command: %s\n",
703 cmdstr);
704 return KDB_NOTIMP;
705 }
706
707 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
708 list_add_tail(&kms->list_node, &kdb_macro->statements);
709
710 return 0;
711}
712
713static int kdb_defcmd(int argc, const char **argv)
714{
715 kdbtab_t *mp;
716
717 if (defcmd_in_progress) {
718 kdb_printf("kdb: nested defcmd detected, assuming missing "
719 "endefcmd\n");
720 kdb_defcmd2("endefcmd", "endefcmd");
721 }
722 if (argc == 0) {
723 kdbtab_t *kp;
724 struct kdb_macro *kmp;
725 struct kdb_macro_statement *kms;
726
727 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
728 if (kp->func == kdb_exec_defcmd) {
729 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
730 kp->name, kp->usage, kp->help);
731 kmp = container_of(kp, struct kdb_macro, cmd);
732 list_for_each_entry(kms, &kmp->statements,
733 list_node)
734 kdb_printf("%s", kms->statement);
735 kdb_printf("endefcmd\n");
736 }
737 }
738 return 0;
739 }
740 if (argc != 3)
741 return KDB_ARGCOUNT;
742 if (in_dbg_master()) {
743 kdb_printf("Command only available during kdb_init()\n");
744 return KDB_NOTIMP;
745 }
746 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
747 if (!kdb_macro)
748 goto fail_defcmd;
749
750 mp = &kdb_macro->cmd;
751 mp->func = kdb_exec_defcmd;
752 mp->minlen = 0;
753 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
754 mp->name = kdb_strdup(argv[1], GFP_KDB);
755 if (!mp->name)
756 goto fail_name;
757 mp->usage = kdb_strdup(argv[2], GFP_KDB);
758 if (!mp->usage)
759 goto fail_usage;
760 mp->help = kdb_strdup(argv[3], GFP_KDB);
761 if (!mp->help)
762 goto fail_help;
763 if (mp->usage[0] == '"') {
764 strcpy(mp->usage, argv[2]+1);
765 mp->usage[strlen(mp->usage)-1] = '\0';
766 }
767 if (mp->help[0] == '"') {
768 strcpy(mp->help, argv[3]+1);
769 mp->help[strlen(mp->help)-1] = '\0';
770 }
771
772 INIT_LIST_HEAD(&kdb_macro->statements);
773 defcmd_in_progress = true;
774 return 0;
775fail_help:
776 kfree(mp->usage);
777fail_usage:
778 kfree(mp->name);
779fail_name:
780 kfree(kdb_macro);
781fail_defcmd:
782 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
783 return KDB_NOTIMP;
784}
785
786/*
787 * kdb_exec_defcmd - Execute the set of commands associated with this
788 * defcmd name.
789 * Inputs:
790 * argc argument count
791 * argv argument vector
792 * Returns:
793 * zero for success, a kdb diagnostic if error
794 */
795static int kdb_exec_defcmd(int argc, const char **argv)
796{
797 int ret;
798 kdbtab_t *kp;
799 struct kdb_macro *kmp;
800 struct kdb_macro_statement *kms;
801
802 if (argc != 0)
803 return KDB_ARGCOUNT;
804
805 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
806 if (strcmp(kp->name, argv[0]) == 0)
807 break;
808 }
809 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
810 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
811 argv[0]);
812 return KDB_NOTIMP;
813 }
814 kmp = container_of(kp, struct kdb_macro, cmd);
815 list_for_each_entry(kms, &kmp->statements, list_node) {
816 /*
817 * Recursive use of kdb_parse, do not use argv after this point.
818 */
819 argv = NULL;
820 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
821 ret = kdb_parse(kms->statement);
822 if (ret)
823 return ret;
824 }
825 return 0;
826}
827
828/* Command history */
829#define KDB_CMD_HISTORY_COUNT 32
830#define CMD_BUFLEN 200 /* kdb_printf: max printline
831 * size == 256 */
832static unsigned int cmd_head, cmd_tail;
833static unsigned int cmdptr;
834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
835static char cmd_cur[CMD_BUFLEN];
836
837/*
838 * The "str" argument may point to something like | grep xyz
839 */
840static void parse_grep(const char *str)
841{
842 int len;
843 char *cp = (char *)str, *cp2;
844
845 /* sanity check: we should have been called with the \ first */
846 if (*cp != '|')
847 return;
848 cp++;
849 while (isspace(*cp))
850 cp++;
851 if (!str_has_prefix(cp, "grep ")) {
852 kdb_printf("invalid 'pipe', see grephelp\n");
853 return;
854 }
855 cp += 5;
856 while (isspace(*cp))
857 cp++;
858 cp2 = strchr(cp, '\n');
859 if (cp2)
860 *cp2 = '\0'; /* remove the trailing newline */
861 len = strlen(cp);
862 if (len == 0) {
863 kdb_printf("invalid 'pipe', see grephelp\n");
864 return;
865 }
866 /* now cp points to a nonzero length search string */
867 if (*cp == '"') {
868 /* allow it be "x y z" by removing the "'s - there must
869 be two of them */
870 cp++;
871 cp2 = strchr(cp, '"');
872 if (!cp2) {
873 kdb_printf("invalid quoted string, see grephelp\n");
874 return;
875 }
876 *cp2 = '\0'; /* end the string where the 2nd " was */
877 }
878 kdb_grep_leading = 0;
879 if (*cp == '^') {
880 kdb_grep_leading = 1;
881 cp++;
882 }
883 len = strlen(cp);
884 kdb_grep_trailing = 0;
885 if (*(cp+len-1) == '$') {
886 kdb_grep_trailing = 1;
887 *(cp+len-1) = '\0';
888 }
889 len = strlen(cp);
890 if (!len)
891 return;
892 if (len >= KDB_GREP_STRLEN) {
893 kdb_printf("search string too long\n");
894 return;
895 }
896 strcpy(kdb_grep_string, cp);
897 kdb_grepping_flag++;
898 return;
899}
900
901/*
902 * kdb_parse - Parse the command line, search the command table for a
903 * matching command and invoke the command function. This
904 * function may be called recursively, if it is, the second call
905 * will overwrite argv and cbuf. It is the caller's
906 * responsibility to save their argv if they recursively call
907 * kdb_parse().
908 * Parameters:
909 * cmdstr The input command line to be parsed.
910 * regs The registers at the time kdb was entered.
911 * Returns:
912 * Zero for success, a kdb diagnostic if failure.
913 * Remarks:
914 * Limited to 20 tokens.
915 *
916 * Real rudimentary tokenization. Basically only whitespace
917 * is considered a token delimiter (but special consideration
918 * is taken of the '=' sign as used by the 'set' command).
919 *
920 * The algorithm used to tokenize the input string relies on
921 * there being at least one whitespace (or otherwise useless)
922 * character between tokens as the character immediately following
923 * the token is altered in-place to a null-byte to terminate the
924 * token string.
925 */
926
927#define MAXARGC 20
928
929int kdb_parse(const char *cmdstr)
930{
931 static char *argv[MAXARGC];
932 static int argc;
933 static char cbuf[CMD_BUFLEN+2];
934 char *cp;
935 char *cpp, quoted;
936 kdbtab_t *tp;
937 int escaped, ignore_errors = 0, check_grep = 0;
938
939 /*
940 * First tokenize the command string.
941 */
942 cp = (char *)cmdstr;
943
944 if (KDB_FLAG(CMD_INTERRUPT)) {
945 /* Previous command was interrupted, newline must not
946 * repeat the command */
947 KDB_FLAG_CLEAR(CMD_INTERRUPT);
948 KDB_STATE_SET(PAGER);
949 argc = 0; /* no repeat */
950 }
951
952 if (*cp != '\n' && *cp != '\0') {
953 argc = 0;
954 cpp = cbuf;
955 while (*cp) {
956 /* skip whitespace */
957 while (isspace(*cp))
958 cp++;
959 if ((*cp == '\0') || (*cp == '\n') ||
960 (*cp == '#' && !defcmd_in_progress))
961 break;
962 /* special case: check for | grep pattern */
963 if (*cp == '|') {
964 check_grep++;
965 break;
966 }
967 if (cpp >= cbuf + CMD_BUFLEN) {
968 kdb_printf("kdb_parse: command buffer "
969 "overflow, command ignored\n%s\n",
970 cmdstr);
971 return KDB_NOTFOUND;
972 }
973 if (argc >= MAXARGC - 1) {
974 kdb_printf("kdb_parse: too many arguments, "
975 "command ignored\n%s\n", cmdstr);
976 return KDB_NOTFOUND;
977 }
978 argv[argc++] = cpp;
979 escaped = 0;
980 quoted = '\0';
981 /* Copy to next unquoted and unescaped
982 * whitespace or '=' */
983 while (*cp && *cp != '\n' &&
984 (escaped || quoted || !isspace(*cp))) {
985 if (cpp >= cbuf + CMD_BUFLEN)
986 break;
987 if (escaped) {
988 escaped = 0;
989 *cpp++ = *cp++;
990 continue;
991 }
992 if (*cp == '\\') {
993 escaped = 1;
994 ++cp;
995 continue;
996 }
997 if (*cp == quoted)
998 quoted = '\0';
999 else if (*cp == '\'' || *cp == '"')
1000 quoted = *cp;
1001 *cpp = *cp++;
1002 if (*cpp == '=' && !quoted)
1003 break;
1004 ++cpp;
1005 }
1006 *cpp++ = '\0'; /* Squash a ws or '=' character */
1007 }
1008 }
1009 if (!argc)
1010 return 0;
1011 if (check_grep)
1012 parse_grep(cp);
1013 if (defcmd_in_progress) {
1014 int result = kdb_defcmd2(cmdstr, argv[0]);
1015 if (!defcmd_in_progress) {
1016 argc = 0; /* avoid repeat on endefcmd */
1017 *(argv[0]) = '\0';
1018 }
1019 return result;
1020 }
1021 if (argv[0][0] == '-' && argv[0][1] &&
1022 (argv[0][1] < '0' || argv[0][1] > '9')) {
1023 ignore_errors = 1;
1024 ++argv[0];
1025 }
1026
1027 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028 /*
1029 * If this command is allowed to be abbreviated,
1030 * check to see if this is it.
1031 */
1032 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034 break;
1035
1036 if (strcmp(argv[0], tp->name) == 0)
1037 break;
1038 }
1039
1040 /*
1041 * If we don't find a command by this name, see if the first
1042 * few characters of this match any of the known commands.
1043 * e.g., md1c20 should match md.
1044 */
1045 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048 break;
1049 }
1050 }
1051
1052 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198 kdb_check_for_lockdown();
1199
1200 kdb_go_count = 0;
1201 if (reason == KDB_REASON_DEBUG) {
1202 /* special case below */
1203 } else {
1204 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205 kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207 kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209 }
1210
1211 switch (reason) {
1212 case KDB_REASON_DEBUG:
1213 {
1214 /*
1215 * If re-entering kdb after a single step
1216 * command, don't print the message.
1217 */
1218 switch (db_result) {
1219 case KDB_DB_BPT:
1220 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221 kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223 kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226 instruction_pointer(regs));
1227 break;
1228 case KDB_DB_SS:
1229 break;
1230 case KDB_DB_SSBPT:
1231 KDB_DEBUG_STATE("kdb_local 4", reason);
1232 return 1; /* kdba_db_trap did the work */
1233 default:
1234 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235 db_result);
1236 break;
1237 }
1238
1239 }
1240 break;
1241 case KDB_REASON_ENTER:
1242 if (KDB_STATE(KEYBOARD))
1243 kdb_printf("due to Keyboard Entry\n");
1244 else
1245 kdb_printf("due to KDB_ENTER()\n");
1246 break;
1247 case KDB_REASON_KEYBOARD:
1248 KDB_STATE_SET(KEYBOARD);
1249 kdb_printf("due to Keyboard Entry\n");
1250 break;
1251 case KDB_REASON_ENTER_SLAVE:
1252 /* drop through, slaves only get released via cpu switch */
1253 case KDB_REASON_SWITCH:
1254 kdb_printf("due to cpu switch\n");
1255 break;
1256 case KDB_REASON_OOPS:
1257 kdb_printf("Oops: %s\n", kdb_diemsg);
1258 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 kdb_dumpregs(regs);
1261 break;
1262 case KDB_REASON_SYSTEM_NMI:
1263 kdb_printf("due to System NonMaskable Interrupt\n");
1264 break;
1265 case KDB_REASON_NMI:
1266 kdb_printf("due to NonMaskable Interrupt @ "
1267 kdb_machreg_fmt "\n",
1268 instruction_pointer(regs));
1269 break;
1270 case KDB_REASON_SSTEP:
1271 case KDB_REASON_BREAK:
1272 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273 reason == KDB_REASON_BREAK ?
1274 "Breakpoint" : "SS trap", instruction_pointer(regs));
1275 /*
1276 * Determine if this breakpoint is one that we
1277 * are interested in.
1278 */
1279 if (db_result != KDB_DB_BPT) {
1280 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281 db_result);
1282 KDB_DEBUG_STATE("kdb_local 6", reason);
1283 return 0; /* Not for us, dismiss it */
1284 }
1285 break;
1286 case KDB_REASON_RECURSE:
1287 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288 instruction_pointer(regs));
1289 break;
1290 default:
1291 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292 KDB_DEBUG_STATE("kdb_local 8", reason);
1293 return 0; /* Not for us, dismiss it */
1294 }
1295
1296 while (1) {
1297 /*
1298 * Initialize pager context.
1299 */
1300 kdb_nextline = 1;
1301 KDB_STATE_CLEAR(SUPPRESS);
1302 kdb_grepping_flag = 0;
1303 /* ensure the old search does not leak into '/' commands */
1304 kdb_grep_string[0] = '\0';
1305
1306 cmdbuf = cmd_cur;
1307 *cmdbuf = '\0';
1308 *(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311 /* PROMPT can only be set if we have MEM_READ permission. */
1312 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313 raw_smp_processor_id());
1314
1315 /*
1316 * Fetch command from keyboard
1317 */
1318 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319 if (*cmdbuf != '\n') {
1320 if (*cmdbuf < 32) {
1321 if (cmdptr == cmd_head) {
1322 strscpy(cmd_hist[cmd_head], cmd_cur,
1323 CMD_BUFLEN);
1324 *(cmd_hist[cmd_head] +
1325 strlen(cmd_hist[cmd_head])-1) = '\0';
1326 }
1327 if (!handle_ctrl_cmd(cmdbuf))
1328 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329 cmdbuf = cmd_cur;
1330 goto do_full_getstr;
1331 } else {
1332 strscpy(cmd_hist[cmd_head], cmd_cur,
1333 CMD_BUFLEN);
1334 }
1335
1336 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337 if (cmd_head == cmd_tail)
1338 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339 }
1340
1341 cmdptr = cmd_head;
1342 diag = kdb_parse(cmdbuf);
1343 if (diag == KDB_NOTFOUND) {
1344 drop_newline(cmdbuf);
1345 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346 diag = 0;
1347 }
1348 if (diag == KDB_CMD_GO
1349 || diag == KDB_CMD_CPU
1350 || diag == KDB_CMD_SS
1351 || diag == KDB_CMD_KGDB)
1352 break;
1353
1354 if (diag)
1355 kdb_cmderror(diag);
1356 }
1357 KDB_DEBUG_STATE("kdb_local 9", diag);
1358 return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 * for debugging.
1365 * Inputs:
1366 * text Identifies the debug point
1367 * value Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373 kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 * controlling cpu, all cpus are in this loop. One cpu is in
1379 * control and will issue the kdb prompt, the others will spin
1380 * until 'go' or cpu switch.
1381 *
1382 * To get a consistent view of the kernel stacks for all
1383 * processes, this routine is invoked from the main kdb code via
1384 * an architecture specific routine. kdba_main_loop is
1385 * responsible for making the kernel stacks consistent for all
1386 * processes, there should be no difference between a blocked
1387 * process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 * reason The reason KDB was invoked
1390 * error The hardware-defined error code
1391 * reason2 kdb's current reason code.
1392 * Initially error but can change
1393 * according to kdb state.
1394 * db_result Result code from break or debug point.
1395 * regs The exception frame at time of fault/breakpoint.
1396 * should always be valid.
1397 * Returns:
1398 * 0 KDB was invoked for an event which it wasn't responsible
1399 * 1 KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402 kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404 int result = 1;
1405 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1406 while (1) {
1407 /*
1408 * All processors except the one that is in control
1409 * will spin here.
1410 */
1411 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412 while (KDB_STATE(HOLD_CPU)) {
1413 /* state KDB is turned off by kdb_cpu to see if the
1414 * other cpus are still live, each cpu in this loop
1415 * turns it back on.
1416 */
1417 if (!KDB_STATE(KDB))
1418 KDB_STATE_SET(KDB);
1419 }
1420
1421 KDB_STATE_CLEAR(SUPPRESS);
1422 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423 if (KDB_STATE(LEAVING))
1424 break; /* Another cpu said 'go' */
1425 /* Still using kdb, this processor is in control */
1426 result = kdb_local(reason2, error, regs, db_result);
1427 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429 if (result == KDB_CMD_CPU)
1430 break;
1431
1432 if (result == KDB_CMD_SS) {
1433 KDB_STATE_SET(DOING_SS);
1434 break;
1435 }
1436
1437 if (result == KDB_CMD_KGDB) {
1438 if (!KDB_STATE(DOING_KGDB))
1439 kdb_printf("Entering please attach debugger "
1440 "or use $D#44+ or $3#33\n");
1441 break;
1442 }
1443 if (result && result != 1 && result != KDB_CMD_GO)
1444 kdb_printf("\nUnexpected kdb_local return code %d\n",
1445 result);
1446 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447 break;
1448 }
1449 if (KDB_STATE(DOING_SS))
1450 KDB_STATE_CLEAR(SSBPT);
1451
1452 /* Clean up any keyboard devices before leaving */
1453 kdb_kbd_cleanup_state();
1454
1455 return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 * mdr <addr arg>,<byte count>
1462 * Inputs:
1463 * addr Start address
1464 * count Number of bytes
1465 * Returns:
1466 * Always 0. Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470 unsigned char c;
1471 while (count--) {
1472 if (kdb_getarea(c, addr))
1473 return 0;
1474 kdb_printf("%02x", c);
1475 addr++;
1476 }
1477 kdb_printf("\n");
1478 return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 * 'md8' 'mdr' and 'mds' commands.
1484 *
1485 * md|mds [<addr arg> [<line count> [<radix>]]]
1486 * mdWcN [<addr arg> [<line count> [<radix>]]]
1487 * where W = is the width (1, 2, 4 or 8) and N is the count.
1488 * for eg., md1c20 reads 20 bytes, 1 at a time.
1489 * mdr <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492 int symbolic, int nosect, int bytesperword,
1493 int num, int repeat, int phys)
1494{
1495 /* print just one line of data */
1496 kdb_symtab_t symtab;
1497 char cbuf[32];
1498 char *c = cbuf;
1499 int i;
1500 int j;
1501 unsigned long word;
1502
1503 memset(cbuf, '\0', sizeof(cbuf));
1504 if (phys)
1505 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506 else
1507 kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509 for (i = 0; i < num && repeat--; i++) {
1510 if (phys) {
1511 if (kdb_getphysword(&word, addr, bytesperword))
1512 break;
1513 } else if (kdb_getword(&word, addr, bytesperword))
1514 break;
1515 kdb_printf(fmtstr, word);
1516 if (symbolic)
1517 kdbnearsym(word, &symtab);
1518 else
1519 memset(&symtab, 0, sizeof(symtab));
1520 if (symtab.sym_name) {
1521 kdb_symbol_print(word, &symtab, 0);
1522 if (!nosect) {
1523 kdb_printf("\n");
1524 kdb_printf(" %s %s "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt " "
1527 kdb_machreg_fmt, symtab.mod_name,
1528 symtab.sec_name, symtab.sec_start,
1529 symtab.sym_start, symtab.sym_end);
1530 }
1531 addr += bytesperword;
1532 } else {
1533 union {
1534 u64 word;
1535 unsigned char c[8];
1536 } wc;
1537 unsigned char *cp;
1538#ifdef __BIG_ENDIAN
1539 cp = wc.c + 8 - bytesperword;
1540#else
1541 cp = wc.c;
1542#endif
1543 wc.word = word;
1544#define printable_char(c) \
1545 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546 for (j = 0; j < bytesperword; j++)
1547 *c++ = printable_char(*cp++);
1548 addr += bytesperword;
1549#undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569 int raw = 0;
1570
1571 kdbgetintenv("MDCOUNT", &mdcount);
1572 kdbgetintenv("RADIX", &radix);
1573 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575 /* Assume 'md <addr>' and start with environment values */
1576 repeat = mdcount * 16 / bytesperword;
1577
1578 if (strcmp(argv[0], "mdr") == 0) {
1579 if (argc == 2 || (argc == 0 && last_addr != 0))
1580 valid = raw = 1;
1581 else
1582 return KDB_ARGCOUNT;
1583 } else if (isdigit(argv[0][2])) {
1584 bytesperword = (int)(argv[0][2] - '0');
1585 if (bytesperword == 0) {
1586 bytesperword = last_bytesperword;
1587 if (bytesperword == 0)
1588 bytesperword = 4;
1589 }
1590 last_bytesperword = bytesperword;
1591 repeat = mdcount * 16 / bytesperword;
1592 if (!argv[0][3])
1593 valid = 1;
1594 else if (argv[0][3] == 'c' && argv[0][4]) {
1595 if (kstrtouint(argv[0] + 4, 10, &repeat))
1596 return KDB_BADINT;
1597 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 valid = 1;
1599 }
1600 last_repeat = repeat;
1601 } else if (strcmp(argv[0], "md") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mds") == 0)
1604 valid = 1;
1605 else if (strcmp(argv[0], "mdp") == 0) {
1606 phys = valid = 1;
1607 }
1608 if (!valid)
1609 return KDB_NOTFOUND;
1610
1611 if (argc == 0) {
1612 if (last_addr == 0)
1613 return KDB_ARGCOUNT;
1614 addr = last_addr;
1615 radix = last_radix;
1616 bytesperword = last_bytesperword;
1617 repeat = last_repeat;
1618 if (raw)
1619 mdcount = repeat;
1620 else
1621 mdcount = ((repeat * bytesperword) + 15) / 16;
1622 }
1623
1624 if (argc) {
1625 unsigned long val;
1626 int diag, nextarg = 1;
1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628 &offset, NULL);
1629 if (diag)
1630 return diag;
1631 if (argc > nextarg+2)
1632 return KDB_ARGCOUNT;
1633
1634 if (argc >= nextarg) {
1635 diag = kdbgetularg(argv[nextarg], &val);
1636 if (!diag) {
1637 mdcount = (int) val;
1638 if (raw)
1639 repeat = mdcount;
1640 else
1641 repeat = mdcount * 16 / bytesperword;
1642 }
1643 }
1644 if (argc >= nextarg+1) {
1645 diag = kdbgetularg(argv[nextarg+1], &val);
1646 if (!diag)
1647 radix = (int) val;
1648 }
1649 }
1650
1651 if (strcmp(argv[0], "mdr") == 0) {
1652 int ret;
1653 last_addr = addr;
1654 ret = kdb_mdr(addr, mdcount);
1655 last_addr += mdcount;
1656 last_repeat = mdcount;
1657 last_bytesperword = bytesperword; // to make REPEAT happy
1658 return ret;
1659 }
1660
1661 switch (radix) {
1662 case 10:
1663 fmtchar = 'd';
1664 break;
1665 case 16:
1666 fmtchar = 'x';
1667 break;
1668 case 8:
1669 fmtchar = 'o';
1670 break;
1671 default:
1672 return KDB_BADRADIX;
1673 }
1674
1675 last_radix = radix;
1676
1677 if (bytesperword > KDB_WORD_SIZE)
1678 return KDB_BADWIDTH;
1679
1680 switch (bytesperword) {
1681 case 8:
1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683 break;
1684 case 4:
1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686 break;
1687 case 2:
1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689 break;
1690 case 1:
1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692 break;
1693 default:
1694 return KDB_BADWIDTH;
1695 }
1696
1697 last_repeat = repeat;
1698 last_bytesperword = bytesperword;
1699
1700 if (strcmp(argv[0], "mds") == 0) {
1701 symbolic = 1;
1702 /* Do not save these changes as last_*, they are temporary mds
1703 * overrides.
1704 */
1705 bytesperword = KDB_WORD_SIZE;
1706 repeat = mdcount;
1707 kdbgetintenv("NOSECT", &nosect);
1708 }
1709
1710 /* Round address down modulo BYTESPERWORD */
1711
1712 addr &= ~(bytesperword-1);
1713
1714 while (repeat > 0) {
1715 unsigned long a;
1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718 if (KDB_FLAG(CMD_INTERRUPT))
1719 return 0;
1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721 if (phys) {
1722 if (kdb_getphysword(&word, a, bytesperword)
1723 || word)
1724 break;
1725 } else if (kdb_getword(&word, a, bytesperword) || word)
1726 break;
1727 }
1728 n = min(num, repeat);
1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730 num, repeat, phys);
1731 addr += bytesperword * n;
1732 repeat -= n;
1733 z = (z + num - 1) / num;
1734 if (z > 2) {
1735 int s = num * (z-2);
1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737 " zero suppressed\n",
1738 addr, addr + bytesperword * s - 1);
1739 addr += bytesperword * s;
1740 repeat -= s;
1741 }
1742 }
1743 last_addr = addr;
1744
1745 return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 * mm address-expression new-value
1751 * Remarks:
1752 * mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756 int diag;
1757 unsigned long addr;
1758 long offset = 0;
1759 unsigned long contents;
1760 int nextarg;
1761 int width;
1762
1763 if (argv[0][2] && !isdigit(argv[0][2]))
1764 return KDB_NOTFOUND;
1765
1766 if (argc < 2)
1767 return KDB_ARGCOUNT;
1768
1769 nextarg = 1;
1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771 if (diag)
1772 return diag;
1773
1774 if (nextarg > argc)
1775 return KDB_ARGCOUNT;
1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777 if (diag)
1778 return diag;
1779
1780 if (nextarg != argc + 1)
1781 return KDB_ARGCOUNT;
1782
1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784 diag = kdb_putword(addr, contents, width);
1785 if (diag)
1786 return diag;
1787
1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790 return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 * go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799 unsigned long addr;
1800 int diag;
1801 int nextarg;
1802 long offset;
1803
1804 if (raw_smp_processor_id() != kdb_initial_cpu) {
1805 kdb_printf("go must execute on the entry cpu, "
1806 "please use \"cpu %d\" and then execute go\n",
1807 kdb_initial_cpu);
1808 return KDB_BADCPUNUM;
1809 }
1810 if (argc == 1) {
1811 nextarg = 1;
1812 diag = kdbgetaddrarg(argc, argv, &nextarg,
1813 &addr, &offset, NULL);
1814 if (diag)
1815 return diag;
1816 } else if (argc) {
1817 return KDB_ARGCOUNT;
1818 }
1819
1820 diag = KDB_CMD_GO;
1821 if (KDB_FLAG(CATASTROPHIC)) {
1822 kdb_printf("Catastrophic error detected\n");
1823 kdb_printf("kdb_continue_catastrophic=%d, ",
1824 kdb_continue_catastrophic);
1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826 kdb_printf("type go a second time if you really want "
1827 "to continue\n");
1828 return 0;
1829 }
1830 if (kdb_continue_catastrophic == 2) {
1831 kdb_printf("forcing reboot\n");
1832 kdb_reboot(0, NULL);
1833 }
1834 kdb_printf("attempting to continue\n");
1835 }
1836 return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844 int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846 int i;
1847 char *rname;
1848 int rsize;
1849 u64 reg64;
1850 u32 reg32;
1851 u16 reg16;
1852 u8 reg8;
1853
1854 if (len)
1855 return len;
1856
1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858 rsize = dbg_reg_def[i].size * 2;
1859 if (rsize > 16)
1860 rsize = 2;
1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862 len = 0;
1863 kdb_printf("\n");
1864 }
1865 if (len)
1866 len += kdb_printf(" ");
1867 switch(dbg_reg_def[i].size * 8) {
1868 case 8:
1869 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %02x", rname, reg8);
1873 break;
1874 case 16:
1875 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1876 if (!rname)
1877 break;
1878 len += kdb_printf("%s: %04x", rname, reg16);
1879 break;
1880 case 32:
1881 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1882 if (!rname)
1883 break;
1884 len += kdb_printf("%s: %08x", rname, reg32);
1885 break;
1886 case 64:
1887 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1888 if (!rname)
1889 break;
1890 len += kdb_printf("%s: %016llx", rname, reg64);
1891 break;
1892 default:
1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894 }
1895 }
1896 kdb_printf("\n");
1897#else
1898 if (len)
1899 return len;
1900
1901 kdb_dumpregs(kdb_current_regs);
1902#endif
1903 return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify) command.
1908 * rm register-name new-contents
1909 * Remarks:
1910 * Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915 int diag;
1916 const char *rname;
1917 int i;
1918 u64 reg64;
1919 u32 reg32;
1920 u16 reg16;
1921 u8 reg8;
1922
1923 if (argc != 2)
1924 return KDB_ARGCOUNT;
1925 /*
1926 * Allow presence or absence of leading '%' symbol.
1927 */
1928 rname = argv[1];
1929 if (*rname == '%')
1930 rname++;
1931
1932 diag = kdbgetu64arg(argv[2], ®64);
1933 if (diag)
1934 return diag;
1935
1936 diag = kdb_check_regs();
1937 if (diag)
1938 return diag;
1939
1940 diag = KDB_BADREG;
1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943 diag = 0;
1944 break;
1945 }
1946 }
1947 if (!diag) {
1948 switch(dbg_reg_def[i].size * 8) {
1949 case 8:
1950 reg8 = reg64;
1951 dbg_set_reg(i, ®8, kdb_current_regs);
1952 break;
1953 case 16:
1954 reg16 = reg64;
1955 dbg_set_reg(i, ®16, kdb_current_regs);
1956 break;
1957 case 32:
1958 reg32 = reg64;
1959 dbg_set_reg(i, ®32, kdb_current_regs);
1960 break;
1961 case 64:
1962 dbg_set_reg(i, ®64, kdb_current_regs);
1963 break;
1964 }
1965 }
1966 return diag;
1967#else
1968 kdb_printf("ERROR: Register set currently not implemented\n");
1969 return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 * sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981 bool check_mask =
1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984 if (argc != 1)
1985 return KDB_ARGCOUNT;
1986
1987 kdb_trap_printk++;
1988 __handle_sysrq(*argv[1], check_mask);
1989 kdb_trap_printk--;
1990
1991 return 0;
1992}
1993#endif /* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 * frame) command. This command takes an address and expects to
1998 * find an exception frame at that address, formats and prints
1999 * it.
2000 * regs address-expression
2001 * Remarks:
2002 * Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006 int diag;
2007 unsigned long addr;
2008 long offset;
2009 int nextarg;
2010
2011 if (argc != 1)
2012 return KDB_ARGCOUNT;
2013
2014 nextarg = 1;
2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016 if (diag)
2017 return diag;
2018 show_regs((struct pt_regs *)addr);
2019 return 0;
2020}
2021
2022/*
2023 * kdb_env - This function implements the 'env' command. Display the
2024 * current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029 kdb_printenv();
2030
2031 if (KDB_DEBUG(MASK))
2032 kdb_printf("KDBDEBUG=0x%x\n",
2033 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035 return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 * the contents of the syslog buffer.
2042 * dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046 int diag;
2047 int logging;
2048 int lines = 0;
2049 int adjust = 0;
2050 int n = 0;
2051 int skip = 0;
2052 struct kmsg_dump_iter iter;
2053 size_t len;
2054 char buf[201];
2055
2056 if (argc > 2)
2057 return KDB_ARGCOUNT;
2058 if (argc) {
2059 if (kstrtoint(argv[1], 0, &lines))
2060 lines = 0;
2061 if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062 adjust = 0;
2063 }
2064
2065 /* disable LOGGING if set */
2066 diag = kdbgetintenv("LOGGING", &logging);
2067 if (!diag && logging) {
2068 const char *setargs[] = { "set", "LOGGING", "0" };
2069 kdb_set(2, setargs);
2070 }
2071
2072 kmsg_dump_rewind(&iter);
2073 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074 n++;
2075
2076 if (lines < 0) {
2077 if (adjust >= n)
2078 kdb_printf("buffer only contains %d lines, nothing "
2079 "printed\n", n);
2080 else if (adjust - lines >= n)
2081 kdb_printf("buffer only contains %d lines, last %d "
2082 "lines printed\n", n, n - adjust);
2083 skip = adjust;
2084 lines = abs(lines);
2085 } else if (lines > 0) {
2086 skip = n - lines - adjust;
2087 lines = abs(lines);
2088 if (adjust >= n) {
2089 kdb_printf("buffer only contains %d lines, "
2090 "nothing printed\n", n);
2091 skip = n;
2092 } else if (skip < 0) {
2093 lines += skip;
2094 skip = 0;
2095 kdb_printf("buffer only contains %d lines, first "
2096 "%d lines printed\n", n, lines);
2097 }
2098 } else {
2099 lines = n;
2100 }
2101
2102 if (skip >= n || skip < 0)
2103 return 0;
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107 if (skip) {
2108 skip--;
2109 continue;
2110 }
2111 if (!lines--)
2112 break;
2113 if (KDB_FLAG(CMD_INTERRUPT))
2114 return 0;
2115
2116 kdb_printf("%.*s\n", (int)len - 1, buf);
2117 }
2118
2119 return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128 if (atomic_read(&kdb_nmi_disabled))
2129 return 0;
2130 atomic_set(&kdb_nmi_disabled, 1);
2131 arch_kgdb_ops.enable_nmi(0);
2132 return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138 return -EINVAL;
2139 arch_kgdb_ops.enable_nmi(1);
2140 return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144 .set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 * cpu [<cpunum>]
2151 * Returns:
2152 * KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156 int i, start_cpu, first_print = 1;
2157 char state, prev_state = '?';
2158
2159 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160 kdb_printf("Available cpus: ");
2161 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162 if (!cpu_online(i)) {
2163 state = 'F'; /* cpu is offline */
2164 } else if (!kgdb_info[i].enter_kgdb) {
2165 state = 'D'; /* cpu is online but unresponsive */
2166 } else {
2167 state = ' '; /* cpu is responding to kdb */
2168 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169 state = '-'; /* idle task */
2170 }
2171 if (state != prev_state) {
2172 if (prev_state != '?') {
2173 if (!first_print)
2174 kdb_printf(", ");
2175 first_print = 0;
2176 kdb_printf("%d", start_cpu);
2177 if (start_cpu < i-1)
2178 kdb_printf("-%d", i-1);
2179 if (prev_state != ' ')
2180 kdb_printf("(%c)", prev_state);
2181 }
2182 prev_state = state;
2183 start_cpu = i;
2184 }
2185 }
2186 /* print the trailing cpus, ignoring them if they are all offline */
2187 if (prev_state != 'F') {
2188 if (!first_print)
2189 kdb_printf(", ");
2190 kdb_printf("%d", start_cpu);
2191 if (start_cpu < i-1)
2192 kdb_printf("-%d", i-1);
2193 if (prev_state != ' ')
2194 kdb_printf("(%c)", prev_state);
2195 }
2196 kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201 unsigned long cpunum;
2202 int diag;
2203
2204 if (argc == 0) {
2205 kdb_cpu_status();
2206 return 0;
2207 }
2208
2209 if (argc != 1)
2210 return KDB_ARGCOUNT;
2211
2212 diag = kdbgetularg(argv[1], &cpunum);
2213 if (diag)
2214 return diag;
2215
2216 /*
2217 * Validate cpunum
2218 */
2219 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220 return KDB_BADCPUNUM;
2221
2222 dbg_switch_cpu = cpunum;
2223
2224 /*
2225 * Switch to other cpu
2226 */
2227 return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235 int idle = 0, daemon = 0;
2236 unsigned long cpu;
2237 const struct task_struct *p, *g;
2238 for_each_online_cpu(cpu) {
2239 p = curr_task(cpu);
2240 if (kdb_task_state(p, "-"))
2241 ++idle;
2242 }
2243 for_each_process_thread(g, p) {
2244 if (kdb_task_state(p, "ims"))
2245 ++daemon;
2246 }
2247 if (idle || daemon) {
2248 if (idle)
2249 kdb_printf("%d idle process%s (state -)%s\n",
2250 idle, idle == 1 ? "" : "es",
2251 daemon ? " and " : "");
2252 if (daemon)
2253 kdb_printf("%d sleeping system daemon (state [ims]) "
2254 "process%s", daemon,
2255 daemon == 1 ? "" : "es");
2256 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257 }
2258}
2259
2260void kdb_ps1(const struct task_struct *p)
2261{
2262 int cpu;
2263 unsigned long tmp;
2264
2265 if (!p ||
2266 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%px)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 * list of the active processes.
2291 *
2292 * ps [<state_chars>] Show processes, optionally selecting only those whose
2293 * state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297 struct task_struct *g, *p;
2298 const char *mask;
2299 unsigned long cpu;
2300
2301 if (argc == 0)
2302 kdb_ps_suppressed();
2303 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2304 (int)(2*sizeof(void *))+2, "Task Addr",
2305 (int)(2*sizeof(void *))+2, "Thread");
2306 mask = argc ? argv[1] : kdbgetenv("PS");
2307 /* Run the active tasks first */
2308 for_each_online_cpu(cpu) {
2309 if (KDB_FLAG(CMD_INTERRUPT))
2310 return 0;
2311 p = curr_task(cpu);
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 }
2315 kdb_printf("\n");
2316 /* Now the real tasks */
2317 for_each_process_thread(g, p) {
2318 if (KDB_FLAG(CMD_INTERRUPT))
2319 return 0;
2320 if (kdb_task_state(p, mask))
2321 kdb_ps1(p);
2322 }
2323
2324 return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 * the currently active process.
2330 * pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334 struct task_struct *p;
2335 unsigned long val;
2336 int diag;
2337
2338 if (argc > 1)
2339 return KDB_ARGCOUNT;
2340
2341 if (argc) {
2342 if (strcmp(argv[1], "R") == 0) {
2343 p = KDB_TSK(kdb_initial_cpu);
2344 } else {
2345 diag = kdbgetularg(argv[1], &val);
2346 if (diag)
2347 return KDB_BADINT;
2348
2349 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2350 if (!p) {
2351 kdb_printf("No task with pid=%d\n", (pid_t)val);
2352 return 0;
2353 }
2354 }
2355 kdb_set_current_task(p);
2356 }
2357 kdb_printf("KDB current process is %s(pid=%d)\n",
2358 kdb_current_task->comm,
2359 kdb_current_task->pid);
2360
2361 return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366 return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374 kdbtab_t *kt;
2375
2376 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377 kdb_printf("-----------------------------"
2378 "-----------------------------\n");
2379 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380 char *space = "";
2381 if (KDB_FLAG(CMD_INTERRUPT))
2382 return 0;
2383 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384 continue;
2385 if (strlen(kt->usage) > 20)
2386 space = "\n ";
2387 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388 kt->usage, space, kt->help);
2389 }
2390 return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398 long sig, pid;
2399 struct task_struct *p;
2400
2401 if (argc != 2)
2402 return KDB_ARGCOUNT;
2403
2404 if (kstrtol(argv[1], 0, &sig))
2405 return KDB_BADINT;
2406 if ((sig >= 0) || !valid_signal(-sig)) {
2407 kdb_printf("Invalid signal parameter.<-signal>\n");
2408 return 0;
2409 }
2410 sig = -sig;
2411
2412 if (kstrtol(argv[2], 0, &pid))
2413 return KDB_BADINT;
2414 if (pid <= 0) {
2415 kdb_printf("Process ID must be large than 0.\n");
2416 return 0;
2417 }
2418
2419 /* Find the process. */
2420 p = find_task_by_pid_ns(pid, &init_pid_ns);
2421 if (!p) {
2422 kdb_printf("The specified process isn't found.\n");
2423 return 0;
2424 }
2425 p = p->group_leader;
2426 kdb_send_sig(p, sig);
2427 return 0;
2428}
2429
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437 u64 uptime = ktime_get_mono_fast_ns();
2438
2439 memset(val, 0, sizeof(*val));
2440 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441 val->loads[0] = avenrun[0];
2442 val->loads[1] = avenrun[1];
2443 val->loads[2] = avenrun[2];
2444 val->procs = nr_threads-1;
2445 si_meminfo(val);
2446
2447 return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455 time64_t now;
2456 struct sysinfo val;
2457
2458 if (argc)
2459 return KDB_ARGCOUNT;
2460
2461 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2462 kdb_printf("release %s\n", init_uts_ns.name.release);
2463 kdb_printf("version %s\n", init_uts_ns.name.version);
2464 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2465 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2466 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2467
2468 now = __ktime_get_real_seconds();
2469 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2470 kdb_sysinfo(&val);
2471 kdb_printf("uptime ");
2472 if (val.uptime > (24*60*60)) {
2473 int days = val.uptime / (24*60*60);
2474 val.uptime %= (24*60*60);
2475 kdb_printf("%d day%s ", days, str_plural(days));
2476 }
2477 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
2479 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
2484 /* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2487 "Buffers: %8lu kB\n",
2488 K(val.totalram), K(val.freeram), K(val.bufferram));
2489 return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497 char fmtstr[64];
2498 int cpu, diag, nextarg = 1;
2499 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501 if (argc < 1 || argc > 3)
2502 return KDB_ARGCOUNT;
2503
2504 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505 if (diag)
2506 return diag;
2507
2508 if (argc >= 2) {
2509 diag = kdbgetularg(argv[2], &bytesperword);
2510 if (diag)
2511 return diag;
2512 }
2513 if (!bytesperword)
2514 bytesperword = KDB_WORD_SIZE;
2515 else if (bytesperword > KDB_WORD_SIZE)
2516 return KDB_BADWIDTH;
2517 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518 if (argc >= 3) {
2519 diag = kdbgetularg(argv[3], &whichcpu);
2520 if (diag)
2521 return diag;
2522 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523 kdb_printf("cpu %ld is not online\n", whichcpu);
2524 return KDB_BADCPUNUM;
2525 }
2526 }
2527
2528 /* Most architectures use __per_cpu_offset[cpu], some use
2529 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530 */
2531#ifdef __per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540 for_each_online_cpu(cpu) {
2541 if (KDB_FLAG(CMD_INTERRUPT))
2542 return 0;
2543
2544 if (whichcpu != ~0UL && whichcpu != cpu)
2545 continue;
2546 addr = symaddr + KDB_PCU(cpu);
2547 diag = kdb_getword(&val, addr, bytesperword);
2548 if (diag) {
2549 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550 "read, diag=%d\n", cpu, addr, diag);
2551 continue;
2552 }
2553 kdb_printf("%5d ", cpu);
2554 kdb_md_line(fmtstr, addr,
2555 bytesperword == KDB_WORD_SIZE,
2556 1, bytesperword, 1, 1, 0);
2557 }
2558#undef KDB_PCU
2559 return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567 kdb_printf("Usage of cmd args | grep pattern:\n");
2568 kdb_printf(" Any command's output may be filtered through an ");
2569 kdb_printf("emulated 'pipe'.\n");
2570 kdb_printf(" 'grep' is just a key word.\n");
2571 kdb_printf(" The pattern may include a very limited set of "
2572 "metacharacters:\n");
2573 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2574 kdb_printf(" And if there are spaces in the pattern, you may "
2575 "quote it:\n");
2576 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577 " or \"^pat tern$\"\n");
2578 return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 * command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
2588 */
2589int kdb_register(kdbtab_t *cmd)
2590{
2591 kdbtab_t *kp;
2592
2593 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594 if (strcmp(kp->name, cmd->name) == 0) {
2595 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596 cmd->name, cmd->func, cmd->help);
2597 return 1;
2598 }
2599 }
2600
2601 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2602 return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 * table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
2613{
2614 while (len--) {
2615 list_add_tail(&kp->list_node, &kdb_cmds_head);
2616 kp++;
2617 }
2618}
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 * command. It is generally called when a module which
2623 * implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628 list_del(&cmd->list_node);
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633 { .name = "md",
2634 .func = kdb_md,
2635 .usage = "<vaddr>",
2636 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637 .minlen = 1,
2638 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639 },
2640 { .name = "mdr",
2641 .func = kdb_md,
2642 .usage = "<vaddr> <bytes>",
2643 .help = "Display Raw Memory",
2644 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645 },
2646 { .name = "mdp",
2647 .func = kdb_md,
2648 .usage = "<paddr> <bytes>",
2649 .help = "Display Physical Memory",
2650 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651 },
2652 { .name = "mds",
2653 .func = kdb_md,
2654 .usage = "<vaddr>",
2655 .help = "Display Memory Symbolically",
2656 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657 },
2658 { .name = "mm",
2659 .func = kdb_mm,
2660 .usage = "<vaddr> <contents>",
2661 .help = "Modify Memory Contents",
2662 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663 },
2664 { .name = "go",
2665 .func = kdb_go,
2666 .usage = "[<vaddr>]",
2667 .help = "Continue Execution",
2668 .minlen = 1,
2669 .flags = KDB_ENABLE_REG_WRITE |
2670 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671 },
2672 { .name = "rd",
2673 .func = kdb_rd,
2674 .usage = "",
2675 .help = "Display Registers",
2676 .flags = KDB_ENABLE_REG_READ,
2677 },
2678 { .name = "rm",
2679 .func = kdb_rm,
2680 .usage = "<reg> <contents>",
2681 .help = "Modify Registers",
2682 .flags = KDB_ENABLE_REG_WRITE,
2683 },
2684 { .name = "ef",
2685 .func = kdb_ef,
2686 .usage = "<vaddr>",
2687 .help = "Display exception frame",
2688 .flags = KDB_ENABLE_MEM_READ,
2689 },
2690 { .name = "bt",
2691 .func = kdb_bt,
2692 .usage = "[<vaddr>]",
2693 .help = "Stack traceback",
2694 .minlen = 1,
2695 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696 },
2697 { .name = "btp",
2698 .func = kdb_bt,
2699 .usage = "<pid>",
2700 .help = "Display stack for process <pid>",
2701 .flags = KDB_ENABLE_INSPECT,
2702 },
2703 { .name = "bta",
2704 .func = kdb_bt,
2705 .usage = "[<state_chars>|A]",
2706 .help = "Backtrace all processes whose state matches",
2707 .flags = KDB_ENABLE_INSPECT,
2708 },
2709 { .name = "btc",
2710 .func = kdb_bt,
2711 .usage = "",
2712 .help = "Backtrace current process on each cpu",
2713 .flags = KDB_ENABLE_INSPECT,
2714 },
2715 { .name = "btt",
2716 .func = kdb_bt,
2717 .usage = "<vaddr>",
2718 .help = "Backtrace process given its struct task address",
2719 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720 },
2721 { .name = "env",
2722 .func = kdb_env,
2723 .usage = "",
2724 .help = "Show environment variables",
2725 .flags = KDB_ENABLE_ALWAYS_SAFE,
2726 },
2727 { .name = "set",
2728 .func = kdb_set,
2729 .usage = "",
2730 .help = "Set environment variables",
2731 .flags = KDB_ENABLE_ALWAYS_SAFE,
2732 },
2733 { .name = "help",
2734 .func = kdb_help,
2735 .usage = "",
2736 .help = "Display Help Message",
2737 .minlen = 1,
2738 .flags = KDB_ENABLE_ALWAYS_SAFE,
2739 },
2740 { .name = "?",
2741 .func = kdb_help,
2742 .usage = "",
2743 .help = "Display Help Message",
2744 .flags = KDB_ENABLE_ALWAYS_SAFE,
2745 },
2746 { .name = "cpu",
2747 .func = kdb_cpu,
2748 .usage = "<cpunum>",
2749 .help = "Switch to new cpu",
2750 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751 },
2752 { .name = "kgdb",
2753 .func = kdb_kgdb,
2754 .usage = "",
2755 .help = "Enter kgdb mode",
2756 .flags = 0,
2757 },
2758 { .name = "ps",
2759 .func = kdb_ps,
2760 .usage = "[<state_chars>|A]",
2761 .help = "Display active task list",
2762 .flags = KDB_ENABLE_INSPECT,
2763 },
2764 { .name = "pid",
2765 .func = kdb_pid,
2766 .usage = "<pidnum>",
2767 .help = "Switch to another task",
2768 .flags = KDB_ENABLE_INSPECT,
2769 },
2770 { .name = "reboot",
2771 .func = kdb_reboot,
2772 .usage = "",
2773 .help = "Reboot the machine immediately",
2774 .flags = KDB_ENABLE_REBOOT,
2775 },
2776#if defined(CONFIG_MODULES)
2777 { .name = "lsmod",
2778 .func = kdb_lsmod,
2779 .usage = "",
2780 .help = "List loaded kernel modules",
2781 .flags = KDB_ENABLE_INSPECT,
2782 },
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785 { .name = "sr",
2786 .func = kdb_sr,
2787 .usage = "<key>",
2788 .help = "Magic SysRq key",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791#endif
2792#if defined(CONFIG_PRINTK)
2793 { .name = "dmesg",
2794 .func = kdb_dmesg,
2795 .usage = "[lines]",
2796 .help = "Display syslog buffer",
2797 .flags = KDB_ENABLE_ALWAYS_SAFE,
2798 },
2799#endif
2800 { .name = "defcmd",
2801 .func = kdb_defcmd,
2802 .usage = "name \"usage\" \"help\"",
2803 .help = "Define a set of commands, down to endefcmd",
2804 /*
2805 * Macros are always safe because when executed each
2806 * internal command re-enters kdb_parse() and is safety
2807 * checked individually.
2808 */
2809 .flags = KDB_ENABLE_ALWAYS_SAFE,
2810 },
2811 { .name = "kill",
2812 .func = kdb_kill,
2813 .usage = "<-signal> <pid>",
2814 .help = "Send a signal to a process",
2815 .flags = KDB_ENABLE_SIGNAL,
2816 },
2817 { .name = "summary",
2818 .func = kdb_summary,
2819 .usage = "",
2820 .help = "Summarize the system",
2821 .minlen = 4,
2822 .flags = KDB_ENABLE_ALWAYS_SAFE,
2823 },
2824 { .name = "per_cpu",
2825 .func = kdb_per_cpu,
2826 .usage = "<sym> [<bytes>] [<cpu>]",
2827 .help = "Display per_cpu variables",
2828 .minlen = 3,
2829 .flags = KDB_ENABLE_MEM_READ,
2830 },
2831 { .name = "grephelp",
2832 .func = kdb_grep_help,
2833 .usage = "",
2834 .help = "Display help on | grep",
2835 .flags = KDB_ENABLE_ALWAYS_SAFE,
2836 },
2837};
2838
2839static kdbtab_t nmicmd = {
2840 .name = "disable_nmi",
2841 .func = kdb_disable_nmi,
2842 .usage = "",
2843 .help = "Disable NMI entry to KDB",
2844 .flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851 if (arch_kgdb_ops.enable_nmi)
2852 kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds. */
2856static void __init kdb_cmd_init(void)
2857{
2858 int i, diag;
2859 for (i = 0; kdb_cmds[i]; ++i) {
2860 diag = kdb_parse(kdb_cmds[i]);
2861 if (diag)
2862 kdb_printf("kdb command %s failed, kdb diag %d\n",
2863 kdb_cmds[i], diag);
2864 }
2865 if (defcmd_in_progress) {
2866 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867 kdb_parse("endefcmd");
2868 }
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875 int i;
2876
2877 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878 return;
2879 for (i = kdb_init_lvl; i < lvl; i++) {
2880 switch (i) {
2881 case KDB_NOT_INITIALIZED:
2882 kdb_inittab(); /* Initialize Command Table */
2883 kdb_initbptab(); /* Initialize Breakpoints */
2884 break;
2885 case KDB_INIT_EARLY:
2886 kdb_cmd_init(); /* Build kdb_cmds tables */
2887 break;
2888 }
2889 }
2890 kdb_init_lvl = lvl;
2891}