Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_BITMAP_H
  3#define __LINUX_BITMAP_H
  4
  5#ifndef __ASSEMBLY__
  6
  7#include <linux/align.h>
  8#include <linux/bitops.h>
 
 
 
  9#include <linux/limits.h>
 10#include <linux/string.h>
 11#include <linux/types.h>
 
 12
 13struct device;
 14
 15/*
 16 * bitmaps provide bit arrays that consume one or more unsigned
 17 * longs.  The bitmap interface and available operations are listed
 18 * here, in bitmap.h
 19 *
 20 * Function implementations generic to all architectures are in
 21 * lib/bitmap.c.  Functions implementations that are architecture
 22 * specific are in various include/asm-<arch>/bitops.h headers
 23 * and other arch/<arch> specific files.
 24 *
 25 * See lib/bitmap.c for more details.
 26 */
 27
 28/**
 29 * DOC: bitmap overview
 30 *
 31 * The available bitmap operations and their rough meaning in the
 32 * case that the bitmap is a single unsigned long are thus:
 33 *
 34 * The generated code is more efficient when nbits is known at
 35 * compile-time and at most BITS_PER_LONG.
 36 *
 37 * ::
 38 *
 39 *  bitmap_zero(dst, nbits)                     *dst = 0UL
 40 *  bitmap_fill(dst, nbits)                     *dst = ~0UL
 41 *  bitmap_copy(dst, src, nbits)                *dst = *src
 42 *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
 43 *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
 44 *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
 45 *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
 46 *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
 47 *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
 48 *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
 49 *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
 50 *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
 51 *  bitmap_full(src, nbits)                     Are all bits set in *src?
 52 *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
 
 
 53 *  bitmap_set(dst, pos, nbits)                 Set specified bit area
 54 *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
 55 *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
 56 *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
 57 *  bitmap_next_clear_region(map, &start, &end, nbits)  Find next clear region
 58 *  bitmap_next_set_region(map, &start, &end, nbits)  Find next set region
 59 *  bitmap_for_each_clear_region(map, rs, re, start, end)
 60 *  						Iterate over all clear regions
 61 *  bitmap_for_each_set_region(map, rs, re, start, end)
 62 *  						Iterate over all set regions
 63 *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
 64 *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
 65 *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
 66 *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
 
 
 67 *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
 68 *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
 69 *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
 70 *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
 71 *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
 72 *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
 73 *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
 74 *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
 75 *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
 76 *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
 77 *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
 78 *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
 
 79 *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
 
 80 *  bitmap_get_value8(map, start)               Get 8bit value from map at start
 81 *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
 
 
 
 
 82 *
 83 * Note, bitmap_zero() and bitmap_fill() operate over the region of
 84 * unsigned longs, that is, bits behind bitmap till the unsigned long
 85 * boundary will be zeroed or filled as well. Consider to use
 86 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
 87 * respectively.
 88 */
 89
 90/**
 91 * DOC: bitmap bitops
 92 *
 93 * Also the following operations in asm/bitops.h apply to bitmaps.::
 94 *
 95 *  set_bit(bit, addr)                  *addr |= bit
 96 *  clear_bit(bit, addr)                *addr &= ~bit
 97 *  change_bit(bit, addr)               *addr ^= bit
 98 *  test_bit(bit, addr)                 Is bit set in *addr?
 99 *  test_and_set_bit(bit, addr)         Set bit and return old value
100 *  test_and_clear_bit(bit, addr)       Clear bit and return old value
101 *  test_and_change_bit(bit, addr)      Change bit and return old value
102 *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
103 *  find_first_bit(addr, nbits)         Position first set bit in *addr
104 *  find_next_zero_bit(addr, nbits, bit)
105 *                                      Position next zero bit in *addr >= bit
106 *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
107 *  find_next_and_bit(addr1, addr2, nbits, bit)
108 *                                      Same as find_next_bit, but in
109 *                                      (*addr1 & *addr2)
110 *
111 */
112
113/**
114 * DOC: declare bitmap
115 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
116 * to declare an array named 'name' of just enough unsigned longs to
117 * contain all bit positions from 0 to 'bits' - 1.
118 */
119
120/*
121 * Allocation and deallocation of bitmap.
122 * Provided in lib/bitmap.c to avoid circular dependency.
123 */
124unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
125unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
 
 
126void bitmap_free(const unsigned long *bitmap);
127
 
 
128/* Managed variants of the above. */
129unsigned long *devm_bitmap_alloc(struct device *dev,
130				 unsigned int nbits, gfp_t flags);
131unsigned long *devm_bitmap_zalloc(struct device *dev,
132				  unsigned int nbits, gfp_t flags);
133
134/*
135 * lib/bitmap.c provides these functions:
136 */
137
138int __bitmap_equal(const unsigned long *bitmap1,
139		   const unsigned long *bitmap2, unsigned int nbits);
140bool __pure __bitmap_or_equal(const unsigned long *src1,
141			      const unsigned long *src2,
142			      const unsigned long *src3,
143			      unsigned int nbits);
144void __bitmap_complement(unsigned long *dst, const unsigned long *src,
145			 unsigned int nbits);
146void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
147			  unsigned int shift, unsigned int nbits);
148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149			 unsigned int shift, unsigned int nbits);
150void bitmap_cut(unsigned long *dst, const unsigned long *src,
151		unsigned int first, unsigned int cut, unsigned int nbits);
152int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
153		 const unsigned long *bitmap2, unsigned int nbits);
154void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
155		 const unsigned long *bitmap2, unsigned int nbits);
156void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
157		  const unsigned long *bitmap2, unsigned int nbits);
158int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
159		    const unsigned long *bitmap2, unsigned int nbits);
160void __bitmap_replace(unsigned long *dst,
161		      const unsigned long *old, const unsigned long *new,
162		      const unsigned long *mask, unsigned int nbits);
163int __bitmap_intersects(const unsigned long *bitmap1,
164			const unsigned long *bitmap2, unsigned int nbits);
165int __bitmap_subset(const unsigned long *bitmap1,
166		    const unsigned long *bitmap2, unsigned int nbits);
167int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
 
 
 
 
168void __bitmap_set(unsigned long *map, unsigned int start, int len);
169void __bitmap_clear(unsigned long *map, unsigned int start, int len);
170
171unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
172					     unsigned long size,
173					     unsigned long start,
174					     unsigned int nr,
175					     unsigned long align_mask,
176					     unsigned long align_offset);
177
178/**
179 * bitmap_find_next_zero_area - find a contiguous aligned zero area
180 * @map: The address to base the search on
181 * @size: The bitmap size in bits
182 * @start: The bitnumber to start searching at
183 * @nr: The number of zeroed bits we're looking for
184 * @align_mask: Alignment mask for zero area
185 *
186 * The @align_mask should be one less than a power of 2; the effect is that
187 * the bit offset of all zero areas this function finds is multiples of that
188 * power of 2. A @align_mask of 0 means no alignment is required.
189 */
190static inline unsigned long
191bitmap_find_next_zero_area(unsigned long *map,
192			   unsigned long size,
193			   unsigned long start,
194			   unsigned int nr,
195			   unsigned long align_mask)
196{
197	return bitmap_find_next_zero_area_off(map, size, start, nr,
198					      align_mask, 0);
199}
200
201int bitmap_parse(const char *buf, unsigned int buflen,
202			unsigned long *dst, int nbits);
203int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
204			unsigned long *dst, int nbits);
205int bitmap_parselist(const char *buf, unsigned long *maskp,
206			int nmaskbits);
207int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
208			unsigned long *dst, int nbits);
209void bitmap_remap(unsigned long *dst, const unsigned long *src,
210		const unsigned long *old, const unsigned long *new, unsigned int nbits);
211int bitmap_bitremap(int oldbit,
212		const unsigned long *old, const unsigned long *new, int bits);
213void bitmap_onto(unsigned long *dst, const unsigned long *orig,
214		const unsigned long *relmap, unsigned int bits);
215void bitmap_fold(unsigned long *dst, const unsigned long *orig,
216		unsigned int sz, unsigned int nbits);
217int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
218void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
219int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
220
221#ifdef __BIG_ENDIAN
222void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
223#else
224#define bitmap_copy_le bitmap_copy
225#endif
226unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
227int bitmap_print_to_pagebuf(bool list, char *buf,
228				   const unsigned long *maskp, int nmaskbits);
229
230#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
231#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
232
233static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
 
 
234{
235	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
236	memset(dst, 0, len);
 
 
 
 
237}
238
239static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
240{
241	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
242	memset(dst, 0xff, len);
 
 
 
 
243}
244
245static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
246			unsigned int nbits)
247{
248	unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
249	memcpy(dst, src, len);
 
 
 
 
250}
251
252/*
253 * Copy bitmap and clear tail bits in last word.
254 */
255static inline void bitmap_copy_clear_tail(unsigned long *dst,
256		const unsigned long *src, unsigned int nbits)
257{
258	bitmap_copy(dst, src, nbits);
259	if (nbits % BITS_PER_LONG)
260		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
261}
262
 
 
 
 
 
 
 
 
 
 
 
 
263/*
264 * On 32-bit systems bitmaps are represented as u32 arrays internally, and
265 * therefore conversion is not needed when copying data from/to arrays of u32.
 
 
 
 
266 */
267#if BITS_PER_LONG == 64
268void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
269							unsigned int nbits);
270void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
271							unsigned int nbits);
272#else
273#define bitmap_from_arr32(bitmap, buf, nbits)			\
274	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
275			(const unsigned long *) (buf), (nbits))
276#define bitmap_to_arr32(buf, bitmap, nbits)			\
277	bitmap_copy_clear_tail((unsigned long *) (buf),		\
278			(const unsigned long *) (bitmap), (nbits))
279#endif
280
281static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
282			const unsigned long *src2, unsigned int nbits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283{
284	if (small_const_nbits(nbits))
285		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
286	return __bitmap_and(dst, src1, src2, nbits);
287}
288
289static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
290			const unsigned long *src2, unsigned int nbits)
 
291{
292	if (small_const_nbits(nbits))
293		*dst = *src1 | *src2;
294	else
295		__bitmap_or(dst, src1, src2, nbits);
296}
297
298static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
299			const unsigned long *src2, unsigned int nbits)
 
300{
301	if (small_const_nbits(nbits))
302		*dst = *src1 ^ *src2;
303	else
304		__bitmap_xor(dst, src1, src2, nbits);
305}
306
307static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
308			const unsigned long *src2, unsigned int nbits)
 
309{
310	if (small_const_nbits(nbits))
311		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
312	return __bitmap_andnot(dst, src1, src2, nbits);
313}
314
315static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
316			unsigned int nbits)
317{
318	if (small_const_nbits(nbits))
319		*dst = ~(*src);
320	else
321		__bitmap_complement(dst, src, nbits);
322}
323
324#ifdef __LITTLE_ENDIAN
325#define BITMAP_MEM_ALIGNMENT 8
326#else
327#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
328#endif
329#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
330
331static inline int bitmap_equal(const unsigned long *src1,
332			const unsigned long *src2, unsigned int nbits)
333{
334	if (small_const_nbits(nbits))
335		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
336	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
337	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
338		return !memcmp(src1, src2, nbits / 8);
339	return __bitmap_equal(src1, src2, nbits);
340}
341
342/**
343 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
344 * @src1:	Pointer to bitmap 1
345 * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
346 * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
347 * @nbits:	number of bits in each of these bitmaps
348 *
349 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
350 */
351static inline bool bitmap_or_equal(const unsigned long *src1,
352				   const unsigned long *src2,
353				   const unsigned long *src3,
354				   unsigned int nbits)
355{
356	if (!small_const_nbits(nbits))
357		return __bitmap_or_equal(src1, src2, src3, nbits);
358
359	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
360}
361
362static inline int bitmap_intersects(const unsigned long *src1,
363			const unsigned long *src2, unsigned int nbits)
364{
365	if (small_const_nbits(nbits))
366		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
367	else
368		return __bitmap_intersects(src1, src2, nbits);
369}
370
371static inline int bitmap_subset(const unsigned long *src1,
372			const unsigned long *src2, unsigned int nbits)
373{
374	if (small_const_nbits(nbits))
375		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
376	else
377		return __bitmap_subset(src1, src2, nbits);
378}
379
380static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
 
381{
382	if (small_const_nbits(nbits))
383		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
384
385	return find_first_bit(src, nbits) == nbits;
386}
387
388static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
 
389{
390	if (small_const_nbits(nbits))
391		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
392
393	return find_first_zero_bit(src, nbits) == nbits;
394}
395
396static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
 
397{
398	if (small_const_nbits(nbits))
399		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
400	return __bitmap_weight(src, nbits);
401}
402
403static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
404		unsigned int nbits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
405{
406	if (__builtin_constant_p(nbits) && nbits == 1)
407		__set_bit(start, map);
 
 
408	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
409		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
410		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
411		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
412		memset((char *)map + start / 8, 0xff, nbits / 8);
413	else
414		__bitmap_set(map, start, nbits);
415}
416
417static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
418		unsigned int nbits)
419{
420	if (__builtin_constant_p(nbits) && nbits == 1)
421		__clear_bit(start, map);
 
 
422	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
423		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
424		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
425		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
426		memset((char *)map + start / 8, 0, nbits / 8);
427	else
428		__bitmap_clear(map, start, nbits);
429}
430
431static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
432				unsigned int shift, unsigned int nbits)
 
433{
434	if (small_const_nbits(nbits))
435		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
436	else
437		__bitmap_shift_right(dst, src, shift, nbits);
438}
439
440static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
441				unsigned int shift, unsigned int nbits)
 
442{
443	if (small_const_nbits(nbits))
444		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
445	else
446		__bitmap_shift_left(dst, src, shift, nbits);
447}
448
449static inline void bitmap_replace(unsigned long *dst,
450				  const unsigned long *old,
451				  const unsigned long *new,
452				  const unsigned long *mask,
453				  unsigned int nbits)
 
454{
455	if (small_const_nbits(nbits))
456		*dst = (*old & ~(*mask)) | (*new & *mask);
457	else
458		__bitmap_replace(dst, old, new, mask, nbits);
459}
460
461static inline void bitmap_next_clear_region(unsigned long *bitmap,
462					    unsigned int *rs, unsigned int *re,
463					    unsigned int end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464{
465	*rs = find_next_zero_bit(bitmap, end, *rs);
466	*re = find_next_bit(bitmap, end, *rs + 1);
 
 
 
 
 
467}
468
469static inline void bitmap_next_set_region(unsigned long *bitmap,
470					  unsigned int *rs, unsigned int *re,
471					  unsigned int end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472{
473	*rs = find_next_bit(bitmap, end, *rs);
474	*re = find_next_zero_bit(bitmap, end, *rs + 1);
475}
476
477/*
478 * Bitmap region iterators.  Iterates over the bitmap between [@start, @end).
479 * @rs and @re should be integer variables and will be set to start and end
480 * index of the current clear or set region.
481 */
482#define bitmap_for_each_clear_region(bitmap, rs, re, start, end)	     \
483	for ((rs) = (start),						     \
484	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end));	     \
485	     (rs) < (re);						     \
486	     (rs) = (re) + 1,						     \
487	     bitmap_next_clear_region((bitmap), &(rs), &(re), (end)))
488
489#define bitmap_for_each_set_region(bitmap, rs, re, start, end)		     \
490	for ((rs) = (start),						     \
491	     bitmap_next_set_region((bitmap), &(rs), &(re), (end));	     \
492	     (rs) < (re);						     \
493	     (rs) = (re) + 1,						     \
494	     bitmap_next_set_region((bitmap), &(rs), &(re), (end)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496/**
497 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
498 * @n: u64 value
499 *
500 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
501 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
502 *
503 * There are four combinations of endianness and length of the word in linux
504 * ABIs: LE64, BE64, LE32 and BE32.
505 *
506 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
507 * bitmaps and therefore don't require any special handling.
508 *
509 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
510 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
511 * other hand is represented as an array of 32-bit words and the position of
512 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
513 * word.  For example, bit #42 is located at 10th position of 2nd word.
514 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
515 * values in memory as it usually does. But for BE we need to swap hi and lo
516 * words manually.
517 *
518 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
519 * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
520 * hi and lo words, as is expected by bitmap.
521 */
522#if __BITS_PER_LONG == 64
523#define BITMAP_FROM_U64(n) (n)
524#else
525#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
526				((unsigned long) ((u64)(n) >> 32))
527#endif
528
529/**
530 * bitmap_from_u64 - Check and swap words within u64.
531 *  @mask: source bitmap
532 *  @dst:  destination bitmap
533 *
534 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
535 * to read u64 mask, we will get the wrong word.
536 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
537 * but we expect the lower 32-bits of u64.
538 */
539static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
540{
541	dst[0] = mask & ULONG_MAX;
542
543	if (sizeof(mask) > sizeof(unsigned long))
544		dst[1] = mask >> 32;
545}
546
547/**
548 * bitmap_get_value8 - get an 8-bit value within a memory region
549 * @map: address to the bitmap memory region
550 * @start: bit offset of the 8-bit value; must be a multiple of 8
 
551 *
552 * Returns the 8-bit value located at the @start bit offset within the @src
553 * memory region.
554 */
555static inline unsigned long bitmap_get_value8(const unsigned long *map,
556					      unsigned long start)
557{
558	const size_t index = BIT_WORD(start);
559	const unsigned long offset = start % BITS_PER_LONG;
560
561	return (map[index] >> offset) & 0xFF;
 
 
 
 
 
 
 
 
 
 
 
562}
563
564/**
565 * bitmap_set_value8 - set an 8-bit value within a memory region
566 * @map: address to the bitmap memory region
567 * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
568 * @start: bit offset of the 8-bit value; must be a multiple of 8
569 */
570static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
571				     unsigned long start)
572{
573	const size_t index = BIT_WORD(start);
574	const unsigned long offset = start % BITS_PER_LONG;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575
576	map[index] &= ~(0xFFUL << offset);
577	map[index] |= value << offset;
 
 
 
 
 
578}
 
 
 
 
 
579
580#endif /* __ASSEMBLY__ */
581
582#endif /* __LINUX_BITMAP_H */
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __LINUX_BITMAP_H
  3#define __LINUX_BITMAP_H
  4
  5#ifndef __ASSEMBLY__
  6
  7#include <linux/align.h>
  8#include <linux/bitops.h>
  9#include <linux/cleanup.h>
 10#include <linux/errno.h>
 11#include <linux/find.h>
 12#include <linux/limits.h>
 13#include <linux/string.h>
 14#include <linux/types.h>
 15#include <linux/bitmap-str.h>
 16
 17struct device;
 18
 19/*
 20 * bitmaps provide bit arrays that consume one or more unsigned
 21 * longs.  The bitmap interface and available operations are listed
 22 * here, in bitmap.h
 23 *
 24 * Function implementations generic to all architectures are in
 25 * lib/bitmap.c.  Functions implementations that are architecture
 26 * specific are in various include/asm-<arch>/bitops.h headers
 27 * and other arch/<arch> specific files.
 28 *
 29 * See lib/bitmap.c for more details.
 30 */
 31
 32/**
 33 * DOC: bitmap overview
 34 *
 35 * The available bitmap operations and their rough meaning in the
 36 * case that the bitmap is a single unsigned long are thus:
 37 *
 38 * The generated code is more efficient when nbits is known at
 39 * compile-time and at most BITS_PER_LONG.
 40 *
 41 * ::
 42 *
 43 *  bitmap_zero(dst, nbits)                     *dst = 0UL
 44 *  bitmap_fill(dst, nbits)                     *dst = ~0UL
 45 *  bitmap_copy(dst, src, nbits)                *dst = *src
 46 *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
 47 *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
 48 *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
 49 *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
 50 *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
 51 *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
 52 *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
 53 *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
 54 *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
 55 *  bitmap_full(src, nbits)                     Are all bits set in *src?
 56 *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
 57 *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
 58 *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
 59 *  bitmap_set(dst, pos, nbits)                 Set specified bit area
 60 *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
 61 *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
 62 *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
 
 
 
 
 
 
 63 *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
 64 *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
 65 *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
 66 *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
 67 *  bitmap_scatter(dst, src, mask, nbits)	*dst = map(dense, sparse)(src)
 68 *  bitmap_gather(dst, src, mask, nbits)	*dst = map(sparse, dense)(src)
 69 *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
 70 *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
 71 *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
 72 *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
 73 *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
 74 *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
 75 *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
 76 *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
 77 *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
 78 *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
 79 *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
 80 *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
 81 *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
 82 *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
 83 *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
 84 *  bitmap_get_value8(map, start)               Get 8bit value from map at start
 85 *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
 86 *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
 87 *                                              map at start
 88 *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
 89 *                                              map at start
 90 *
 91 * Note, bitmap_zero() and bitmap_fill() operate over the region of
 92 * unsigned longs, that is, bits behind bitmap till the unsigned long
 93 * boundary will be zeroed or filled as well. Consider to use
 94 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
 95 * respectively.
 96 */
 97
 98/**
 99 * DOC: bitmap bitops
100 *
101 * Also the following operations in asm/bitops.h apply to bitmaps.::
102 *
103 *  set_bit(bit, addr)                  *addr |= bit
104 *  clear_bit(bit, addr)                *addr &= ~bit
105 *  change_bit(bit, addr)               *addr ^= bit
106 *  test_bit(bit, addr)                 Is bit set in *addr?
107 *  test_and_set_bit(bit, addr)         Set bit and return old value
108 *  test_and_clear_bit(bit, addr)       Clear bit and return old value
109 *  test_and_change_bit(bit, addr)      Change bit and return old value
110 *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
111 *  find_first_bit(addr, nbits)         Position first set bit in *addr
112 *  find_next_zero_bit(addr, nbits, bit)
113 *                                      Position next zero bit in *addr >= bit
114 *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
115 *  find_next_and_bit(addr1, addr2, nbits, bit)
116 *                                      Same as find_next_bit, but in
117 *                                      (*addr1 & *addr2)
118 *
119 */
120
121/**
122 * DOC: declare bitmap
123 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124 * to declare an array named 'name' of just enough unsigned longs to
125 * contain all bit positions from 0 to 'bits' - 1.
126 */
127
128/*
129 * Allocation and deallocation of bitmap.
130 * Provided in lib/bitmap.c to avoid circular dependency.
131 */
132unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136void bitmap_free(const unsigned long *bitmap);
137
138DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139
140/* Managed variants of the above. */
141unsigned long *devm_bitmap_alloc(struct device *dev,
142				 unsigned int nbits, gfp_t flags);
143unsigned long *devm_bitmap_zalloc(struct device *dev,
144				  unsigned int nbits, gfp_t flags);
145
146/*
147 * lib/bitmap.c provides these functions:
148 */
149
150bool __bitmap_equal(const unsigned long *bitmap1,
151		    const unsigned long *bitmap2, unsigned int nbits);
152bool __pure __bitmap_or_equal(const unsigned long *src1,
153			      const unsigned long *src2,
154			      const unsigned long *src3,
155			      unsigned int nbits);
156void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157			 unsigned int nbits);
158void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159			  unsigned int shift, unsigned int nbits);
160void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161			 unsigned int shift, unsigned int nbits);
162void bitmap_cut(unsigned long *dst, const unsigned long *src,
163		unsigned int first, unsigned int cut, unsigned int nbits);
164bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165		 const unsigned long *bitmap2, unsigned int nbits);
166void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167		 const unsigned long *bitmap2, unsigned int nbits);
168void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169		  const unsigned long *bitmap2, unsigned int nbits);
170bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171		    const unsigned long *bitmap2, unsigned int nbits);
172void __bitmap_replace(unsigned long *dst,
173		      const unsigned long *old, const unsigned long *new,
174		      const unsigned long *mask, unsigned int nbits);
175bool __bitmap_intersects(const unsigned long *bitmap1,
176			 const unsigned long *bitmap2, unsigned int nbits);
177bool __bitmap_subset(const unsigned long *bitmap1,
178		     const unsigned long *bitmap2, unsigned int nbits);
179unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181				 const unsigned long *bitmap2, unsigned int nbits);
182unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183				    const unsigned long *bitmap2, unsigned int nbits);
184void __bitmap_set(unsigned long *map, unsigned int start, int len);
185void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186
187unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188					     unsigned long size,
189					     unsigned long start,
190					     unsigned int nr,
191					     unsigned long align_mask,
192					     unsigned long align_offset);
193
194/**
195 * bitmap_find_next_zero_area - find a contiguous aligned zero area
196 * @map: The address to base the search on
197 * @size: The bitmap size in bits
198 * @start: The bitnumber to start searching at
199 * @nr: The number of zeroed bits we're looking for
200 * @align_mask: Alignment mask for zero area
201 *
202 * The @align_mask should be one less than a power of 2; the effect is that
203 * the bit offset of all zero areas this function finds is multiples of that
204 * power of 2. A @align_mask of 0 means no alignment is required.
205 */
206static __always_inline
207unsigned long bitmap_find_next_zero_area(unsigned long *map,
208					 unsigned long size,
209					 unsigned long start,
210					 unsigned int nr,
211					 unsigned long align_mask)
212{
213	return bitmap_find_next_zero_area_off(map, size, start, nr,
214					      align_mask, 0);
215}
216
 
 
 
 
 
 
 
 
217void bitmap_remap(unsigned long *dst, const unsigned long *src,
218		const unsigned long *old, const unsigned long *new, unsigned int nbits);
219int bitmap_bitremap(int oldbit,
220		const unsigned long *old, const unsigned long *new, int bits);
221void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222		const unsigned long *relmap, unsigned int bits);
223void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224		unsigned int sz, unsigned int nbits);
 
 
 
 
 
 
 
 
 
 
 
 
225
226#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228
229#define bitmap_size(nbits)	(ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230
231static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232{
233	unsigned int len = bitmap_size(nbits);
234
235	if (small_const_nbits(nbits))
236		*dst = 0;
237	else
238		memset(dst, 0, len);
239}
240
241static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242{
243	unsigned int len = bitmap_size(nbits);
244
245	if (small_const_nbits(nbits))
246		*dst = ~0UL;
247	else
248		memset(dst, 0xff, len);
249}
250
251static __always_inline
252void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
253{
254	unsigned int len = bitmap_size(nbits);
255
256	if (small_const_nbits(nbits))
257		*dst = *src;
258	else
259		memcpy(dst, src, len);
260}
261
262/*
263 * Copy bitmap and clear tail bits in last word.
264 */
265static __always_inline
266void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
267{
268	bitmap_copy(dst, src, nbits);
269	if (nbits % BITS_PER_LONG)
270		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271}
272
273static inline void bitmap_copy_and_extend(unsigned long *to,
274					  const unsigned long *from,
275					  unsigned int count, unsigned int size)
276{
277	unsigned int copy = BITS_TO_LONGS(count);
278
279	memcpy(to, from, copy * sizeof(long));
280	if (count % BITS_PER_LONG)
281		to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
282	memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
283}
284
285/*
286 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
287 * machines the order of hi and lo parts of numbers match the bitmap structure.
288 * In both cases conversion is not needed when copying data from/to arrays of
289 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
290 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
291 * architectures are not using bitmap_copy_clear_tail().
292 */
293#if BITS_PER_LONG == 64
294void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
295							unsigned int nbits);
296void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
297							unsigned int nbits);
298#else
299#define bitmap_from_arr32(bitmap, buf, nbits)			\
300	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
301			(const unsigned long *) (buf), (nbits))
302#define bitmap_to_arr32(buf, bitmap, nbits)			\
303	bitmap_copy_clear_tail((unsigned long *) (buf),		\
304			(const unsigned long *) (bitmap), (nbits))
305#endif
306
307/*
308 * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
309 * the conversion is not needed when copying data from/to arrays of u64.
310 */
311#if BITS_PER_LONG == 32
312void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
313void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
314#else
315#define bitmap_from_arr64(bitmap, buf, nbits)			\
316	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
317#define bitmap_to_arr64(buf, bitmap, nbits)			\
318	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
319#endif
320
321static __always_inline
322bool bitmap_and(unsigned long *dst, const unsigned long *src1,
323		const unsigned long *src2, unsigned int nbits)
324{
325	if (small_const_nbits(nbits))
326		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
327	return __bitmap_and(dst, src1, src2, nbits);
328}
329
330static __always_inline
331void bitmap_or(unsigned long *dst, const unsigned long *src1,
332	       const unsigned long *src2, unsigned int nbits)
333{
334	if (small_const_nbits(nbits))
335		*dst = *src1 | *src2;
336	else
337		__bitmap_or(dst, src1, src2, nbits);
338}
339
340static __always_inline
341void bitmap_xor(unsigned long *dst, const unsigned long *src1,
342		const unsigned long *src2, unsigned int nbits)
343{
344	if (small_const_nbits(nbits))
345		*dst = *src1 ^ *src2;
346	else
347		__bitmap_xor(dst, src1, src2, nbits);
348}
349
350static __always_inline
351bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
352		   const unsigned long *src2, unsigned int nbits)
353{
354	if (small_const_nbits(nbits))
355		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
356	return __bitmap_andnot(dst, src1, src2, nbits);
357}
358
359static __always_inline
360void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
361{
362	if (small_const_nbits(nbits))
363		*dst = ~(*src);
364	else
365		__bitmap_complement(dst, src, nbits);
366}
367
368#ifdef __LITTLE_ENDIAN
369#define BITMAP_MEM_ALIGNMENT 8
370#else
371#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
372#endif
373#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
374
375static __always_inline
376bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
377{
378	if (small_const_nbits(nbits))
379		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
380	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
381	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
382		return !memcmp(src1, src2, nbits / 8);
383	return __bitmap_equal(src1, src2, nbits);
384}
385
386/**
387 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
388 * @src1:	Pointer to bitmap 1
389 * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
390 * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
391 * @nbits:	number of bits in each of these bitmaps
392 *
393 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
394 */
395static __always_inline
396bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
397		     const unsigned long *src3, unsigned int nbits)
 
398{
399	if (!small_const_nbits(nbits))
400		return __bitmap_or_equal(src1, src2, src3, nbits);
401
402	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
403}
404
405static __always_inline
406bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
407{
408	if (small_const_nbits(nbits))
409		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
410	else
411		return __bitmap_intersects(src1, src2, nbits);
412}
413
414static __always_inline
415bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
416{
417	if (small_const_nbits(nbits))
418		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
419	else
420		return __bitmap_subset(src1, src2, nbits);
421}
422
423static __always_inline
424bool bitmap_empty(const unsigned long *src, unsigned nbits)
425{
426	if (small_const_nbits(nbits))
427		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
428
429	return find_first_bit(src, nbits) == nbits;
430}
431
432static __always_inline
433bool bitmap_full(const unsigned long *src, unsigned int nbits)
434{
435	if (small_const_nbits(nbits))
436		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
437
438	return find_first_zero_bit(src, nbits) == nbits;
439}
440
441static __always_inline
442unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
443{
444	if (small_const_nbits(nbits))
445		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
446	return __bitmap_weight(src, nbits);
447}
448
449static __always_inline
450unsigned long bitmap_weight_and(const unsigned long *src1,
451				const unsigned long *src2, unsigned int nbits)
452{
453	if (small_const_nbits(nbits))
454		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
455	return __bitmap_weight_and(src1, src2, nbits);
456}
457
458static __always_inline
459unsigned long bitmap_weight_andnot(const unsigned long *src1,
460				   const unsigned long *src2, unsigned int nbits)
461{
462	if (small_const_nbits(nbits))
463		return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
464	return __bitmap_weight_andnot(src1, src2, nbits);
465}
466
467static __always_inline
468void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
469{
470	if (__builtin_constant_p(nbits) && nbits == 1)
471		__set_bit(start, map);
472	else if (small_const_nbits(start + nbits))
473		*map |= GENMASK(start + nbits - 1, start);
474	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
475		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
476		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
477		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
478		memset((char *)map + start / 8, 0xff, nbits / 8);
479	else
480		__bitmap_set(map, start, nbits);
481}
482
483static __always_inline
484void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
485{
486	if (__builtin_constant_p(nbits) && nbits == 1)
487		__clear_bit(start, map);
488	else if (small_const_nbits(start + nbits))
489		*map &= ~GENMASK(start + nbits - 1, start);
490	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
491		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
492		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
493		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
494		memset((char *)map + start / 8, 0, nbits / 8);
495	else
496		__bitmap_clear(map, start, nbits);
497}
498
499static __always_inline
500void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
501			unsigned int shift, unsigned int nbits)
502{
503	if (small_const_nbits(nbits))
504		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
505	else
506		__bitmap_shift_right(dst, src, shift, nbits);
507}
508
509static __always_inline
510void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
511		       unsigned int shift, unsigned int nbits)
512{
513	if (small_const_nbits(nbits))
514		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
515	else
516		__bitmap_shift_left(dst, src, shift, nbits);
517}
518
519static __always_inline
520void bitmap_replace(unsigned long *dst,
521		    const unsigned long *old,
522		    const unsigned long *new,
523		    const unsigned long *mask,
524		    unsigned int nbits)
525{
526	if (small_const_nbits(nbits))
527		*dst = (*old & ~(*mask)) | (*new & *mask);
528	else
529		__bitmap_replace(dst, old, new, mask, nbits);
530}
531
532/**
533 * bitmap_scatter - Scatter a bitmap according to the given mask
534 * @dst: scattered bitmap
535 * @src: gathered bitmap
536 * @mask: mask representing bits to assign to in the scattered bitmap
537 * @nbits: number of bits in each of these bitmaps
538 *
539 * Scatters bitmap with sequential bits according to the given @mask.
540 *
541 * Example:
542 * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
543 *
544 * Or in binary form
545 * @src			@mask			@dst
546 * 0000000001011010	0001001100010011	0000001100000010
547 *
548 * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
549 *
550 * A more 'visual' description of the operation::
551 *
552 *	src:  0000000001011010
553 *	                ||||||
554 *	         +------+|||||
555 *	         |  +----+||||
556 *	         |  |+----+|||
557 *	         |  ||   +-+||
558 *	         |  ||   |  ||
559 *	mask: ...v..vv...v..vv
560 *	      ...0..11...0..10
561 *	dst:  0000001100000010
562 *
563 * A relationship exists between bitmap_scatter() and bitmap_gather().
564 * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
565 * See bitmap_scatter() for details related to this relationship.
566 */
567static __always_inline
568void bitmap_scatter(unsigned long *dst, const unsigned long *src,
569		    const unsigned long *mask, unsigned int nbits)
570{
571	unsigned int n = 0;
572	unsigned int bit;
573
574	bitmap_zero(dst, nbits);
575
576	for_each_set_bit(bit, mask, nbits)
577		__assign_bit(bit, dst, test_bit(n++, src));
578}
579
580/**
581 * bitmap_gather - Gather a bitmap according to given mask
582 * @dst: gathered bitmap
583 * @src: scattered bitmap
584 * @mask: mask representing bits to extract from in the scattered bitmap
585 * @nbits: number of bits in each of these bitmaps
586 *
587 * Gathers bitmap with sparse bits according to the given @mask.
588 *
589 * Example:
590 * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
591 *
592 * Or in binary form
593 * @src			@mask			@dst
594 * 0000001100000010	0001001100010011	0000000000011010
595 *
596 * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
597 *
598 * A more 'visual' description of the operation::
599 *
600 *	mask: ...v..vv...v..vv
601 *	src:  0000001100000010
602 *	         ^  ^^   ^   0
603 *	         |  ||   |  10
604 *	         |  ||   > 010
605 *	         |  |+--> 1010
606 *	         |  +--> 11010
607 *	         +----> 011010
608 *	dst:  0000000000011010
609 *
610 * A relationship exists between bitmap_gather() and bitmap_scatter(). See
611 * bitmap_scatter() for the bitmap scatter detailed operations.
612 * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
613 * The operation bitmap_gather(result, scattered, mask, n) leads to a result
614 * equal or equivalent to src.
615 *
616 * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
617 * are not bijective.
618 * The result and src values are equivalent in that sense that a call to
619 * bitmap_scatter(res, src, mask, n) and a call to
620 * bitmap_scatter(res, result, mask, n) will lead to the same res value.
621 */
622static __always_inline
623void bitmap_gather(unsigned long *dst, const unsigned long *src,
624		   const unsigned long *mask, unsigned int nbits)
625{
626	unsigned int n = 0;
627	unsigned int bit;
628
629	bitmap_zero(dst, nbits);
630
631	for_each_set_bit(bit, mask, nbits)
632		__assign_bit(n++, dst, test_bit(bit, src));
633}
634
635static __always_inline
636void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
637			    unsigned int *re, unsigned int end)
638{
639	*rs = find_next_bit(bitmap, end, *rs);
640	*re = find_next_zero_bit(bitmap, end, *rs + 1);
641}
642
643/**
644 * bitmap_release_region - release allocated bitmap region
645 *	@bitmap: array of unsigned longs corresponding to the bitmap
646 *	@pos: beginning of bit region to release
647 *	@order: region size (log base 2 of number of bits) to release
648 *
649 * This is the complement to __bitmap_find_free_region() and releases
650 * the found region (by clearing it in the bitmap).
651 */
652static __always_inline
653void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
654{
655	bitmap_clear(bitmap, pos, BIT(order));
656}
657
658/**
659 * bitmap_allocate_region - allocate bitmap region
660 *	@bitmap: array of unsigned longs corresponding to the bitmap
661 *	@pos: beginning of bit region to allocate
662 *	@order: region size (log base 2 of number of bits) to allocate
663 *
664 * Allocate (set bits in) a specified region of a bitmap.
665 *
666 * Returns: 0 on success, or %-EBUSY if specified region wasn't
667 * free (not all bits were zero).
668 */
669static __always_inline
670int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
671{
672	unsigned int len = BIT(order);
673
674	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
675		return -EBUSY;
676	bitmap_set(bitmap, pos, len);
677	return 0;
678}
679
680/**
681 * bitmap_find_free_region - find a contiguous aligned mem region
682 *	@bitmap: array of unsigned longs corresponding to the bitmap
683 *	@bits: number of bits in the bitmap
684 *	@order: region size (log base 2 of number of bits) to find
685 *
686 * Find a region of free (zero) bits in a @bitmap of @bits bits and
687 * allocate them (set them to one).  Only consider regions of length
688 * a power (@order) of two, aligned to that power of two, which
689 * makes the search algorithm much faster.
690 *
691 * Returns: the bit offset in bitmap of the allocated region,
692 * or -errno on failure.
693 */
694static __always_inline
695int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
696{
697	unsigned int pos, end;		/* scans bitmap by regions of size order */
698
699	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
700		if (!bitmap_allocate_region(bitmap, pos, order))
701			return pos;
702	}
703	return -ENOMEM;
704}
705
706/**
707 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
708 * @n: u64 value
709 *
710 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
711 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
712 *
713 * There are four combinations of endianness and length of the word in linux
714 * ABIs: LE64, BE64, LE32 and BE32.
715 *
716 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
717 * bitmaps and therefore don't require any special handling.
718 *
719 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
720 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
721 * other hand is represented as an array of 32-bit words and the position of
722 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
723 * word.  For example, bit #42 is located at 10th position of 2nd word.
724 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
725 * values in memory as it usually does. But for BE we need to swap hi and lo
726 * words manually.
727 *
728 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
729 * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
730 * hi and lo words, as is expected by bitmap.
731 */
732#if __BITS_PER_LONG == 64
733#define BITMAP_FROM_U64(n) (n)
734#else
735#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
736				((unsigned long) ((u64)(n) >> 32))
737#endif
738
739/**
740 * bitmap_from_u64 - Check and swap words within u64.
741 *  @mask: source bitmap
742 *  @dst:  destination bitmap
743 *
744 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
745 * to read u64 mask, we will get the wrong word.
746 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
747 * but we expect the lower 32-bits of u64.
748 */
749static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
750{
751	bitmap_from_arr64(dst, &mask, 64);
 
 
 
752}
753
754/**
755 * bitmap_read - read a value of n-bits from the memory region
756 * @map: address to the bitmap memory region
757 * @start: bit offset of the n-bit value
758 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
759 *
760 * Returns: value of @nbits bits located at the @start bit offset within the
761 * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
762 * value is undefined.
763 */
764static __always_inline
765unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
766{
767	size_t index = BIT_WORD(start);
768	unsigned long offset = start % BITS_PER_LONG;
769	unsigned long space = BITS_PER_LONG - offset;
770	unsigned long value_low, value_high;
771
772	if (unlikely(!nbits || nbits > BITS_PER_LONG))
773		return 0;
774
775	if (space >= nbits)
776		return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
777
778	value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
779	value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
780	return (value_low >> offset) | (value_high << space);
781}
782
783/**
784 * bitmap_write - write n-bit value within a memory region
785 * @map: address to the bitmap memory region
786 * @value: value to write, clamped to nbits
787 * @start: bit offset of the n-bit value
788 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
789 *
790 * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
791 * i.e. bits beyond @nbits are ignored:
792 *
793 *   for (bit = 0; bit < nbits; bit++)
794 *           __assign_bit(start + bit, bitmap, val & BIT(bit));
795 *
796 * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
797 */
798static __always_inline
799void bitmap_write(unsigned long *map, unsigned long value,
800		  unsigned long start, unsigned long nbits)
801{
802	size_t index;
803	unsigned long offset;
804	unsigned long space;
805	unsigned long mask;
806	bool fit;
807
808	if (unlikely(!nbits || nbits > BITS_PER_LONG))
809		return;
810
811	mask = BITMAP_LAST_WORD_MASK(nbits);
812	value &= mask;
813	offset = start % BITS_PER_LONG;
814	space = BITS_PER_LONG - offset;
815	fit = space >= nbits;
816	index = BIT_WORD(start);
817
818	map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
819	map[index] |= value << offset;
820	if (fit)
821		return;
822
823	map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
824	map[index + 1] |= (value >> space);
825}
826
827#define bitmap_get_value8(map, start)			\
828	bitmap_read(map, start, BITS_PER_BYTE)
829#define bitmap_set_value8(map, value, start)		\
830	bitmap_write(map, value, start, BITS_PER_BYTE)
831
832#endif /* __ASSEMBLY__ */
833
834#endif /* __LINUX_BITMAP_H */