Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_BITMAP_H
3#define __LINUX_BITMAP_H
4
5#ifndef __ASSEMBLY__
6
7#include <linux/align.h>
8#include <linux/bitops.h>
9#include <linux/limits.h>
10#include <linux/string.h>
11#include <linux/types.h>
12
13struct device;
14
15/*
16 * bitmaps provide bit arrays that consume one or more unsigned
17 * longs. The bitmap interface and available operations are listed
18 * here, in bitmap.h
19 *
20 * Function implementations generic to all architectures are in
21 * lib/bitmap.c. Functions implementations that are architecture
22 * specific are in various include/asm-<arch>/bitops.h headers
23 * and other arch/<arch> specific files.
24 *
25 * See lib/bitmap.c for more details.
26 */
27
28/**
29 * DOC: bitmap overview
30 *
31 * The available bitmap operations and their rough meaning in the
32 * case that the bitmap is a single unsigned long are thus:
33 *
34 * The generated code is more efficient when nbits is known at
35 * compile-time and at most BITS_PER_LONG.
36 *
37 * ::
38 *
39 * bitmap_zero(dst, nbits) *dst = 0UL
40 * bitmap_fill(dst, nbits) *dst = ~0UL
41 * bitmap_copy(dst, src, nbits) *dst = *src
42 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
43 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
44 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
45 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
46 * bitmap_complement(dst, src, nbits) *dst = ~(*src)
47 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
48 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
49 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
50 * bitmap_empty(src, nbits) Are all bits zero in *src?
51 * bitmap_full(src, nbits) Are all bits set in *src?
52 * bitmap_weight(src, nbits) Hamming Weight: number set bits
53 * bitmap_set(dst, pos, nbits) Set specified bit area
54 * bitmap_clear(dst, pos, nbits) Clear specified bit area
55 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
56 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
57 * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region
58 * bitmap_next_set_region(map, &start, &end, nbits) Find next set region
59 * bitmap_for_each_clear_region(map, rs, re, start, end)
60 * Iterate over all clear regions
61 * bitmap_for_each_set_region(map, rs, re, start, end)
62 * Iterate over all set regions
63 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
64 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
65 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
66 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
67 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
68 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
69 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
70 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
71 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
72 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
73 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
74 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
75 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
76 * bitmap_release_region(bitmap, pos, order) Free specified bit region
77 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
78 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
79 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
80 * bitmap_get_value8(map, start) Get 8bit value from map at start
81 * bitmap_set_value8(map, value, start) Set 8bit value to map at start
82 *
83 * Note, bitmap_zero() and bitmap_fill() operate over the region of
84 * unsigned longs, that is, bits behind bitmap till the unsigned long
85 * boundary will be zeroed or filled as well. Consider to use
86 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
87 * respectively.
88 */
89
90/**
91 * DOC: bitmap bitops
92 *
93 * Also the following operations in asm/bitops.h apply to bitmaps.::
94 *
95 * set_bit(bit, addr) *addr |= bit
96 * clear_bit(bit, addr) *addr &= ~bit
97 * change_bit(bit, addr) *addr ^= bit
98 * test_bit(bit, addr) Is bit set in *addr?
99 * test_and_set_bit(bit, addr) Set bit and return old value
100 * test_and_clear_bit(bit, addr) Clear bit and return old value
101 * test_and_change_bit(bit, addr) Change bit and return old value
102 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr
103 * find_first_bit(addr, nbits) Position first set bit in *addr
104 * find_next_zero_bit(addr, nbits, bit)
105 * Position next zero bit in *addr >= bit
106 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
107 * find_next_and_bit(addr1, addr2, nbits, bit)
108 * Same as find_next_bit, but in
109 * (*addr1 & *addr2)
110 *
111 */
112
113/**
114 * DOC: declare bitmap
115 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
116 * to declare an array named 'name' of just enough unsigned longs to
117 * contain all bit positions from 0 to 'bits' - 1.
118 */
119
120/*
121 * Allocation and deallocation of bitmap.
122 * Provided in lib/bitmap.c to avoid circular dependency.
123 */
124unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
125unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
126void bitmap_free(const unsigned long *bitmap);
127
128/* Managed variants of the above. */
129unsigned long *devm_bitmap_alloc(struct device *dev,
130 unsigned int nbits, gfp_t flags);
131unsigned long *devm_bitmap_zalloc(struct device *dev,
132 unsigned int nbits, gfp_t flags);
133
134/*
135 * lib/bitmap.c provides these functions:
136 */
137
138int __bitmap_equal(const unsigned long *bitmap1,
139 const unsigned long *bitmap2, unsigned int nbits);
140bool __pure __bitmap_or_equal(const unsigned long *src1,
141 const unsigned long *src2,
142 const unsigned long *src3,
143 unsigned int nbits);
144void __bitmap_complement(unsigned long *dst, const unsigned long *src,
145 unsigned int nbits);
146void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits);
148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 unsigned int shift, unsigned int nbits);
150void bitmap_cut(unsigned long *dst, const unsigned long *src,
151 unsigned int first, unsigned int cut, unsigned int nbits);
152int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
153 const unsigned long *bitmap2, unsigned int nbits);
154void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
155 const unsigned long *bitmap2, unsigned int nbits);
156void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
157 const unsigned long *bitmap2, unsigned int nbits);
158int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
159 const unsigned long *bitmap2, unsigned int nbits);
160void __bitmap_replace(unsigned long *dst,
161 const unsigned long *old, const unsigned long *new,
162 const unsigned long *mask, unsigned int nbits);
163int __bitmap_intersects(const unsigned long *bitmap1,
164 const unsigned long *bitmap2, unsigned int nbits);
165int __bitmap_subset(const unsigned long *bitmap1,
166 const unsigned long *bitmap2, unsigned int nbits);
167int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
168void __bitmap_set(unsigned long *map, unsigned int start, int len);
169void __bitmap_clear(unsigned long *map, unsigned int start, int len);
170
171unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
172 unsigned long size,
173 unsigned long start,
174 unsigned int nr,
175 unsigned long align_mask,
176 unsigned long align_offset);
177
178/**
179 * bitmap_find_next_zero_area - find a contiguous aligned zero area
180 * @map: The address to base the search on
181 * @size: The bitmap size in bits
182 * @start: The bitnumber to start searching at
183 * @nr: The number of zeroed bits we're looking for
184 * @align_mask: Alignment mask for zero area
185 *
186 * The @align_mask should be one less than a power of 2; the effect is that
187 * the bit offset of all zero areas this function finds is multiples of that
188 * power of 2. A @align_mask of 0 means no alignment is required.
189 */
190static inline unsigned long
191bitmap_find_next_zero_area(unsigned long *map,
192 unsigned long size,
193 unsigned long start,
194 unsigned int nr,
195 unsigned long align_mask)
196{
197 return bitmap_find_next_zero_area_off(map, size, start, nr,
198 align_mask, 0);
199}
200
201int bitmap_parse(const char *buf, unsigned int buflen,
202 unsigned long *dst, int nbits);
203int bitmap_parse_user(const char __user *ubuf, unsigned int ulen,
204 unsigned long *dst, int nbits);
205int bitmap_parselist(const char *buf, unsigned long *maskp,
206 int nmaskbits);
207int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen,
208 unsigned long *dst, int nbits);
209void bitmap_remap(unsigned long *dst, const unsigned long *src,
210 const unsigned long *old, const unsigned long *new, unsigned int nbits);
211int bitmap_bitremap(int oldbit,
212 const unsigned long *old, const unsigned long *new, int bits);
213void bitmap_onto(unsigned long *dst, const unsigned long *orig,
214 const unsigned long *relmap, unsigned int bits);
215void bitmap_fold(unsigned long *dst, const unsigned long *orig,
216 unsigned int sz, unsigned int nbits);
217int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order);
218void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order);
219int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order);
220
221#ifdef __BIG_ENDIAN
222void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits);
223#else
224#define bitmap_copy_le bitmap_copy
225#endif
226unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits);
227int bitmap_print_to_pagebuf(bool list, char *buf,
228 const unsigned long *maskp, int nmaskbits);
229
230#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
231#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
232
233static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
234{
235 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
236 memset(dst, 0, len);
237}
238
239static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
240{
241 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
242 memset(dst, 0xff, len);
243}
244
245static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
246 unsigned int nbits)
247{
248 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long);
249 memcpy(dst, src, len);
250}
251
252/*
253 * Copy bitmap and clear tail bits in last word.
254 */
255static inline void bitmap_copy_clear_tail(unsigned long *dst,
256 const unsigned long *src, unsigned int nbits)
257{
258 bitmap_copy(dst, src, nbits);
259 if (nbits % BITS_PER_LONG)
260 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
261}
262
263/*
264 * On 32-bit systems bitmaps are represented as u32 arrays internally, and
265 * therefore conversion is not needed when copying data from/to arrays of u32.
266 */
267#if BITS_PER_LONG == 64
268void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
269 unsigned int nbits);
270void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
271 unsigned int nbits);
272#else
273#define bitmap_from_arr32(bitmap, buf, nbits) \
274 bitmap_copy_clear_tail((unsigned long *) (bitmap), \
275 (const unsigned long *) (buf), (nbits))
276#define bitmap_to_arr32(buf, bitmap, nbits) \
277 bitmap_copy_clear_tail((unsigned long *) (buf), \
278 (const unsigned long *) (bitmap), (nbits))
279#endif
280
281static inline int bitmap_and(unsigned long *dst, const unsigned long *src1,
282 const unsigned long *src2, unsigned int nbits)
283{
284 if (small_const_nbits(nbits))
285 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
286 return __bitmap_and(dst, src1, src2, nbits);
287}
288
289static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
290 const unsigned long *src2, unsigned int nbits)
291{
292 if (small_const_nbits(nbits))
293 *dst = *src1 | *src2;
294 else
295 __bitmap_or(dst, src1, src2, nbits);
296}
297
298static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
299 const unsigned long *src2, unsigned int nbits)
300{
301 if (small_const_nbits(nbits))
302 *dst = *src1 ^ *src2;
303 else
304 __bitmap_xor(dst, src1, src2, nbits);
305}
306
307static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
308 const unsigned long *src2, unsigned int nbits)
309{
310 if (small_const_nbits(nbits))
311 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
312 return __bitmap_andnot(dst, src1, src2, nbits);
313}
314
315static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
316 unsigned int nbits)
317{
318 if (small_const_nbits(nbits))
319 *dst = ~(*src);
320 else
321 __bitmap_complement(dst, src, nbits);
322}
323
324#ifdef __LITTLE_ENDIAN
325#define BITMAP_MEM_ALIGNMENT 8
326#else
327#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
328#endif
329#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
330
331static inline int bitmap_equal(const unsigned long *src1,
332 const unsigned long *src2, unsigned int nbits)
333{
334 if (small_const_nbits(nbits))
335 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
336 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
337 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
338 return !memcmp(src1, src2, nbits / 8);
339 return __bitmap_equal(src1, src2, nbits);
340}
341
342/**
343 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
344 * @src1: Pointer to bitmap 1
345 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
346 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
347 * @nbits: number of bits in each of these bitmaps
348 *
349 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
350 */
351static inline bool bitmap_or_equal(const unsigned long *src1,
352 const unsigned long *src2,
353 const unsigned long *src3,
354 unsigned int nbits)
355{
356 if (!small_const_nbits(nbits))
357 return __bitmap_or_equal(src1, src2, src3, nbits);
358
359 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
360}
361
362static inline int bitmap_intersects(const unsigned long *src1,
363 const unsigned long *src2, unsigned int nbits)
364{
365 if (small_const_nbits(nbits))
366 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
367 else
368 return __bitmap_intersects(src1, src2, nbits);
369}
370
371static inline int bitmap_subset(const unsigned long *src1,
372 const unsigned long *src2, unsigned int nbits)
373{
374 if (small_const_nbits(nbits))
375 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
376 else
377 return __bitmap_subset(src1, src2, nbits);
378}
379
380static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
381{
382 if (small_const_nbits(nbits))
383 return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
384
385 return find_first_bit(src, nbits) == nbits;
386}
387
388static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
389{
390 if (small_const_nbits(nbits))
391 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
392
393 return find_first_zero_bit(src, nbits) == nbits;
394}
395
396static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits)
397{
398 if (small_const_nbits(nbits))
399 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
400 return __bitmap_weight(src, nbits);
401}
402
403static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
404 unsigned int nbits)
405{
406 if (__builtin_constant_p(nbits) && nbits == 1)
407 __set_bit(start, map);
408 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
409 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
410 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
411 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
412 memset((char *)map + start / 8, 0xff, nbits / 8);
413 else
414 __bitmap_set(map, start, nbits);
415}
416
417static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
418 unsigned int nbits)
419{
420 if (__builtin_constant_p(nbits) && nbits == 1)
421 __clear_bit(start, map);
422 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
423 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
424 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
425 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
426 memset((char *)map + start / 8, 0, nbits / 8);
427 else
428 __bitmap_clear(map, start, nbits);
429}
430
431static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
432 unsigned int shift, unsigned int nbits)
433{
434 if (small_const_nbits(nbits))
435 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
436 else
437 __bitmap_shift_right(dst, src, shift, nbits);
438}
439
440static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
441 unsigned int shift, unsigned int nbits)
442{
443 if (small_const_nbits(nbits))
444 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
445 else
446 __bitmap_shift_left(dst, src, shift, nbits);
447}
448
449static inline void bitmap_replace(unsigned long *dst,
450 const unsigned long *old,
451 const unsigned long *new,
452 const unsigned long *mask,
453 unsigned int nbits)
454{
455 if (small_const_nbits(nbits))
456 *dst = (*old & ~(*mask)) | (*new & *mask);
457 else
458 __bitmap_replace(dst, old, new, mask, nbits);
459}
460
461static inline void bitmap_next_clear_region(unsigned long *bitmap,
462 unsigned int *rs, unsigned int *re,
463 unsigned int end)
464{
465 *rs = find_next_zero_bit(bitmap, end, *rs);
466 *re = find_next_bit(bitmap, end, *rs + 1);
467}
468
469static inline void bitmap_next_set_region(unsigned long *bitmap,
470 unsigned int *rs, unsigned int *re,
471 unsigned int end)
472{
473 *rs = find_next_bit(bitmap, end, *rs);
474 *re = find_next_zero_bit(bitmap, end, *rs + 1);
475}
476
477/*
478 * Bitmap region iterators. Iterates over the bitmap between [@start, @end).
479 * @rs and @re should be integer variables and will be set to start and end
480 * index of the current clear or set region.
481 */
482#define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \
483 for ((rs) = (start), \
484 bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \
485 (rs) < (re); \
486 (rs) = (re) + 1, \
487 bitmap_next_clear_region((bitmap), &(rs), &(re), (end)))
488
489#define bitmap_for_each_set_region(bitmap, rs, re, start, end) \
490 for ((rs) = (start), \
491 bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \
492 (rs) < (re); \
493 (rs) = (re) + 1, \
494 bitmap_next_set_region((bitmap), &(rs), &(re), (end)))
495
496/**
497 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
498 * @n: u64 value
499 *
500 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
501 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
502 *
503 * There are four combinations of endianness and length of the word in linux
504 * ABIs: LE64, BE64, LE32 and BE32.
505 *
506 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
507 * bitmaps and therefore don't require any special handling.
508 *
509 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
510 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
511 * other hand is represented as an array of 32-bit words and the position of
512 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
513 * word. For example, bit #42 is located at 10th position of 2nd word.
514 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
515 * values in memory as it usually does. But for BE we need to swap hi and lo
516 * words manually.
517 *
518 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
519 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
520 * hi and lo words, as is expected by bitmap.
521 */
522#if __BITS_PER_LONG == 64
523#define BITMAP_FROM_U64(n) (n)
524#else
525#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
526 ((unsigned long) ((u64)(n) >> 32))
527#endif
528
529/**
530 * bitmap_from_u64 - Check and swap words within u64.
531 * @mask: source bitmap
532 * @dst: destination bitmap
533 *
534 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
535 * to read u64 mask, we will get the wrong word.
536 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
537 * but we expect the lower 32-bits of u64.
538 */
539static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
540{
541 dst[0] = mask & ULONG_MAX;
542
543 if (sizeof(mask) > sizeof(unsigned long))
544 dst[1] = mask >> 32;
545}
546
547/**
548 * bitmap_get_value8 - get an 8-bit value within a memory region
549 * @map: address to the bitmap memory region
550 * @start: bit offset of the 8-bit value; must be a multiple of 8
551 *
552 * Returns the 8-bit value located at the @start bit offset within the @src
553 * memory region.
554 */
555static inline unsigned long bitmap_get_value8(const unsigned long *map,
556 unsigned long start)
557{
558 const size_t index = BIT_WORD(start);
559 const unsigned long offset = start % BITS_PER_LONG;
560
561 return (map[index] >> offset) & 0xFF;
562}
563
564/**
565 * bitmap_set_value8 - set an 8-bit value within a memory region
566 * @map: address to the bitmap memory region
567 * @value: the 8-bit value; values wider than 8 bits may clobber bitmap
568 * @start: bit offset of the 8-bit value; must be a multiple of 8
569 */
570static inline void bitmap_set_value8(unsigned long *map, unsigned long value,
571 unsigned long start)
572{
573 const size_t index = BIT_WORD(start);
574 const unsigned long offset = start % BITS_PER_LONG;
575
576 map[index] &= ~(0xFFUL << offset);
577 map[index] |= value << offset;
578}
579
580#endif /* __ASSEMBLY__ */
581
582#endif /* __LINUX_BITMAP_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_BITMAP_H
3#define __LINUX_BITMAP_H
4
5#ifndef __ASSEMBLY__
6
7#include <linux/align.h>
8#include <linux/bitops.h>
9#include <linux/cleanup.h>
10#include <linux/errno.h>
11#include <linux/find.h>
12#include <linux/limits.h>
13#include <linux/string.h>
14#include <linux/types.h>
15#include <linux/bitmap-str.h>
16
17struct device;
18
19/*
20 * bitmaps provide bit arrays that consume one or more unsigned
21 * longs. The bitmap interface and available operations are listed
22 * here, in bitmap.h
23 *
24 * Function implementations generic to all architectures are in
25 * lib/bitmap.c. Functions implementations that are architecture
26 * specific are in various include/asm-<arch>/bitops.h headers
27 * and other arch/<arch> specific files.
28 *
29 * See lib/bitmap.c for more details.
30 */
31
32/**
33 * DOC: bitmap overview
34 *
35 * The available bitmap operations and their rough meaning in the
36 * case that the bitmap is a single unsigned long are thus:
37 *
38 * The generated code is more efficient when nbits is known at
39 * compile-time and at most BITS_PER_LONG.
40 *
41 * ::
42 *
43 * bitmap_zero(dst, nbits) *dst = 0UL
44 * bitmap_fill(dst, nbits) *dst = ~0UL
45 * bitmap_copy(dst, src, nbits) *dst = *src
46 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2
47 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2
48 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2
49 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2)
50 * bitmap_complement(dst, src, nbits) *dst = ~(*src)
51 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal?
52 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap?
53 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2?
54 * bitmap_empty(src, nbits) Are all bits zero in *src?
55 * bitmap_full(src, nbits) Are all bits set in *src?
56 * bitmap_weight(src, nbits) Hamming Weight: number set bits
57 * bitmap_weight_and(src1, src2, nbits) Hamming Weight of and'ed bitmap
58 * bitmap_weight_andnot(src1, src2, nbits) Hamming Weight of andnot'ed bitmap
59 * bitmap_set(dst, pos, nbits) Set specified bit area
60 * bitmap_clear(dst, pos, nbits) Clear specified bit area
61 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area
62 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above
63 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
64 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
65 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
66 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
67 * bitmap_scatter(dst, src, mask, nbits) *dst = map(dense, sparse)(src)
68 * bitmap_gather(dst, src, mask, nbits) *dst = map(sparse, dense)(src)
69 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
70 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
71 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap
72 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz
73 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf
74 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf
75 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf
76 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf
77 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region
78 * bitmap_release_region(bitmap, pos, order) Free specified bit region
79 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region
80 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst
81 * bitmap_from_arr64(dst, buf, nbits) Copy nbits from u64[] buf to dst
82 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst
83 * bitmap_to_arr64(buf, src, nbits) Copy nbits from buf to u64[] dst
84 * bitmap_get_value8(map, start) Get 8bit value from map at start
85 * bitmap_set_value8(map, value, start) Set 8bit value to map at start
86 * bitmap_read(map, start, nbits) Read an nbits-sized value from
87 * map at start
88 * bitmap_write(map, value, start, nbits) Write an nbits-sized value to
89 * map at start
90 *
91 * Note, bitmap_zero() and bitmap_fill() operate over the region of
92 * unsigned longs, that is, bits behind bitmap till the unsigned long
93 * boundary will be zeroed or filled as well. Consider to use
94 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
95 * respectively.
96 */
97
98/**
99 * DOC: bitmap bitops
100 *
101 * Also the following operations in asm/bitops.h apply to bitmaps.::
102 *
103 * set_bit(bit, addr) *addr |= bit
104 * clear_bit(bit, addr) *addr &= ~bit
105 * change_bit(bit, addr) *addr ^= bit
106 * test_bit(bit, addr) Is bit set in *addr?
107 * test_and_set_bit(bit, addr) Set bit and return old value
108 * test_and_clear_bit(bit, addr) Clear bit and return old value
109 * test_and_change_bit(bit, addr) Change bit and return old value
110 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr
111 * find_first_bit(addr, nbits) Position first set bit in *addr
112 * find_next_zero_bit(addr, nbits, bit)
113 * Position next zero bit in *addr >= bit
114 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit
115 * find_next_and_bit(addr1, addr2, nbits, bit)
116 * Same as find_next_bit, but in
117 * (*addr1 & *addr2)
118 *
119 */
120
121/**
122 * DOC: declare bitmap
123 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124 * to declare an array named 'name' of just enough unsigned longs to
125 * contain all bit positions from 0 to 'bits' - 1.
126 */
127
128/*
129 * Allocation and deallocation of bitmap.
130 * Provided in lib/bitmap.c to avoid circular dependency.
131 */
132unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136void bitmap_free(const unsigned long *bitmap);
137
138DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139
140/* Managed variants of the above. */
141unsigned long *devm_bitmap_alloc(struct device *dev,
142 unsigned int nbits, gfp_t flags);
143unsigned long *devm_bitmap_zalloc(struct device *dev,
144 unsigned int nbits, gfp_t flags);
145
146/*
147 * lib/bitmap.c provides these functions:
148 */
149
150bool __bitmap_equal(const unsigned long *bitmap1,
151 const unsigned long *bitmap2, unsigned int nbits);
152bool __pure __bitmap_or_equal(const unsigned long *src1,
153 const unsigned long *src2,
154 const unsigned long *src3,
155 unsigned int nbits);
156void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157 unsigned int nbits);
158void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159 unsigned int shift, unsigned int nbits);
160void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161 unsigned int shift, unsigned int nbits);
162void bitmap_cut(unsigned long *dst, const unsigned long *src,
163 unsigned int first, unsigned int cut, unsigned int nbits);
164bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165 const unsigned long *bitmap2, unsigned int nbits);
166void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167 const unsigned long *bitmap2, unsigned int nbits);
168void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169 const unsigned long *bitmap2, unsigned int nbits);
170bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171 const unsigned long *bitmap2, unsigned int nbits);
172void __bitmap_replace(unsigned long *dst,
173 const unsigned long *old, const unsigned long *new,
174 const unsigned long *mask, unsigned int nbits);
175bool __bitmap_intersects(const unsigned long *bitmap1,
176 const unsigned long *bitmap2, unsigned int nbits);
177bool __bitmap_subset(const unsigned long *bitmap1,
178 const unsigned long *bitmap2, unsigned int nbits);
179unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181 const unsigned long *bitmap2, unsigned int nbits);
182unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183 const unsigned long *bitmap2, unsigned int nbits);
184void __bitmap_set(unsigned long *map, unsigned int start, int len);
185void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186
187unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188 unsigned long size,
189 unsigned long start,
190 unsigned int nr,
191 unsigned long align_mask,
192 unsigned long align_offset);
193
194/**
195 * bitmap_find_next_zero_area - find a contiguous aligned zero area
196 * @map: The address to base the search on
197 * @size: The bitmap size in bits
198 * @start: The bitnumber to start searching at
199 * @nr: The number of zeroed bits we're looking for
200 * @align_mask: Alignment mask for zero area
201 *
202 * The @align_mask should be one less than a power of 2; the effect is that
203 * the bit offset of all zero areas this function finds is multiples of that
204 * power of 2. A @align_mask of 0 means no alignment is required.
205 */
206static __always_inline
207unsigned long bitmap_find_next_zero_area(unsigned long *map,
208 unsigned long size,
209 unsigned long start,
210 unsigned int nr,
211 unsigned long align_mask)
212{
213 return bitmap_find_next_zero_area_off(map, size, start, nr,
214 align_mask, 0);
215}
216
217void bitmap_remap(unsigned long *dst, const unsigned long *src,
218 const unsigned long *old, const unsigned long *new, unsigned int nbits);
219int bitmap_bitremap(int oldbit,
220 const unsigned long *old, const unsigned long *new, int bits);
221void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222 const unsigned long *relmap, unsigned int bits);
223void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224 unsigned int sz, unsigned int nbits);
225
226#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228
229#define bitmap_size(nbits) (ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230
231static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232{
233 unsigned int len = bitmap_size(nbits);
234
235 if (small_const_nbits(nbits))
236 *dst = 0;
237 else
238 memset(dst, 0, len);
239}
240
241static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242{
243 unsigned int len = bitmap_size(nbits);
244
245 if (small_const_nbits(nbits))
246 *dst = ~0UL;
247 else
248 memset(dst, 0xff, len);
249}
250
251static __always_inline
252void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
253{
254 unsigned int len = bitmap_size(nbits);
255
256 if (small_const_nbits(nbits))
257 *dst = *src;
258 else
259 memcpy(dst, src, len);
260}
261
262/*
263 * Copy bitmap and clear tail bits in last word.
264 */
265static __always_inline
266void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
267{
268 bitmap_copy(dst, src, nbits);
269 if (nbits % BITS_PER_LONG)
270 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271}
272
273static inline void bitmap_copy_and_extend(unsigned long *to,
274 const unsigned long *from,
275 unsigned int count, unsigned int size)
276{
277 unsigned int copy = BITS_TO_LONGS(count);
278
279 memcpy(to, from, copy * sizeof(long));
280 if (count % BITS_PER_LONG)
281 to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
282 memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
283}
284
285/*
286 * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
287 * machines the order of hi and lo parts of numbers match the bitmap structure.
288 * In both cases conversion is not needed when copying data from/to arrays of
289 * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
290 * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
291 * architectures are not using bitmap_copy_clear_tail().
292 */
293#if BITS_PER_LONG == 64
294void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
295 unsigned int nbits);
296void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
297 unsigned int nbits);
298#else
299#define bitmap_from_arr32(bitmap, buf, nbits) \
300 bitmap_copy_clear_tail((unsigned long *) (bitmap), \
301 (const unsigned long *) (buf), (nbits))
302#define bitmap_to_arr32(buf, bitmap, nbits) \
303 bitmap_copy_clear_tail((unsigned long *) (buf), \
304 (const unsigned long *) (bitmap), (nbits))
305#endif
306
307/*
308 * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
309 * the conversion is not needed when copying data from/to arrays of u64.
310 */
311#if BITS_PER_LONG == 32
312void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
313void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
314#else
315#define bitmap_from_arr64(bitmap, buf, nbits) \
316 bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
317#define bitmap_to_arr64(buf, bitmap, nbits) \
318 bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
319#endif
320
321static __always_inline
322bool bitmap_and(unsigned long *dst, const unsigned long *src1,
323 const unsigned long *src2, unsigned int nbits)
324{
325 if (small_const_nbits(nbits))
326 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
327 return __bitmap_and(dst, src1, src2, nbits);
328}
329
330static __always_inline
331void bitmap_or(unsigned long *dst, const unsigned long *src1,
332 const unsigned long *src2, unsigned int nbits)
333{
334 if (small_const_nbits(nbits))
335 *dst = *src1 | *src2;
336 else
337 __bitmap_or(dst, src1, src2, nbits);
338}
339
340static __always_inline
341void bitmap_xor(unsigned long *dst, const unsigned long *src1,
342 const unsigned long *src2, unsigned int nbits)
343{
344 if (small_const_nbits(nbits))
345 *dst = *src1 ^ *src2;
346 else
347 __bitmap_xor(dst, src1, src2, nbits);
348}
349
350static __always_inline
351bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
352 const unsigned long *src2, unsigned int nbits)
353{
354 if (small_const_nbits(nbits))
355 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
356 return __bitmap_andnot(dst, src1, src2, nbits);
357}
358
359static __always_inline
360void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
361{
362 if (small_const_nbits(nbits))
363 *dst = ~(*src);
364 else
365 __bitmap_complement(dst, src, nbits);
366}
367
368#ifdef __LITTLE_ENDIAN
369#define BITMAP_MEM_ALIGNMENT 8
370#else
371#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
372#endif
373#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
374
375static __always_inline
376bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
377{
378 if (small_const_nbits(nbits))
379 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
380 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
381 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
382 return !memcmp(src1, src2, nbits / 8);
383 return __bitmap_equal(src1, src2, nbits);
384}
385
386/**
387 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
388 * @src1: Pointer to bitmap 1
389 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1
390 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
391 * @nbits: number of bits in each of these bitmaps
392 *
393 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
394 */
395static __always_inline
396bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
397 const unsigned long *src3, unsigned int nbits)
398{
399 if (!small_const_nbits(nbits))
400 return __bitmap_or_equal(src1, src2, src3, nbits);
401
402 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
403}
404
405static __always_inline
406bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
407{
408 if (small_const_nbits(nbits))
409 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
410 else
411 return __bitmap_intersects(src1, src2, nbits);
412}
413
414static __always_inline
415bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
416{
417 if (small_const_nbits(nbits))
418 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
419 else
420 return __bitmap_subset(src1, src2, nbits);
421}
422
423static __always_inline
424bool bitmap_empty(const unsigned long *src, unsigned nbits)
425{
426 if (small_const_nbits(nbits))
427 return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
428
429 return find_first_bit(src, nbits) == nbits;
430}
431
432static __always_inline
433bool bitmap_full(const unsigned long *src, unsigned int nbits)
434{
435 if (small_const_nbits(nbits))
436 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
437
438 return find_first_zero_bit(src, nbits) == nbits;
439}
440
441static __always_inline
442unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
443{
444 if (small_const_nbits(nbits))
445 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
446 return __bitmap_weight(src, nbits);
447}
448
449static __always_inline
450unsigned long bitmap_weight_and(const unsigned long *src1,
451 const unsigned long *src2, unsigned int nbits)
452{
453 if (small_const_nbits(nbits))
454 return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
455 return __bitmap_weight_and(src1, src2, nbits);
456}
457
458static __always_inline
459unsigned long bitmap_weight_andnot(const unsigned long *src1,
460 const unsigned long *src2, unsigned int nbits)
461{
462 if (small_const_nbits(nbits))
463 return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
464 return __bitmap_weight_andnot(src1, src2, nbits);
465}
466
467static __always_inline
468void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
469{
470 if (__builtin_constant_p(nbits) && nbits == 1)
471 __set_bit(start, map);
472 else if (small_const_nbits(start + nbits))
473 *map |= GENMASK(start + nbits - 1, start);
474 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
475 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
476 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
477 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
478 memset((char *)map + start / 8, 0xff, nbits / 8);
479 else
480 __bitmap_set(map, start, nbits);
481}
482
483static __always_inline
484void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
485{
486 if (__builtin_constant_p(nbits) && nbits == 1)
487 __clear_bit(start, map);
488 else if (small_const_nbits(start + nbits))
489 *map &= ~GENMASK(start + nbits - 1, start);
490 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
491 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
492 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
493 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
494 memset((char *)map + start / 8, 0, nbits / 8);
495 else
496 __bitmap_clear(map, start, nbits);
497}
498
499static __always_inline
500void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
501 unsigned int shift, unsigned int nbits)
502{
503 if (small_const_nbits(nbits))
504 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
505 else
506 __bitmap_shift_right(dst, src, shift, nbits);
507}
508
509static __always_inline
510void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
511 unsigned int shift, unsigned int nbits)
512{
513 if (small_const_nbits(nbits))
514 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
515 else
516 __bitmap_shift_left(dst, src, shift, nbits);
517}
518
519static __always_inline
520void bitmap_replace(unsigned long *dst,
521 const unsigned long *old,
522 const unsigned long *new,
523 const unsigned long *mask,
524 unsigned int nbits)
525{
526 if (small_const_nbits(nbits))
527 *dst = (*old & ~(*mask)) | (*new & *mask);
528 else
529 __bitmap_replace(dst, old, new, mask, nbits);
530}
531
532/**
533 * bitmap_scatter - Scatter a bitmap according to the given mask
534 * @dst: scattered bitmap
535 * @src: gathered bitmap
536 * @mask: mask representing bits to assign to in the scattered bitmap
537 * @nbits: number of bits in each of these bitmaps
538 *
539 * Scatters bitmap with sequential bits according to the given @mask.
540 *
541 * Example:
542 * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
543 *
544 * Or in binary form
545 * @src @mask @dst
546 * 0000000001011010 0001001100010011 0000001100000010
547 *
548 * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
549 *
550 * A more 'visual' description of the operation::
551 *
552 * src: 0000000001011010
553 * ||||||
554 * +------+|||||
555 * | +----+||||
556 * | |+----+|||
557 * | || +-+||
558 * | || | ||
559 * mask: ...v..vv...v..vv
560 * ...0..11...0..10
561 * dst: 0000001100000010
562 *
563 * A relationship exists between bitmap_scatter() and bitmap_gather().
564 * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
565 * See bitmap_scatter() for details related to this relationship.
566 */
567static __always_inline
568void bitmap_scatter(unsigned long *dst, const unsigned long *src,
569 const unsigned long *mask, unsigned int nbits)
570{
571 unsigned int n = 0;
572 unsigned int bit;
573
574 bitmap_zero(dst, nbits);
575
576 for_each_set_bit(bit, mask, nbits)
577 __assign_bit(bit, dst, test_bit(n++, src));
578}
579
580/**
581 * bitmap_gather - Gather a bitmap according to given mask
582 * @dst: gathered bitmap
583 * @src: scattered bitmap
584 * @mask: mask representing bits to extract from in the scattered bitmap
585 * @nbits: number of bits in each of these bitmaps
586 *
587 * Gathers bitmap with sparse bits according to the given @mask.
588 *
589 * Example:
590 * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
591 *
592 * Or in binary form
593 * @src @mask @dst
594 * 0000001100000010 0001001100010011 0000000000011010
595 *
596 * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
597 *
598 * A more 'visual' description of the operation::
599 *
600 * mask: ...v..vv...v..vv
601 * src: 0000001100000010
602 * ^ ^^ ^ 0
603 * | || | 10
604 * | || > 010
605 * | |+--> 1010
606 * | +--> 11010
607 * +----> 011010
608 * dst: 0000000000011010
609 *
610 * A relationship exists between bitmap_gather() and bitmap_scatter(). See
611 * bitmap_scatter() for the bitmap scatter detailed operations.
612 * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
613 * The operation bitmap_gather(result, scattered, mask, n) leads to a result
614 * equal or equivalent to src.
615 *
616 * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
617 * are not bijective.
618 * The result and src values are equivalent in that sense that a call to
619 * bitmap_scatter(res, src, mask, n) and a call to
620 * bitmap_scatter(res, result, mask, n) will lead to the same res value.
621 */
622static __always_inline
623void bitmap_gather(unsigned long *dst, const unsigned long *src,
624 const unsigned long *mask, unsigned int nbits)
625{
626 unsigned int n = 0;
627 unsigned int bit;
628
629 bitmap_zero(dst, nbits);
630
631 for_each_set_bit(bit, mask, nbits)
632 __assign_bit(n++, dst, test_bit(bit, src));
633}
634
635static __always_inline
636void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
637 unsigned int *re, unsigned int end)
638{
639 *rs = find_next_bit(bitmap, end, *rs);
640 *re = find_next_zero_bit(bitmap, end, *rs + 1);
641}
642
643/**
644 * bitmap_release_region - release allocated bitmap region
645 * @bitmap: array of unsigned longs corresponding to the bitmap
646 * @pos: beginning of bit region to release
647 * @order: region size (log base 2 of number of bits) to release
648 *
649 * This is the complement to __bitmap_find_free_region() and releases
650 * the found region (by clearing it in the bitmap).
651 */
652static __always_inline
653void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
654{
655 bitmap_clear(bitmap, pos, BIT(order));
656}
657
658/**
659 * bitmap_allocate_region - allocate bitmap region
660 * @bitmap: array of unsigned longs corresponding to the bitmap
661 * @pos: beginning of bit region to allocate
662 * @order: region size (log base 2 of number of bits) to allocate
663 *
664 * Allocate (set bits in) a specified region of a bitmap.
665 *
666 * Returns: 0 on success, or %-EBUSY if specified region wasn't
667 * free (not all bits were zero).
668 */
669static __always_inline
670int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
671{
672 unsigned int len = BIT(order);
673
674 if (find_next_bit(bitmap, pos + len, pos) < pos + len)
675 return -EBUSY;
676 bitmap_set(bitmap, pos, len);
677 return 0;
678}
679
680/**
681 * bitmap_find_free_region - find a contiguous aligned mem region
682 * @bitmap: array of unsigned longs corresponding to the bitmap
683 * @bits: number of bits in the bitmap
684 * @order: region size (log base 2 of number of bits) to find
685 *
686 * Find a region of free (zero) bits in a @bitmap of @bits bits and
687 * allocate them (set them to one). Only consider regions of length
688 * a power (@order) of two, aligned to that power of two, which
689 * makes the search algorithm much faster.
690 *
691 * Returns: the bit offset in bitmap of the allocated region,
692 * or -errno on failure.
693 */
694static __always_inline
695int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
696{
697 unsigned int pos, end; /* scans bitmap by regions of size order */
698
699 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
700 if (!bitmap_allocate_region(bitmap, pos, order))
701 return pos;
702 }
703 return -ENOMEM;
704}
705
706/**
707 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
708 * @n: u64 value
709 *
710 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
711 * integers in 32-bit environment, and 64-bit integers in 64-bit one.
712 *
713 * There are four combinations of endianness and length of the word in linux
714 * ABIs: LE64, BE64, LE32 and BE32.
715 *
716 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
717 * bitmaps and therefore don't require any special handling.
718 *
719 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
720 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
721 * other hand is represented as an array of 32-bit words and the position of
722 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
723 * word. For example, bit #42 is located at 10th position of 2nd word.
724 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
725 * values in memory as it usually does. But for BE we need to swap hi and lo
726 * words manually.
727 *
728 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
729 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps
730 * hi and lo words, as is expected by bitmap.
731 */
732#if __BITS_PER_LONG == 64
733#define BITMAP_FROM_U64(n) (n)
734#else
735#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
736 ((unsigned long) ((u64)(n) >> 32))
737#endif
738
739/**
740 * bitmap_from_u64 - Check and swap words within u64.
741 * @mask: source bitmap
742 * @dst: destination bitmap
743 *
744 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
745 * to read u64 mask, we will get the wrong word.
746 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
747 * but we expect the lower 32-bits of u64.
748 */
749static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
750{
751 bitmap_from_arr64(dst, &mask, 64);
752}
753
754/**
755 * bitmap_read - read a value of n-bits from the memory region
756 * @map: address to the bitmap memory region
757 * @start: bit offset of the n-bit value
758 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
759 *
760 * Returns: value of @nbits bits located at the @start bit offset within the
761 * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
762 * value is undefined.
763 */
764static __always_inline
765unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
766{
767 size_t index = BIT_WORD(start);
768 unsigned long offset = start % BITS_PER_LONG;
769 unsigned long space = BITS_PER_LONG - offset;
770 unsigned long value_low, value_high;
771
772 if (unlikely(!nbits || nbits > BITS_PER_LONG))
773 return 0;
774
775 if (space >= nbits)
776 return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
777
778 value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
779 value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
780 return (value_low >> offset) | (value_high << space);
781}
782
783/**
784 * bitmap_write - write n-bit value within a memory region
785 * @map: address to the bitmap memory region
786 * @value: value to write, clamped to nbits
787 * @start: bit offset of the n-bit value
788 * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
789 *
790 * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
791 * i.e. bits beyond @nbits are ignored:
792 *
793 * for (bit = 0; bit < nbits; bit++)
794 * __assign_bit(start + bit, bitmap, val & BIT(bit));
795 *
796 * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
797 */
798static __always_inline
799void bitmap_write(unsigned long *map, unsigned long value,
800 unsigned long start, unsigned long nbits)
801{
802 size_t index;
803 unsigned long offset;
804 unsigned long space;
805 unsigned long mask;
806 bool fit;
807
808 if (unlikely(!nbits || nbits > BITS_PER_LONG))
809 return;
810
811 mask = BITMAP_LAST_WORD_MASK(nbits);
812 value &= mask;
813 offset = start % BITS_PER_LONG;
814 space = BITS_PER_LONG - offset;
815 fit = space >= nbits;
816 index = BIT_WORD(start);
817
818 map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
819 map[index] |= value << offset;
820 if (fit)
821 return;
822
823 map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
824 map[index + 1] |= (value >> space);
825}
826
827#define bitmap_get_value8(map, start) \
828 bitmap_read(map, start, BITS_PER_BYTE)
829#define bitmap_set_value8(map, value, start) \
830 bitmap_write(map, value, start, BITS_PER_BYTE)
831
832#endif /* __ASSEMBLY__ */
833
834#endif /* __LINUX_BITMAP_H */