Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_UACCESS_H__
  3#define __LINUX_UACCESS_H__
  4
  5#include <linux/fault-inject-usercopy.h>
  6#include <linux/instrumented.h>
  7#include <linux/minmax.h>
 
  8#include <linux/sched.h>
  9#include <linux/thread_info.h>
 10
 11#include <asm/uaccess.h>
 12
 13#ifdef CONFIG_SET_FS
 14/*
 15 * Force the uaccess routines to be wired up for actual userspace access,
 16 * overriding any possible set_fs(KERNEL_DS) still lingering around.  Undone
 17 * using force_uaccess_end below.
 
 
 
 
 
 
 18 */
 19static inline mm_segment_t force_uaccess_begin(void)
 20{
 21	mm_segment_t fs = get_fs();
 22
 23	set_fs(USER_DS);
 24	return fs;
 25}
 26
 27static inline void force_uaccess_end(mm_segment_t oldfs)
 28{
 29	set_fs(oldfs);
 30}
 31#else /* CONFIG_SET_FS */
 32typedef struct {
 33	/* empty dummy */
 34} mm_segment_t;
 35
 36#ifndef TASK_SIZE_MAX
 37#define TASK_SIZE_MAX			TASK_SIZE
 38#endif
 39
 40#define uaccess_kernel()		(false)
 41#define user_addr_max()			(TASK_SIZE_MAX)
 42
 43static inline mm_segment_t force_uaccess_begin(void)
 44{
 45	return (mm_segment_t) { };
 46}
 47
 48static inline void force_uaccess_end(mm_segment_t oldfs)
 49{
 50}
 51#endif /* CONFIG_SET_FS */
 
 
 
 52
 53/*
 54 * Architectures should provide two primitives (raw_copy_{to,from}_user())
 55 * and get rid of their private instances of copy_{to,from}_user() and
 56 * __copy_{to,from}_user{,_inatomic}().
 57 *
 58 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
 59 * return the amount left to copy.  They should assume that access_ok() has
 60 * already been checked (and succeeded); they should *not* zero-pad anything.
 61 * No KASAN or object size checks either - those belong here.
 62 *
 63 * Both of these functions should attempt to copy size bytes starting at from
 64 * into the area starting at to.  They must not fetch or store anything
 65 * outside of those areas.  Return value must be between 0 (everything
 66 * copied successfully) and size (nothing copied).
 67 *
 68 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
 69 * at to must become equal to the bytes fetched from the corresponding area
 70 * starting at from.  All data past to + size - N must be left unmodified.
 71 *
 72 * If copying succeeds, the return value must be 0.  If some data cannot be
 73 * fetched, it is permitted to copy less than had been fetched; the only
 74 * hard requirement is that not storing anything at all (i.e. returning size)
 75 * should happen only when nothing could be copied.  In other words, you don't
 76 * have to squeeze as much as possible - it is allowed, but not necessary.
 77 *
 78 * For raw_copy_from_user() to always points to kernel memory and no faults
 79 * on store should happen.  Interpretation of from is affected by set_fs().
 80 * For raw_copy_to_user() it's the other way round.
 81 *
 82 * Both can be inlined - it's up to architectures whether it wants to bother
 83 * with that.  They should not be used directly; they are used to implement
 84 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
 85 * that are used instead.  Out of those, __... ones are inlined.  Plain
 86 * copy_{to,from}_user() might or might not be inlined.  If you want them
 87 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
 88 *
 89 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
 90 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
 91 * at all; their callers absolutely must check the return value.
 92 *
 93 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
 94 * but both source and destination are __user pointers (affected by set_fs()
 95 * as usual) and both source and destination can trigger faults.
 96 */
 97
 98static __always_inline __must_check unsigned long
 99__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
100{
101	instrument_copy_from_user(to, from, n);
 
 
102	check_object_size(to, n, false);
103	return raw_copy_from_user(to, from, n);
 
 
104}
105
106static __always_inline __must_check unsigned long
107__copy_from_user(void *to, const void __user *from, unsigned long n)
108{
 
 
109	might_fault();
 
110	if (should_fail_usercopy())
111		return n;
112	instrument_copy_from_user(to, from, n);
113	check_object_size(to, n, false);
114	return raw_copy_from_user(to, from, n);
 
 
115}
116
117/**
118 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
119 * @to:   Destination address, in user space.
120 * @from: Source address, in kernel space.
121 * @n:    Number of bytes to copy.
122 *
123 * Context: User context only.
124 *
125 * Copy data from kernel space to user space.  Caller must check
126 * the specified block with access_ok() before calling this function.
127 * The caller should also make sure he pins the user space address
128 * so that we don't result in page fault and sleep.
129 */
130static __always_inline __must_check unsigned long
131__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
132{
133	if (should_fail_usercopy())
134		return n;
135	instrument_copy_to_user(to, from, n);
136	check_object_size(from, n, true);
137	return raw_copy_to_user(to, from, n);
138}
139
140static __always_inline __must_check unsigned long
141__copy_to_user(void __user *to, const void *from, unsigned long n)
142{
143	might_fault();
144	if (should_fail_usercopy())
145		return n;
146	instrument_copy_to_user(to, from, n);
147	check_object_size(from, n, true);
148	return raw_copy_to_user(to, from, n);
149}
150
151#ifdef INLINE_COPY_FROM_USER
 
 
 
 
 
 
 
152static inline __must_check unsigned long
153_copy_from_user(void *to, const void __user *from, unsigned long n)
154{
155	unsigned long res = n;
156	might_fault();
157	if (!should_fail_usercopy() && likely(access_ok(from, n))) {
158		instrument_copy_from_user(to, from, n);
159		res = raw_copy_from_user(to, from, n);
 
 
 
 
 
 
 
 
 
 
160	}
161	if (unlikely(res))
162		memset(to + (n - res), 0, res);
 
 
 
 
 
163	return res;
164}
165#else
166extern __must_check unsigned long
167_copy_from_user(void *, const void __user *, unsigned long);
168#endif
169
170#ifdef INLINE_COPY_TO_USER
171static inline __must_check unsigned long
172_copy_to_user(void __user *to, const void *from, unsigned long n)
173{
174	might_fault();
175	if (should_fail_usercopy())
176		return n;
177	if (access_ok(to, n)) {
178		instrument_copy_to_user(to, from, n);
179		n = raw_copy_to_user(to, from, n);
180	}
181	return n;
182}
183#else
184extern __must_check unsigned long
185_copy_to_user(void __user *, const void *, unsigned long);
186#endif
187
188static __always_inline unsigned long __must_check
189copy_from_user(void *to, const void __user *from, unsigned long n)
190{
191	if (likely(check_copy_size(to, n, false)))
192		n = _copy_from_user(to, from, n);
193	return n;
 
 
 
 
194}
195
196static __always_inline unsigned long __must_check
197copy_to_user(void __user *to, const void *from, unsigned long n)
198{
199	if (likely(check_copy_size(from, n, true)))
200		n = _copy_to_user(to, from, n);
201	return n;
202}
203#ifdef CONFIG_COMPAT
204static __always_inline unsigned long __must_check
205copy_in_user(void __user *to, const void __user *from, unsigned long n)
206{
207	might_fault();
208	if (access_ok(to, n) && access_ok(from, n))
209		n = raw_copy_in_user(to, from, n);
210	return n;
211}
212#endif
 
213
214#ifndef copy_mc_to_kernel
215/*
216 * Without arch opt-in this generic copy_mc_to_kernel() will not handle
217 * #MC (or arch equivalent) during source read.
218 */
219static inline unsigned long __must_check
220copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
221{
222	memcpy(dst, src, cnt);
223	return 0;
224}
225#endif
226
227static __always_inline void pagefault_disabled_inc(void)
228{
229	current->pagefault_disabled++;
230}
231
232static __always_inline void pagefault_disabled_dec(void)
233{
234	current->pagefault_disabled--;
235}
236
237/*
238 * These routines enable/disable the pagefault handler. If disabled, it will
239 * not take any locks and go straight to the fixup table.
240 *
241 * User access methods will not sleep when called from a pagefault_disabled()
242 * environment.
243 */
244static inline void pagefault_disable(void)
245{
246	pagefault_disabled_inc();
247	/*
248	 * make sure to have issued the store before a pagefault
249	 * can hit.
250	 */
251	barrier();
252}
253
254static inline void pagefault_enable(void)
255{
256	/*
257	 * make sure to issue those last loads/stores before enabling
258	 * the pagefault handler again.
259	 */
260	barrier();
261	pagefault_disabled_dec();
262}
263
264/*
265 * Is the pagefault handler disabled? If so, user access methods will not sleep.
266 */
267static inline bool pagefault_disabled(void)
268{
269	return current->pagefault_disabled != 0;
270}
271
272/*
273 * The pagefault handler is in general disabled by pagefault_disable() or
274 * when in irq context (via in_atomic()).
275 *
276 * This function should only be used by the fault handlers. Other users should
277 * stick to pagefault_disabled().
278 * Please NEVER use preempt_disable() to disable the fault handler. With
279 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
280 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
281 */
282#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284#ifndef ARCH_HAS_NOCACHE_UACCESS
285
286static inline __must_check unsigned long
287__copy_from_user_inatomic_nocache(void *to, const void __user *from,
288				  unsigned long n)
289{
290	return __copy_from_user_inatomic(to, from, n);
291}
292
293#endif		/* ARCH_HAS_NOCACHE_UACCESS */
294
295extern __must_check int check_zeroed_user(const void __user *from, size_t size);
296
297/**
298 * copy_struct_from_user: copy a struct from userspace
299 * @dst:   Destination address, in kernel space. This buffer must be @ksize
300 *         bytes long.
301 * @ksize: Size of @dst struct.
302 * @src:   Source address, in userspace.
303 * @usize: (Alleged) size of @src struct.
304 *
305 * Copies a struct from userspace to kernel space, in a way that guarantees
306 * backwards-compatibility for struct syscall arguments (as long as future
307 * struct extensions are made such that all new fields are *appended* to the
308 * old struct, and zeroed-out new fields have the same meaning as the old
309 * struct).
310 *
311 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
312 * The recommended usage is something like the following:
313 *
314 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
315 *   {
316 *      int err;
317 *      struct foo karg = {};
318 *
319 *      if (usize > PAGE_SIZE)
320 *        return -E2BIG;
321 *      if (usize < FOO_SIZE_VER0)
322 *        return -EINVAL;
323 *
324 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
325 *      if (err)
326 *        return err;
327 *
328 *      // ...
329 *   }
330 *
331 * There are three cases to consider:
332 *  * If @usize == @ksize, then it's copied verbatim.
333 *  * If @usize < @ksize, then the userspace has passed an old struct to a
334 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
335 *    are to be zero-filled.
336 *  * If @usize > @ksize, then the userspace has passed a new struct to an
337 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
338 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
339 *
340 * Returns (in all cases, some data may have been copied):
341 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
342 *  * -EFAULT: access to userspace failed.
343 */
344static __always_inline __must_check int
345copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
346		      size_t usize)
347{
348	size_t size = min(ksize, usize);
349	size_t rest = max(ksize, usize) - size;
350
 
 
 
 
351	/* Deal with trailing bytes. */
352	if (usize < ksize) {
353		memset(dst + size, 0, rest);
354	} else if (usize > ksize) {
355		int ret = check_zeroed_user(src + size, rest);
356		if (ret <= 0)
357			return ret ?: -E2BIG;
358	}
359	/* Copy the interoperable parts of the struct. */
360	if (copy_from_user(dst, src, size))
361		return -EFAULT;
362	return 0;
363}
364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
366
367long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
368long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
369
370long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
371long notrace copy_to_user_nofault(void __user *dst, const void *src,
372		size_t size);
373
374long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
375		long count);
376
377long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
378		long count);
379long strnlen_user_nofault(const void __user *unsafe_addr, long count);
380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381/**
382 * get_kernel_nofault(): safely attempt to read from a location
383 * @val: read into this variable
384 * @ptr: address to read from
385 *
386 * Returns 0 on success, or -EFAULT.
387 */
388#define get_kernel_nofault(val, ptr) ({				\
389	const typeof(val) *__gk_ptr = (ptr);			\
390	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
391})
392
393#ifndef user_access_begin
394#define user_access_begin(ptr,len) access_ok(ptr, len)
395#define user_access_end() do { } while (0)
396#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
397#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
398#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
399#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
400#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
401static inline unsigned long user_access_save(void) { return 0UL; }
402static inline void user_access_restore(unsigned long flags) { }
403#endif
404#ifndef user_write_access_begin
405#define user_write_access_begin user_access_begin
406#define user_write_access_end user_access_end
407#endif
408#ifndef user_read_access_begin
409#define user_read_access_begin user_access_begin
410#define user_read_access_end user_access_end
411#endif
412
413#ifdef CONFIG_HARDENED_USERCOPY
414void usercopy_warn(const char *name, const char *detail, bool to_user,
415		   unsigned long offset, unsigned long len);
416void __noreturn usercopy_abort(const char *name, const char *detail,
417			       bool to_user, unsigned long offset,
418			       unsigned long len);
419#endif
420
421#endif		/* __LINUX_UACCESS_H__ */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_UACCESS_H__
  3#define __LINUX_UACCESS_H__
  4
  5#include <linux/fault-inject-usercopy.h>
  6#include <linux/instrumented.h>
  7#include <linux/minmax.h>
  8#include <linux/nospec.h>
  9#include <linux/sched.h>
 10#include <linux/thread_info.h>
 11
 12#include <asm/uaccess.h>
 13
 
 14/*
 15 * Architectures that support memory tagging (assigning tags to memory regions,
 16 * embedding these tags into addresses that point to these memory regions, and
 17 * checking that the memory and the pointer tags match on memory accesses)
 18 * redefine this macro to strip tags from pointers.
 19 *
 20 * Passing down mm_struct allows to define untagging rules on per-process
 21 * basis.
 22 *
 23 * It's defined as noop for architectures that don't support memory tagging.
 24 */
 25#ifndef untagged_addr
 26#define untagged_addr(addr) (addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27#endif
 28
 29#ifndef untagged_addr_remote
 30#define untagged_addr_remote(mm, addr)	({		\
 31	mmap_assert_locked(mm);				\
 32	untagged_addr(addr);				\
 33})
 34#endif
 
 35
 36#ifdef masked_user_access_begin
 37 #define can_do_masked_user_access() 1
 38#else
 39 #define can_do_masked_user_access() 0
 40 #define masked_user_access_begin(src) NULL
 41 #define mask_user_address(src) (src)
 42#endif
 43
 44/*
 45 * Architectures should provide two primitives (raw_copy_{to,from}_user())
 46 * and get rid of their private instances of copy_{to,from}_user() and
 47 * __copy_{to,from}_user{,_inatomic}().
 48 *
 49 * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
 50 * return the amount left to copy.  They should assume that access_ok() has
 51 * already been checked (and succeeded); they should *not* zero-pad anything.
 52 * No KASAN or object size checks either - those belong here.
 53 *
 54 * Both of these functions should attempt to copy size bytes starting at from
 55 * into the area starting at to.  They must not fetch or store anything
 56 * outside of those areas.  Return value must be between 0 (everything
 57 * copied successfully) and size (nothing copied).
 58 *
 59 * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
 60 * at to must become equal to the bytes fetched from the corresponding area
 61 * starting at from.  All data past to + size - N must be left unmodified.
 62 *
 63 * If copying succeeds, the return value must be 0.  If some data cannot be
 64 * fetched, it is permitted to copy less than had been fetched; the only
 65 * hard requirement is that not storing anything at all (i.e. returning size)
 66 * should happen only when nothing could be copied.  In other words, you don't
 67 * have to squeeze as much as possible - it is allowed, but not necessary.
 68 *
 69 * For raw_copy_from_user() to always points to kernel memory and no faults
 70 * on store should happen.  Interpretation of from is affected by set_fs().
 71 * For raw_copy_to_user() it's the other way round.
 72 *
 73 * Both can be inlined - it's up to architectures whether it wants to bother
 74 * with that.  They should not be used directly; they are used to implement
 75 * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
 76 * that are used instead.  Out of those, __... ones are inlined.  Plain
 77 * copy_{to,from}_user() might or might not be inlined.  If you want them
 78 * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
 79 *
 80 * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
 81 * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
 82 * at all; their callers absolutely must check the return value.
 83 *
 84 * Biarch ones should also provide raw_copy_in_user() - similar to the above,
 85 * but both source and destination are __user pointers (affected by set_fs()
 86 * as usual) and both source and destination can trigger faults.
 87 */
 88
 89static __always_inline __must_check unsigned long
 90__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
 91{
 92	unsigned long res;
 93
 94	instrument_copy_from_user_before(to, from, n);
 95	check_object_size(to, n, false);
 96	res = raw_copy_from_user(to, from, n);
 97	instrument_copy_from_user_after(to, from, n, res);
 98	return res;
 99}
100
101static __always_inline __must_check unsigned long
102__copy_from_user(void *to, const void __user *from, unsigned long n)
103{
104	unsigned long res;
105
106	might_fault();
107	instrument_copy_from_user_before(to, from, n);
108	if (should_fail_usercopy())
109		return n;
 
110	check_object_size(to, n, false);
111	res = raw_copy_from_user(to, from, n);
112	instrument_copy_from_user_after(to, from, n, res);
113	return res;
114}
115
116/**
117 * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
118 * @to:   Destination address, in user space.
119 * @from: Source address, in kernel space.
120 * @n:    Number of bytes to copy.
121 *
122 * Context: User context only.
123 *
124 * Copy data from kernel space to user space.  Caller must check
125 * the specified block with access_ok() before calling this function.
126 * The caller should also make sure he pins the user space address
127 * so that we don't result in page fault and sleep.
128 */
129static __always_inline __must_check unsigned long
130__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
131{
132	if (should_fail_usercopy())
133		return n;
134	instrument_copy_to_user(to, from, n);
135	check_object_size(from, n, true);
136	return raw_copy_to_user(to, from, n);
137}
138
139static __always_inline __must_check unsigned long
140__copy_to_user(void __user *to, const void *from, unsigned long n)
141{
142	might_fault();
143	if (should_fail_usercopy())
144		return n;
145	instrument_copy_to_user(to, from, n);
146	check_object_size(from, n, true);
147	return raw_copy_to_user(to, from, n);
148}
149
150/*
151 * Architectures that #define INLINE_COPY_TO_USER use this function
152 * directly in the normal copy_to/from_user(), the other ones go
153 * through an extern _copy_to/from_user(), which expands the same code
154 * here.
155 *
156 * Rust code always uses the extern definition.
157 */
158static inline __must_check unsigned long
159_inline_copy_from_user(void *to, const void __user *from, unsigned long n)
160{
161	unsigned long res = n;
162	might_fault();
163	if (should_fail_usercopy())
164		goto fail;
165	if (can_do_masked_user_access())
166		from = mask_user_address(from);
167	else {
168		if (!access_ok(from, n))
169			goto fail;
170		/*
171		 * Ensure that bad access_ok() speculation will not
172		 * lead to nasty side effects *after* the copy is
173		 * finished:
174		 */
175		barrier_nospec();
176	}
177	instrument_copy_from_user_before(to, from, n);
178	res = raw_copy_from_user(to, from, n);
179	instrument_copy_from_user_after(to, from, n, res);
180	if (likely(!res))
181		return 0;
182fail:
183	memset(to + (n - res), 0, res);
184	return res;
185}
 
186extern __must_check unsigned long
187_copy_from_user(void *, const void __user *, unsigned long);
 
188
 
189static inline __must_check unsigned long
190_inline_copy_to_user(void __user *to, const void *from, unsigned long n)
191{
192	might_fault();
193	if (should_fail_usercopy())
194		return n;
195	if (access_ok(to, n)) {
196		instrument_copy_to_user(to, from, n);
197		n = raw_copy_to_user(to, from, n);
198	}
199	return n;
200}
 
201extern __must_check unsigned long
202_copy_to_user(void __user *, const void *, unsigned long);
 
203
204static __always_inline unsigned long __must_check
205copy_from_user(void *to, const void __user *from, unsigned long n)
206{
207	if (!check_copy_size(to, n, false))
208		return n;
209#ifdef INLINE_COPY_FROM_USER
210	return _inline_copy_from_user(to, from, n);
211#else
212	return _copy_from_user(to, from, n);
213#endif
214}
215
216static __always_inline unsigned long __must_check
217copy_to_user(void __user *to, const void *from, unsigned long n)
218{
219	if (!check_copy_size(from, n, true))
220		return n;
221
222#ifdef INLINE_COPY_TO_USER
223	return _inline_copy_to_user(to, from, n);
224#else
225	return _copy_to_user(to, from, n);
 
 
 
 
 
 
226#endif
227}
228
229#ifndef copy_mc_to_kernel
230/*
231 * Without arch opt-in this generic copy_mc_to_kernel() will not handle
232 * #MC (or arch equivalent) during source read.
233 */
234static inline unsigned long __must_check
235copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
236{
237	memcpy(dst, src, cnt);
238	return 0;
239}
240#endif
241
242static __always_inline void pagefault_disabled_inc(void)
243{
244	current->pagefault_disabled++;
245}
246
247static __always_inline void pagefault_disabled_dec(void)
248{
249	current->pagefault_disabled--;
250}
251
252/*
253 * These routines enable/disable the pagefault handler. If disabled, it will
254 * not take any locks and go straight to the fixup table.
255 *
256 * User access methods will not sleep when called from a pagefault_disabled()
257 * environment.
258 */
259static inline void pagefault_disable(void)
260{
261	pagefault_disabled_inc();
262	/*
263	 * make sure to have issued the store before a pagefault
264	 * can hit.
265	 */
266	barrier();
267}
268
269static inline void pagefault_enable(void)
270{
271	/*
272	 * make sure to issue those last loads/stores before enabling
273	 * the pagefault handler again.
274	 */
275	barrier();
276	pagefault_disabled_dec();
277}
278
279/*
280 * Is the pagefault handler disabled? If so, user access methods will not sleep.
281 */
282static inline bool pagefault_disabled(void)
283{
284	return current->pagefault_disabled != 0;
285}
286
287/*
288 * The pagefault handler is in general disabled by pagefault_disable() or
289 * when in irq context (via in_atomic()).
290 *
291 * This function should only be used by the fault handlers. Other users should
292 * stick to pagefault_disabled().
293 * Please NEVER use preempt_disable() to disable the fault handler. With
294 * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
295 * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
296 */
297#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
298
299#ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
300
301/**
302 * probe_subpage_writeable: probe the user range for write faults at sub-page
303 *			    granularity (e.g. arm64 MTE)
304 * @uaddr: start of address range
305 * @size: size of address range
306 *
307 * Returns 0 on success, the number of bytes not probed on fault.
308 *
309 * It is expected that the caller checked for the write permission of each
310 * page in the range either by put_user() or GUP. The architecture port can
311 * implement a more efficient get_user() probing if the same sub-page faults
312 * are triggered by either a read or a write.
313 */
314static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
315{
316	return 0;
317}
318
319#endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
320
321#ifndef ARCH_HAS_NOCACHE_UACCESS
322
323static inline __must_check unsigned long
324__copy_from_user_inatomic_nocache(void *to, const void __user *from,
325				  unsigned long n)
326{
327	return __copy_from_user_inatomic(to, from, n);
328}
329
330#endif		/* ARCH_HAS_NOCACHE_UACCESS */
331
332extern __must_check int check_zeroed_user(const void __user *from, size_t size);
333
334/**
335 * copy_struct_from_user: copy a struct from userspace
336 * @dst:   Destination address, in kernel space. This buffer must be @ksize
337 *         bytes long.
338 * @ksize: Size of @dst struct.
339 * @src:   Source address, in userspace.
340 * @usize: (Alleged) size of @src struct.
341 *
342 * Copies a struct from userspace to kernel space, in a way that guarantees
343 * backwards-compatibility for struct syscall arguments (as long as future
344 * struct extensions are made such that all new fields are *appended* to the
345 * old struct, and zeroed-out new fields have the same meaning as the old
346 * struct).
347 *
348 * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
349 * The recommended usage is something like the following:
350 *
351 *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
352 *   {
353 *      int err;
354 *      struct foo karg = {};
355 *
356 *      if (usize > PAGE_SIZE)
357 *        return -E2BIG;
358 *      if (usize < FOO_SIZE_VER0)
359 *        return -EINVAL;
360 *
361 *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
362 *      if (err)
363 *        return err;
364 *
365 *      // ...
366 *   }
367 *
368 * There are three cases to consider:
369 *  * If @usize == @ksize, then it's copied verbatim.
370 *  * If @usize < @ksize, then the userspace has passed an old struct to a
371 *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
372 *    are to be zero-filled.
373 *  * If @usize > @ksize, then the userspace has passed a new struct to an
374 *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
375 *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
376 *
377 * Returns (in all cases, some data may have been copied):
378 *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
379 *  * -EFAULT: access to userspace failed.
380 */
381static __always_inline __must_check int
382copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
383		      size_t usize)
384{
385	size_t size = min(ksize, usize);
386	size_t rest = max(ksize, usize) - size;
387
388	/* Double check if ksize is larger than a known object size. */
389	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
390		return -E2BIG;
391
392	/* Deal with trailing bytes. */
393	if (usize < ksize) {
394		memset(dst + size, 0, rest);
395	} else if (usize > ksize) {
396		int ret = check_zeroed_user(src + size, rest);
397		if (ret <= 0)
398			return ret ?: -E2BIG;
399	}
400	/* Copy the interoperable parts of the struct. */
401	if (copy_from_user(dst, src, size))
402		return -EFAULT;
403	return 0;
404}
405
406/**
407 * copy_struct_to_user: copy a struct to userspace
408 * @dst:   Destination address, in userspace. This buffer must be @ksize
409 *         bytes long.
410 * @usize: (Alleged) size of @dst struct.
411 * @src:   Source address, in kernel space.
412 * @ksize: Size of @src struct.
413 * @ignored_trailing: Set to %true if there was a non-zero byte in @src that
414 * userspace cannot see because they are using an smaller struct.
415 *
416 * Copies a struct from kernel space to userspace, in a way that guarantees
417 * backwards-compatibility for struct syscall arguments (as long as future
418 * struct extensions are made such that all new fields are *appended* to the
419 * old struct, and zeroed-out new fields have the same meaning as the old
420 * struct).
421 *
422 * Some syscalls may wish to make sure that userspace knows about everything in
423 * the struct, and if there is a non-zero value that userspce doesn't know
424 * about, they want to return an error (such as -EMSGSIZE) or have some other
425 * fallback (such as adding a "you're missing some information" flag). If
426 * @ignored_trailing is non-%NULL, it will be set to %true if there was a
427 * non-zero byte that could not be copied to userspace (ie. was past @usize).
428 *
429 * While unconditionally returning an error in this case is the simplest
430 * solution, for maximum backward compatibility you should try to only return
431 * -EMSGSIZE if the user explicitly requested the data that couldn't be copied.
432 * Note that structure sizes can change due to header changes and simple
433 * recompilations without code changes(!), so if you care about
434 * @ignored_trailing you probably want to make sure that any new field data is
435 * associated with a flag. Otherwise you might assume that a program knows
436 * about data it does not.
437 *
438 * @ksize is just sizeof(*src), and @usize should've been passed by userspace.
439 * The recommended usage is something like the following:
440 *
441 *   SYSCALL_DEFINE2(foobar, struct foo __user *, uarg, size_t, usize)
442 *   {
443 *      int err;
444 *      bool ignored_trailing;
445 *      struct foo karg = {};
446 *
447 *      if (usize > PAGE_SIZE)
448 *		return -E2BIG;
449 *      if (usize < FOO_SIZE_VER0)
450 *		return -EINVAL;
451 *
452 *      // ... modify karg somehow ...
453 *
454 *      err = copy_struct_to_user(uarg, usize, &karg, sizeof(karg),
455 *				  &ignored_trailing);
456 *      if (err)
457 *		return err;
458 *      if (ignored_trailing)
459 *		return -EMSGSIZE:
460 *
461 *      // ...
462 *   }
463 *
464 * There are three cases to consider:
465 *  * If @usize == @ksize, then it's copied verbatim.
466 *  * If @usize < @ksize, then the kernel is trying to pass userspace a newer
467 *    struct than it supports. Thus we only copy the interoperable portions
468 *    (@usize) and ignore the rest (but @ignored_trailing is set to %true if
469 *    any of the trailing (@ksize - @usize) bytes are non-zero).
470 *  * If @usize > @ksize, then the kernel is trying to pass userspace an older
471 *    struct than userspace supports. In order to make sure the
472 *    unknown-to-the-kernel fields don't contain garbage values, we zero the
473 *    trailing (@usize - @ksize) bytes.
474 *
475 * Returns (in all cases, some data may have been copied):
476 *  * -EFAULT: access to userspace failed.
477 */
478static __always_inline __must_check int
479copy_struct_to_user(void __user *dst, size_t usize, const void *src,
480		    size_t ksize, bool *ignored_trailing)
481{
482	size_t size = min(ksize, usize);
483	size_t rest = max(ksize, usize) - size;
484
485	/* Double check if ksize is larger than a known object size. */
486	if (WARN_ON_ONCE(ksize > __builtin_object_size(src, 1)))
487		return -E2BIG;
488
489	/* Deal with trailing bytes. */
490	if (usize > ksize) {
491		if (clear_user(dst + size, rest))
492			return -EFAULT;
493	}
494	if (ignored_trailing)
495		*ignored_trailing = ksize < usize &&
496			memchr_inv(src + size, 0, rest) != NULL;
497	/* Copy the interoperable parts of the struct. */
498	if (copy_to_user(dst, src, size))
499		return -EFAULT;
500	return 0;
501}
502
503bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
504
505long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
506long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
507
508long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
509long notrace copy_to_user_nofault(void __user *dst, const void *src,
510		size_t size);
511
512long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
513		long count);
514
515long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
516		long count);
517long strnlen_user_nofault(const void __user *unsafe_addr, long count);
518
519#ifndef __get_kernel_nofault
520#define __get_kernel_nofault(dst, src, type, label)	\
521do {							\
522	type __user *p = (type __force __user *)(src);	\
523	type data;					\
524	if (__get_user(data, p))			\
525		goto label;				\
526	*(type *)dst = data;				\
527} while (0)
528
529#define __put_kernel_nofault(dst, src, type, label)	\
530do {							\
531	type __user *p = (type __force __user *)(dst);	\
532	type data = *(type *)src;			\
533	if (__put_user(data, p))			\
534		goto label;				\
535} while (0)
536#endif
537
538/**
539 * get_kernel_nofault(): safely attempt to read from a location
540 * @val: read into this variable
541 * @ptr: address to read from
542 *
543 * Returns 0 on success, or -EFAULT.
544 */
545#define get_kernel_nofault(val, ptr) ({				\
546	const typeof(val) *__gk_ptr = (ptr);			\
547	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
548})
549
550#ifndef user_access_begin
551#define user_access_begin(ptr,len) access_ok(ptr, len)
552#define user_access_end() do { } while (0)
553#define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
554#define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
555#define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
556#define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
557#define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
558static inline unsigned long user_access_save(void) { return 0UL; }
559static inline void user_access_restore(unsigned long flags) { }
560#endif
561#ifndef user_write_access_begin
562#define user_write_access_begin user_access_begin
563#define user_write_access_end user_access_end
564#endif
565#ifndef user_read_access_begin
566#define user_read_access_begin user_access_begin
567#define user_read_access_end user_access_end
568#endif
569
570#ifdef CONFIG_HARDENED_USERCOPY
 
 
571void __noreturn usercopy_abort(const char *name, const char *detail,
572			       bool to_user, unsigned long offset,
573			       unsigned long len);
574#endif
575
576#endif		/* __LINUX_UACCESS_H__ */