Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Scatterlist Cryptographic API.
  4 *
  5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
  7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
  8 *
  9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
 10 * and Nettle, by Niels Möller.
 11 */
 12#ifndef _LINUX_CRYPTO_H
 13#define _LINUX_CRYPTO_H
 14
 15#include <linux/atomic.h>
 16#include <linux/kernel.h>
 17#include <linux/list.h>
 18#include <linux/bug.h>
 19#include <linux/refcount.h>
 20#include <linux/slab.h>
 21#include <linux/completion.h>
 22
 23/*
 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 25 * arbitrary modules to be loaded. Loading from userspace may still need the
 26 * unprefixed names, so retains those aliases as well.
 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 29 * expands twice on the same line. Instead, use a separate base name for the
 30 * alias.
 31 */
 32#define MODULE_ALIAS_CRYPTO(name)	\
 33		__MODULE_INFO(alias, alias_userspace, name);	\
 34		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
 35
 36/*
 37 * Algorithm masks and types.
 38 */
 39#define CRYPTO_ALG_TYPE_MASK		0x0000000f
 40#define CRYPTO_ALG_TYPE_CIPHER		0x00000001
 41#define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
 42#define CRYPTO_ALG_TYPE_AEAD		0x00000003
 
 43#define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
 
 
 44#define CRYPTO_ALG_TYPE_KPP		0x00000008
 45#define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
 46#define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
 47#define CRYPTO_ALG_TYPE_RNG		0x0000000c
 48#define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
 49#define CRYPTO_ALG_TYPE_HASH		0x0000000e
 50#define CRYPTO_ALG_TYPE_SHASH		0x0000000e
 51#define CRYPTO_ALG_TYPE_AHASH		0x0000000f
 52
 53#define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
 54#define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
 55#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
 56
 57#define CRYPTO_ALG_LARVAL		0x00000010
 58#define CRYPTO_ALG_DEAD			0x00000020
 59#define CRYPTO_ALG_DYING		0x00000040
 60#define CRYPTO_ALG_ASYNC		0x00000080
 61
 62/*
 63 * Set if the algorithm (or an algorithm which it uses) requires another
 64 * algorithm of the same type to handle corner cases.
 65 */
 66#define CRYPTO_ALG_NEED_FALLBACK	0x00000100
 67
 68/*
 69 * Set if the algorithm has passed automated run-time testing.  Note that
 70 * if there is no run-time testing for a given algorithm it is considered
 71 * to have passed.
 72 */
 73
 74#define CRYPTO_ALG_TESTED		0x00000400
 75
 76/*
 77 * Set if the algorithm is an instance that is built from templates.
 78 */
 79#define CRYPTO_ALG_INSTANCE		0x00000800
 80
 81/* Set this bit if the algorithm provided is hardware accelerated but
 82 * not available to userspace via instruction set or so.
 83 */
 84#define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
 85
 86/*
 87 * Mark a cipher as a service implementation only usable by another
 88 * cipher and never by a normal user of the kernel crypto API
 89 */
 90#define CRYPTO_ALG_INTERNAL		0x00002000
 91
 92/*
 93 * Set if the algorithm has a ->setkey() method but can be used without
 94 * calling it first, i.e. there is a default key.
 95 */
 96#define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
 97
 98/*
 99 * Don't trigger module loading
100 */
101#define CRYPTO_NOLOAD			0x00008000
102
103/*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing.  Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 *    skcipher:
115 *	- The IV buffer and all scatterlist elements must be aligned to the
116 *	  algorithm's alignmask.
117 *	- If the data were to be divided into chunks of size
118 *	  crypto_skcipher_walksize() (with any remainder going at the end), no
119 *	  chunk can cross a page boundary or a scatterlist element boundary.
120 *    aead:
121 *	- The IV buffer and all scatterlist elements must be aligned to the
122 *	  algorithm's alignmask.
123 *	- The first scatterlist element must contain all the associated data,
124 *	  and its pages must be !PageHighMem.
125 *	- If the plaintext/ciphertext were to be divided into chunks of size
126 *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
127 *	  can cross a page boundary or a scatterlist element boundary.
128 *    ahash:
129 *	- The result buffer must be aligned to the algorithm's alignmask.
130 *	- crypto_ahash_finup() must not be used unless the algorithm implements
131 *	  ->finup() natively.
132 */
133#define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
134
135/*
 
 
 
 
 
 
 
 
 
136 * Transform masks and values (for crt_flags).
137 */
138#define CRYPTO_TFM_NEED_KEY		0x00000001
139
140#define CRYPTO_TFM_REQ_MASK		0x000fff00
141#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
142#define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
143#define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
144
145/*
146 * Miscellaneous stuff.
147 */
148#define CRYPTO_MAX_ALG_NAME		128
149
150/*
151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152 * declaration) is used to ensure that the crypto_tfm context structure is
153 * aligned correctly for the given architecture so that there are no alignment
154 * faults for C data types.  On architectures that support non-cache coherent
155 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
156 * that is required to ensure that the context struct member does not share any
157 * cachelines with the rest of the struct. This is needed to ensure that cache
158 * maintenance for non-coherent DMA (cache invalidation in particular) does not
159 * affect data that may be accessed by the CPU concurrently.
160 */
161#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
162
163#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
164
165struct scatterlist;
166struct crypto_async_request;
167struct crypto_tfm;
168struct crypto_type;
 
169
170typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
171
172/**
173 * DOC: Block Cipher Context Data Structures
174 *
175 * These data structures define the operating context for each block cipher
176 * type.
177 */
178
179struct crypto_async_request {
180	struct list_head list;
181	crypto_completion_t complete;
182	void *data;
183	struct crypto_tfm *tfm;
184
185	u32 flags;
186};
187
188/**
189 * DOC: Block Cipher Algorithm Definitions
190 *
191 * These data structures define modular crypto algorithm implementations,
192 * managed via crypto_register_alg() and crypto_unregister_alg().
193 */
194
195/**
196 * struct cipher_alg - single-block symmetric ciphers definition
197 * @cia_min_keysize: Minimum key size supported by the transformation. This is
198 *		     the smallest key length supported by this transformation
199 *		     algorithm. This must be set to one of the pre-defined
200 *		     values as this is not hardware specific. Possible values
201 *		     for this field can be found via git grep "_MIN_KEY_SIZE"
202 *		     include/crypto/
203 * @cia_max_keysize: Maximum key size supported by the transformation. This is
204 *		    the largest key length supported by this transformation
205 *		    algorithm. This must be set to one of the pre-defined values
206 *		    as this is not hardware specific. Possible values for this
207 *		    field can be found via git grep "_MAX_KEY_SIZE"
208 *		    include/crypto/
209 * @cia_setkey: Set key for the transformation. This function is used to either
210 *	        program a supplied key into the hardware or store the key in the
211 *	        transformation context for programming it later. Note that this
212 *	        function does modify the transformation context. This function
213 *	        can be called multiple times during the existence of the
214 *	        transformation object, so one must make sure the key is properly
215 *	        reprogrammed into the hardware. This function is also
216 *	        responsible for checking the key length for validity.
217 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
218 *		 single block of data, which must be @cra_blocksize big. This
219 *		 always operates on a full @cra_blocksize and it is not possible
220 *		 to encrypt a block of smaller size. The supplied buffers must
221 *		 therefore also be at least of @cra_blocksize size. Both the
222 *		 input and output buffers are always aligned to @cra_alignmask.
223 *		 In case either of the input or output buffer supplied by user
224 *		 of the crypto API is not aligned to @cra_alignmask, the crypto
225 *		 API will re-align the buffers. The re-alignment means that a
226 *		 new buffer will be allocated, the data will be copied into the
227 *		 new buffer, then the processing will happen on the new buffer,
228 *		 then the data will be copied back into the original buffer and
229 *		 finally the new buffer will be freed. In case a software
230 *		 fallback was put in place in the @cra_init call, this function
231 *		 might need to use the fallback if the algorithm doesn't support
232 *		 all of the key sizes. In case the key was stored in
233 *		 transformation context, the key might need to be re-programmed
234 *		 into the hardware in this function. This function shall not
235 *		 modify the transformation context, as this function may be
236 *		 called in parallel with the same transformation object.
237 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
238 *		 @cia_encrypt, and the conditions are exactly the same.
239 *
240 * All fields are mandatory and must be filled.
241 */
242struct cipher_alg {
243	unsigned int cia_min_keysize;
244	unsigned int cia_max_keysize;
245	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
246	                  unsigned int keylen);
247	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
248	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
249};
250
251/**
252 * struct compress_alg - compression/decompression algorithm
253 * @coa_compress: Compress a buffer of specified length, storing the resulting
254 *		  data in the specified buffer. Return the length of the
255 *		  compressed data in dlen.
256 * @coa_decompress: Decompress the source buffer, storing the uncompressed
257 *		    data in the specified buffer. The length of the data is
258 *		    returned in dlen.
259 *
260 * All fields are mandatory.
261 */
262struct compress_alg {
263	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
264			    unsigned int slen, u8 *dst, unsigned int *dlen);
265	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
266			      unsigned int slen, u8 *dst, unsigned int *dlen);
267};
268
269#ifdef CONFIG_CRYPTO_STATS
270/*
271 * struct crypto_istat_aead - statistics for AEAD algorithm
272 * @encrypt_cnt:	number of encrypt requests
273 * @encrypt_tlen:	total data size handled by encrypt requests
274 * @decrypt_cnt:	number of decrypt requests
275 * @decrypt_tlen:	total data size handled by decrypt requests
276 * @err_cnt:		number of error for AEAD requests
277 */
278struct crypto_istat_aead {
279	atomic64_t encrypt_cnt;
280	atomic64_t encrypt_tlen;
281	atomic64_t decrypt_cnt;
282	atomic64_t decrypt_tlen;
283	atomic64_t err_cnt;
284};
285
286/*
287 * struct crypto_istat_akcipher - statistics for akcipher algorithm
288 * @encrypt_cnt:	number of encrypt requests
289 * @encrypt_tlen:	total data size handled by encrypt requests
290 * @decrypt_cnt:	number of decrypt requests
291 * @decrypt_tlen:	total data size handled by decrypt requests
292 * @verify_cnt:		number of verify operation
293 * @sign_cnt:		number of sign requests
294 * @err_cnt:		number of error for akcipher requests
295 */
296struct crypto_istat_akcipher {
297	atomic64_t encrypt_cnt;
298	atomic64_t encrypt_tlen;
299	atomic64_t decrypt_cnt;
300	atomic64_t decrypt_tlen;
301	atomic64_t verify_cnt;
302	atomic64_t sign_cnt;
303	atomic64_t err_cnt;
304};
305
306/*
307 * struct crypto_istat_cipher - statistics for cipher algorithm
308 * @encrypt_cnt:	number of encrypt requests
309 * @encrypt_tlen:	total data size handled by encrypt requests
310 * @decrypt_cnt:	number of decrypt requests
311 * @decrypt_tlen:	total data size handled by decrypt requests
312 * @err_cnt:		number of error for cipher requests
313 */
314struct crypto_istat_cipher {
315	atomic64_t encrypt_cnt;
316	atomic64_t encrypt_tlen;
317	atomic64_t decrypt_cnt;
318	atomic64_t decrypt_tlen;
319	atomic64_t err_cnt;
320};
321
322/*
323 * struct crypto_istat_compress - statistics for compress algorithm
324 * @compress_cnt:	number of compress requests
325 * @compress_tlen:	total data size handled by compress requests
326 * @decompress_cnt:	number of decompress requests
327 * @decompress_tlen:	total data size handled by decompress requests
328 * @err_cnt:		number of error for compress requests
329 */
330struct crypto_istat_compress {
331	atomic64_t compress_cnt;
332	atomic64_t compress_tlen;
333	atomic64_t decompress_cnt;
334	atomic64_t decompress_tlen;
335	atomic64_t err_cnt;
336};
337
338/*
339 * struct crypto_istat_hash - statistics for has algorithm
340 * @hash_cnt:		number of hash requests
341 * @hash_tlen:		total data size hashed
342 * @err_cnt:		number of error for hash requests
343 */
344struct crypto_istat_hash {
345	atomic64_t hash_cnt;
346	atomic64_t hash_tlen;
347	atomic64_t err_cnt;
348};
349
350/*
351 * struct crypto_istat_kpp - statistics for KPP algorithm
352 * @setsecret_cnt:		number of setsecrey operation
353 * @generate_public_key_cnt:	number of generate_public_key operation
354 * @compute_shared_secret_cnt:	number of compute_shared_secret operation
355 * @err_cnt:			number of error for KPP requests
356 */
357struct crypto_istat_kpp {
358	atomic64_t setsecret_cnt;
359	atomic64_t generate_public_key_cnt;
360	atomic64_t compute_shared_secret_cnt;
361	atomic64_t err_cnt;
362};
363
364/*
365 * struct crypto_istat_rng: statistics for RNG algorithm
366 * @generate_cnt:	number of RNG generate requests
367 * @generate_tlen:	total data size of generated data by the RNG
368 * @seed_cnt:		number of times the RNG was seeded
369 * @err_cnt:		number of error for RNG requests
370 */
371struct crypto_istat_rng {
372	atomic64_t generate_cnt;
373	atomic64_t generate_tlen;
374	atomic64_t seed_cnt;
375	atomic64_t err_cnt;
376};
377#endif /* CONFIG_CRYPTO_STATS */
378
379#define cra_cipher	cra_u.cipher
380#define cra_compress	cra_u.compress
381
382/**
383 * struct crypto_alg - definition of a cryptograpic cipher algorithm
384 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
385 *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
386 *	       used for fine-tuning the description of the transformation
387 *	       algorithm.
388 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
389 *		   of the smallest possible unit which can be transformed with
390 *		   this algorithm. The users must respect this value.
391 *		   In case of HASH transformation, it is possible for a smaller
392 *		   block than @cra_blocksize to be passed to the crypto API for
393 *		   transformation, in case of any other transformation type, an
394 * 		   error will be returned upon any attempt to transform smaller
395 *		   than @cra_blocksize chunks.
396 * @cra_ctxsize: Size of the operational context of the transformation. This
397 *		 value informs the kernel crypto API about the memory size
398 *		 needed to be allocated for the transformation context.
399 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
400 *		   buffer containing the input data for the algorithm must be
401 *		   aligned to this alignment mask. The data buffer for the
402 *		   output data must be aligned to this alignment mask. Note that
403 *		   the Crypto API will do the re-alignment in software, but
404 *		   only under special conditions and there is a performance hit.
405 *		   The re-alignment happens at these occasions for different
406 *		   @cra_u types: cipher -- For both input data and output data
407 *		   buffer; ahash -- For output hash destination buf; shash --
408 *		   For output hash destination buf.
409 *		   This is needed on hardware which is flawed by design and
410 *		   cannot pick data from arbitrary addresses.
 
 
411 * @cra_priority: Priority of this transformation implementation. In case
412 *		  multiple transformations with same @cra_name are available to
413 *		  the Crypto API, the kernel will use the one with highest
414 *		  @cra_priority.
415 * @cra_name: Generic name (usable by multiple implementations) of the
416 *	      transformation algorithm. This is the name of the transformation
417 *	      itself. This field is used by the kernel when looking up the
418 *	      providers of particular transformation.
419 * @cra_driver_name: Unique name of the transformation provider. This is the
420 *		     name of the provider of the transformation. This can be any
421 *		     arbitrary value, but in the usual case, this contains the
422 *		     name of the chip or provider and the name of the
423 *		     transformation algorithm.
424 * @cra_type: Type of the cryptographic transformation. This is a pointer to
425 *	      struct crypto_type, which implements callbacks common for all
426 *	      transformation types. There are multiple options, such as
427 *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
428 *	      This field might be empty. In that case, there are no common
429 *	      callbacks. This is the case for: cipher, compress, shash.
430 * @cra_u: Callbacks implementing the transformation. This is a union of
431 *	   multiple structures. Depending on the type of transformation selected
432 *	   by @cra_type and @cra_flags above, the associated structure must be
433 *	   filled with callbacks. This field might be empty. This is the case
434 *	   for ahash, shash.
435 * @cra_init: Initialize the cryptographic transformation object. This function
436 *	      is used to initialize the cryptographic transformation object.
437 *	      This function is called only once at the instantiation time, right
438 *	      after the transformation context was allocated. In case the
439 *	      cryptographic hardware has some special requirements which need to
440 *	      be handled by software, this function shall check for the precise
441 *	      requirement of the transformation and put any software fallbacks
442 *	      in place.
443 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
444 *	      counterpart to @cra_init, used to remove various changes set in
445 *	      @cra_init.
446 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
447 *		  definition. See @struct @cipher_alg.
448 * @cra_u.compress: Union member which contains a (de)compression algorithm.
449 *		    See @struct @compress_alg.
450 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
451 * @cra_list: internally used
452 * @cra_users: internally used
453 * @cra_refcnt: internally used
454 * @cra_destroy: internally used
455 *
456 * @stats: union of all possible crypto_istat_xxx structures
457 * @stats.aead:		statistics for AEAD algorithm
458 * @stats.akcipher:	statistics for akcipher algorithm
459 * @stats.cipher:	statistics for cipher algorithm
460 * @stats.compress:	statistics for compress algorithm
461 * @stats.hash:		statistics for hash algorithm
462 * @stats.rng:		statistics for rng algorithm
463 * @stats.kpp:		statistics for KPP algorithm
464 *
465 * The struct crypto_alg describes a generic Crypto API algorithm and is common
466 * for all of the transformations. Any variable not documented here shall not
467 * be used by a cipher implementation as it is internal to the Crypto API.
468 */
469struct crypto_alg {
470	struct list_head cra_list;
471	struct list_head cra_users;
472
473	u32 cra_flags;
474	unsigned int cra_blocksize;
475	unsigned int cra_ctxsize;
476	unsigned int cra_alignmask;
477
478	int cra_priority;
479	refcount_t cra_refcnt;
480
481	char cra_name[CRYPTO_MAX_ALG_NAME];
482	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
483
484	const struct crypto_type *cra_type;
485
486	union {
487		struct cipher_alg cipher;
488		struct compress_alg compress;
489	} cra_u;
490
491	int (*cra_init)(struct crypto_tfm *tfm);
492	void (*cra_exit)(struct crypto_tfm *tfm);
493	void (*cra_destroy)(struct crypto_alg *alg);
494	
495	struct module *cra_module;
496
497#ifdef CONFIG_CRYPTO_STATS
498	union {
499		struct crypto_istat_aead aead;
500		struct crypto_istat_akcipher akcipher;
501		struct crypto_istat_cipher cipher;
502		struct crypto_istat_compress compress;
503		struct crypto_istat_hash hash;
504		struct crypto_istat_rng rng;
505		struct crypto_istat_kpp kpp;
506	} stats;
507#endif /* CONFIG_CRYPTO_STATS */
508
509} CRYPTO_MINALIGN_ATTR;
510
511#ifdef CONFIG_CRYPTO_STATS
512void crypto_stats_init(struct crypto_alg *alg);
513void crypto_stats_get(struct crypto_alg *alg);
514void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
515void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
516void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
517void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
518void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
519void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
520void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
521void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
522void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
523void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
524void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
525void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
526void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
527void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
528void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
529void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
530void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
531#else
532static inline void crypto_stats_init(struct crypto_alg *alg)
533{}
534static inline void crypto_stats_get(struct crypto_alg *alg)
535{}
536static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
537{}
538static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
539{}
540static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
541{}
542static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
543{}
544static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
545{}
546static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
547{}
548static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
549{}
550static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
551{}
552static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
553{}
554static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
555{}
556static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
557{}
558static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
559{}
560static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
561{}
562static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
563{}
564static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
565{}
566static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
567{}
568static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
569{}
570#endif
571/*
572 * A helper struct for waiting for completion of async crypto ops
573 */
574struct crypto_wait {
575	struct completion completion;
576	int err;
577};
578
579/*
580 * Macro for declaring a crypto op async wait object on stack
581 */
582#define DECLARE_CRYPTO_WAIT(_wait) \
583	struct crypto_wait _wait = { \
584		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
585
586/*
587 * Async ops completion helper functioons
588 */
589void crypto_req_done(struct crypto_async_request *req, int err);
590
591static inline int crypto_wait_req(int err, struct crypto_wait *wait)
592{
593	switch (err) {
594	case -EINPROGRESS:
595	case -EBUSY:
596		wait_for_completion(&wait->completion);
597		reinit_completion(&wait->completion);
598		err = wait->err;
599		break;
600	}
601
602	return err;
603}
604
605static inline void crypto_init_wait(struct crypto_wait *wait)
606{
607	init_completion(&wait->completion);
608}
609
610/*
611 * Algorithm registration interface.
612 */
613int crypto_register_alg(struct crypto_alg *alg);
614void crypto_unregister_alg(struct crypto_alg *alg);
615int crypto_register_algs(struct crypto_alg *algs, int count);
616void crypto_unregister_algs(struct crypto_alg *algs, int count);
617
618/*
619 * Algorithm query interface.
620 */
621int crypto_has_alg(const char *name, u32 type, u32 mask);
622
623/*
624 * Transforms: user-instantiated objects which encapsulate algorithms
625 * and core processing logic.  Managed via crypto_alloc_*() and
626 * crypto_free_*(), as well as the various helpers below.
627 */
628
629struct crypto_tfm {
 
630
631	u32 crt_flags;
632
633	int node;
634	
635	void (*exit)(struct crypto_tfm *tfm);
636	
637	struct crypto_alg *__crt_alg;
638
639	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
640};
641
642struct crypto_comp {
643	struct crypto_tfm base;
644};
645
646/* 
647 * Transform user interface.
648 */
649 
650struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
651void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
652
653static inline void crypto_free_tfm(struct crypto_tfm *tfm)
654{
655	return crypto_destroy_tfm(tfm, tfm);
656}
657
658int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
659
660/*
661 * Transform helpers which query the underlying algorithm.
662 */
663static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
664{
665	return tfm->__crt_alg->cra_name;
666}
667
668static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
669{
670	return tfm->__crt_alg->cra_driver_name;
671}
672
673static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
674{
675	return tfm->__crt_alg->cra_priority;
676}
677
678static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
679{
680	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
681}
682
683static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
684{
685	return tfm->__crt_alg->cra_blocksize;
686}
687
688static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
689{
690	return tfm->__crt_alg->cra_alignmask;
691}
692
693static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
694{
695	return tfm->crt_flags;
696}
697
698static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
699{
700	tfm->crt_flags |= flags;
701}
702
703static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
704{
705	tfm->crt_flags &= ~flags;
706}
707
708static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
709{
710	return tfm->__crt_ctx;
711}
712
713static inline unsigned int crypto_tfm_ctx_alignment(void)
714{
715	struct crypto_tfm *tfm;
716	return __alignof__(tfm->__crt_ctx);
717}
718
719static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
720{
721	return (struct crypto_comp *)tfm;
722}
723
724static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
725						    u32 type, u32 mask)
726{
727	type &= ~CRYPTO_ALG_TYPE_MASK;
728	type |= CRYPTO_ALG_TYPE_COMPRESS;
729	mask |= CRYPTO_ALG_TYPE_MASK;
730
731	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
732}
733
734static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
735{
736	return &tfm->base;
737}
738
739static inline void crypto_free_comp(struct crypto_comp *tfm)
740{
741	crypto_free_tfm(crypto_comp_tfm(tfm));
742}
743
744static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
745{
746	type &= ~CRYPTO_ALG_TYPE_MASK;
747	type |= CRYPTO_ALG_TYPE_COMPRESS;
748	mask |= CRYPTO_ALG_TYPE_MASK;
749
750	return crypto_has_alg(alg_name, type, mask);
751}
752
753static inline const char *crypto_comp_name(struct crypto_comp *tfm)
754{
755	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
756}
757
758int crypto_comp_compress(struct crypto_comp *tfm,
759			 const u8 *src, unsigned int slen,
760			 u8 *dst, unsigned int *dlen);
761
762int crypto_comp_decompress(struct crypto_comp *tfm,
763			   const u8 *src, unsigned int slen,
764			   u8 *dst, unsigned int *dlen);
765
766#endif	/* _LINUX_CRYPTO_H */
767
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Scatterlist Cryptographic API.
  4 *
  5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
  7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
  8 *
  9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
 10 * and Nettle, by Niels Möller.
 11 */
 12#ifndef _LINUX_CRYPTO_H
 13#define _LINUX_CRYPTO_H
 14
 15#include <linux/completion.h>
 
 
 
 16#include <linux/refcount.h>
 17#include <linux/slab.h>
 18#include <linux/types.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/*
 21 * Algorithm masks and types.
 22 */
 23#define CRYPTO_ALG_TYPE_MASK		0x0000000f
 24#define CRYPTO_ALG_TYPE_CIPHER		0x00000001
 25#define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
 26#define CRYPTO_ALG_TYPE_AEAD		0x00000003
 27#define CRYPTO_ALG_TYPE_LSKCIPHER	0x00000004
 28#define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
 29#define CRYPTO_ALG_TYPE_AKCIPHER	0x00000006
 30#define CRYPTO_ALG_TYPE_SIG		0x00000007
 31#define CRYPTO_ALG_TYPE_KPP		0x00000008
 32#define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
 33#define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
 34#define CRYPTO_ALG_TYPE_RNG		0x0000000c
 
 35#define CRYPTO_ALG_TYPE_HASH		0x0000000e
 36#define CRYPTO_ALG_TYPE_SHASH		0x0000000e
 37#define CRYPTO_ALG_TYPE_AHASH		0x0000000f
 38
 
 
 39#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
 40
 41#define CRYPTO_ALG_LARVAL		0x00000010
 42#define CRYPTO_ALG_DEAD			0x00000020
 43#define CRYPTO_ALG_DYING		0x00000040
 44#define CRYPTO_ALG_ASYNC		0x00000080
 45
 46/*
 47 * Set if the algorithm (or an algorithm which it uses) requires another
 48 * algorithm of the same type to handle corner cases.
 49 */
 50#define CRYPTO_ALG_NEED_FALLBACK	0x00000100
 51
 52/*
 53 * Set if the algorithm has passed automated run-time testing.  Note that
 54 * if there is no run-time testing for a given algorithm it is considered
 55 * to have passed.
 56 */
 57
 58#define CRYPTO_ALG_TESTED		0x00000400
 59
 60/*
 61 * Set if the algorithm is an instance that is built from templates.
 62 */
 63#define CRYPTO_ALG_INSTANCE		0x00000800
 64
 65/* Set this bit if the algorithm provided is hardware accelerated but
 66 * not available to userspace via instruction set or so.
 67 */
 68#define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
 69
 70/*
 71 * Mark a cipher as a service implementation only usable by another
 72 * cipher and never by a normal user of the kernel crypto API
 73 */
 74#define CRYPTO_ALG_INTERNAL		0x00002000
 75
 76/*
 77 * Set if the algorithm has a ->setkey() method but can be used without
 78 * calling it first, i.e. there is a default key.
 79 */
 80#define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
 81
 82/*
 83 * Don't trigger module loading
 84 */
 85#define CRYPTO_NOLOAD			0x00008000
 86
 87/*
 88 * The algorithm may allocate memory during request processing, i.e. during
 89 * encryption, decryption, or hashing.  Users can request an algorithm with this
 90 * flag unset if they can't handle memory allocation failures.
 91 *
 92 * This flag is currently only implemented for algorithms of type "skcipher",
 93 * "aead", "ahash", "shash", and "cipher".  Algorithms of other types might not
 94 * have this flag set even if they allocate memory.
 95 *
 96 * In some edge cases, algorithms can allocate memory regardless of this flag.
 97 * To avoid these cases, users must obey the following usage constraints:
 98 *    skcipher:
 99 *	- The IV buffer and all scatterlist elements must be aligned to the
100 *	  algorithm's alignmask.
101 *	- If the data were to be divided into chunks of size
102 *	  crypto_skcipher_walksize() (with any remainder going at the end), no
103 *	  chunk can cross a page boundary or a scatterlist element boundary.
104 *    aead:
105 *	- The IV buffer and all scatterlist elements must be aligned to the
106 *	  algorithm's alignmask.
107 *	- The first scatterlist element must contain all the associated data,
108 *	  and its pages must be !PageHighMem.
109 *	- If the plaintext/ciphertext were to be divided into chunks of size
110 *	  crypto_aead_walksize() (with the remainder going at the end), no chunk
111 *	  can cross a page boundary or a scatterlist element boundary.
112 *    ahash:
 
113 *	- crypto_ahash_finup() must not be used unless the algorithm implements
114 *	  ->finup() natively.
115 */
116#define CRYPTO_ALG_ALLOCATES_MEMORY	0x00010000
117
118/*
119 * Mark an algorithm as a service implementation only usable by a
120 * template and never by a normal user of the kernel crypto API.
121 * This is intended to be used by algorithms that are themselves
122 * not FIPS-approved but may instead be used to implement parts of
123 * a FIPS-approved algorithm (e.g., dh vs. ffdhe2048(dh)).
124 */
125#define CRYPTO_ALG_FIPS_INTERNAL	0x00020000
126
127/*
128 * Transform masks and values (for crt_flags).
129 */
130#define CRYPTO_TFM_NEED_KEY		0x00000001
131
132#define CRYPTO_TFM_REQ_MASK		0x000fff00
133#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
134#define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
135#define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
136
137/*
138 * Miscellaneous stuff.
139 */
140#define CRYPTO_MAX_ALG_NAME		128
141
142/*
143 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
144 * declaration) is used to ensure that the crypto_tfm context structure is
145 * aligned correctly for the given architecture so that there are no alignment
146 * faults for C data types.  On architectures that support non-cache coherent
147 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
148 * that is required to ensure that the context struct member does not share any
149 * cachelines with the rest of the struct. This is needed to ensure that cache
150 * maintenance for non-coherent DMA (cache invalidation in particular) does not
151 * affect data that may be accessed by the CPU concurrently.
152 */
153#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
154
155#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
156
 
 
157struct crypto_tfm;
158struct crypto_type;
159struct module;
160
161typedef void (*crypto_completion_t)(void *req, int err);
162
163/**
164 * DOC: Block Cipher Context Data Structures
165 *
166 * These data structures define the operating context for each block cipher
167 * type.
168 */
169
170struct crypto_async_request {
171	struct list_head list;
172	crypto_completion_t complete;
173	void *data;
174	struct crypto_tfm *tfm;
175
176	u32 flags;
177};
178
179/**
180 * DOC: Block Cipher Algorithm Definitions
181 *
182 * These data structures define modular crypto algorithm implementations,
183 * managed via crypto_register_alg() and crypto_unregister_alg().
184 */
185
186/**
187 * struct cipher_alg - single-block symmetric ciphers definition
188 * @cia_min_keysize: Minimum key size supported by the transformation. This is
189 *		     the smallest key length supported by this transformation
190 *		     algorithm. This must be set to one of the pre-defined
191 *		     values as this is not hardware specific. Possible values
192 *		     for this field can be found via git grep "_MIN_KEY_SIZE"
193 *		     include/crypto/
194 * @cia_max_keysize: Maximum key size supported by the transformation. This is
195 *		    the largest key length supported by this transformation
196 *		    algorithm. This must be set to one of the pre-defined values
197 *		    as this is not hardware specific. Possible values for this
198 *		    field can be found via git grep "_MAX_KEY_SIZE"
199 *		    include/crypto/
200 * @cia_setkey: Set key for the transformation. This function is used to either
201 *	        program a supplied key into the hardware or store the key in the
202 *	        transformation context for programming it later. Note that this
203 *	        function does modify the transformation context. This function
204 *	        can be called multiple times during the existence of the
205 *	        transformation object, so one must make sure the key is properly
206 *	        reprogrammed into the hardware. This function is also
207 *	        responsible for checking the key length for validity.
208 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
209 *		 single block of data, which must be @cra_blocksize big. This
210 *		 always operates on a full @cra_blocksize and it is not possible
211 *		 to encrypt a block of smaller size. The supplied buffers must
212 *		 therefore also be at least of @cra_blocksize size. Both the
213 *		 input and output buffers are always aligned to @cra_alignmask.
214 *		 In case either of the input or output buffer supplied by user
215 *		 of the crypto API is not aligned to @cra_alignmask, the crypto
216 *		 API will re-align the buffers. The re-alignment means that a
217 *		 new buffer will be allocated, the data will be copied into the
218 *		 new buffer, then the processing will happen on the new buffer,
219 *		 then the data will be copied back into the original buffer and
220 *		 finally the new buffer will be freed. In case a software
221 *		 fallback was put in place in the @cra_init call, this function
222 *		 might need to use the fallback if the algorithm doesn't support
223 *		 all of the key sizes. In case the key was stored in
224 *		 transformation context, the key might need to be re-programmed
225 *		 into the hardware in this function. This function shall not
226 *		 modify the transformation context, as this function may be
227 *		 called in parallel with the same transformation object.
228 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
229 *		 @cia_encrypt, and the conditions are exactly the same.
230 *
231 * All fields are mandatory and must be filled.
232 */
233struct cipher_alg {
234	unsigned int cia_min_keysize;
235	unsigned int cia_max_keysize;
236	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
237	                  unsigned int keylen);
238	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
239	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
240};
241
242/**
243 * struct compress_alg - compression/decompression algorithm
244 * @coa_compress: Compress a buffer of specified length, storing the resulting
245 *		  data in the specified buffer. Return the length of the
246 *		  compressed data in dlen.
247 * @coa_decompress: Decompress the source buffer, storing the uncompressed
248 *		    data in the specified buffer. The length of the data is
249 *		    returned in dlen.
250 *
251 * All fields are mandatory.
252 */
253struct compress_alg {
254	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
255			    unsigned int slen, u8 *dst, unsigned int *dlen);
256	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
257			      unsigned int slen, u8 *dst, unsigned int *dlen);
258};
259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260#define cra_cipher	cra_u.cipher
261#define cra_compress	cra_u.compress
262
263/**
264 * struct crypto_alg - definition of a cryptograpic cipher algorithm
265 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
266 *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
267 *	       used for fine-tuning the description of the transformation
268 *	       algorithm.
269 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
270 *		   of the smallest possible unit which can be transformed with
271 *		   this algorithm. The users must respect this value.
272 *		   In case of HASH transformation, it is possible for a smaller
273 *		   block than @cra_blocksize to be passed to the crypto API for
274 *		   transformation, in case of any other transformation type, an
275 * 		   error will be returned upon any attempt to transform smaller
276 *		   than @cra_blocksize chunks.
277 * @cra_ctxsize: Size of the operational context of the transformation. This
278 *		 value informs the kernel crypto API about the memory size
279 *		 needed to be allocated for the transformation context.
280 * @cra_alignmask: For cipher, skcipher, lskcipher, and aead algorithms this is
281 *		   1 less than the alignment, in bytes, that the algorithm
282 *		   implementation requires for input and output buffers.  When
283 *		   the crypto API is invoked with buffers that are not aligned
284 *		   to this alignment, the crypto API automatically utilizes
285 *		   appropriately aligned temporary buffers to comply with what
286 *		   the algorithm needs.  (For scatterlists this happens only if
287 *		   the algorithm uses the skcipher_walk helper functions.)  This
288 *		   misalignment handling carries a performance penalty, so it is
289 *		   preferred that algorithms do not set a nonzero alignmask.
290 *		   Also, crypto API users may wish to allocate buffers aligned
291 *		   to the alignmask of the algorithm being used, in order to
292 *		   avoid the API having to realign them.  Note: the alignmask is
293 *		   not supported for hash algorithms and is always 0 for them.
294 * @cra_priority: Priority of this transformation implementation. In case
295 *		  multiple transformations with same @cra_name are available to
296 *		  the Crypto API, the kernel will use the one with highest
297 *		  @cra_priority.
298 * @cra_name: Generic name (usable by multiple implementations) of the
299 *	      transformation algorithm. This is the name of the transformation
300 *	      itself. This field is used by the kernel when looking up the
301 *	      providers of particular transformation.
302 * @cra_driver_name: Unique name of the transformation provider. This is the
303 *		     name of the provider of the transformation. This can be any
304 *		     arbitrary value, but in the usual case, this contains the
305 *		     name of the chip or provider and the name of the
306 *		     transformation algorithm.
307 * @cra_type: Type of the cryptographic transformation. This is a pointer to
308 *	      struct crypto_type, which implements callbacks common for all
309 *	      transformation types. There are multiple options, such as
310 *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
311 *	      This field might be empty. In that case, there are no common
312 *	      callbacks. This is the case for: cipher, compress, shash.
313 * @cra_u: Callbacks implementing the transformation. This is a union of
314 *	   multiple structures. Depending on the type of transformation selected
315 *	   by @cra_type and @cra_flags above, the associated structure must be
316 *	   filled with callbacks. This field might be empty. This is the case
317 *	   for ahash, shash.
318 * @cra_init: Initialize the cryptographic transformation object. This function
319 *	      is used to initialize the cryptographic transformation object.
320 *	      This function is called only once at the instantiation time, right
321 *	      after the transformation context was allocated. In case the
322 *	      cryptographic hardware has some special requirements which need to
323 *	      be handled by software, this function shall check for the precise
324 *	      requirement of the transformation and put any software fallbacks
325 *	      in place.
326 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
327 *	      counterpart to @cra_init, used to remove various changes set in
328 *	      @cra_init.
329 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
330 *		  definition. See @struct @cipher_alg.
331 * @cra_u.compress: Union member which contains a (de)compression algorithm.
332 *		    See @struct @compress_alg.
333 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
334 * @cra_list: internally used
335 * @cra_users: internally used
336 * @cra_refcnt: internally used
337 * @cra_destroy: internally used
338 *
 
 
 
 
 
 
 
 
 
339 * The struct crypto_alg describes a generic Crypto API algorithm and is common
340 * for all of the transformations. Any variable not documented here shall not
341 * be used by a cipher implementation as it is internal to the Crypto API.
342 */
343struct crypto_alg {
344	struct list_head cra_list;
345	struct list_head cra_users;
346
347	u32 cra_flags;
348	unsigned int cra_blocksize;
349	unsigned int cra_ctxsize;
350	unsigned int cra_alignmask;
351
352	int cra_priority;
353	refcount_t cra_refcnt;
354
355	char cra_name[CRYPTO_MAX_ALG_NAME];
356	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
357
358	const struct crypto_type *cra_type;
359
360	union {
361		struct cipher_alg cipher;
362		struct compress_alg compress;
363	} cra_u;
364
365	int (*cra_init)(struct crypto_tfm *tfm);
366	void (*cra_exit)(struct crypto_tfm *tfm);
367	void (*cra_destroy)(struct crypto_alg *alg);
368	
369	struct module *cra_module;
 
 
 
 
 
 
 
 
 
 
 
 
 
370} CRYPTO_MINALIGN_ATTR;
371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
372/*
373 * A helper struct for waiting for completion of async crypto ops
374 */
375struct crypto_wait {
376	struct completion completion;
377	int err;
378};
379
380/*
381 * Macro for declaring a crypto op async wait object on stack
382 */
383#define DECLARE_CRYPTO_WAIT(_wait) \
384	struct crypto_wait _wait = { \
385		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
386
387/*
388 * Async ops completion helper functioons
389 */
390void crypto_req_done(void *req, int err);
391
392static inline int crypto_wait_req(int err, struct crypto_wait *wait)
393{
394	switch (err) {
395	case -EINPROGRESS:
396	case -EBUSY:
397		wait_for_completion(&wait->completion);
398		reinit_completion(&wait->completion);
399		err = wait->err;
400		break;
401	}
402
403	return err;
404}
405
406static inline void crypto_init_wait(struct crypto_wait *wait)
407{
408	init_completion(&wait->completion);
409}
410
411/*
 
 
 
 
 
 
 
 
412 * Algorithm query interface.
413 */
414int crypto_has_alg(const char *name, u32 type, u32 mask);
415
416/*
417 * Transforms: user-instantiated objects which encapsulate algorithms
418 * and core processing logic.  Managed via crypto_alloc_*() and
419 * crypto_free_*(), as well as the various helpers below.
420 */
421
422struct crypto_tfm {
423	refcount_t refcnt;
424
425	u32 crt_flags;
426
427	int node;
428	
429	void (*exit)(struct crypto_tfm *tfm);
430	
431	struct crypto_alg *__crt_alg;
432
433	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
434};
435
436struct crypto_comp {
437	struct crypto_tfm base;
438};
439
440/* 
441 * Transform user interface.
442 */
443 
444struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
445void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
446
447static inline void crypto_free_tfm(struct crypto_tfm *tfm)
448{
449	return crypto_destroy_tfm(tfm, tfm);
450}
451
 
 
452/*
453 * Transform helpers which query the underlying algorithm.
454 */
455static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
456{
457	return tfm->__crt_alg->cra_name;
458}
459
460static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
461{
462	return tfm->__crt_alg->cra_driver_name;
463}
464
 
 
 
 
 
 
 
 
 
 
465static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
466{
467	return tfm->__crt_alg->cra_blocksize;
468}
469
470static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
471{
472	return tfm->__crt_alg->cra_alignmask;
473}
474
475static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
476{
477	return tfm->crt_flags;
478}
479
480static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
481{
482	tfm->crt_flags |= flags;
483}
484
485static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
486{
487	tfm->crt_flags &= ~flags;
 
 
 
 
 
488}
489
490static inline unsigned int crypto_tfm_ctx_alignment(void)
491{
492	struct crypto_tfm *tfm;
493	return __alignof__(tfm->__crt_ctx);
494}
495
496static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
497{
498	return (struct crypto_comp *)tfm;
499}
500
501static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
502						    u32 type, u32 mask)
503{
504	type &= ~CRYPTO_ALG_TYPE_MASK;
505	type |= CRYPTO_ALG_TYPE_COMPRESS;
506	mask |= CRYPTO_ALG_TYPE_MASK;
507
508	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
509}
510
511static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
512{
513	return &tfm->base;
514}
515
516static inline void crypto_free_comp(struct crypto_comp *tfm)
517{
518	crypto_free_tfm(crypto_comp_tfm(tfm));
519}
520
521static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
522{
523	type &= ~CRYPTO_ALG_TYPE_MASK;
524	type |= CRYPTO_ALG_TYPE_COMPRESS;
525	mask |= CRYPTO_ALG_TYPE_MASK;
526
527	return crypto_has_alg(alg_name, type, mask);
528}
529
530static inline const char *crypto_comp_name(struct crypto_comp *tfm)
531{
532	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
533}
534
535int crypto_comp_compress(struct crypto_comp *tfm,
536			 const u8 *src, unsigned int slen,
537			 u8 *dst, unsigned int *dlen);
538
539int crypto_comp_decompress(struct crypto_comp *tfm,
540			   const u8 *src, unsigned int slen,
541			   u8 *dst, unsigned int *dlen);
542
543#endif	/* _LINUX_CRYPTO_H */
544